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Abstract

This paper studies how fund managers’ relative-performance concerns af-
fect their investment strategies in bubble periods. The managers compete for
flows that are sensitive to their performance ranking. Severe ranking tour-
naments with highly convex flow-performance relationship lead managers to
ride bubbles to outperform each other, making bubbles long-lived. However,
moderate tournaments may lead them to attack bubbles quickly. The re-
sults are consistent with the observed cross-sectional variation in funds’ in-
vestment strategies in bubble periods. Bubble-riding behavior is pronounced
if the funds’ tournament is too close to call, as interim followers try to catch
up while interim leaders try to stay ahead.
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1 Introduction

When analyzing asset bubbles in modern financial markets, it is important to account for

institutional investors such as mutual funds or hedge funds because they now represent

a large part of the market.1,2 Their rapid increase in size may have affected the forma-

tion and stabilization of asset prices, as their objectives differ from those of individual

investors: while an individual investor simply maximizes her risk-adjusted portfolio re-

turn, a fund manager may also aim to perform well relative to her peers. Indeed, fund

managers are typically evaluated against each other by investors who find it difficult to

distinguish expertise from luck. Various rankings appear in financial media, and there is

evidence that fund flows respond to mutual funds’ relative performance (Sirri and Tufano

1998). Thus, to attract flows, the managers are naturally concerned with their positions

in the ranking table. How do fund managers’ relative-performance concerns affect their

investment strategies in bubble periods? Do they magnify or dampen bubbles?

To answer these questions, we develop a model à la Abreu and Brunnermeier (2003)

(henceforth, AB), in which a bubble persists endogenously as fund managers’ “synchro-

nization risk” leads them to defer correcting the mispricing. We depart from AB in

assuming that a part of the managers care about their relative performance: their final

payoffs are sensitive to the performance ranking through the empirically documented con-

vex flow-performance relationship. The rest of the managers are not ranking-concerned,

as in AB. Our setting allows us not only to study the implications of fund managers’

ranking concerns for their bubble-riding behavior and the associated persistence of bub-

bles but also to provide explanations to the observed cross-sectional variation in funds’

investment strategies in bubble periods (Dass, Massa, and Patgiri 2008; Greenwood and

Nagel 2009).

More specifically, we consider a continuous-time infinite-horizon model of the market

for a single asset, in which a continuum of fund managers are fully invested initially. As

1Investment Company Institute (2014) reports that the number of U.S. households owning mutual
funds has increased from 23.4 million in 1990 to 56.7 million in 2013. In 2012, 23% of households’ financial
assets are managed by registered investment companies (ETFs, closed-end funds, unit investment trusts,
and mutual funds), while it was only 3% in 1980. Hedge Fund Research reports that in 1990 there were
only 610 hedge funds with $39 billion of assets globally, whereas in 2013 there are more than 10,000 funds
managing $2,400 billion of assets.

2There are pieces of evidence suggesting that fund managers play important roles in bubble periods.
Brunnermeier and Nagel (2004) look directly at hedge fund holdings during the Internet bubble and find
that hedge funds were riding instead of attacking the bubble. Griffin, Harris, Shu, and Topaloglu (2011)
investigate various players’ trading behavior and conclude that institutional investors “drove and burst
the tech bubble.”
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in AB, the managers become sequentially aware that the asset’s price is growing beyond

its fundamental value. Each manager decides when to attack the bubble by selling the

asset, while she does not observe other managers’ trades. The bubble bursts when enough

managers attack it. Despite the managers’ rationality, the bubble persists in equilibrium:

since each manager does not know whether she becomes aware of the bubble early or

late relative to others, there is a chance that many of her peers have not been aware of

the bubble yet, and thus she finds it optimal to ride it by deferring selling the asset in

attempting to reap the price appreciation yet avoid being caught in the eventual crash.

We extend AB by assuming that the managers are ranked based on their investment

returns. A part of the managers experience ranking-sensitive outflows: the lower a man-

ager’s rank, the larger outflows from her fund, making her final payoff an increasing and

convex function of her rank. The assumption captures the convex flow-performance re-

lationship documented in the money management industry (Chevalier and Ellison 1997;

Sirri and Tufano 1998). We interpret these ranking-concerned managers as highly in-

centivized, young managers. Since such a manager has not yet built reputation in the

profession, if she performs poorly relative to her peers she is perceived as incompetent

and loses her investors. The managers with no ranking concerns are viewed as old ones

who have already proved their skill and have steady client investors. This interpretation

is motivated by the finding of Chevalier and Ellison (1999) that the termination is more

performance-sensitive for younger fund managers.

The model implies that ranking-concerned fund managers have nonmonotonic impacts

on bubbles: they may either magnify or dampen bubbles, depending on how much of a

winner-take-all situation they are in. If they engage in a severe ranking tournament

with highly convex flow-performance relationship, they fuel bubbles by riding for a long

time. However, with moderate convexity of the relationship, they help dampen bubbles by

attacking them quickly. This nonmonotonicity holds because ranking tournament creates

two opposing effects on the managers’ risk-taking incentives. The first is the risk-shifting

effect: viewing selling out early as a low-risk option (i.e., securing a middle rank) and

riding bubbles long as a high-risk option (i.e., gambling between top and worst ranks),

the latter becomes more attractive for each manager as convexity of the flow-performance

relationship increases. The second is the crash-aversion effect: for fear of getting caught

in the crash that triggers large outflows, each manager opts for selling out early to secure

a middle rank. Which effect prevails depends on the convexity of the flow-performance

relationship. With high convexity, the risk-shifting effect prevails because riding bubbles

longer than the peers and winning a top rank is the only way to avoid large outflows. But
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with moderate convexity, the crash-aversion effect may prevail if the bubble is easy to

burst under selling pressure, as the managers have a strong incentive to counterbalance

the high risk of getting caught in the crash.

Our results imply that, unlike what common wisdom would suggest, (1) fund managers

with highly performance-sensitive payoffs may pull out of bubbles quicker than the others,

and (2) fund managers’ ranking tournament may help stabilize the market by eliminating

bubbles quickly. These are in line with Dass, Massa, and Patgiri (2008), who find empirical

evidence that the higher the incentives in mutual fund managers’ advisory contracts, the

lesser these funds invest in bubble stocks. Our model complements their work by offering

a theoretical explanation: high-incentive funds may opt for staying away from bubbles as

they have strong incentives to avoid outflows triggered by getting caught in the crash.

Our model also implies, under highly convex flow-performance relationship, young

managers may ride bubbles longer than the old. This is consistent with the finding of

Greenwood and Nagel (2009) that young managers tend to buy bubble stocks more than

old ones. Our explanation is as follows. A young manager—evaluated based on relative

performance due to the lack of track record—is incentivized to ride bubbles for a long

time, even if she is aware of the overpricing, for fear of being perceived as an incompetent

manager who missed out on the benefit of swelling bubbles.

To study a more realistic case, we extend the model to allow for a heterogeneity in

the managers’ interim performance. An exogenous shock making a loss in other asset

markets lowers the value of a part of the managers’ fund assets at an interim date, but

all managers will be evaluated under the same ranking rule eventually. If the tournament

is too close to call, i.e., the interim performance gap is small, strategic interactions of the

managers may lead to an even longer persistence of bubbles because the interim followers

try to catch up while the interim leaders try to stay ahead. But with a large interim

performance gap, bubbles may burst quickly as the interim followers give up on catching

up while the interim leaders lock in their winning positions.

Our paper is related to the literature on the implications of financial intermediation

for bubbles.3 Most works in this literature analyze price distortions induced by agency

problems. Allen and Gorton (1993) argue that fund managers have an incentive to churn

bubbles at the expense of their less informed clients. In Allen and Gale (2000), bubbles are

the consequence of risk shifting by investors who borrow from banks. Hong, Scheinkman,

and Xiong (2008) develop a model in which a bubble arises as fund managers take excessive

3See Brunnermeier and Oehmke (2013) for the excellent survey on bubbles and crises.
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positions in a tech stock as a signal to investors that they understand the new technology.

The agency relationship between fund managers and investors plays an important role

in our paper, too. Yet unlike the papers just cited, our paper studies bubbles in light

of strategic interactions between heterogeneous fund managers and explains the cross-

sectional variation in funds’ strategies in bubble periods.

Our paper is also related to the papers studying the role of relative performance eval-

uations in financial markets. Basak and Makarov (2012) analyze strategic interactions

among fund managers concerned with fund flows. Unlike their paper, we study the man-

agers’ investment behavior in bubble periods and the associated persistence of bubbles.

Consistent with our model, DeMarzo, Kaniel, and Kremer (2008) show that bubbles

stem from investors trying to keep up with the Joneses, and Palomino (2005) argues

that relative performance concerns lead managers to adopt riskier investment strategies.4

However, unlike these papers, our model also implies that relative performance concerns

may dampen bubbles by leading managers to use safer strategies, depending on the degree

of convexity of the flow-performance relationship.

Last, the so-called mutual fund tournament literature is related to our paper. Brown,

Harlow, and Starks (1996) find that interim follower mutual funds (i.e., funds whose

performance over the first half of the year is below the industry median) tend to increase

portfolio risk more than the interim leader funds in the second half of the year (see also

Koski and Pontiff 1999; Goriaev, Palomino, and Prat 2003). Our model replicates their

finding that followers take more risks than leaders for some parameter values. But we

also offer a different prediction: if the funds’ interim performance gap is so large that the

ultimate winners and losers are already evident at an interim date, the interim followers

may give up on catching up and opt for safer strategies.

The paper proceeds as follows. Section 2 presents the model. Section 3 characterizes

the equilibrium. Section 4 studies the role of heterogeneous interim performance. Section

5 conducts a robustness check. Section 6 concludes. All proofs are in the Appendix.

2 Model

We consider the market for a single asset, in which rational fund managers are fully

invested. At some point an exogenous bubble begins, i.e., the asset’s price starts to grow

beyond its fundamental level. Each manager becomes privately aware of the bubble sooner

4See also Isaac and James (2000) who report an experimental result indicating that tournament
incentives lead to bubble-like price distortions.
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Figure 1: Price path

or later, and decides how long to ride the bubble before selling out. The bubble bursts

when enough managers sell out—the crash. After the crash, the managers’ performances

are evaluated against each other. Some managers’ payoffs are sensitive to their relative

performance due to convex flow-performance relationship.

2.1 Price path

Time t is continuous and runs from 0 to infinity. The time path of the asset’s price is

modeled as in AB (Figure 1). The price at t = 0 is normalized to 1, and the riskless rate is

normalized to 0. From t = 0 onwards, the market price P (t), which is publicly observable,

grows at a rate g > 0. The fundamental value of the price, P f (t|t0), coincides with P (t)

up to a random time t0, but the growth rate of P f (t|t0) drops to 0 thereafter. P (t) is

assumed to keep on growing at g even after t0. The wedge, P (t)−P f (t|t0), is the bubble
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component of the price. The start time t0 of the bubble is unobservable and distributed

on [0,∞) with the cumulative distribution function Φ(t0) = 1 − exp (−λt0) with λ > 0.

Note that the emergence of a bubble is simply postulated; instead, this model focuses on

the bubble’s persistence. The crash occurs if and when the cumulative selling pressure by

the fund managers is sufficient: specifically, when a fraction κ ∈ (0, 1) of managers sell the

asset.5 Let tc ≡ t0 + τ denote the crash time, where τ is the endogenous duration of the

bubble. After the crash, the price reverts to its fundamental level, i.e., P (t) = P f (t|t0)
for t ≥ tc. Note that the managers do not know P f (t|t0) until the bubble bursts since t0

is unobservable. For notational convenience, denote by P̃ (tc) ≡ P f (tc|tc − τ) = eg(tc−τ)

the fundamental value of the price at the crash time.

To focus on interesting cases, we assume that g is high enough for the bubble to persist

for a while, and low enough for the persistence to be finite. The following assumption

ensures these.

Assumption 1. λ < g <
λ

1− e−ληκ
.

2.2 Fund managers

There is a continuum with mass one of risk neutral fund managers, each of whom has

invested one dollar of investor capital in the asset at t = 0. An exogenous proportion

α ∈ [0, 1] of the managers are type a, who have relative-performance concerns, and the rest

are type b, who do not have such concerns (detailed later in Section 2.3). The managers

become sequentially aware that P (t) > P f (t|t0): a mass 1/η of them becomes privately

informed of the bubble in each instant t ∈ [t0, t0 + η]. We assume that the manager’s

type is independent of the time at which she becomes aware of the bubble, so that for all

t ∈ [t0, t0 + η], a mass α/η of type a and (1−α)/η of type b become aware of the bubble.6

Each manager decides when to sell the asset.7 Her trade is unobservable to the other

managers. Importantly, sequential awareness of the bubble and secret trading imply that

each manager does not know whether she becomes informed early or late relative to the

other managers. These are key assumptions of AB that allow the bubble to persist in

5To exclude an equilibrium in which all managers do not sell out forever, we assume, as do Abreu
and Brunnermeier, that the bubble bursts at time t0 + τ̄ , τ̄ > 0, for an exogenous reason. We assume
that τ̄ is very large so that the bubble bursts endogenously.

6The crash may occur before some managers have not become informed (i.e., τ may be smaller than
η). In such a case, even uninformed ones become informed at the crash time tc.

7For simplicity, each manager has no wealth, can neither borrow nor short sell the asset, and if she
sells the asset she cannot buy it back.
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equilibrium: each manager may think that there is a chance that the fraction of managers

who have already been aware of the bubble prior to her is far smaller than the threshold

κ, and may find it optimal to defer attacking the bubble for a while.

We call a manager “manager k-i” if she is type k ∈ {a, b} who becomes aware of the

bubble at time ti ∈ [t0, t0 + η]. She sells out at time ti +xk,i, where xk,i is her endogenous

holding period of the asset. Also, we call the managers who sell out after the crash the

crashed managers for short.

