Forensic Science International: Digital Investigation 42 (2022) 301407

Contents lists available at ScienceDirect

Investigatpw

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

DFRWS 2022 USA - Proceedings of the Twenty-Second Annual DFRWS USA

5

FRASHER — A framework for automated evaluation of similarity
hashing

Check for
updates

Thomas Gobel *°, Frieder Uhlig b Harald Baier ?, Frank Breitinger ©

2 Research Institute CODE, Universitat der Bundeswehr Miinchen, Munich, Germany
b Technical University Darmstadt, Darmstadt, Germany
€ School of Criminal Justice, University of Lausanne, 1015, Lausanne, Switzerland

ARTICLE INFO ABSTRACT

Article history: A challenge for digital forensic investigations is dealing with large amounts of data that need to be
processed. Approximate matching (AM), a.k.a. similarity hashing or fuzzy hashing, plays a pivotal role in

solving this challenge. Many algorithms have been proposed over the years such as ssdeep, sdhash,

Keywords: MRSH-v2, or TLSH, which can be used for similarity assessment, clustering of different artifacts, or
¥'35t framework finding fragments and embedded objects. To assess the differences between these implementations (e.g.,
est cases

in terms of runtime efficiency, fragment detection, or resistance against obfuscation attacks), a testing
framework is indispensable and the core of this article. The proposed framework is called FRASHER
(referring to a predecessor FRASH from 2013) and provides an up-to-date view on the problem of
evaluating AM algorithms with respect to both the conceptual and the practical aspects. Consequently,
we present and discuss relevant test case scenarios as well as release and demonstrate our framework
allowing a comprehensive evaluation of AM algorithms. Compared to its predecessor, we adapt it to a
modern environment providing better modularity and usability as well as more thorough testing cases.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Evaluation framework
Approximate matching
Similarity hashing

Fuzzy hashing

Similarity digest algorithm

1. Introduction 1.1. Problem

A survey conducted by Singh (2021) states that 65% of practi-
tioners utilize approximate matching (AM) during their in-
vestigations to filter out relevant artifacts. Hence, AM has arrived in
the daily routine of the digital forensic process. According to the
authors, AM is mainly used to identify related (i.e., similar) docu-
ments. However, besides similarity detection, AM can be used for
embedded object detection (e.g., a malware embedded in a file),
fragment detection (e.g., detecting file fragments in network
traffic), and clustering of files (e.g., revealing artifacts with similar
content) (Breitinger et al., 2014).

* Corresponding author.

E-mail addresses: thomas.goebel@unibw.de (T. Gobel), frieder.uhlig@stud.tu-
darmstadt.de (F. Uhlig), harald.baier@unibw.de (H. Baier), frank.breitinger@unil.ch
(F. Breitinger).

URL: https://[www.tu-darmstadt.de/, https://www.unibw.de/digfor, https://
www.FBreitinger.de

https://doi.org/10.1016/.fsidi.2022.301407

Since the presentation of ssdeep and hence the introduction of
AM, a variety of different algorithms have been published, such as
sdhash, MRSH, and TL.SH. However, there is currently no consensus
in the community, which AM algorithm suits best for a particular
use case (Singh, 2021). It lacks a comprehensive testing framework
that provides reliable metrics, which algorithm fits best for a given
use case, rather than basing the outcome of an investigation on
default tool settings or personal experiences. Such a framework
also allows to automatically compare AM algorithms to uncover
their strengths and weaknesses, respectively; so far comparisons
have mostly been done manually.

1.2. Contribution

According to Breitinger et al. (2014), AM may operate on the
byte, semantic, or syntactic level. This work aims at solving the
raised issue with respect to bytewise AM algorithms. We provide an
up-to-date view on the problem of evaluating AM algorithms with
respect to both the conceptual and the practical aspects. With
respect to the practical aspects, we present our open-source test

2666-2817/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.goebel@unibw.de
mailto:frieder.uhlig@stud.tu-darmstadt.de
mailto:frieder.uhlig@stud.tu-darmstadt.de
mailto:harald.baier@unibw.de
mailto:frank.breitinger@unil.ch
https://www.tu-darmstadt.de/
https://www.unibw.de/digfor
https://www.FBreitinger.de
https://www.FBreitinger.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301407&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301407
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301407

T. Gobel, E. Uhlig, H. Baier et al.

framework called FRASHER allowing comprehensive evaluations of
AM algorithms. FRASHER follows a modern design and is platform
independent as it is implemented in Python and follows a modular
architecture with well-defined interfaces. The modular concept
allows integrating new algorithms and new test cases. Hence,
automation of the evaluation process and usability as additional
requirements are satisfied, too. With respect to the conceptual as-
pects, we present and discuss meaningful test cases with a special
focus on the use case class containment as a benefit of bytewise AM
(e.g., fragment detection, embedded object detection). As a
demonstration, we assess several algorithms and summarise the
results.

1.3. Comparison with existing work

Automating the testing for AM algorithms is not new and has
been discussed about a decade ago by Breitinger et al. (2013), who
presented FRASH as the main inspiration of our work. Conse-
quently, several tests and strategies of FRASH have been integrated
into our framework FRASHER. In particular, three tests with respect
to efficiency (generation efficiency, comparison efficiency and
compression efficiency) as well as three sensitivity and robustness
tests (single common block, fragment detection and alignment
robustness) are inherited from FrasH. Novel innovations are: a
new implementation in the well-known scripting language Python
and a more modular design (we argue that this is an increase of
usability), more supported and recent AM algorithms (at the time
of writing this paper: 7 instead of 2), broader test cases which are
based on Baier and Breitinger (2011); Breitinger et al. (2012);
Breitinger and Baier (2012a); Oliver et al. (2014); Chang et al.
(2015), such as reduction of similarity or emulation of similarity
as well as providing a visualisation component (test results of
FRASH were exclusively text based where FRASHER supports
plotted graphs).

14. Article structure

In Section 2 we discuss the current research and typical use
cases of similarity hashing algorithms to motivate our framework
and our test classes. In Section 3 we introduce the concept and
design of FRASHER followed by Section 4, where we discuss our
conceptual evaluation methodology for the AM algorithms. Next,
Section 5 presents the implementation of FRASHER, while Section 6
highlights the results of our sample evaluation. Lastly, Section 7
outlines some limitations of our current framework and opportu-
nities for future work.

2. Related work

Kornblum (2006) introduced a context triggered piecewise
hashing (CTPH) algorithm known as ssdeep and evaluated his
algorithm with respect to runtime performance (compared to some
cryptographic hash functions like MD5 or SHA256) and detection
performance (with respect to the use cases altered document
matching and partial file matching). A more detailed analysis of
ssdeep with respect to the runtime efficiency was done by
Breitinger and Baier (2011) and resistance against obfuscation at-
tacks by Baier and Breitinger (2011). However, the respective
analysis was done manually and for one algorithm.

Roussev et al. (2007) presented a variation of ssdeep called
multi-resolution similarity hashing, also known as mrshash.
Roussev continued his work and later presented the similarity
digest algorithm sdhash (Roussev, 2010) which was evaluated
with respect to fragment detection. In a subsequent study he
manually compared ssdeep and sdhash, where his three test

Forensic Science International: Digital Investigation 42 (2022) 301407

cases were embedded object detection, single-common-block file
correlation, and multiple-common-blocks file correlation (Roussev,
2011). Breitinger et al. (2012) performed an in-depth manual
assessment of the implementation of sdhash and evaluated its
obfuscation resistance.

Breitinger and Baier (2012b) presented an updated version of
mrshash known as MRSH-v2 and introduced eligible properties of
similarity preserving hashing. The authors first enumerated general
properties for similarity preserving hashing (compression, ease of
computation, similarity score) and then introduced two security
properties (coverage and obfuscation resistance). As use cases the
authors proposed file identification and fragment detection and
evaluated MRSH-v2 against these properties and use cases, again
without any automation. The same applies to the mrsh-c£ algo-
rithm presented by Gupta and Breitinger (2015), which replaces the
Bloom filter with a cuckoo filter.

As categorization of AM supports the evaluation methodology,
some work was done in this area, e.g., Martinez et al. (2014); Lee
and Atkison (2017); Ribeiro et al. (2017). A categorization based
on behavioral characteristics was recently proposed by Martin-
Pérez et al. (2021) which consists of three categories:

o Feature Sequence Hashing: This category encompasses algo-
rithms that split the input into features measuring the similarity
of the input by feature sequences. Well-known representatives
of this category are ssdeep, sdhash and MRSH-v2.

