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Abstract

Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory
networks help explain the genome’s evolvability and robustness. These properties can be attributed to the structural
topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene
interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort
was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene
interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms,
the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we
substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and
repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred
Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological
plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the
phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative
nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes
in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters
that allows the systems to operate in the critical region. This new model includes experimentally derived biological
information and recent discoveries, which makes it potentially useful to guide experimental research. The update function
confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to
investigate.
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Introduction

Genes are the central pillar of biological evolution, and there-

fore of life as we know it. The various genome projects provided us

with lists of protein-coding genes which are thought to be fairly

complete for many organisms, including human beings. Much less

is known about the complex regulatory interactions among genes,

responsible for the dynamical processes that allow the genome to

shape the organism and its interaction with the environment. The-

se interactions can be represented as genetic regulatory networks

(GRNs) representing the regulatory effects of a gene on the others.

However interactions within these networks are very subtle, intri-

cate, and ill understood. While GRN sections of a few tens to a few

hundreds of genes are known in detail for several organisms, the

quality of the data drops dramatically as the network size grows.

Nevertheless, GRNs are currently considered among the most

important frontiers of biological sciences and are at the center of

tremendous research efforts from the biological community. The

increase of quantity and quality of the data generated in the field,

fostered by modern high-throughput technologies, is bound to

follow the same exponential trend as the gene sequencing did in its

time. In the meantime, however, it is possible, and useful, to

abstract many details of the individual GRNs in the cell and focus

on the system-level properties of the whole network dynamics.

This Complex Systems Biology approach, although not immedi-

ately applicable to any given particular case, still provides inter-

esting general insight.

An early dynamical model for GRNs was proposed in the late

60’s by Kauffman [1] and is known as random Boolean networks

(RBNs). This abstraction is very attractive due to its simplicity, yet

unveils interesting dynamical phenomena about how the network

structure and the gene-gene interactions are at the center of the

resilience to transcriptional errors, and yet evolvability of GRNs.

The dynamics of RBNs can be discriminated in two main regimes:
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the ordered regime, which is characterized by less changes in the

gene activations higher stability to transient faults and lower

sensitivity to initial conditions, and the chaotic regime, where gene

activation changes frequently, resulting in reduced stability and

increased evolvability. It has been suggested that cells operate at

the border between order and chaos, a regime called critical or the

edge of chaos [2–4]. Systems in this regime are capable of ex-

ceptional behavior: they show robustness to small perturbations,

and yet remain flexible enough to integrate external signals,

allowing the system to adapt to new conditions. This is true for

both organic [5,6] and non-organic systems [7] and it is a

signature feature of Complex Systems in general. A way to

visualize this phase transition into the critical regime makes use of

Derrida plots [8], which provide a method of classifying RBN

systems according to their dynamical behavior.

In previous works [9,10], we proposed an abstract model

of GRNs, based on Kauffman’s original RBNs that incorpo-

rates modern general knowledge on genes’ interactions. In

particular we challenged the assumptions of the random network

topology and the synchronicity of events. We proposed an update

scheme based on gene activation and we used scale-free topo-

logies as proposed by Aldana [11]. At the time, our model’s

purpose, just as Kauffman’s, was not to simulate the GRN of a

particular organism, but rather to investigate the general

dynamical properties of the ensemble of Boolean networks under

specific conditions.

In the present work, we analyze GRN three well characterized

biological subnetworks. In a related work, Balleza et al. [12] use

microarray data and canalizing functions to infer the nature of the

gene regulatory network interactions in several organisms. In this

work, we take advantage of extra information contained in real-life

GRNs, that is, the actual activating or repressing regulating effect

of the genes on one another, to propose an extension to the RBN

update function proposed by Li et al. [13]. This more biologically

sound update function, along with real-life network topologies, fills

another gap of the original Kauffman RBN model where the

nodes’ update functions are completely random.

Building on some very preliminary results [14], we deepen and

complete the investigation of the model, propose a numerical way

of discriminating the system’s regimes that complements Derrida

plots, and the slope of the curves at the origin. We also conduct a

full study of the systems’ attractor space, and we validate the model

using a third real-life instance of regulatory network proposed by

Li et al. [15].

This work is structured as follows: first, we describe the two real-

life regulatory networks tackled in our model in the next section.

Then we give an overview to RBN models, with particular

attention to the identification of their dynamical regime. We also

propose a new measure, the criticality distance, that allows to

numerically discriminate between systems’ regimes by analytically

capturing the entire information contained in Derrida plots. The

last part of this section is devoted to the description of the different

measures that have been proposed in the literature to characterize

the state space of RBNs. We also present the new Activator Driven

Additive node function, an extension of the RBN update function

proposed by Li et al. [13]. The regime characterization of this

update function applied to the two real-life regulatory network

substrates is discussed. Subsequently, we focus on validating the

new update function using a regulatory network where the actual

Boolean update functions are known. We describe and study the

state space of new RBN models, their dynamical behavior, and

their resilience to small perturbations. Finally, the last section

discusses the results obtained and outlines possible future lines of

research.

Methods

Yeast and Embryonic Stem Cells Regulatory Networks
In this section, we give details on the two cases of real-life

regulatory networks used in our model. The first one, proposed by

Chen et al. [16], is a part of the transcriptional regulatory network

of embryonic stem (ES) cells inferred from ChIP-seq binding

assays and from gene expression changes during differentiation.