2.3 Relative performance objectives

After the crash, all the managers’ performances are evaluated against each other. Specif-

ically, manager k-i is assigned a rank, γk,i, defined as the mass of managers whose invest-

ment returns from time 0 to the evaluation time are greater than or equal to hers.8 Note

that γk,i ∈ [0, 1] and a smaller γk,i is better. Each type-a manager’s terminal payoff is

sensitive to her rank, while it is not the case for type b. Specifically, the announcement of

γk,i, k ∈ {a, b}, at the evaluation time triggers outflows only from type-a funds: a fraction

1 − exp (−θγa,i) of investor capital is withdrawn from manager a-i, where θ ≥ 0 is the

flow-performance sensitivity. Equivalently, a fraction exp (−θγa,i) remains with manager

a-i.9 Each manager’s payoff is proportional to the market value of the remaining investor

capital at the evaluation time.10

Convexity of function exp (−θγa,i) captures the empirical fact that the relation between

fund’s past performance and fund flow is positive and convex (Chevalier and Ellison 1997;

Sirri and Tufano 1998). Parameter θ measures the degree of winner-take-all nature of the

type-a managers’ ranking tournament. That is, if θ is large, a few high-ranked managers

with small γa,i retain a large part of fund assets, whereas mid- and low-ranked ones

experience large outflows. Note that θ = 0 corresponds to AB where ranking is irrelevant:

our model nests theirs.

8The assumption that the evaluation takes place after the crash is for simplicity of the analysis. As a
robustness check, we study in Section 5 an alternative setting in which the evaluation occurs stochastically,
either before or after the crash. We show that the main result carries through in such a setting, and
the solution to this section’s model is a limit case of that of Section 5. Since the model of Section 5
is significantly less tractable while yielding little additional economic insights, we stick to the simple
assumption that the evaluation occurs after the crash.

9A possible story is as follows. At t = 0, each fund has a mass one of investors, each of whom invests
one dollar of capital in the fund. At the evaluation time, each investor withdraws his capital from a
type-a fund if the fund’s rank exceeds his “tolerable threshold” γ̂, where γ̂ differs for each investor and
follows the cumulative distribution function 1− exp (−θγ̂).

10This assumption is consistent with the real-world mutual fund industry. Deli (2002) reports that
the majority of funds have advisory contracts that depend on a percentage of assets.
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Figure 2: Symmetric equilibrium

The managers’ types (a and b) capture their age or reputation in the money manage-

ment industry. Each type-a manager is viewed as a highly incentivized, young manager

who has not yet built reputation. Due to the lack of track record, investors tend to judge

such a manager’s skill by relying heavily on her one-shot performance. If she performs

poorly, a large fraction of assets is withdrawn, i.e., θ is positive. On the other hand,

each type-b manager is an old one who has already proved her skill and has steady client

investors. Such a manager’s payoff is not susceptible to the one-time ranking evaluation.

This interpretation is consistent with the empirical finding of Chevalier and Ellison (1999)

that the termination is more performance-sensitive for younger fund managers.

3 Persistence of Bubbles

We look for a symmetric Perfect Bayesian Equilibrium in which each manager correctly

believes that all managers of the same type sell out after the same holding period, i.e., ∀i
xk,i = x∗k for k ∈ {a, b}. As illustrated in Figure 2, in equilibrium we have either x∗a > x∗b
or x∗b > x∗a, depending on the parameter values.

3.1 Manager’s rank

In the symmetric equilibrium, type-a managers start selling out at time t0 + x∗a, after

which a mass α/η of them sell out in each instant. Likewise, type b start selling out at

time t0 + x∗b , after which a mass (1 − α)/η of them sell out in each instant. The crash
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occurs at time tc where the cumulative selling pressure reaches κ, which is the sum of

the pressures from types a and b. Thus, when choosing her holding period xk,i at time ti,

manager k-i believes that her rank, which depends on the relative position of her sell out

time (ti + xk,i) to the crash time (tc), is

γk,i = γi(xk,i) =



1 if ti + xk,i ≥ tc,

α

η
min {tc − (ti + xk,i), tc − (t0 + x∗a)}︸ ︷︷ ︸
type a performing better than manager k-i

+

1− α
η

min {tc − (ti + xk,i), tc − (t0 + x∗b)}︸ ︷︷ ︸
type b performing better than manager k-i

 if ti + xk,i < tc.

(3.1)

The first line of (3.1) corresponds to the case in which manager k-i ends up selling after the

crash (ti+xk,i ≥ tc). In this case, her performance is the worst amongst all the managers,

and thus she is assigned the worst rank, γk,i = 1. The entire expression in the square

brackets is her rank if she sells out before the crash (ti + xk,i < tc). It is the total mass of

managers who sell out after manager k-i does so but before the crash occurs. In this case,

γk,i depends on how long the bubble persists after manager k-i sells out: the longer the

elapsed time until the crash, tc − (ti + xk,i), the more managers sell out at higher prices

than she does, hence the worse her rank becomes. The first line in the square brackets is

the mass of type a who perform better than manager k-i. If manager k-i sells out after

some type a (i.e., if t0 + x∗a ≤ ti + xk,i < tc), the symmetry of the equilibrium implies

that there is a mass (α/η) (tc − (ti + xk,i)) of type a who sell out at higher prices than

manager k-i. If manager k-i sells out before any type a (i.e., if ti + xk,i < t0 + x∗a)—which

will not occur in equilibrium but needs to be taken into account in the decision-making

stage—then there is a mass (α/η) (tc − (t0 + x∗a)) of type a who perform better than her

by selling out before the crash. The similar argument applies to her performance relative

to type b (the second line in the square brackets). Note that the schedule of ranking is

the same for both types; that is, for all i, the function γi(·) is independent of k ∈ {a, b}.
This is because, taking x∗a and x∗b as fixed, the source of heterogeneity, θ, does not affect

the manager’s relative performance.11

11In contrast, in Section 4 we study a model in which the managers’ heterogeneity is directly relevant
to their relative performance, and thus there is a schedule of ranking separately for each type.
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3.2 Manager’s objective

To characterize each manager’s objective function, first we need to obtain the distribution

of the crash time tc. At time ti, manager k-i becomes aware of the bubble. From this, she

infers that the bubble started no earlier than time ti−η. Hence her posterior distribution

for t0, conditional on ti, is the truncated distribution with support [ti − η, ti]:

Φi(t0) =

∫ t0

ti−η

dΦ(v)

Φ(ti)− Φ(ti − η)
=
eλη − eλ(ti−t0)

eλη − 1
. (3.2)

Let τ ∗ be the equilibrium duration of the bubble, which is a constant that will be deter-

mined later. Given that manager k-i believes that the bubble will burst at time t0 + τ ∗,

her subjective probability that the bubble will have burst by time tc is

Πi(tc) =

∫ tc−τ∗

ti−η
dΦi(t0) =


eλη − eλ(ti−(tc−τ∗))

eλη − 1
for tc ∈ (ti, ti + τ ∗),

1 for tc ∈ [ti + τ ∗,∞).

(3.3)

For k ∈ {a, b}, manager k-i’s problem at time ti is to choose her holding period xk,i ∈
[0,∞), taking the other managers’ actions (x∗a, x

∗
b) as given, to maximize the expected

value of assets under management as of the evaluation time. The objective functions of

types a and b are, respectively,

Va,i(xa,i) =

∫ ti+xa,i

ti

e−θP̃ (tc)dΠi(tc) +

∫ ∞
ti+xa,i

e−θγi(xa,i)P (ti + xa,i)dΠi(tc) (3.4)

and

Vb,i(xb,i) =

∫ ti+xb,i

ti

P̃ (tc)dΠi(tc) +

∫ ∞
ti+xb,i

P (ti + xb,i)dΠi(tc). (3.5)

The expectations in (3.4) and (3.5) are taken over the possible crash time tc, according to

the manager’s posterior belief. The first term on the right hand side of (3.4) corresponds

to the case in which manager a-i sells out after the crash (ti+xa,i ≥ tc): her sell-out price

is the post-crash price P̃ (tc), hence she is ranked lowest (γa,i = 1) and only a fraction e−θ

of fund assets remain with her. The second term corresponds to the case in which she

sells out before the crash (ti + xa,i < tc): she sells the asset for a bubble price P (ti + xa,i)

and invests the proceeds in the riskless asset thereafter; when the bubble bursts at time

tc, her rank is given by the second line of (3.1), and so only a fraction e−θγi(xa,i) of fund

assets remain with her. Type b’s objective (3.5) is a special case of (3.4) with no outflows,
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i.e., θ = 0.

3.3 Optimization

Assuming positive solutions, the first-order condition (FOC) for manager k-i, k ∈ {a, b},
is dVk,i(xk,i)/dxk,i = 0. That is,

πi(ti + xa,i)

1− Πi(ti + xa,i)
=

E
[
d
(
e−θγi(xa,i)P (ti + xa,i)

)
/dxa,i

∣∣tc ≥ ti + xa,i
]

P (ti + xa,i)− e−θP̃ (ti + xa,i)
(3.6)

for type a, and
πi(ti + xb,i)

1− Πi(ti + xb,i)
=

dP (ti + xb,i)/dxb,i

P (ti + xb,i)− P̃ (ti + xb,i)
(3.7)

for type b, where πi(tc) ≡ dΠi(tc)/dtc is the conditional density of tc. For both (3.6) and

(3.7), the left hand side is the hazard rate that the crash occurs at ti + xk,i, and the RHS

is the manager’s benefit-cost ratio: the numerator is the marginal benefit from increasing

xk,i given that the bubble is still alive when she sells out; the denominator is the loss in

payoff if the bubble bursts when she sells out. Type b’s FOC (3.7) is identical to that of

AB, in which ranking is irrelevant. Unlike (3.7), the RHS’s numerator of type a’s FOC

(3.6) is given by an expected value, reflecting the fact that the manager’s performance

relative to her peers is not determined until the random crash time tc. That is, each type

a’s final payoff depends not only on when she sells the asset, but also on how long other

managers keep riding the bubble and thus how long the bubble persists after she has

already sold the asset. This contrasts with type b, whose final payoff depends solely on

his absolute performance that is determined when he sells out.

To see more carefully how type a’s economic incentive differs from that of type b, let

us study the RHS of (3.6). The numerator implies that there are two channels through

which an increase in xa,i increases the type a’s payoff given that she does not get caught

in the crash. First, it increases her sell-out price P (ti + xa,i). Second, it improves her

rank γi(xa,i) by lowering the time to crash tc − (ti + xa,i). Specifically, if her rank is

γa,i = (tc − (ti + xa,i)) /η then a marginal increase in xa,i improves γa,i by 1/η. The

impact of this adjustment in γa,i on her payoff is magnified by a factor of θ through the

convex flow-performance relationship. For type b, only the first channel is relevant. The

denominator of the RHS of (3.6) implies that, ceteris paribus, each type a suffers a larger

loss than type b when she gets caught in the crash. This is because the crashed type a

not only sells at the lowest price but also experiences large outflows.
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Figure 3: Determination of the symmetric equilibrium. The parameter values used in the
figure are g = 0.2, λ = 0.025, η = 5, κ = 0.5, α = 0.5, and θ = 2.5.

In sum, compared to type b, an increase in xa,i yields an additional marginal benefit to

each type a if she sells out before the crash (i.e., improving her rank), but entails a larger

loss if she sells after the crash (i.e., experiencing large outflows). Thus, it is ambiguous

whether the entire RHS—the benefit-cost ratio—is higher or lower than that of type b. As

we shall see in Section 3.4, this ambiguity is the reason for type a’s equilibrium holding

period to be either longer or shorter than type b’s.

3.4 Equilibrium

The symmetric equilibrium is characterized by a pair of holding periods (x∗a, x
∗
b), which is

obtained by the following four steps (see Appendix B for details).

1. Taking other managers’ symmetric actions (xa, xb) as given, compute manager a-

i’s FOC: dVa,i(xa,i)/dxa,i = 0. This implicitly defines her best response to other

managers’ arbitrary actions: Ra,i(xa, xb).

2. Imposing the symmetry condition of type a (i.e., xa,i = xa ∀i), obtain the equilibrium

condition for type a: (dVa,i(xa,i)/dxa,i) |xa,i=xa = 0. This implicitly defines type a’s

13



“symmetric best response” to type b’s arbitrary action, denoted byRa(xb). Formally,

Ra(·) is defined by Ra,i(Ra(xb), xb) ≡ Ra(xb) ∀i.

3. Repeat steps 1 and 2 for type b and obtain type b’s symmetric best response to type

a’s arbitrary action: Rb(xa).

4. Identify (x∗a, x
∗
b) at the intersection of Ra(xb) and Rb(xa).

Figure 3 illustrates the determination of the equilibrium. The symmetric best-response

curves are upward sloping for both types because there is strategic complementarity be-

tween the two types. If one type rides the bubble longer, the bubble persists longer

ceteris paribus. This, in turn, makes it more beneficial for the other type to ride the

bubble longer, as there is a smaller risk of getting caught in the crash. In Figure 3, the

equilibrium point is below the 45-degree line, meaning that type a rides the bubble longer

than type b. Since AB is a special case of our model with θ = 0 (that is, all managers are

type b), its solution corresponds to the intersection of Rb(xa) and the 45-degree line.

The following proposition provides the analytical solutions for the managers’ equilib-

rium holding periods (x∗a, x
∗
b) and the corresponding bubble’s duration τ ∗.

Proposition 3.1 (Symmetric equilibrium). Let

x̂ ≡ −1

g

(
ln

(
1−

g + θ
η

λ+ θ
η

(
1− e−(λ+ θ

η )ηκ
))

+ θ

)
− ηκ, (3.8)

and let

xAB ≡ x̂|θ=0 = −1

g

(
ln
(

1− g

λ

(
1− e−ληκ

)))
− ηκ (3.9)

denote the solution of Abreu & Brunnermeier (2003).