Byte Sequence Existence: This category comprises the algo-
rithms that identify the existence (or similarity) of byte se-
quences (called blocks) in the input. The similarity score is
calculated by comparing the number of common blocks be-
tween similarity digests. Well known representatives are the
algorithms simHash, mvHash-B and LzJD.

Locality-Sensitive Hashing: This category is made up of algo-
rithms that map objects into buckets, grouping similar objects in
the same bucket with high probability. Exemplary algorithms
are Nilsimsa, TLSH and FbHash.

To overcome the time-consuming manual testing, Breitinger
et al. (2013) proposed FrRasH, a framework performing a struc-
tured assessment of bytewise AM algorithms. The main aspects of
FRASH are depicted in Fig. 2. Inspired by previous evaluations,
FRASH made use of two test classes: (1) efficiency tests that are
composed of three sub-tests runtime efficiency, fingerprint com-
parison and compression; and (2) sensitivity & robustness tests
which contains four sub-tests, single-common-block correlation,
fragment detection, alignment robustness and random-noise-
resistance. FRASH was a CLI-Ruby implementation and wrote its
output to a text file without any visualisation. Well-defined in-
terfaces, adaptable modules or appropriate documentation to
integrate further algorithms or test cases were not supported by
FRASH.

As the creation of AM algorithms and their assessing moved on,
the National Institute of Standards and Technology (NIST) defined
AM as “a promising technology designed to identify similarities
between two digital artifacts [...] to find objects that resemble each
other or to find objects that are contained in another object”
(Breitinger et al., 2014). The NIST Special Publication explicitly re-
fers to FrRasH and includes its test cases. However, no further
concept extension nor an implementation were given.

To sum up the related work considerations: so far the evaluation
of an AM algorithm was often done manually (i.e., not based on an
automated framework) and only in relation to a competing algo-
rithm. Hence, the outcome of an evaluation was not a compre-
hensive recommendation for action that catalogs the strengths and
weaknesses of the most important contemporary algorithms. This

T. Gobel, E Uhlig, H. Baier et al.

lack of clarity is the main motivation for our proposed design and
its implementation in the scope of the framework FRASHER.

3. Concept and design

In this section we explain our concept and design of an auto-
mated evaluation framework for AM.

3.1. Requirements

Based on the canonical software engineering process, we first
gather requirements on both the functional and non-functional
level as the basis of our concept. The non-functional re-
quirements are summarised in Table 1.

We consider modularity as the most important non-functional
requirement, as it enables an exchange and expansion of future
modules. Additionally, modularity supports the definition of well-
defined interfaces as a further non-functional requirement to link
new algorithms or additional test cases to the framework. Our
specification aspect usability means that even non-experts in the
field of AM shall be able to use it, e.g., by a detailed documentation
of framework usage, its source code, and the provision of a
configuration file to perform the actual tests. A further usability
aspect is the visualisation of the output in terms of a graphical
representation.

The functional requirements are listed in Table 2. Our first
expectation, resemblance, reflects the respective use case class from
Breitinger et al. (2014), the same holds for the second functional
requirement containment. Third, efficiency is measured with respect
to the run time performance of the algorithm and its memory
consumption. Furthermore the functional requirement realistic test
cases demands that the framework tests reflect actual use cases in a
digital forensic examination and resistance against obfuscation as-
sesses the algorithm's ability not to be bypassed by an attacker.

3.2. Design

An overview of the framework is given in Fig. 1. The architecture
follows the modularity principle, where each module has a dedi-
cated task and may communicate with other modules through in-
terfaces. The playbook module is a core module to enable the
requirement usability. The playbook holds the configuration for
every test-run, i.e., it specifies, which algorithms, test cases and files
are to be used and manipulated for the tests. The playbook should
be implemented by a common text-based configuration format,
e.g., the JavaScript Object Notation (JSON) format. The framework
command line interface tells the framework, which playbook to
run. The actual tests are performed by the test_case module,

Table 1
Non-functional requirements of an automated evaluation framework.
Requirement Explanation
Modularity The framework is split into different modules, e.g., an
approximate matching algorithm to test, test cases,
configuration.
Well-defined Approximate matching algorithms or test cases are linked to
interfaces the framework via predetermined functions.

Open-source The framework and its source code are publicly available, e.g.,

via a GitHub repository.

Usability The framework may easily be used by an ordinary computer
scientist, e.g., due to an easy configuration of the evaluation
and a visualisation of its output.

Adaptability The framework may be adapted to further hardware or

software platforms.

Forensic Science International: Digital Investigation 42 (2022) 301407

which receives as input the test configuration of the playbook and
the test files from the test file repository of the framework. The test
cases may manipulate the files in different ways and log the simi-
larity scores returned by the respective algorithm. The test_case
module appends its results to the playbook. Hence, tests can be
repeated with the same or slightly modified configurations based
on previous test results by adapting the playbook configuration.
The eval module is responsible to evaluate the test results from
the playbook and to visualise them for a better understanding.

4. Evaluation test cases

In Table 2 we list our proposed functional requirements. Based
on previous work and these requirements we reflect and propose
evaluation test cases. In particular, various previously proposed test
cases are collected, updated, and extended. We also consider
challenges that play a major role in the daily routine of digital fo-
rensics to satisfy the requirement of a realistic test case.

4.1. Efficiency

Efficiency was already proposed in FRASH as an evaluation test
case. We consider it as a functional requirement as stated in Table 2,
too. As proposed in Breitinger et al. (2013); Breitinger and Roussev
(2014), it is evaluated by three separate tests:

The generation efficiency measures the runtime efficiency (i.e.,
the practical execution time) of the similarity digest computation in
relation to the input size. Generation efficiency is an important key
figure as it reflects the ease with which the respective algorithm is
able to process a certain amount of data to produce the similarity
digest.

Comparison efficiency expresses the runtime efficiency to
compare digests. As in the original FRaSH framework this test en-
tails an all-vs-all test. However, it does not include the aforemen-
tioned step of fingerprint generation.

Finally, compression efficiency evaluates the compression rate of
the algorithm. It measures the size of the similarity digest in rela-
tion to the input data length and returns a percentage value, hence
it is calculated by:

output length-

input length 100

compression =

4.2. Sensitivity & robustness

The test cases of this class resemble the ones that were intro-
duced in the original FRASH. They are all performed in a one-vs-one
fashion, that is the algorithm is tested with a pair comprising of a
variant and its underlying original file. In Section 4.4 we evaluate
the one-vs-all test cases, that is a manipulated file amongst many
similar ones. In what follows only a rough description of the
respective test is given, we explain the test details in Section 6.2.

4.2.1. Single common block

Tests the capabilities of an AM algorithm to detect common
fragments in otherwise completely different files. The common
fragment is decreased in size making it harder for the algorithms to
register the commonality until it is no longer present.

4.2.2. Fragment detection

Identifies the minimum correlation between an original file and
a fragment of it. This covers the containment requirement; the use
case is explicitly stated by Breitinger et al. (2014). An original file is

T. Gobel, E. Uhlig, H. Baier et al.

FRASHER

Forensic Science International: Digital Investigation 42 (2022) 301407

playbook. json

eval.py {
--------------------- "algorithm"
b,
"tests": {
"efficiency" :
"filepath" :

}

"/testfiles/file a"

test_case.py

algorithms

test results

—~

vV v

similarity scores

(.._.........-.....

test files

@Jﬁ A

manipulated files

Fig. 1. Design of an automated evaluation framework with modularity as its key design principle (such as FRASHER). Each test-run starts with the playbook configuration, then the
test cases create their own manipulated files and execute different algorithms on them. Finally, the results are evaluated, visualised and appended to the playbook. The newly

created test files are saved and can be used in future test-runs.

Table 2
Functional requirements of an automated evaluation framework.

Requirement Explanation

Resemblance Test cases to evaluate object similarity and cross

assessment correlation.
Containment Test cases to evaluate fragment and embedded object
assessment detection.
Efficiency tests Efficiency with respect to runtime and compression
efficiency.

