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Abstract: 

With recent technological innovations, the multiplication of captured images of criminal events has brought 
the comparison of faces to the forefront of the judicial scene. Forensic face recognition has become a ubiquitous 
tool to guide investigations, gather intelligence and provide evidence in court. However, its reliability in court 
still suffers from the lack of methodological standardization and empirical validation, notably when using 
automatic systems, which compare images and generate a matching score. Although the use of such systems 
increases drastically, it still requires more empirical studies based on adequate forensic data (surveillance 
footages and identity documents) to become a reliable method to present evidence in court. In this paper, we 
propose a review of the literature leading to the establishment of a methodological workflow to develop a 
score-based likelihood-ratio computation model using a Bayesian framework. Different approaches are 
proposed in the literature regarding the within-source and between-source variability distributions modelling. 
Depending on the data available, the modelling approach can be specific to the case or generic. Generic 
approaches allow interpreting the score without any available images of the suspect. Such model is henceforth 
harder to defend in court because the results are not anchored to the suspect. To make sure the computed score-
based LR is robust, we must assess the performance of the model with two main characteristics: the 
discriminating power and the calibration state of the model. We hence describe the main metrics (Equal Error 
Rate and Cost of log likelihood-ratio), and graphical representations (Tippett plots, Detection Error Trade-off 
plot and Empirical Cross-Entropy plot) used to quantify and visualize the performance characteristics. 
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Introduction 

Although the use of the face as a means of forensic identification had been displaced by the use of fingerprints 
and DNA, the multiplication of captured video and photographs of criminal events has gradually brought the 
comparison of faces to the forefront of the investigative and judicial scene [1, 2]. Forensic face comparison is 
performed manually or using an automatic biometric system. Either way, it has become a ubiquitous and 
essential tool to guide investigations but is still not trusted as evidence in court in the same way as fingerprints 
or DNA are. The main reason for that is the lack of standardization and performance measurements. Automatic 
systems show increasingly higher accuracy and are an unquestionable means of time gain on fastidious 
comparison tasks, which is the first reason to focus research on their use. Although these systems have been 
researched for several years, there is still no method to evaluate evidence derived from them that fully meets 
both forensic and judicial needs as it exists in the fields of speaker recognition [3, 4] and fingerprints 
comparison [5], for instance. Automated face recognition is being studied more widely through technical and 
statistical issues [6, 7] as well as in the field of forensic intelligence [8], but not in the context of its evidential 
weight. In 2018, Zeinstra and colleagues offered a survey that covered well human-based face comparison and 
initiated discussions about automatic processes [9]. From that point on, the main purpose of this paper is to 
present a critical review of evaluative models using biometric automatic systems, and to propose an evaluative 
framework for forensic face recognition. First, we summarize the current forensic use of facial images, from 
investigation to court. Then, we focus on the use of face recognition systems for the evaluation of the forensic 
evidence according to the Bayesian framework. Finally, we summarize the main issues that ought to be 
addressed in future work. 

Forensic framework: applications of face recognition 

Forensic science is the discipline studying the trace defined as the physical remnant of a litigious activity [10]. 
The overall importance and scope of use of images in forensic science are thoroughly addressed in [11]. In the 
field of face recognition, the trace is the query image recorded at the time of the facts under investigation, 
which may show the face of the offender, or other persons of interest (POI1). These images vary in terms of 
type and quality depending on the scenarios of the litigious activity (a), and their processing can serve three 
purposes in the forensic framework (b). We detail both of them, (a) and (b), further below. 

a. Images involved in forensic case scenarios 
Witness images 

“Witness images” are defined in [11] as ambiguous images somehow related to an event, recorded by chance 
or deliberately by any individual or device. It thus concerns, for example, images recorded on mobile devices 
by actual “eyewitnesses” during an event. In most cases, these images are of average or poor quality, due to 
the operator and/or subjects movements and overall uncontrolled shooting conditions. For instance, such 
recordings are immediately sought by authorities after bombings to try identifying persons of interest and 
reconstruct the chain of events. Witness images can also refer to images extracted from social networks as well 
as pedo-pornography material from online sources or devices belonging to a POI. These can help to find an 
individual not only using face recognition but also any information from the background of the image to locate 
where (and when) the photo was taken. Another type of witness images are surveillance footages, recorded at 
all time by stationary cameras at hotspots. We describe them separately later on. 

 
1 Persons of interest can be any individuals related to the event under investigation, such as victims, suspects, and 
witnesses. 
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Surveillance footages 

With the constant increase in the use of surveillance cameras in both private (e.g. shops, banks) and public 
(e.g. transport, public roads) sectors, CCTV (Closed-Circuit Television) images are now among the traces most 
often available in an investigation. A recurrent issue is that the images provided are not the raw recorded 
footages but screenshots or images in different formats. That complicates the comparison by adding distortions 
or reducing the quality of the image. In addition, these cameras are most often set high up on a wall and 
therefore record images from the top, which can lead to distortion of the feature proportions. A special case of 
CCTV images concerns the images recorded at ATMs (Automatic Machine Teller). These are taken at a very 
short distance from the subject with a hypergon lens, which allows a wide shooting angle despite the camera 
close proximity to the face but distorts the images by widening all in the centre compared to the edges. ATM 
images can be provided in cases such as thefts where a victim's credit card and/or bank notes are stolen during 
a withdrawal as well as for fraudulent uses of credit cards. A last type of surveillance images comes from the 
investigative surveillance teams who will record individuals of interest at a distance. 

