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Abstract 

Gene expression differences between males and females are thought to be key for the evolution of sexual dimorphism, and sex-bi-
ased genes are often used to study the molecular footprint of sex-specific selection. However, gene expression is often measured 
from complex aggregations of diverse cell types, making it difficult to distinguish between sex differences in expression that are due 
to regulatory rewiring within similar cell types and those that are simply a consequence of developmental differences in cell-type 
abundance. To determine the role of regulatory versus developmental differences underlying sex-biased gene expression, we use 
single-cell transcriptomic data from multiple somatic and reproductive tissues of male and female guppies, a species that exhibits 
extensive phenotypic sexual dimorphism. Our analysis of gene expression at single-cell resolution demonstrates that nonisometric 
scaling between the cell populations within each tissue and heterogeneity in cell-type abundance between the sexes can influence 
inferred patterns of sex-biased gene expression by increasing both the false-positive and false-negative rates. Moreover, we show 
that, at the bulk level, the subset of sex-biased genes that are the product of sex differences in cell-type abundance can significantly 
confound patterns of coding-sequence evolution. Taken together, our results offer a unique insight into the effects of allometry and 
cellular heterogeneity on perceived patterns of sex-biased gene expression and highlight the power of single-cell RNA-sequencing 
in distinguishing between sex-biased genes that are the result of regulatory change and those that stem from sex differences in cell-
type abundance, and hence are a consequence rather than a cause of sexual dimorphism.
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Lay Summary 

Males and females of many species display remarkable differences in morphology, physiology, behavior, and other traits, despite 
sharing an almost identical genome. Differences in gene expression between the sexes, referred to as sex-biased gene expression, 
are therefore thought to be key for the development of sexually dimorphic traits. However, gene expression is often measured from 
whole organs or even whole organisms, which represent aggregations of many cell types that can significantly differ in abundance 
between males and females. Such differences in the relative size or proportion of constituent cell populations may lead to perceived 
sex-biased gene expression, even if expression within individual cell types is unchanged between the two sexes. As such, it remains 
unclear to what extent is sex-biased gene expression a consequence of sex differences in cell-type abundance, rather than a cause of 
sexual dimorphism. To address this, we leverage recent advances in single-cell transcriptomics to compare male and female expres-
sion levels across equivalent cell populations from multiple tissues of the guppy, a species that shows extensive sexual dimorphism. 
We find significant differences in cellular composition between males and females across all sampled tissues and demonstrate that 
these sex differences in cell-type abundance can alter estimates of sex-biased gene expression. For many genes, expression appears 
to differ between the sexes at the aggregated whole tissue level but not at the individual cell population level. These sex-biased genes 
that are a consequence of sex differences in tissue composition can further influence estimates of molecular evolution and studies 
of selection.

Introduction
Males and females of the same species often exhibit striking dif-
ferences in a broad range of phenotypic traits, despite sharing the 
majority of their genome. Changes in patterns of gene expression 
between the sexes are therefore thought to be key to the evolu-
tion of sexual dimorphism (Grath & Parsch, 2016; Mank, 2017), and 
sex-biased genes are often used as a way to measure the signa-
ture of sex-specific selection within the genome. Indeed, a large 

body of work indicates that the magnitude of transcriptional sex 
differences correlates with the degree of phenotypic dimorphism 
across multiple levels of biological diversity (Djordjevic et al., 2022; 
Ingleby et al., 2015; Magnusson et al., 2011; Mank et al., 2010; Perry 
et al., 2014; Pointer et al., 2013). However, distinguishing between 
the causal and the dependent variable has important implications 
for studying gene expression evolution and for inferences of sexual 
selection and sexual conflict.

Received November 17, 2022; revisions received March 8, 2023; accepted  April 6, 2023

© The Author(s) 2023. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE) and European Society for Evolutionary 
Biology (ESEN).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:iulia.darolti@unil.ch
mailto:iulia.darolti@unil.ch
https://creativecommons.org/licenses/by/4.0/


146  |  Darolti and Mank

Testing for the causal effect of sex-biased gene expression 
on phenotypic dimorphism is nontrivial (Abzhanov et al., 2006; 
Chen et al., 2015; Galouzis & Prud’homme, 2021; Khila et al., 2012; 
Toubiana et al., 2021). Functional genetic assays are limited by the 
sheer number of sex-biased loci, the polygenic nature of traits, or 
simply because the necessary genetic tools are lacking, a particu-
lar problem for non-model organisms, which often present the 
most striking phenotypic differences. Moreover, the assumption 
that sex-biased genes are the result of regulatory rewiring may 
not always hold true. Most differential expression analyses have 
so far relied on bulk RNA-sequencing, comparing expression level 
between organs (Harrison et al., 2015; Whittle & Extavour, 2019), 
whole body parts comprising various tissues such as heads or 
abdomens (Immonen et al., 2017; Standage et al., 2016), or even 
entire organisms (Djordjevic et al., 2022; Hollis et al., 2014; Ranz 
et al., 2003; Stuglik et al., 2014). This approach averages expres-
sion across a complex aggregate of diverse cell types, ignoring 
the stochasticity of gene expression across cell populations. In 
many species, males and females exhibit dimorphism in the rel-
ative size of their constituent body parts (Badyaev, 2002), and 
allometric scaling could influence perception of differential 
expression in studies where whole organisms are used for RNA 
preparation (Montgomery & Mank, 2016). In a similar way, whole 
tissue expression studies may be affected by the heterogeneity 
in cell-type abundance or composition (Fair et al., 2020; Fuess & 
Bolnick, 2021; Hunnicutt et al., 2022; Price et al., 2022), and there 
is indeed evidence that sex differences in cell-type populations 
exist for many tissues (Mank & Rideout, 2021). For example, dif-
ferential rates of cell proliferation between males and females 
seem to underly the development of several sexually dimorphic 
ornamental traits, such as caudal fins in Xiphophorus (Powell et al., 
2021; Schartl et al., 2021) and horns in rhinoceros beetles (Emlen 
et al., 2012). As such, it remains unclear to what extent are sex 
differences in expression a cause, as opposed to a consequence, 
of sexual dimorphism.

Sex-biased gene expression is often used to measure the 
footprint of sex-specific selection and sexual conflict within the 
genome. However, this approach has produced some discordant 
results (Grath & Parsch, 2016; Mank, 2017). Male-biased genes in 
many species tend to exhibit higher rates of evolution at both 
the coding sequence and the expression level (Khaitovich et al., 
2005; Lichilín et al., 2021; Lipinska et al., 2015; Ranz et al., 2003; 
Sharma et al., 2014; Whittle & Extavour, 2019). While early work 
in Drosophila melanogaster has interpreted this as the result of 
stronger sexual selection acting in males (Proschel et al., 2006; 
Sawyer et al., 2007), studies in other species have found that such 
accelerated patterns of evolution are instead more consistent 
with relaxed constraint (Dapper & Wade, 2020; Djordjevic et al., 
2022; Gershoni & Pietrokovski, 2014; Harrison et al., 2015; Sayadi 
et al., 2019), and experimental evolution results are mixed (Hollis 
et al., 2014; Li Richter & Hollis, 2021; Veltsos et al., 2017). Some of 
the discordance between these different studies may be due to 
the heterogeneity in tissue composition and varying allometric 
scaling across species. Distinguishing between sex-biased genes 
that are due to regulatory changes and those that are simply a 
consequence of developmental differences in cell-type abun-
dance is important for these types of molecular evolutionary 
analyses as the former is expected to be more enriched for genes 
subject to sexual selection and influencing sexual dimorphism.

Single-cell transcriptomics (scRNA-seq) offers the possibility 
to avoid the challenges posed by measuring expression from a 
heterogeneous tissue by instead comparing expression level 
between samples across equivalent cell populations. Here we 

leverage these recent advances in scRNA-sequencing to deter-
mine to what extent sex-biased gene expression is the result of 
sex differences in cell-type abundance as opposed to regulatory 
differences between similar cells, and to assess how this impacts 
inferences of evolutionary divergence.

Methods
Tissue collection and dissociation
We sampled reproductively mature (>3 months of age) male and 
female guppies from our laboratory population. Sexual maturity 
in males was detected by the development of a gonopodium, a 
modified anal fin, and of coloration (Houde, 2019), and in females 
by the presence of a dark pigmented spot, the gravid spot, close 
to the anal pore. All fish were raised at a water temperature of 
26°C with a 12:12 light:dark schedule and fed a daily diet of flake 
food and live Artemia brine shrimp. Fish were euthanized with 
a pH-neutralized MS222 solution and dissected immediately. We 
dissected liver, heart, tail skin (removing any muscle and scales), 
and gonad (testis in the case of males, and ovaries excluding 
embryos in the case of pregnant females) tissues and immedi-
ately placed them in phosphate-buffered saline (PBS) solution 
(Corning) on ice. We obtained three replicates for each tissue type 
and sex, and every replicate contained a nonoverlapping pool 
of five individuals in order to ensure sufficient material for sin-
gle-cell dissociation, resulting in a total of 24 samples.

Tissues were incubated at 30°C in a solution of 4 mg/mL col-
lagenase type I (Sigma-Aldrich) and 4  mM CaCl2, gently pipet-
ting every 3  min using a wide-bore pipette tip, until digested. 
Dissociated tissues were then filter-strained using a Flowmi 
40-μm cell strainer. We centrifuged the samples at 300 rcf for 
3 min, removing the supernatant and resuspending the cell pellet 
in PBS containing 0.04% bovine serum albumin (BSA) (Corning). 
Samples were centrifuged and resuspended in PBS + 0.04% BSA 
twice and immediately placed on ice before further processing.