• Case 1. If x̂ > xAB, there is a symmetric equilibrium in which each type-a manager

rides the bubble longer than type b. Their holding periods are, respectively,

x∗a = −1

g
ln Ω1(ξ) + (1− α)ξ − ηκ and (3.10)

x∗b = x∗a − ξ, (3.11)
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with constant ξ > 0 that solves Ω1(ξ) = Ψ1(ξ), where

Ω1(ξ) ≡ e(1−κ)θ
(
e−λ(ηκ+αξ) − gΛ

(
ηκ+ αξ, ηκ− (1− α)ξ, 0

))
− (g − λ)eθ

 Λ
(

0, ηκ− (1− α)ξ, θ
η

)
+e−θα

(
κ− (1−α)ξ

η

)
Λ
(
ηκ− (1− α)ξ, ηκ+ αξ, θ(1−α)

η

)
 , (3.12)

Ψ1(ξ) ≡ 1− gΛ
(

0, ηκ+ αξ, 0
)
, (3.13)

and Λ
(
X, Y, Z

)
≡ e−(λ+Z)X − e−(λ+Z)Y

λ+ Z
. (3.14)

• Case 2. If x̂ ≤ xAB, there is a symmetric equilibrium in which each type-a manager

sells out earlier than type b. Their holding periods are, respectively,

x∗a = −1

g
ln Ω2(ζ)− (1− α)ζ − ηκ and (3.15)

x∗b = x∗a + ζ, (3.16)

with constant ζ ≥ 0 that solves Ω2(ζ) = Ψ2(ζ), where

Ω2(ζ) ≡ e(1−κ)θ−λ(ηκ+(1−α)ζ)

− (g − λ)eθ

 Λ
(

0, ηκ− αζ, θ
η

)
+e−θ(1−α)

(
κ−αζ

η

)
Λ
(
ηκ− αζ, ηκ+ (1− α)ζ, θα

η

)
 (3.17)

and Ψ2(ζ) ≡ 1− gΛ
(

0, ηκ− αζ, 0
)
. (3.18)

• In both cases, the bubble’s duration is τ ∗ = ηκ+ αx∗a + (1− α)x∗b .

Two cases are presented in Proposition 3.1 because it may be either x∗a > x∗b (case 1)

or x∗a ≤ x∗b (case 2) in equilibrium, depending on the relative size of x̂ and xAB. Note that

x̂ = x∗a|α=1 and xAB = x∗b |α=0; that is, x̂ (resp., xAB) is the equilibrium holding period

that would be obtained if there were only type a (resp., type b) in the economy. Thus,

Proposition 3.1 states that each type a rides the bubble longer than type b if and only if the

managers in the only-type-a economy would ride bubbles longer than those in the only-

type-b economy (i.e., x∗a > x∗b iff x∗a|α=1 > x∗b |α=0), which is an intuitive result. Proposition

3.1 also states that the bubble’s equilibrium duration τ ∗ is linear in the weighted average

of x∗a and x∗b , with the weight being the mass of the respective type.
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How do relative-performance concerns alter the managers’ actions and thus affect the

bubble’s duration? The next corollary shows that the answer depends on the level of θ.

Corollary 3.1 (Flow-performance sensitivity and bubble riding). If κ is small enough,

type-a managers’ flow-performance sensitivity θ has nonmonotonic effects on the equilib-

rium holding periods (x∗a, x
∗
b). We have x∗a = x∗b = xAB for θ = 0, x∗a < x∗b < xAB for

small θ > 0, and x∗a > x∗b > xAB for large θ > 0.

Corollary 3.1 is illustrated in Figure 4, which plots x∗a and x∗b as functions of θ. It

shows that x∗a is U-shaped in θ: while it equals xAB for θ = 0, it is significantly lower than

xAB for intermediate levels of θ, and it is much higher than xAB for large θ. Interestingly,

not only x∗a but also x∗b is U-shaped in θ because type a’s actions “spill over” to type b.

The intuition is as follows. Since type b have no ranking concerns, they would choose xAB

if they were the only players in the market. But, due the presence of type a, the type b’s

action tilts toward the type a’s in equilibrium: if each type a rides the bubble long (resp.,

sells out early), the bubble is likely to persist long (resp., short) ceteris paribus, which

leads each type b to ride it longer (resp., sell out earlier) too. Thus, the model implies that

ranking-concerned fund managers may either fuel or dampen asset bubbles, depending on
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how much of a winner-take-all situation they are in. If they engage in a severe ranking

tournament with highly convex flow-performance relationship, they fuel bubbles by riding

them long. However, with moderate convexity of the flow-performance relationship, funds’

ranking tournament leads them to attack and eliminate bubbles quickly.

Why is x∗a nonmonotonic in θ? It is intuitive—and perhaps in line with common

wisdom—that x∗a increases with θ for large θ. This is caused by the risk-shifting effect:

a rise in θ convexifies each type a’s objective function (3.4) and encourages her to take a

riskier action, i.e., choosing larger xa,i. Viewing selling out early as a low-risk-low-return

option, i.e., securing a middle rank, and riding the bubble long as a high-risk-high-return

option, i.e., gambling between top and worst ranks, the latter becomes more attractive

for each manager as convexity of the flow-performance relationship increases. Then, why

does x∗a decrease with θ for small θ? It is because of the crash-aversion effect. In the

tournament setting, the crashed managers are far worse off than high- and middle-ranked

managers who sell out before the crash because they not only sell at the lowest post-crash

price but also experience large outflows due to their worst rank. Thus, for fear of getting

caught in the crash, the managers opt for selling out early to secure a middle rank.

In sum, the tournament setting creates two opposing effects on type a’s decisions.

First, it magnifies their desire to win a top rank, encouraging them to ride bubbles longer

to outperform each other: the risk-shifting effect. Second, it also magnifies their incentive

to avoid outflows, leading them to sell out earlier: the crash-aversion effect. Which effect

prevails depends on θ. If θ is very large, the risk-shifting effect prevails. Since not only

the crashed managers but also early sellers experience large outflows in such a case, riding

the bubble longer than the peers and winning a top rank is the only way to avoid large

outflows. But if θ is not so large, the net effect is ambiguous: it depends on κ, measuring

how easily the bubble bursts under selling pressure. With small κ (the case of Corollary

3.1 and Figure 4), the crash-aversion effect prevails and thus the managers sell out early,

as they have a strong incentive to counterbalance the high risk of getting caught in the

crash.

3.5 Discussion

Corollary 3.1 and Figure 4 may be surprising because they imply that, unlike what com-

mon wisdom would suggest, (1) fund managers whose compensation is highly performance-

sensitive may pull out of bubbles quicker than the others, and (2) fund managers’ ranking

concerns may help stabilize the market by eliminating bubbles quickly. Are these results
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empirically plausible? They are in line with Dass, Massa, and Patgiri (2008), who find

empirical evidence that the higher the incentives in mutual fund managers’ advisory con-

tracts, the lesser these funds invest in bubble stocks. Dass, Massa, and Patgiri (2008)

attribute this observation to mutual funds’ herding behavior. They interpret investing in

bubble stocks as herding, and not investing in them as diverging from the herd. Diverg-

ing from the herd is viewed as a high-risk-high-return strategy because it makes a fund

lagging behind its peers if the bubble continues to swell, but it allows the fund to rank at

the top if the bubble bursts quickly. They argue that high-incentive funds opt for such a

risky strategy. Our model complements their work by offering an alternative theoretical

explanation as discussed in Section 3.4: high-incentive funds may opt for staying away

from bubbles as they have strong incentives to avoid outflows triggered when getting

caught in the crash. There is a caveat for this argument, however, as the relation between

Dass, Massa, and Patgiri (2008) and our model is not one-to-one: while they study fund

managers’ explicit incentives due to advisory contracts, our model is concerning implicit

incentives arising from the flow-performance relationship. We are not aware of empirical

works that study the relation between funds’ implicit incentives and bubbles. It would

be interesting for future research to study if the negative relation documented by Dass,

Massa, and Patgiri (2008) applies also to implicit incentives of fund managers.

Due to the nonmonotonic relation between θ and (x∗a, x
∗
b), our model also yields im-

plications that seem to conflict with those we have just discussed. That is, if θ is large

enough, ranking-concerned fund managers ride bubbles longer than those without such

concerns. Interpreting the manager’s type as her age or reputation in the profession, the

result is consistent with the empirical finding of Greenwood and Nagel (2009) that young

fund managers tend to buy bubble stocks more than old managers. Greenwood and Nagel

(2009) argue that young managers tend to purchase overpriced stocks because they are

inexperienced. Our result provides an additional insight: not only the managers who are

actually incompetent but also those who are competent but can be potentially perceived

by the market as incompetent may invest heavily in growing bubbles. Since young fund

managers have little track record, it is difficult for investors to tell such a manager’s skill

from luck by observing only her absolute performance. Thus, investors also look at her

performance relative to her peers. Then each manager is incentivized to ride bubbles long,

even if she is aware of the overpricing, for fear of being perceived as an incompetent one

who missed out on the benefit of swelling bubbles. Of course, riding bubbles accompanies

risk of getting caught in the crash and experiencing large outflows; however, the convexity

of the flow-performance relationship encourages her to take such a risk.
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4 Extension: Heterogeneous Interim Performance

In the model of Section 2, all managers stand at the same starting line at time 0; that

is, the initial value of assets under management is the same for all of them. They set

off equally and are assigned different ranks only ex post, just like in a race. However,

in reality, fund managers are always on the run: their ranking is revised frequently, and

thus some are ranked better than the others at any point in time. In such a situation, the

managers may have risk-taking incentives that are not captured in the model of Section

2, and the strategic interactions between these managers may affect the persistence of

bubbles. Wouldn’t the managers who are currently lagging behind others try to ride

bubbles even longer in an attempt to make up for their inferior positions and overtake

those ahead of them? Or, would they rather give up on catching up with the leaders and

sell out even quicker to avoid the crash?

To answer these questions, we extend the model of Section 2 to allow for a heterogeneity

in the managers’ interim performance. A part of the managers are hit by a negative shock

at time 0—which we interpret as an “interim” date—and lose the value of fund assets,

e.g., making a loss in other asset markets, but all managers will be evaluated under the

same ranking rule eventually. If the ranking tournament is too close to call, i.e., the

interim performance gap is small, then strategic interactions of the managers may lead to

an even longer persistence of bubbles because the interim followers try to catch up while

the interim leaders try to stay ahead. But with a large interim performance gap, bubbles

may burst quickly as the interim followers give up on catching up while the interim leaders

lock in their winning positions.

4.1 Setup

We modify the model of Section 2 as follows. All managers are ranking-concerned (i.e.,

α = 1). At time 0, an exogenous proportion (1 − ω) ∈ (0, 1) of the managers are hit

by a shock that lowers the value of their assets under management from 1 to e−ψ, where

ψ > 0. This shock is interpreted as a decline in the portfolio value caused by a loss they

make in other unmodelled asset markets. The rest of the managers are intact, keeping

the assets’ value of 1. Parameter ψ is refer to as the interim performance gap. Those

hit by the shock are referred to as type B, while the others are type G. We assume that

the manager’s type is independent of the time at which she becomes aware of the bubble,

so that for all ti ∈ [t0, t0 + η], a mass ω/η of type G (“manager G-i”) and (1 − ω)/η of
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type B (“manager B-i”) become aware of the bubble. Let xk,i denote the holding period

of manager k-i, k ∈ {G,B}. Irrespective of their types, all the managers are evaluated

under the same ranking rule after the crash: each manager’s rank is the mass of managers

whose portfolio value is higher than or equal to hers.

4.2 Manager’s problem

We look for a symmetric equilibrium in which every manager correctly believes that all

managers of the same type sell out after the same holding period, i.e., ∀i xk,i = x∗k,

k ∈ {G,B}.
Let us characterize each manager’s rank. To simplify notation, let κk ≡ (τ ∗ − x∗k)/η,

k ∈ {G,B}, be the proportion of type-k managers who sell out before the crash in

equilibrium, where τ ∗ is the endogenous duration of the bubble.12 Unlike Section 3.1,

here we need to derive each type’s rank separately because types G and B who sell out

at the same time are assigned different ranks. As derived in Appendix D, the rank of

manager G-i, which depends on her choice of xG,i and the stochastic crash time tc, is

γG,i(xG,i) =



ω︸︷︷︸
type G better than manager G-i

+ (1− ω)κ+B︸ ︷︷ ︸
type B better than manager G-i

if ti + xG,i ≥ tc,



ω

η
min {tc − (ti + xG,i), ηκG}︸ ︷︷ ︸
type G better than manager G-i

+

max

{
0,

1− ω
η

min

{
tc − (ti + xG,i)−

ψ

g
, ηκB

}}
︸ ︷︷ ︸

type B better than manager G-i

 if ti + xG,i < tc,

(4.1)

where κ+B ≡ max {0,min {(τ ∗ − ψ/g) /η, κB}} is the proportion of type B who perform

better than the type-G crashed managers. The first line of (4.1) corresponds to the case

in which she sells out after the crash, i.e., ti + xG,i ≥ tc. The second line is the case in

12In other words, a mass ωκG of type G and a mass (1− ω)κB of type B sell out before the crash.
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which she sells out before the crash, i.e., ti + xG,i < tc. Likewise, manager B-i’s rank is

γB,i(xB,i) =



1 if ti + xB,i ≥ tc,

ω

η
min

{
tc − (ti + xB,i) +

ψ

g
, ηκG

}
︸ ︷︷ ︸

type G selling out before the crash & better than manager B-i

+ 1

(
τ ∗ < tc − (ti + xB,i) +

ψ

g

)
ω(1− κG)︸ ︷︷ ︸

type G selling out after the crash & better than manager B-i

+
1− ω
η

min {tc − (ti + xB,i), ηκB}︸ ︷︷ ︸
type B better than manager B-i


if ti + xB,i < tc,

(4.2)

where 1(Z) is an indicator function that takes 1 if Z is true and 0 otherwise.

The problem of manager k-i, k ∈ {G,B}, is to choose her holding period xk,i ∈ [0,∞),

given the others’ equilibrium actions (x∗G, x
∗
B), to maximize the expected value of assets

under management at the evaluation time. That is, her objective function is

Vk,i(xk,i) =

∫ ti+xk,i

ti

e−θγk,i(xk,i)P̃ (tc)dΠi(tc) +

∫ ∞
ti+xk,i

e−θγk,i(xk,i)P (ti + xk,i)dΠi(tc), (4.3)

where the distribution function Πi(tc), common for types G and B, is given by (3.3).13

The first term on the RHS of (4.3) corresponds to the case in which she sells out after

the crash, i.e., ti + xk,i ≥ tc. The second term is the case in which she sells out before the

crash, i.e., ti + xk,i < tc.