Official documents 

Requests for face comparisons that does not imply CCTV images mostly concerns the use of false identity 
documents, particularly during customs controls, applications for residence permits or other state privilege [8]. 
In most cases, the documents provided are authenticated passports or identity cards. In this scenario, the 
comparison is facilitated by the fact that the trace and reference images are two identity documents with 
photographs taken under standardized conditions.  

b. Forensic purposes 

The forensic use of images go into three main steps, common to all types of forensic traces: investigative, 
intelligence and evaluative. A recurrent dichotomy, first defined in [12], differentiates between investigative 
and intelligence purposes on the one hand and evaluative process on the other hand. Indeed, these steps are 
parts of independent phases in the processing of forensic data, but investigation and intelligence can serve one 
another whereas the evaluation stage traditionally closes the investigation by presenting the relevant pieces of 
evidence in court.  

Investigative and intelligence purposes 

For every case coming to police notice, the first phase is the investigation. The aim is to gather information 
(e.g. traces), to exploit them to potentially point towards persons of interest or help understand the event. For 
a given case in which the trace is a facial image, two operations may be performed (Figure 1). First, an 
automatic system may allow comparing the trace to a whole database of images and generating a list of 
potential suspects. Secondly, when the investigation points towards a person of interest (named ‘S’ in Figure 
1) absent from any database, the operator can compare the query image with reference photographs of that 
individual. All of these results can serve as effective leads to the investigators. 

In parallel with the investigation, the monitoring phase consist of gathering intelligence to contribute not only 
to the investigation but above all to crime control and security model [13]. In a forensic intelligence process, 
data are collected in each case and then are analysed to extract information such as the modus operandi and 
information about the offender from the query image, along with links between cases by comparing the query 
image to traces from other cases. This information is then used in the current investigation and/or in a further 
intelligence process, to detect, extend or confirm series [2]. See [13-15] for an overview of the definition, 
applications and potential of forensic intelligence. In [8], the authors describe a concrete example of the current 
processing of images for investigative and intelligence purposes in Switzerland, via a platform used in the 
Latin part of Switzerland for the monitoring of crime series. The aim is to feed a centralized database with all 



3 

 

casework data for every type of events and traces, to help detect and analyse criminal series. This allowed to 
observe that the number of links detected between cases using the images has increased drastically since 2009 
along with the number of events with query images, while those made with other types of traces (DNA, 
fingerprint and shoemarks) remain steady [2]. However, the authors highlight the fact that in 2013, at the time 
of data collection, the percentage of images suitable for the use of automatic systems still was very low (3.2%). 
But, given the most recent development of such systems, both in terms of performance and dissemination, we 
expect that the number of images suitable for an automatic process would have significantly increased by now.  

Evaluative purpose 

When forensic experts are instructed further, the ultimate aim is to interpret the result of the comparison 
between trace and suspect images in order to present it as evidence in court (Figure 1). The issue in the field 
is that no standard method is available for that task. The comparison technique, whether it is performed 
manually or using an automatic system, must meet different legal requirements depending on the country to 
be used in court. In continental Europe, there is no legal constraint on the admissibility of scientific evidence. 
It is only specified that it is the judges who evaluate the relevance of the evidence according to the state of 
scientific knowledge. In the United States, the Daubert2 case law (revision of Frye3, still in use in several states) 
first defines that the judge retains the right to judge whether the method used to provide evidence is accepted 
in the scientific community (Federal Rule of Evidence 702). In addition, FRE 702 most recent revisions require 
that the method be based on a reliable, refutable scientific basis, that it has been verified and error rates are 
known, and that it is available for peer review and publication. Regardless of the legal constraints or the image 
comparison technique, it is necessary to develop and validate models to standardize the evaluative process and 
empower, or strengthen, the use of face comparison in court. 

 

Figure 1 : Overview of the current forensic processing of images for a case with a trace and a suspect4 

 
2 Daubert et al. v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993) 
3 Frye v. United States, 293 F. 1013 D.C. Cir. (1923) 
4 We use the term “suspect” here, instead of “person of interest”, to simplify the case at hand. 
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Although the use of automatic systems is increasingly studied in the field of face comparison, it still lacks 
standardization and validation to be used for legal purposes. This is why the cases of face comparison where 
results may be presented in court are currently carried out only manually by specialized face comparison 
experts [8]. Four methods are typically used to analyse and compare faces: holistic, morphologic and photo-
anthropometric processes, along with direct superposition of the images [16]. These methods are not exclusive 
and can be combined in order to carry out the most exhaustive analysis with regard to the information available 
on the image. We are not going into details about manual comparison in this paper. The reader is invited to 
refer to [8, 16-20] for details and recommendations about these processes. However, manual comparison also 
needs improvement in terms of standardization and validation [19-21], hence does not appear as a viable 
solution. In [8], the authors state that the low quality of CCTV images and the issues regarding the modelling 
of within-source variability (see Section 4 for more details) simply make trace images not suitable for being 
used in court. On the contrary, in [22], studies suggest that performance of face recognition tasks highly 
depends on the quality of training data on which a method is built. Therefore, comparing low-quality images 
is possible and requires using an adequate model developed from data of similar quality. All of these aspects 
are thoroughly discussed in this paper to assess the actual potential of facial images in an evaluative purpose, 
more specifically using automatic systems, as well as the shortcomings and limitations of these traces and 
methods. The evaluative process that should be carried out by the in order to present the evidence in court is 
addressed thoroughly in this paper and summarized in Figure 6. 

