
DIGITAL FORENSIC RESEARCH CONFERENCE

Design Tradeoffs for Developing Fragmented

Video Carving Tools

By

Eoghan Casey and Rikkert Zoun

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2014 USA

Denver, CO (Aug 3rd - 6th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

Design tradeoffs for developing fragmented video carving
tools

Eoghan Casey a, *, Rikkert Zoun b

a Defense Cyber Crime Center (DC3), 911Elkridge Landing Rd., Linthicum, MD 21090, USA
b Netherlands Forensic Institute (NFI), Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands

Keywords:
Data recovery
Digital forensics
File carving
File formats
DFRWS carving challenge
Fragmentation
Fragment reassembly

a b s t r a c t

When conducting a digital forensic examination, there is sometimes a need to salvage as
much playable video as possible from available data sources. Although an ideal outcome
might be to have all deleted and partially overwritten file fragments identified, reas-
sembled, and repaired to provide playable videos, there are situations where this is not
possible. In addition, there are complexities in real world datasets that can lead to false
positives and false negatives. This paper captures practical lessons learned from extensive
experiences in this problem space, and describes tradeoffs that developers must consider
when creating file carving tools for salvaging and reassembling fragmented AVI, MPEG, and
3GP video files. Recommendations are provided for each tradeoff, concentrating on
increasing the amount of playable video fragments that can be salvaged, with the potential
for duplicate copies of some fragments being salvaged. Developers need to carefully
consider how to handle the tradeoffs described in this paper when developing fragmented
video carving tools. In addition, digital investigators need to consider the strengths and
limitations of different fragmented video carving methods, and need to select those that
are best suited to their given dataset. Another important outcome of this work is that the
products of some carving methods may be playable in one video viewer but not others,
making it necessary to view carved results using various methods, including story-
boarding. This paper also includes discussion of current challenges and potential future
work in fragmented file carving, with the aim of advancing research and development of
automated methods for reassembling salvaged video fragments.
© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

Introduction

File carving has become an important part of digital
forensic examination, enabling practitioners to salvage
deleted or concealed data. Until recently, carving was pri-
marily based on headers (a.k.a. signatures) and, in some
instances, limited validation of file format. Developments
in file carving over the past few years have delved into
specific file formats and associated data structures in an
effort to piece together non-contiguous file fragments.

These methods may be referred to as semantic file carving
because they use knowledge of a specific file format to
reconstitute pieces of a file.

In theory, digital video files are well-suited to semantic
file carvingmethods because there aremany characteristics
in the format specifications that can be used to find and
reassemble sub-pieces of an original file. However, in
practice, there are complexities in the process that can lead
to false positives and false negatives. In some instances,
pieces of one video file are incorrectly associated with
another video file or data are erroneously classified as video
file fragment (false positive), and in other instances valid
components of a video are missed (false negative).

* Corresponding author. Tel.: þ1 202 670 2754.
E-mail address: eoghan@disclosedigital.com (R. Zoun).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2014.05.010
1742-2876/© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

Digital Investigation 11 (2014) S30eS39

mailto:eoghan@disclosedigital.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.05.010&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.05.010
http://dx.doi.org/10.1016/j.diin.2014.05.010
http://dx.doi.org/10.1016/j.diin.2014.05.010

Furthermore, although every effort is made to salvage
videos in a form that can be replayed, some output files are
too fragmented or corrupt to be viewed. To be practically
useful in actual digital forensic investigations, a playable
video is one for which some or all frames can be displayed
by a widely available program such as FFmpeg [www.
ffmpeg.org], MPlayer [www.mplayerhq.hu], VLC [www.
videolan.org] or Windows Media Player.

Efforts to improve fragment carving and reassembly of
video fragments in a particular context often result in the
refined method obtaining less playable video under other
conditions. Developers of carving tools that arewidely used
for actual casework must make tradeoffs between false
positives and false negatives. It is also important for digital
investigators to be aware of these tradeoffs to better un-
derstand the strengths and limitations of different frag-
mented video carving methods.

This paper presents practical lessons learned from
extensive experience carving fragmented digital videos
throughout the development of two widely used tools:
Defraser and DC3Carver. This paper describes tradeoffs that
developers must consider when creating semantic file
carving tools for salvaging and reassembling fragmented
AVI, MPEG, and 3GP video files. Recommendations are
provided for each tradeoff, concentrating on increasing the
amount of playable video fragments that can be salvaged,
with the potential for duplicate copies of some fragments
being salvaged. This paper concludes with current chal-
lenges and potential future work in automated video
fragment reassembly.

