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Abstract

In this paper we present some results on the distribution of dividend payments
until ruin under a Sparre Andersen risk model with generalized Erlang(n)-
distributed inter-claim times and a constant dividend barrier. An integro-
differential equation for the moment-generating function of the discounted
sum of dividend payments until ruin is derived. Moreover, explicit solutions
for arbitrary moments of the present value of dividend payments are obtained,
when the individual claim amounts have a distribution with rational Laplace
transform. Numerical illustrations of the results are given for an Erlang(2)
risk model and Erlang(2)-distributed claim amounts.

Keywords: renewal risk model, dividend barrier, present value of dividend pay-
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1 Introduction

In recent years there has been considerable interest in extending results from classi-
cal risk theory, where the surplus process of a non-life insurance portfolio is modeled
by a compound Poisson process, to more flexible models. One such extension deals
with replacing the Poisson claim number process by a more general renewal process
leading to the so-called Sparre Andersen risk model. In this context, one particu-
larly tractable class of distributions for the inter-claim times 7; (i = 1,2,...) is the
class of generalized Erlang(n)-distributions, mainly because a generalized Erlang(n)
random variable can be expressed as an independent sum of n exponential random
variables and thus the lack-of-memory property of exponential random variables can
be used for the analysis of the corresponding risk process. Various aspects of ruin
in an Erlangian risk model are for instance studied in Dickson (1998), Dickson and
Hipp (1998,2001), Cheng and Tang (2003), Sun and Yang (2004), Li and Garrido
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(2004a), Tsai and Sun (2004) and Gerber and Shiu (2005).

Another extension of the classical risk model is to allow for dividend payments
to shareholders. The problem of finding optimal dividend payment strategies has
a long history, see e.g. De Finetti (1957), Bithlmann (1970), Borch (1974), Ger-
ber (1972,1979), Asmussen and Taskar (1997), Hubalek and Schachermayer (2004).
Some recent, papers on dividend barrier strategies are Paulsen and Gjessing (1997),
Siegl and Tichy (1999), Albrecher and Kainhofer (2002), Albrecher et al. (2003) and
Claramunt et al. (2003).

For the classical risk model and a constant dividend barrier, Lin et al. (2003) have
studied the discounted penalty function at ruin, which is an important tool to quan-
tify the riskiness of the barrier strategy. A second important quantity in assessing
the quality of a dividend barrier strategy is the distribution of the discounted sum
of dividend payments until ruin. Traditionally, only the first moment of this distri-
bution was considered, but for the classical risk model and constant barrier strategy
Dickson and Waters (2004) recently studied arbitrary moments (an extension of this
analysis to linear dividend barriers can be found in Albrecher et al. (2005)). For
a Brownian risk model, the distribution of dividend payments was investigated by
Gerber and Shiu (2004a).

The analysis of the discounted penalty function in Lin et al. (2003) was recently
generalized to a Sparre Andersen risk model with generalized Erlang(n)-distributed
interclaim times by Li and Garrido (2004b) and it is natural to ask for a correspond-
ing generalization of the results on the distribution of dividend payments.

In the present paper, we investigate the distribution of the discounted sum of divi-
dend payments D, ; until ruin according to a constant dividend barrier b in a Sparre
Andersen model with generalized Erlang(n)-distributed interclaim times (where u
denotes the initial capital), in that way complementing the results of Li and Garrido
(2004b). Using a differential approach, in Section 3 we derive an integro-differential
equation for the moment-generating function of the dividend payments, which sim-
plifies and generalizes some results of Dickson and Waters (2004). We then derive
integro-differential equations for arbitrary moments of D, ; and solve them for claim
size distributions with rational Laplace transform (Section 4). Finally, in Section
5 we illustrate the results for an Erlang(2)-model with Erlang(2)-distributed claim
sizes.

2 The model

In the Sparre Andersen model, the surplus process R(t) of an insurance portfolio is
given by

N(t)
R(t)=u+ct—ZXi, (1)
i=1



where the claims X; are positive i.i.d. random variables with distribution function
F and mean p < oo, u is the initial capital and c is the constant premium density.
Here the claim number process N(¢) = min{k : T} + ...+ Ty,1 > t} is an ordinary
renewal process and the inter-occurrence times 7; (i = 1,2,...) are a sequence of
positive i.i.d. random variables (77 denotes the time until the first claim and, in
general, T; denotes the time between the (i — 1)-th and i-th claim). The net profit
condition is given by ¢ > u/E(T;).