We described in the above paragraphs the three main purposes of the forensic use of facial images. We made 
a rather strict demarcation between investigation and evaluation. We will discuss that further in the paper and 
submit that the latter should be more useful to the former, instead of only finalizing it. It is thus part of our 
future work to propose a method that includes early considerations of the evaluation process within the 
investigation stage. 

c. Automatic face recognition systems 
Application 

Commercial systems currently used in forensic science show high and increasing performances [23, 24]. 
Corporations like Facebook and Google have developed their own proprietary algorithms, which they have 
claimed to be outperforming others [25, 26], and Microsoft have recently launched their systems, which 
perform better than the best commercial ones on several tasks [24]. This suggests that this gap may narrow in 
the coming years and that is why it is important to explore already opportunities and perspectives offered by 
commercial systems. A face comparison algorithm can have two distinct applications as for any biometric 
system: verification and authentication. Verification consists of the direct comparison of the image of an 
unknown person and a reference image of a known person (1-vs-1 comparison). This process is increasingly 
present in our daily lives, to unlock a computer or airport gates, for instance. The system compares the two 
images and calculates a score that reflects the degree of similarity between the two faces. If this score is above 
a predetermined threshold, the system concludes that both photographs represent the same person and grant 
access. Conversely, if the score is below this threshold, the system refuses access as the two are considered 
too distant to belong to the same person, according to it [27, 28]. Thresholds are typically set so that the false 
acceptance rate is as close as possible to zero, and the false rejection rate would have to be acceptable as to 
ensure fast and optimized use. On the other hand, authentication consists in comparing the image of an 
unknown person with all the images in a database of known individuals (1-vs-N comparisons). In this case, the 
system sorts the database to find the closest candidates. This application corresponds to the use already 
described for the investigation phase of a forensic case (Figure 1). Note that the systems used in forensic 
science allow ranking among potential sources and do not return any decision. It is based on this ranked list 
that a forensic expert will manually compare faces and take a decision. 
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So, unlike in face verification applications, automatic systems used for forensic cases do not generate a binary 
result based on the comparison of a score with a set tolerance threshold. It is the operators’ responsibility to 
interpret the results reflected by the similarity score and manually inspect the image without their judgement 
being biased by the knowledge of circumstantial investigative information that may lead them to lack 
impartiality [29]. 

In addition, commercial systems, no matter how efficient they may be, operate using proprietary algorithms. 
The black-box effect that this imposes represents a potential barrier to the use of such systems in a court of 
law, where the need for transparency in scientific expertise is omnipresent. These systems, when operated as 
black boxes, remain controversial, as already debated in relation to fingerprints and DNA [30]. Furthermore, 
although the exact structure of the algorithms is unknown, the majority of them do not take into account soft 
biometrics, essential information for the expert such as gender, ethnicity, and the presence of distinctive signs 
(scars, freckles, moles, etc.). But the algorithm takes into account other elements that the expert does not 
exploit and allows to process large databases. It is important to note that, despite the emergence of face 
recognition algorithms based on deep learning and artificial intelligence [31], the black-box effect remains. 
The structure of these neural networks indeed allows generating impressive results by letting the algorithm 
learn to detect and sort relevant information from large databases (see [32] for general structure and 
applications of deep learning, and [33, 34] as an example of the most recent studies applied to face recognition). 
However, while the overall structure of these neural networks is theoretically known, the processing of features 
is not transparent, even for the developers. The issue raised from the lack of transparency hence remains 
topical, despite significant computational developments. The black-box effect should be contained by the 
publication of empirical studies attesting to the performance of these systems in order to validate their use in 
a forensic setting. 

In the investigative purpose of authenticating a face against a database, it represents a complementary tool to 
the expert's work and not an alternative to it, insofar as the operator examines the list of results generated by 
the system. There is no standardized and validated method dedicated to the use of automatic systems in forensic 
applications [35]. For investigative purposes, this has currently less impact since results are discussed by the 
investigators to guide the investigation, whereas for evaluative purposes the result may become evidence in 
court. In this case, the result and the entire scientific procedure followed by the expert must meet legal 
requirements. In that context, the use of automatic systems remains little discussed, particularly because of the 
lack of validation of the methods, as alluded to previously. 

Evaluation of evidence for automated forensic face recognitionScore-based likelihood ratio in 
the Bayesian framework 

In forensic science, the scientist’s purpose is to evaluate the weight given to alternative propositions by the 
available evidence. In this perspective, the Bayesian framework described in [36, 37] is recommended and 
used to interpret various types forensic evidence, including fingerprints, shoeprints, voices, DNA, 
handwritings or firearms [38-43]. More specifically, likelihood-ratios (LR) computation based on biometric 
similarity scores are being studied for speaker recognition [3, 4, 44], for fingerprints, using the AFIS system 
in [5], and more recently for face recognition [45, 46]. Within these fields, two LR computation methods can 
be used: the first exploits matching scores generated by automatic systems (score-based LR, SLR), whereas 
the second relies on the comparison of the features extracted from the facial characteristics (features-based 
LR). Nevertheless, the score-based computation method, is the most commonly used for forensic biometry 
[35]. For forensic face recognition, the evidence to consider is the score, which numerically translates the 
distance (or proximity) between two compared images. In this case, the LR expressed in equation (a) is related 
to the score s(S,T), distance between the vectors of image S (the known reference) and T (the unknown trace) 
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[47, 48]. Henceforth, the SLR, for a given score (s), is described as the ratio of two probability densities, as 
follows:  

SLR(s) =
f(s(S, T)|H!, I)
f(s(S, T)|H", I)

→
Probability	to	get	this	score	when	H!	is	true
Probability	to	get	this	score	when	H"	is	true

																				(𝑎) 

With  

- s(S,T), the score of the comparison between trace (query image ‘T’) and reference (picture of the POI ‘S’). 

- H1 and H2, the mutually exclusive alternative propositions, namely: 

• H1 : “The reference image and the trace image represent the same person”  
• H2 : “The reference image and the query image represent two different persons” 

- I, the circumstantial information provided by the investigation, such as the ethnic group of the POI, or the 
biometric system used. 

Here, we present a general and simplified phrasing as an example. In fact, the formulation of alternatives 
proposition and its conditioning information I is one of the most crucial steps and they have to be adapted to 
each case depending on the data and information at hand. The numerator of the SLR is conditioned by the 
within-source variability (WSV) and the denominator depends on the between-source variability (BSV), which 
in turns depends on I. The WSV represents the variations in score values when comparing several pictures of 
the same person, and the BSV is the variations in such values that occur when comparing pictures of different 
individuals. 

