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Abstract 

 

In forensic science, paint is one of the most common types of trace evidence. It can offer vital 

insights during the investigation of traffic accidents, especially hit-and-run incidents. Because 

paint originates from mass production, it often exhibits significant similarity across different 

samples, resulting in considerable uncertainty regarding this type of evidence. The evaluation 

of physical and chemical characteristics through instrumental analysis is essential in 

determining the rarity and significance of paint evidence. Nevertheless, there is a lack of 

comprehensive studies on recent variations in mass-produced automotive paints. This thesis 

aims to fill this gap by examining the most representative manufacturers and colors of 

automotive paint through microscopy, Fourier transform infrared spectroscopy (FTIR), Raman 

spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). The 

research uses statistical tools (chemometrics) to evaluate the analytical data and identify 

variations in paint production, thereby providing forensic scientists with improved 

frameworks for interpreting paint evidence. 

The study collected 62 white automotive paint samples, with 135 subsamples, from 

Volkswagen vehicles produced by two Chinese manufacturers. All samples underwent a 

thorough analytical sequence using the aforementioned techniques. The discriminating 

power of each technique, individually and in combination, was calculated. It reveals that the 

intra-sample and inter-sample variability in this sample set was relatively high. This study also 

examined the necessity of analyzing all layers, revealing that analyzing the primer with FTIR 

and the clearcoat with Raman spectroscopy yields highly effective discriminatory results. 

Through the defined analytical sequence, an impressive discriminative power of 99.6% was 

achieved for this sample set, with only seven pairs of samples remaining undifferentiated. The 

study thoroughly investigated the undifferentiated sample pairs, the correlation between 

paint characteristics and sample origin (make, model, assembly plant), and the sample 

variability related to topcoat color, production year, batch variation, and geographic variation 

using the integrated data. 

The comprehensive analysis and comparisons conducted in this research provide a solid 

foundation for future forensic investigations involving automotive paint. 
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1. Introduction 
 

 

1.1. Forensic research context  
 

Many objects encountered in daily life, such as tools, buildings, automobiles, are covered with 

paints. These paints can be transferred in criminal activities, which makes paint evidence one 

of the most common types of trace evidence in forensic science. Among them, automotive 

paint is the largest category and is used to provide valuable information that helps with 

investigation of traffic accidents, such as hit and run cases. When used as evidence, the rarity 

of physical and chemical characteristics revealed by instrumental analysis of paint should be 

evaluated. Comprehensive studies have been conducted to obtain information that could 

assist with the interpretation of paint evidence. Most of the published research is based on 

paint samples collected from random manufacturers and colors when the aim concerns paint 

differentiation. However, automobile paints are mass-produced products, to what extent can 

the paints be differentiated and the significance of non-differentiation when analyzing this 

kind of mass products are also important issues in forensic practice. In fact, batch variation is 

one of the key figures that need to be considered when it comes to paint frequency 

interpretation. The only systematic study that focused on this topic was published in 1998 

(Stoecklein and Palenik,1998). The authors tried to provide the answer to the questions such 

as ‘in how many vehicles produced by one manufacturer and painted in the same color, can 

the paint be distinguished’ and ‘how many examinations must be carried out before two 

samples can be said to be non-differentiated’. Since then, paint application technology has 

developed and improved significantly. Similar research which focuses on the discrimination 

of paints from the same manufacturer and color, however, is scarcely found in literature. 

Nowadays, forensic casework relies more and more on paint databases. Databases can indeed 

provide information that could help with the interpretation of paint evidence. However, our 

in-depth understanding of mass-produced paint should also be updated from systematic 

study of paint of same manufacturer and color. The present research derives from this need 

and strives towards a deeper understanding of more recent paint variation in manufactured 

automotive paint. 

This thesis aims to analyze the most representative manufacturer and color of automotive 

paint using several common analytical techniques, namely microscopy, Fourier transform 

infrared spectroscopy (FTIR), Raman spectroscopy (Raman), and pyrolysis gas 

chromatography mass spectrometry (Py-GC/MS). The acquired analytical results will be 

evaluated from the perspective of discrimination of batch production with the aid of 

statistical tools (chemometrics). In-depth information about automotive paint batch 

differences will be discussed to aid forensic scientists with their interpretation of the strength 

of paint evidence. 
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1.2. Structure of the manuscript 
 

This research will be presented and summarized in a total of 12 chapters, structured in a 

logical order from theory to practice. Each chapter will cover specific aspects of the research 

and contribute to the overall understanding of automotive paint analysis. 

Chapter 2 will provide a brief introduction to automotive paint, focusing on the coating 

system (layer sequence) and composition. This chapter will establish the foundational 

knowledge necessary for understanding the subsequent chapters. 

Chapter 3 will discuss the current status of forensic automobile paint analysis, exploring 

various aspects related to the methods commonly used in paint analysis. It will highlight the 

working principles of each instrument and provide a comprehensive literature review of their 

applications in forensic analysis of automotive paint. 

Chapter 4 will present a detailed elaboration of the aims, objectives, and methodologies of 

this study. It will discuss the gaps and limitations in existing research and outline the 

additional information expected to be obtained from this research. 

Starting from Chapter 5, the focus will shift to the practical part of the thesis. This chapter will 

provide detailed information on the selection, collection, and constitution of the paint 

samples, setting the stage for the subsequent experimental chapters. 

Chapters 6 to 10 will present the experimental aspects of the research. Chapter 6 will focus 

on the optimization and standardization of the sample preparation method and experimental 

parameters of each technique involved in this thesis. Chapters 7, 8, 9, and 10 will cover the 

specific analysis techniques used in this study, namely microscopy, FTIR spectroscopy, Raman 

spectroscopy, and Py-GC/MS. Each chapter will delve into the respective method, including 

experimental results, and any necessary discussions. 

Chapter 11 will provide a comprehensive discussion of the combined results obtained from 

all the analysis methods employed in this study. It will offer in-depth insights into the 

characteristics and properties of automotive paint based on the findings. 

Finally, Chapter 12 will serve as the conclusion of the thesis, summarizing the key findings, 

discussing their implications, and providing a concise summary of the overall research. 

By organizing the thesis in this manner, the research progresses logically from theoretical 

foundations to practical experimentation and analysis, ensuring a comprehensive and 

coherent exploration of automotive paint analysis. 
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2. Automobile paint 
 

 

As defined in “Standard Terminology for Paint, Related Coatings, Materials, and Applications” 

which is published by American Society for Testing and Materials (ASTM), paint is known as 

‘a pigmented coating which is converted to a solid, protective, decorative, or combination 

thereof, film after application’ (ASTM-D16-19).  In forensic case work, three categories of 

paint evidence are normally confronted, i.e., automobile paint, household paint and art paint 

(Muehlethaler et al.,2013). Automobile paint is the most common type and can be transferred 

to another object during a collision and/or left on a crime scene or on victims’ clothes in hit-

and-run cases. In order to achieve the forensic objective of paint discrimination, it is first 

necessary to understand the constitution and composition of automotive paint. The 

systematic introduction of the technology and the paint materials used in automotive coating 

processes are available from the following books (Lambourne and Strivens,1999; Streitberger 

and Dössel,2008).  A brief summary will be provided here. 

 

2.1.  Paint coating system (OEM) 
 

In today's automobile manufacturing industry, the car body itself is made of various metals 

or plastics. In order to protect the metal body from corrosion due to direct exposure to the 

air and provide an appealing look, the car body is usually applied with paint coatings. The 

development of science and technology has changed the coating process from the initial 

hand-painting and air-drying procedure, requiring several weeks to a worldwide standardized 

process that takes only hours. Automobile paint should provide durable protection and 

aesthetic appeal. In order to meet the above demands, the standardized coating process is 

designed to be able to apply several layers of coatings that have different functions on the 

car body. The original coating system which is generated from this standardized coating line 

is referred to as an original equipment manufacturer (OEM) system. At present, a standard 

OEM coating system produces 4 to 5 layers of paint with a total thickness of 100-140 μm, 

from the inside to the outside, including pretreatment, cathodic electrodeposition primer, 

primer surfacer, basecoat and clear coat (see Figure 1).  
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Figure 1.  Schematic of an OEM coating system 
(https://www.shintoacs.com/english/products/index.html) 

 

2.1.1. Pretreatment 
 

Currently, most car bodies worldwide are produced from either zinc-coated steel, aluminum 

sheets or coils. The surface would normally contain some contaminations materials like oils 

and lubricants resulting from the body assembly process. Metal surfaces easily rust or corrode 

due to their impurities and a humid environment. Since paint films lack adhesion to bare 

metal, corrosion would easily take place if paints were to be directly applied onto untreated 

metal surfaces. Removing these contaminants provides corrosion protection for the metal 

substrate and improves paint adhesion so that the subsequent primer could be better 

adhered to the car body. The substrate surface would be first pretreated under a process 

called ‘degreasing’ to remove all the contaminants followed by a zinc phosphating process. 