Single-cell library preparation and sequencing
We mixed 10 μL of cell solution with 10 μL of the exclusion 
dye trypan blue 0.4% (Invitrogen) and estimated cell viability 
and concentration using a Countess II automated cell counter 
(ThermoFisher). An estimated 8,000 cells from each sample were 
then loaded onto individual lanes of a 10× Genomic Chromium 
Controller and barcoded 3ʹ single-cell libraries were prepared 
using the 10X Genomics Chromium Next GEM Single Cell 3’ kit 
v3.1 following the manufacturer’s instructions (#CG0000204). We 
assessed the quality and concentration of cDNA and of libraries 
using an Agilent 4200 TapeStation and the Agilent High Sensitivity 
D5000 ScreenTape system. Libraries were sequenced on an 
Illumina NovaSeq 6000 sequencer, with an average sequencing 
depth of 20,000 read pairs per cell.

scRNA-seq data processing
We used CellRanger v5.0.1 with the “mkref” function (Zheng et 
al., 2017) to build a reference index using the Ensembl P. reticulata 
genome (GCA_000633615.2) and annotation (release-103) files. 
Using the CellRanger v5.0.1 “count” function, we then aligned 
sequencing reads from fastq files to the reference index, identified 
cell-associated barcodes, and extracted gene-by-cell count matri-
ces. Data filtering and downstream analyses were performed 
using Seurat v4.1.0 (Satija et al., 2015) in R v4.0.5 (R Core Team, 
2021). We filtered the count data by keeping genes expressed in 
at least three cells and cells with at least 100 expressed genes. 
Raw counts were then normalized and scaled for each sample 
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to account for differences in sequencing depth per cell using the 
“SCTransfrom” function (Hafemeister & Satija, 2019). For each cell 
type of each tissue, we calculated and plotted Pearson correla-
tions between the number of genes and the number of reads per 
cell, before and after normalization, using the “FeatureScatter” 
function in Seurat. We used the function “doubletFinder_v3” from 
the DoubletFinder v2.0.3 package (McGinnis et al., 2019) in R to 
identify and remove doublets, which are the result of random 
encapsulation of more than one cell within the single-cell bead 
as part of the microfluidics process.

scRNA-seq data clustering
We performed the principal component analysis (PCA) using the 
“RunPCA” function and identified the significant PCs using the 
“ElbowPlot” function. We then constructed the nearest-neighbor 
graph with the “FindNeighbors” function and performed graph-
based clustering with the “FindClusters” function. We used the 
clustree v0.4.4 package in R to guide the decision of the opti-
mal resolution to choose for the clustering analysis (Zappia & 
Oshlack, 2018). Clusters were then visualized using uniform 
manifold approximation and projection (UMAP) embedding with 
“RunUMAP” (Supplementary Figure S1). For each tissue, we used 
the “FindAllMarkers” function in Seurat to identify differentially 
expressed genes for each cell cluster. We identified and anno-
tated the different cell types within each tissue based on marker 
gene information from the Zebrafish Cell Landscape (Jiang et al., 
2021; Wang et al., 2023) and other published work (Liu et al., 2022; 
Morrison et al., 2021; Qian et al., 2022) (Supplementary Figure S2).

Differential cell-type abundance analysis
For each tissue type, we tested for significant differences between 
male and female samples in the abundance of the identified cell 
types. We first quantified the number of cells assigned to each 
cell type and sample. We then merged counts for each sex and 
calculated the proportion of cells of each cell type out of the total 
number of cells. We added 1e-10 to each proportion value to avoid 
infinitely high numbers associated with log2 0 and calculated the 
female-to-male fold change (FC) in cell-type abundance as log2 
(female proportion/male proportion). To identify significant dif-
ferences in cell-type abundance between the sexes, we computed 
two-proportion z-tests (p < .01) with the “prop.test” function in R.

Sex-biased gene expression analysis
To identify sex-biased genes at the cell level, for each identified 
cell type, we aggregated raw counts across all cells to the sam-
ple level using the “aggregate.Matrix” function in R. We then used 
DESeq2 to normalize the count data accounting for differences in 
library size between samples and applying a log2-transformation 
with the “rlog” function (Love et al., 2014). Lastly, we performed 
differential expression analysis using the “DESeq” function. 
Sex-biased genes were called based on |log2 FC| ≥ 1 and a false 
discovery rate (FDR) adjusted p-value < .05 to correct for mul-
tiple testing. To identify sex-biased genes at the bulk level, we 
followed the same steps described above, but instead aggregated 
counts across all cells from all clusters together to obtain a single 
expression value for each gene and sample.

In addition, we tested the extent to which expression esti-
mates from bulked single-cell RNA-seq data correlate with 
those from bulk RNA-seq data. For this, we analyzed publicly 
available bulk RNA-seq data from adult male and female gonad 
(Sharma et al., 2014) and male skin tissue (NCBI SRA PRJDB11269). 
We used HISAT2 v2.0.4 (Kim et al., 2015) to map reads to the P. 
reticulata genome keeping paired (--no-mixed) and concordant 

(--no-discordant) alignments only. We estimated gene expres-
sion by extracting read counts for each gene using HTSeq-count 
(Anders et al., 2015). We log2-transformed counts and normalized 
with regards to library size using the “rlog” function in DESeq2. 
We performed Spearman correlations of gene expression with the 
“cor.test” function in R.

Rates of coding-sequence evolution analysis
We obtained coding sequences from the outgroup spe-
cies Gambusia affinis (ASM309773v1), Xiphophorus maculatus 
(Xipmac4.4.2), and Oryzias latipes (MEDAKA1) from Ensembl 104 
and extracted the longest isoform for each gene. We used recipro-
cal BLASTn v2.7.1 (Altschul et al., 1990) with an e-value cutoff of 
10e-10 and a minimum percentage identity of 30% to determine 
orthology across the P. reticulata genes and outgroup sequences. 
For genes with multiple blast hits, we chose the top hit based on 
the highest BLAST score.

We used O. latipes (MEDAKA1) protein-coding sequences from 
Ensembl 104 and BLASTx v2.3.0 with an e-value cutoff of 10e-
10 and a minimum percentage identity of 30% to obtain open 
reading frames. We excluded orthogroups without BLASTx hits 
or valid protein-coding sequences. We aligned orthologous gene 
sequences with PRANK v170427 (Loytynoja & Goldman, 2008) 
and filtered alignments to remove gaps. We also masked poorly 
aligned and error-rich regions with SWAMP (Harrison et al., 2014) 
with a threshold of 4 misalignments in a window size of 5 bp and 
a minimum sequence length of 100 bp.

To obtain divergence estimates, we used the branch model 
(model = 2, nssites = 0) in the CODEML package in PAML v4.8 (Yang, 
2007). Genes with dS > 2 were removed from subsequent analyses to 
avoid inaccurate divergence estimates due to mutation saturation 
and double hits (Axelsson et al., 2008). We divided genes into dif-
ferent sex-bias categories (see Figure 3) and extracted the number 
of nonsynonymous (DN) and synonymous substitutions (DS) and the 
number of nonsynonymous (N) and synonymous (S) sites. For each 
group of genes, we then calculated the mean rate of nonsynony-
mous substitutions (dN) and mean rate of synonymous substitutions 
(dS) as the number of substitutions across all genes divided by the 
number of sites (dN = DN/N; dS = DS/S). We used bootstrapping with 
1,000 replicates to determine the 95% confidence intervals for diver-
gence estimates in each gene group and tested for differences in dN, 
dS, and dN/dS estimates between the different gene groups based on 
1,000 replicates permutation tests.

Results
We generated 24 scRNA-seq data sets from skin, heart, liver, and 
gonad tissue from adult male and female guppies, with three 
replicates for each sex and tissue. Guppies are highly sexually 
dimorphic, displaying sex differences in size (Houde, 2019), sex-
ual ornaments (Reznick & Endler, 1982), life history (Reznick & 
Endler, 1982), and behavior (Reznick, 1989), among other traits, 
and we chose these four tissues to reflect a range of pheno-
typic dimorphism. Following quality control and filtering (see 
Methods), we recovered between 503–3,747, 1,163–8,966, 4,985–
6,835, and 1,492–7,973 cells (Supplementary Table S1) and 9,275, 
9,818, 11,540, and 13,617 genes expressed in skin, heart, liver, and 
gonad tissues, respectively (Supplementary Table S2). Following 
UMAP dimensionality reduction and marker-based annotation, 
we identified 13, 11, 9, and 8 distinctly expressed cell clusters for 
skin, heart, liver, and gonad, respectively (Supplementary Figures 
S1 and S2). These clusters are representative of most major cell 
types found in these tissues (Jiang et al., 2021; Wang et al., 2023).