Background

The most straightforward approach to salvaging deleted
video files is to perform what is commonly called “header
carving” by searching for a specific pattern of bytes (the file
header) that is commonly found at the start of a file and to
extract some preset amount of data after this header. This
approach is effective when a file is stored in contiguous
areas of the storage media, but it does not deal with frag-
mented files and, furthermore, it will not capture the full
contents when the original file is larger than the preset
amount of data that is extracted. For instance, if a video is
12 MB in size and only 10 MB of data is automatically
extracted by the recovery tool, then 2 MB of video data will
not be recovered. There has been continuous effort since
2007 to address the limitations of header carving in rela-
tion to video files.

Fragmented video carving methods

Some algorithms for automated reassembly of digital
video fragments were developed as part of the DFRWS2007
fragmented file carving challenge [http://www.dfrws.org],
resulting in prototype tools being developed (Cohen, 2007).
Other approaches concentrated on finding and classifying
file fragments, but did not address reassembly of video
fragments (Garfinkel et al., 2010). More recent work has
concentrated on recognizing and reassembling individual
video frames (Na et al., 2014). The primary limitation of
handling individual video frames is that it can result in a

considerable number of carved fragments, from multiple
videos, meeting the expected parameters.

One approach to improving video fragment reassembly
is to make use of cluster boundaries in storage media
(Lewis, 2011). Because files are generally saved on storage
media per cluster, all data in a single cluster will belong to a
single file, except for the last cluster of a file, which may
also contain data from other file(s) in slack or uninitialized
space. One of the challenges is to reliably detect clusters
that contain video file data. Another challenge is to prop-
erly connect clusters that belong to the same fragmented
file.

Netherlands Forensic Institute (NFI)

The NFI developed a tool named Defraser to help
forensic examiners salvage deleted videos [http://defraser.
sourceforge.net/]. Defraser parses through an input file
for known characteristics of several video formats,
including MPEG, 3GP and AVI. In addition to searching for
headers that demark the beginning of a file, Defraser
searches for characteristics of discrete segments within the
file. In addition, this tool attempts to recognize common
video compression formats (codecs), including H.264 and
MPEG-1, -2 and -4 video. To reduce false positives, Defraser
performs semantic checks such as the validity of header
order, proper setting of bit flags, header parameter value
constraints and continuity of incremental or cyclic param-
eter values, and where possible, complete decoding of
video data.

All likely pieces of video are classified and then dis-
played in a graphical user interface to support forensic
examination. Defraser enables forensic examiners to
explore each potential video segment in great detail as per
the file format specifications.

Although Defraser does not perform fully automated
reassembly of fragmented videos, this tool enables digital
investigators to reassemble and repair video fragments
without in-depth knowledge of video formats. To support
this process, Defraser provides a “Workpad” graphical user
interface to reassemble and repair video fragments for
replay and further analysis as discussed in Section
Repairing Unassigned Fragments below.

Defense Cyber Crime Center (DC3)

Since 2007, DC3 has been developing DC3Carver
(a.k.a. DCCI_StegCarver), a general purpose forensic
carving tool that includes algorithms for carving numerous
video types [http://www.dc3.mil/technical-solutions/
tools]. Rather than using straightforward header carving
approaches to salvage videos, DC3 developed carving
methods that take advantage of the format and content of
the individual video fragments that were found in the data
set being carved. In addition to using file format charac-
teristics to improve carving of physically contiguous videos,
DC3 developed automated techniques to reconstruct and,
when necessary, repair carved videos.

Realizing that different approaches are more effective in
different situations, DC3 has developed two MPEG carving
algorithms (which include the repair of some carved MPEG

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39 S31

http://www.ffmpeg.org
http://www.ffmpeg.org
http://www.mplayerhq.hu
http://www.videolan.org
http://www.videolan.org
http://www.dfrws.org
http://defraser.sourceforge.net/
http://defraser.sourceforge.net/
http://www.dc3.mil/technical-solutions/tools
http://www.dc3.mil/technical-solutions/tools

files), both of which are integrated into DC3Carver; four AVI
carving algorithms (which include some AVI repair fea-
tures), two that are integrated into DC3Carver and two that
are modularized into DC3_AVI-Carver and automatically
called byDC3Carver; and three 3GP carving algorithms, one
that is integrated into DC3Carver and two that are modu-
larized into DC3_3GP-Carver and automatically called by
DC3Carver.

Although the more recently developed algorithms are
somewhat more sophisticated than earlier approaches,
they are not considered replacements for the original al-
gorithms. Testing on various datasets found instanceswhen
the less sophisticated algorithms produce more playable
video than the more sophisticated algorithms. Therefore,
the current version of DC3Carver contains all of the algo-
rithms developed for automatically carving videos,
including methods for carving both physically contiguous
and fragmented videos.