Realistic test cases
Resistance against
obfuscation

Test cases must reflect practical use cases.
Test cases to measure the difficulty in presence of an
active adversary to circumvent a blacklist.

gradually trimmed by a fixed percentage value creating a fragment.
This fragment is decreased in size until a correlation with the
original file is no longer possible. Again we measure the result of
the fragment detection with respect to the limit size of the frag-
ment. A more advanced fragment detection test may contain two or
more fragments, though. The fragment detection test runs in two
modes. When using random cutting the first cut-off from the orig-
inal file is done randomly at the beginning or the end of a file and
then continued at random positions. When creating the fragments
through end side cutting, the file is only trimmed at the end. In the
current work we only present the results of random cutting. For
random generated data the distribution of features in the common
fragment tend to be evenly distributed which is why it is sufficient
to cut the fragment randomly. In case of real file types fragment
features may be unevenly distributed, which is why cutting from
one end might lead to sudden jumps in the similarity score
whenever an important feature is deleted from the fragment.

4.2.3. Alignment robustness

Evaluates the resilience of the AM algorithm against changes in
the length of files. + This is a similar challenge to log files, which
can quickly grow in size. Test files are enlarged by adding random

bytes either to their beginning or end in a continuous manner. This
way it can be evaluated how well the algorithms can identify files
that are no longer the same size but have become larger.

4.3. Adversarial resilience

Adversarial resilience addresses the obfuscation requirement of
Table 2. It describes the resilience of an algorithm against deliberate
attacks performed by third parties. These kinds of attacks are for
instance important to consider as part of data loss prevention filters.
An adversary who is able to deliberately trigger the filter through
false positives might be able to mislead an administrator into
lowering the sensitivity of the filter. Alternatively, an adversary
might be able to reduce the similarity score of a blacklisted artifact to
exfiltrate sensitive data by circumventing the filter. These tests are
inspired by rigorous attempts in the past to circumvent the robust-
ness of various algorithms (Baier and Breitinger, 2011; Breitinger
et al.,, 2012; Breitinger and Baier, 2012a; Oliver et al., 2014; Chang
et al,, 2015). Known attacks on AM algorithms have also been
collected by Martin-Pérez et al. (2021).

According to Martin-Pérez et al. (2021), attacks can be divided
into attacks against the similarity score and attacks against impeding
the last phases of a similarity digest algorithm. While the former can
be done either by reduction of similarity or emulation of similarity,
the latter can be done either by impeding the digest generation phase
or impeding the digest comparison phase. However, all of these at-
tacks require an intelligent attacker who knows exactly how the
algorithms work. We consider sample obfuscation attacks pre-
sented by Martin-Pérez et al. (2021) in what follows.

The goal of Impeding the Digest Generation Phase is to craft an
input that cannot be processed, this might be because the input
does not meet the level of diversity among the features that is
needed for generating a digest. Or through avoiding byte sequences
that match with the values needed by trigger functions.

Impeding the Digest Comparison Phase addresses an attacker who
intentionally creates inputs that do not meet the minimum amount

T. Gobel, E. Uhlig, H. Baier et al.

FRASH $frasharb | —> $... result
| Fragment detecion |
ssdeep >
| Single common block |
sdhash > | Alignment robustness |
| Random noise resistance |
I Efficiency |
FRASHER

playbook.js —> | $ frasher.py | —>

Compression

ssdeep > | Fragment detection |
| Single common block |

sdhash >
| Alignment robustness |
TLSH > | Random noise resistance |
| |
| |

MRSH-v2 —> Finding the needle
Digest generation
mrsh-cf impediment
R Digest comparison
FbHash impediment
— | Efficiency |
Nilsimsa

Fig. 2. Comparison of our framework FRASHER to its predecessor FRASH.

of comparison requirements. Hence the comparison phase fails to
identify similar files. This can be tested by creating a file that is
made up of ever smaller parts of the original input file. At one point
the manipulated file lacks the significant features to be hashed
(after the deduplication phase).

4.4. Finding the needle

Our finding the needle test case is inspired by the digital forensics
need to detect a case-relevant artifact (e.g., a picture of child abuse
or a malware) on an analysed device, hence it addresses the use
case of blacklisting. We therefore cast a different view on the
sensitivity & robustness test case.

Forensic Science International: Digital Investigation 42 (2022) 301407

If a test makes use of a haystack, that is a corpus of some thou-
sands of files, a common test corpus in the digital forensics com-
munity should be used, e.g., the t5-corpus (Roussev, 2011; Breitinger
and Roussev, 2014), the NapierOne data set (Davies et al., 2022) or the
Govdocs1 corpus (Garfinkel et al., 2009), but any sufficiently large
collection of files may be used.

4.4.1. Resemblance — object similarity detection

As stated by Breitinger et al. (2014), this use case deals with
identifying related artifacts. The object similarity test makes use of
a haystack. Our suggestion is to take ten examples of a file type
which are all similar in size. Every file is manipulated in ten ways
each resulting in a unique needle that poses a challenge, e.g., on the
alignment robustness, random noise resistance. The algorithm has
to find the needle based on the original unmanipulated file
amongst the others in the haystack. If the matching score between
the needle and the original unmanipulated file in the haystack has
the highest value amongst all others, it is considered a TP. If other
files have the highest similarity score, this is seen as a FP. A TP
amongst reasonable few FP constitutes a success of the experiment
and is recorded.

4.4.2. Resemblance—cross correlation

The cross correlation test takes two completely different files of
approximately the same size as containers and inserts a signifi-
cantly smaller object (i.e., the needle) into each file at random
positions. The size of the inserted needle is reduced until a simi-
larity digest algorithm can no longer correlate the two files through
a similarity score > 0. We call the final size of the needle, which is
still correlated by the AM algorithm, the limit size of the cross
correlation test. Note, Roussev (2011); Breitinger and Roussev
(2014) utilize the term single-common-block correlation.

5. FRASHER

Our framework FRASHER extends its predecessor FRASH with
respect to its conceptual and functional design. First, we give an
overview of FRASHER in Section 5.1 and reflect on our framework
with respect to the requirements of an automated AM evaluation
framework. Subsequently, we explain the usage of FRASHER.

5.1. Overview of FRASHER

FRASHER follows the non-functional and functional re-
quirements listed in Tables 1 and 2, respectively. In what follows we
describe to which extent FRASHER fulfills the requirements out-
lined in Section 3. A feature overview and a comparison to FRASH is
depicted in Fig. 2. The figure shows that FRASHER is extensible in
terms of its supported algorithms, test cases and evaluation
procedures.

The most important non-functional requirement is modularity.
In contrast to the monolithic predecessor, FRASHER provides the
modules proposed in Fig. 1. Fig. 2 lists the currently available AM
schemes and test cases. Currently the algorithms ssdeep, sdhash,
TLSH, MRSH-v2, mrsh-cf, Nilsimsa and FbHash are supported.
Due to its modular architecture, further algorithms, such as
ssdeeper, FbHash-E Or SiSe, can easily be integrated.

FRASHER provides interfaces, which are reflected by its folder
structure as given in Fig. 3. The lib directory provides the func-
tionality of our framework, while the testdata directory stores the
test corpus of files, which serve as input for the different test cases.
The lib/fuzzy_hashes folder contains the APIs to all AM algorithms.
In addition, the executables (in Python or Windows Portable
Executable format) of integrated algorithms are stored here. To
evaluate an additional algorithm, the respective *.py or *.exe file

T. Gobel, E Uhlig, H. Baier et al.

has to be stored in this directory. The lib/helpers folder contains the
auxiliary methods and code needed for the bytewise manipulation
of the test files which are used as input. Lastly, the lib/fra-
sher_testcases t folder contains a variety of test cases that represent
the actual challenges and use cases for the algorithms. Further test
cases can be integrated here. The evaluation directory provides the
code for the subsequent result analysis and visualisation, while the
config directory stores all the playbooks.

The source code of FRASHER and its documentation are publicly
available (under the Apache 2.0 licence) to the digital forensics
community via GitHub: https://github.com/warlmare/FRASHER.