The activating vs repressing character of the regulatory interac-

tions is not specified in Chen et al. [16]. We therefore resorted to a

published set of microarray data [17] , available form the GEO

database under accession GSE3231, where gene expression pro-

filing of ES cells was performed in a differentiation time-course

experiment. We computed the Pearson correlation coefficient of

the expression levels of the gene pairs linked in our network, and

considered as activating (repressing) the interactions associated to a

positive (negative) correlation coefficient. The second one,

described by Li et al. [13] and as used by Stoll et al. [18], is the

regulatory network underlying cell cycle in yeast. Both networks

have eleven genes. Figure 1 shows these networks, while Table 1

shows some of their statistical properties.

As the networks have too few nodes for a reliable statistical study

of their degree distributions, we cannot infer any similitudes of

neither the input nor the output degree distributions with either

original RBN’s random topologies, where the connectivity was a

constant, with Erdös-Renyi random networks, nor with Aldana’s

scale-free input, Poisson output distributions. To reliably establish

these degree distributions, one would need to sample at least

several tens of nodes for random graphs and many more over

several orders of magnitude for scale-free ones, due the long tail of

the distribution. However, these data are not currently available.

Thus the need to study the dynamical behavior, through Derrida

plots or other means, to determine the regime of our models. In

this work, we abstract details of the genes themselves, as their

individual properties do not have any consequences on the systems

dynamics, beyond their activating or repressing effect.

Random Boolean Networks Modeling
Random Boolean networks were introduced by Kauffman [1,4]

and over the years, numerous other different models have been

introduced [19–21], but RBNs remain very attractive in their

simplicity and ability to include novel concepts. In RBNs, each

node represents a gene whose state is a Boolean variable Si and

each directed edge, the influence of a gene on another.

The interconnection topology is considered to be a regular

random graph with exactly K incoming and K outgoing edges for

each gene. A distinct function is given to each node in order to

decide state changes according to the state of all in-neighboring

genes (i.e. those nodes having an edge directed to the considered

target gene). The lookup table describing the update function is

randomly generated according to a parameter p capturing the

probability that a gene’s state at the next time-step is active. The

state S(t) of the system at time t is defined as the ensemble of all

the nodes states fSi(t)gN
i~1. The state changes are fully deter-

ministic, synchronous and instantaneous.

Therefore, these systems, when starting from an arbitrary state

S at time t~0, will go through a set of transient states before

eventually cycling in a subset of one or more states called an

attractor. According to Kauffman [1,4], only attractors that are

short and stable to perturbations are of biological interest.

Driving RBN towards a model with biological application po-

tential, a few original assumptions become questionable. Namely,

the totally random interaction amongst genes with a fixed

connectivity K [1] or following a predefined degree distribution,

Additive Functions in Boolean Regulatory Models
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such as scale-free or Poisson [10,11]. In this work, we will take

advantage of the real-life topologies defined in the previous section

and use them as the substrate for our Boolean networks. Each gene

of the GRN will be replaced by a Boolean variable which specifies

whether or not the gene is expressed. In addition, we attach a

biologically inspired additive function to each node. In order to

investigate the soundness of using a particular update function

when modeling a the GRN of a specific organism, we compare the

dynamics with those of systems with random update functions.

Regimes of RBNs and how to identify them. Original

RBNs go through a phase transition at certain values of the fixed

degree K of the nodes and the probability p of expressing a gene in

the random update function. The critical regime can be achieved

by satisfying the equation: Kc(p)~½2p(1{p)�{1
. Thus, when the

parameter p is set to 0:5, the critical connectivity is achieved as

Kc(0:5)~2. If Kcw½2p(1{p)�{1
, the system will tend to be

chaotic, and ordered otherwise. Considering current knowledge

about GRNs, some of Kauffman’s model properties are now

subject to reconsideration.

In Aldana’s scale-free model [11], where the output degree

distribution follows a power-law p(k)*k{c, where k is the

variable node degree, this phase transition is obtained by setting c
around 2:5. In our case, we use real-life networks and not hand-

made ones, and thus, we cannot tune any property of the network

topologies to obtain the desired critical regime, or even to identify

the regime of one of our network. Instead we use a dynamical

property of the whole system which is represented by Derrida

plots, proposed by Derrida et al. [8], used by Kauffman [22], and

widely accepted as a method of discriminating the regime in which

RBN-like dynamical systems evolve.

This representation is meant to illustrate a convergence versus a

divergence in state space that can in turn help characterizing the

different regimes. It uses the Hamming distance H , defined as the

normalized number of positions that differ when comparing two

(binary) strings. These plots show the average Hamming distance

H(t) between any two states Sa(t) and Sb(t) and the Hamming

distance H(tz1) of their respective subsequent states Sa(tz1)
and Sb(tz1). Figure 2 shows a typical instance of Derrida plots

and curves for all three regimes. Derrida plots of systems in the

chaotic regime will remain above the main diagonal H(t)~
H(tz1), i.e. their distance tends to increase during a certain time,

then cross the main diagonal from above.

A Derrida plot is the graphical representation of the mapping

that relates the size of the perturbation avalanche on a RBN model

at two consecutive time steps. In a mean-field approximation, this

mapping can be shown to be a smooth continuous monotonously

increasing function, with only one stable fixed point that deter-

mines the dynamical regime in which the RBN operates. The va-

lue of this fixed point depends only on the slope (derivative) at the

origin of the mapping, often called the average network sensitivity [23].