In this paper we will assume that the random variables T; (i = 1,2,...) are general-
ized Erlang(n)-distributed, i.e. each 7} is a convolution of 7 independent exponential
random variables with possibly different parameters Aq,...,\,. This will allow to
use Markovian arguments due to the lack-of-memory property of the exponential
distribution.

The risk process (1) is now modified by introducing a constant dividend barrier
b (b > 0), i.e. whenever the surplus process reaches the level b, the premium income
is paid out as dividends to shareholders and the modified surplus process remains
at level b until the occurrence of the next claim. Let the random variable D,
denote the present value of the discounted sum of dividend payments until ruin
(with discount factor § > 0). In the sequel we will be interested in the moment
generating function
M(u,y,b) =E [eyD“”’|R0 = u]

(for those values of y where it exists) and the m-th moment
Wn(u,b) = E[D}',| Ry = u (m €N).

Note that Wy(u,b) = 1. We will always assume that 0 < u < b (otherwise the
overshoot b — u is immediately paid out as dividends).

3 An integro-differential equation for M (u,y,b)

Let % denote the differentiation operator with respect to y and correspondingly %
1

the differentiation operator with respect to u. Moreover, define ] - = 1.
=2

Theorem 1. The moment-generating function M (u,y,b) is the solution of the par-
tial integro-differential equation

(}:[1 <5y8—y—6%+)\j>> M(u,y,b)—g)\j/o M(u —v,y,b) dF (v)

-[[Na-Fu)=0 (2

=1



with boundary conditions

u=>b

i 8- 0
=y (]1;[2 (5ya—y—c%+/\j_1)) M (u,y,b)

and
lim M(u,y,b) = 1. (4)
b—o0

Proof. Let us decompose every inter-occurrence time with generalized Erlang(n)-
distribution into the independent sum of n exponential random variables with pa-
rameters Aj, ..., \,, each causing a “sub-claim” of size 0 and at the time of the n-th
sub-claim an actual claim with distribution function F' occurs. This can be realized
by considering n states of the risk process. Starting at time 0 in state 1, every sub-
claim causes a transition to the next state and the time of occurrence of the n-th
sub-claim, an actual claim with distribution F' occurs and the risk process jumps
into state 1 again. Let M) (u,y, b) denote the moment-generating function of Dy,
if the risk process is in state j (j = 1,...,n). Eventually we are then interested in
M (u,y,b) := MW (u,y,b).

In this way, one has transformed the risk process into one with exponential inter-
occurrence times and can use the lack-of-memory property of the exponential distri-
bution together with a differential argument. Indeed, conditioning on the occurrence
of a (sub-)claim, we obtain for 0 <u <band j=1,...,n—1

M(]) (u; Y, b) = (1 — )\Jdt)M(J) (U + Cdt, ye—ddt’ b)
+ )\jdtM(j-i-l) (u + Cdt, ye—édt’ b) + O(dt),

from which we obtain by Taylor expansion and collecting all terms of order dt

oM ) _ OM ) ,
¢ aT (U'a Y, b) o )‘J' M(J)(U’a Y, b) o 5@/ Ty (u, Y, b) + /\jM(]+1) (U, Y, b) =0. (5)

For 7 = n we have

M('fl) (ua Y, b) = (1 — )\ndt)M(n) (U + Cdt, ye—édt’ b)

utcdt
+ )\ndt/ MO (u + edt — v, ye % b)dF (v) + /\ndt/ dF(v) + o(dt),
0 u+cdt

which leads to

oM™ oM™

ou

c (u,y,b)

+ An /u MY (u —v,y,b)dF(v) + A\y(1 — F(u)) =0. (6)



From (5) it follows that

5y%—c%+)\j

MU (y, y, b) = MDD (u,y,b), (G=1,...,n—1)  (7)

Aj
and subsequently
nliyd —cd 4 )\
me%w=<ﬂ o ) M (u,y,b),
- Aj
7j=1
which together with (6) yields (2).
For u = b we obtain analogously for j =1,...,n—1