During the zinc phosphating process, a reaction between the metal and zinc phosphate 

solutions would initially occur forming a thin, phosphate crystal coating with the thickness 

between 1 and 3 μm on the metal surface. This step is the standard process for pretreating 

car bodies. 

Puomi et al has reported on a new development in which they replaced the zinc phosphating 

and E-coating system (will be introduced in next section) with one epoxy-acrylate primer 

system (Puomi et al.,2008). Since virtually no pretreatment is needed before primer coating, 

the proposed technology simplified the traditional automotive finishing process. 

 

2.1.2. Cathodic electrodeposition primer 
 

After the pretreatment process, the body-in-white would be then coated with a primer, 

undergoing the electrocoating (E-coating) process. The electrocoating process is to immerse 

the conductive substrate, i.e., body-in-white in a tank filled with the electrocoat as the 

cathode and set up a corresponding anode in the tank. After the direct current is connected 
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for some period, a uniform and dense paint film (insoluble in water) will be deposited on the 

surface of the object, known as the cathodic electrodeposition primer. The ideal thickness of 

this coating is around 20-22 μm. The paint film usually results in a grey/black color and has a 

characteristic bubble-type structure morphology due to the hydrogen and oxygen gases 

developed during the process. The cathodic electrodeposition primer, which is considered as 

a layer directly adhered to body-in-white, plays a critical role of corrosion prevention and 

improved paint adhesion. 

 

2.1.3. Primer surfacer 
 

The primer surfacer, often termed surfacer, is referred to as middle coat, playing an important 

role in connecting the upper and lower coatings. The primer surfacer ‘fills’ the holes and lines 

on the rough surface to make a flat and smooth surface, thus producing good 

bonding/adhesion between the upper and lower coatings. It also fulfils the requirement of 

stone chip resistance and climatic protection. The flatness and smoothness of the coating can 

effectively hide the imperfections of the body-in-white and increase the fullness and clarity 

of the topcoat. The application of this coating is often not standardized due to the complex 

requirements. 

 

2.1.4. Basecoat (color coat) 
 

The basecoat, also termed color coat, is the layer applied over the primer surfacer that can 

be seen from the outside, determining the color of vehicles. Pigments are the key components 

that are present in the basecoat responsible for basic solid colors. Particles such as metallic 

and mica flakes can also be added to produce effect color, hence increasing the richness of 

colors. The presence or absence of the effect flakes distinguishes basecoat into two types: 

solid or effect. The basecoat provides the function of aesthetic appearance and durability to 

the car. Since color is the appealing factor to the customer, manufacturers tend to use a 

variety of pigments or different combinations of pigments to give their products an attractive 

appearance. The characteristics of basecoat can be regarded as the discriminating feature for 

vehicles from different manufacturers, models and production years. 

With regards to the color popularity, according to annual automotive color popularity and 

trend data published by world’s leading coating suppliers (such as BAFS and PPG), white 

retained the leading spot as the most popular car color not only regionally but also globally 

(see Figure 2).  
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Figure 2.  Regional and Global color trend popularity in 2019 
( https://news.ppg.com/2019automotivecolor/) 

 

2.1.5. Clear coat 
 

The clear coat is the outermost layer of the coating system, a transparent paint layer that one 

can touch directly. Its function is to protect the colored basecoat, preventing the whole paint 

system from stone chips, scratches, ultraviolet radiation, weather and temperature changes 

and any other damage from the outside world. 

 

https://news.ppg.com/2019automotivecolor/
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2.2.  New trends for coating application 
 

In a standard OEM coating process, each functional coating is applied step by step. In between 

steps, the oven-baking process is necessary in order for the coatings to be cured or dried, thus 

forming a hard film before applying the subsequent coating (see Figure 3).   

 

Figure 3.  Standard coating process for OEM paint system (Streitberger and Dössel,2008) 

 

In recent years, driven by energy and cost saving, several integrated paint processes were 

developed. The first compact process is to reduce the baking step, i.e., to conduct a wet-on-

wet-on-wet application for primer, basecoat and clear coat. Only one baking process would 

take place after the coatings mentioned above are applied. This is known as ‘the 3-wet 

process’ or the ‘wet-on-wet-on-wet process’ (see Figure 4). This process may result in a 

reduction in the number of paint layers, less distinct boundaries between layers, and an 

increase in the thickness of the paint layers. 

 

Figure 4. Wet-on-wet-on-wet processes of the primer coat(Akafuah et al.,2016) 
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Another consolidated process is called the ‘primerless coating process’, which eliminates the 

use of primer surfacer by applying two layers of basecoat and enhancing their properties (see 

Figure 5). In this system, the first basecoat layer serves as primer to meet the requirement of 

anti-chip and durability. The second basecoat will remain as a classic color layer to provide 

color and additional durability. Both layers are applied wet-on-wet without a heated flash-off 

zone in between(PPG). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Primerless coating process(Moore,2017) 

 

The advantages of these compact processes are that they are more eco-friendly as they 

reduce the emission of CO2 and volatile organic compounds (VOC) as well as overall energy 

consumption. This process, however, increases the risk of chemical component penetration 

at the interface of each of the two wet layers resulting in an inhomogeneous performance for 

each layer. 

 

2.3.  Paint system on plastic parts 
 

The utilization of plastic materials on the car body has been increasing since the 1970s. They 

are often used as exterior components such as bumpers, ‘spoilers’ and ‘wrap-arounds’  

(Ansdell,1999). Plastic bodies, on one hand, have the advantage of weight-saving, style and 

better resistance but, on the other hand, bring coating difficulties such as poor adhesion, 

baking limitation and color match problems. Due to the property of heat distortion, only a 

few heat-resistance plastics can pass through the entire painting process together with the 
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metal body. Most of the plastic substrates are painted by suppliers or in a separate coating 

line at the automotive manufacturer (Wilke and Jacob,2008). This results in a high probability 

of paint layer diversity. The layer sequence or the composition of paint on plastic substrates 

and of paint on metal bodies from the same car may vary greatly. 

 

2.4. Refinishing system 
 

Defects may occur in every step of painting process. This leads to a situation where most of 

the new cars will have to be repaired at least once before delivery to customers (Dössel,2008). 

Detected defects or damages are removed by sanding or polishing and an additional coating 

step for this segment or even the whole car is then required. This may cause unusual layer 

structure of paint. 

While brought into use, car paint provides adequate protection for the car body. However, it 

also suffers from various damages such as aging and peeling caused by climatic factor, stone 

chip attacks, scratching, and even major damage caused by a car collision. For protective and 

aesthetic reasons, these damages must be repaired. Furthermore, when some OEM paints 

cannot provide customers with a wealth of color choices, they may tend to design their own 

paint colors. The need for maintenance and customization of paint on a car body is what 

ultimately led to the establishment of the refinishing industry. Repainting services might be 

provided by refinishing department of original carmaker, automobile repair shops, or even 

small local workshops. Different repainting requirements and various service suppliers make 

the refinishing coating system and chemical composition diverse. Unlike the OEM coating 

system, there is no standardized layer sequence for a refinishing paint system. The whole 

OEM system can be eliminated if damage causes the entire coating to peel. A thick primer 

might be used to fill the deformations caused by stone chip attack or collision to form a flat 

surface. Topcoats (basecoat and clear coat) are the most common additional layers added to 

OEM coating system. These specific layer sequence and variety in chemical composition make 

refinishing paint more distinguishable than OEM paint. 

 

2.5. Composition of automobile paint 
 

Automobile paint is different from other paints because it is always exposed to nature and is 

subject to seasonal changes. In order to protect the car body for as long as possible, the 

performance requirements of coatings are extremely high. As previously mentioned, 

automobile paint should not only have good mechanical properties, and high durability, but 

also good adhesion, high hardness, strong scratch resistance, excellent weather resistance 

and superior resistance to all kinds of pollutants such as gasoline, alcohols, acids, alkalis, salt 

spray, not to mention satisfying the demand for aesthetics such as attractive color, gloss 

continuity and so on. All these performances have special requirements for the chemical 

composition of paint. For automobile paint, there are usually four components: the binders 
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or resins, pigments and extenders, solvents and additives (Lambourne and Strivens,1999). The 

detailed explanation of each component can be found in the following books or book chapters 

(Lambourne and Strivens,1999; Caddy,2001; Ryland and Suzuki,2011). Only a brief 

introduction will be given next.  