Fragmented video carving tradeoffs

No single approach to salvaging and reassembling
fragmented video files can address every case. Therefore, it
is important for developers and digital investigators to
understand the strengths and weaknesses of different ap-
proaches in order to use the most effective methods for a
given case.

File system considerations

The question of what portion of a data set should be
carved to produce optimal video carving results is some-
times difficult to answer. To produce the most playable
video, the entire data set would have to be carved. How-
ever, the limitation of this approach is that it tends to
produce a considerable number of duplicate files and false
positives.

On the other hand, only carving unallocated space can
be a problem because it can miss significant amounts of
pertinent data, thus increasing the false negatives. For
example, data contained in valid data length (VDL) slack,
also referred to as uninitialized space, will be lost (Casey,
2011; Ferguson, 2008). Uninitialized space is quite com-
mon on NTFS used on CCTV recording systems, and on
computers that are used to download video files via P2P
applications because the download is prone to being
interrupted because of the large file sizes that are being
processed.

Furthermore, different forensic examination tools
define unallocated space differently, which can lead to
additional complications. Some forensic tools automati-
cally attempt to recover deleted files that are still refer-
enced in the file system, and then exclude the associated
data from unallocated space. While this file system recov-
ery process can reduce the size of the data set to be carved,
and thus reduce the number of false positives, deleted file
recovery can lead to a loss of pertinent data whenever the
original file space has been overwritten.

Under most circumstances, carving a data set that in-
cludes traditional file slack, VDL slack, and all unallocated
space (not excluding deleted files that are still referenced

by the file system) will reduce the number of false positives
and false negatives and thus produce the optimal number
of playable carved videos.

Finding video fragments

When searching for video fragments, using criteria that
are very specific can exclude valid fragments, whereas not
being specific enough can result in many false positives.

Many video file formats have predictable data structures
that can be searched for and assessed for validity. As an
example, the Audio Video Interleave (AVI) file header has
an abundance of information about the structure of a video
summarized in Table 1, including the data needed to
instruct a player how to render the AVI such as the
encoding and a list of stream types (Microsoft AVI RIFF File
Reference). The inherent structure of AVI files can be
leveraged to scan input data for possible video fragments,
and creating a catalog of their location and attributes (e.g.,
type, size) gives a map of available data and provides a
foundation for reassembly operations.

Specifically, the AVI header list (hdrl) stores information
about how many streams are defined within the header as
well as information for playing the AVI. The AVI header
(avih) identifies how many streams are defined within the
header as well as information for playing the AVI. When
dealing with fragmented AVIs, the total number of video
frames becomes an important field for matching and vali-
dating the headers and indices. The video list (movi) stores
the total size of all the AVI containers (a.k.a. chunks) fol-
lowed by the individual chunks. The chunks stored in a

Table 1
AVI characteristics that are indexed for carving purposes.

Description Hex values Byte range

File header “RIFF” yx52yx49yx46yx46 [0:3]
- Total size of AVI -4 bytes (little endian) - [4:7]
- “AVI” - yx41yx56yx49yx20 - [8:b]

Header list “LIST” yx4Cyx49yx53yx54 [0:3]
- Size of header list - 4 bytes (little endian) - [4:7]
- “hdrl” - yx68yx64yx72yx6C - [8:b]

AVI header “avih” yx61yx76yx69yx68 [0:3]
- Size of avi header - 4 bytes (little endian) - [4:7]
- Various flags -
- # of video frames - [18:1b]

LIST structures yx4Cyx49yx53yx54 [0:3]
- Size of list - 4 bytes (little endian) - [4:7]
- List type (movi,
odml or stream)

- [movi, odml or stream] - [8:b]

Chunk four character
code (“db,” “dc,”
“wb” or “tx”)

[Hex of db, dc, wb or tx] [0:3]

- Size of chunk - 4 bytes (little endian) - [4:7]
- Data - [binary data] - [8:size]

Index “idx1” yx69yx64yx71yx31 [0:3]
- Size of index - 4 bytes (little endian) - [4:7]
- Index entries - [8:size]

Index entry four
character code
(“db”, “dc,” “wb”
or “tx”)

[Hex of db, dc, wb or tx] [0:3]

- Flags - [flags] - [4:7]
- Offset of chunk - 4 bytes (little endian) - [8:b]
- Size of chunk - 4 bytes (little endian) - [c:f]

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39S32

movi container are pieces of data corresponding to an
element of a stream type such as an audio segment or video
frame. An AVI chunk contains a four character code and a
size e the first two bytes indicate which stream in the
header the chunk corresponds with and the next two bytes
are the type (db ¼ uncompressed video, dc ¼ video,
wb ¼ audio, tx ¼ text).