In general, it would be considered as an ideal method to compute SLR directly from the data extracted from 
the characteristics, i.e. features-based model, using an open-source automatic system [47]. It would allow 
exploiting multivariate data without loss of information, while avoiding the black-box effect by knowing the 
algorithm details, such as the exact type of features analysed by the system, the frequencies at which they 
appear and the databases used. However, there is not such system (yet) in the field of face comparison. Current 
automatic systems, whether based on deep learning or not, compare two images and generate the result in the 
form of a similarity score. Currently, feature-based evaluation based carried out by the expert's based on 
manual comparisons while all automatic systems directly provide a score and not the numerical characteristics 
they used to compute it. It is therefore not yet possible to compare feature-based and score-based approaches 
in the field of automated face recognition. 

b. Computing SLR 

In order to compute a SLR from a score value for evaluation purposes, several questions have to be addressed 
first. Does the quality of the query image allow using an automatic system? Which database to use? What are 
the propositions according to the prosecution and defence? How to model the WSV and BSV distributions 
given the available data? All of these questions are essential for the development of the SLR-computation 
model, which we will further detail in Figure 6. 

Regarding the quality of the image, several points are to be addressed. First, the systems may use a 
frontalization process to adjust non-frontal images, but for angles over 45°, a lot of information is lost and the 
rate of incorrect results rises [46]. Secondly, resolution must be high enough to distinguish the eyes along with 
the main features and the face should not be obstructed by sunglasses, scarf or other attributes. As introduced 
previously, studies have highlighted the correlation of face recognition performance with the nature of training 
data used to develop a model [22]. For example, low-resolution trace images require using a model developed 
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with training data of similarly low quality, to ensure more efficient comparisons. Globally, the author suggests 
that models should be built with images that meet the real-life constraints of trace images. 

Finally, optical distortion such as in ATM recordings does not prevent the system from analysing the image 
but this can affect the comparison outcomes as it changes the features proportions. See Figure 2 for a striking 
demonstration of morphological variations due to focal length and shooting distance changes [29]. 

 

 

Figure 2: Illustration of apparent morphological face variations from three different perspectives. The subject does not change, only 
the focal length and shooting distances vary (from left to right, distance (mm): 295, 400 and 2'500, focal length (mm): 15, 20 and 

100) [29] 

If the case data (images for the trace T and the suspect S) are judged suitable for an automatic process, trace(s) 
and suspect reference(s) are compared automatically5. Then, the resulting score is used to assign a SLR 
regarding the appropriate WSV and BSV. These data allow assigning a SLR to a given score as in Equation a 
(see Figure 3 for an example of the assignation of a SLR to a given score value). To generate the WSV and 
BSV scores distributions, the expert has first to determine the propositions H1 and H2 along with the relevant 
population adequate to the case data and information at hand. The relevant population is determined according 
to the proposition H2 under which the reference image and the query image are considered to represent two 
different persons. This population, specific to each case, includes individuals who are not the suspect but whose 
faces could be the one visible on the question photograph. In most fields, witnesses would be the ones to 
provide potential information about the author such as gender, skin colour or age range, for example. In face 
recognition cases, this kind of information may be directly observed on the query image. But it has to be noted 
that the relevant population is based first and foremost on the assumption of the defendant party. Therefore, if 
H2 is: “The query image represents a different person, male or female, than the POI”, even though the experts 
assumed from the image details that the person in the query image was a woman, the relevant population must 
contain individuals of both genders. The point is to ensure that the SLR weighs the evidence against the 
propositions set by the parties’ allegations, and not by the expert. The role of the expert is to adapt the phrasing 
of the proposition according to the method chosen to model the BSV and WSV with the available data. These 
methods are detailed in the following section along with their use of the relevant population.  

 
5 When several traces and/or references are provided for the same event, each trace must be compared to each reference 
to generate as many scores (hence evidence) as comparisons performed. The SLR must then be generated combining all 
pieces of evidence (if they have been formally linked to the same event). See [49-51] for extensive researches and 
discussions about the general problematic of combining evidence, and [52, 53] for methods focused on combining 
biometric scores. 
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Figure 3: Method for the assignation of SLR numerator and denominator values from a score 's' and WSV and BSV modelling 

c. Between-sources and within-source variability modelling  

Different approaches are proposed in the literature regarding the BSV and WSV distribution modelling. 
Depending on the data available, the modelling approach can be specific to the case or generic. This has a 
direct impact on the SLR numerator and denominator conditioning and therefore on the work propositions to 
communicate in court. Details of all denominators and numerators conditioning as well as the corresponding 
H1 and H2 formulations are summarized in Table 1. 

Between-sources variability 

Between-source variability is modelled with scores generated from comparisons matching the alternative 
proposition, according to which the query image and the reference does not show the same person. This allows 
estimating the SLR denominator. The aim of this distribution is to represent the variations in score values when 
comparing photographs of different individuals. We can highlight three main approaches in the literature to 
grasp the BSV: anchoring the scores to the trace, to its source, or computing generic scores.  

Trace-anchored approach 

The trace-anchored approach described in [54] consists in calculating BSV scores by comparing the query 
image (T) with each picture of the relevant population database, as illustrated in Figure 4a. The alternative 
proposition H2 thus states that “the individual at the source of ‘T’ is not the suspect, but someone else from the 
relevant population”. The relevant population will be defined by several apparent characteristics the expert 
may note during the trace analysis phase, as described previously. This population therefore should include all 
individuals from the database whose faces may be the one visible on the trace, according to the expert. This 
population therefore would include all individuals from the database whose faces may be the one visible on 
the trace, according to the expert (e.g. all males or all females, all with or all without apparent tattoo). However, 
we think that, for face recognition, the use of observable features to compose the relevant population may 

S

Denominator

Numerator
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suffer from multiple restrictions. First, skin marks like tattoos, moles, scars, etc., are features too complicated 
to be used, because this would mean either the expert would have to sort the database manually to find 
individuals with similar features (which would be highly time-consuming), or the expert could sort individuals 
automatically using tags/attributes initially register to describe the visible soft features. Only the latter solution 
may make trace-anchored approach applicable, but such database with tagged images has to be built 
beforehand. Secondly, ethnic origin is mostly assumed on the basis of skin and hair colours. But not only is 
this prone to errors, notably due to genetic mixing in most populations, but such features can appear differently 
depending on the image quality and shooting conditions. Therefore, assuming individual’s ethnicity should 
also be avoided. At last, age range could be used for composing relevant population, as long as it is determined 
by combined observations of several pertinent features. In light of all discussed points, it appears that the trace-
anchored approach could not be applied for facial images if based on the visual analysis of soft biometrics by 
the expert.  