However, this is an approximation, as the mean-field originally

applies to the thermodynamic limit with H?, which is not

reachable, not even in principle, in real biological networks, as

these are intrinsically made of too few genes. Even the notion of

Figure 1. Genetic Regulatory Networks. A representation of (a) the transcriptional regulatory network in ES cells and (b) the yeast cell-cycle
regulatory network. Arrows point from transcription factor to the target gene. Signs z (respectively {) represent activating (respectively repressing)
links.
doi:10.1371/journal.pone.0025110.g001

Table 1. GRN properties.

ES cell Yeast

N 11 11

mean degree 3.72 3.09

enhencer proportion 0.71 0.44

Statistical properties of real-life gene regulatory networks used in this study.
doi:10.1371/journal.pone.0025110.t001

Additive Functions in Boolean Regulatory Models
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derivative of the Derrida plot is ill-defined since the Hamming

distances are discrete values. Therefore analytical results relating

the slope at the origin of the Derrida plots to the regime, which

hold in the mean-field approximation in the thermodynamic limit,

cannot be relied upon in small biological systems. Nevertheless, the

Derrida plots we will derive empirically later in this work show a

behavior that is qualitatively similar to the one found in traditional

RBNs. Therefore, we use them in this section as first approxima-

tion to distinguish ordered, critical, and chaotic regimes. Then, in

order to account for the particular case of real-life biological

networks, we propose to use a new metric: criticality distance as

defined above. The criticality distance takes into account the fate

of perturbations of various strengths and can be used for finite

networks in which the notion of derivative is not well defined.

Systems in the critical regime remain on the main diagonal at

the beginning and then stay below the main diagonal. Ordered

systems remain under the main diagonal at all times. In other

words, systems in the critical regime we are interested in, which

lies in the ordered regime at the edge of chaos, are characterized

by Derrida curves that remain as close as possible to the main

diagonal before diverging.

As said before, the modules presented in this work show no sign of

a long-tailed degree distribution. Therefore, we are very far from

the limit in which there is a true phase transition with H?. In this

framework, we use the Derrida mapping as a first approximation to

investigate the dynamical behavior of the two models under random

update functions (RUFs). As we can not be certain that the mean-

field assumptions hold, we portray the state space of the two systems.

In these two RBN models it is obviously not possible to tune the

connectivity parameter K , since the interconnection topology is

fixed by experimental data. However, when the systems’ dynamics

are driven by the original nodes’ RUFs, the probability p could still

allow the two models to be in different regimes. The number of all

possible states for a given RBNs, i.e. with a single set of RUFs, is

2N , where N is the number of genes in the system. In our case,

N~11, therefore there are 211~2048 possible states. The set of

possible RUFs, even for a reasonably small subset of genes like the

present, makes exhaustive enumeration impossible for original

RBNs. Therefore, we resorted to statistical sampling by perform-

ing numerical simulation of 100 different sets of RUFs for each

value of p. At first, p varies in the interval ½0:1,0:9� by steps of 0:1.

Having identified the values of interest pi, we narrowed the

interval to ½pi{0:05,piz0:05� with a finer step of 0:01 to identify

the values pc that are closest to the critical region.

Figures 3 and 4 show Derrida plots with steps of 0:1 (a) and the

finer version (b), where we adapted the scale to best show the

regions of interest with a step of 0:01. As there are only 211

possible states, we computed average Hamming distances over

exhaustive enumeration of all possible states. In other words, we

identified all pairs of states fSa; Sbg that are at a distance

H(Sa,Sb)~1 and computed the average Hamming distance of

their subsequent states H(Sa
0
; S

0

b), and then moved on to a

distance H~2, H~3,…, H~11.

For the two regulatory network models, Figures 3 and 4, depict the

Derrida curves according to their values of p, as the RUF functions

are symmetrical for values of p:1{p. If not for sampling reasons,

pairs of curves would superimpose, and therefore, to facilitate the

interpretation of the results, we only plot curves for values of

p~f0:5,0:6,0:7,0:8,0:9g. As shown in the Figure 3a for transcrip-

tional regulatory network in ES cell, the interesting values of

pi&0:8{0:9, and symmetrically, pi&0:1{0:2. These are the

values we chose to investigate with finer steps in Figure 3b, revealing

Figure 2. Derrida plot. Derrida plot of the original RBN model (see
text).
doi:10.1371/journal.pone.0025110.g002

Figure 3. Derrida plots of RUFs for ES cell. (a) p[f0:5,0:6,0:7,0:8,0:9g (curves for p[f0:1,0:2,0:3,0:4g are not reported as RUF rules are
symmetrical), and (b) only values close to the critical gene expression value pc are investigated with refinement steps of 0:01. Please note the two
different scales in the axes.
doi:10.1371/journal.pone.0025110.g003

Additive Functions in Boolean Regulatory Models
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that in the case of ES cells the critical threshold value is close to

pc&0:87, and symmetrically pc&0:13.

Also for the case of the yeast cell-cycle regulatory network in

Figure 4a, we identified pi to approximately the same values, more

finely investigated in Figure 4b, where again pc&0:83, symmet-

rically pc&0:17.

