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ABSTRACT.—Reptiles, supposedly, do not produce pheomelanin pigments. Because this claim is based on rather weak evidence, we measured

the shell pheomelanin content in the Hermann’s Tortoise (Eurotestudo boettgeri). In contrast to expectation, we detected a substantial amount of

this pigment. Given the recent interest in the adaptive function of melanin-based color traits, our study opens new avenues of research in reptiles.

In vertebrates, variation in coloration between species and
individuals belonging to the same species is mainly attributable
to differential deposition of reddish-brown pheomelanin and to
black/grey eumelanin pigments (Majerus, 1998). Knowledge of
which pigment is responsible for a given color patch is key to
understanding the adaptive function of color variation. In
vertebrates, melanin-based coloration is associated with a
number of ecologically relevant traits, and sign and magnitude
of natural and sexual selection exerted on melanin-based
coloration can be species or trait specific (Jawor and Breitwisch,
2003; Roulin, 2004; Meunier et al., 2011). Melanin-based
coloration can play a major role in predator–prey interactions
with eumelanin- and pheomelanin-based coloration conferring
camouflage in different habitats (Hoekstra et al., 2005). The
physical and biological properties of melanin could also be
pigment specific, because melanin is known to protect the
external body surface against abrasion (Bonser, 1995), solar
radiation (Clusella Trullas et al., 2007), and pathogens (Mackin-
tosh, 2001). In some species, melanin-based coloration has been
shown to signal aspects of quality and is, therefore, used as mate
choice criterion (Pryke and Griffith, 2007). Although in most of
the investigated animal species darker eumelanic individuals
were found to be more aggressive and sexually active than paler
conspecifics, the adaptive function of pheomelanin-based
coloration is still poorly understood (Ducrest et al., 2008).

The genetics of melanogenesis are very well known (Ito and
Wakamatsu, 2011), which stimulated researchers to link
phenotype to genotype in wild animals (Mundy et al., 2004;
Rosenblum et al., 2004; Hoekstra, 2006). Melanogenesis involves
complex machinery. By binding to the melanocortin receptor 1,
melanocortins induce the production of eumelanin but block the
production of pheomelanin and the opposite with agouti
signaling protein (ASIP) (Lin and Fisher, 2007; Le Pape et al.,
2009). Interestingly, melanocortins have pleiotropic effects on a
large number of physiological and behavioral functions
(Ducrest et al., 2008). Thus, eumelanin- and pheomelanin-based
coloration may be associated with the same phenotypic traits
but in opposite directions (Roulin et al., 2011).

There are few reports regarding melanin determination in
vertebrates except for mammals and birds (Prota, 1992; Ito, 1998;
Ito and Wakamatsu, 2003, 2006). High levels of pheomelanin are
found only in yellow to red hairs of mammals and in reddish
feathers of birds. Detectable levels of pheomelanin are also
detected in human skin regardless of race, color, and skin type.
However, eumelanin is always the major constituent of epidermal

melanin. In different species of amphibians and reptiles, it has
been demonstrated that the pigmented macrophages of the liver
are able to synthesize melanins (Cicero et al., 1982, 1989; Scalia et
al., 1988). These authors identified pyrrole-2,3,5-tricarboxylic acid
(PTCA) and pyrrole-2,3-dicarboxylic acid (PDCA), degradation
products of eumelanin, and classified the liver melanin as indole
melanin. Gallone et al. (2007) described, in amphibians (Rana
esculenta), that liver melanin is composed of 5,6-dihydroxyindole
(DHI)-rich eumelanin showing characteristics very similar to
those of the sepia melanin, although it contained little pheome-
lanin (Table 1). Recently, Wolnicka-Glubisz et al. (2012) used EPR
spectra and reported that pheomelanin is present in the dorsal
skin of adult frogs (Hymenochirus boettgeri). However, they did not
quantify the melanin contents. Adachi et al. (2005) reported that
the 4-amino-3-hydroxyphenylalanine (4-AHP) level of Red
Seabream (Pagrus major) in skin was found to be below the
detection limit of 0.015 ng/mg dry skin, regardless of the season
and sex. On the other hand, the average level of PTCAwas 4.7 ng/
mg dry weight. They demonstrated that pheomelanin has not
been identified in any fish.