Nevertheless, we see two methods to consider for composing the relevant population by comparing the trace 
to an unsorted database, automatically or manually. In the first case, the trace is compared automatically to all 
images of the database, and the individuals in the higher ranks of the matching scores list will composed the 
relevant population. Doing so, the downside would be to underestimate the LR by modelling BSV from scores 
closest to the WSV scores, according to the system. In the second case, the expert manually composes the 
relevant population by selecting potential sources with the most resembling faces compared to the face on T, 
according to him. This option would not suffer from the same constraint encountered using soft biometrics, as 
the expert would compare faces holistically (i.e. even if the expert assumes the suspect is a man, any resembling 
female would be considered as a potential source). However, depending on the size of the database, this 
solution can be utterly time consuming, and depends strongly on the expert’s performance at sorting unfamiliar 
faces. But no study has yet shown the impact of variations in the choice of the relevant population for automatic 
face recognition, neither in investigative nor evaluative purpose. 

Source (suspect)-anchored approach 

The “source” here, as described in [55] for the evaluation of handwriting evidence, refers to the person 
allegedly at the source of the trace, i.e. the suspect, or POI in our discussion. This second approach thus consists 
in comparing the reference image of the POI with individuals in the relevant population (Figure 4b). In this 
case, the alternative proposition H2 considered is: “The suspect is not the person in the trace image”. The BSV 
thus depicts the range of score values when considering that the reference image and an image randomly 
selected from the population represent different persons. The aim is for the SLR denominator to reflect how 
rare/frequent it is to find, in the relevant population, a face similar to the suspect’s face. This notion is defined 
as “typicality” in [56]. This is a crucial criterion to be included in any SLR computation, but it should not be 
considered as a whole approach but to be a part of it. The typicality has to be integrated through the selection 
of the training sets of images used to model the BSV, i.e. the relevant population chosen to best fit the case, as 
described previously for the trace-anchored approach. In this approach, the generated scores highly depend on 
the quality of case images. In particular, comparing query images from low quality CCTV with standard frontal 
reference pictures would generate lower similarity scores than when comparing two good-quality frontal 
images as both trace and reference.  

Generic approach 

In a generic approach, we compare all images of the relevant population pairwise (Figure 4c). The similarity 
scores generated for each comparison are used to model a generic BSV, i.e. not specific to the case at hand. 
Here, the BSV represents the range of score values when considering that two images randomly selected from 
the population represent different persons. As no information from neither the trace nor the suspect’s reference 
image are considered to compute the SLR, this approach is much less informative than the previous two [57]. 
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The range of similarity scores values are expected to be higher - respectively lower for distance scores - than 
when comparing a lower quality CCTV trace image with the reference images in the database, for most images 
of the database come from high-quality identity documents and police mugshots. For this approach, the 
proposition that is conditioning the SLR denominator is formulated in a more generic way: “Two different 
persons are visible in the two compared images”.  

  

Figure 4: Scores ‘si’ generated by the automatic system when comparing (a) the trace with images of the relevant population for the 
modelling of the trace-anchored BSV (b) the reference image of the suspect with images of the relevant population for the source-

anchored BSV (c) images of each individual in the relevant population with each other for the generic BSV 

Within-source variability 

Within-source variability (WSV) modelling provides a representation of the variations that may exist between 
images when comparing several photographs of the same person. It informs the calculation of the probability 
of observing the result of the comparison between the trace image and the reference under the H1 proposition, 
according to which the same person is visible on both compared images. The two main methods used consist 
in modelling the suspect-anchored or the suspect-independent WSV. These approaches have been discussed 
for face recognition in [45], as discussed later in this section. In [56], in addition to the description of the 
“typicality” to take into account in the SLR denominator computation, the author defines the “similarity” 
between the query sample and the know sample (the reference) as the main criteria of the numerator 
computation. 

Suspect-anchored approach 

In cases requiring images comparison, an expert may request additional photographs of the POI in order to 
model the within-source variability. If available, the person may be photographed directly to provide expert 
with both reference descriptive images (illustrated as circles in Figure 4 and 5) and control images (hexagons 
in Figure 5a). Control images are taken under conditions comparable to those of the query image [54] to be 
used as special references. They are also described as “pseudo-traces” in [54, 58, 59] in biometrics in general 
and more specifically for voices and fingerprints. When comparing facial images, the time between the 
recording of the trace and the references or control images often become problematic because of the ageing of 
the person. See [24, 60, 61] for examples of studies addressing the impact of ageing on the performance of 
face recognition systems. For most algorithms tested, the larger the age gap between two compared images, 
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the less efficient the system is. However, it has been noted that the FaceNet algorithm, first described in [26], 
still performs honourably over very variable age ranges, when trained on adequate datasets [61]. 