FRASHER is easily useable due to its visualisation component and
its central configuration via the playbook file based on the JSON
format as shown in Listing 1. All test-runs are specified in the tests
section in the respective playbook file. These are then executed
consecutively for each algorithm specified in the algorithm section.
The results of all test rounds specified with rounds are averaged,
printed to the console and finally appended in JSON format to the
playbook. In addition, the measured values are stored in CSV files for
later reuse in the results-path specified by the user. For instance, in
our sample playbook in Listing 1, we evaluate ssdeep, mrsh-cf, and
TLSH. Additionally, test-runs with respect to efficiency, cross corre-
lation (i.e., single common block), and alignment are performed,
where each test is executed ten times and the outcomes are addi-
tionally stored (next to the playbook) as CSV files in the results folder.

{
"algorithm": {
"ssdeep",
"mrsh-cf",

l'tlsh"
}’
"tests": {
"efficiency" : {
"testfiles" : {
"randomgenerate" "1KB - 10KB",
"stepsize" "500 byte"
}
}3
"single_common_block": {
"testfiles" "testfiles/docx",
"blockfiles" : "testfiles/jpg"
},
"alignment": {
"testfiles" "testfiles/docx"
}
}s
"rounds": 10,

"results-path": "results/x"

Listing 1. Sample file example playbook.json shows playbook syntax.

FRASHER follows the adaptability requirement. An important
aspect with respect to this requirement is the programming lan-
guage. While FRASH made use of Ruby, FRASHER is implemented in
Python 3.9. The framework itself, as well as the four algorithms
ssdeep, FbHash, Nilsimsa and TLSH, can be run in Windows,
Linux and Unix environments.! Any other currently used algorithm
within FRASHER can only be used on the platform, on which the
precompiled executable of the respective algorithm is provided.

! Since there is an original Python library available for these two algorithms.

Forensic Science International: Digital Investigation 42 (2022) 301407

— install.sh

frasher.py

— lib

fuzzy_hashes

fuzzy_hashes_interface.py

Fbhash.java

— helpers

— auxiliaries.py

—{ frasher_testcases

adversarial_resilience.py

— evaluation

L eval.py

— config

l— playbook_XY.json

— testdata

L testrun_XY...

|— single_common_block_testfiles_XY...

L

Fig. 3. Module-based structure of FRASHER.

The functional requirements are mostly reflected by the test
cases. Fig. 2 gives an overview of the test cases available via
FRASHER, which cover the functional requirements listed in Table 2.

5.2. Using FRASHER

For both the Linux and Windows implementations, a MAKEFILE
is provided that installs all the necessary packages via the system's
package installer and all required Python libraries via pip. In order
to use all available algorithms and for optimal performance as a
Linux distribution currently Ubuntu 21.04 is recommended.

https://github.com/warlmare/FRASHER

T. Gobel, E Uhlig, H. Baier et al.

In Section 5.1 the structure of a playbook was described. The
user of FRASHER configures the evaluation (e.g., the algorithms, test
cases and number of test rounds) via the JSON file to be executed.
The framework can be invoked via its CLI command, which at the
time of writing has the following syntax:

$ frasher.py [-h] [-v] [-d] PATH

—h prints usage instructions on the screen.

—v is the verbose mode that prints additional information
during the test-runs.

—d subsequently visualises the results that have been added to a
playbook.

PATH is the path to the playbook that specifies all further in-
formation for the tests.

The only mandatory argument is path to a playbook that holds
all the necessary configuration information for the evaluation tests.
The tests specified in the playbook section tests will be run in the
given order using the specified test files as input. Therefore, all tests
need to have their test files specified in advance. When files are
manipulated, they are copied into separate folders following the
syntax: datetime_testname. The existing test files in the folders
are named according to the specifications of the tests. All test files
are saved, so that tests can be repeated anytime, e.g., when using
the same test data but different algorithms.

In order to add further algorithms, the user first has to anchor the
new algorithmwithinthefile 1ib/fuzzy hashes/algorithm.py.
This is where all the interfaces to the algorithms are stored. Next, the
new algorithm must inherit from the class Algorithm, in which all the
necessary functions of the test framework are defined, e.g., functions
to create the filter, compare a file against another file or against the
filter, etc. FRASHER offers the respective wrapper functions and
skeleton files to simplify the integration of own developments.

Just as with the existing algorithms, new algorithms can either
be implemented by using their Python libraries (if available), or by
calling a precompiled executable, since separate Python libraries
are not available for most algorithms. In the latter case, the string
output of the algorithms is parsed, which in turn represents the
input for the framework.

6. Sample evaluation results and assessment

In this section we present a proof of concept of FRASHER with
respect to sample test cases. It summarises our practical findings
for the algorithms ssdeep, TLSH, mrsh-cf, MRSH-v2, sdhash and
FbHash.” We also provide sample output of the evaluation and
visualisation component.

The test environment in which all our tests were conducted is as
follows: VM with 16x Intel Xeon Platinum 8280 CPU @ 2.70 GHz,
2 x 16 GB DDR4-3200 RDIMM ECC, 800 GiB SSD, Ubuntu 21.10
Linux 5.13.0—40-generic x86_64.

We used the latest version of the algorithms available at the
time of writing: sdhash v4.0, MRSH-v2 V2.0, ssdeep v2.14.1, TLSH
v4.11.2, mrsh-cf v1.0, FbHash v2.0.

Furthermore, Table 3 shows the data sets used. We used the t5-
corpus for the efficiency test cases in Section 6.1. In order to also
have compressed text file formats available in our finding the needle

2 The algorithm Nilsimsa (v.0.3.8) has been added to FRASHER in the mean-
time, but was not originally tested. Note that FRASHER supports the integration of
further algorithms.

Forensic Science International: Digital Investigation 42 (2022) 301407

Table 3
Data sets used for evaluation.

Data set html pdf text doc ppt jpg xIs gif docx pptx xlsx

t5-corpus 1093 1073 711 533 368 362 250 67 — - -
t5-corpus_extended 1093 1073 711 533 368 362 250 67 500 400 300

test cases in Section 6.4 (which uses real data as test candidates),
we extended the original t5-corpus with the first 500 docx, first 400
pptx, and first 300 xIsx files (numerically ascending; to preserve the
mixing ratio of office documents in the t5-corpus) from the
NapierOne data set (Davies et al., 2022). For all remaining tests, we
intentionally used (pseudo-)randomly generated data from the/
dev/urandom device as proposed by Roussev (2011) to avoid that
two independently generated targets have content in common. An
embedded object is a smaller piece of randomly (and indepen-
dently) generated data that is embedded in our target(s) with the
explicit purpose of creating commonality.

6.1. Efficiency test case

The playbook specifies both the number of test-runs and the test
files used for all three efficiency tests. Our generation efficiency
results are given in Table 4, they reveal sdhash as the most run-
time efficient algorithm in terms of digest generation (i.e., to
generate the respective Bloom filter). For example, in our case of the
1.9 GB large t5-corpus, the algorithm took ~ 6.4 seconds to
generate its filter on average after repeating the experiment in 10
iterations. We define the sdhash value with a relative generation
efficiency of 1. Then, other algorithms provide a higher generation
run-time with 42% generation time overhead with MRSH-v2, 68%
overhead with mrsh-cf£, 131% overhead with TLSH, 143% overhead
with ssdeep. FbHash requires significantly more time to generate
its filter.

The fingerprint comparison efficiency test was done for both an
all-vs-all comparison and one-vs-all comparison. All tests were
repeated 10 times and the results were averaged. In case of an all-
vs-all test all unique hash pairs in the digest file should be
compared (for n hashes, this yields @ comparisons). In the one-
vs-all test, the desired file (which can be specified in the playbook
just like the corpus (in this case, the [t5/000001.doc was used) is
compared with the previously generated filter (which leads to n
comparisons for a data corpus with n files). The results in Table 4 for
these two tests show that TL.sH performs best for both an all-vs-all
and an one-vs-all comparison. Further promising candidates in case
of the chosen t5-corpus are ssdeep and mrsh-cf. Almost the same
is true for the one-vs-all comparison, with MRSH-v2 being rather
slow. FbHash misses a switch for an all-vs-all comparison, while
we also consider it unusable in a one-vs-all scenario for realistic use
in digital forensics, since the comparison takes far too long. We are
aware of a more time- and memory-efficient version of FbHash
called FbHash-E (Singh et al.,, 2022), but it could not be tested
because its source code was not published at the time of writing.