M9 (b, y,b) = (1—N;dt)e? M) (b, ye 0 b)+ \;dt e¥ ¥ MUTD (b, ye 0% ) +o(dt),
which by Taylor expansion leads to

_5y8M

gy G0+ e ) MOB,y. b + MV byh) =0 ()

Comparing these equations with the corresponding equations in (5), continuity of
MY (u,y,b) at u = b thus implies

. OMY) (u, y,b)

- =cyMD(by,b), (j=1,....,n—1). (9)

u=b

An analogous continuity argument shows that (9) also holds for j = n. For j =1,
(9) is equivalent to (3) for £ = 1. Now it just remains to express equations (9) for
j=2,...,nin terms of M) = M, which is done by virtue of (7). Finally, condition
(4) is obvious. O

Example 3.1. For n = 1 and A\; := )\ we retain the classical compound Poisson
risk process and indeed (2) simplifies in this case to

oM oM
6y%(uayab)_0%(uayab)+/\Mu Y, b /\/ M(u—v,y,b) dF(v)
- A1 -=F(u)) =0,

which is formula (1) of Albrecher (2004). Correspondingly, the boundary condition
(3) simplifies to W =Y M (b, y,b), which is equation (2) of Albrecher (2004).

Remark 3.1. The boundary condition (3) also extends the corresponding condi-
tion for a Brownian risk model (equation (4.5) of Gerber and Shiu (2004a)). The
structure of this condition for £ = 1 is discussed in Gerber and Shiu (2004b) in a
more general framework.



4 Moments of D,

4.1 An integro-differential equation

Recall that W,,(u,b) = E [DZHRO = u|. Using the representation

o
M (u,y,b) Zy—'

and equating the coefficients of y™ (m = 0,1,2,..) in (2) leads to the following
ordinary integro-differential equation for W,,(u,b) (m=1,2,...):

(H (6m—c%+Aj)> Wm(u,b)—f[x,- /qu(u—v,b)dF(v):O. (10)

j=1 0

From (3) we correspondingly obtain for k =1,...,n

5 0 Y™ W, (u,b

Now, equating coefficients of y™ (m = 1,2, ..) leads to

(o)) e

=2

[
I =
N

u=>b

—m (f[ (5 (m—1)+ X1 —c%)) Wi 1 (u, b))

i=2

, (11)

u=b

which holds for £ =1,...,n and arbitrary m € N.
Furthermore, boundary condition (4) directly translates into

lim Wy, (u,0) =0 (m=1,2,..). (12)
b—o0

Thus, the m-th moment W,,(u, b) is the solution of the integro-differential equation
(10) together with (11) and (12)

Remark 4.1. One could derive this result also by using a differential approach for
Win(u, b) directly and then applying the binomial formula, a Taylor series expansion
and collecting significant, terms (see Albrecher (2004) for a corresponding procedure
for the compound Poisson model (n = 1) with constant dividend barrier). Yet
another possibility to derive the equations for W, (u, b) is to use a renewal equation,
generalizing the derivation of Dickson and Waters (2004) for the compound Poisson
case. However, the differential approach used above is considerably simpler.
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4.2 Explicit solutions for claim sizes with rational Laplace

transform
Let us ignore for a moment that Wi (u,b) is only defined for 0 < u < b and define
the Laplace transform Wi(s,b) := [5° e **Wy(u,b) du and the Laplace-Stieltjes
transform f(s = [;C e *"dF(v). Equation (10) does not depend on b and thus the

idea is to use Laplace transforms to obtain the structure of W,,,(u, b) up to constants
and then to use the boundary conditions to determine these constants.
Define the n-th degree polynomial

=H(5m—cs+)\j).
7j=1
Then taking the Laplace transform of (10) yields
V(5)Win(,8) + Gusa(s) = [ [ A Waa(s,0) f(5) =
7j=1
where G;,_1(s) is an (n —1)-th degree polynomial in s, whose coefficients involve the
quantities £%=(0,b) (j =0,...,n — 1). Thus we obtain
anl(S)
() = (11 %) f(s)
J:

Setting the denominator equal to zero, we obtain a variant of the so-called Lund-
berg fundamental equation, which already appeared in Gerber and Shiu (2005) when
studying the discounted penalty function. There it was shown by Rouché-type ar-
guments that this equation has exactly n zeroes in the positive halfplane.