Having both high-quality reference and control images is the ideal situation for modelling the within-source 
variability of the POI. This method consists in comparing the control images, on the one hand, to the reference 
images on the other (Figure 5a1). The purpose of comparing the control images with the references is to obtain 
a WSV score distribution more representative and specific to the case at hand, taking into account all 
information from the query image, since the control images are taken under conditions comparable to those of 
the trace. For instance, if the query image comes from CCTV footage, the control images will be recorded with 
a surveillance camera, ideally on the actual “crime scene”, or elsewhere in similar conditions. The reference 
images, against which the control images will be compared, would still be standard mugshot photographs. 
These control images are ideal material but are rarely taken in operational cases. In most cases, the suspect is 
not available and even when he/she is, the recording of such images may be too expensive and time consuming 
to be considered. In casework in which only reference images are available, the WSV scores are calculated by 
comparing all references to each other, as illustrated in Figure 5a2. For the suspect-anchored approach, whether 
the expert is provided with both control and reference images or only the latter, the H1 proposition can be 
formulated as follows: “The suspect is the person in the trace image”. 

Suspect-independent/Generic approach 

In most cases, the expert has only one or even no reference image. Then, a generic suspect-independent 
approach is to be used [4], to overcome the lack of reference data using only photographs of “potential 
suspects” of the relevant population. First, this method requires selecting all individuals from the relevant 
population with at least two pictures available. Then, we obtain the WSV from the similarity scores for each 
potential suspect, by comparing their photographs in pairs (Figure 5b). The scores obtained for all potential 
suspect are then combined to model a single generic distribution. Proposition H1 hence can no longer be centred 
on the suspect since the WSV is modelled with images of people not directly related to the case. Similarly to 
the generic BSV, the proposition is: “The same person is visible in the two compared images”. Another generic 
approach is described for speaker recognition in [4]. The data available are the trace and only one reference 
recording of a suspect. Hence, the authors created two databases, one of them containing the recordings of 10 
individuals taken under conditions comparable to those of the trace (five records per individual), and the second 
containing three reference recordings for each person under conditions comparable to those of the suspect's 
reference record. By transposing these conditions to a face recognition case, this means creating two databases 
of potential sources with, respectively, images matching the trace shooting conditions (ID documents, CCTV 
footages, etc.), and images matching the suspect’s picture description (mostly ID documents or other portraits). 
Such an approach remains generic because neither the trace nor the suspect reference are used by the system. 
However, it requires either already having a large database with images taken under multiple different 
conditions, with several pictures for each individual, or finding several volunteers to take adequate pictures for 
each case in hand. Therefore, this approach does not seem easily applicable for operational forensic purposes. 
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Figure 5: Scores ‘si’ generated for comparisons of (a1) the suspect reference with their control set (a2) all the suspect reference 
images, both for modelling the suspect-anchored WSV (b) all reference images of each potential suspect in the relevant population 

for modelling the suspect-independent WSV 

Among these studies describing and contrasting the various BSV and WSV modelling approaches [4, 45, 54-
57], very few use forensic data to compare them in an operational context. It is thus essential to conduct such 
a study by applying each approach to a corpus of forensic cases to assess the resulting variations in SLR values 
for each of them. In the field of face recognition, the impact of a WSV suspect-independent approach on SLR 
values compared to a suspect-anchored approach has been studied in [62]. To do so, the authors use 
photographs of five individuals randomly selected from the FRGC (Face Recognition Grand Challenge) 
database [63]. For each of them, 36 images are considered, half of which is used as a reference database, and 
the other half is degraded (reduction of definition and resolution) to better match the uncontrolled conditions 
under which CCTV trace images are taken. These degraded photographs constitute the control database of 
each individual. From these data, the authors model the WSV and BSV for both suspect-independent and 
suspect-anchored approach. The computed scores allow computing Logarithmic SLR (LLR), and the orders of 
magnitude of their values for both approaches are compared using the corresponding verbal scale, adapted 
from [64]. In 59.2% of cases on the average, the LLR obtained by the suspect-independent approach 
correspond to those of the suspect-anchored approach. These results support the use of such an approach in the 
field of face recognition. However, for two out of five subjects, the suspect-independent approach was more 
effective and the percentage of LLR corresponding to the same verbal level for both approaches dropped to 
28.5%. In order to more accurately assess the impact of the two approaches on SLR values, it would therefore 
be necessary to confirm these results with more subjects and genuine low-quality control images, instead of 
down-sampling high-quality images, as also suggested in [22]. 
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Variability Approach Part of SLR(s) 
formula concerned Proposition 

BSV 

Trace-anchored 

  H2: “The individual at the source of 'T' is 
not the suspect but someone else from the 
relevant population” 

Suspect-anchored 

  
H2: “The suspect is not the person in the 
trace image” 

Generic 

  
H2: “Two different persons are visible in 
the two compared images” 

WSV 

Suspect-anchored 

  
H1: “The suspect is the person in the trace 
image” 

Generic   H1: “The same person is visible in the two 
compared images” 

Table 1: Summary of the different approaches for the modelling of WSV and BSV along with the inherent work propositions with 
‘s(S,T)’ the resulting score of the comparison between ‘S’, image of a suspect (source), and ‘T’, the trace image. 

In Table 1, we propose a summary of each SLR formula conditioning and propositions phrasing depending on 
the chosen modelling methods. For the SLR denominator, the probability function of obtaining the score s(S,T) 
is conditioned by the data used for BSV modelling, respectively the query image T or the reference of source 
S, for anchored approaches. Meanwhile, for the WSV anchored approach, the score s(S,T) at the numerator 
can only be conditioned on the source S. In generic approaches for both BSV and WSV, scores s(S,T) are 
conditioned on neither of the trace T nor the source S, as they are modelled comparing images of individuals 
of the relevant population and henceforth only depend on I. 