In reptiles, coloration is often structural or attributable to
carotenoid and pteridine pigments (Olsson et al., 2007). Reptiles
are thought to produce only eumelanin but not pheomelanin.
Many contemporary studies (e.g., Grether et al., 2004; Rosen-
blum et al., 2004) cite older publications (e.g., Fujii, 1993; Ito and
Wakamatsu, 2003) to suggest that reptiles do not produce
pheomelanin although these studies did not provide direct
evidence. Given the interest in melanin-based color traits among
evolutionary ecologists, it is important to either confirm or reject
the hypothesis that reptiles have no pheomelanin. To address
this question, we performed a study on the Eastern Hermann’s
tortoise (Eurotestudo boettgeri). This species is native to the
Balkans and Greece and displays a high variation in melanin-
based coloration between and within populations, as well as
within a clutch (Willemsen and Hailey, 1999; Vetter, 2006). The
dark shell pigmentation, probably caused by eumelanin, usually
covers less than 50% of each scute, and the rest, which is
yellowish to brownish, may be attributable to pheomelanin (Fig.
1).

MATERIALS AND METHODS

Our aim was to demonstrate the presence or absence of
pheomelanin pigments in the shell of Hermann’s Tortoise. For
this observational study, we sampled thin shavings from the
surface of black, brown, and yellow parts of the shell of three
Hermann’s Tortoises (adult male, adult female, and juvenile).
These tortoises belonged to one of the authors (A. Mafli; for
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further details, also see Mafli et al., 2011) (Fig. 1). Eumelanin

content was analyzed by HPLC-chromatography as the

permanganate oxidation product PTCA and pheomelanin

content was given as the hydriodic acid hydrolysis product 4-
AHP (Wakamatsu et al., 2002; Ito and Wakamatsu, 2003).

The thin shaving samples, immersed in 1 ml milli-Q water
were homogenized with a glass homogenizer. Permanganate

oxidation was performed in duplicate at room temperature in

800 ll of 1 mol/L H2SO4; 100 ll of liver homogenate (50 mg/ml)

was included in the oxidation medium; and 10 ll of 3% KMnO4

was added at regular interval as in the original method (Ito and

Fujita, 1985; Ito and Wakamatsu, 1994). Na2SO3 (100 ll) was

added, and the reaction mixture was extracted twice using 7 ml

of ether. Residue, after evaporating ether extracts, was taken up

in 200 ll of milli-Q water and centrifuged. An aliquot of 80 ll
was injected into the HPLC system. Results are averages for

duplicate analyses. The HPLC system consisted of a JASCO 880-

PU liquid chromatograph (JASCO Co., Tokyo, Japan), a Shiseido

C18 column (Capcell Pak Type MG; 4.6 · 250 mm; 5 lm particle
size; Shiseido, Tokyo, Japan), and a JASCO UV detector
monitored at 269 nm. The mobile phase was 0.1 mol/L
potassium phosphate buffer (pH 2.1) : methanol, 99 : 1 (v/v).
Analyses were performed at 458C at a flow rate of 0.7 ml/min.
Permanganate oxidation product, PTCA (pyrrole-2,3-5-tricar-
boxylic acid) was measured for eumelanin content.

Hydriodic acid reduction was performed by heating a mixture
of 100 ll of a sample homogenate, 30 ll of 30% H3PO2, and 500 ll
of 57% HI in a screw-capped tube at 1308C for 20 h, after which
the mixture was cooled. A 100 ll portion of the hydrolysate was
transferred to a test tube and evaporated to dryness using a
vacuum pump connected to a dry ice-cooled vacuum trap and
two filter flasks containing NaOH pellets. The residue was
dissolved in 200 ll of 0.1 mol/L HCl; 10 ll of the solution was
analyzed on the HPLC system as described below. The HPLC
system consisting of a JASCO 880-PU liquid chromatograph, a
JASCO C18 column (JASCO Catechol pak; 4.6 · 150 mm; 7 lm
particle size; JASCO, Tokyo, Japan) with AHP buffer : methanol,
(98 : 2 [v/v]) at 358C, with an electrochemical detector (ECD-300,
EICOM, Kyoto, Japan) set at +500 mV versus Ag/AgCl
electrode, at a flow rate of 0.7 ml/min. The AHP buffer consisted
of 0.1 mol/L sodium citrate buffer, pH 3.0, containing 1 mmol/L
sodium octanesulfonate and 2% EDTA.2Na. Finally, HI hydro-
lysis product, 4-AHP was measured for pheomelanin content
(Wakamatsu et al., 2002; Ito and Wakamatsu, 2003).