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
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Sex differences in cell-type abundance across 
tissues
We examined each tissue for differences in cell composition 
between the sexes based on the estimated abundances of each 
of the identified cell types. We found significant sex differences (p 
< .01, two-proportion z-tests) in abundance for many cell popula-
tions (Figure 1; Supplementary Table S3), the most extreme differ-
ences being present in the reproductive tissue, where most of the 
cell types are sex limited (Figure 1D, Supplementary Figure S3). 
Notably, the vast majority of cells in the male gonad are related 
to sperm, while the female gonad represents a broader mix of 
gametic and somatic cells (Supplementary Figure S3). However, 
we observe a range of dimorphism in cell composition among 
somatic tissues as well. The liver plays a critical role in several 
physiological processes, including hormonal regulation, metab-
olism, digestion, and immune response (Bruslé & Anadon, 1996), 
and shows marked sex differences (Marcos et al., 2015; Ullah et 
al., 2021). Consistent with the more sexually dimorphic nature 
of this somatic tissue, we found extensive sex differences in cel-
lular composition, with all but one of the identified cell types 

showing a significant sex-bias in abundance (Figure 1C). Although 
the heart and skin tissues are less sexually dimorphic compared 
with the liver, we also recovered sex differences in abundance for 
more than half of the cell populations in these two tissues (Figure 
1A and B). Markedly, guppies exhibit striking sexual dimorphism 
in skin pigmentation, with male-specific ornamental color pat-
terns (Reznick & Endler, 1982), which we also find reflected here 
through the strong male-biased abundance of melanocytes in 
males (Figure 1).

Sex-biased gene expression at bulk and cell level
Dropout events are a well-known challenge with scRNA-seq data, 
where the prevalence of genes with nonbiological zero expres-
sion measurements can confound gene expression analyses. We 
employed a normalization and variance stabilization approach to 
reduce the effect of technical noise on estimates of gene expres-
sion (Hafemeister & Satija, 2019). Indeed, for most cell types 
across each tissue, we find a significantly decreased correlation 
between the expression level of a gene and the total sequencing 
depth of a cell following normalization (Supplementary Figure 

Figure 1.  Differential cell-type abundance between males and females for skin (A), heart (B), liver (C), and gonad (D) tissues. Cell types that are 
significantly more abundant in females are shown in red, those that are significantly male-biased in abundance are shown in blue, while unbiased 
cell types are in gray. Significance based on two-proportions z-tests (p < .01).

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
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S4). This indicates that our gene expression analyses should not 
be influenced by variation in sequencing depth and that differ-
ences in gene expression across cells primarily reflect biological 
heterogeneity (Hafemeister & Satija, 2019).

For each tissue, we aggregated expression measures across 
all cells to obtain a single value for each gene and sample, thus 
reflecting expression at the bulk tissue level. Using the bulked 
scRNA-seq data, we identified genes with a sex-biased expres-
sion profile (|log2 fold change| ≥ 1, FDR-corrected p-value < .05). 
Consistent with previous estimates in guppies (Sharma et al., 
2014), we find that, at the bulk level, male and female gonads 
exhibit strong patterns of sex-biased gene expression, with 9,524 
genes identified as differentially expressed, representing 70% 
of all genes expressed in the gonads (Figure 2D, Supplementary 
Table S2). Top male-biased genes included those encoding for 
spermatogenesis processes (march11, morn3, spata18, spatc1l), 
ciliary- and flagellar-associated proteins (cfap52, ropn1l, tekt1), 
male-specific development (dmrt1), and calcium-binding proteins 
(efcab2), while female-biased genes encoded for, among others, 
zona pellucida glicoproteins (zp2l2, zp3f.1, zp3d.2), oocyte-specific 
proteins (zar1, zar1l), and ovarian folliculogenesis processes (gdf9, 
cx43.4, pcdh18a) (Supplementary Table S2).

Given their sex-specific roles, reproductive organs are by far 
the most transcriptionally dimorphic tissues; however, there 
is substantial variation in sex differences in expression across 

somatic tissues as well (Khodursky et al., 2020; Ma et al., 2018; 
Mank et al., 2007; Oliva et al., 2020; Yang et al., 2006), which we 
also observe here. The liver was the most transcriptionally dimor-
phic somatic tissue, with 349 sex-biased genes, more than twice 
as many compared with the skin (114) and heart (155) tissues 
(Figure 2A–C). The liver has been shown to be one of the somatic 
tissues with the most sex-biased gene expression profiles in other 
fish species (Qiao et al., 2016; Rose et al., 2015; Taboada et al., 
2012; Zheng et al., 2013). In fish and other oviparous vertebrates, 
the liver carries an important role in the vitellogenesis process of 
egg yolk protein synthesis, transport, and uptake in the maturing 
oocyte (Arukwe & Goksøyr, 2003; Hara et al., 2016), and, in line 
with this, we also find vitellogenins (vtg1, vtg2, vtg3) to be some 
of the top female-biased genes in the liver (Supplementary Table 
S2). While skin and heart tissues express fewer sex-biased genes, 
we also note highly male-biased genes in skin with a role in pig-
mentation (fhl2a, pnp4a).

To test whether bulked scRNA-seq expression data correlates 
with bulk RNA-seq data, we analyzed publicly available bulk 
RNA-seq data for adult male and female gonad and male skin 
tissue. Unfortunately, bulk data for the other tissues were not 
available. We found a strong correlation in gene expression esti-
mates between the bulk RNA-seq and the bulk scRNA-seq data-
sets for both male gonad and male skin tissues (Supplementary 
Figure S5). Multiple factors, such as technical variation and 

Figure 2.  Number of genes showing sex-biased gene expression at the cell and bulk level in skin (A), heart (B), liver (C), and gonad (D) tissues. 
Numbers at the “Cell-level” represent the union of genes identified as sex-biased across all the different cell types. Significant differential expression 
between the sexes was based on |log2 FC| ≥ 1 and an FDR-corrected p-value < .05.

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data


150  |  Darolti and Mank

differences in sample preparation, can explain the lack of cor-
relation for the female gonad tissue. We observe a very strong 
correlation between the three bulk scRNA-seq female gonad 
samples (Supplementary Figure S5). However, there was only one 
bulk RNA-seq female gonad sample available which prevented 
us from testing for the effects of technical noise on the correla-
tion analysis. Nevertheless, previous work in other systems has 
shown a strong correlation between expression estimates from 
bulk RNA-seq and bulk scRNA-seq data across various tissues 
(Karlsson et al., 2021; Marinov et al., 2014; Trapnell et al., 2014).

We next compared patterns of differential gene expression 
between males and females at the whole tissue level with those 
at the cell level. As such, in addition to the aggregated bulk-level 
expression, for each identified cell type we aggregated expres-
sion data across all cells to identify sex-biased genes in each 
cell population. Overall, we discovered more sex-biased genes at 
the cell level than at the bulk level in all tissues, except for liver. 
However, what is even more striking is that across the somatic 
tissues between 49% and 77% of the identified sex-biased genes 
at the cell level have unbiased expression profiles at the bulk level 
(Figure 2). By contrast, in the gonad, only about 24% of the differ-
entially expressed genes at the cell level show no sex differences 
in expression at the bulk level. These results indicate that, outside 
of the reproductive tissues, differential gene expression analyses 
based on bulk RNA-sequencing data are limited in their ability to 
comprehensively identify sex-biased genes. Nonisometric-scaling 
relationships between cellular subcomponents of a tissue may 

cause patterns of differential expression in low abundance cell 
types to be concealed when expression is aggregated across var-
ious cell types in standard bulk RNA-sequencing experiments, 
thus creating a false-negative inference of sex-biased gene 
expression.

Moreover, in all somatic tissues, many genes are charac-
terized as sex-biased at the bulk level, but not at the cellular 
level. We hypothesized that these differential expression pat-
terns are not due to regulatory rewiring within cell types but 
instead a consequence of differences in cell-type abundance 
between males and females. Indeed, these genes tend to have 
a significantly lower magnitude of expression fold change 
(Supplementary Figure S6) and are more highly expressed in 
cell types that exhibit significant sex differences in abundance 
(Supplementary Figure S7). In skin, genes that are female-bi-
ased at the bulk level only are predominantly expressed in the 
mesenchymal stromal cell population which is more abun-
dant in females. Similarly in liver, genes that are female- and 
male-biased in expression at the bulk level but not at the cell 
level have a significantly higher expression in the female-abun-
dant T lymphocytes and the male-abundant endothelial cells, 
respectively. Although in the gonad a much smaller percentage 
of genes are sex-biased only at the bulk level, these too appear 
to be the result of sex differences in cell-type abundance 
(Supplementary Figure S7). These results show that heteroge-
neity in cellular scaling relationships, due to developmental 
differences in cell proliferation, between males and females 

Figure 3.  Rates of coding-sequence evolution (dN/dS) for genes in skin (A), heart (B), liver (C), and gonad (D). Shown are estimates of divergence for 
genes that are unbiased at both the bulk level and cell level (yellow), all genes identified as male-biased (green) and female-biased (orange) at the 
bulk level (Bulk-level), genes with a male-biased and female-biased expression at the bulk level but that are unbiased in every cell type within that 
tissue (Bulk-level only), genes that show a sex-biased expression profile both at the bulk level and in at least one of the identified cell types in that 
tissue (Bulk-level and Cell-level), and sex-biased genes at the cell level but not at the bulk level (Cell-level only). Numbers on the x-axis represent the 
number of genes in each group. Letters above bars indicate pairwise significance between groups based on 1,000 replicates permutations, where bars 
that share a letter are not significantly different, while bars with no overlapping letters are significantly different (p < .05).
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can influence perceived patterns of differential gene expression 
in the absence of regulatory changes.