Criticality Distance. If we consider synthetic systems, such

as the ones producing Figure 2, where the system’s properties de-

fine the regime, the slope of the curve at the origin is an adequate

measurement to confirm the system’s dynamical regime. Never-

theless, if we take the example of real-life systems we conclude that

this metric alone is not sufficient to capture the divergence of the

system over the entire range of Hamming distances. Indeed, two

curves with identical slopes at the origin, thus in the same regime,

can then diverge from each other. In natural systems, we cannot

fine tune the properties in order to set the regime to critical, we

merely try to identify in which cases we are closest to the critical

regime. If we take the example the Derrida curves of two systems

in the ordered regime diverging despite identical slopes at the

origin, we still can assume that the system with the curve closest to

the main diagonal is the one closer to the critical regime. In order

to address this and try and get a feel for the systems behavior over

the whole spectrum of H , we propose a single numerical value that

characterizes the distance of a system’s Derrida plot to the main

diagonal. This new normalized criticality distance (D) takes into

account that the closeness to the main diagonal is more important

for smaller values of H . The normalized criticality distance is

obtained as follows:

D~
XN

n~1

1

Hn

 !{1XN

n~1

Hn{H ’n
H2

n

����
����

where n varies over all possible values of the Hamming distance

H , therefore Hn~n. H ’n is the average Hamming distance of the

subsequent states of all couple of states at distance Hn. The closer

D is to zero, the closer our system is to the critical regime, and

therefore, the more interesting it is for in the context of this work.

We use this new metric, in addition to the Derrida plot, to

determine for which parameter sets the investigated systems are in

the critical regime. We suggest to use both metrics together, as

Derrida plots discriminate whether a system is in the ordered or

chaotic regime, while the criticality distance quantifies how close

the previously determined regime is to the critical phase transition.

Figure 5 below shows how the minimal value D evolves with

Figure 4. Derrida plots of RUFs for yeast cell. (a) p[f0:5,0:6,0:7,0:8,0:9g (curves for p[f0:1,0:2,0:3,0:4g are not reported as RUF rules are
symmetrical), and (b) only values close to the critical gene expression value pc are investigated with refinement steps of 0:01. Please note the two
different axes scales in the figures.
doi:10.1371/journal.pone.0025110.g004

Figure 5. Minimal Criticality Distances of Random Update functions. Criticality distances computed for each gene expression probability of
RUF for both ES cells (a) and Yeast (b) from the Derrida plot/HD data.
doi:10.1371/journal.pone.0025110.g005

Additive Functions in Boolean Regulatory Models
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respect to the probability of gene expression p of each nodes’

internal update function.

In Figure 5, we show D values for gene expression probabilities

p by steps of 0:1 over the entire spectrum. We refine the study

around the minima with steps of 0:01. Although the random

update functions of RBNs are symmetrical with respect with p and

1{p, the solution space of all possible Boolean functions is much

too big to be exhaustively explored, we therefore chose to sample

1000 different random update functions and average out the

results. The fluctuations observed in Figure 5b can be explained by

the sampling of this particular simulation.

For both networks the results obtained for pc using the Derrida

plots, although not equal, agree with that found using the

criticality distance. In the case of ES cells, the approximate

minimal pc&0:15,0:87 and for yeast cell cycle, pc&0:83. Again,

the fluctuation in the function’s symmetry are due to a sampling

effect.

Modeling the Yeast and the Embryonic Stem Cells
Regulatory Networks

In the original RBN model, each node was assigned a

deterministic distinct random update function (RUF). Even if

their exact values are unknown, it is clear that gene update

functions should not be random. Recent results suggest that genes

expression rests on the combined effect of regulatory inputs that

can have either an activating (z) or repressing ({) action on their

target genes. Nowadays, it is believed that the subset of Boolean

functions approximating the genes’ regulation can be of two types,

depending on the genes and the system at hand: canalizing

combinatorial function [24] or additive function [25]. In this work,

we focus on the latter to better match certain real-life regulation

mechanisms, where the influence of the genes upstream of the

target, along with its own current activity state, could be summed

in a way that takes into account the activating or repressing effect of

each influencing node. Evidence of canalizing functions (e.g. XOR)

can be found in modules of GRNs and have been studied

throughly [23,26]. In this work we analyze the effect of a different

type of Boolean update function that was proven to regulate a

majority of genes in specific cases of GRNs. Indeed, many studies

(see e.g. [27–29]) have shown that models in which the

contribution of different transcription factors to the regulation of

a target gene is treated additively can successfully explain a

significant part of the variation in gene expression. Recently an

additive model was shown [30] to explain up to 65% of the gene

expression variation in the same biological context (embryonic

stem cells) as one of our networks.

Li et al. [13] proposed a simple additive dynamical rule that

characterizes the temporal evolution of the state variable. They

consider that both the activating and repressing factors have the

same weight, and thus, the state of a target gene at the next time-

step Si(tz1) will be: active (1) if it receives a majority of activating

components from already active genes, inactive (0) it receives a

majority of repressing components, or the state of the target gene

will remain unchanged in the case the number of activating and

repressing inputs are equal. Inspired by their work, we propose an

update function shared by all genes that takes into account the fact

that activating and repressing components could have uneven effects.