The formulation of the propositions is crucial as they condition the results that the expert will present in court. 
They must best represent the statement of both parties of a trial using the data available. For instance, the lack 
of any reference material leads to the use of a generic approach, using exclusively pictures of individuals of a 
database, not involved in the case in hand. The expert’s conclusion then cannot be directly anchored to the 
suspect, as none of their pictures has been used. That is why the propositions only refer to “distinct persons” 
or “same person” in “two compared images” without mentioning the suspect (Table 1). At this point, the 
limitation is that, if a party asks “May the person on the query image be the suspect or not?”, the experts could 
not comment further. Their generic model does not allow them to include specifically the suspect in their 
conclusion, contrary to a specific approach in which they use the suspect’s facial pictures. This is a brief 
introduction to the issues inherent to the propositions formulation. See for example [65] for a thorough and 
more practical explanation, applicable to any type of forensic evidence. 

Once generated the WSV and BSV scores using the adequate approach, the corresponding probability density 
distributions, as illustrated by the example in Figure 3, have to be modelled in a way that they best fit the 
empirical score values. We will not discuss further this statistical aspect, we refer to [5, 46, 66] for examples 
and more details about the choice of parametric and non-parametric fitting methods. Figure 6 sums up the 
complete workflow of SLR assignation model development carried out by the expert for evaluative purposes. 
Starting from a hypothetical forensic case - if the material quality fits the requirements for automated use - the 
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expert sets the model specifications concerning WSV and BSV modelling, formulation of the propositions and 
determination of the relevant population in regard to the information provided by the trace T and reference S. 
All comparisons performed afterwards using the biometric system as described in Figure 4 and 5 are 
summarized here in the operations block. The preliminary outcomes of this process are the computed scores, 
which allow fitting probability densities using the most adequate method, and then assign the reported SLR to 
present as evidence in court. 
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Figure 6: Workflow of the SLR assignation model development by the expert in an evaluative purpose. 
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d. Assessing the robustness of the model 

Once the previous step achieved, the expert will have a model to assign an SLR automatically to any 
comparison for a query case. To make sure this SLR is reliable6, one has to assess the performances of the 
model. Two main characteristics have to be addressed: the discriminating power and the calibration state of 
the model [35, 37]. In this section, we successively describe these two performance characteristics as well as 
several metrics and graphical representations most often used to visualize them. Figure 7 below gathers 
examples of four simulated models with distinct performances.  

Discrimination 

The discriminating power of a model illustrates its capacity to separate the two competing propositions clearly. 
See the graphical representations of the distributions in Figure 7. This characteristic is inherent to the algorithm 
structure, and therefore can only be improved by modifying the system code [37]. The discriminating power 
can be measured with metrics such as the EER (Equal Error Rate) and the minCllr (minimum Log-Likelihood-
Ratio Cost) [35] as well as the False Acceptance and False Rejection rates (respectively, FAR and FRR) [44]. 
In the Bayesian framework, the FAR and FRR may be referred to as the Rate of Misleading Evidence in favour 
of the Prosecution (RMEP) and the Rate of Misleading Evidence in favour of the Defence (RMED), 
respectively [67]. These misleading evidence rates illustrate how often the SLR gives weight to one proposition 
when the second one is known to be true. These metrics are described in the following section on performance 
representations. 

Calibration 

Unlike discrimination, calibration is carried out typically at the end of the method, without having to access 
the system algorithm. In general terms, the calibration state of a model refers to the closeness of the computed 
value to the known value. In our case, however, there is no known value to aim. Therefore, the calibration 
measures the extent to which the SLR points towards the correct proposition. For example, the SLR computed 
for model 3 (Figure 7) are properly discriminating between the two propositions, but almost all of them points 
to H1, even when comparing pictures of different individuals (RMEP = 96.6%). A calibration process will then 
rebalance error rates and minimize the costs associated with the errors of the model. The SLR values can either 
all be adjusted at once by applying the same shift or be modified separately, as long as their ranks in the 
resulting SLR list do not change [37]. 

Calibration has been described in general terms in [68] and addressed in the Bayesian framework subsequently 
(see [69] for example). The most broadly used and studied calibration method is the Pool-Adjacent Violators 
(PAV) algorithm [70-74], especially in forensic speech recognition. We will not detail this method in this 
paper; although, it is important to note that it possesses some weaknesses that may turn out to be actual 
limitations for use in court. Indeed, the PAV algorithm generates finite SLR values only from the data where 
the distributions overlap. All SLR values beyond this zone, i.e. below the lowest value under H1 and above the 
highest value under H2, will be equal to zero and infinity, respectively. A solution has been proposed to 
overcome this issue [70]. Briefly, it consists in adding dummy SLR to trick the algorithm into generated finite 
values even outside the overlap area. According to [70], the more data used to model the distributions the 
smaller the effect of the dummy scores, but this remains an additional critical point to address in a forensic 
expertise. Consequently, another calibration method, the Logistic Regression [44, 71, 75], may be preferred, 
as it produces calibrated SLR exclusively on a finite interval. 

 
6  Reliable is used for a legal appreciation of overall robustness of a model, combining correctness, precision and 
reproducibility. 
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It is important to note that the term “calibration” is used in the literature to describe two (not so) distinct 
processes. It often refers to “score-to-SLR calibration”, i.e. the SLR computation step, as review in [66], or it 
can more specifically refer to the subsequent process, the SLR calibration, as in [76], when needed for models 
with high discriminating power but poorly calibrated (e.g. Figure 7 model 3). As this second step is essential 
to enhance the overall performance of a model, we think that the term “calibration” should not differentiate 
between these two steps (score-to-SLR then SLR-to-calibrated SLR) but should cover every computation used 
from the initial score to the final reported SLR, regardless of the number of treatment needed. 

Representation of performance 

This section gives an overview of the main metrics and graphical representations used to assess the robustness 
of a SLR computation model. These tools are more thoroughly described in [73] through examples of 
application for LR methods from physicochemical data, and in [35] for the validation process of automatic-
system-based models. 

Detection Error Trade-off plot and Equal Error Rate 

The Detection Error Trade-off (DET) is sufficient to compare the discriminating power of several models, but 
does not provide information on their calibration state. The thresholds of LLR values are illustrated as a 
function of the model FAR and FRR [77]. Therefore, the closer the curve is to the origin of the axis, the higher 
the discriminating power is. We can read the value of the Equal Error Rate (EER) at the intersection of the 
model curve with the diagonal line passing through the origin (see Figure 7).  