4.3 Equilibrium

The symmetric equilibrium is obtained by following steps similar to those in Section 3.4.

We solve each type k’s FOC for the symmetric best-response function Rk(·), and identify

(x∗G, x
∗
B) at the intersections of RG(xB) and RB(xG). As in the model of Section 2, the

bubble’s equilibrium duration is τ ∗ = ηκ + ωx∗G + (1 − ω)x∗B (see Appendix D.1). We

denote by x̃ the benchmark holding period, which would be obtained in the model with

no heterogeneity in the managers’ interim performances (ψ = 0).

Figure 5 illustrates the determination of (x∗G, x
∗
B), using different values of the interim

13The expected value of assets of each type B is the entire expression of (4.3) multiplied by e−ψ.
However, since e−ψ is a constant, her objective function is still given by (4.3).
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Figure 5: Equilibria of the heterogeneous interim performance model. The parameter
values used in the figures are g = 0.2, λ = 0.1, η = 7, κ = 0.58, ω = 0.75, and θ = 1.3.
The benchmark holding periods are x̃ = 2.5124 and xAB = 1.4438. The equilibrium
holding periods are (x∗G, x

∗
B) = (6.2508, 7.1832) in panel (a), (x∗G, x

∗
B) = (1.6001, 1.4850)

in panel (b), and (x∗G, x
∗
B) ∈ {(1.6001, 1.4850), (5.6637, 5.6176), (7.5285, 7.6436)} in panel

(c).
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performance gap ψ in three panels. In each of them, the symmetric best-response curves

are upward sloping for both types and have some kinks. They are upward sloping due to

the strategic complementarity between the two types: if one type rides the bubble longer

it persists longer ceteris paribus, which makes it more valuable for the other type to ride

it longer too as there is a lower risk of being caught in the eventual burst. The curves

have kinks because the managers’ risk-taking incentives represented by the slopes of Rk(·)
differ with the equilibrium’s “ranking type,” i.e., the equilibrium classification according

to “who overtakes who in the end” (see Appendix D.2 for details).14

4.3.1 High equilibrium ((x∗G, x
∗
B) > x̃) vs. low equilibrium ((x∗G, x

∗
B) < x̃)

First, let us study how x∗G and x∗B depart from x̃ if we introduce the heterogeneity (ψ > 0).

The implications drawn from Figure 5 are summarized as follows.

Result 4.1. If the managers’ interim performances are heterogeneous, the equilibrium

holding periods (x∗G, x
∗
B) can be either longer or shorter than the homogeneous benchmark

x̃, depending on the level of interim performance gap ψ. For small ψ, a high equilibrium

arises: x∗G > x̃ and x∗B > x̃. For large ψ, a low equilibrium arises: x∗G < x̃ and x∗B < x̃.

For intermediate ψ, we have high and low multiple equilibria.

Result 4.1 makes intuitive sense. The interim performance gap ψ measures how dif-

ficult it is for each type B to catch up with type G. First, if catching up is not so

difficult, i.e., small ψ, then type B actually try to do so by riding the bubble long. In

response, type G also ride the bubble long to stay ahead, since otherwise they would be

easily overtaken by type B.15 Second, if catching up is difficult, i.e., large ψ, then type

B give up on catching up and sell out early. Given that, type G do not need to escape

14For example, the slope of RB(xG) at the bottom left of panel (c) differs from the one at the top
right because the ranking types are different in these regions. In the potential equilibria corresponding to
(xG, xB) at the bottom-left region, even the best-performing type B does not overtake the crashed type
G, so a small change in (xG, xB) would not cause a switch of final ranks between types. So a marginal
change in xG has only a small impact on type B’s payoffs, leading to a mild slope of RB(xG). By contrast,
in the potential equilibria corresponding to (xG, xB) at the top-right region, both types’ ranks clash with
each other (i.e., there are some type B whose final ranks are the same as those of type G), and thus a
small change in (xG, xB) would trigger a switch of final ranks between types. In such a case, a marginal
change in xG has a large impact on each type B’s final rank, leading her to make a large adjustment in
xB . This is why the slope of RB(xG) is steep in this region. See Appendix D.2 for further discussions.

15Even if ψ is very close to zero, x∗G and x∗B are significantly larger than x̃. That is, x∗G and x∗B as
functions of ψ are discontinuous at ψ = 0. This is because the managers’ ranks are discontinuous at
ψ = 0. Suppose that ψ is positive and very close to zero. In this case, the crashed type G and the
crashed type B perform almost identically, but the former’s rank, ω + (1 − ω)κB , is significantly better
than the latter’s, 1. But if ψ equals zero, they share the same rank, 1.
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(b) Low equilibrium (ψ = 2)

Figure 6: Equilibrium holding periods (x∗G, x
∗
B) as functions of the proportion of type G,

ω. The parameter values are the same as those of Figure 5.

from type B; they also sell out early to lock in their winning positions. Third, if ψ is in

the middle range, the equilibrium can be either high or low, depending on the managers’

self-fulfilling beliefs. This multiplicity is caused by the strategic complementarity between

the two types of managers, as discussed already.

Since Result 4.1 is driven by the strategic interaction between types G and B, the

result is most pronounced if both of these types constitute large cohorts in the market so

that their actions have significant impacts on each other’s ranks. This point is illustrated

in Figure 6, which plots x∗G and x∗B as functions of the proportion of type G, ω. For

intermediate levels of ω, where both types of managers have large mass, the bubble

persists even longer in the high equilibrium (panel (a); ψ = 0.5), whereas it bursts even

quicker in the low equilibrium (panel (b); ψ = 2).

Result 4.1 is related to Brown, Harlow, and Starks (1996), who empirically investigate

mutual fund tournaments. They find that interim-follower funds, whose performance

over the first half of the year is below the industry median, tend to increase portfolio

risk more than the interim-leader funds in the second half of the year.16 Consistent with

their finding, our model implies that if the funds’ tournament is too close to call (i.e.,

16Busse (2001) replicates the study of Brown, Harlow, and Starks (1996) with daily returns rather
than monthly returns and concludes that the no-tournament hypothesis between fund managers cannot
be rejected. We thank an anonymous referee for pointing this out.
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Figure 7: Symmetric equilibrium with heterogeneous interim performance gap

ψ is small), type B engage in highly risky bubble riding in an attempt to make up for

their low interim performance. Moreover, panel (a) of Figure 5 is in line with their result,

as type B takes a higher risk than type G (i.e., x∗B > x∗G).17 However, our model also

offers a different prediction: if the funds’ performance gap is so large that it is already

evident at an interim date which ones will be the ultimate winners and losers, the interim

follower funds may give up on catching up and opt for safer strategies, i.e., selling out

quickly. This prediction appears to be opposed to what Brown, Harlow, and Starks (1996)

suggest. However, it is worth noting that Brown, Harlow, and Starks (1996) do not study

bubble periods particularly. It will be interesting for future research to study mutual fund

tournaments in bubble episodes exclusively to test our model’s predictions.

4.3.2 x∗G > x∗B vs. x∗B > x∗G

Figure 6 implies that both x∗G > x∗B and x∗B > x∗G can occur in both high and low equilibria.

Here, it may sound counterintuitive that x∗G > x∗B may occur in a high equilibrium because

it appears that type B can catch up with type G only if they ride the bubble longer than

type G. But such a logic does not apply to our model for the following reason. In our

setting, the managers become aware of the bubble sequentially and therefore sell out

17In our model, x∗B > x∗G is not a general result. For example, if we set ω to 0.3 or smaller, the high
equilibrium in Figure 5(a) would be x∗G > x∗B , located above 45 degree line. We discuss this issue in
detail in Section 4.3.2.
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sequentially at various price levels. Thus, even if x∗G > x∗B, some high-performing type

B do overtake some not-so-high-performing type G and improve their ranks significantly,

depending on their relative positions in the sequence. This point is shown in Figure 7,

which illustrates examples of the symmetric equilibrium. Panel (a) is the equilibrium with

x∗G > x∗B, and panel (b) is with x∗B > x∗G. The blue upward-sloping curve represents the

price path faced by type G, egt, whereas the red curve is the type B’s “effective price path”

egt−ψ, which is the actual price path egt adjusted downward by the interim shock e−ψ. To

see what the final ranking looks like, at the vertical axis we show the final performance

levels of the “top G” (i.e., the type G who sells out at the highest price), the “first G”

(i.e., the type G who sells out first), the “crashed G” (i.e., the type G who sell out after

the crash), the top B, the first B, and the crashed B, which are denoted by TG, FG, CG,

TB, FB, and CB, respectively. As seen in panel (a), despite x∗G > x∗B, type B overtake

type G considerably. For example, since TB > FG > CG, the top B is ranked higher

than a mass ω
η

(
tc − ψ

g
− (t0 + x∗G)

)
of type G who sell out before the crash, as well as all

the crashed type G.18 Of course, if type B choose x∗B > x∗G then they would overtake an

even larger mass of type G if successful (see Figure 7(b)); however, it is not necessarily

optimal for them to do so as it accompanies a higher probability of getting caught in

the crash. After all, whether each type B plays x∗B < x∗G or x∗B > x∗G depends on the

comparison between her benefit of increasing xB, i.e., larger mass of type G to overtake,

and its cost, i.e., higher probability of being crashed. Even if she attempts to catch up

with type G, choosing x∗B < x∗G can be optimal for her as it allows her to overtake low-

and middle-performing type G yet avoid taking too much risk of being crashed.

What exactly is the determinant of x∗G > x∗B or x∗B > x∗G? It is the combination of

two parameters: the interim performance gap, ψ, and the proportion of type G, ω. The

implications drawn from Figure 6 are as follows.

Result 4.2. Whether x∗G is larger or smaller than x∗B depends on the combination of the

interim performance gap ψ and the relative population of types G and B.

1. In the high equilibrium where ψ is small, the minority type ride the bubble longer

than the majority type: x∗G > x∗B if ω is small, and x∗G < x∗B if ω is large.

2. In the low equilibrium where ψ is large, the majority type ride the bubble longer than

the minority type: x∗G > x∗B if ω is large, and x∗G < x∗B if ω is small.

18The top B sells out at time tc (before the crash). Hence, her performance level is equivalent to that
of the type G who sells out at time tc − ψ

g . All the type G who sell out before time tc − ψ
g , constituting

a mass ω
η

(
tc − ψ

g − (t0 + x∗G)
)
, have lower performances than the top B.
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To see the intuition for statement 1 of Result 4.2, let us study the economics behind

Figure 6(a). Because of small ψ, it is not difficult for type B to catch up with type G; so

both x∗G and x∗B are greater than x̃ for all ω, as type B try catching up while type G try to

stay ahead (Result 4.1). How much x∗G and x∗B deviate from x̃ depends on ω. Specifically,

the minority type’s action—whether it is G or B—deviates more. The intuition is the

following. First, suppose ω is very small, i.e., type B constitute the vast majority of the

population. In this case, type G’s actions have only a small impact on type B’s ranks,

so type B nearly neglect the presence of type G; thus, type B’s action is close to the

homogeneous case (i.e., x∗B → x̃ as ω → 0). Small ψ induces each type G to choose

relatively large x∗G to stay ahead, since otherwise she could be easily overtaken by type B

who are close behind.19 Her incentive to stay ahead becomes stronger as ω gets closer to

0, because her rank would fall sharply if she is overtaken by a large mass of type B. In

contrast, type B’s incentive to catch up with type G becomes weaker as ω gets closer to

0, since their benefit from overtaking type G decreases as the mass of type G decreases.

Consequently, x∗G > x∗B holds for small ω and the distance between x∗G and x∗B widens

as ω gets closer to 0. Second, suppose ω is very large, i.e., the vast majority is type G.

In this case, type G almost neglect type B and behave as in the homogeneous case (i.e.,

x∗G → x̃ as ω → 1). Since each type B is lagging behind a large mass of managers at the

interim date, large outflows will be inevitable unless she rides the bubble long to make up

for her poor interim performance. So she chooses large x∗B as a gamble for resurrection,

leading to x∗B > x∗G.20

The intuition for statement 2 of Result 4.2 is drawn from Figure 6(b). Due to large

ψ, catching up is difficult for type B; so both x∗G and x∗B are smaller than x̃, as type B

give up on catching up while type G lock in their winning positions (Result 4.1). In such

a case, the minority type has a strong incentive to sell out early—that is, the majority

type ride the bubble relatively long—for the following reason. First, suppose ω is very

large. In this case, type G act as in the homogeneous case (i.e., x∗G → x̃ as ω → 1). Since

each type B is lagging behind most managers at the interim date and yet ψ is so large

that she has little chance of catching up even if she rides the bubble long, the best she

can hope for is to avoid getting caught in the crash and secure a middle rank. Thus, she

19Note that, in this particular situation where ψ is small, type G would not try to lock in their winning
positions by selling out early because it would put themselves at high risk of being overtaken at a stroke
by type B who successfully ride the bubble.

20Moreover, the fact that the gain from bubble-riding (if successful) is large encourages her gambling:
since the mass of type G is much larger than that of type B, if successful, each type B can overtake a
large mass of type G at a stroke.
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chooses small x∗B in a bid to pull out quicker than her peers, leading to x∗G > x∗B. Second,

suppose ω is very small. In this case, type B behave as in the homogeneous case (i.e.,

x∗B → x̃ as ω → 0). The combination of large ψ and small ω means that each type G is

in a very strong position at the interim date, as most managers are way behind her and

unlikely to catch up. That is, she is guaranteed a high rank unless being crashed. So she

chooses a small x∗G to lock in her winning position, leading to x∗B > x∗G.

A corollary of Result 4.2 is that, despite heterogeneity in interim performances, all

managers could choose the same action (x∗G = x∗B) for an intermediate level of ω. Indeed,

in both Figures 6(a) and 6(b), the curves of x∗G and x∗B cross. The intuition for the high-

equilibrium case is as follows. We have x∗G > x∗B for ω ≈ 0, as type G’s stay-ahead motive

dominates type B’s catch-up motive. We have x∗B > x∗G for ω ≈ 1, as type B’s catch-up

motive dominates type G’s stay-ahead motive. But x∗G and x∗B are close to each other for

the middle range of ω since both of the motives are at similar levels. At a critical level of

ω for which these two motives are exactly equilibrated, we obtain x∗G = x∗B. The intuition

for the low-equilibrium case is similar.