In this case, a gene could require a majority by more than one

active input to switch states. Therefore we introduce a threshold

value Ti, for the i-th gene, which has to be reached in order for a

gene to become active. The principal reason that motivates this

further investigation on the model proposed by Li et al. is the

presence in most of recent models of a kind of threshold value for

the activation of genes (see, for example the review [25]). A gene’s

activation state at the next time-step tz1 is now given by:

Si(tz1)~

active (1)

inactive (0)

S(t)

if
P

j

wj Sz
j wTi|(

P
j

wj Sz
j z

P
j

wjS
{
j )

if
P

j

wj Sz
j vTi|(

P
j

wj Sz
j z

P
j

wjS
{
j )

otherwise

8>>><
>>>:

Where Sz
j (S{

j ) is the state of an activator (repressor) of the target

gene, and wj is the weight of each specific edge (i.e. regulating

effect). In this first study, and in the absence of actual system’s

specific quantified values of either Ti or wj we assume a common,

yet variable, threshold value T for all genes, and a identical weight

w~1 for all connections. Moreover, as we are studying modules

(sub-networks) of GRNs, and not complete ones, some genes of

our model might not have any repressors. Thus, if activated, these

genes remain expressed permanently. In the case where an active

gene has no repressor at all, we automatically repress it at the next

time-step, simulating a gene-product decay rate that exceeds the

production time. The update function presented in this section is

equivalent to Li’s in the case where T~0:5. We call our model for

update function the Activator Driven Additive function (ADA).

It can be easily proven that all rules in this class correspond to a

subset of the RUFs [31]. In fact, once given, for each node, the

activating and repressing effects of its neighbors, for each possible

configuration of the neighborhood, the lookup table of the

corresponding additive rule of the node can be constructed. In

this form it can be easily recognized as an instance of the RUFs in

the original Kauffman’s RBN model. Therefore, by using ADA

functions with different T-parameter values in a RBN model, we

are exploring the behaviors of a subset of classical RBNs.

Another interesting implication of this update function is that

under this assumption the synchronous timing of the events

coincides with the semi-synchronous topology driven update

scheme we recently investigated in [10]. This update sequence is

neither fully synchronous nor asynchronous, but rather takes into

account the sequence in which genes affect each other. In this

scheme, only the activation of an activator or a repressor will have

an effect on the list of nodes to be updated at the next time-step.

Thus, the set of all nodes that have to be updated in each time step

is formed by those genes that have at least an in-neighboring active

gene, even when a RUF is used to evolve the model. On the other

side, when an ADA function is employed, in a synchronous timing

of the update events, a node is actually updated only if it has at

least an in-neighboring active gene.

Results

Regimes Characterization in Real-Life Networks
Just as the probability p can change Kauffman’s original

systems’ regime from chaotic to ordered for a given connectivity K
and set of RUFs, the T-parameter in our ADA model can change

its regime. In the following section, we show for which values of T
our model of real-life topology based Boolean networks using ADA

exhibit a phase transition, and compare the dynamics of the two

update functions.

As discussed previously, the space of all possible states for a

given RBNs is 2N , where N is the number of genes in the system.

In our case, N~11, therefore there are 211~2048 possible states.

In the case of ADA, where all nodes share the same Boolean

update function, exhaustive enumeration is possible. At first, we let

the threshold T parameter vary in the interval ½0:1,0:9� by steps of

0:1. After identifying the values of interest Ti, we narrowed the

interval to ½Ti{0:05,Tiz0:05� with a finer step of 0:01 to identify
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as precisely as possible the values Tc that are closest to the critical

region. As there are only 211 possible states, and thus the

maximum Hamming distance Hmax~11, we computed average

Hamming distances over exhaustive enumeration of all states. In

other words, we identified all pairs of states fSa; Sbg that are at a

distance H(Sa,Sb)~1 and computed the average Hamming

distance of their subsequent states H(Sa’,Sb’), and then moved

on to a distance H~2, H~3, , H~11.

The left-hand sides of Figures 6 and 7 show Derrida plots with

steps of 0:1. The regions of interest for the T values are Ti&0:7
for ES cells. Let us note that in the ADA case, contrary to RUF,

update rules are not symmetrical with respect to T and 1{T .

For yeast cell-cycle, we see two regions worth investigating

Ti&0:2{0:3 and Ti&0:7. The in-depth examination of ADA

simulation results for values of the Ti parameter demonstrate that

results become undistinguishable (thus, figures are not shown)

when the step between T values becomes small. This is due to the

fact that the ADA function is less sensitive to T for genes with a

low input degree. In the case of ES cells, Tc&0:68. In the case of

yeast, the Derrida plot suggest two values of Tc&0:25 or Tc&0:6.

In this last value of Tc~0:6, curves for several very close values of

T coincide. Now, we use the criticality distance to chose the Tc

closest to the phase transition: Tc&0:25. We report the Derrida

plots and criticality distances for both systems in Figures 6 and 7.

In order to increase the readability of the results, we chose not

to include the results of the refined simulations with steps of

T~0:01. Nevertheless, summarize these results in the Table 2.

From these results, we observe that the ADA-thresholds T have

comparable values in the two GRNs studied in this paper:

TES
c &Tyeast

c . The same applies to the probabilities pc of gene

expression in RUF.

Validation of the Model on a Network with Known Update

Rules. The two partial GRNs previously presented are practical

Figure 6. Critical threshold. Derrida plots and Criticality Distances of Activator Driven Additive functions for the mouse embryonic stem cell
regulatory network.
doi:10.1371/journal.pone.0025110.g006

Figure 7. Critical threshold. Derrida plots and Criticality Distances of Activator Driven Additive functions for the yeast cell-cycle regulatory
network.
doi:10.1371/journal.pone.0025110.g007

Table 2. Real-life networks critical values.