For compression, it is generally recommended to provide a
compact similarity digest, as this usually enables a faster compar-
ison and requires less storage space (Breitinger et al., 2014). The
results of the compression efficiency test, as shown in Table 5, show
that ssdeep and TLSH produce similar and high compression rates,
while MRSH-v2, mrsh-cf, and sdhash create a less compressed
output (worsening in this order). FbHash produces a very large
digest file of almost 20 GB, which is why the one-vs-all comparison
takes so long.

T. Gobel, E Uhlig, H. Baier et al.

Table 4

Forensic Science International: Digital Investigation 42 (2022) 301407

Generation efficiency and Comparison efficiency in case of All-vs-All and One-vs-All comparisons; carried out 10 times each and averaged.

Algorithm Digest generation (sec) Comparison (all-vs-all) (sec) Comparison (one-vs-all with /t5/000001.doc) (sec)
MRSH-v2 9.084s 144.746s 1.086s
sdhash 6.393s 110.592s 0.298s
TLSH 14.791s 2.617s 0.01s
FbHash 1838.597s NA 463.721s
mrsh-cf 10.771s 12.569s 0.507s
ssdeep 15.576s 22.688s 0.01s
Table 5 matches the actual similarity score. Even if the common fragment

Compression efficiency of tested algorithms using t5-corpus with total size of
1911.81 MB.

Algorithm Digest file size (bytes) Compression ratio (%)
MRSH-v2 28.67 MB 1.500%

sdhash 61.52 MB 3.218%

TLSH 394.11 KB 0.021%

FbHash 19.81 GB 1036.087%

mrsh-cf 33.55 MB 1.755%

ssdeep 485.45 KB 0,025%

6.2. Sensitivity & robustness

In this section, we present our results for the test cases single-
common-block correlation, fragment detection, alignment robustness,
as described in Section 4.2.

6.2.1. Single-common-block correlation test results

This test shows how well increasingly smaller common frag-
ments within two, otherwise completely different files, can be
matched, e.g.,, a common picture embedded in two PowerPoint
presentations.

Our tests were performed with (pseudo-)random test files. This
applies both to the container files as well as to the fragment itself.
Note, this also means that there is a potentially large amount of
features that each algorithm can reflect in its hash. If the fragment
is taken arbitrarily from a real file, the number of features may be
much smaller and the performance therefore different. To obtain a
normalised result, 10 test-runs are performed and then the average
values of the 10 test-runs are plotted into the output graph.

At the beginning of our test, the fragment is half the size of the
two containers and is then reduced constantly in 16 KB steps of the
initial fragment size.> Once the fragment is smaller than 1% of the
two containers its size is further reduced in 100 bytes steps. This
test was done for containers of sizes 512 KB, 2048 KB. The averaged
graphs for the 512 KB and 2048 KB test-runs are depicted in Fig. 4
ssdeep can correlate the two files as long as the fragment size is
> (9% — 13%). Specifically, in case of 2048 KB test files, the corre-
lation was no longer possible once the fragment went below ~ 13%,
in case of 512 KB any fragment below ~ 9% could no longer be
matched.*

TLSH consistently exhibits a too high similarity score which
decreases more slowly than the actual size of the single common
fragment. The algorithm especially becomes error-prone when
dealing with small fragments that are less than ca. 10% of the size of
the original. This manifests itself in a very stagnant distance score
(in our case similarity score) at the end of the curve.

mrsh-cf performs best with reliably detecting any correlation
between two objects, as the common fragment size consistently

3 Please note that the exact step size is configurable via the playbook.
4 Remember that the percentages are derived from a fragment that is already half
the size (i.e., 50%) of the respective test files at the beginning.

size is less than 1%, mrsh-cf is able to correctly express the simi-
larity between two containers to the second decimal place.

MRSH-v2 consistently returns a lower similarity score that
misrepresents the actual amount of shared content in the con-
tainers. The same applies to sdhash.

FbHash is as reliable as mrsh-cf at assessing similarity. How-
ever it is no longer capable of detecting similarity when the single
common fragment is smaller than 1%.

6.2.2. Fragment detection test results

The fragment detection test reveals the smallest fragment of an
input that the algorithm can still reliably correlate with its original.
We used the random cutting mode for our tests as an example, as
described in Section 4.2. To obtain a normalised result, we use
(pseudo-)randomly generated files with the same size as input files
for each of the 10 test-runs. FRASHER then plots the average values
of the 10 test-runs into the output graphs. In order to also evaluate
the influence of the size, this procedure is repeated three times for
files with 10 KB, 30 KB and 65 KB size, respectively.

The results are depicted in Fig. 5 and show that ssdeep strug-
gles when more than 60% of the original file is removed. TLSH can
no longer match a file of which more than 70% have been cut off.
Moreover, the tests provide similar results for the different tested
sizes. mrsh-cf outperforms its competitors in such a one-vs-one
scenario as it consistently reflects through its similarity score the
correct proportionality. The similarity score of MRSH-v2 always
represents the similarity score of the smaller file which in this case
leads to consistent values close to 100%. Once the cut off is bigger
than 90% the similarity score approaches O rapidly. sdhash simi-
larly returns a very high similarity that, although it decreases, does
not resemble the true proportion of the relation between the
original file and a fragment of it. In light of the fact that FbHash also
consistently returns too high of similarity score, mrsh-cf is the
only algorithm that performs well in this scenario.

6.2.3. Alignment robustness test results

The alignment robustness test analyses the impact of adding
byte sequences to a file (e.g., a log file) and the ability of an algo-
rithm to still correlate the enlarged file with the original file. In our
test cases multiple blocks of random bytes were inserted sequen-
tially at both the beginning (head) and the end (tail) of a file copy
(i.e., in test case (1) bytes are only added at the beginning; in test
case (2) bytes are only added at the end), up to a configurable
maximum size, which is here set to 500% of the original file size.
This means that genuinely new content was added to the original
file. However, it should be mentioned that in a real world scenario
with log files, the additional elements mostly adhere to the syntax
of the preexisting log file, i.e., the file size might increase but the
variance in file content stays the same. Any algorithm with a
deduplication phase might therefore output different results in a
real world scenario.

The results in Fig. 6 show the findings obtained when per-
forming the alignment robustness test with test files that had an

T. Gobel, E. Uhlig, H. Baier et al.

Single Common Block Test (512 KB)

601 —— SSDEEP
TLSH

50 - —— MRSHCF

—— MRSHV2

—— SDHASH

40 - FBHASH

Similarity Score
w
o

N
o
L

10 A
0 .
250 200 150 100 50 0
Fragment Size (KB)
Single Common Block Test (2048 KB)
60 - —— SSDEEP
TLSH
—— MRSHCF
50 - —— MRSHV2
—— SDHASH
FBHASH
o 40
o
O
[%]
>
£ 30 1
©
£
¥ 201
10
0 .
1000 800 600 400 200 0

Fragment Size (KB)

Fig. 4. Single-common-block test results and their visualisation in the case of 512 KB
and 2048 KB file sizes.

original size of 30 KB. The tests were executed 10 times and aver-
aged. In both test cases, i.e., for the head and tail scenario, ssdeep
stops correlating the original and its manipulated copy at all as soon
as ca. 300% of random bytes have been added to either head or tail.
TLSH seems to perform similar as it is shown by its similarity score
reaching 0 once ca. 300% of bytes have been pre- or appended to a
file. mrsh-cf seems to perform well. However, its similarity score
changes much less in the interval from 400% to 500% than it did in
the interval from, e.g., 100%—200%. Its predecessor MRSH-v2 be-
haves similarly but is prone to stagnate around certain similarity
score values even with successive enlargement of the file.” sdhash
continually returns high similarity scores that only serve as vague
indicator of relation. This shows that its similarity score is not a
reliably indicator of proportionality when matching a file that is
embedded in another file that is multiple times its size. FbHash
displays a continually decreasing similarity score that nevertheless
is constantly too high. mrsh-cf is the algorithm who's similarity
score is most closely reflecting how much the original file makes up

5 Note that some of these detailed results were primarily taken from the CSV
files, which are also created alongside the plotted diagrams.

Forensic Science International: Digital Investigation 42 (2022) 301407

Fragment Detection Test (10 KB files)

100 -
80 A
g
S 60 A
"
z
s
‘E 40
E
—— SSDEEP
TLSH
20 { —— MRSHCF
—— MRSHV2
—— SDHASH L
04 —— FBHASH
20 40 60 80 100

Cutoff size (%)

Fig. 5. Fragment detection test results and their visualisation in the case of 10 KB file
size.

of the content of the enlarged test file. It therefore is the most
alignment robust. All algorithms except for sdhash showed the
same behaviour, regardless of whether the file was pre- or
appended to. The same tests were performed with files of 10 KB and
60 KB size. The results did not differ significantly from those shown
in Fig. 6.