Rates of evolution of sex-biased genes
We tested whether the cause of sex-biased gene expression influ-
ences estimates of coding-sequence evolution. We hypothesized 
that sex-biased genes that are due to sex differences in cell-type 
abundance, and thus a consequence of sex-specific developmen-
tal trajectories, may not be direct targets of sex-specific selection 
and may not show elevated rates of sequence divergence compared 
with unbiased genes. By contrast, loci exhibiting regulatory differ-
ences between males and females are more likely to underly sexu-
ally dimorphic phenotypes and would be expected to show stronger 
signatures of sex-specific selection, if indeed these genes as a class 
are more likely to be the focus of sexual selection.

When considering all the differentially expressed genes at the 
bulk level, we found that male-biased genes in liver and gonad tis-
sues and female-biased genes in skin, liver, and gonad tissues evolve 
significantly faster than unbiased genes (Figure 3), owing to higher 
rates of nonsynonymous substitutions (Supplementary Table S4). To 
further understand what drives these elevated divergence patterns 
at the bulk level, we split genes into those that are sex-biased at the 
bulk level but unbiased at the cell level, which are more likely to 
result from sex differences in cell-type abundance (Supplementary 
Figure S7), and those that are sex-biased at both the bulk and cell 
level, and which are due to regulatory sex differences. We found that 
the high divergence rates observed at the bulk level are driven by 
the subset of genes that are sex-biased at both the bulk and the 
cell level, as these genes exhibited an even more accelerated rate 
of evolution (Figure 3) compared to unbiased genes. These loci are 
more likely to be underlying sexually dimorphic phenotypes as they 
also exhibit elevated log2FC estimates (Supplementary Figure S6). 
On the other hand, the subset of genes that are sex-biased at the 
bulk level only, and thus, the outcome of differential tissue compo-
sition between the sexes, showed similar rates of coding-sequence 
evolution to unbiased genes, further suggesting that they are not 
the main targets of selection. An exception to this may be highly 
differentially expressed genes in the gonad that have important 
reproductive functions, such as sperm-specific genes, and which 
would therefore be subject to sexual selection. In general, however, 
we observe that false-positive differentially expressed genes can 
obscure true patterns of evolutionary divergence for sex-biased 
genes at the bulk level.

Previous work has noted that the level of sequence diver-
gence increases with the degree of sex-biased gene expression 
(Djordjevic et al., 2022; Harrison et al., 2015; Lichilín et al., 2021). 
To test this, we split sex-biased genes from the gonad tissue into 
different groups based on their level of sex-bias. We also find 
that highly male-biased and female-biased genes exhibit greater 
divergence than lowly male-biased and female-biased genes 
(Supplementary Figure S8). Considering that we observe a higher 
expression fold change for genes that are sex-biased at both the 
bulk and the cell level (Supplementary Figure S6), this suggests 
that the accelerated rates of sequence divergence for this group of 
genes may at least in part be due to their more extreme sex-bias 
in expression. However, the small number of sex-biased genes for 
which we could estimate rates of coding-sequence evolution pre-
vented us from investigating this further in the somatic tissues.

Discussion
To determine the relative role of regulatory versus developmen-
tal differences underlying sex-biased gene expression, we used 

single-cell transcriptomic data from multiple somatic and repro-
ductive tissues of male and female guppies, a species that exhib-
its extensive phenotypic sexual dimorphism. Sex-biased genes 
can be a cause of sexual dimorphism, as is often assumed in 
studies that use them to study the molecular genetic footprint 
of sexual selection and sexual conflict (e.g., Harrison et al., 2015; 
Mank, 2017; Sayadi et al., 2019). Alternatively, sex-biased genes 
may be a consequence of developmental differences in cell pro-
liferation between the sexes that result in differences in cell-
type abundances. Sex differences in cell populations are known 
to exist in many tissues (Mank & Rideout, 2021), and differential 
rates of cell proliferation underly the development of several sex-
ually dimorphic ornamental traits (Emlen et al., 2012; Powell et 
al., 2021; Schartl et al., 2021). The question of whether sex-biased 
genes are a cause or consequence of sexual dimorphism is criti-
cal, as the former might be subject to differences in sex-specific 
selection and therefore useful in studies of sexual selection, sex-
ual dimorphism, and sexual conflict, while the latter are largely a 
consequence of differences in developmental programming.

Our analysis of gene expression at single-cell resolution illus-
trates that cellular heterogeneity within tissues and allometric 
scaling differences of cell types between males and females can 
have a major influence on inferred patterns of sex-biased gene 
expression. Such scaling effects can generate both false-negative 
detection of differentially expressed genes, which may prepon-
derantly concern genes that are expressed in low abundance cell 
types, as well as false-positive patterns of differential gene regu-
lation, as is the case for genes that are sex-biased at the bulk tis-
sue level but not at the cell level. These false-positive results have 
the potential to affect inferences on the evolution of sex-biased 
gene expression in several ways.

Allometry can be a confounding factor in estimates of rates 
of coding-sequence evolution for sex-biased genes, as we show 
that false-positive sex-biased genes diminish the signal of ele-
vated rates of divergence for both male- and female-biased 
genes. Variation in the fraction of genes that are erroneously 
classified as sex-biased due to sex differences in tissue compo-
sition may explain some of the discordance in patterns of rapid 
rates of coding-sequence evolution and sex-specific selection 
observed across studies (Harrison et al., 2015; Khaitovich et al., 
2005; Lipinska et al., 2015; Mank et al., 2010; Ranz et al., 2003; 
Whittle & Johannesson, 2013). Sex differences in gene co-expres-
sion networks are thought to contribute to sexually dimorphic 
phenotypes and potentially alleviate sexually antagonistic selec-
tion (Lopes-Ramos et al., 2020; Rago et al., 2020; Sutherland et al., 
2019). Yet fundamental differences in gene regulatory networks 
can exist between cell types and variation in cell-type abundance 
between the sexes can also affect gene co-expression measure-
ments (Ribeiro et al., 2022).

The degree of sex differences in cell-type abundance likely 
varies across species as a function of phenotypic sexual dimor-
phism, and this can influence patterns of rapid turnover of sex-
bias across species. We observed large differences in cell-type 
abundance between the sexes (Supplementary Table S3, Figure 1, 
Supplementary Figure S3), with the liver showing the least overall 
fold change in cell-type abundance, moderate levels in the skin 
and heart, and the greatest observed in the gonad. In some cases, 
cell-type abundance differences were consistent with visible 
phenotypic differences, such as the male-bias in melanocytes in 
male skin, as might be expected from male coloration. However, 
many cell types with sex differences might not necessarily be 
predicted from phenotypic differences, such as the male-bias in 
heart cardiomyocytes, or the female-bias in skin mesenchymal 
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stromal cells. Identifying distinct cell populations for non-model 
organisms relies largely on databases of cell-type-specific marker 
genes from model species, which may be distantly related. While 
our analysis did not exhaustively identify all the different cell 
subpopulations, male and female homologous cell clusters were 
annotated in the same way, and we were able to recover all the 
major cell types expected within each tissue (Jiang et al., 2021; 
Wang et al., 2023).

Notably, spermatocytes and spermatozoa combined make 
up 97% of male gonad cells. In contrast, the female gonad is 
comprised of only 20% germ cells, with the remainder a mix of 
somatic cells. These patterns are consistent with previous find-
ings in zebrafish (Jiang et al., 2021) and point to the fact that bulk 
comparisons between male and female gonads, or whole bodies 
where the majority of expression differences are due to the gonad 
(Parisi et al., 2004), are in practice comparing expression related 
to sperm in males with a range of cell functions in females. 
Male-biased genes identified from whole-organism or bulk gonad 
preparations in many species show rapid rates of protein evolu-
tion (Ellegren & Parsch, 2007; Parsch & Ellegren, 2013; Ranz et 
al., 2003) and exhibit high rates of turnover (Harrison et al., 2015; 
Khodursky et al., 2020; Papa et al., 2017; Whittle & Extavour, 2019; 
Zhang et al., 2007), both of which might be expected from sexual 
selection predictions. Indeed, in our bulk analysis, male-biased 
genes in the gonad show elevated rates of evolution (Figure 3D). 
However, it is important to note that genes with restricted expres-
sion (e.g., restricted to sperm) often experience fewer adaptive 
constraints (Yannai et al., 2005) than those with broader expres-
sion. Indeed, when comparing genes that are sex-biased within 
gonad cell types, rather than those that differ as a result of cell-
type abundance, male-biased genes in the gonad evolve at the 
same rate as unbiased genes (Figure 3D).