RESULTS

The eumelanin/pheomelanin ratio increased along with the
change from yellowish to black coloration of the shell (Table 2).

TABLE 1. Contents of melanin markers in liver melanin of amphibian, red seabream, and sepia melanin. PTCA and PDCA are degradation markers
by acid KMnO4 axidation and/or alkaline H2O2 oxidation, respectively. 4-AHP is a degradation marker by HI hydrolysis.

Sample

PTCA by

acidic KMnO4

oxidation

(ng/mg)

4-AHP by

HI hydrolysis

(ng/mg)

PTCA by

Alkaline

H2O2 Oxidation

(ng/mg)

PDCA by

Alkaline

H2O2 Oxidation

(ng/mg)

PTCA/

PDCA

(ng/mg)

Liver melanin of R. esculenta L.a 530 42 1210 27 45
Red Seabreamb 4.7 0.015
Sepia melanina 530 <10 11300 190 59

a Gallone et al., 2007.
b Adachi et al., 2005.

FIG. 1. Eastern Hermann’s Tortoise (Eurotestudo boettgeri) displaying
yellow with black parts. A distal scute at the center of the animal is
partly brown. Photograph by A. Mafli.

TABLE 2. Content of melanin markers of the yellow, brown, and black
parts of the shell in three Hermann’s tortoises. Eumelanin content was
given by the permanganate oxidation product PTCA and pheomelanin
content by the hydriodic acid hydrolysis product 4-AHP.

Eumelanin

PTCA (ng/mg)

Pheomelanin

4-AHP (ng/mg)

PTCA/4-AHP

ratio

Adult male
Yellow part <0.14a 9.72 <0.014
Brown part 28.8 9.46 3.04
Black part 40 5.66 7.07

Adult female
Yellow part <0.14a 22.2 <0.006
Brown part 65.4 8.56 7.64
Black part 52.6 3.87 13.59

Juvenile
Yellow part <0.14a 9.45 <0.014
Brown part 96.9 11.8 8.21
Black part 249 7.45 33.42
a Values below the detection limit of HPLC determination.
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The yellow part of the shell contained mainly pheomelanin
pigments. Thus, contrary to the claim that reptiles do not
produce pheomelanin, we detected a substantial amount of this
pigment in the scutes of Eastern Hermann’s Tortoises.

DISCUSSION

The finding that reptiles do produce pheomelanin pigments is
important for several reasons. First, in reptiles yellow/reddish
coloration can be attributable to the deposition of carotenoids,
pterins, and pheomelanin (Macedonia et al., 2000). Our paper
demonstrates that, without analyzing pigments, we cannot
discount pheomelanin and assume that the yellow/reddish
coloration in reptiles is carotenoid or pterin based. This is
important because the carotenoid pigments are derived from the
diet, whereas pheomelanin pigments are endogeneously pro-
duced.

Second, mammals and birds are already known to produce
pheomelanin. Given the close phylogenetic position of birds and
reptiles, absence of pheomelanin in reptiles would have implied
a secondary loss in the production of this pigment. Our
demonstration of the presence of pheomelanin highlights the
need for additional data to be collected across a phylogeneti-
cally diverse groups of reptiles.

Third, the adaptive function of pheomelanin-based coloration
is less well known than of eumelanin-based coloration (Galvan
and Solano, 2009; Roulin, 2009). Because reptiles are used
frequently by researchers to study the role of natural and sexual
selection in the evolution of color traits (e.g., Olsson et al., 2007;
Lepetz et al., 2009), we may soon obtain more information on
the signaling value of pheomelanin-based coloration in this
group of animals. Finally, melanin-based color traits are
frequently associated with behavioral traits (Ducrest et al.,
2008), but so far most evidence comes from the study of black
eumelanic traits. Given that reptiles often vary in both black and
yellow/reddish coloration, they appear to be appropriate model
organisms to investigate further the relative role of eumelanin
and pheomelanin in generating covariation between color and
behavioral, morphological, physiological, and life-history traits.
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