RUF p values ADA T values

order critical chaos order critical chaos

ES cell 0.1, 0.9 0.13, 0.87 0.5 0.2 0.68 N/A

yeast cell 0.1, 0.9 0.17, 0.83 0.5 0.9 0.25, 0.6 0.4

For systems under RUF, we show the function’s gene expression probability p

values for all three regimes, for both ES cells and Yeast cell-cycle. In the case of
ADA, we give threshold values T also for all three regimes and both studied
networks.
doi:10.1371/journal.pone.0025110.t002
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RBN models of dynamical regulatory interaction networks as they

are small enough to study exhaustively all 211 possible states of the

system. Therefore, we can fully define the update functions for

each node and every possible input combination. Yet, in these

particular cases, we have nothing to compare these functions

against. In order to validate ADA update functions, we used

another regulatory network presented in [15].

In this work, Li et al. define a dynamic Boolean model of plant

guard cell abscisic acid (ABA) signaling. This hormone allows plants to

adjust water conservation within the organism. In the original model

presented, the regulatory network is made of 42 cellular components.

For each of these components, in addition to their connections, the

authors defined the Boolean function that decides the state of each

component at the next time-step. This new information can help us

assess the validity of the ADA update function.

ABA Network Reduction. Another helpful feature of the

ABA regulation network is that 4 of the components have a

predefined Boolean value and those do not have an update

function attached to them. This allows us to replace these constant

components (i.e. that are assigned a Boolean value) in the update

function of the 38 remaining ones, and then to replace some more

that become constant. For example:

ABA~ABH1~ERA1~AGB1~True

SphK~ABA

S1P~SphK

GPA1~(S1P or not GCR1) and AGB1

becomes after simplification:

ABA~ABH1~ERA1~AGB1~True

SphK~True

S1P~True

GPA1~(True or not GCR1) and True~True

Following this logic, the fully simplified ABA network becomes:

NOS~Ca2zc

NO~NOS

GC~NO

ADPRc~NO

cADPR~ADPRc

cGMP~GC

PLC~Ca2zc

InsP3~PLC

CIS~(cGMP and cADPR) or InsP3

Ca2zATPase~Ca2zc

Ca2zc~CIS and (not Ca2zATPase)

KAP~not Ca2zc

KEV~Ca2zc

This new simplified network is reduced to only 13 components

and it is therefore possible to enumerate all possible 213 states.

Determining the ADA model’s regime. In order to

determine the regime in which the ABA model evolves, we used

the Derrida plots, shown in Figure 8. The criticality distance is not

as useful in this instance, as there is no comparison to be made.

The Derrida plot of the ABA model with real-life update fun-

ctions depicted in Figure 8 clearly shows that the system evolves

near the critical regime. Therefore, we use the Derrida plots and

criticality distance D to determine the critical values pc of RUF,

respectively Tc for ADA, when each of these function families is

substituted in the simplified ABA model. In the case of RUF, we

average out the results over 100 sets of different update functions.

Derrida plots for ABA system with ADA update over the full scope

of T[½0:1,0:9� values together with the corresponding evolution of

the criticality distance are shown in Figures 9(a) and 9(b). The plot

for RUFs over the same range of p values is depicted in Figures 9(c)

and 9(d).

From the analysis of the figures above, we observe that in the

case of ADA (Figure 8(b)), there are only two values of the

criticality distance, one for T~0:5 and a larger one for T=0:5.

The first one is the closest to the original ABA model critical

regime when Tc~0:5. Arguably, there is very little difference in

the system’s dynamical behavior as T changes. This is due to the

fact that 11 out of the 13 genes in the ABA model have a single

input upstream gene. The system is close to critical for any value of

T (see Derrida plot in Figure 9(a)) and therefore rather insensitive

to the parameter T .

In the case of RUF (Figures 9(c) and 9(d)), the closest gene

expression value to the regime of interest is pc~0:6.

Comparing ADA, RUF and real-life functions. Using the

ABA network described above, we have fully defined each node’s

lookup table according to its real-life function. Subsequently, we

have replaced the original update functions of each node with

ADA functions and Tc~0:5 to define the new lookup tables. This

allows us to compare in a very straight forward manner how close

ADA is to this specific case real-life activations. In addition, we

have also replaced the set of node functions by a sample of 100
RUFs and pc~0:6, and averaged out the results. In order to keep

the measurements simple, we have computed the normalized

Hamming distance between the real-life ABA function and ADA,

or respectively RUF. Each node’s lookup table size is 2kinz1, where

kin is the node’s incoming degree. Therefore, the added size of all

nodes lookup tables is 11|22z1|23z1|24~68.

Figure 8. Regime of the ABA model. Derrida plot of the simplified
ABA model with the original real-life update functions.
doi:10.1371/journal.pone.0025110.g008
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In the case comparing ABA and ADA, the Hamming distance

H(ABA,ADA)~6=68~0:088, which means that the functions

outcome overlap by more than 90%. Therefore, we can assume

that in the specific system described above, the real update

function is very close to an additive one. We contrast this result

with that comparing RUF to ADA, where the average Hamming

distance over the 100 RUF sets is �HH(RUF ,ADA)~17:1=68~
0:251&25%. These results show that in this particular case,

ADA is significantly closer to the real-life ABA function than a

random function. Although this finding cannot be generalized at

this time, it suggests that at least in some cases, the ADA function

ought to be closer to the real-life update function of a regulatory

network system.