 

2.5.1. Binders 
 

A binder is the substance that holds or draws other materials together to form a cohesive 

whole mechanically, and chemically, by adhesion. In automobile coating systems, resin plays 

the role as a binder to be the polymeric substance that provides support medium for pigments, 

extenders and additives, forming a hard film after curing (Saferstein,2018). The polymers that 

are used for paint binders include acrylics, alkyds, polyesters, urethanes, amino resins, 

epoxies, vinyls, cellulosics, and silicones (Ryland and Suzuki,2011).  The physical properties of 

the paint such as hardness, flexibility, durability, acid and alkali resistance are determined by 

the binder or resin (Bender,2013). Incidentally, the binder type is the most significant 

characteristic in forensic paint examination.  

 

2.5.2. Solvents 
 

Resin is a solid or highly viscous substance. When used as a coating material, it needs to be 

diluted in solvents so that the solution could be easily coated onto the car body, either by 

dipping or by spraying. This makes the solvent an essential component of automobile paint. 

Solvents used as diluents can be either organic solvents (solvent-borne paint) or aqueous 

(waterborne paint). Solvent choice is determined by both the resin system and by the method 

of application (Caddy,2001). However, waterborne paint is becoming the better choice for 

more and more manufacturers when considering environmental impact since organic 

solvents are considered as volatile organic compounds (VOCs) that are harmful to 

environment and regulated by countries.  As a result of volatility during application, solvents 

are almost impossible to be detected during examination. 

 

2.5.3. Pigments and extenders 
 

Pigments are fine colored powder-like substances that are generally insoluble but can be 

evenly dispersed in water or resin, providing opacity, color and protection to paint as well as 

concealing properties. They can be organic or inorganic and they can enhance the 

permeability, durability, weather resistance, abrasion resistance and anti-aging properties of 

paint films. The physical shape, size and refractive index of pigment particles must be optimal 

to scatter light so as to provide opacity. The choice of pigments depends on the effect 

carmakers want to achieve. Organic pigments can provide brighter and more attractive colors, 
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while inorganic pigments can provide black and white as well as additional properties such as 

lightfastness, heat stability and UV absorption (Caddy,2001). Effect pigments are now widely 

applied in the coating industry. These pigments contain effect particles such as mica and 

metallic flakes that provide a pearlescent or flashy appearance (see Figure 6).  

 

Figure 6. The effect particles present in the automotive coat. 

 

Extender pigments, also termed extenders or fillers, do not have concealing power and tinting 

power. They cannot scatter light, nor can they add color to the paint. The main role of 

extenders is to increase volume and reduce costs since they are less expensive than pigments. 

The extender pigments can also improve the physical and chemical properties of the paint 

such as film thickness, gloss, viscosity, paint film structure, strength and durability. Some 

extender pigments have low density and good suspension power, which can help with 

pigment dispersion and prevent the precipitation of dense pigments, thus allowing a 

homogeneous appearance. Common extenders used in paints include calcium carbonate 

(calcite), magnesium silicate (talc), potassium aluminum silicate (mica), barium sulfate 

(barytes), kaolin (clay), and silicon dioxide (quartz) (Ryland and Suzuki,2011). 

 

2.5.4. Additives  
 

The formulation of paint film is a very complex process. It not only depends on the properties 

of the film-forming substance, i.e., the binder itself, but it is sometimes necessary to add 

chemicals to achieve certain reactions or enhance a desired property of car paint. Additives 

are the small amounts of substance added to the paint to provide the best properties and 

appearance. The types of additives vary with the purpose and location of use, including 

corrosion inhibitors, catalysts, ultraviolet absorbers (UVA), hindered amine light stabilizer 

(HALS), anti-mold components, plasticizers, pigment dispersion additives, etc. 
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3. Forensic analysis of automobile paint 
 

 

3.1.  Introduction 
 

Automobile paint traces are usually recovered from damaged cars, motorcycles, bicycles, 

human bodies, clothes of a victim and/or other items that have been left on the crime scene. 

The purpose of forensic paint analysis is to find the original sources of these ‘unknown’ traces, 

or in other words, to link these questioned traces to a specific vehicle. The strategies used in 

each case depend on the availability of the reference samples which were normally seized 

from a suspect vehicle. If a reference sample is available, the two samples should be analyzed 

by different analytical techniques and compared based on their physical and chemical 

characteristics to determine if they might have common source. If the reference sample is 

missing, then the profile of the unknown sample needs to be characterized and compared 

across relevant databases in order to get identifying information that could help with the 

investigation. Comparative analysis will be conducted after a suspected item is seized. 

Therefore, depending on the presence or absence of the known samples, a bifurcate 

analytical scheme is generated, which is illustrated in Figure 7. 

 

Figure 7.  Flowchart of forensic paint analysis (Muehlethaler et al.,2013) 
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Since paint analysis results are served as evidence in the court, it has to be scientific, robust, 

logical and transparent. The analysis sequence must be conducted using validated methods 

and consistent approaches. Thus, guidelines have been established to provide a framework. 

In the U.S, the Scientific Working Group for Materials Analysis (SWGMAT) and the American 

Society for Testing and Materials (ASTM) have been publishing standard guides concerning all 

aspects of paint analysis and comparison (ASTM-E1610-18 ; SWGMAT,1999). These guides are 

intended to provide a reasonable reference for all the individuals conducting forensic paint 

analyses. In Europe, the European Paint, Glass & Taggants Expert Working Group (EPGT) of 

European Network of Forensic Science Institutes (ENFSI) has similarly developed a set of 

guidelines to provide recommendations for the forensic examination of paint (EPGT,2022).  

In these guidelines, optical microscopy examination, FTIR, Raman, SEM/EDX and Py-GC/MS 

are the recommended techniques and likewise the most widely used techniques in forensic 

paint examination (Duarte et al.,2020). As they are the chosen methods for this study, the 

theory and their application in forensic automobile paint analysis will be amply discussed in 

the following sub-chapters. The choice of analytical methods and sequence are significant and 

will also be discussed in this chapter. 

 

3.2. Forensic paint databases 
 

3.2.1. Automotive paint databases 
 

In the case where only paint traces are available, being able to obtain investigative 

information is significant. For instance, in a hit-and-run accident, investigators rely on the 

automobile paint fragments left on the victim to provide information regarding the potential 

source, such as manufacturer, color, model and production years. This achievement is 

established on the presence of an adequate database containing extensive data so that the 

questioned sample may be compared to it. The more exhaustive one database is, the greater 

the role the database can play. Based on this fact, various paint databases have been 

established since the 1970’s. However, one single institute can never achieve the 

establishment of a comprehensive database, it requires collaboration. As a result, two 

international-scale databases for automobile paint were developed in North America and the 

other in Europe. 

Since 1970’s, the Royal Canadian Mounted Police (RCMP) Forensic Laboratories have been 

systematically gathering physical and chemical information on automotive paint. They have 

subsequently generated a database containing optical features, infrared spectra and all 

related sample information, known as Paint Data Query (PDQ). This database contains 

information related to automobile layer sequence, color description, manufacturer, location 

of assembly plant, year of production, model, topcoat color code, vehicle identification 

number(VIN) and substrate (Buckle et al.,1997). As for the chemical composition of each layer, 

they are recorded by means of functional groups, chemical types and crystalline structures 
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(i.e., extenders) from which can be identified from IR spectra. Spectra of an unknown sample 

can be searched and compared in the database generating a ‘hit list’, which includes 

manufacturer, model, production year and assembly plant. The ‘hit list’ is a list of vehicles 

that are similar to the unknown sample in terms of layer sequence and chemistry composition. 

This obtained information could thus help identify the source of the unknown sample 

(Wright,2010; Wright,2012). Since its establishment, maintenance and development of 

databases have not stopped. Partner laboratories continuously expanded the databases 

adding approximately 500 samples to PDQ annually (Bradley et al.,2007). Nowadays, the PDQ 

contains over 21000 samples in the database and is used in as many as 24 countries 

(Hodgins,2016).  Techniques behind the database and its search algorithms were 

simultaneously updated (Lavine et al.,2014a). This makes PDQ one of the most significant 

international automotive paint databases.  

In Europe, the European Collection of Automotive Paints (EUCAP) databases were built up by 

the EPGT in 1995. At the same time, EPGT started to cooperate with the RCMP and the FBI by 

means of sample and data exchange. Currently, the EUCAP databases are maintained by and 

contributed to most laboratories in Europe. It offers the possibility of identification or 

characterization of unknown paint samples encountered in casework. Similar to the PDQ, 

EUCAP databases also contain paint layer information, color, car make, model, production 

year as well as chemical component revealed by infrared spectra. EUCAP databases have over 

60000 IR spectra from almost 24000 paint samples. Additionally, Raman spectra libraries for 

organic and inorganic dyes and pigments are also generated and can be used to identify 

existing pigments and extenders in the automobile paint topcoat. EUCAP can be accessed by 

not only ENFSI members but also by non-European countries such as the U.S, Canada, 

Singapore, and so on. This makes EUCAP also one of the most significant international 

automotive paint databases. 