6.3. Adversarial resilience

6.3.1. Digest generation impediment

With regard to adversarial resilience, the behavior of the algo-
rithms in the presence of active impediment during the digest
generation and digest comparison phases was examined. To
investigate the algorithms resilience during the digest generation
phase the algorithm was fed input files with successively smaller
levels of diversity and size. This way the lower bounds for each
algorithm in terms of variance and input size are explored. From an
alphabet of 100 unique ASCII characters, random string sequences
are created in which each character of the alphabet occurs at least
once. Gradually the size of this alphabet is reduced while the length
of the total string sequence remains the same. This test is per-
formed with byte sequences of a minimum length of 10 up to 3000
bytes. The algorithms have to hash every given input and suc-
cessfully compare with a similarity score >0 in order to succeed.

e ssdeep and mrsh-cf can hash and match every input starting
from a 10 byte size which is the minimum size in this test.
TLSH needs a minimum of 50 bytes and a variance of at least two
unique characters in any input.

e MRSH-v2 needs at least 2900 byte in input file size in order to
hash any input that is made up of more than 3 characters. Any
smaller file that is made up of between 1 and 100 unique
characters cannot be reliable hashed.

sdhash revealed itself to require a minimum input size of 512
bytes. In addition it has a lower bound regarding uniform con-
tent. A file has to be made up of at least 8 unique characters at a
size of 750 bytes in order to be hashed and matched.

FbHash requires a variance of at least 3 characters in any input
file in order to be able to hash and match it.

This test reveals that in case of MRSH-v2 and sdhash its easily
feasible for an attacker to produce files of considerable size and

T. Gobel, E. Uhlig, H. Baier et al.

small variance that cannot be hashed or compared by any of these
two algorithms. This could enable an attacker to get files through
any filter that these two algorithms are part of.

6.3.2. Digest comparison impediment

To test the resilience of the algorithms during the digest com-
parison phase, the algorithms ability to deal with repetitions in the
content of input files is examined. This test is similar to an align-
ment robustness test but instead of adding genuinely new content
the file is appended to itself. Ideally any algorithm should be able to
sustain its matching capabilities in face of repetitive content,
meaning that it should either return a similarity score that incal-
culates the repetition and gets smaller as the file grows, or a sim-
ilarity score that reflects the entirety of shared content (100%
similarity score even when file b is just a multiple of file a). For this
test 5 KB of a file are chained together multiple times and all al-
gorithms have to hash and compare the original file and the
multiplication of its content. This test was done for both the file
types contained in the extended t5-corpus (that includes com-
pressed text formats, i.e., xIsx, docx, pptx) and for random

Alignment Robustness Head Test (30 KB files)

80
[
5 60 -
Q
(2]
=
&
g 401
s
—— SSDEEP
TLSH
201 —— MRSHCF
—— MRSHV2
—— SDHASH
04 — FBHASH — N\
0 100 200 300 400 500
Size of added block (%)
Alignment Robustness Tail Test (30 KB files)
100 @ — - ———
80
@
S 60
(2]
2
8
‘E 40 1
E
—— SSDEEP
TLSH
20 4 —— MRSHCF
—— MRSHV2
—— SDHASH
04 —— FBHASH A_A
0 100 200 300 400 500

Size of added block (%)

Fig. 6. Alignment robustness test results and their visualisation with random blocks
added to either head or tail of a file.

10

Forensic Science International: Digital Investigation 42 (2022) 301407

generated files. The trend of the results is the same for all data.
Table 6 shows our results for random generated files.

The algorithms general tendency expressed in Table 6 is
observable for all file types and shows that the similarity score for
the algorithms ssdeep, TLSH and mrsh-cf (with decreasing
sensitivity in this order) can be lowered through deliberate dupli-
cation. In the case of ssdeep, a similarity score of zero can be
achieved in some cases when chaining together four instances of
the same file.

6.4. Finding the needle

The results of the needle in a haystack test cases show that
success depends on the file type and varies from algorithm to al-
gorithm. As an example, we explain the results of the test case
Resemblance - Object similarity detection as explained in Section 4.4.
In this test case, there exist 10 needles that challenge the algo-
rithm's ability to find a file that has undergone changes among
many other files. Each test was repeated ten times, using ten
different input files for each needle. FbHash is not evaluated in this
scenario. Its poor run-time efficiency means that it takes 15 min to
perform a one-vs-all test on the extended t5-corpus that is 3.29 GB
large and includes compressed text formats (i.e., xIsx, docx, pptx).6
For our test, the needles are created in the following way:

e needle_1 and needle_2 are created through cutting of the first
and last 20% of a file, similar to the fragment detection test.
needle_3 and needle_4 are generated by overwriting the first and
last 50% of a file with random bytes.

needle_5 and needle_6 are created by prepending and appending
200% of the files original size in random bytes as in the align-
ment robustness test.

needle_7 and needle_8 are created by inserting a block that has
50% of the length of the original file from an unrelated file
outside of the haystack but of the same file type. The blocks are
inserted in different offsets, once at the beginning (needle_7)
and once at the end (needle_8).

e needle_9 is created by compressing the original file using the
Z1ib library.

needle_10 is created by cutting the first and last 20% of a file,
deleting the header and footer information from a file.

InTable 7 in Appendix A we present the test results of the finding
the needle test for all file types. The results reveal how many out of
ten files that were manipulated as needles the algorithms managed
to find among the extended t5_corpus. The results reveal that
compression as in needle_9 is a problem for all algorithms regard-
less of the file type. This needle was not correctly found in most
cases. Compressed text file formats, such as. docx, .x1sx, .pptx,
however, are not any more challenging for the algorithms as their
uncompressed counterparts.doc, .xls, .ppt. Overall, for the
five algorithms tested so far, the mrsh-cf and MRSH-v2 algorithms
are consistently able to find the most needles regardless of the
actual file type, with MrRsH-v2 performing slightly better. The third
most accurate algorithm is ssdeep which performs better than
TLSH (the fourth best) in most cases. Both algorithm fail in most
cases to identify needle_5 and needle_6, both of which test the
alignment robustness. sdhash performs significantly worse than
the others, it can mostly only detect two needles (needle_2 and
needle_6).

6

i.e., the combined time of performing the following test would have taken 10

days with FbHash's current speed.

T. Gobel, E Uhlig, H. Baier et al.

Table 6

Forensic Science International: Digital Investigation 42 (2022) 301407

Similarity scores for the same 5000 bytes of randomly generated data; concatenated several times; averaged over 10 test-runs.

Similarity scores

Multiplication factor

ssdeep TLSH mrsh-cf MRSH-v2 sdhash FbHash
x 1(5KB) 100 100 100 100 100 100
x 2 (10 KB) 69 67 96.3 100 100 99
x 4 (20 KB) 0 39 94.3 100 100 99
x 8 (40 KB) 0 11 933 100 100 99
x 16 (80 KB) 0 0 92.8 100 100 99
X 32 (160 KB) 0 0 92.6 100 100 99

6.5. Summary

Our sample evaluations reveal valuable insights into the capa-
bilities of the similarity digest algorithms at hand (ssdeep, TLSH,
mrsh-cf, MRSH-v2, sdhash, FbHash). With the test cases of
single-common-block correlation, fragment detection and align-
ment robustness, FRASHER is capable of determining the limita-
tions of the algorithms in an idealised setting using mostly
randomly generated files.

Using the finding the needle test cases, FRASHER also examines
the performance of the AM algorithms with real world data, which
has revealed that mrsh-cf and MRSH-v2 hold up well against the
much more widely known ssdeep.

Singh (2021) made the point that there is no conclusive
recommendation as to which algorithm is preferable for a given use
case. With this work revealing that mrsh-cf is preferable when
trying to find files that have changed (revealed through needle in a
haystack - object similarity detection), it is also important to
consider the ubiquitous use of mrsh-cf or MRSH-v2.