The optional AVI index (indx) contains the ordering in-
formation for frames, including an index marker, the size of
the index and a series of index entries. This index infor-
mation is stored as a four character code, a series of flags,
the offset of the chunk, and the size of the corresponding
chunk. Another item of note in AVI file format is that the
four character code used in chunks is the same four char-
acter code used in the index. Since index entries are guar-
anteed to be sixteen bytes, the fragment cataloging process
can look forward and behind to determine whether the
code belongs to an index entry or to a chunk.

A direct comparison of carving results produced by
different tools is difficult given the various methods
implemented in each tool. To demonstrate, on a reformat-
ted media card from a digital camera, Defraser detected 60
of 61 total AVI fragments. From these fragments, Scalpel
salvaged eight playable videos (using 8 of 61 fragments),
DC3Carver's contiguous carving method obtained fourteen
playable videos (using 14 of 61 fragments), and DC3Carver's
fragment reassembly method obtained 24 playable videos
(using 51 of the total 61 fragments). These results indicate
that semantic file carving methods can be more effective
than header carving even when no fragment reassembly is
attempted. Furthermore, the automated reconstruction of
AVI fragments using DC3Carver resulted in playable video
in many instances where contiguous carving failed to
salvage playable video, demonstrating the potential benefit
of semantic file carving. However, during this comparison,
it was determined that Defraser excluded an AVI fragment,
and that DC3Carver reassembled fragments in a different
order, motivating further research and development.
Finding these differences demonstrate the importance of
comparing the results of multiple methods to salvage all
available video fragments.

There are some sanity checks that need to be performed
during the creation of a fragment catalog in order to reduce
substantial numbers of false positive results. Some formats
such as H.264 do not use clear, fixed identifiers, so creating
a fragment catalog without carefully verifying the format
will generate an enormous number of false hits. However,
there are other circumstances in which a valid video can
deviate from the file format specification. As a result, there
is a risk that checking for strict adherence to a defined
standard could result in playable video fragments being
discarded. Therefore, it can be fruitful to attempt reas-
sembly of video fragments even if a data structure does not
completely conform to the file specification, but perhaps
provide the user with some indication that the video de-
viates from its expected format specification. Furthermore,
some components of video files may be corrupt, and a
decision must be made whether to keep or discard frag-
ments of questionable validity.

When creating such a fragment catalog, it is generally
worthwhile to be over inclusive, whenever feasible. Any

decisions to exclude specific items shouldbemadewith care
in an effort to reduce the risk of excluding valid pieces of
video files. In addition, it is more effective to search a data
source for one type of video at a time, because performing
simultaneous searches for multiple video types can inter-
fere with each other, causing a fragment to be missed.

Measuring once, cutting twice

There may be more than one viable approach to reas-
sembling video fragments, and it may not be feasible to
determine automatically which approach will produce the
most playable video.

For some digital video fragments, there may be suffi-
cient information in data structures to determine that they
fit together. For instance, when the actual size of a piece of
digital video exactly (and uniquely) matches the expected
size in the associated file header, this can provide a simple
best-fit discriminator. Considerations when attempting to
reassemble AVI fragments include the number of video
frames in the index compared the number specified in the
header's video stream list, and the potential for linking
fragmented chunks by predicting a chunk's offset within a
cluster from the known size of the preceding chunk.

Fragments of MPEG-2 and MP4 files can often be iden-
tified and reassembled with a high degree of precision
because the file structure is quite strict and contains in-
formation that can be used to match related fragments. In
addition, the MPEG-2 Systems (ISO 13818 part 1) format
and MPEG-4/H.263 (ISO 14496 part 2) and H.264 formats
store video frame parameters that can be expected to have
a predictable progression, such as time codes or other
(possibly cyclic) counters. For example, Table 2 is an
example of an MPEG-2 Systems video fragment, showing
Pack Headers with increasing SystemClock Reference
values, as well as certain PesPackets showing Decoding and
Presentation time stamps that can be used to link different
fragments that are found when carving.

The MP4 file format (ISO 14496 part 1) and Apple's
QuickTime format (ISO/IEC 14496-12, Apple Inc.) both have
three main components:

container header: a header that specifies the type of data
in the container.

moov: video track container which stores all of the
metadata for a video, including frame information and
track listings.

mdat: media data container which stores the actual
video/audio data.