Win(s, b) = (13)

Let us now restrict the further analysis to the case of claim size distributions with
rational Laplace transform, i.e.

where @, 1(s) and P.(s) denote polynomials of degree (at most) » — 1 and r, re-
spectively (r > 1). Note that this class of distributions contains the phase-type
distributions and in particular the Erlang distributions as a special case.

For this choice of claim size distribution, the denominator of (13) has exactly n +r
zeroes, which are denoted by Ry,..., R,, (and which do not depend on b). From
the above we conclude that r of these zeroes are located in the negative halfplane.
For simplicity of notation, let us assume first that Ry, ..., R,., are real and distinct.
Then, using partial fractions in (13), one obtains

n—+r

= Z ;i (b)efti. (14)



In order to determine the coefficients «;(b), n + r equations are needed. The first
n equations directly follow from (11). For the remaining r equations, one has to
substitute (14) into (10). After performing the integration in the last summand
of the left-hand side of (10), it is not difficult to see that equating coefficients
of the resulting exponential terms leads to exactly r additional equations (for an
illustration, see the example in Section 5). Note that lim, . «;(b) = 0 has to hold
foralli =1,...,n+r in order to satisfy (12).

If the zeroes Ry, ..., R, are not all distinct and/or real, then a little more care is
needed, since then the coefficients a; are functions of u also, but one can obtain the
solution in a completely analogous way.

5 Numerical illustrations for an Erlang(2) model

As an illustration of the results of the previous section, consider the case of a Sparre
Andersen model with Erlang(2, \) interclaim time, i.e. P(T; <) =1— (At+1) e
(t > 0). This corresponds to the case n = 2 and A\; = Ay := A. It thus follows from
(10) that the m-th moment of discounted dividend payments W,,(u, b) (for arbitrary
m € N) is the solution of

2 0*Wp(u, b)
ou?

W, (u, b)

—2c(dm+ M) 5

+ (6m + A)? W (u, b)
/Wf D dF(v) =0 (15)

and the boundary condition (11) simplifies to

oWy (u, b
—7%J2 — Wi+ (b, ) (16)
u=b
for k =1. For k = 2 in (11), one obtains
oWy, (u, b)) 0*W,, (u, b)
(0m+\) a0y 92
u=b u=b
_ b
(6 (m— 1) + MWy (b,B) — m e 20m 1B
ou -
which simplifies to
O*W, (u, b) Wy (u,b) md (b.5)
ou2 = ou . m—1
or equivalently
2
TWnlsD) i — OWoroal, )+ "OWa0) (1)
u=b




(with the understanding that W_;(u, b) = 0). Thus it remains to solve (15) together
with (12), (16) and (17).

If in addition we assume that X; ~ Erlang (2,7), then f(s) =

”2)2 and from
Section 4.2 we obtain the representation

(s+n

4

Win(u,0) =3 a;(b)e’™*, (18)

i=1
where R; (1 =1,...,4) are the solutions in R of
)\2772

Substituting (18) into (15) yields, after rearranging terms,

: 2 772/\2 ok 242 1
i(b i—A—md =nA i -,
;a()((m ) (Ri+n)> ! Z“ <R+n (Ri+n>2>e

from which we obtain the two conditions

~ aih)
Z(R+n)_0 and Z R+77 . (20)

=1

Now, for m = 1 we have from (16) Wh:b =1 so that

4
D i) R =1 (21)
=1

and from (17) we have % w—t = ¢ Jeading to
. J
E o (D) RZeftid = — (22)
c
i=1

Hence the coefficients «;(b) can be determined as the solution of the four linear
equations (20), (21) and (22).

Example 4.1. Let T; ~ Erlang(2,2), X; ~ Erlang (2,2), ¢ = 1.1 and 6 = 0.03.
Let us first consider m = 1. In this case the solutions of (19) are R; = —2.79,
Ry, = —0.32, R3 = 0.17, Ry = 2.63 (here and in the sequel, all numerical values
rounded to their last digit) and we have from (18)

Wl(u,b) — al(b)e_2'79“ + ag(b)e_o'?ﬂ” + a3(b)60'17u + a4(b)62'63“.