That x∗B > x∗G may hold in a high equilibrium is in line with the existing models

with relative performance objectives, such as Hvide (2002), Cabral (2003), or Goriaev,

Palomino, and Prat (2003), in that interim laggards use a riskier strategy than interim

leaders. However, unlike these models, ours predicts that x∗G > x∗B may also occur. There

are two main differences between the existing models and ours that allow x∗G > x∗B to

arise. First, as noted at the beginning of this section, our model features partial catch-

up: high-performing type B catch up with low- and middle-performing type G, though

top-performing type G are not overtaken by anyone. Due to this setting, x∗B < x∗G can

be consistent with each type B’s incentive to catch up with type G, as it still allows

her to overtake not-so-high-performing type G. By contrast, in the papers cited above,

the interim laggards need to completely overtake the interim leaders to benefit from their

catching-up strategy. For example, in Goriaev, Palomino, and Prat (2003), which is most

closely related to ours, the interim laggard either successfully overtakes the interim leader

and obtains a bonus or fails to overtake and misses that bonus. Thus, the laggard is

compelled to take a higher risk than the leader to overturn the interim ranking. Second,

in our model, the relative population of types G and B plays a key role in the equilibrium

characterization. Indeed, as discussed in Result 4.2, a high equilibrium with x∗G > x∗B
arises only if the presence of type G is small, i.e., ω is small, and therefore type B do not

have a strong incentive to increase x∗B to catch up with type G who choose large x∗G. Such

a case is not analyzed in the models cited above. For instance, the benchmark model of
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Goriaev, Palomino, and Prat (2003) considers two fund managers with the same size. It

corresponds to the case of ω = 1/2 in our model. Indeed, for ω = 1/2 our model also

yields x∗B > x∗G in the high equilibrium (see Figure 6(a)), consistent with their result.

5 Robustness: Random Evaluation Time

So far, we have assumed that the managers’ performance evaluation occurs at some point

after the crash. In this section, we consider an alternative setting in which the evaluation

takes place stochastically, either before or after the crash. This can be interpreted as the

authority’s random inspection of funds’ balance sheets. We show that the key result of the

model of Section 2 that the manager’s holding period and the associated duration of the

bubble are U-shaped in the flow-performance sensitivity θ is robust to such a modification.

For simplicity, we assume that all the managers are ranking-concerned, i.e., α = 1 in

Section 2. The manager who becomes aware of the bubble at time ti (manager i) sells

out at time ti + xi. We denote by x∗∗ the symmetric equilibrium holding period. The

evaluation time, te, is distributed on [0,∞) with the cumulative distribution function

H(te) = 1 − e−φte , where φ > 0 is the rate parameter. At time te, each manager i is

assigned a rank γi(xi), which is the mass of managers whose investment returns from

time 0 to te are higher or equal to hers.

Manager i’s rank depends on the relative position of her sell out time (ti + xi) to the

crash time (tc), the first manager’s sell out time (t0 + x∗∗), and the evaluation time (te)

as follows.

• If ti + xi ≥ tc,

γi(xi) =


1 for te ≤ t0 + x∗∗,

1− 1
η

(te − (t0 + x∗∗)) for te ∈ (t0 + x∗∗, tc),

1 for te ≥ tc.

(5.1)

• If ti + xi ∈ (t0 + x∗∗, tc),

γi(xi) =


1 for te ≤ t0 + x∗∗,

1− 1
η

(te − (t0 + x∗∗)) for te ∈ (t0 + x∗∗, ti + xi),

1− 1
η

((ti + xi)− (t0 + x∗∗)) for te ∈ (ti + xi, tc),
1
η

(tc − (ti + xi)) for te ≥ tc.

(5.2)
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• If ti + xi ≤ t0 + x∗∗,

γi(xi) =

{
1 for te < tc,

κ for te ≥ tc.
(5.3)

(5.1) is the manager’s rank when she sells out after the crash; (5.2) corresponds to the

case in which she sells out before the crash and after some other managers; (5.3) is the

off-equilibrium case in which she sells out before any other managers.

Manager i’s problem at time ti is to choose her holding period xi ∈ [0,∞), given that

the other managers choose the equilibrium holding period x∗, to maximize the expected

value of assets under management as of time te:

Vi(xi) =

∫ ti+xi

ti


∫ tc

0

e−θγi(xi)P (te)dH(te)

+

∫ ∞
tc

e−θγi(xi)P̃ (tc)dH(te)

 dΠi(tc)

+

∫ ∞
ti+xi


∫ ti+xi

0

e−θγi(xi)P (te)dH(te)

+

∫ ∞
ti+xi

e−θγi(xi)P (ti + xi)dH(te)

 dΠi(tc). (5.4)

The first line of (5.4) corresponds to the case in which the crash occurs before she sells

out (tc ≤ ti + xi). In this case, if the evaluation occurs before the crash (te < tc), the

manager’s performance is based on the bubble price at the evaluation time, P (te); but if it

occurs after the crash (te ≥ tc), her performance is the post-crash price, P̃ (tc). The second

line of (5.4) corresponds to the case in which she sells out before the crash (ti + xi < tc).

In this case, if the evaluation is before she sells out (te < ti + xi), her performance is

based on the bubble price at the evaluation time, P (te); but if it is after she sells out

(te ≥ ti + xi), her performance is her sell-out price, P (ti + xi).

The equilibrium holding period x∗∗ is obtained by evaluating the manager’s FOC,

dVi(xi)/dxi = 0, at xi = x∗∗ (see Appendix E).

Proposition 5.1. If the performance evaluation takes place at time te that follows c.d.f.

H(te) = 1− e−φte, the symmetric equilibrium holding period is

x∗∗ = −1

g
lnK − ηκ, (5.5)
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Figure 8: Random evaluation model. The figure plots the symmetric equilibrium holding
period x∗∗ as a function of (θ, φ). The parameter values used in the figure are g = 0.2,
λ = 0.05, η = 6, and κ = 0.5.

where K ≡
(

g

g − φ
e−ληκ − e−(λ+φ)ηκ

)
− φ

(
eθκ − e−ληκ

g − φ+ θ
η

+
e−ληκ

g − φ

)

− eθκ(g − φ− λ)

(
g + θ

η

g − φ+ θ
η

Λ

(
0, ηκ,

θ

η

)
− Λ

(
0, ηκ, φ+

θ

η

))

+ eθ
(

1−
(
g +

θ

η

)
Λ

(
0, ηκ, φ+

θ

η

))
. (5.6)

Proposition 5.1 provides a closed form solution for x∗∗. Figure 8 plots x∗∗ as a function

of the flow-performance sensitivity θ and the rate parameter φ of H(te). As in the model

of Section 2, x∗∗ and the bubble’s duration τ ∗∗ = ηκ+ x∗∗ are U-shaped in θ.

Corollary 5.1. In the limit of φ → 0, the solution of Proposition 5.1 converges to that

of Proposition 3.1, i.e., limφ→0 x
∗∗ = x∗a|α=1.

The intuition for Corollary 5.1 is simple. As φ decreases, it becomes more likely that

the evaluation takes place after the crash. In the limit of φ → 0, the evaluation occurs

after the crash with probability one. The solution in such a case coincides with the one of

Section 2 where the evaluation is after the crash by assumption. It is easy to check this

result, as the first two lines of (5.6) converge to zero as φ→ 0.
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6 Conclusion

This paper studies the implications of fund managers’ relative-performance concerns for

their investment behavior in bubble periods and the associated persistence of bubbles. We

consider a model à la Abreu and Brunnermeier (2003), in which the managers’ payoffs are

sensitive to their performance ranking through the documented convex flow-performance

relationship. The model implies that ranking-concerned fund managers have nonmono-

tonic impacts on bubbles: they may either magnify or dampen bubbles, depending on

how much of a winner-take-all situation they are in. If they engage in a severe ranking

tournament with highly convex flow-performance relationship, they fuel bubbles by riding

them long (the risk-shifting effect). However, with moderate convexity of the relationship,

they help dampen bubbles by attacking them quickly (the crash-aversion effect). These

results provide theoretical explanations to the observed cross-sectional variation in funds’

investment strategies in bubble periods (Dass, Massa, and Patgiri 2008; Greenwood and

Nagel 2009). Heterogeneity in the managers’ interim performance affects the persistence

of bubbles significantly. If the tournament is too close to call (i.e., the interim performance

gap is small), it induces even longer bubble-riding, as the interim followers try to catch

up while the interim leaders try to stay ahead. But with a large interim performance

gap, bubbles may burst quickly, as the interim followers give up on catching up while the

interim leaders lock in their winning positions.

It would be a fruitful future research to explore the roles of ranking concerns in the

emergence (as opposed to the persistence) of bubbles, which we take as exogenous in this

paper. A good starting point may be the model of Doblas-Madrid (2012), who extends the

framework of AB by endogeneizing the growing bubble price. Exploring the implications

of relative performance evaluations for the entire cycle of bubbles (emergence, persistence,

and burst) is interesting and may yield valuable policy implications.
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Appendix

A Formulas

Let x∗k be the symmetric-equilibrium holding period of type k, and τ∗ be the bubble’s equilibrium dura-

tion. Let Λ be a function defined in (3.14), and X, Y , and Z be constants. Then we have the following

results, which are all obtained by straightforward algebra.∫ ti+xk,i+Y

ti+xk,i+X

e−Z(tc−(ti+xk,i))πi(tc)dtc = πi(ti + xk,i)Λ(X,Y, Z). (A.1)

d
(∫ t+xk,i

ti
e−Z(tc−(ti+xk,i))P (ti + xk,i)πi(tc)dtc

)
dxk,i

∣∣∣∣∣
xk,i=x∗

k

= P (ti + x∗k)πi(ti + x∗k) (1 + (g + Z)Λ(−x∗k, 0, Z)) . (A.2)

If 0 ≤ X ≤ τ∗ − x∗k and 0 ≤ Y ≤ τ∗ − x∗k, then

d
(∫ ti+xk,i+Y

ti+xk,i+X
e−Z(tc−(ti+xk,i))P (ti + xk,i)πi(tc)dtc

)
dxk,i

∣∣∣∣∣
xk,i=x∗

k

= P (ti + x∗k)πi(ti + x∗k)(g − λ)Λ(X,Y, Z). (A.3)

If 0 ≤ X ≤ τ∗ − x∗k, then

d
(∫∞

ti+xk,i+X
e−Z(tc−(ti+xk,i))P (ti + xk,i)πi(tc)dtc

)
dxk,i

∣∣∣∣∣
xk,i=x∗

k

= P (ti + x∗k)πi(ti + x∗k)
(

(g + Z)Λ(X, τ∗ − x∗k, Z)− e−(λ+Z)X
)
. (A.4)

B Proof of Proposition 3.1

B.1 Duration of the bubble

If the equilibrium holding periods are (x∗a, x
∗
b), the duration τ∗ of the bubble is determined as follows.

Lemma B.1. In the symmetric equilibrium, the crash occurs at time tc = t0 + τ∗, where

τ∗ = ηκ+ αx∗a + (1− α)x∗b . (B.1)

Proof of Lemma B.1.

In the symmetric equilibrium, there must be both type a and type b who sell out at the crash time

tc = t0 + τ∗. The reason is as follows. It cannot be an equilibrium that all type-k managers (k ∈ {a, b})
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sell out before the crash, because each of them would be better off by increasing xk,i by a small amount

without any risk of getting caught in the crash. Likewise, it cannot be an equilibrium that all type-k

managers sell out after the crash, because each of them would obtain a chance to sell out before the crash

by decreasing xk,i. Therefore, there must be both type a and type b who sell out at the crash time. Since

type a start selling out at time t0 + x∗a and the crash occurs at time t0 + τ∗, the mass of type a who sell

out before the crash is ((t0 + τ∗)− (t0 + x∗a))α/η = α(τ∗ − x∗a)/η. Similarly, the mass of type b selling

out before the crash is ((t0 + τ∗)− (t0 + x∗b)) (1−α)/η = (1−α)(τ∗−x∗b)/η. Since a mass κ of managers

sell out before the crash, we have α(τ∗−x∗a)/η+ (1−α)(τ∗−x∗b)/η = κ. Solving this for τ∗ yields (B.1).

(End of proof of Lemma B.1.)

B.2 Manager’s rank

Lemma B.2. Given that other managers choose (xa, xb) and the crash occurs at time tc = t0 + τ ,

manager k-i’s rank (3.1) is rewritten as

γk,i = γi(xk,i) =


1 if tc ≤ ti + xk,i,
1
η (tc − (ti + xk,i)) if ti + xk,i < tc ≤ ti + xk,i + ρ1,

ϕ1 + ϕ2 (tc − (ti + xk,i)) if ti + xk,i + ρ1 < tc ≤ ti + xk,i + ρ2,

κ if ti + xk,i + ρ2 < tc,

(B.2)

where ρ1 ≡ τ −max{xa, xb}, ρ2 ≡ τ −min{xa, xb},

ϕ1 ≡ 1(xa ≥ xb)ακa + 1(xb > xa)(1− α)κb, and ϕ2 ≡ 1(xa ≥ xb)
1− α
η

+ 1(xb > xa)
α

η
.

Proof of Lemma B.2.

Step 1. Suppose xa ≥ xb. There are four cases to consider. The first case is that the manager sells out

after the crash (ti + xk,i ≥ tc). Clearly, her rank in this case is 1. The second case is that she sells out

before the crash and after the first type a sells out (ti + xk,i < tc and ti + xk,i ≥ tc − (τ − xa)). Type

b have already started selling out because xa ≥ xb. In this case, the mass of type a performing better

than her is (α/η) (tc − (ti + xk,i)), and that of type b is ((1− α)/η) (tc − (ti + xk,i)). Her rank is the sum

of these two: (tc − (ti + xk,i)) /η. The third case is that she sells out before the first type a and after

the first type b (ti + xk,i < tc − (τ − xa) and ti + xk,i ≥ tc − (τ − xb)). In this case, the mass of type

a performing better than her (i.e., all type a selling out before the crash) is ακa, and that of type b is

((1− α)/η) (tc − (ti + xk,i)). Her rank is the sum of these two. The fourth is the off-equilibrium case, in

which she sells out even before the first type b (ti + xk,i < tc − (τ − xb)). In this case, all the managers

selling out before the crash will perform better than her, that is, her rank is κ.