In addition to this overarching structure, individual
components (such as separate video frame data) have
temporal sequencing information. For instance, Table 3
shows an MP4 file fragment (ISO 14496 part 14) contain-
ing MPEG-4 Video (ISO 14496 part 2) from the DFRWS2007
Forensic Challenge with TimeIncrement values that can be
used to link different fragments that are found when
carving. When an MP4 file fragment contains H.264 enco-
ded video, the FrameNumber values can be used to link
salvaged fragments.

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39 S33

This type of information creates a very exact picture of
the data that is stored, which generally enables accurate
reassembly of salvaged fragments whether the file is
contiguous or fragmented. The structure and metadata also
make it feasible to play partial or corrupt videos.

MPEG files are often large and fragmented and, there-
fore, significantly more video data can be recovered using
semantic file carving approaches when compared with
header-based file carving tools. The effectiveness of MPEG
fragment reassembly can be demonstrated with the
DFRWS2007 carving challenge, using DC3Carver to suc-
cessfully carve out every video in the dataset in its entirety.
The salvaged video includes a three minute MPEG-2 video
that is broken into more than 30 fragments that can be
reassembled into a playable video with continuous sound
and synced audio and video.

In other situations, reassembly is less straightforward.
For instance, when the fragments from one video file are
intermingled with another video file, there is a chance that

attempting to carve each of them out separately may
render one or both of the videos unplayable. But there is
also a chance that separating them will result in both of
them being playable. Furthermore, in some situations,
more playable video can be salvaged using simple header
carving, without attempting to reassemble file fragments.
Therefore, it is sometimes advisable to salvage and reas-
semble video fragments using multiple approaches even
though it results in duplicate data. Subsequent validation of
file format and playability can be performed on the results
to eliminate unplayable video (see Section Determining
Whether Videos Are Playable for further discussion
regarding the strengths and limitations of validation).

As an example, Fig. 1 depicts video files in 3GP format
that have been partly overwritten by other data. As back-
ground, the 3GP format follows the MP4/Quicktime file
specification, starting with a distinctive file type header
(“ftyp”) that stores information about compatibility (types
listed at http://ftyps.com/). When such files contain video

Table 2
MPEG-2 Systems fragment (ISO 13818 part 1) containing MPEG-2 Video (ISO 13818 part 2) from DFRWS2007 Forensic Challenge showing TimeIncrement
values.

Offset Size (bytes) Type Attribute

274370048 14 PackHeader SystemClockReference ¼ 0
274370062 18 SystemHeader
274370080 2016 PesPacket PresentationTimeStamp ¼ 0,

DecodingTimeStamp ¼ “8589930992”
274370103 12 SequenceHeader
274370125 8 GroupOfPicturesHeader TimeCode ¼ “00:00:00-00
…
274372096 14 PackHeader SystemClockReference ¼ 900
…
274372110 2034 PesPacket PresentationTimeStamp ¼ 0
274374144 14 PackHeader SystemClockReference ¼ 1800
…
274416688 12 SequenceHeader
274416710 8 GroupOfPicturesHeader TimeCode ¼ “00:00:00-10

Table 3
MP4 fragment containing MPEG-4 Video from DFRWS2007 Forensic Challenge showing TimeIncrement values.

Offset Size (bytes) Type Attribute Comment

228514304 20 ftyp MajorBrand ¼ “isom” CompatibleBrands ¼ “mp41”
228514324 2,445,504 mdat
228514332 18,457 Vop TimeIncrement ¼ 0 CodingType ¼ “I_VOP”
228533351 3976 Vop TimeIncrement ¼ 1 CodingType ¼ “P_VOP”
228537740 2248 Vop TimeIncrement ¼ 2 CodingType ¼ “P_VOP”
228540402 5001 Vop TimeIncrement ¼ 3 CodingType ¼ “P_VOP”
228545829 6195 Vop TimeIncrement ¼ 4 CodingType ¼ “P_VOP”
228552470 4580 Vop TimeIncrement ¼ 5 CodingType ¼ “P_VOP”
228557499 6300 Vop TimeIncrement ¼ 6 CodingType ¼ “P_VOP”
228564245 5507 Vop TimeIncrement ¼ 7 CodingType ¼ “P_VOP”
228570071 5339 Vop TimeIncrement ¼ 8 CodingType ¼ “P_VOP”
228575902 5180 Vop TimeIncrement ¼ 9 CodingType ¼ “P_VOP”
228581586 4525 Vop TimeIncrement ¼ 10 CodingType ¼ “P_VOP”
228586643 5638 Vop TimeIncrement ¼ 11 CodingType ¼ “P_VOP”
228592843 18,946 Vop TimeIncrement ¼ 12 CodingType ¼ “I_VOP”
228612368 4544 Vop TimeIncrement ¼ 13 CodingType ¼ “P_VOP”
228617492 2789 Vop TimeIncrement ¼ 14 CodingType ¼ “P_VOP”
…
230959828 16,635 moov
230959944 4597 trak TrackID ¼ 1 Video
230964541 11,792 trak TrackID ¼ 2