Overall, our results suggest that sex differences in cell-type 
abundance scale with visible sexual dimorphism, suggesting that 
bulk RNA-seq approaches may be increasingly problematic in 
more dimorphic species. Single-cell transcriptomics, such as that 
employed here, offer a promising way to correct for any potential 
false inferences of differential gene expression and patterns of 
sequence divergence that are associated with standard bulk-level 
sequencing of heterogeneous tissue samples. However, although 
scRNA-sequencing approaches are increasingly employed for 
disentangling the role of regulatory changes in the evolution of 
intra- and interspecific phenotypic variation (Fuess & Bolnick, 
2021; Murat et al., 2023), the associated costs are still substan-
tially higher compared with standard bulk RNA-sequencing and 
many analytical challenges remain (Alfieri et al., 2022). Cell iso-
lation protocols, especially for non-model organisms, are nontriv-
ial as cell physiology may differ across tissues and species, and 
often require organism-specific technical knowledge to avoid cell 
death or bias in expression profiles (Reichard & Asosingh, 2019; 
Wang et al., 2021). Incomplete or poorly annotated genomes 
can additionally limit the identification of cell identities and 
gene expression patterns (Healey et al., 2022), although several 
k-mer-based methods have been developed to aid with de novo 
transcriptome assembly and identification of cell populations in 
cases where a reference genome is lacking (Nip et al., 2020; Sun 
et al., 2021). Compared with bulk RNA-seq data, scRNA-seq data 
are also affected by a greater sparsity, where a high proportion 
of genes have zero expression measurements within cells (Jiang 
et al., 2022). This sparsity is often due to cell-to-cell variation in 
technical factors, such as the number of molecules detected per 
cell and stochastic sampling, which can confound results (Stegle 

et al., 2015). However, normalization and variance stabilization 
approaches, such as the one employed here, can reduce the effect 
of technical noise on estimates of gene expression (Hafemeister 
& Satija, 2019). Moreover, performing differential gene expression 
analyses on aggregate cell data within each cell type, rather than 
on individual cells, reduces the number of zeroes in the data and 
offers better performance especially for lowly expressed genes 
(Squair et al., 2021).

In the absence of scRNA-sequencing data or information 
regarding the cellular composition of tissues, we suggest that 
adopting more stringent fold change thresholds for calling differ-
entially expressed genes has the potential to substantially reduce 
the false-positive rates associated with bulk-level sequencing of 
heterogeneous tissues. Although a few studies have accounted 
for increasing fold change thresholds when studying the evolu-
tion of differential gene expression (Darolti et al., 2018; Djordjevic 
et al., 2022; Harrison et al., 2015; Ma et al., 2018, 2020; Mariani 
et al., 2003; Perry et al., 2014), others rely on a log2 fold change 
of 1 or lower, or on statistical significance alone. However, our 
results from bulk-level analyses show that such lowered thresh-
olds can result in the inclusion of many sex-biased genes that 
are due to differences in cell-type abundance between males 
and females (Supplementary Figure S6). Although this attempt to 
reduce false-positive effects may also inadvertently remove some 
true-positive sex-biased genes, strong patterns of transcriptional 
dimorphism will remain unaffected. This approach would be par-
ticularly recommended for studies in which estimating additional 
tissue scaling parameters is limited due to the small size of the 
organism or difficulty in precise tissue dissection. Alternatively, 
deconvolution methods may also prove useful (Aguirre-Gamboa 
et al., 2020; Monaco et al., 2019).

Taken together, our findings offer an important insight into 
the effect of allometry and heterogeneity in tissue composition 
on inferred patterns of sex-biased gene expression and demon-
strate the power of single-cell RNA-sequencing in differentiating 
sex-biased genes that stem from regulatory rewiring between 
males and females from those that are due to differences in 
cell-type abundance resulting from sex-specific developmental 
trajectories.

Supplementary material
Supplementary material is available online at Evolution Letters 
(https://academic.oup.com/evlett/qrad013).

Data availability
scRNA-sequencing reads have been deposited to the NCBI 
Short Read Archive (BioProject ID PRJNA902547). Scripts used 
for data processing and analysis are available on GitHub 
(https://github.com/manklab/Darolti_and_Mank_2022_Guppy_
SingleCellExpression) and are archived on Zenodo (https://doi.
org/10.5281/zenodo.7788730).

Author contributions
I.D. and J.E.M. conceived the study, performed the analysis and 
wrote the manuscript.

Conflict of interest: The authors declare no conflict of interest. 
Editorial processing of the manuscript was done independently of 
J.E.M. who is an associate editor of Evolution Letters.

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad013#supplementary-data
https://academic.oup.com/evlett/qrad013
https://github.com/manklab/Darolti_and_Mank_2022_Guppy_SingleCellExpression
https://github.com/manklab/Darolti_and_Mank_2022_Guppy_SingleCellExpression
https://doi.org/10.5281/zenodo.7788730
https://doi.org/10.5281/zenodo.7788730


Evolution Letters (2023), Vol. 7  |  153

Acknowledgments
We thank members of the Mank lab for helpful and constructive 
discussions on the project. This work was funded by grants from 
the European Research Council (grant number 680951), NSERC 
and CFI, as well as a Canada 150 Research Chair to J.E.M.

References
Abzhanov, A., Kuo, W. P., Hartmann, C., Grant, B. R., Grant, P. R., & 

Tabin, C. J. (2006). The calmodulin pathway and evolution 
of elongated beak morphology in Darwin’s finches. Nature, 
442(7102), 563–567. https://doi.org/10.1038/nature04843

Aguirre-Gamboa, R., de Klein, N., di Tommaso, J., Claringbould, A., 
van der Wijst, M. G. P., de Vries, D., Brugge, H., Oelen, R., Võsa, 
U., Zorro, M. M., Chu, X., Bakker, O. B., Borek, Z., Ricaño-Ponce, 
I., Deelen, P., Xu, C. J., Swertz, M., Jonkers, I., Withoff, S., ... Li., Y. 
(2020). Deconvolution of bulk blood eQTL effects into immune 
cell subpopulations. BMC Bioinformatics, 21, 1–23.

Alfieri, J. M., Wang, G., Jonika, M. M., Gill, C. A., Blackmon, H., & 
Athrey, G. N. (2022). A primer for single-cell sequencing in non-
model organisms. Genes, 13(2), 380. https://doi.org/10.3390/
genes13020380

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). 
Basic local alignment search tool. Journal of Molecular Biology, 
215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-a Python framework 
to work with high-throughput sequencing data. Bioinformatics, 
31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638

Arukwe, A., & Goksøyr, A. (2003). Eggshell and egg yolk proteins in 
fish: Hepatic proteins for the next generation: Oogenetic, pop-
ulation, and evolutionary implications of endocrine disruption. 
Comparative hepatology, 2, 1–21.

Axelsson, E., Hultin-Rosenberg, L. I. N. A., Brandström, M., Zwahlen, M., 
Clayton, D. F., & Ellegren, H. (2008). Natural selection in avian pro-
tein-coding genes expressed in brain. Molecular Ecology, 17, 3008–3017.

Badyaev, A. V. (2002). Growing apart: An ontogenetic perspective 
on the evolution of sexual size dimorphism. Trends in Ecology & 
Evolution, 17, 369–378.

Bruslé, J., & Anadon, G. G. (1996). The structure and function of fish 
liver. In Munshi, J. S. D., & Dutta, H. M. (Eds.), Fish morphology. 
Science Publishers Inc.

Chen, Y. C., Harrison, P. W., Kotrschal, A., Kolm, N., Mank, J. E., & 
Panula, P. (2015). Expression change in Angiopoietin-1 under-
lies change in relative brain size in fish. Proceedings of the Royal 
Society B: Biological Sciences, 282(1810), 20150872. https://doi.
org/10.1098/rspb.2015.0872

Dapper, A. L., & Wade, M. J. (2020). Relaxed selection and the rapid 
evolution of reproductive genes. Trends in Genetics, 36(9), 640–
649. https://doi.org/10.1016/j.tig.2020.06.014

Darolti, I., Wright, A. E., Pucholt, P., Berlin, S., & Mank, J. E. (2018). 
Slow evolution of sex-biased genes in the reproductive tissue 
of the dioecious plant Salix viminalis. Molecular Ecology, 27(3), 
694–708. https://doi.org/10.1111/mec.14466

Djordjevic, J., Dumas, Z., Robinson-Rechavi, M., Schwander, T., & 
Parker, D. J. (2022). Dynamics of sex-biased gene expression dur-
ing development in the stick insect Timema californicum. Heredity, 
129, 113–122.

Ellegren, H., & Parsch, J. (2007). The evolution of sex-biased genes 
and sex-biased gene expression. Nature Reviews Genetics, 8(9), 
689–698. https://doi.org/10.1038/nrg2167

Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I., & Lavine, L. C (2012). 
A mechanism of extreme growth and reliable signaling in 

sexually selected ornaments and weapons. Science, 337(6096), 
860–864. https://doi.org/10.1126/science.1224286

Fair, B. J., Blake, L. E., Sarkar, A., Pavlovic, B. J., Cuevas, C., & Gilad, 
Y. (2020). Gene expression variability in human and chimpan-
zee populations share common determinants. Elife, 9, e59929. 
https://doi.org/10.7554/eLife.59929

Fuess, L. E., & Bolnick, D. I (2021). Single-cell RNA sequencing reveals 
micro-evolution of the stickleback immune system. bioRxiv. 
https://doi.org/10.1101/2021.12.20.473470

Galouzis, C. C., & Prud’homme, B. (2021). Transvection regulates the 
sex-biased expression of a fly X-linked gene. Science, 371(6527), 
396–400. https://doi.org/10.1126/science.abc2745

Gershoni, M., & Pietrokovski, S. (2014). Reduced selection and 
accumulation of deleterious mutations in genes exclusively 
expressed in men. Nature Communications, 5, 1–10.

Grath, S., & Parsch, J. (2016). Sex-biased gene expression. Annual 
Review of Genetics, 50, 29–44. https://doi.org/10.1146/
annurev-genet-120215-035429

Hafemeister, C., & Satija, R. (2019). Normalization and variance sta-
bilization of single-cell RNA-seq data using regularized negative 
binomial regression. Genome Biology, 20, 1–15.