Step 2. Suppose xb > xa. The manager’s rank in this case is obtained by replacing xa, xb, and α in

step 1 with xb, xa, and (1− α), respectively.

Combining the rank obtained in steps 1 and 2 into one, we get (B.2). (End of proof of Lemma B.2.)
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B.3 Manager’s optimization

Using (B.2), manager a-i’s objective function (3.4) is

Va,i(xa,i) =

∫ ti+xa,i

ti

e−θP̃ (tc)πi(tc)dtc

+

∫ ti+xa,i+ρ1

ti+xa,i

e−
θ
η (tc−(ti+xa,i))P (ti + xa,i)πi(tc)dtc

+

∫ ti+xa,i+ρ2

ti+xa,i+ρ1

e−θ(ϕ1+ϕ2(tc−(ti+xa,i)))P (ti + xa,i)πi(tc)dtc

+

∫ ∞
ti+xa,i+ρ2

e−θκP (ti + xa,i)πi(tc)dtc. (B.3)

Manager b-i’s objective function Vb,i(xb,i) is obtained by setting θ = 0 and replacing xa,i with xb,i in

(B.3). For k ∈ {a, b}, manager k-i’s FOC is dVk,i(xk,i)/dxk,i = 0.

B.4 Equilibrium conditions

In the symmetric equilibrium, we have xk,i = x∗k for all i and k ∈ {a, b}. Thus, evaluating the FOCs at

xk,i = x∗k, we have
dVa,i(xa,i)

dxa,i

∣∣∣∣
xa,i=x∗

a

= 0, (B.4)

dVb,i(xb,i)

dxb,i

∣∣∣∣
xb,i=x∗

b

= 0. (B.5)

In order to obtain a parametric expression for (B.4), rearrange (B.3) so that we can apply the formulas

of Appendix A.

Va,i(xa,i) =e−θ−gτ
∗
∫ ti+xa,i

ti

eg(tc−(ti+xa,i))P (ti + xa,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.2) with Z = −g

+

∫ ti+xa,i+ρ1

ti+xa,i

e−
θ
η (tc−(ti+xa,i))P (ti + xa,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = 0, Y = ρ1, Z = θ/η

+ e−θϕ1

∫ ti+xa,i+ρ2

ti+xa,i+ρ1

e−θϕ2(tc−(ti+xa,i))P (ti + xa,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.3) with X = ρ1, Y = ρ2, Z = θϕ2

+ e−θκ
∫ ∞
ti+xa,i+ρ2

P (ti + xa,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.4) with X = ρ2, Z = 0

. (B.6)
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The first equality follows from P̃ (tc) = e−gτ
∗
P (tc) = e−gτ

∗
eg(tc−(ti+xa,i))P (ti + xa,i). From (B.6), (B.4)

is rewritten as

e−θ−gτ
∗
+(g−λ)Λ

(
0, ρ1,

θ

η

)
+e−θϕ1(g−λ)Λ (ρ1, ρ2, θϕ2)+e−θκ

(
gΛ (ρ2, τ

∗ − x∗a, 0)− e−λρ2
)

= 0. (B.7)

Likewise, by setting θ = 0 and replacing x∗a with x∗b in (B.7), (B.5) is rewritten as

e−gτ
∗

+ (g − λ)Λ (0, ρ1, 0) + (g − λ)Λ (ρ1, ρ2, 0) + gΛ (ρ2, τ
∗ − x∗b , 0)− e−λρ2 = 0. (B.8)

We solve the system of equations (B.1), (B.7), and (B.8) for three unknowns τ∗, x∗a, and x∗b .

B.5 Equilibrium with x∗a > x∗b
Let us obtain (x∗a, x

∗
b) in the equilibrium with x∗a > x∗b . Let ξ > 0 be a constant such that x∗a = x∗b + ξ.

Then we have τ∗ = ηκ + αξ + x∗b , ρ1 = ηκ − (1 − α)ξ, ρ2 = ηκ + αξ, ϕ1 = α (κ− (1− α)ξ/η), and

ϕ2 = (1− α)/η. Using these expressions, (B.7) is rewritten as

e−g(ηκ+αξ+x∗
b ) = Ω1(ξ), (B.9)

where Ω1(ξ) ≡ e(1−κ)θ
(
e−λ(ηκ+αξ) − gΛ

(
ηκ+ αξ, ηκ− (1− α)ξ, 0

))
− (g − λ)eθ

 Λ
(

0, ηκ− (1− α)ξ, θη

)
+e−θα

(
κ− (1−α)ξ

η

)
Λ
(
ηκ− (1− α)ξ, ηκ+ αξ, θ(1−α)

η

)
 , (B.10)

and (B.8) is rewritten as

e−g(ηκ+αξ+x∗
b ) = Ψ1(ξ), (B.11)

where Ψ1(ξ) ≡ 1− gΛ
(

0, ηκ+ αξ, 0
)
. (B.12)

From (B.9) and (B.11), we have

x∗b = −1

g
ln Ω1(ξ)− αξ − ηκ, (B.13)

where ξ > 0 solves Ω1(ξ) = Ψ1(ξ). Since Ω′1(ξ) > 0 for small ξ > 0 and Ψ′1(ξ) < 0, such a ξ > 0 exists if

Ω1(0) and Ψ1(0) are close enough and

Ω1(0) < Ψ1(0) ⇐⇒ x̂ > xAB . (B.14)

B.6 Equilibrium with x∗a ≤ x∗b
Let us obtain (x∗a, x

∗
b) in the equilibrium with x∗a ≤ x∗b . Let ζ ≥ 0 be a constant such that x∗a = x∗b − ζ.

Then we have τ∗ = ηκ − αζ + x∗b , ρ1 = ηκ − αζ, ρ2 = ηκ + (1 − α)ζ, ϕ1 = (1 − α) (κ− αζ/η), and

ϕ2 = α/η. Using these expressions, (B.7) is rewritten as

e−g(ηκ−αζ+x
∗
b ) = Ω2(ζ), (B.15)
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where Ω2(ζ) ≡ e(1−κ)θ−λ(ηκ+(1−α)ζ)

− (g − λ)eθ

 Λ
(

0, ηκ− αζ, θη
)

+e−θ(1−α)
(
κ−αζη

)
Λ
(
ηκ− αζ, ηκ+ (1− α)ζ, θαη

)
 , (B.16)

and (B.8) is rewritten as

e−g(ηκ−αζ+x
∗
b ) = Ψ2(ζ), (B.17)

where Ψ2(ζ) ≡ 1− gΛ
(

0, ηκ− αζ, 0
)
. (B.18)

From (B.15) and (B.17), we have

x∗b = −1

g
ln Ω2(ζ) + αζ − ηκ, (B.19)

where ζ ≥ 0 solves Ω2(ζ) = Ψ2(ζ). Since Ω′2(ζ) < 0, limζ→∞Ω2(ζ) = −∞, and Ψ′2(ζ) > 0, such a ζ ≥ 0

exists if and only if

Ω2(0) ≥ Ψ2(0) ⇐⇒ x̂ ≤ xAB . (B.20)

C Proof of Corollary 3.1

Rewrite (3.8) as

x̂(θ) = −1

g
(ln Σ(θ) + θ)− ηκ, where Σ(θ) ≡ 1−

g + θ
η

λ+ θ
η

(
1− e−(λ+ θ

η )ηκ
)
. (C.1)

Since x̂ is well-defined only if Σ(θ) > 0, we restrict the parameter values to the ones such that Σ(θ) > 0.

Specifically, we restrict θ to [0, θ̄), where the upper bound θ̄ is defined in the following lemma.

Lemma C.1. There exists a unique θ̄ > 0 such that Σ(θ) > 0 for all θ ∈ [0, θ̄), limθ→θ̄ Σ′(θ) < 0, and

limθ→θ̄ Σ(θ) = 0.

Proof of Lemma C.1.

Differentiating Σ(θ),

Σ′(θ) =
g − λ

η(λ+ θ
η )2

(
1− e−(λ+ θ

η )ηκ
)
−
g + θ

η

λ+ θ
η

κe−(λ+ θ
η )ηκ.

Hence, Σ′(θ) > 0 if and only if F (θ) > G(θ), where

F (θ) ≡ e(λ+ θ
η )ηκ − 1

ηκ
and G(θ) ≡

(
λ+ θ

η

)(
g + θ

η

)
g − λ

.

Since F is an exponential function while G is quadratic, F (θ) > G(θ) if θ is large enough (checked by

l’Hôspital’s rule). Thus, we have

lim
θ→∞

Σ′(θ) > 0. (C.2)
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It is easy to check that

lim
θ→∞

Σ(θ) = 0. (C.3)

From (C.2) and (C.3), there exists some θ > 0 such that Σ(θ) < 0. But since Assumption 1 ensures

Σ(0) > 0, there exists θ̄ > 0 such that Σ(θ̄) = 0, Σ′(θ̄) < 0, and Σ(θ) > 0 for all θ ∈ [0, θ̄). (End of proof

of Lemma C.1.)

Lemma C.2. If κ is small enough, x̂ is U-shaped in θ. That is, x̂ = xAB for θ = 0, x̂ < xAB for small

θ, and x̂ > xAB for large θ.

Proof of Lemma C.2.

It is trivial that x̂ = xAB for θ = 0. From (C.1), we have

x̂′(θ) = −1

g

(
Σ′(θ)

Σ(θ)
+ 1

)
. (C.4)

First, for large θ, we have limθ→θ̄ x̂
′(θ) =∞ because limθ→θ̄ Σ′(θ) < 0 and limθ→θ̄ Σ(θ) = 0. Second, for

small θ, we have

x̂′(0) = −1

g

(
Σ′(0)

Σ(0)
+ 1

)
=

1

gλη

(
1− (1− gηκ)

e−ληκ

Σ(0)

)
− 1

g
, (C.5)

which means limκ→0 x̂
′(0) = −1/g < 0. Thus, x̂(θ) is U-shaped in θ if κ is small enough. (End of proof

of Lemma C.2.)

From Lemma C.2 and Sections B.5 and B.6, we see that x∗b > x∗a for small θ, whereas x∗a > x∗b for

large θ. Thus, to prove Corollary 3.1, it suffices to prove the following lemma.

Lemma C.3. If x∗a > x∗b then x∗b > xAB, and if x∗a < x∗b then x∗b < xAB.

Proof of Lemma C.3.

First, suppose x∗a > x∗b . This corresponds to the case of Section B.5. Thus,

x∗b T xAB ⇐⇒ −1

g
ln Ψ1(ξ)− αξ − ηκ T −1

g
ln Ψ1(0)− ηκ

⇐⇒ −1

g
ln

Ψ1(ξ)

Ψ1(0)
T αξ ⇐⇒ Ψ1(ξ)

Ψ1(0)
S e−gαξ ⇐⇒

1− g
(

1−e−λ(ηκ+αξ)
λ

)
1− g

(
1−e−ληκ

λ

) S e−gαξ

⇐⇒ F1(ξ) S G1(ξ), (C.6)

where F1(ξ) ≡
g
λe
−ληκ −

(
g−λ
λ

)
eλαξ

1− g
(

1−e−ληκ
λ

) and G1(ξ) ≡ e−(g−λ)αξ.

We have F1(0) = G1(0) = 1, F ′1(0) < G′1(0) < 0, F ′′1 (ξ) < 0, and G′′1(ξ) > 0. Thus, we have F1(ξ) < G1(ξ)

for ξ > 0. From (C.6), this implies x∗b > xAB .
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Second, suppose x∗b > x∗a. This corresponds to the case of Section B.6. Thus,

x∗b T xAB ⇐⇒ −1

g
ln Ψ2(ζ) + αζ − ηκ T −1

g
ln Ψ2(0)− ηκ

⇐⇒ −1

g
ln

Ψ2(ζ)

Ψ2(0)
T −αζ ⇐⇒ Ψ2(ζ)

Ψ2(0)
S egαζ ⇐⇒

1− g
(

1−e−λ(ηκ−αζ)
λ

)
1− g

(
1−e−ληκ

λ

) S egαζ

⇐⇒ F2(ζ) S G2(ζ), (C.7)

where F2(ζ) ≡
g
λe
−ληκ −

(
g−λ
λ

)
e−λαζ

1− g
(

1−e−ληκ
λ

) and G2(ζ) ≡ e(g−λ)αζ .

We have F2(0) = G2(0) = 1 and F ′2(0) > G′2(0) > 0. Thus, we have F2(ζ) > G2(ζ) for ζ > 0 small

enough. From (C.7), this implies x∗b < xAB .

D Heterogeneous Interim Performance

D.1 Duration of the bubble

If the equilibrium holding periods are (x∗G, x
∗
B), the bubble’s duration in the symmetric equilibrium is

τ∗ = ηκ+ ωx∗G + (1− ω)x∗B . (D.1)

The proof is identical to that of Lemma B.1.

D.2 Ranking types

Depending on the parameter values, there may be an equilibrium in which even the crashed type G are

ranked higher than top-ranked type B. But there may be an equilibrium such that top type B are ranked

higher than some type G. We classify these equilibria as different types. Indeed, as shown in the main

text, the managers’ risk-taking incentives change depending on these types.

Let us define the following six performance levels in the symmetric equilibrium.