The establishment of databases stems from the need to solve difficulties encountered during 

the comparison and interpretation of casework. Driven by this need, several countries, such 

as Japan, Singapore, and Australia, have also established their own local automotive paint 

databases. In Singapore, the Forensic Chemistry and Physics Laboratory (FCPL) of Health 

Sciences Authority and Singapore Police Force’s Bomb & Explosive Investigation Division (BEID) 

started a collaborative project in 2008. Since then, they have collected over 2500 automotive 

paint samples from the streets and establish a Vehicle Paint Database(VPD) for physical, 

microscopic and chemical examinations (Soong et al.,2020). In fact, most forensic laboratories 

would have several small local databases, which often are associated with specific cases.  

The existence of automotive paint database makes   it possible to correlate the chemistry of 

the automotive paint with a particular vehicle make and model within a limited production 

year range (Lavine et al.,2016b). 
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3.2.2. Other paint databases 
 

As automobile paints are not the only type of paint traces that can be found in casework, 

databases for tool paints, architectural paints and spray paints were also created. In EPGT, 

databases containing thousands of spray paint IR spectra, hundreds of tool paint IR spectra 

as well as several architectural paint IR spectra are also established and continuously updated.  

 

3.3. Analytical sequence of automobile paint 
 

Since automobile paint is a multilayered mixture, analytical techniques should be chosen to 

provide a comprehensive examination protocol. The sequence should follow the principle 

from general to specific, from physical to chemical characteristics. Considering the limited 

quantity of samples, the non-destructive methods should be prior to those that are 

destructive or require more sample preparation (ASTM-E1610-18). When determining which 

techniques should be applied using which sequence, the case requirement, the sample 

condition, the instrument available in a laboratory, the available time, and the cost should be 

taken into consideration. Before starting any analysis, a pre-assessment should be conducted 

to predict the potential value that the examination may provide and to determine the 

analytical strategy (Muehlethaler et al.,2013). An analytical sequence has been defined based 

on the above principles, as illustrated in Figure 8. The methods mentioned in the figure will 

be amply discussed in the following subchapters.  

 

Figure 8. A general analytical sequence that can be applied for automobile paint analysis 
(Muehlethaler et al.,2013). 
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3.4. Microscopy  
 

No matter the condition of a sample or which analytical strategy is adopted afterwards, the 

first step in forensic analysis of automotive paint remains visual evaluation and description 

(ASTM-E1610-18 ; SWGMAT,1999). Since paint samples are often small in size and of a limited 

quantity, this step is usually accomplished using a stereomicroscope. Once general properties 

such as size, shape, surface features, and color of a sample are documented, observation and 

comparison of further distinctive physical properties of a paint system using a microscope is 

the next key step. The color, texture, morphology, gloss, pigment appearance, effect pigment 

size and distribution, anomalies, layer structure and relative layer thickness are all important 

features for an automotive paint system (ASTM-E1610-18 ; Buzzini and Stoecklein,2005; 

Muehlethaler et al.,2013). Many studies have shown that automotive paint can be well 

distinguished using only microscopy comparison (Gothard,1976; Ryland and Kopec,1979; 

Edmondstone et al.,2004; Reynolds et al.,2018; Kruglak et al.,2019). Among these features, 

the number, sequence and type of layers are the most distinctive points (Gothard,1976; 

Ryland and Kopec,1979; Edmondstone et al.,2004). The examination of layer structure is also 

able to differentiate an OEM paint from refinishing paint, which requires an accurate 

examination by obtaining a cross-section of paint either using a scalpel /razor blade or a 

microtome (ASTM-E1610-18).  

The characteristic features of automotive paint can be revealed by various illumination 

techniques. Without sample preparation, paint flakes can be placed directly on a microscope 

slide and observed with incident light. This permits the observation of color, size, shape, effect 

flakes and surface properties (Buzzini and Stoecklein,2005).Transmitted light has been proven 

to be the most valuable for paint thin section, with a discriminating power (DP) over 95% for 

colored paints (Allen,1992a). Both bright field and dark field illumination should be applied 

for the most complete examination (Caddy,2001). Figure 9 presents a good example which 

shows that dark field illumination allows the color difference of primer surfacer and primer 

where they could not be differentiated in bright field. Polarized light microscopy (PLM) (both 

plan-polarized light and double polarization) and fluorescence microscopy are necessary 

techniques for the examination of pigments and extenders used in paint since these 

compounds may show special polarization or fluorescence colors (Hamer,1982; Hopen and 

Davis,2009).  
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Figure 9. Microscopic examination of the cross-section (5 µm) of a red automobile paint in a) 
transmitted light bright field, b) transmitted light dark field. 

 

Discriminating power is defined as “the probability of discriminating two distinct samples 

selected at random from the population of interest”(Smalldon and Moffat,1973). It was 

developed to assess whether one attribute of a sample is more discriminating than others so 

that making it worthy of being measured. Now it serves more as a key parameter to evaluate 

whether a method is a good choice to discriminate certain samples. 

Several studies have shown that microscopy in general provide high discriminating power for 

automotive paint examination. A summary of these existing published data is provided in 

Table 1. The year of publications, the total number of samples, the techniques used, and their 

DPs are listed. 

 

Table 1. Summary of the automotive paint studies conducted using microscopic techniques. 

Authors, Year of 
publication 

Country 
Total number of 

samples (N) 
Techniques 

DP (Number of non-
differentiated pairs) 

Gothard,1976 Australia 500 Varied lighting conditions 0.9999 (5)* 

Ryland and Kopec,1979 US 200 Varied lighting conditions 0.9993 (13) 

Massonnet,1996 Switzerland 
 

124 (only metallic 
grey) 

Transmitted light bright field 0.9205 (606) 

Transmitted light dark field 0.9498(383) 

Reflected light bright field 0.9041 (731) 

Reflected light dark field 0.918 (625) 

Polarized light 0.9039 (733) 

Fluorescence light (UV filter) 0.9018 (749) 

Fluorescence light (purple filter) 0.8734 (965) 

Fluorescence light (blue filter) 0.877 (938) 

Fluorescence light (green filter) 0.8408 (1214) 

Edmondstone et al.,2004 Canada 260 Reflected light 0.999 (35) 

Reynolds et al.,2018 US 231 Transmitted light 0.9997 (7) 

Kruglak et al.,2019 US 200 
Transmitted light bright field and 

polarized light 
0.9999 (1) 

Soong et al.,2020 Singapore 256 Reflected light (stereomicroscope) 0.9986 (65) 

*  Chemical tests were also conducted to the samples and counted for microscopic differentiation.  

a) b) 
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From the published studies, it is known that when the sample set involves one single color, 

the DP is less than those containing various colors. In general, the more layers of paint present 

in a paint chip, the less likely it is for one to randomly encounter another source of paint with 

the same characteristics (layer sequence and layer components) (SWGMAT,2011). In order to 

achieve a comprehensive optical examination, it is recommended to combine all the 

aforementioned techniques.  

 

3.5. FTIR  
 

After physical and optical examination, the following step of automobile paint examination 

should be the characterization and comparison of their chemical features. Vibrational 

spectroscopy can be used to determine the molecular structure of materials non-

destructively, and is currently the preferred choice as a first-pass analytical technique in 

forensic science (Chalmers et al.,2012c). Among these, IR spectroscopy is the most common 

and powerful technique for identifying and comparing automotive paint by determining 

chemical components such as binders, pigments or additives (ASTM-E1610-18 ; Ryland et 

al.,2001; Ryland et al.,2006; Duarte et al.,2020; EPGT(EPG-GDL-002),2022). Since paint 

samples encountered in casework are often limited in quantity, a Fourier transform infrared 

(FTIR) spectrometer with microscope accessory is essentially used for adequate 

characterization (ASTM-E2937-18 ; MacDougall et al.,2001; Muehlethaler et al.,2013). 

 

3.5.1. FTIR spectroscopy principles  
 

More detailed theoretical principles of FTIR have been well documented in the following 

references (Darlene and Brezinski,1991; Humecki,1995; MacDougall et al.,2001; Chalmers 

and Griffiths,2002; Griffiths and De Haseth,2007; Chalmers et al.,2012a). This section provides 

a basic introduction of relevant principles and instrumentation. 