Hara, A., Hiramatsu, N., & Fujita, T. (2016). Vitellogenesis and cho-
riogenesis in fishes. Fisheries Science, 82(2), 187–202. https://doi.
org/10.1007/s12562-015-0957-5

Harrison, P. W., Jordan, G. E., & Montgomery, S. H. (2014). SWAMP: 
Sliding window alignment masker for PAML. Evolutionary 
Bioinformatics, 10, EBO.S18193EBO–EBO.S18S18193. https://doi.
org/10.4137/ebo.s18193

Harrison, P. W., Wright, A. E., Zimmer, F., Dean, R., Montgomery, S. H., 
Pointer, M. A., & Mank, J. E. (2015). Sexual selection drives evolu-
tion and rapid turnover of male gene expression. Proceedings of 
the National Academy of Sciences, 112(14), 4393–4398. https://doi.
org/10.1073/pnas.1501339112

Healey, H. M., Bassham, S., & Cresko, W. A. (2022). Single-cell iso-se-
quencing enables rapid genome annotation for scRNAseq anal-
ysis. Genetics, 220(3), iyac017. https://doi.org/10.1093/genetics/
iyac017

Hollis, B., Houle, D., Yan, Z., Kawecki, T. J., & Keller, L. (2014). Evolution 
under monogamy feminizes gene expression in Drosophila mela-
nogaster. Nature Communications, 5, 1–5.

Houde, A. (2019). Sex, color, and mate choice in guppies. Princeton 
University Press.

Hunnicutt, K. E., Good, J. M., & Larson, E. L (2022). Unraveling pat-
terns of disrupted gene expression across a complex tissue. 
Evolution, 76(2), 275–291. https://doi.org/10.1111/evo.14420

Ingleby, F. C., Flis, I., & Morrow, E. H. (2015). Sex-biased gene expres-
sion and sexual conflict throughout development. Cold Spring 
Harbor Perspectives in Biology, 7, a017632.

Immonen, E., Sayadi, A., Bayram, H., & Arnqvist, G. (2017). Mating 
changes sexually dimorphic gene expression in the seed beetle 
Callosobruchus maculatus. Genome Biology and Evolution, 9(3), 
677–699. https://doi.org/10.1093/gbe/evx029

Jiang, M., Xiao, Y., E, W., Ma, L., Wang, J., Chen, H., Gao, C., Liao, Y., Guo, 
Q., Peng, J., Han, X., & Guo, G. (2021). Characterization of the 
zebrafish cell landscape at single-cell resolution. Frontiers in Cell 
and Developmental Biology, 9, 2734.

Jiang, R., Sun, T., Song, D., & Li, J. J. (2022). Statistics or biology: The 
zero-inflation controversy about scRNA-seq data. Genome 
Biology, 23, 1–24.

Karlsson, M., Zhang, C., Méar, L., Zhong, W., Digre, A., Katona, B., 
Sjöstedt, E., Butler, L., Odeberg, J., Dusard, P., & Edfors, F. (2021). 
A single-cell type transcriptomics map of human tissues. Science 
Advances, 31, eabh2169.

https://doi.org/10.1038/nature04843
https://doi.org/10.3390/genes13020380
https://doi.org/10.3390/genes13020380
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1098/rspb.2015.0872
https://doi.org/10.1098/rspb.2015.0872
https://doi.org/10.1016/j.tig.2020.06.014
https://doi.org/10.1111/mec.14466
https://doi.org/10.1038/nrg2167
https://doi.org/10.1126/science.1224286
https://doi.org/10.7554/eLife.59929
https://doi.org/10.1101/2021.12.20.473470
https://doi.org/10.1126/science.abc2745
https://doi.org/10.1146/annurev-genet-120215-035429
https://doi.org/10.1146/annurev-genet-120215-035429
https://doi.org/10.1007/s12562-015-0957-5
https://doi.org/10.1007/s12562-015-0957-5
https://doi.org/10.4137/ebo.s18193
https://doi.org/10.4137/ebo.s18193
https://doi.org/10.1073/pnas.1501339112
https://doi.org/10.1073/pnas.1501339112
https://doi.org/10.1093/genetics/iyac017
https://doi.org/10.1093/genetics/iyac017
https://doi.org/10.1111/evo.14420
https://doi.org/10.1093/gbe/evx029


154  |  Darolti and Mank

Khaitovich, P., Hellmann, I., Enard, W., Nowick, K., Leinweber, M., 
Franz, H., Weiss, G., Lachman, M., & Paabo, S. (2005). Parallel 
patterns of evolution in the genomes and transcriptomes of 
humans and chimpanzees. Science, 309, 1850–1854.

Khila, A., Abouheif, E., & Rowe, L. (2012). Function, developmental 
genetics, and fitness consequences of a sexually antagonis-
tic trait. Science, 336(6081), 585–589. https://doi.org/10.1126/
science.1217258

Khodursky, S., Svetec, N., Durkin, S. M., & Zhao, L. (2020). The evo-
lution of sex-biased gene expression in the Drosophila brain. 
Genome Research, 30(6), 874–884. https://doi.org/10.1101/
gr.259069.119

Kim, D., Langmead, B., & Salzbergg, S. L. (2015). HISAT: A fast spliced 
aligner with low memory requirements. Nature Methods, 12, 
357–360.

Li Richter, X. Y., & Hollis, B. (2021). Softness of selection and mating 
system interact to shape trait evolution under sexual conflict. 
Evolution, 75(10), 2335–2347. https://doi.org/10.1111/evo.14329

Lichilín, N., El Taher, A., & Böhne, A. (2021). Sex-biased gene 
expression and recent sex chromosome turnover. Philosophical 
Transactions of the Royal Society B, 376, 20200107.

Lipinska, A., Cormier, A., Luthringer, R., Peters, A. F., Corre, E., Gachon, 
C. M., Cock, J., M., & Coelho, S. M. (2015). Sexual dimorphism and 
the evolution of sex-biased gene expression in the brown alga 
Ectocarpus. Molecular Biology and Evolution, 32, 1581–1597.

Liu, Y., Kossack, M. E., McFaul, M. E., Christensen, L. N., Siebert, S., 
Wyatt, S. R., Kamei, C. N., Horst, S., Arroyo, N., Drummond, I. 
A., Juliano, C. E., & Draper, B. W. (2022). Single-cell transcrip-
tome reveals insights into the development and function of the 
zebrafish ovary. Elife, 11, e76014.

Lopes-Ramos, C. M., Chen, C. Y., Kuijjer, M. L., Paulson, J. N., Sonawane, 
A. R., Fagny, M., Platig, J., Glass, K., Quackenbush, J., & DeMeo, D. 
L (2020). Sex differences in gene expression and regulatory net-
works across 29 human tissues. Cell reports, 31, 107795.

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation 
of fold change and dispersion for RNA-seq data with DESeq2. 
Genome Biology, 15, 1–21.

Loytynoja, A., & Goldman, N. (2008). Phylogeny-aware gap place-
ment prevents errors in sequence alignment and evolutionary 
analysis. Science, 320(5883), 1632–1635. https://doi.org/10.1126/
science.1158395

Ma, W. J., Carpentier, F., Giraud, T., & Hood, M. E. (2020). Differential 
gene expression between fungal mating types is associated 
with sequence degeneration. Genome Biology and Evolution, 12(4), 
243–258. https://doi.org/10.1093/gbe/evaa028

Ma, W. J., Veltsos, P., Toups, M. A., Rodrigues, N., Sermier, R., Jeffries, D. 
L., & Perrin, N. (2018). Tissue specificity and dynamics of sex-bi-
ased gene expression in a common frog population with differ-
entiated, yet homomorphic, sex chromosomes. Genes, 9(6), 294. 
https://doi.org/10.3390/genes9060294

Magnusson, K., Mendes, A. M., Windbichler, N., Papathanos, P. A., Nolan, 
T., Dottorini, T., Rizzi, E., Christophides, G. K., & Crisanti, A. (2011). 
Transcription regulation of sex-biased genes during ontogeny in 
the malaria vector Anopheles gambiae. PLoS One, 6, e21572.

Mank, J. E. (2017). The transcriptional architecture of phenotypic 
dimorphism. Nature Ecology & Evolution, 1, 1–7.

Mank, J. E., Hultin-Rosenberg, L., Axelsson, E., & Ellegren, H. (2007). 
Rapid evolution of female-biased, but not male-biased, genes 
expressed in the avian brain. Molecular Biology and Evolution, 
24(12), 2698–2706. https://doi.org/10.1093/molbev/msm208

Mank, J. E., Nam, K., Brunström, B., & Ellegren, H. (2010). Ontogenetic 
complexity of sexual dimorphism and sex-specific selection. 

Molecular Biology and Evolution, 27(7), 1570–1578. https://doi.
org/10.1093/molbev/msq042

Mank, J. E., & Rideout, E. J. (2021). Developmental mechanisms of 
sex differences: From cells to organisms. Development, 148(19), 
dev199750. https://doi.org/10.1242/dev.199750

Marcos, R., Correia-Gomes, C., Miranda, H., & Carneiro, F. (2015). 
Liver gender dimorphism: Insights from quantitative morphol-
ogy. Histology and Histopathology, 30(12), 1431–1437. https://doi.
org/10.14670/HH-11-648

Mariani, T. J., Budhraja, V., Mecham, B. H., Gu, C. C., Watson, M. A., & 
Sadovsky, Y. (2003). A variable fold-change threshold determines 
significance for expression microarrays. The FASEB Journal, 17, 
321–323.