Dynamical Behaviors of Real-Life Regulatory Networks
A key notion underlying the behavior of deterministic discrete

dynamical networks is that they organize their state space into a set

of basins of attraction. When a discrete dynamical network per-

spective is used to investigate genetic regulatory networks beha-

viors, understanding how the range of stable cell types can exist

with identical genes becomes clearer. Different attractors into

which network dynamics settles from various initial states can be

seen as cell types or modes of growth for unicellular organisms,

while the trajectories leading to attractors can be seen as the

pathways of differentiation.

To better understand real-life regulatory networks, it is not

enough to qualify their regime by Derrida mapping only. It is

therefore useful to portray their state space. Several measures have

been proposed to characterize the state space of a dynamical

network by Wuensche [32]. Of particular interest are the number

and lengths of the attractors in the state space, together with the

sizes of the basins of attraction. Finally, according to Wuensche

[32]: ‘‘high leaf density, high branching, short transients, and small

attractor cycles indicate order’’. Leafs are states of the state space

that do not have any predecessor, while transient times and branch

lengths are the time steps (i.e. number of states) necessary from a

state and a leaf respectively to reach its attractor. If it is generally

accepted that entire GRNs operate in the critical regime, it is also

clear that modules, or sub-networks, function in different

dynamical regimes. It is therefore useful to study the dynamical

behavior of our systems in all three regimes.

In the following sections, we study the dynamical behavior of ES

cells and yeast cell-cycle separately. In both cases we compare

results obtained using the ADA update function and those

obtained using random update functions found in classical RBN.

In the case of ADA, where the update function is unique, we

exhaustively enumerate the entire state space a single time. On the

contrary, in the case of RUF, we sample 1000 different sets of rules

unique to each gene. This is the reason why there is standard error

information only in the RUF case.

Simulation of the Embryonic Stem Cell Regulatory

Networks. Using the model of mouse embryonic stem cell

regulatory networks with ADA, we constructed systems in the two

available regimes: ordered and critical. Indeed there is no value of

Figure 9. Critical threshold and gene expression probability. Derrida plots (a)(c) and criticality distance vs. the threshold (b), respectively
gene expression probability (d). The upper row (a)(b) shows the ABA system where the original rules have been replaced by ADA update function. In
the lower row (c)(d), rules have been replaced by RUF and results are averaged over 100 random rules sets.
doi:10.1371/journal.pone.0025110.g009
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T that clearly puts the system in the chaotic phase. Therefore, we

use Torder~0:2 and Tc~0:68 for the unique ADA model. On the

other hand, we built 1000 RUF models of the ES systems, with as

many different sets of unique rule in each gene. In the RUF case,

porder~0:1, pc~0:13, and pchaos~0:5.

Figure 10 shows the numerical simulations results in terms of

number of attractors for ADA, respectively average number of

attractors for RUF, average attractor lengths, and average basin

size. Error bars represent the standard error.

In the case of ES cells, we observe an increase in the number

and length of the attractors, explaining the shrinkage in the basins’

sizes, as the systems are getting more chaotic. This agrees with

previously obtained results on lager network models [10], and it is

aligned to Kauffman’s conjecture that the biggest increase in this

characteristic should happen in the chaotic regime. In the ADA

case, we find more attractors of shorter length than in the case of

RUF, almost all being point attractors. Between RUF and ADA

models, mean transient times and mean branch lengths do not

differ, showing a tendency to considerably increase in the chaotic

regime. In ordered and critical regimes, the mean branch lengths

and transient times are very short (smaller than 2 states), ex-

plaining the close to 1 probability of having leaf-states. These

measures suggest that considering ADA functions we are focusing

on a more biologically interesting and plausible subset of RUFs.

Simulation of the Yeast Cell-Cycle Regulatory Net-

works. In contrast with the mouse embryonic stem cell regu-

latory network, the yeast cell-cycle one with ADA can be found in

all three regimes. Simulations for networks in the different regimes

and with both RUF and ADA functions have been performed in

the same manner as for the ES model. Figure 11 shows the

numerical simulations results in terms of number of attractors for

ADA, respectively average number of attractors for RUF, average

attractor lengths, and average basin size. Error bars represent the

standard error.

In this case, while RUF behaves as expected with a growth in

the number of attractors as the systems moves to chaos, sur-

prisingly, the opposite behavior can be observed when ADA

functions are employed. When considering basin entropy H , as

expected RUF models tend to show higher values in critical

and chaotic regimes. On the contrary, ADA systems’ entropies

Figure 10. Attractor space analysis. Numerical simulation results for the ES model. (a) Attractors (average) number, (b) attractors average lengths,
and (c) the average basin of attraction size. The statistics are computed on samples of RUF systems, hence the standard error bars, and exhaustively
on ADA systems.
doi:10.1371/journal.pone.0025110.g010

Figure 11. Attractor space analysis. Numerical simulation results for the yeast model. (a) Attractors (average) number, (b) attractors average
lengths, and (c) the average basin of attraction size. The statistics are computed on samples of RUF systems, hence the standard error bars, and
exhaustively on ADA systems.
doi:10.1371/journal.pone.0025110.g011
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dramatically drops from 0:6 in the ordered regimes to 0:3 in the

critical one and to 0:1 when chaotic. This behavior could be

expected if the decrease in the number of attractors was signi-

ficant, which is not the case here. Therefore, we are witnessing the

dominance in their basin sizes of a small number of attractors.