• TG ≡ P (t0 + τ∗): performance of the top G

• FG ≡ P (t0 + x∗G): performance of the first G

• CG ≡ P̃ (t0 + τ∗): performance of the crashed G

• TB ≡ e−ψP (t0 + τ∗): performance of the top B

• FB ≡ e−ψP (t0 + x∗B): performance of the first B

• CB ≡ e−ψP̃ (t0 + τ∗): performance of the crashed B

In these values, TG is always the largest and CB the smallest. Also, TG > FG > CG and TB > FB >

CB hold always. Thus, we need to consider the following six configurations, which are illustrated in

Figure 9.
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• Ranking type 1 (R1):

TG > FG > CG > TB > FB > CB ⇐⇒ x∗G ≥ τ∗ −
ψ
g , x

∗
G ≥ x∗B −

ψ
g , τ

∗ < ψ
g , and x∗B < ψ

g .

• Ranking type 2 (R2):

TG > FG ≥ TB ≥ CG > FB > CB ⇐⇒ x∗G ≥ τ∗ −
ψ
g , x

∗
G ≥ x∗B −

ψ
g , τ

∗ ≥ ψ
g , and x∗B < ψ

g .

• Ranking type 3 (R3):

TG > FG ≥ TB > FB ≥ CG > CB ⇐⇒ x∗G ≥ τ∗ −
ψ
g , x

∗
G ≥ x∗B −

ψ
g , τ

∗ ≥ ψ
g , and x∗B ≥

ψ
g .

• Ranking type 4 (R4):

TG > TB > FG > CG > FB > CB ⇐⇒ x∗G < τ∗ − ψ
g , x

∗
G ≥ x∗B −

ψ
g , τ

∗ ≥ ψ
g , and x∗B < ψ

g .

• Ranking type 5 (R5):

TG > TB > FG ≥ FB ≥ CG > CB ⇐⇒ x∗G < τ∗ − ψ
g , x

∗
G ≥ x∗B −

ψ
g , τ

∗ ≥ ψ
g , and x∗B ≥

ψ
g .

• Ranking type 6 (R6):

TG > TB > FB > FG > CG > CB ⇐⇒ x∗G < τ∗ − ψ
g , x

∗
G < x∗B −

ψ
g , τ

∗ ≥ ψ
g , and x∗B ≥

ψ
g .

Any equilibrium pair (x∗G, x
∗
B) corresponds to one of these ranking types. Figure 10 illustrates the

regions of (x∗G, x
∗
B) corresponding to (R1)-(R6). The gray area in the figure represents (x∗G, x

∗
B) that are

never supported as equilibrium actions. The proof of (D.1) (which is identical to the proof of Lemma

B.1) implies that any equilibrium pair (x∗G, x
∗
B) must satisfy

x∗G ≤ τ∗ ≤ x∗G + η ⇐⇒ x∗B −
(

1− κ
1− ω

)
η ≤ x∗G ≤ x∗B +

(
κ

1− ω

)
η (D.2)

and

x∗B ≤ τ∗ ≤ x∗B + η ⇐⇒ x∗B −
(
κ

ω

)
η ≤ x∗G ≤ x∗B +

(
1− κ
ω

)
η. (D.3)

Combining (D.2) and (D.3) yields a necessary condition for the symmetric equilibrium:

x∗B −min

{
1− κ
1− ω

,
κ

ω

}
η < x∗G < x∗B + min

{
κ

1− ω
,

1− κ
ω

}
η. (D.4)

The gray area in Figure 10 does not satisfy (D.4).

The symmetric best-response curves in Figure 5 have kinks at the boundaries of regions corresponding

to different ranking types. Type G’ best response RG(xB) has two kinks. In the region of ranking type

1 (bottom left of the figure), the slope of RG(xB) is less steep. This makes sense. With ranking type 1,

even the top type B does not catch up with the crashed type G, so that a marginal change in one type’s

action does not cause a switch of ranks between types (see Figure 9). Thus, a marginal change in xB has

a small impact on type G’ ranks, leading to a mild slope of RG(xB). In the region of ranking type 2, type

G react more aggressively to type B’s action; that is, the slope of RG(xB) is steeper. This reflects that

both types’ ranks are clashing with each other (i.e., there are some type B whose ranks are equivalent to

those of type G) so that a marginal change in xB has a large impact on type G’s ranks.21 In the region

of ranking type 3, RG(xB) is flatter because type G have no clash in ranks with any type B, and thus

a marginal increase in xB will not cause any over-take by type B. In contrast, type B’s best response

21As seen in Figure 9, an increase in xB makes some type B overtake the crashed type G.
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Figure 9: Ranking types
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Figure 10: (x∗G, x
∗
B) and ranking types

RB(xG) has only one kink. It is steeper in the regions of ranking types 2 and 3 because a change in xG

has a larger impact on the type B’s ranks.22,23

D.3 Type G’s problem

To solve manager G-i’s problem, we first rewrite her rank (4.1) as follows.

Lemma D.1. The rank of manager G-i who chooses xG,i is

γG,i =



ω + (1− ω)κ+
B if tc ≤ ti + xG,i,

ω
η (tc − (ti + xG,i)) if ti + xG,i < tc ≤ ti + xG,i + µ1,
1
η (tc − (ti + xG,i))− 1−ω

η
ψ
g if ti + xG,i + µ1 < tc ≤ ti + xG,i + µ2,

ω
η (tc − (ti + xG,i)) + (1− ω)κB if ti + xG,i + µ2 < tc ≤ ti + xG,i + µ3,

ωκG if ti + xG,i + µ3 < tc ≤ ti + xG,i + µ4,

ωκG + 1−ω
η (tc − (ti + xG,i))− 1−ω

η
ψ
g if ti + xG,i + µ4 < tc ≤ ti + xG,i + µ5,

ωκG + (1− ω)κ+
B if ti + xG,i + µ5 < tc,

(D.5)

22For instance, the top type B’s rank in ranking type 1 is a constant ω, whereas in ranking types 2
and 3, it is ωκG, a function of xG.

23The type B’s best response has no kink at the boundary between the regions of ranking types 2 and
3, since the difference between these regions is whether or not CG exceeds FB, which is irrelevant to xG.
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where κ+
B ≡ max

{
0,min

{
1

η

(
τ − ψ

g

)
, κB

}}
, µ1 ≡ min

{
ψ

g
, ηκG

}
, µ2 ≡ min

{
ψ

g
+ ηκB , ηκG

}
,

µ3 ≡ ηκG, µ4 ≡ µ3 + max

{
0,min

{
ψ

g
, τ

}
− ηκG

}
,

µ5 ≡ µ4 + max

{
0,min

{
ψ

g
+ ηκB , τ

}
−max

{
ψ

g
, ηκG

}}
.

Proof of Lemma D.1.

We show that (D.5) nests manager G-i’s rank in all possible equilibrium outcomes (i.e., six ranking types).

(i) If the equilibrium is of ranking type 1, manager G-i’s rank is (see Figure 9 for the intuition)

γG,i =


ω if tc ≤ ti + xG,i,
ω
η (tc − (ti + xG,i)) if tc − ηκG ≤ ti + xG,i < tc,

ωκG if ti + xG,i < tc − ηκG.
(D.6)

Since (R1) implies κ+
B = 0, µ1 = µ2 = µ3 = ηκG, and µ4 = µ5 = τ , (D.6) is nested in the first, second,

and fifth lines of (D.5).

(ii) If the equilibrium is of ranking type 2, her rank is

γG,i =


ω + 1−ω

η

(
τ − ψ

g

)
if tc ≤ ti + xG,i,

ω
η (tc − (ti + xG,i)) if tc − ηκG ≤ ti + xG,i < tc,

ωκG if tc − ψ
g ≤ ti + xG,i < tc − ηκG,

ωκG + 1−ω
η

(
tc −

(
ti + xG,i + ψ

g

))
if ti + xG,i < tc − ψ

g .

(D.7)

Since (R2) implies κ+
B = (τ − (ψ/g))/η, µ1 = µ2 = µ3 = ηκG, µ4 = ψ/g, and µ5 = τ , (D.7) is nested in

the first, second, fifth, and sixth lines of (D.5).

(iii) If the equilibrium is of ranking type 3, her rank is

γG,i =



ω + (1− ω)κB if tc ≤ ti + xG,i,
ω
η (tc − (ti + xG,i)) if tc − ηκG ≤ ti + xG,i < tc,

ωκG if tc − ψ
g ≤ ti + xG,i < tc − ηκG,

ωκG + 1−ω
η

(
tc −

(
ti + xG,i + ψ

g

))
if tc −

(
ψ
g + ηκB

)
≤ ti + xG,i < tc − ψ

g ,

ωκG + (1− ω)κB if ti + xG,i < tc −
(
ψ
g + ηκB

)
.

(D.8)

Since (R3) implies κ+
B = κB , µ1 = µ2 = µ3 = ηκG, µ4 = ψ/g, and µ5 = (ψ/g) + ηκB , (D.8) is nested in

the first, second, fifth, sixth, and seventh lines of (D.5).

(iv) If the equilibrium is of ranking type 4, her rank is

γG,i =


ω + 1−ω

η

(
τ − ψ

g

)
if tc ≤ ti + xG,i,

ω
η (tc − (ti + xG,i)) if tc − ψ

g ≤ ti + xG,i < tc,
ω
η (tc − (ti + xG,i)) + 1−ω

η

(
tc −

(
ti + xG,i + ψ

g

))
if tc − ηκG ≤ ti + xG,i < tc − ψ

g ,

ωκG + 1−ω
η

(
tc −

(
ti + xG,i + ψ

g

))
if ti + xG,i < tc − ηκG.

(D.9)
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Since (R4) implies κ+
B = (τ − (ψ/g))/η, µ1 = ψ/g, µ2 = µ3 = µ4 = ηκG, and µ5 = τ , (D.9) is nested in

the first, second, third, and sixth lines of (D.5).

(v) If the equilibrium is of ranking type 5, her rank is

γG,i =



ω + (1− ω)κB if tc ≤ ti + xG,i,
ω
η (tc − (ti + xG,i)) if tc − ψ

g ≤ ti + xG,i < tc,
ω
η (tc − (ti + xG,i)) + 1−ω

η

(
tc −

(
ti + xG,i + ψ

g

))
if tc − ηκG ≤ ti + xG,i < tc − ψ

g ,

ωκG + 1−ω
η

(
tc −

(
ti + xG,i + ψ

g

))
if tc −

(
ψ
g + ηκB

)
≤ ti + xG,i < tc − ηκG,

ωκG + (1− ω)κB if ti + xG,i < tc −
(
ψ
g + ηκB

)
.

(D.10)

Since (R5) implies κ+
B = κB , µ1 = ψ/g, µ2 = µ3 = µ4 = ηκG, and µ5 = (ψ/g) + ηκB , (D.10) is nested in

the first, second, third, sixth, and seventh lines of (D.5).

(vi) If the equilibrium is of ranking type 6, her rank is

γG,i =



ω + (1− ω)κB if tc ≤ ti + xG,i,
ω
η (tc − (ti + xG,i)) if tc − ψ

g ≤ ti + xG,i < tc,
ω
η (tc − (ti + xG,i)) + 1−ω

η

(
tc −

(
ti + xG,i + ψ

g

))
if tc −

(
ψ
g + ηκB

)
≤ ti + xG,i < tc − ψ

g ,
ω
η (tc − (ti + xG,i)) + (1− ω)κB if tc − ηκG ≤ ti + xG,i < tc −

(
ψ
g + ηκB

)
,

ωκG + (1− ω)κB if ti + xG,i < tc − ηκG.
(D.11)

Since (R6) implies κ+
B = κB , µ1 = ψ/g, µ2 = (ψ/g) + ηκB , and µ3 = µ4 = µ5 = ηκG, (D.11) is nested in

the first, second, third, fourth, and seventh lines of (D.5). (End of proof of Lemma D.1.)

Having characterized γG,i, we are ready to solve her maximization problem. Plugging (D.5) into her
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objective function (4.3) and rearranging it so that we can use the formulas of Appendix A,

VG,i(xG,i) = e−θ(ω+(1−ω)κ+
B)−gτ

∫ ti+xG,i

ti

eg(tc−(ti+xG,i))P (ti + xG,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.2) with Z = −g

+

∫ ti+xG,i+µ1

ti+xG,i

e−θ
ω
η (tc−(ti+xG,i))P (ti + xG,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = 0, Y = µ1, Z = θ(ω/η)

+ eθ
1−ω
η

ψ
g

∫ ti+xG,i+µ2

ti+xG,i+µ1

e−
θ
η (tc−(ti+xG,i))P (ti + xG,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = µ1, Y = µ2, Z = θ/η

+ e−θ(1−ω)κB

∫ ti+xG,i+µ3

ti+xG,i+µ2

e−θ
ω
η (tc−(ti+xG,i))P (ti + xG,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = µ2, Y = µ3, Z = θ(ω/η)

+ e−θωκG
∫ ti+xG,i+µ4

ti+xG,i+µ3

P (ti + xG,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.3) with X = µ3, Y = µ4, Z = 0

+ e−θ
(
ωκG− 1−ω

η
ψ
g

) ∫ ti+xG,i+µ5

ti+xG,i+µ4

e−θ
1−ω
η (tc−(ti+xG,i))P (ti + xG,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = µ4, Y = µ5, Z = θ(1− ω)/η

+ e−θ(ωκG+(1−ω)κ+
B)

∫ ∞
ti+xG,i+µ5

P (ti + xG,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.4) with X = µ5, Z = 0

. (D.12)

The first equality follows from P̃ (tc) = e−gτP (tc) = e−gτeg(tc−(ti+xk,i))P (ti + xk,i). The type G’s

symmetric equilibrium condition is obtained as

dVG,i(xG,i)

dxG,i

∣∣∣∣
xG,i=xG

= 0

⇐⇒ e−θ(ω+(1−ω)κ+
B)−gτ + (g − λ)Λ(0, µ1, θω/η) + eθ

1−ω
η

ψ
g (g − λ)Λ(µ1, µ2, θ/η)

+ e−θ(1−ω)κB (g − λ)Λ(µ2, µ3, θω/η) + e−θωκG(g − λ)Λ(µ3, µ4, 0)

+ e−θ
(
ωκG− 1−ω

η
ψ
g

)
(g − λ)Λ(µ4, µ5, θ(1− ω)/η)

+ e−θ(ωκG+(1−ω)κ+
B)
(

(g − λ)Λ(µ5, τ − xG, 0)− e−λ(τ−xG)
)

= 0, (D.13)

where function Λ is defined in (3.14). Note that τ , κG, κB , κ+
B , and µs are functions of xG and xB .
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Solving (D.13) for xG as a function of xB , we have the type G’s symmetric best response, RG(xB).