Marinov, G. K., Williams, B. A., McCue, K., Schroth, G. P., Gertz, J., 
Myers, R. M., & Wold, B. J. (2014). From single-cell to cell-pool 
transcriptomes: Stochasticity in gene expression and RNA splic-
ing. Genome Research, 24(3), 496–510. https://doi.org/10.1101/
gr.161034.113

McGinnis, C. S., Murrow, L. M., & Gartner, Z. J. (2019). DoubletFinder: 
Doublet detection in single-cell RNA sequencing data using arti-
ficial nearest neighbors. Cell systems, 8(4), 329–337.e4. https://
doi.org/10.1016/j.cels.2019.03.003

Monaco, G., Lee, B., Xu, W., Mustadah, S., Hwang, Y. Y., Carre, C., 
Burdin, N., Visan, L., Ceccarelli, M., Poidinger, M., Zippelius, A., 
de Magalhaes, J. P., & Larbi, A. (2019). RNA-Seq signatures nor-
malized by mRNA abundance allow absolute deconvolution of 
human immune cell types. Cell Reports, 26, 1627–1640.

Montgomery, S. H., & Mank, J. E. (2016). Inferring regulatory change 
from gene expression: The confounding effects of tissue scal-
ing. Molecular Ecology, 25(20), 5114–5128. https://doi.org/10.1111/
mec.13824

Morrison, J. K., DeRossi, C., Alter, I. L., Nayar, S., Giri, M., Zhang, C., 
Cho, J. H., & Chu, J. (2021). Single-cell transcriptomic profiling of 
healthy and fibrotic adult zebrafish liver reveals conserved cell 
identities and stellate cell activation phenotypes with human 
liver. bioRxiv. https://doi.org/10.1101/2021.08.06.455422

Murat, F., Mbengue, N., Winge, S. B., Trefzer, T., Leushkin, E., Sepp, 
M., Cardoso-Moreira, M., Schmidt, J., Schneider, C., Mößinger, 
K., Brüning, T., Lamanna, F., Belles, M. R., Conrad, C., Kondova, 
I., Bontrop, R., Behr, R., Khaitovich, P., Pääbo, S., & Kaessmann, 
H. (2023). The molecular evolution of spermatogenesis across 
mammals. Nature, 613, 308–316. 

Nip, K. M., Chiu, R., Yang, C., Chu, J., Mohamadi, H., Warren, R. L., 
& Birol, I. (2020). RNA-Bloom enables reference-free and refer-
ence-guided sequence assembly for single-cell transcriptomes. 
Genome Research, 30(8), 1191–1200. https://doi.org/10.1101/
gr.260174.119

Oliva, M., Muñoz-Aguirre, M., Kim-Hellmuth, S., Wucher, V., Gewirtz, 
A. D., Cotter, D. J., Parsana, P., Kasela, S., Balliu, B., Viñuela, A., 
Castel, S. E., Mohammadi, P., Aguet, F., Zou, Y., Khramtsova, E. A., 
Skol, A. D., Garrido-Martín, D., Reverter, F., Brown, A., & Stranger, 
B. E. (2020). The impact of sex on gene expression across human 
tissues. Science, 369, eaba3066.

Papa, F., Windbichler, N., Waterhouse, R. M., Cagnetti, A., D’Amato, 
R., Persampieri, T., Lawniczak, M. K. N., Nolan, T., & Papathanos, 
P. A. (2017). Rapid evolution of female-biased genes among four 
species of Anopheles malaria mosquitoes. Genome Research, 27, 
1536–1548.

Parisi, M., Nuttall, R., Edwards, P., Minor, J., Naiman, D., Lu, J., Doctolero, 
M., Vanier, M., Chan, C., Malley, J., Eastman, S., & Oliver, B. (2004). 
A survey of ovary-, testis- and soma-biased gene expression in 
Drosophila melanogaster adults. Genome Biology, 5, 1–18.

https://doi.org/10.1126/science.1217258
https://doi.org/10.1126/science.1217258
https://doi.org/10.1101/gr.259069.119
https://doi.org/10.1101/gr.259069.119
https://doi.org/10.1111/evo.14329
https://doi.org/10.1126/science.1158395
https://doi.org/10.1126/science.1158395
https://doi.org/10.1093/gbe/evaa028
https://doi.org/10.3390/genes9060294
https://doi.org/10.1093/molbev/msm208
https://doi.org/10.1093/molbev/msq042
https://doi.org/10.1093/molbev/msq042
https://doi.org/10.1242/dev.199750
https://doi.org/10.14670/HH-11-648
https://doi.org/10.14670/HH-11-648
https://doi.org/10.1101/gr.161034.113
https://doi.org/10.1101/gr.161034.113
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1111/mec.13824
https://doi.org/10.1111/mec.13824
https://doi.org/10.1101/2021.08.06.455422
https://doi.org/10.1101/gr.260174.119
https://doi.org/10.1101/gr.260174.119


Evolution Letters (2023), Vol. 7  |  155

Parsch, J., & Ellegren, H. (2013). The evolutionary causes and conse-
quences of sex-biased gene expression. Nature Reviews Genetics, 
14(2), 83–87. https://doi.org/10.1038/nrg3376

Perry, J. C., Harrison, P. W., & Mank, J. E. (2014). The ontogeny and 
evolution of sex-biased gene expression in Drosophila melano-
gaster. Molecular Biology and Evolution, 31(5), 1206–1219. https://
doi.org/10.1093/molbev/msu072

Pointer, M. A., Harrison, P. W., Wright, A. E., & Mank, J. E. (2013). 
Masculinization of gene expression is associated with exagger-
ation of male sexual dimorphism. PLoS Genetics, 9(8), e1003697. 
https://doi.org/10.1371/journal.pgen.1003697

Powell, D. L., Payne, C., Banerjee, S. M., Keegan, M., Bashkirova, E., 
Cui, R., Andolfatto, P., Rosenthal, G. G., & Schumer, M. (2021). 
The genetic architecture of variation in the sexually selected 
sword ornament and its evolution in hybrid populations. Current 
Biology, 31, 923–935.

Price, P. D., Palmer Droguett, D. H., Taylor, J. A., Kim, D. W., Place, E. 
S., Rogers, T. F., Mank, J. E., Cooney, C. R., & Wright, A. E. (2022). 
Detecting signatures of selection on gene expression. Nature 
Ecology & Evolution, 6, 1035–1045.

Proschel, M., Zhang, Z., & Parsch, J. (2006). Widespread adaptive evo-
lution of Drosophila genes with sex-biased expression. Genetics, 
174(2), 893–900. https://doi.org/10.1534/genetics.106.058008

Qian, P., Kang, J., Liu, D., & Xie, G. (2022). Single cell transcriptome 
sequencing of Zebrafish testis revealed novel spermatogen-
esis marker genes and stronger Leydig-germ cell paracrine 
interactions. Frontiers in Genetics, 13. https://doi.org/10.3389/
fgene.2022.851719

Qiao, Q., Le Manach, S., Sotton, B., Huet, H., Duvernois-Berthet, E., 
Paris, A., Duval, C., Ponger, L., Marie, A., Blond, A., Mathéron, L., 
Vinh, J., Bolbach, G., Djediat, C., Bernard, C., Edery, M., & Marie, 
B. (2016). Deep sexual dimorphism in adult medaka fish liver 
highlighted by multi-omic approach. Scientific Reports, 6, 1–12.

Rago, A., Werren, J. H., & Colbourne, J. K. (2020). Sex biased expres-
sion and co-expression networks in development, using the 
hymenopteran Nasonia vitripennis. PLoS Genetics, 16(1), e1008518. 
https://doi.org/10.1371/journal.pgen.1008518

Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D., & Hartl, D. L (2003). 
Sex-dependent gene expression and evolution of the Drosophila 
transcriptome. Science, 300(5626), 1742–1745. https://doi.
org/10.1126/science.1085881

Reichard, A., & Asosingh, K. (2019). Best practices for preparing a 
single cell suspension from solid tissues for flow cytometry. 
Cytometry. Part A, 95, 219–226.

Reznick, D., & Endler, J. A. (1982). The impact of predation on life 
history evolution in Trinidadian guppies (Poecilia reticulata). 
Evolution, 36, 160–177.

Reznick, D. N. (1989). Life-history evolution in guppies: 2. 
Repeatability of held observations and the effects of sea-
son on life histories. Evolution, 43(6), 1285–1297. https://doi.
org/10.1111/j.1558-5646.1989.tb02575.x

Ribeiro, D. M., Ziyani, C., & Delaneau, O. (2022). Shared regulation 
and functional relevance of local gene co-expression revealed 
by single cell analysis. Communications Biology, 5, 1–11.

Rose, E., Flanagan, S. P., & Jones, A. G. (2015). The effects of synthetic 
estrogen exposure on the sexually dimorphic liver transcrip-
tome of the sex-role-reversed Gulf pipefish. PLoS One, 10(10), 
e0139401. https://doi.org/10.1371/journal.pone.0139401

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., & Regev, A. (2015). 
Spatial reconstruction of single-cell gene expression data. Nature 
Biotechnology, 33(5), 495–502. https://doi.org/10.1038/nbt.3192

Sawyer, S. A., Parsch, J., Zhang, Z., & Hartl, D. L (2007). Prevalence 
of positive selection among nearly neutral amino acid 

replacements in Drosophila. Proceedings of the National Academy 
of Sciences, 104(16), 6504–6510. https://doi.org/10.1073/
pnas.0701572104

Sayadi, A., Martinez Barrio, A., Immonen, E., Dainat, J., Berger, D., 
Tellgren-Roth, C., Nystedt, B., & Arnqvist, G. (2019). The genomic 
footprint of sexual conflict. Nature Ecology & Evolution, 3, 
1725–1730.