These yeast cell-cycle systems thus show a biologically interesting

feature, compatible with the assumption that attractors correspond

to cell-cycles. Mean attractors lengths, basin sizes, transient and

branch lengths, and probability of leaf-states show an identical

behavior to that of ES cell regulatory networks.

Resilience to Small Perturbations
Failures in systems can occur in various ways, and the pro-

bability of some kind of error increases dramatically with the

complexity of the systems. They can range from a one-time wrong

output to a complete breakdown and can be system-related or due

to external factors. Living organisms are robust to a great variety

of genetic changes, and since RBNs are simple models of the

dynamics of biological interactions, it is interesting and legitimate

to ask questions about their fault tolerance aspects.

Kauffman [33] defines one type of perturbation to RBNs as

‘‘gene damage’’, that is the transient reversal of a single gene in the

network. These temporary changes in the expression of a gene are

extremely common in the normal development of an organism.

The effect of a single stimulus can transiently modify the activity of

a gene, resulting in a growing cascade of alternations in the

expression of genes influencing each other. Although not agreed

by all, some believe this to be at the origin of the cell differentiation

process and guides the development.

The precise structure of attractor basins is of interest as it may

reflect the stability of cell types to perturbation. A set of similar

states can be specified for example that differ by one bit from a

reference state (a Hamming distance of one). The distribution of

the set across the basin of attraction held indicates the network’s

response to a one bit perturbation to its current state of activation.

The dynamics of the system might remain in the same basin or flip

to a different basin.

For both the mouse embryonic stem cell and the yeast cell-cycle

regulatory networks, we computed pHD, the probability that two

states at Hamming distance of one belong to the same basin of

attraction. The two network models are studied both with RUF

and ADA update functions. In the case of ES cells, both update

functions show identical pHD in the ordered regime, while in the

critical region pADA
HD wpRUF

HD . This same relationship holds in the

critical regime of the yeast cell-cycle system, even though

pADA
HD vpRUF

HD in the order. Therefore, in the critical region the

ADA function shows higher probability, thus better resilience to

single-gene perturbations. These numerical results are shown in

the Table 3.

Discussion

Taking into account recent years’ advances in the field of cellu-

lar biology, we have proposed to identify under what conditions

Kauffman’s hypothesis that living organism cells operate in a

region bordering order and chaos holds. This property confers to

organisms both the stability to resist transcriptional errors and

external disruptions, and, at the same time, the flexibility necessary

to evolution. We studied two particular cases of genetic regulatory

networks found in literature in terms of complex dynamical

systems derived from the original RBN model. Therefore, we

compared the behavior of these systems under the original update

function and a novel additive function that we believe is closer to

the actual role of living organisms.

The proposed functions, here called Activator Driven Additive

(ADA), correspond to a subset of all possible Boolean functions of

the original random Boolean network model. Moreover, using this

set of update rules, the synchronous timing of the events coincides

with the semi-synchronous topology driven update scheme we

recently investigated. This update sequence is neither fully

synchronous nor asynchronous, but rather takes into account the

order in which genes affect each other. This new update function,

although very basic, shows excellent results in the case of biological

organisms’ GRN models, and have the advantage that the results

are reproducible, whereas this is not true with random update

functions that are, by definition, different with every simulation.

In order to investigate the dynamical behaviors of this new

model, we visualized the phase transition between order and chaos

into the critical regime using Derrida plots. We also proposed a

new measure, the criticality distance, that allows to numerically

discriminate between different regimes by the method implement-

ed by Derrida plots. The two measures are complementary and

should be used in conjunction. In fact, the criticality distance

quantifies how close the system’s regime determined by Derrida

plots is to the critical phase transition.

Simulation results on two real-life genetic regulatory networks,

the yeast cell-cycle and the mouse embryonic stem cell, show that

there exist parameter settings in both update functions that allow

the systems to operate in the critical region, and that these values

are comparable in the two case studies. Both Derrida plots and

criticality distances agree on the numerical values of the parameter

for which the transition into the critical regime takes place. To

better understand real-life regulatory networks, it is not enough to

qualify their regime. The state spaces of the two real-life GRNs is

portrayed using RBN-specific statistical measurements, confirming

that the two systems operate at the edge of chaos. Moreover, in the

critical regime, we show that ADA systems exhibit superior tole-

rance to transient perturbations than classical RBNs.

To validate ADA update functions, we used another bio-

chemical regulation network operating near the critical regime (as

confirmed by Derrida plot). For each node of this network, in

addition to their connections, the authors defined the Boolean

function that decides the state of each component at the next time-

step. This new information can help us to assess the validity of the

ADA update function. These results show that in this particular

case, ADA is significantly closer to the real-life function than a

random function. This also comforts us that, at least in some cases,

the ADA function ought to be closer to the real-life update

function of a regulatory network system.

A crucial step in order to bring the model closer to biological

soundness could consist in considering different threshold values

for each node and different weights for each regulatory edge. The

resulting nodes’ ADA update functions could drive the model

toward more realistic patterns of gene regulation dynamics.

Table 3. Resilience to small perturbations.

RUF ADA

ES cell 0.83 0.9

yeast cell cycle 0.76 0.86

Probability pHD that two states at Hamming distance of one belong to the same
basin of attraction for both systems under RUF and ADA. The resilience to faults
of ADA is consistently superior.
doi:10.1371/journal.pone.0025110.t003
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Moreover, we consider combining the canalizing combinatorial

functions and the additive functions within the same model.

Finally, this new model should be validated on larger gene regu-

latory networks of different biological organisms.
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