7. Conclusion and future work

This article reviewed the requirements, design, and test cases of
an automated evaluation framework in the scope of AM. We
introduced FRASHER as an open-source, Python, automatic AM
evaluation framework. It was inspired by its predecessor FRASH,
however, it is updated in terms of modularity, programming lan-
guage, and test scenarios. In addition, FRASHER simplifies the
evaluation process through its visualisation component, which
produces CSV files and plots graphs from the taken measurements

and thus helps to identify the most suitable candidate depending
on the respective problem. We additionally provided a demon-
stration of FRASHER by performing sample test cases.

This paper is specifically intended to make FRASHER publicly
available to the digital forensics community. Additionally we pro-
vide detailed test results for sample test cases for six different AM
algorithms, with seven AM algorithms now integrated in the
framework. As future work, we plan mainly to provide further test
results and their in-depth analysis that include more details. Spe-
cifically, we will extend our tests to other AM algorithms and
examine further test results for the attacks presented, focusing on
the design weaknesses of various algorithms (e.g., how an adver-
sary can outsmart them, how to artificially increase or decrease the
similarity score of an algorithm).

An additional aspect we plan to research is the use of FRASHER
as a synthesis framework for test data that actively challenges the
capabilities of the algorithms. Recently, fuzzy hashes have been
combined with machine learning applications to detect patterns in
hashes that implicate the presence of malware in the respective
files (Martin-Pérez et al., 2021; Peiser et al., 2020; Lazo, 2021). With
our framework, we are already able to detect threats to the validity
of machine learning models that use fuzzy hashes as input files. In
this area of research, it is of utmost importance to know what
weaknesses individual hashes have, as they can be actively
exploited in attacks on the models.

Appendix A. Finding the needle test results

The results of the finding the needle test are listed in Table 7.

Table 7
Results for different needle in a haystack test cases.

Algorithm File Type needle_1 needle_2 needle_3 needle_4 needle_5 needle_6 needle_7 needle_8 needle_9 needle_10

ssdeep PDF 10/10 10/10 10/10 10/10 2/10 1/10 10/10 10/10 0/10 10/10
DOC 10/10 10/10 9/10 8/10 2/10 3/10 6/10 7/10 0/10 10/10
GIF 10/10 10/10 10/10 10/10 2/10 2/10 10/10 10/10 0/10 10/10
HTML 9/10 10/10 5/10 5/10 0/10 0/10 9/10 9/10 0/10 9/10
JPG 10/10 10/10 10/10 10/10 5/10 9/10 9/10 9/10 5/10 10/10
PPT 10/10 10/10 10/10 10/10 8/10 6/10 10/10 10/10 0/10 10/10
TEXT 10/10 10/10 4/10 9/10 2/10 1/10 10/10 10/10 0/10 9/10
XLS 10/10 10/10 5/10 6/10 0/10 0/10 8/10 9/10 0/10 10/10
DOCX 10/10 10/10 10/10 10/10 6/10 8/10 9/10 8/10 1/10 10/10
XLSX 10/10 10/10 10/10 10/10 7/10 5/10 10/10 8/10 0/10 10/10
PPTX 10/10 10/10 9/10 10/10 5/10 6/10 9/10 10/10 0/10 10/10

TLSH PDF 8/10 6/10 9/10 1/10 0/10 0/10 8/10 9/10 0/10 0/10
DOC 5/10 5/10 5/10 4/10 0/10 0/10 1/10 1/10 0/10 2/10
GIF 10/10 10/10 10/10 10/10 0/10 0/10 10/10 10/10 2/10 8/10
HTML 10/10 10/10 7/10 9/10 6/10 5/10 5/10 7/10 0/10 10/10
JPG 9/10 10/10 10/10 8/10 0/10 0/10 9/10 9/10 4/10 10/10
PPT 8/10 5/10 10/10 5/10 0/10 0/10 7/10 7/10 5/10 4/10
TEXT 10/10 10/10 9/10 6/10 0/10 1/10 8/10 7/10 0/10 10/10
XLS 5/10 8/10 8/10 6/10 1/10 3/10 9/10 9/10 0/10 5/10
DOCX 10/10 10/10 9/10 9/10 0/10 0/10 5/10 6/10 1/10 9/10

(continued on next page)

1

T. Gobel, E. Uhlig, H. Baier et al.

Table 7 (continued)

Forensic Science International: Digital Investigation 42 (2022) 301407

Algorithm File Type needle_1 needle_2 needle_3 needle_4 needle_5 needle_6 needle_7 needle_8 needle_9 needle_10
XLSX 10/10 8/10 10/10 10/10 0/10 0/10 1/10 1/10 0/10 9/10
PPTX 9/10 9/10 9/10 10/10 0/10 0/10 9/10 7/10 4/10 7/10
mrsh-cf PDF 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
DOC 10/10 10/10 10/10 10/10 10/10 10/10 9/10 9/10 4/10 10/10
GIF 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
HTML 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
JPG 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 5/10 10/10
PPT 10/10 9/10 10/10 9/10 10/10 9/10 10/10 10/10 9/10 8/10
TEXT 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
XLS 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
DOCX 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 1/10 10/10
XLSX 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
PPTX 10/10 10/10 7/10 10/10 10/10 10/10 9/10 9/10 10/10 10/10
MRSH-v2 PDF 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
DOC 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 4/10 10/10
GIF 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
HTML 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
JPG 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 3/10 10/10
PPT 10/10 9/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 8/10
TEXT 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
XLS 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
DOCX 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 1/10 10/10
XLSX 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 0/10 10/10
PPTX 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 9/10 10/10
sdhash PDF 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
DOC 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
GIF 1/10 5/10 0/10 0/10 1/10 7/10 0/10 0/10 0/10 6/10
HTML 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
JPG 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
PPT 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
TEXT 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
XLS 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
DOCX 0/10 8/10 0/10 0/10 0/10 9/10 0/10 0/10 0/10 0/10
XLSX 0/10 8/10 0/10 0/10 1/10 10/10 0/10 0/10 0/10 0/10
PPTX 0/10 10/10 0/10 0/10 0/10 10/10 0/10 0/10 0/10 0/10
References Davies, S.R., Macfarlane, R., Buchanan, WJ., 2022. Napierone: a modern mixed file

Baier, H., Breitinger, F,, 2011. Security aspects of piecewise hashing in computer
forensics. In: 2011 Sixth International Conference on IT Security Incident
Management and IT Forensics, pp. 21—36. https://doi.org/10.1109/IME.2011.16.

Breitinger, F,, Baier, H., 2011. Performance issues about context-triggered piecewise
hashing. In: Gladyshev, P., Rogers, M.K. (Eds.), Digital Forensics and Cyber Crime
- Third International ICST Conference, ICDF2C 2011, Dublin, Ireland, October 26-
28, 2011, Revised Selected Papers, pp. 141-155. https://doi.org/10.1007/978-3-
642-35515-8_12. Springer volume 88 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering.

Breitinger, F., Baier, H., 2012a. Properties of a similarity preserving hash function
and their realization in sdhash. In: 2012 Information Security for South Africa,
pp. 1-8. https://doi.org/10.1109/ISSA.2012.6320445,

Breitinger, F., Baier, H., 2012b. Similarity preserving hashing: eligible properties and
a new algorithm mrsh-v2. In: Rogers, M.K., Seigfried-Spellar, K.C. (Eds.), Digital
Forensics and Cyber Crime - 4th International Conference, ICDF2C 2012,
Lafayette, IN, USA, October 25-26, 2012, Revised Selected Papers, pp. 167—182.
https://doi.org/10.1007/978-3-642-39891-9_11. Springer volume 114 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering.

Breitinger, F., Baier, H., Beckingham,]., 2012. Security and implementation analysis
of the similarity digest sdhash. In: First International Baltic Conference on
Network Security & Forensics (nesefo).

Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D., et al., 2014.
Approximate Matching: Definition and Terminology. NIST Special Publication,
pp. 10—6028, 800.

Breitinger, F., Roussev, V., 2014. Automated evaluation of approximate matching
algorithms on real data. Digit. Invest. 11, S10—S17. https://doi.org/10.1016/
j.diin.2014.03.002.

Breitinger, F,, Stivaktakis, G., Baier, H., 2013. Frash: a framework to test algorithms of
similarity hashing. Digit. Invest. 10, S50—S58. https://doi.org/10.1016/
j.diin.2013.06.006 (The Proceedings of the Thirteenth Annual DFRWS
Conference).