Tippett plot 

A Tippett plot [78-80] represents the curves of the cumulative LLR distributions under each proposition. The 
RMEP and RMED associated with a model are read at the intersection of the curves (one for each proposition) 
with the vertical axis at LLR=0 (see Figure 7b). A model is the more accurate when the two distributions are 
clearly discriminated, i.e. the cumulative curves are far apart from each other. In addition, a model calibration 
state may be implicitly observed by the separation of both curves on either side of the LLR=0 axis. For instance, 
in Figure 7, models 1 and 3 both efficiently separate the two propositions although the model 3 mostly points 
to H1, even when comparing images of different persons, which shows the need for a subsequent calibration 
for this model. In comparison, model 2 is less efficient than the models 1 and 3, but applying calibration would 
not increase its accuracy without distorting the model results. It is to be noted that these models are used here 
because they illustrate easily the main purposes of the representation. Models with more complex results may 
complicate the reading of some information. See [80] for more details of the limitations of Tippett plots. 

Empirical Cross-Entropy and Cost of log-likelihood-ratio 

Proposed in [44], the Empirical Cross-Entropy (ECE) curves represent the costs associated with the SLR values 
generated by a system. The higher the maximum value, the more information needed for the SLR to point to 
the correct proposition. Henceforth, a high-performance model has minimal losses when making errors. On an 
ECE curve, the Cllr metric [70], representing the average cost associated with a model, is represented as the 
ECE value at the intersection of Logit(P(H1))=0 and the empirical model curve. We can see this in Figure 7, 
where the dashed curve represents the empirical model (before calibration) and the dotted curve shows the 
calibrated model. The minCllr is the cost associated with the calibrated model and directly quantify its 
discriminative power. Table 2 below summarizes the use and adequacy (shown by ‘-‘, ‘+’ or ‘++’) of the 
different metrics and graphical representations in the assessment of a model performance. 
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Performance 
characteristics  Metric 

Graphical representation 

Distributions DET curve Tippett plot ECE plot 

Discrimination RMEP-RMED, EER, minCllr + ++ ++ ++ 

Calibration calCllr + - + ++ 

Table 2: Metrics and graphical representations used in the validation process of SLR computation models. The degree of 
adaptability of each representation method to visualize both performance characteristic is described as such: (-) not adapted, (+) 

limitations depending on the case, (++) adapted representation 
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Figure 7: Representations of the  LLR distribution, Tippett plots, DET plots and ECE plots for four hypothetical models: (1) a high-
performance and calibrated model (2) a well calibrated but with lower performance model (3) a high-performance but poorly-

calibrated model and (4) a model with both low performance and calibration state. 
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Conclusion and perspectives 

In this paper, we have assessed from the current literature the state of the art of forensic face recognition using 
automatic systems. Zeinstra and colleagues in 2018 [9] offered a previous survey that covered well human-
based face recognition for forensic purposes and available datasets, and we wanted to concentrate on automatic 
techniques such as the use of biometrics systems. We identified the framework of applications depending on 
the forensic scenarios (CCTV, witness images, official documents) and the usage of such information either 
for intelligence, investigative or evaluative purposes (Figure 1). We focused then on the various ways to 
compute a score-based likelihood ratio (SLR). Through that process, we clarified the concept of anchoring 
(Figure 4, Figure 5) and the impact on the phrasing of the propositions considered in a forensic case (Table 1). 
We conclude that a suspect-anchored is more relevant but also identified that the respective benefits and 
limitations of each approach remain unknown. That review allowed us to present a global workflow that 
illustrates the steps that ought to be taken to compute a SLR (Figure 6). The robustness of such SLR should be 
measured. The main performance indicators have been reviewed and their metrics explained in the context of 
measuring discriminative power and calibration of the model (Table 2). 

Another research avenue that we introduced in this paper relates to the demarcation between investigation and 
evaluation purposes. Currently, during a police investigation, the preliminary results are mostly communicated 
in an informal manner to guide the investigators. These results may be a list of potential suspects or the brief 
comparison of the trace with a POI picture, leading to an informal “match” or “non-match” guiding the 
investigation. However, we think that it would be beneficial to provide investigators with probabilistic and 
weighted results during the investigation phase, as a “preliminary evaluation”. This evaluation will be based 
on the Bayesian framework, through the computation of a SLR from a similarity score. During the investigation 
phase, the only data available are the query image and pictures of one or more potential suspects. From that, 
each “trace vs potential suspect” score is generated to compute a preliminary “investigative SLR”, along with 
an estimation of what SLR value should be expected after a thorough evaluation with all the needed data in 
the instruction phase (i.e. complete reference material and an adequate database as relevant population). 
Obviously, this estimation has to be supported by empirical data. A study has then to simulate several cases 
where experts are provided with 1) a trace and a list of potential suspects from a database (or from an 
eyewitness) during the investigation phase, and 2) the adequate training datasets and propositions defined in 
the instruction phase. The questions to be answered in the investigation step are “What is the weight of the 
preliminary result? How and how much would this weight vary with adequate supplementary data? What if 
more reference images from this suspect cannot be provided?”. Both preliminary-SLR and final SLR are 
compared in each case to assess the variation of their values as well as the factors of these variations depending 
on the provided data. The generic WSV approach may be a good asset for the preliminary-evaluation. It would 
allow computing an investigative preliminary-SLR from a generic denominator for a given population, and 
that would be usable for every case that shares the same population. This is part of our future work and should 
be beneficial not only for face recognition but also to many other forensic fields. In such purpose, it is essential 
to improve the discussion between forensic expert, investigators and legal practitioners to best develop this 
method with respect to the needs and constraints of each.  
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