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39S34

http://ftyps.com/

in a format that does not store frame sequence information
that could be useful for reassembling fragments, it is
necessary to try other methods to match and reassemble
such fragments into a playable 3GP video. Although the
ftyp headermust be at the beginning of a 3GP file, themoov
container can be placed before or after the mdat container.
Essentially, the moov container provides an index detailing
where each atom of data containing video frames and audio
samples are located within a 3GP file. Each atom in a 3GP
file begins with fields that specify the size and type/format
of the atom, followed by any other data stored in that atom.

In the top example, Fig. 1a, only carving to the end of the
fragment labeled “part 1” would result in an invalid video
because references in the file header would point outside of
the salvaged file. In addition, the fragment labeled “part 3”
would not be included in the salvaged video, and may be
missed entirely. In the bottom example, Fig. 1b, only carv-
ing to the end of the fragment labeled “part 1”would cause
a crucial component at the end of the file to be separated
from the start of the file, thus missing metadata required
for demuxing part 1. Therefore, it is most effective to carve
the entire space in both scenarios to produce the most
playable video. Playback may falter at the end of part 1
because the data in the overwritten part 2 may confuse the
decoder, but playing might resume if the decoder is able to
continue processing (i.e., does not abort or hang when it
encounters the corrupted portion) until it reaches the
streams that make up part 3. In both instances, a remaining
challenge is to determine whether fragments of other
videos found in part 2 can be made playable as discussed in
Section Repairing Unassigned Fragments.

A major challenge to reassembling fragmented 3GP files
is that the bulk of video data is within the mdat section,
which usually consists of video data conforming to partic-
ular video encoding standards (most commonly MPEG-4
video, H.263 or H.264) interleaved with audio data con-
forming to particular audio encoding standards (most
commonly AMR or MPEG-4 audio). Any fragmentation of
the mdat section will cause the link between the moov and
the mdat sections to be lost.

In 2011, DC3 developed a refined approach to carving
physically contiguous 3GP file fragments that uses file
format characteristics, and a second carving method to
extract, order, and reassemble 3GP fragments. In addition,
to address this issue, Defraser performs additional parsing
of file fragments using codec detectors. First, for videos
without an associatedmoov component, Defraser truncates

the mdat to 8 bytes (indicating no payload) and associates
that atom with the ftyp, and then uses codec detectors to
handle any video fragments that may still be in the mdat.
Specifically, Defraser performs a cursory scan for MPEG-4/
H.263/H.264 start codes at sample locations to determine
where the first invalid sample occurs. The resulting trun-
cated streams are then scanned with the codec detectors,
including the required headers that are in the moov, so the
frames should be decodable and viewable.

Another approach to carving 3GP videos is to take an
mdat even if it does not have an ftyp header, and combine it
with any matching moov. This can result in a large amount
of false positive results, but many may be eliminated by file
validation. In addition, Defraser forensic logs can be
generated when saving a fragment and used to determine
MPEG-4 or H.264 frame positions and sizes, and match
those with sample tables in any detected moov component.
As another example, when multiple partial copies of the
same video are found, one fragment could fit in all in-
stances. In such circumstances, it may be necessary to reuse
a single fragment to reconstruct multiple partial copies of
the video in order to obtain the most playable video.

Repairing unassigned fragments

It may be possible to repair corruption in an existing
header or to salvage remaining fragments either by
reconstructing a valid container around a fragment, or by
grafting an appropriately formatted header onto the sepa-
rate video and audio streams.

Any fragments that could not be associated with a valid
video header may still be viable for replay after a “reference
header” is grafted onto them. For instance, when a header
is missing, some MP4 videos will play when a generic 3GP
header is grafted on to the fragment, provided the original
moov header that contains the sample tables (stco, stsz,
stsc) is still intact. For AVI videos, grafting on various
common header types (e.g., cvid, mjpg, mlre, xvid) can
make video fragments playable. This technique can be
useful for grafting reference headers for H.264 or MPEG-4
video. The latest version of Defraser (1.4.1) enables users
to create an internal database of reference headers from
available videos, and can automatically graft these refer-
ence headers onto frames that lack headers. Any frames
that are decoded using a reference header will show up in
the GUI including that header, and can thus be saved in
playable form without the need for manual repair.