D.4 Type B’s problem

We repeat the procedure of Section D.3 for type B.

Lemma D.2. The rank of manager B-i who chooses xB,i is

γB,i =



1 if tc ≤ ti + xB,i,
ω
η
ψ
g + 1

η (tc − (ti + xB,i)) if ti + xB,i < tc ≤ ti + xB,i + ν1,

ωκG + 1−ω
η (tc − (ti + xB,i)) if ti + xB,i + ν1 < tc ≤ ti + xB,i + ν2,

ω + 1−ω
η (tc − (ti + xB,i)) if ti + xB,i + ν2 < tc ≤ ti + xB,i + ν3,

ω
η

(
tc −

(
ti + xB,i

)
+ ψ

g

)
+ (1− ω)κB if ti + xB,i + ν3 < tc ≤ ti + xB,i + ν4,

ωκG + (1− ω)κB if ti + xB,i + ν4 < tc ≤ ti + xB,i + ν5,

ω + (1− ω)κB if ti + xB,i + ν5 < tc,

(D.14)

where ν1 ≡ ηκ++
B , ν2 ≡ ηκ+

B , ν3 ≡ ηκB , ν4 ≡ ν3 + max

{
0, ηκG −

(
ψ

g
+ ηκB

)}
,

ν5 ≡ ν4 + max

{
0, τ −max

{
ψ

g
+ ηκB , ηκG

}}
, κ++

B ≡ 1

η
max

{
0,min

{
ηκG,

ψ

g
+ ηκB

}
− ψ

g

}
.

Proof of Lemma D.2.

We show that (D.14) nests manager B-i’s rank in all possible equilibrium outcomes (six ranking types).

(i) If the equilibrium is of ranking type 1, manager B-i’s rank is

γB,i =


1 if tc ≤ ti + xB,i,

ω + 1−ω
η (tc − (ti + xB,i)) if tc − ηκB ≤ ti + xB,i < tc,

ω + (1− ω)κB if ti + xB,i < tc − ηκB .
(D.15)

Since (R1) implies κ++
B = κ+

B = 0, ν1 = ν2 = 0, and ν3 = ν4 = ν5 = ηκB , (D.15) is nested in the first,

fourth, and seventh lines of (D.14).

(ii) If the equilibrium is of ranking type 2, her rank is

γB,i =


1 if tc ≤ ti + xB,i,

ωκG + 1−ω
η (tc − (ti + xB,i)) if tc −

(
τ − ψ

g

)
≤ ti + xB,i < tc,

ω + 1−ω
η (tc − (ti + xB,i)) if tc − ηκB ≤ ti + xB,i < tc −

(
τ − ψ

g

)
,

ω + (1− ω)κB if ti + xB,i < tc − ηκB .

(D.16)

Since (R2) implies κ++
B = 0, κ+

B = (τ − (ψ/g))/η, ν1 = 0, ν2 = τ − (ψ/g), and ν3 = ν4 = ν5 = ηκB ,

(D.16) is nested in the first, third, fourth, and seventh lines of (D.14).
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(iii) If the equilibrium is of ranking type 3, her rank is

γB,i =


1 if tc ≤ ti + xB,i,

ωκG + 1−ω
η (tc − (ti + xB,i)) if tc − ηκB ≤ ti + xB,i < tc,

ωκG + (1− ω)κB if tc −
(
τ − ψ

g

)
≤ ti + xB,i < tc − ηκB ,

ω + (1− ω)κB if ti + xB,i < tc −
(
τ − ψ

g

)
.

(D.17)

Since (R3) implies κ++
B = 0, κ+

B = κB , ν1 = 0, ν2 = ν3 = ν4 = ηκB , and ν5 = τ − (ψ/g), (D.17) is nested

in the first, third, sixth, and seventh lines of (D.14).

(iv) If the equilibrium is of ranking type 4, her rank is

γB,i =



1 if tc ≤ ti + xB,i,
ω
η

(
tc −

(
ti + xB,i − ψ

g

))
+ 1−ω

η

(
tc −

(
ti + xB,i

))
if tc −

(
ηκG − ψ

g

)
≤ ti + xB,i < tc,

ωκG + 1−ω
η

(
tc −

(
ti + xB,i

))
if tc −

(
τ − ψ

g

)
≤ ti + xB,i < tc −

(
ηκG − ψ

g

)
,

ω + 1−ω
η (tc − (ti + xB,i)) if tc − ηκB < ti + xB,i ≤ tc −

(
τ − ψ

g

)
,

ω + (1− ω)κB if ti + xB,i < tc − ηκB .
(D.18)

Since (R4) implies κ++
B = (ηκG − (ψ/g))/η, κ+

B = (τ − (ψ/g))/η, ν1 = ηκG − (ψ/g), ν2 = τ − (ψ/g), and

ν3 = ν4 = ν5 = ηκB , (D.18) is nested in the first, second, third, fourth, and seventh lines of (D.14).

(v) If the equilibrium is of ranking type 5, her rank is

γB,i =



1 if tc ≤ ti + xB,i,
ω
η

(
tc −

(
ti + xB,i − ψ

g

))
+ 1−ω

η (tc − (ti + xB,i)) if tc −
(
ηκG − ψ

g

)
≤ ti + xB,i < tc,

ωκG + 1−ω
η (tc − (ti + xB,i)) if tc − ηκB ≤ ti + xB,i < tc −

(
ηκG − ψ

g

)
,

ωκG + (1− ω)κB if tc −
(
τ − ψ

g

)
≤ ti + xB,i < tc − ηκB ,

ω + (1− ω)κB if ti + xB,i < tc −
(
τ − ψ

g

)
.

(D.19)

Since (R5) implies κ++
B = (ηκG − (ψ/g))/η, κ+

B = κB , ν1 = ηκG − (ψ/g), ν2 = ν3 = ν4 = ηκB , and

ν5 = τ − (ψ/g), (D.19) is nested in the first, second, third, sixth, and seventh lines of (D.14).

(vi) If the equilibrium is of ranking type 6, her rank is

γB,i =



1 if tc ≤ ti + xB,i,
ω
η

(
tc −

(
ti + xB,i − ψ

g

))
+ 1−ω

η (tc − (ti + xB,i)) if tc − ηκB ≤ ti + xB,i < tc,
ω
η

(
tc −

(
ti + xB,i − ψ

g

))
+ (1− ω)κB if tc −

(
ηκG − ψ

g

)
≤ ti + xG,i < tc − ηκB ,

ωκG + (1− ω)κB if tc −
(
τ − ψ

g

)
≤ ti + xB,i < tc −

(
ηκG − ψ

g

)
,

ω + (1− ω)κB , if ti + xB,i < tc −
(
τ − ψ

g

)
.

(D.20)

Since (R6) implies κ++ = κ+
B = κB , ν1 = ν2 = ν3 = ηκB , ν4 = ηκG − (ψ/g), and ν5 = τ − (ψ/g), (D.20)

is nested in the first, second, fifth, sixth, and seventh lines of (D.14). (End of proof of Lemma D.2.)
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Plugging (D.14) into her objective function (4.3) and rearranging, we have

VB,i(xB,i) = e−θ−gτ
∫ ti+xB,i

ti

eg(tc−(ti+xB,i))P (ti + xB,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.2) with Z = −g

+ e−θ
ω
η
ψ
g

∫ ti+xB,i+ν1

ti+xB,i

e−
θ
η (tc−(ti+xB,i))P (ti + xB,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = 0, Y = ν1, Z = θ/η

+ e−θωκG
∫ ti+xB,i+ν2

ti+xB,i+ν1

e−θ
1−ω
η (tc−(ti+xB,i))P (ti + xB,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = ν1, Y = ν2, Z = θ(1− ω)/η

+ e−θω
∫ ti+xB,i+ν3

ti+xB,i+ν2

e−θ
1−ω
η (tc−(ti+xB,i))P (ti + xB,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = ν2, Y = ν3, Z = θ(1− ω)/η

+ e−θ
(
ω
η
ψ
g +(1−ω)κB

) ∫ ti+xB,i+ν4

ti+xB,i+ν3

e−θ
ω
η (tc−(ti+xB,i))P (ti + xB,i)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = ν3, Y = ν4, Z = θ(ω/η)

+ e−θ(ωκG+(1−ω)κB)

∫ ti+xB,i+ν5

ti+xB,i+ν4

P (ti + xB,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.3) with X = ν4, Y = ν5, Z = 0

+ e−θ(ω+(1−ω)κB)

∫ ∞
ti+xB,i+ν5

P (ti + xB,i)πi(tc)dtc︸ ︷︷ ︸
Use (A.4) with X = ν5, Z = 0

. (D.21)

The symmetric equilibrium condition for type B is

dVB,i(xB,i)

dxB,i

∣∣∣∣
xB,i=xB

= 0

⇐⇒ e−θ−gτ + e−θ
ω
η
ψ
g (g − λ)Λ(0, ν1, θ/η) + e−θωκG(g − λ)Λ(ν1, ν2, θ(1− ω)/η)

+ e−θω(g − λ)Λ(ν2, ν3, θ(1− ω)/η) + e−θ
(
ω
η
ψ
g +(1−ω)κB

)
(g − λ)Λ(ν3, ν4, θω/η)

+ e−θ(ωκG+(1−ω)κB)(g − λ)Λ(ν4, ν5, 0)

+ e−θ(ω+(1−ω)κB)
(

(g − λ)Λ(ν5, τ − xB , 0)− e−λ(τ−xB)
)

= 0. (D.22)

Note that τ , κG, κB , and ξs are functions of xG and xB . Solving (D.22) for xB as a function of xG, we

have the type B’s symmetric best response, RB(xG).
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E Random Evaluation Time

Plugging the manager’s rank (5.1)-(5.3) into her objective function (5.4) and noting that t0+x∗∗ = tc−ηκ
holds identically, we have

Vi(xi) =

∫ ti+xi

ti



∫ tc−ηκ

0

e−θP (te)dH(te)

+

∫ tc

tc−ηκ
e−θ((1−κ)+ 1

η (tc−te))P (te)dH(te)

+

∫ ∞
tc

e−θP̃ (tc)dH(te)


πi(tc)dtc

+

∫ ti+xi+ηκ

ti+xi



∫ tc−ηκ

0

e−θP (te)dH(te)

+

∫ ti+xi

tc−ηκ
e−θ((1−κ)+ 1

η (tc−te))P (te)dH(te)

+

∫ tc

ti+xi

e−θ((1−κ)+ 1
η (tc−(ti+xi)))P (ti + xi)dH(te)

+

∫ ∞
tc

e−θ
1
η (tc−(ti+xi))P (ti + xi)dH(te)


πi(tc)dtc

+

∫ ∞
ti+xi+ηκ



∫ ti+xi

0

e−θP (te)dH(te)

+

∫ tc

ti+xi

e−θP (ti + xi)dH(te)

+

∫ ∞
tc

e−θκP (ti + xi)dH(te)


πi(tc)dtc. (E.1)
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After some algebra, we can rearrange (E.1) so that we can use the formulas of Appendix A (with g

replaced by g − φ) as follows.

Vi(xi) = A0 +
(
A1 + e−θ−gτ

) ∫ ti+xi

ti

e(g−φ)tcπi(tc)dtc︸ ︷︷ ︸
Use (A.2) with Z = −(g − φ).

+A2

∫ ti+xi+ηκ

ti+xi

e(g−φ)tcπi(tc)dtc︸ ︷︷ ︸
Use (A.3) with X = 0, Y = ηκ, Z = −(g − φ).

+A3

∫ ti+xi+ηκ

ti+xi

e−
θ
η (tc−(ti+xi))e(g−φ)(ti+xi)πi(tc)dtc︸ ︷︷ ︸

Use (A.3) with X = 0, Y = ηκ, Z = θ
η .

+A4

∫ ti+xi+ηκ

ti+xi

e−(φ+ θ
η )(tc−(ti+xi))e(g−φ)(ti+xi)πi(tc)dtc︸ ︷︷ ︸

User (A.3) with X = 0, Y = ηκ, Z = φ+ θ
η .

+A5

∫ ∞
ti+xi+ηκ

e(g−φ)(ti+xi)πi(tc)dtc︸ ︷︷ ︸
Use (A.4) with X = ηκ, Z = 0.

+A6

∫ ∞
ti+xi+ηκ

e−φ(tc−(ti+xi))e(g−φ)(ti+xi)πi(tc)dtc︸ ︷︷ ︸
Use (A.4) with X = ηκ, Z = φ

, (E.2)

where A0 ≡ −
φe−θ

g − φ
, A1 ≡

φ

g − φ
e−θ−(g−φ)ηκ +

φe−θ(1−κ)

g − φ+ θ
η

(
1− e−(g−φ+ θ

η )ηκ
)
,

A2 ≡
φe−θ−(g−φ)ηκ

g − φ
− φe−θ(1−κ)−(g−φ+ θ

η )ηκ

g − φ+ θ
η

, A3 ≡
g + θ

η

g − φ+ θ
η

e−θ(1−κ),

A4 ≡ 1− e−θ(1−κ), A5 ≡
g

g − φ
e−θ, A6 ≡ e−θκ − e−θ. (E.3)

The symmetric equilibrium holding period x∗∗ is determined by

dVi(xi)

dxi

∣∣∣∣
xi=x∗∗

= 0 ⇐⇒ e−g(ηκ+x∗∗) = K, (E.4)

where

K ≡
(

g

g − φ
e−ληκ − e−(λ+φ)ηκ

)
− φ

(
eθκ − e−ληκ

g − φ+ θ
η

+
e−ληκ

g − φ

)

− eθκ(g − φ− λ)

(
g + θ

η

g − φ+ θ
η

Λ

(
0, ηκ,

θ

η

)
− Λ

(
0, ηκ, φ+

θ

η

))
+ eθ

(
1−

(
g +

θ

η

)
Λ

(
0, ηκ, φ+

θ

η

))

is a constant. Rearranging (E.4) yields (5.5).
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