The coefficients «;(b) can easily be determined by (20), (21) and (22) and involve
exponentials in b. Table 1 gives some numerical values of Wi (u,b) and Figure 1
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depicts the behavior of Wi(u,b) as a function of b for some given values of initial
capital wu.

For m = 2, the solutions of (19) are Ry = —2.78, Ry = —0.40, R3 = 0.27, Ry = 2.65
and here the coefficients a;(b) are the solutions of the system of the following four
linear equations:

Oji(b)RieRib =2 W1 (b, b)

-

-
Il
—

M%

;i (b)R?efid = 2 + 221, (b, b)

| 5= )
;Ri+2:0
L ai(b)

]

3 =0,
\ =1 (Rz + 2)
which can be evaluated in a straight-forward way. In Table 2, some numerical values
of the standard deviaton SD(u,b) := /Wa(u, b) — WZ(u,b) of the discounted sum
of dividend payments are given and Figure 2 depicts the behavior of SD(u,b) as a
function of b for some given vzfgh;?sb())f initial capital u. Figure 3 depicts the variation
Uy

coefficient of D, ;, defined by Wi(ub) "

Moreover, one can observe that Wi(b,b) and SD(b,b) tend towards a finite value,
namely limy o, W1(b,b) = 6.245 and limy_, o, SD(b, b) = 2.904, which occurs because
each of the terms «;(b)ef® either goes to zero or to a finite limit (s = 1,...,4), see
also Figure 4.

The following final remark is in order: The appropriate choice of a dividend barrier
height b strongly depends on the optimization criterion under consideration. If a
safety criterion involving the probability and/or time of ruin is applied, then the
results on the discounted penalty function of Li and Garrido (2004b) might be
used. Figure 1 shows that if one instead wants to maximize expected dividend
payments until ruin, then in this model b should be chosen as small as possible.
However, one can see from Figure 2 that the standard deviation of these payments
has a maximum for rather small values of b, indicating that one should choose the
optimization criteria with great care and that consideration of the first moment is
not sufficient to represent the profit-participation in practice.
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b\ u 0 1 2 3 4 ) 6 7 8 9
0 1.076

1 0.836 1.808

2 0.856 1.847 2.846

3 0.848 1.828 2.815 3.803

4 0.801 1.728 2.661 3.597 4.574

) 0.730 1.575 2.424 3.277 4.174 5.143

6 0.648 1.397 2.151 2.908 3.705 4.575 5.538

7 0.565 1.218 1.875 2.5335 3.229 3.988 4.840 5.799

8 0.486 1.049 1.615 2.184 2.782 3.436 4.170 5.010 5.967

9 0.416 0.897 1.381 1.867 2.379 2.938 3.566 4.285 5.118 6.073

Table 1: Exact values for the expectation Wi (u,b) of the discounted dividend pay-

ments.
b\u 0 1 2 3 4 5 6 7 8 9
0 0.744
1 1.240 1.399
2 1.667 2.11 2.193
3 1.864 2.456 2.695 2.742
4 1.884 2.528 2.846 2.989 3.02
) 1.797 2436 2.783 2.981 3.085 3.111
6 1.656 2.263 2.613 2.836 2.988 3.08 3.104
7 1.496 2.058 2.396 2.629 2.807 2.945 3.035 3.06
8 1.334 1.847 2.167 2.399 2.59 2.755 2.892 2.984 3.011
9 1.181 1.644 1.942 2.167 2.362 2.54 2.705 2.845 2.942 2.969

Table 2: Exact values for the standard deviation \/Wa(u,b) — W2 (u, b) of the dis-
counted dividend payments.

Figure 1: Wi (u,b) as a function of b for u =0,1,...

b
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Figure 2: Standard deviation of D, ; as a function of b for v = 0,1,...,5 (from
bottom to top)
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Figure 3: Variation coefficient of D, as a function of b for u = 0,1,...,5 (from top
to bottom)
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Figure 4: Limiting behavior of Wj(b,b) (left) and the standard deviation
VWa(b,b) — W2(b,b) (right)
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