When light in the range of IR radiation passes though or is reflected off a sample, some 

radiation may be absorbed. The intensity and the frequency of absorption is a result of the 

molecular structure of the sample as well as the vibrational mode of the molecules, which is 

characteristic for a specific functional group (Griffiths and De Haseth,2007). Thus, a 

vibrational spectrum can be generated, where the x-axis represents the frequency of 

absorption in units of wavenumber (cm-1), the  y-axis represents the absorbance or 

percentage transmission of IR radiation (MacDougall et al.,2001). A typical IR spectrum is in 

the wavenumber range of 4000-400 cm-1, known as mid-infrared, encompassing chemical 

information that is particularly relevant to the forensic scientist. The range of 1500-400 cm-1 

is often referred to as the ‘fingerprint’ region of an IR spectrum since it usually contains a 

large number of peaks that may be unique and used to distinguish between compounds 

(Chalmers et al.,2012a). The IR spectra of binders or resins used in paint contain many sharp 

bands in the range of 3600-500 cm-1, whereas inorganic compounds such as inorganic 



19 
 

pigments and extenders often present bands in the region of 1500-200cm-1 (MacDougall et 

al.,2001). Since the individual peaks present in IR spectra are associated with unique 

compounds, the spectra can be interpreted to identify the functional groups and further 

compared to a library database of reference spectra (Chalmers et al.,2012a). 

 

3.5.1.1. FTIR instrumentation 
 

A typical FTIR spectrometer contains an infrared source, an interferometer and detectors. 

When it comes to the analysis of samples of a limited quantity, the FTIR spectrometer is 

usually coupled with an IR microscope accessory.  

The most common infrared source used in FTIR spectrometers is the Globar (Chalmers and 

Griffiths,2002; Griffiths and De Haseth,2007). It is a resistively heated silicon carbide rod that 

is electrically heated to 1200 °C (or ~1400K), which is high enough to emit continuous mid-

infrared radiation. 

The interferometer consists of a beamsplitter and two mirrors that are perpendicular to each 

other – one stationary and one moving (see Figure 10). After the IR radiation is emitted from 

the infrared source, it reaches the interferometer and is split into two parts by the 

beamsplitter. These two parts are then directed to the fixed and moving mirrors, respectively. 

The two beams interfere with each other and recombine at the plane of beamsplitter. The 

recombined beams then pass though the sample, interact with samples, and finally reach the 

detector. The interference patterns can be converted to infrared spectra by a Fourier 

transform (MacDougall et al.,2001).  

 

 

Figure 10. A schematic of an interference in FTIR spectrometer (Campanella et al.,2021) 
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The two most common infrared detectors used in mid-FTIR spectroscopy are the deuterated 
triglycine sulphate (DTGS) detector, which is a thermal detector, and the mercury–cadmium–

telluride (MCT) detector, which is a quantum detector. The MCT detector has higher sensitivity 

and speed of response than the DTGS detector, so it is the most commonly used detector 
when FTIR is coupled with microscope. However, the drawbacks of the MCT detector are that 
it must be cooled by liquid nitrogen to achieve its best sensitivity. Additionally, it has a 
narrower spectral range than the DTGS detector where the spectra are cut off at 600 cm-1. 
This results in the limitation of obtaining inorganic information from the sample 
(Kirkbride,2015).  
 
The microscope coupled with FTIR spectrometer use special Cassegrain optics. The beam from 

the interferometer is firstly focused by the Cassegrain condenser onto the sample, then 

collected by the Cassegrain objective after passing through the sample, and finally focused 

onto the MCT detector (Griffiths and De Haseth,2007). In the microscope, the glass lens is 

replaced by metal-coated lens in order to avoid IR radiation absorption. The sample to be 

analyzed is mounted on the stage and the analysis region is selected by variable apertures. 

The aperture size can be adjusted and adapted to the size of a paint layer with a minimum 

diameter of 10 µm (EPGT(EPG-GDL-002),2022). The optical bench of the microscope is often 

adapted to the spectrometer so that the whole system becomes FTIR microspectrometry, 

thus being able to measure samples in both transmission and reflective mode. However, the 

transmission mode is more preferred due to the spectral distortion and mathematical 

corrections in the reflectance spectra (Ryland,1995; MacDougall et al.,2001).  

 

3.5.1.2. Sampling techniques 
 

A large variety of sampling techniques are available for paint analysis, including transmission, 
reflection, attenuated total reflection(ATR), and various microsamping methods (MacDougall 
et al.,2001). The detailed explanation for these methods can be found in the references 
mentioned at the beginning of this chapter (page 18). In this section, only the sampling 
techniques involved in transmission FTIR microspectroscopy will be discussed.  
 
The diamond anvil cell (high pressure or low-pressure) is one of the recommended sampling 

techniques for transmission measurements in the field of forensic paint analysis. It has been 

proven by Tweed et al. in 1974 to be a reliable sampling method for sample preparation 

(Tweed et al.,1974). This has also been confirmed by several subsequent published studies 

and recommended by guidelines (ASTM-E2937-18 ; Rodgers et al.,1976a; Schiering,1988; 

Allen,1992b; Cassista and Sandercock,1994; SWGMAT,1999; MacDougall et al.,2001; Ryland 

and Suzuki,2011; EPGT(EPG-GDL-002),2022). The diamond anvil cell consists of two diamond 

windows (type II), a holder, and a mechanism that helps squeeze the samples. For single-layer 

paint sample, it can be placed between two diamond windows and flattened by compressing 

the diamond windows with the fingers. For multilayered samples such as automotive paint, 

thin cross sections (normally 5 µm) are made using either a microtome or a razor blade. They 

can be either pressed using a scalpel blade or rolled with an appropriate tool before being 
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directly positioned onto the support (EPGT(EPG-GDL-002),2022). Once the sample is prepared, 

it is mounted onto the stage and first observed using the microscope. The region of interest 

is centered in the field of view and defined by the apertures. The acquired spectrum is a 

mixture of sample and background. The sample should be moved out of the field of view in 

order to collect the spectrum of background. The ratio between the two spectra gives the IR 

spectrum of the sample. The spectra are often plotted as transmission spectra, at 4 cm-1 

resolution with a spectral range of 4000-650cm-1. 

KBr micropellets is another microsampling technique for transmission measurements. KBr 
(potassium bromide) is the most common alkali halide used in the pellets. Since it is totally 
transparent to the IR radiation between 4000cm-1 – 450 cm-1, it doesn’t exhibit absorption in 
this range. The samples should be deposited on a KBr pellet for measurement. It is now 
gradually being replaced by the more convenient diamond cell techniques. 
 
 

3.5.2. Application of IR spectroscopy in the forensic analysis of 

automotive paint 
 

The use of IR spectroscopy for forensic application began in the 1950’s (Chalmers et al.,2012c). 

Years of studies have proved that IR spectroscopy is particularly well suited for the non-

destructive identification and classification of binder, pigments and extenders used in 

automotive paint. Several studies have shown that IR analysis of automotive paint have a high 

DP of 0.9 to 1.0 (Massonnet and Stoecklein,1999b; Eyring et al.,2007). A summary of existing 

surveys on automotive paints is presented in Table 2. The year of publications, the total 

number of samples, the sampling techniques used, and their DPs are listed. To be noticed, in 

some population studies, IR spectroscopy was only used to distinguish samples that could not 

be differentiated by microscopic examination and can significantly reduce the 

undifferentiated pairs, in other words, add the total discriminating power. These population 

studies will be fully discussed in the following chapter (see chapter 3.8). Only the surveys that 

provide the DPs of IR spectroscopy are listed here. 

Massonnet carried out a systematic examination on grey metallic automotive paint 

(Massonnet,1996). Each layer of paint samples was measured and characterized. The 

discriminating powder with regard to each layer as well as the different combination of layers 

was well presented. In her study, the most distinction layer for grey metallic paint is the 

primer surfacer, with the DP of 0.98. 
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Table 2. Summary of the automotive paint studies conducted using IR spectroscopy. 