Fig. 1. a and b: Fragmented 3GP video files.

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39 S35

As an example, Fig. 2 shows a reference header database
created using Defraser, and Fig. 3 shows this tool being used
to repair an MPEG-1 Video file by grafting a reference
header onto the start of the video stream. The Sequence-
Header at the top of Fig. 3 comes from a reference video, the
GroupOfPictureHeaders and PictureHeaders are from the
evidence, and were unplayable before the automated
repair.

It can also be effective to take the header from a playable
video file that was carved from the same data source, and
graft this reference header onto salvage video fragments.
For example, using Defraser, a header from a playable video
in the dataset can be dragged into a Workpad within
Defraser, and then the unplayable video file fragment ele-
ments can be dragged into theWorkpad, thereby creating a
valid video file. After selecting all headers in the Workpad
and saving it, the resulting file is playable. Optionally, a
forensic integrity log can be saved along with the video file,
in which the source of all video elements is documented.

Another approach to repairing a video fragment is to
reconstruct a container around a fragment, based on
detected video frame and audio sample locations and (if
available) a reference video file with similar parameters.
This technique requires a method or tool such as Defraser
to properly detect frame offsets and sizes that can be used
to reconstruct a header with the correct locations and sizes
in order to play the video with its original synchronization.

Whatever method is used, for forensic purposes, any
such repair of fragments needs to be differentiated in some
manner to convey to the user that a header that was not
part of the original evidence has been added to the file.

Determining whether videos are playable

A further consideration for any file carving of videos is
that salvaged files might be playable using some tools but
not others, or display different content when played with
different tools. For example, some reassembled videos
might only play in a particular version of FFmpeg, or in a
different media player. This may for instance be caused by
implementation-specific boundary conditions, such as the
requiring of a minimum number of frames or the presence
of at least one key frame before decoding is at all attempted
by the software. In some instances, a salvaged video may
contain portions of two unrelated videos as shown in Fig. 4.
As a result, the salvaged file may play one series of frames
when viewed using one player, and may play a different
series of frames when viewed using a different player,
making it difficult to determine whether a reassembled
video can be played in part or in full.

To address this issue, it is necessary to use multiple
methods for determine whether a reassembled video has a
valid format and can be played, including codec validation
using a tool such as FFmpeg. The DC3 VideoValidator uses
MPlayer and multiple versions of FFmpeg to extract po-
tential frames from video files.

Conclusions and future work

The structured format of digital video makes it well-
suited for semantic file carving, which can find and
reconstruct fragments into playable files that more basic
carving methods miss.

Fig. 2. Example of a Defraser reference header database.

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39S36

From a practitioner perspective, the most playable video
can be salvaged from deleted areas of storage media by
extracting all unallocated and slack space (including VDL
slack), running multiple tools that implement different
methods (including header repair), and then reviewing the
results using various video players and a tool such as DC3
VideoValidator.

Given the complexities encountered in real world
datasets, no single approach to salvaging fragmented video
files and rendering them playable will be most effective in
all cases. Additional research and development is needed to
create new fragment reassembly methods that are more
effective in particular circumstances. At the same time,
there is a risk that more refined methods will obtain less
playable video under other conditions.

Therefore, developers of fragmented video carving tools
must carefully consider how to handle the tradeoffs to
improve results in certain situations. In addition, digital
investigators need to consider the strengths and limitations
of different fragmented video carvingmethods, and need to
select methods that are best suited to their given dataset. It
is generally advisable to use multiple methods in order to
obtain more playable video. Digital investigators must also
be aware that output from some carving methods may be
playable in one video viewer but not others, making it
necessary to view carved results using various methods,
including storyboarding.

Semantic video carving could also be improved by
including popular video encoding standards, such as

MPEG-4 Video and H.264. If the location of individual video
frames can be detected directly within a video container
using the relevant specifications, one would not be so
dependent on availability of indexes from container for-
mats; and the video frame locations could then be deter-
mined more locally. Such location information could be
used to generate an appropriate container video file index
for a partial file, as a step in the reassembly of a playable
video file. In such cases, the availability of a reference video
that was recorded with the same settings is very helpful.
Additionally, decoding encoded video streams may provide
more clues as to the original ordering of any fragmented
video file fragments that were found by carving.

For example, future work related to salvaging frag-
mented 3GP video files could attempt to reconstruct a
fragmented mdat so that all available frames could be
reproduced instead of partial video reproduction. Gener-
ally, in a large video, the mdat accounts for a huge percent
of the file size so it is likely that any fragmentation would
occur within this part a majority of the time. Ultimately,
methods of matching fragment location patterns with
fragment location indexes require some robustness in
order to handle potential false hits in frame detection. This
is less of an issue for AVI, but it can be more problematic
with formats that use less unique identifiers such as H.264
or MPEG-4 audio.