Schartl, M., Kneitz, S., Ormanns, J., Schmidt, C., Anderson, J. L., 
Amores, A., Catchen, J., Wilson, C., Geiger, D., Du, K., Garcia-
Olazábal, M., Sudaram, S., Winkler, C., Hedrich, R., Warren, W. 
C., Walter, R., Meyer, A., & Postlethwait, J. H. (2021). The develop-
mental and genetic architecture of the sexually selected male 
ornament of swordtails. Current Biology, 31, 911–922.

Sharma, E., Künstner, A., Fraser, B. A., Zipprich, G., Kottler, V. A., Henz, 
S. R., Weigel, D., & Dreyer, C. (2014). Transcriptome assemblies 
for studying sex-biased gene expression in the guppy, Poecilia 
reticulata. BMC Genomics, 15, 1–21.

Squair, J. W., Gautier, M., Kathe, C., Anderson, M. A., James, N. D., Hutson, T. 
H., Hudelle, R., Qaiser, T., Matson, K. J. E., Barraud, Q., Levine, A. J., La 
Manno, G., Skinnider, M. A., & Courtine, G. (2021). Confronting false dis-
coveries in single-cell differential expression. Nature Communications, 
12(1), 5692. https://doi.org/10.1038/s41467-021-25960-2

Standage, D. S., Berens, A. J., Glastad, K. M., Severin, A. J., Brendel, 
V. P., & Toth, A. L (2016). Genome, transcriptome and methy-
lome sequencing of a primitively eusocial wasp reveal a greatly 
reduced DNA methylation system in a social insect. Molecular 
Ecology, 25(8), 1769–1784. https://doi.org/10.1111/mec.13578

Stegle, O., Teichmann, S. A., & Marioni, J. C (2015). Computations 
and analytical challenges in single-cell transcriptomics. Nature 
Reviews Genetics, 16(3), 133–145. https://doi.org/10.1038/nrg3833

Stuglik, M. T., Babik, W., Prokop, Z., & Radwan, J. (2014). Alternative 
reproductive tactics and sex‐biased gene expression: the study 
of the bulb mite transcriptome. Ecology and Evolution, 4(5), 623–
632. https://doi.org/10.1002/ece3.965

Sun, Q., Peng, Y., & Liu, J. (2021). A reference-free approach for cell 
type classification with scRNA-seq. Iscience, 24(8), 102855. 
https://doi.org/10.1016/j.isci.2021.102855

Sutherland, B. J., Prokkola, J. M., Audet, C., & Bernatchez, L. (2019). 
Sex-specific co-expression networks and sex-biased gene 
expression in the salmonid Brook Charr Salvelinus fontinalis. G3: 
Genes, Genomes, Genetics, 9, 955–968.

Taboada, X., Robledo, D., Del Palacio, L., Rodeiro, A., Felip, A., 
Martínez, P., & Viñas, A. (2012). Comparative expression anal-
ysis in mature gonads, liver and brain of turbot (Scophthalmus 
maximus) by cDNA-AFLPS. Gene, 492(1), 250–261. https://doi.
org/10.1016/j.gene.2011.10.020

R Core Team. (2021). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing.

Toubiana, W., Armisén, D., Viala, S., Decaras, A., & Khila, A. (2021). 
The growth factor BMP11 is required for the development and 
evolution of a male exaggerated weapon and its associated 
fighting behavior in a water strider. PLoS Biology, 19(5), e3001157. 
https://doi.org/10.1371/journal.pbio.3001157

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, 
M., Lennon, N. J., Livak, K. J., Mikkelsen, T. S., & Rinn, J. L (2014). 
Pseudo-temporal ordering of individual cells reveals dynamics 
and regulators of cell fate decisions. Nature Biotechnology, 32(4), 
381–386. https://doi.org/10.1038/nbt.2859

Ullah, I., Shin, Y., Kim, Y., Oh, K. B., Hwang, S., Kim, Y. I., Lee, J. W., 
Hur, T. Y., Lee, S., & Ock, S. A. (2021). Effect of sex-specific differ-
ences on function of induced hepatocyte-like cells generated 
from male and female mouse embryonic fibroblasts. Stem Cell 
Research & Therapy, 12, 1–14.

https://doi.org/10.1038/nrg3376
https://doi.org/10.1093/molbev/msu072
https://doi.org/10.1093/molbev/msu072
https://doi.org/10.1371/journal.pgen.1003697
https://doi.org/10.1534/genetics.106.058008
https://doi.org/10.3389/fgene.2022.851719
https://doi.org/10.3389/fgene.2022.851719
https://doi.org/10.1371/journal.pgen.1008518
https://doi.org/10.1126/science.1085881
https://doi.org/10.1126/science.1085881
https://doi.org/10.1111/j.1558-5646.1989.tb02575.x
https://doi.org/10.1111/j.1558-5646.1989.tb02575.x
https://doi.org/10.1371/journal.pone.0139401
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1073/pnas.0701572104
https://doi.org/10.1073/pnas.0701572104
https://doi.org/10.1038/s41467-021-25960-2
https://doi.org/10.1111/mec.13578
https://doi.org/10.1038/nrg3833
https://doi.org/10.1002/ece3.965
https://doi.org/10.1016/j.isci.2021.102855
https://doi.org/10.1016/j.gene.2011.10.020
https://doi.org/10.1016/j.gene.2011.10.020
https://doi.org/10.1371/journal.pbio.3001157
https://doi.org/10.1038/nbt.2859


156  |  Darolti and Mank

Veltsos, P., Fang, Y., Cossins, A. R., Snook, R. R., & Ritchie, M. G. (2017). 
Mating system manipulation and the evolution of sex-biased 
gene expression in Drosophila. Nature Communications, 8, 1–11.

Wang, R., Zhang, P., Wang, J., Ma, L., E, W., Suo, S., Jiang, M., Li, J., Chen, H., 
Sun, H., Fei, L., Zhou, Z., Zhou, Y., Chen, Y., Zhang, W., Wang, X., Mei, 
Y., Sun, Z., Yu, C., ... Han, X. (2023). Construction of a cross-species cell 
landscape at single-cell level. Nucleic Acids Research, 51, 501–506.

Wang, X., Yu, L., & Wu, A. R. (2021). The effect of methanol fixation on 
single-cell RNA sequencing data. BMC Genomics, 22, 1–16.

Whittle, C. A., & Extavour, C. G. (2019). Selection shapes turnover and 
magnitude of sex-biased expression in Drosophila gonads. BMC 
Evolutionary Biology, 19, 1–20.

Whittle, C. A., & Johannesson, H. (2013). Evolutionary dynamics of sex-bi-
ased genes in a hermaphrodite fungus. Molecular Biology and Evolution, 
30(11), 2435–2446. https://doi.org/10.1093/molbev/mst143

Yang, X., Schadt, E. E., Wang, S., Wang, H., Arnold, A. P., Ingram-Drake, L., Drake, 
T. A., & Lusis, A. J. (2006). Tissue-specific expression and regulation of sex-
ually dimorphic genes in mice. Genome Research, 16, 995–1004.

Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likeli-
hood. Molecular Biology and Evolution, 24(8), 1586–1591. https://
doi.org/10.1093/molbev/msm088

Yannai, J., Su, A. I., & Li, W. H. (2005). Gene expression evolves 
faster in narrowly than broadly expressed mammalian genes. 
Molecular Biology and Evolution, 22(10), 2113–2118.

Zappia, L., & Oshlack, A. (2018). Clustering trees: A visualization for 
evaluating clusterings at multiple resolutions. GigaScience, 7(7), 
giy083. https://doi.org/10.1093/gigascience/giy083

Zhang, Y., Sturgill, D., Parisi, M., Kumar, S., & Oliver, B. (2007). 
Constraint and turnover in sex-biased gene expression in 
the genus Drosophila. Nature, 450(7167), 233–237. https://doi.
org/10.1038/nature06323

Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., 
Wilson, R., Ziraldo, S. B., Wheeler, T. D., McDermott, G. P., Zhu, 
J., Gregory, M. T., Shuga, J., Montesclaros, L., Underwood, J. G., 
Masquelier, D. A., Nishimura, S. Y., Schnall-Levin, M., Wyatt, 
P. W., Hindson, C. M., & Bielas, J. H. (2017). Massively paral-
lel digital transcriptional profiling of single cells. Nature 
Communications, 8, 1–12.

Zheng, W., Xu, H., Lam, S. H., Luo, H., Karuturi, R. K. M., & Gong, 
Z. (2013). Transcriptomic analyses of sexual dimorphism of the 
zebrafish liver and the effect of sex hormones. PLoS One, 8(1), 
e53562. https://doi.org/10.1371/journal.pone.0053562

https://doi.org/10.1093/molbev/mst143
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1038/nature06323
https://doi.org/10.1038/nature06323
https://doi.org/10.1371/journal.pone.0053562