Authors, Year of 
publication 

Country 
Total 

number of 
samples (N) 

color of the 
samples 

Techniques reported 
DP (Number of Non 
differentiated pairs) 

Massonnet, 1996 Switzerland 124 Grey metallic 

Sampling: FTIR-Microscope + 
KBr pellet 
Detector: narrow band MCT 
Scan:200 
Spectra range: 4000-650 cm-1 
Resolution: 4 cm-1 

0.99829 (11)   
when considering the 

entire layers  

Massonnet and 
Stoecklein,1999b 

Switzerland 59 
27 light red 
27 dark red 

5 red metallic 

Sampling: FTIR-Microscope + 
diamond anvil cell 
Detector: broad band MCT 
Spectra range: 4000-450 cm-1 
Resolution: 4 cm-1 

Light red: 0.94587(19) 
Dark red: 0.95726 (15) 

Metallic: 1(0) 

Ryland et al., 2001 US 9 Nonmetallic black See details in the paper 1(0) 

Eyring et al.,2007 Canada 104 
34 red 

70 white 

Sampling: micro-ATR-FTIR 
Scan: 512 
Resolution: 4 cm-1 

Red: 0.99287(4) 
White: 0.99857(3) 

Lambert, 2017 Switzerland 54 Red 

Sampling: FTIR-Microscope + 
diamond anvil cell 
Detector: MCT 
Scan: 32 
Spectra range: 3600-650 cm-1 
Resolution: 4 cm-1 

0.91964(115) 

Kruglak et al.,2019 US 26 Red 

Sampling: FTIR-Microscope + 
Diamond anvil cell 
Scan: 128 
Spectra range: 4000-400 cm-1 
Resolution: 4 cm-1 

1(0) 

 

When characterizing the chemical composition of automobile paint, the classification of 

binder type is always the most vital step. Table 3 provides a summary of common binder/resin 

types used in automobile paints and their identifying peaks (Caddy,2001; Buzzini and 

Stoecklein,2005). A flow chart is created by Ryland to assist binder classification as shown in  

Figure 11 (Ryland and Suzuki,2011). The binders used in topcoats and undercoats may be 

different (Rodgers et al.,1976a; Rodgers et al.,1976b). Massonnet demonstrated in her thesis 

after analyzing each layer of grey metallic automotive paint that acrylic resins (often modified 

by melamine and/or styrene) is the most common type used in OEM clear coats, whereas 

alkyd resins are mostly found in metallic color coat and primer surfacer (Massonnet,1996). As 

for primer, the majority resins detected are epoxies based on bisphenol A. Polyurethane as 

well as nitrocellulose are mostly used in repainted samples. These findings were confirmed 

by several studied from which the authors conclude acrylic-melamine and polyurethane 

resins are most likely to be detected in clear coats, whereas epoxies, alkyds and nitrocellulose 

are mostly found in primers (Maric et al.,2012; Bender,2013; Lavine et al.,2014b; Houck and 

Siegel,2015).  
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Table 3. Identifying peaks of common binder/resin used in automobile paints (MacDougall et 
al.,2001; Buzzini and Stoecklein,2005). 

Binder/Resin Code Identifying IR absorption bands（cm−1） 

Acrylic ACR 1450 1380 1250-1150 1070 840 750 705 

Acrylic-melamine ACR MEL 1550 1480 1370 (1270/1240)  1170 1090 815 

Acrylic-alkyd ACR ALK 1260 1180 1130 1070     

Acrylic-urethane ACR URE 1530 1240 1170 1070     

Orthophthalic alkyd ALK OPH 1450 1380 1270 1130 1070 740 700  

Isophthalic alkyd ALK IPH 1475 1373 1305 1237 1135 1074 730  

Terephthalic alkyd ALK TER 1270 1250 1120 1105 1020 815 730  

Alkyd-melamine ALK MEL 1550 1270 1120 1070 740 700  
 

Polyester-melamine POL MEL 1550 1330 1240 815 750 730 705  

Alkyd-urea ALK U 1650 1540 1270 1120 770 740 705  

benzonguanamine BZG 1590 1540 825 789 710    

Epoxy EPY 1610 1510 1240 1180 830  
  

Melamine MEL 1550 815    
 

  

Nitrocellulose NCL 1650 1280 840 750  
 

  

Polybutadiene PBD 970 915   
  

  

Polyurethane PUR 1690 1530 1470 1250 1150 770   

   epoxy modified  1730 1510    
 

  

   water based  1690 770    
 

  

Styrene STY 3100-3000 1490 1450 760 700  
  

Urea U 1655 1540 1270-1250     

 

Both organic and inorganic pigments as well as extenders have also been fully explored by 

FTIR spectroscopy (Harkins et al.,1959; Rodgers et al.,1976a; Suzuki,1996b; Suzuki and 

Marshall,1997; Suzuki and Marshall,1998; Suzuki,1999a; Massonnet and Stoecklein,1999b; 

Suzuki,1999b; Spathis et al.,2003; Suzuki and McDermot,2006; Vahur et al.,2010; 

Suzuki,2014a; Suzuki,2014b). Table 4 presents the IR characteristic absorption bands of 

common pigments and extenders used in automobile paint (MacDougall et al.,2001; Buzzini 

and Stoecklein,2005; Ryland and Suzuki,2011). 

It has been proven that the OEM paint chips can be sourced to a specific make and model of 

automotive through the classification and comparison of binder types and pigments using 

FTIR spectroscopy (Rodgers et al.,1976c; Audette and Percy,1979; Audette and Percey,1982; 

Suzuki,1996a; Wright,2010). Maric et al demonstrated in a study where 130 clear coats were 

analyzed using ATR-FTIR that one can correlate the binder and resin type detected from the 

clear coat to the vehicle origin (Maric et al.,2012). Lavine et al conducted a study where IR 

spectra of 1314 cleat coat paint samples in the year range of 2000-2006 from the PDQ 

database were used to develop a library search filter that can be used to determine the 

assembly plant and model of an automobile from a clear coat paint (Lavine et al.,2015). The 

color, layer sequence, and chemical composition of the undercoats can be compared to 

identify the production year and assembly plants (Audette and Percey,1982). However, it is 

more difficult to differentiate OEM topcoats due to their similar chemistry, especially when 

only a single topcoat layer exists (Cassista and Sandercock,1994). An attempt was also made 
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to differentiate paint samples having the same color code but originating from different paint 

suppliers (Cassista and Sandercock,1994; Stoecklein and Palenik,1998; Eyring et al.,2007). 

Results from Cassista and Sandercork showed that samples with the same binder type could 

barely be differentiated by FTIR and that further differentiation could be achieved by Py-GC 

analysis. Stoecklein and Palenik have presented in their study that only very small differences 

were determinable by FTIR among those samples. Eyring et al. concluded that paint samples 

with the same color code could be differentiated by the comparison of clear coats and primer. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Automotive paint binder classification flow chart based on IR absorption(Ryland and 
Suzuki,2011). 

 

Comparison and identification of automotive paint may sometimes be problematic when 

weathering induced changes are involved. Weathering may embrittle coatings, causing 

gradual loss in gloss (Nichols et al.,1999). The mechanism and the performance of weathering 

of an automotive coating system, has been well investigated from an industrial perspective 

(Bauer,1997; Nichols et al.,1999; Bauer,2000; Perrin et al.,2001; Tahmassebi et al.,2005; Shi 

and Croll,2010; Nichols et al.,2013; Makki et al.,2015; Razin et al.,2015). In the field of forensic 

science, the degradation of binders may cause small decreases or increases in the intensity of 

absorptions in some regions of the IR spectrum, due to the destruction and generation of 

various chemical groups during weathering (Hodson and Lander,1987; Perrin et al.,2001; 

Makki et al.,2015; Van Der Pal et al.,2016; Kumano et al.,2019).  
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Table 4. Identifying peaks of common pigments and extenders used in automobile paints 
(MacDougall et al.,2001; Buzzini and Stoecklein,2005) 

Pigment/extender Identifying IR absorption peaks （cm−1） 

Calcium carbonate     

aragonite 1445 870 857 712 317     

calcite 1445 870 712 317      

 Chromate          

Barium chromate 935 896 860       

Potassium zinc chromate 950 880 805       

Strontium chromate 911 887 875 845      

Chromium oxide 680 634 582 446 417 400    

Iron oxide          

red  560– 530 480– 440 350– 310  
 

   

yellow 899 797 606 405 278   
 

 

Silicon dioxide          

cristobalite 1090 795 621 485 387 300  
 

 

diatomaceous silica 1100 800 480  
     

quartz 1081 798 779 512 460 397 373  
 

Titanium dioxide          

rutile 600 410 340  
     

anatase 600 340        

Zinc phosphate 1120 1080 1020 950 630  
 

  

Zinc oxide 1096 888 520 501 401  
 

  

Silicate          

Magnesium(talc) 1030 1015 670 465 450 420 390 345  

Aluminum(Kaolinite) 1035 1005 940 910 540 470 430 350  
Mica 1065 1032 936 834 756 699 535 478 411 

Barium sulfate 1175 1080 980 640 610     

Lead carbonate 1412 1047 848 695 683 404    

Lead sulfate 1410 1172 1078 969 687 632 600 428 363 

Cobalt aluminate 1102 1035 1012 905 735 652 558 508 239 
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3.6. Raman spectroscopy  
 

Raman spectroscopy is another significant vibration spectroscopy which is applied to the 

study of molecular structure by analyzing the scattering spectra generated from the 

interaction between a sample and a monochromatic radiation. In the field of forensic analysis, 

Raman spectrometry is used from the 1990s and is described as the vibrational spectrometry 

complement of infrared spectrometry (Larkin,2011; Chalmers et al.,2012c; Muehlethaler et 

al.,2013; Kirkbride,2015). Since automotive paint usually has a complex mixture of 

compounds and functional groups, both infrared and Raman spectrometry can provide 

significant information from different aspects. Compared to IR spectroscopy, Raman is more 

used for the identification of organic and inorganic pigments as well as extenders. What’s 

more, the pigments in automobile paint present abundant information in the low region of 

mid-IR spectra, which is beyond the MCT detector range (usually cutoff at 600 cm-1). 