A closely related area for future work is improved
methods for repairing partially salvaged video to produce
playable video and/or audio content, either separately or

Fig. 3. Automated MPEG Video fragment repair using MPEG Video reference header from database.

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39 S37

with the original synchronization intact. In some situations,
suitable headers for grafting onto video frames may be
found in other areas of the data source, because videos may
have been recorded with similar settings. Alternatively, if
the originating camera is known (e.g., when analyzing a
memory card from a mobile phone or camera), one could
record a reference video, from which to use the headers.

A complication to decoding individual frames is that a
certain decoder state is required, which is gained by
decoding a particular MPEG header. For instance, state in-
formation is contained in H.264 Sequence Parameter Set
and the Picture Parameter Set headers, and in the Sequence
Header and the Sequence Extension of MPEG-2 Video, and
crucial playback information such as image resolution is
contained in the MPEG-4 Video Object Layer. Such a header
may for instance be found in other parts of the data source,

or borrowed from a proper reference video file, or con-
structed manually using the format specification and some
educated guessing. Defraser 1.4.1 supports using reference
headers, from which decoder state is generated when
needed. This approach allows fragments that have no
header to still be decodable, if the right reference header is
set. In casework where recordings by a known mobile
camera are sought, one would typically use a reference
movie from such a camera to determine the specific file
format characteristics.

Acknowledgements

Thanks to Mark Hirsh for his continued work and con-
tributions, and to Jason Agurkis, Keith Bertolino, Matt
Nolan, and other contributors to DC3Carver. In addition,

Fig. 4. Storyboard of reassembled MPEG video fragments from the DFRWS2007 Forensic Challenge database, with frames from two videos interleaved, extracted
using DC3 VideoValidator with ffmpeg10 [http://video-validator.sourceforge.net].

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39S38

http://video-validator.sourceforge.net

thanks to Zeno Geradts for his efforts and support related to
this work.

References

Apple Inc. AppleQuickTimefile format specification, http://developer.apple.
com/library/mac/#documentation/QuickTime/QTFF/QTFFChap1/qtff1.
html#//apple_ref/doc/uid/TP40000939-CH203-SW1.

Casey E. Digital evidence and computer crime. 3rd ed. Elsevier, Academic
Press; 2011.

Cohen M. Advanced carving techniques. Digit Investig 2007;4(3e4). 1419.
Ferguson D. Redefining file slack in Microsoft NTFS. J Digit Forensic Pract

2008;2(3).

Garfinkel S, Nelson A, White D, Roussev V. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. In:
DFRWS2010 Conference Proceedings, Supplemental Issue of Digital
Investigation, vol. 7; 2010. Available online at: http://www.dfrws.org/
2010/proceedings/2010-302.pdf; 2010.

Lewis AB. Reconstructing compressed photo and video data (PhD thesis).
University of Cambridge Computer Laboratory; June 2011. Technical
Report UCAM-CL-TR-813, Chapter 5: Reconstruction of fragmented
compressed data, http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
813.html.

Microsoft AVI RIFF File Reference, http://msdn.microsoft.com/en-us/
library/ms779636.aspx.

Na G, Shim S, Moon K, Kong SG, Kim E, Lee J. Frame-based recovery of
corrupted video files using video codec specifications. IEEE Trans
Image Process 2014;23(2).

E. Casey, R. Zoun / Digital Investigation 11 (2014) S30eS39 S39

http://refhub.elsevier.com/S1742-2876(14)00053-X/sref1
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref1
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref2
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref2
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref3
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref3
http://www.dfrws.org/2010/proceedings/2010-302.pdf
http://www.dfrws.org/2010/proceedings/2010-302.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-813.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-813.html
http://msdn.microsoft.com/en-us/library/ms779636.aspx
http://msdn.microsoft.com/en-us/library/ms779636.aspx
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref8
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref8
http://refhub.elsevier.com/S1742-2876(14)00053-X/sref8

	Design tradeoffs for developing fragmented video carving tools
	Introduction
	Background
	Fragmented video carving methods
	Netherlands Forensic Institute (NFI)
	Defense Cyber Crime Center (DC3)

	Fragmented video carving tradeoffs
	File system considerations
	Finding video fragments
	Measuring once, cutting twice
	Repairing unassigned fragments
	Determining whether videos are playable

	Conclusions and future work
	Acknowledgements
	References