Chang, D., Sanadhya, S.K., Singh, M., Verma, R., 2015. A collision attack on sdhash
similarity hashing. In: Proceedings of 10th Intl. Conference on Systematic Ap-
proaches to Digital Forensic Engineering, pp. 36—46.

12

data set alternative to govdocsl. Forensic Sci. Int.: Digit. Invest. 40, 301330.
https://doi.org/10.1016/j.fsidi.2021.301330. URL: https://www.sciencedirect.
com/science/article/pii/S2666281721002560.

Garfinkel, S., Farrell, P.,, Roussev, V., Dinolt, G., 2009. Bringing science to digital fo-
rensics with standardized forensic corpora. Digit. Invest. 6, S2—S11. https://
doi.org/10.1016/j.diin.2009.06.016 (The Proceedings of the Ninth Annual
DFRWS Conference).

Gupta, V., Breitinger, F.,, 2015. How cuckoo filter can improve existing approximate
matching techniques. In: James, J.I, Breitinger, F. (Eds.), Digital Forensics and
Cyber Crime. Springer International Publishing, Cham, pp. 39—52.

Kornblum, J., 2006. Identifying almost identical files using context triggered
piecewise hashing. Digit. Invest. 3, 91-97. https://doi.org/10.1016/
j.diin.2006.06.015. The Proceedings of the 6th Annual Digital Forensic Research
Workshop (DFRWS '06).

Lazo, E.G., 2021. Combing through the Fuzz: Using Fuzzy Hashing and Deep
Learning to Counter Malware Detection Evasion Techniques. Microsoft 365 De-
fender Research Team. URL: https://www.microsoft.com/security/blog/2021/07/
27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-
counter-malware-detection-evasion-techniques/.

Lee, A., Atkison, T., 2017. A comparison of fuzzy hashes: evaluation, guidelines, and
future suggestions. In: Proceedings of the SouthEast Conference ACM SE '17. As-
sociation for Computing Machinery, New York, NY, USA, pp. 18—25. https://
doi.org/10.1145/3077286.3077289.

Martin-Pérez, M., Rodriguez, R ., Breitinger, F.,, 2021. Bringing order to approximate
matching: classification and attacks on similarity digest algorithms. Forensic
Sci. Int.: Digit. Invest. 36, 301120. https://doi.org/10.1016/j.fsidi.2021.301120.

Martinez, V.G., Alvarez, FH., Encinas, LH., 2014. State of the art in similarity pre-
serving hashing functions. In: 2014 International Conference on Security and
Management (SAM’14), pp. 139—145. Worldcomp 2014.

Oliver, J., Forman, S., Cheng, C., 2014. Using randomization to attack similarity di-
gests. In: Batten, L., Li, G., Niu, W., Warren, M. (Eds.), Applications and Tech-
niques in Information Security. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 199-210.

Peiser, S.C., Friborg, L., Scandariato, R., 2020. Javascript malware detection using
locality sensitive hashing. In: Holbl, M., Rannenberg, K., Welzer, T. (Eds.), ICT
Systems Security and Privacy Protection. Springer International Publishing,
Cham, pp. 143—154.

https://doi.org/10.1109/IMF.2011.16
https://doi.org/10.1007/978-3-642-35515-8_12
https://doi.org/10.1007/978-3-642-35515-8_12
https://doi.org/10.1109/ISSA.2012.6320445
https://doi.org/10.1007/978-3-642-39891-9_11
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref5
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref6
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref6
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref6
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref6
https://doi.org/10.1016/j.diin.2014.03.002
https://doi.org/10.1016/j.diin.2014.03.002
https://doi.org/10.1016/j.diin.2013.06.006
https://doi.org/10.1016/j.diin.2013.06.006
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref9
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref9
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref9
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref9
https://doi.org/10.1016/j.fsidi.2021.301330
https://www.sciencedirect.com/science/article/pii/S2666281721002560
https://www.sciencedirect.com/science/article/pii/S2666281721002560
https://doi.org/10.1016/j.diin.2009.06.016
https://doi.org/10.1016/j.diin.2009.06.016
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref12
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref12
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref12
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref12
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1016/j.diin.2006.06.015
https://www.microsoft.com/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.microsoft.com/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://www.microsoft.com/security/blog/2021/07/27/combing-through-the-fuzz-using-fuzzy-hashing-and-deep-learning-to-counter-malware-detection-evasion-techniques/
https://doi.org/10.1145/3077286.3077289
https://doi.org/10.1145/3077286.3077289
https://doi.org/10.1016/j.fsidi.2021.301120
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref17
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref17
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref17
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref17
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref17
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref18
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref19
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref19
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref19
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref19
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref19
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref19

T. Gobel, E. Uhlig, H. Baier et al.

Ribeiro, B., Moia, V.H.G., Henriques, M.A.A., 2017. Similarity Digest Search: A Survey
and Comparative Analysis of Strategies to Perform Known File Filtering Using
Approximate Matching. Security and Communication Networks, 1306802.
https://doi.org/10.1155/2017/1306802, 2017.

Roussev, V., 2010. Data fingerprinting with similarity digests. In: Chow, K., Shenoi, S.
(Eds.), Advances in Digital Forensics VI - Sixth IFIP WG 11.9 International Confer-
ence on Digital Forensics, Hong Kong, China, January 4-6, 2010, Revised Selected
Papers (Pp. 207—226). https://doi.org/10.1007/978-3-642-15506-2_15. Springer
volume 337 of IFIP Advances in Information and Communication Technology.

Roussev, V., 2011. An evaluation of forensic similarity hashes. Digit. Invest. 8,

13

Forensic Science International: Digital Investigation 42 (2022) 301407

S$34—S541. https://doi.org/10.1016/j.diin.2011.05.005.

Roussev, V., Richard, G.G., Marziale, L., 2007. Multi-resolution similarity hashing.
Digit. Invest. 4, 105—113. https://doi.org/10.1016/j.diin.2007.06.011.

Singh, M., 2021. Essential Characteristics of Approximate Matching Algorithms: A
Survey of Practitioners Opinions and Requirement Regarding Approximate
Matching, 10087 arXiv:2102.

Singh, M., Khunteta, A., Ghosh, M., Chang, D., Sanadhya, S.K., 2022. Fbhash-e: a time
and memory efficient version of fbhash similarity hashing algorithm. Forensic
Sci. Int.: Digit. Invest. 41, 301375. https://doi.org/10.1016/].fsidi.2022.301375.
URL: https://www.sciencedirect.com/science/article/pii/S2666281722000543.

https://doi.org/10.1155/2017/1306802
https://doi.org/10.1007/978-3-642-15506-2_15
https://doi.org/10.1016/j.diin.2011.05.005
https://doi.org/10.1016/j.diin.2007.06.011
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref24
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref24
http://refhub.elsevier.com/S2666-2817(22)00088-9/sref24
https://doi.org/10.1016/j.fsidi.2022.301375
https://www.sciencedirect.com/science/article/pii/S2666281722000543

	FRASHER – A framework for automated evaluation of similarity hashing
	1. Introduction
	1.1. Problem
	1.2. Contribution
	1.3. Comparison with existing work
	1.4. Article structure

	2. Related work
	3. Concept and design
	3.1. Requirements
	3.2. Design

	4. Evaluation test cases
	4.1. Efficiency
	4.2. Sensitivity & robustness
	4.2.1. Single common block
	4.2.2. Fragment detection
	4.2.3. Alignment robustness

	4.3. Adversarial resilience
	4.4. Finding the needle
	4.4.1. Resemblance – object similarity detection
	4.4.2. Resemblance–cross correlation

	5. FRASHER
	5.1. Overview of FRASHER
	5.2. Using FRASHER

	6. Sample evaluation results and assessment
	6.1. Efficiency test case
	6.2. Sensitivity & robustness
	6.2.1. Single-common-block correlation test results
	6.2.2. Fragment detection test results
	6.2.3. Alignment robustness test results

	6.3. Adversarial resilience
	6.3.1. Digest generation impediment
	6.3.2. Digest comparison impediment

	6.4. Finding the needle
	6.5. Summary

	7. Conclusion and future work
	Appendix A. Finding the needle test results
	References