Therefore, Raman spectrometry is the complementarily effective option for exploring this 

valuable region for the examination of pigments(Kirkbride,2015). For example, titanium 

dioxide is a widely used pigment in both undercoats and topcoats of automobile paint. It 

exists mainly in two forms, anatase and rutile, which show identical peaks at 600 cm-1 and 

340 cm-1 in infrared spectra. They can however be easily discriminated using Raman 

spectroscopy as rutile presents two large peaks at 448 cm-1 and 610 cm-1, while anatase only 

shows a single high peak at 143 cm-1. 

 

3.6.1. Raman spectroscopy principles 
 

Several comprehensive reviews are available for all aspects of Raman spectroscopy 

(McCreery,2000; Lewis and Edwards,2001; Koçak,2011; Larkin,2011; Chalmers et al.,2012a), 

so only a brief summary will be provided here.  

Raman spectroscopy is based on the Raman effect discovered by Indian scientist 

Chandrasekhar Raman. Unlike IR absorption spectra, Raman spectra result from the inelastic 

scattering of monochromatic radiation when it strikes a sample, as illustrated in Figure 12. 

Most of the scattering is elastic, which means the frequency of this part is unchanged, 

referred to as Rayleigh scattering. However, a small part of photon excites the molecule and 

impulses it into a virtual energy state. This makes the molecule to be unable to return to its 

original energy level, consequently, causes energy differences between initial radiation and 

emitted one, which is mentioned as inelastic scattering or Raman scattering. The final energy 

state of the molecule is either higher or lower than the initial energy state, which causes the 

frequency of photon decreasing (Stokes) or increasing (anti-Stokes), respectively (see Figure 

13). The changes of frequency are then defined as Raman shifts. A Raman spectrum is thus 

displayed on the x-axis as a Raman shift, which is in the unit of cm-1, the y-axis as the intensity 

of scattered light. 
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Figure 12. Simplified scheme of Raman scattering and IR absorption (Chalmers et al.,2012b). 

 

 

Figure 13. Illustration of Raman scattering (Larkin,2011) 

3.6.1.1. Raman spectroscopy instrumentation 
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The Raman spectrometers have two types, the dispersive(spectrograph/CCD) and 

nondispersive (FT-Raman) instruments (McCreery,2000). Only the dispersive Raman 

spectrometer will be discussed below since It is the most commonly used type and will also 

be used for this study. 

The conventional dispersive Raman spectrometer consists of laser excitation sources, 

collection optics, dispersive spectrometer, and detectors (see Figure 14). The Argon laser at 

488 cm-1 and 514 cm-1, the He-Ne laser at about 633 cm-1 and near-infrared diode laser at 

about 785 cm-1 is the more commonly used laser source. The dispersive spectrometer, which 

is normally a single spectrograph, is the foundation of a Raman spectrometer. Since the 

Raman scattered radiation is often very weak and overwhelmingly block by the strong 

Rayleigh scattered light, the holographic notch or edge filters are introduced in the 

spectrograph to suppress these stray lights and Rayleigh lines (Chalmers et al.,2012a). The 

filtered radiation then passes through the entrance slit of the spectrograph and dispersed into 

monochromatic components by the diffraction gratings. The radiation of suitable wavelength 

is focused onto the exit slit of the spectrograph and finally reaches at the detector 

(Larkin,2011). Today, most Raman spectrographs use a multi-channel charge-coupled device 

(CCD) detector to measure simultaneously the intensities of the Raman-shifted wavelengths 

(Chalmers et al.,2012a). 

 

 

Figure 14. Schematic of a dispersive Raman spectroscopy with a CCD detector (Chalmers et al.,2012a) 
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3.6.1.2. Raman sampling techniques 
 

Sampling techniques for Raman can be divided into three general categories, namely the 

conventional sampling, the remote sampling and the Raman microscopy(McCreery,2000). 

Only Raman microscopy will be discussed since It is the technique that used in this study. The 

introduction and explanation of the rest sampling techniques can be found in the above-

mentioned references. 

Raman microscopy has been widely used for analysis of microsamples such as automotive 

paints. Figure 15 shows a confocal schematic for a Raman microscope system. The Raman 

microscopy offers the high lateral spatial resolution, which can be up to 1 µm. This sampling 

technique requires a minimum of sample handling and preparation (Larkin,2011). Samples 

can be easily mounted on an x–y–z translation motorized microscope stage and examined 

visually using a wide range of conventional optical microscopy illuminations (Chalmers et 

al.,2012a). The measurement of the sample can be acquired from a single point on the sample 

or several points, which is referred to as point-to point mapping. It is also possible to measure 

the sample in a line or in a selected sample area where spatially resolved spectra are acquired 

at many points along the line or over the entire area. These methods are categorized broadly 

as Raman imaging. Based on spectroscopic information such as molecular-specific 

concentrations, a sample image is usually displayed in either a grey-scale or false-color scale 

representation (McCreery,2000; Chalmers et al.,2012a). 

 

Figure 15. A simplified schematic of a confocal Raman microscope (Chalmers et al.,2012a). 
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3.6.2. Application of Raman spectroscopy in forensic analysis of 

automotive paint 
 

The applications of Raman spectroscopy were traditionally in the field of art and archeology 

to identify pigments used and detect forgeries due to its advantages of non-destructiveness, 

in-situ possibility and minimal sample preparations (Chaplin et al.,2002; Brown and 

Clark,2004; Edwards et al.,2004; Kendix et al.,2008; Scherrer et al.,2009; Castanys et al.,2011; 

Doménech et al.,2011; Fremout and Saverwyns,2012; Otero et al.,2014; Carlesi et al.,2016). 

For forensic automotive paint analysis, it has been demonstrated that Raman spectroscopy is 

rather effective for the comparison and identification of paint binders, pigments and 

extenders (Kuptsov,1994; Massonnet and Stoecklein,1999; Suzuki and Carrabba,2001). The 

possible contribution of Raman spectroscopy for the analysis of automotive paint samples as 

well as the performance when identifying different composition(binder, pigments, extender) 

in all paint layers were evaluated by De Gelder and coauthors (De Gelder et al.,2005). The 

results showed that Raman spectroscopy can better distinguish organic pigments as well as 

extenders rather than binder and the basecoat could provide the best spectra to differentiate 

paint samples. The authors also suggest that Raman spectroscopy should be applied in 

combination with IR spectroscopy in order to provide better discrimination. This statement is 

confirmed by several studies in which the authors have used both IR and Raman spectroscopy 

to differentiate paint samples (Buzzini et al.,2006; Zięba-Palus and Borusiewicz,2006).  

However, Raman spectroscopy has not become extensively used until the last decade. Due to 

modern developments, Raman has evolved into a fast vibrational technique and often used 

in combination with FTIR for the identification of pigments and extenders in automobile paint 

(Zięba-Palus et al.,2011; Zięba-Palus and Trzcińska,2013; Zięba-Palus and Michalska,2014; 

Suzuki,2014a; Chen et al.,2015; Lv et al.,2016). Not only that, Maric et al. have demonstrated 

that Raman spectroscopy is potentially more discriminating than IR spectroscopy when 

characterizing the population of automotive clear coats (Maric et al.,2016). This observation 

is further confirmed in the research conducted by Affadu-Danful et al., wherein the authors 

highlight that combining Raman spectroscopy with pattern recognition methods surpasses 

FT-IR in identifying and distinguishing automotive clearcoats. Moreover, this approach can 

also determine a vehicle's make and model, showcasing its potential for advanced automotive 

analysis (Affadu-Danful et al.,2023).  

A summary of existing surveys on the performance of Raman spectroscopy for automotive 

paints comparison is presented in Table 5. The year of publications, the total number of 

samples, the laser used, and their DPs are listed. The DPs provided from these studies have 

further proved the capabilities of Raman spectroscopy in forensic automotive paint 

examination.   

The measurement variability and the spectral quality have a great influence on the accurate 
comparison of paint samples as well as library search. Several studies have been performed 
to evaluate the impact of various factors on the response of measurement variability 
(Lambert et al.,2014; Ferreira et al.,2017). Lambert et al. have demonstrated that sample 
preparation was found to affect considerably the spectral variability, so the authors 
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recommended using polished cross sections for Raman measurements. In the study of  
Ferreira et al., objective lens, accumulation number, laser mode and wavelength, sample 
substrate and preparation have demonstrated the greatest influence on the spectral quality, 
the authors suggested that the 50x objective lens, around 6 accumulation numbers, ‘edge’ 
laser mode, and laser power (maximum intensity without burning the sample) allowed a 
significant improvement of the collected spectra (Ferreira et al.,2017). The authors also stated 
that the 785 nm laser (NIR diode laser) is the best excitation laser source providing 
information on pigment content. This statement was confirmed by several other studies 
(Suzuki and Carrabba,2001; Bell et al.,2005a; Bell et al.,2005b; Bell et al.,2005c; Zięba-Palus 
and Michalska,2014).  
 

Table 5. Summary of the automotive paint studies conducted using Raman. 

Authors, Year of publication 
Total number 
of samples (N) 

Color of the samples 
Laser 
used 

DP (Number of Non 
differentiated pairs) 

Massonnet and 
Stoecklein,1999c 

59 
27 light red 
27 dark red 

5 red metallic 
1064 nm 

Light red: 0.89459(37) 
Dark red: 0.96866 (11) 

Metallic: 0.9(1) 

Skenderovska et al., 2008 10 Various color 685nm 1 

Zięba-Palus et al., 2011 13 Green 
514nm 
633nm 
785nm 

Not provided 

Zięba-Palus and 
Michalska,2014 

66 
 26 blue solid 

40 blue metallic 

514nm 
633nm 
785nm 

Blue solid:0.97231 (9) 
Blue metallic: 0.98846(9) 

Michalska et al., 2015 55 
 25 blue solid 

30 blue metallic 
785nm 

Blue solid:0.82333 (53) 
Blue metallic: 0.91494(37) 

Lambert, 2017 54 Red 
785nm 
488nm 

785nm: 0.73026(386) 
488: 0.75681(348) 
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3.7. Py-GC/MS 
 

Py-GC/MS is an analytical method in which the sample is heated to decomposition (pyrolysis) 

to produce small molecular fragments that are separated by gas chromatography (GC) and 

detected using mass spectrometry (MS). Although it is a destructive technique, it is powerful 

in identifying and comparing polymers as well as some additives. This technique has been 

widely used for the characterization and comparison of forensic evidence since the early 

1970s (Challinor,2001). It is considered as an additional technique for confirming or extending 

the information obtained from vibrational spectroscopy (Wright et al.,2020). 

 

3.7.1. Py-GC/MS principles 
 

A conventional Py-GC/MS often consists of the pyrolysis unit coupled with a gas 

chromatograph and a mass spectrometer (see Figure 16). Pyrolysis is the thermal 

fragmentation of a substance in an inert atmosphere. The pyrolysis products are detected and 

identified by GC/MS.  

The most frequently used pyrolyzers are the pulsed filament type, the Curie-point type, and 

the furnace type. The filaments pyrolyzer consists of a heated platinum coil that can be 

continuously heated from 200 °C to 1400 °C, and a quartz tube which is placed in the coil and 

used to hold the sample.  The Curie-point system uses high frequency oscillating currents in 

coils to inductively heat the metal or alloy wire to its Curie point. The furnace type 

accomplishes the fragmentation process by introducing the sample into an oven unit.  When 

choosing a pyrolysis system, true final pyrolysis temperatures, rapid temperature-rise-time, 

low dead volume and ease of sample lading should be all taken into consideration 

(Challinor,2001).  

Once the sample is decomposed into monomer units during the fragmentation process, the 

small molecular fragments are then introduced into a gas chromatography equipped with 

silica capillary columns and temperature programming. They are usually detected and 

identified based on their retention times by a flame ionization detector (FID), the commonly 

used detection system for the gas chromatograph. Nowadays, a mass spectrometer is the 

most favored detection system that can achieve the unequivocal identification of some of the 

pyrolysis products by gas chromatography and the interpretation of the polymer composition 

of resins in paint.  
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Figure 16. A typical Py-GC/MS system (Tsuge and Ohtani,2014). 

 

 

 
 

3.7.2. Application of Py-GC/MS in forensic analysis of automobile paint 
 

 

As Py-GC/MS is a widely useful technique in the identification of polymeric materials, a lot of 

excellent references have been published to provide the Py-GC/MS information about natural 

and synthetic resins, additives, organic paint binders and pigments. Bonaduce and Andreotti 

have provided a good reference on the topic of natural organic materials such as 

proteinaceous materials, polysaccharide gums and drying oils (Bonaduce and Andreotti,2009). 

Scalarone and Chiantore have summarized the Py-GC/MS characterization information of  

natural resins such as Terpenoid resins and synthetic polymers such as acrylic, alkyd 

(Scalarone and Chiantore,2009). Russell et al. have collected more than 70 synthetic organic 

pigments and reported the identification results, possibility and limitations of Py-GC/MS for 

the identification of pigments in modern works of art(Russell et al.,2011). Shin et al have 

compiled the comprehensive pyrolysis data for representative synthetic polymer and the 

mass spectra of major pyrolyzates, the retention index data on each pyrogram in their data 

book (Shin et al.,2011). Ghelardi et al. have analyzed 76 synthetic pigments with Py-GC/MS, 

45 of them have never been previously reported (Ghelardi et al.,2015).  

As for automobile paint, Py-GC has been proved to be a high discriminating technique in the 

classification and comparison of the composition of the binder used in automobile paint. 
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Stewart showed the ability of Py-GC to distinguish the binder types used by Chrysler, 

American Motors and Ford Motor automobile manufacturer in 1973 (Stewart,1974). Wheals 

and Noble also reported that by comparing the reproducible pyrograms obtained from 

automotive paints, it was able to discriminate paint from vehicles of British manufacturer 

(British Leyland) and American companies (Ford and Chrysler) due to the fact that the major 

part of the British production was coated with thermosetting alkyds whereas Ford and 

Chrysler used thermosetting acrylics (Wheals and Noble,1974). Fukuda analyzed 78 Japanese 

automobile topcoats (31 white, 31 silver metallic and 16 clearcoat) and discriminated most of 

the paint by their pyrolysis products (Fukuda,1985). The author also reported that the 

technique cannot detect inorganic components and should be used together with IR and/or 

SEM-EDX for the full characterization of paint samples.  

Nowadays, Py-GC/MS is more available and widely used in automobile paint analysis since it 

could provide more reliable results. McMinn et al. tested the performance of Py-GC/MS on 

39 paints and built a library based on the obtained pyrograms (McMinn et al.,1985). The 

authors presented an encouraging result that it was possible to establish a searchable 

database based on the composite mass spectra without worrying too much about the 

standardization of GC conditions. Wampler et al reported that the changes in automotive 

paint formulation can be well recorded by Py-GC/MS since the degree of crosslinking must be 

increased in the pyrogram of a high solids content paint, thus differing from that in a 

traditional high solvent-based paint (Wampler et al.,1997). Kochanowski and Morgan 

presented a preliminary investigation based on Py-GC/MS analysis of 100 automobile paint 

samples of five different colors(20 each of white, red, black, blue, silver) (Kochanowski and 

Morgan,2000). The authors firstly conducted designed experiments on two white paint 

samples to find pyrolysis conditions to maximize the discrimination of samples and set the 

experiment conditions (250°C initial temperature, 15°C initial ramp rate, 650°C final 

temperature, and 15s final time). Then, they used multivariate statistical methods for the 

comparison of obtained pyrograms and good separation of most of the paint groups was 

shown. Yang et al. characterized 54 vehicle topcoats pyrograms using multivariate 

chemometric analysis  and evaluated the capabilities of using averaged mass spectra obtained 

from pyrograms to assess the group distributions (Yang et al.,2015). The study proved that 

HCA and PCA allow the extraction of chemical information from experimental results for 

statistical treatments. 

In contemporary applications, Py-GC/MS is often applied after FTIR and/or Raman 

spectroscopy in order to obtain further discrimination. Several studies have demonstrated 

that paint sample which are undifferentiated by FTIR spectroscopy can be distinguished by 

Py-GC/MS. Cassista and Sandercock reported that some acrylic lacquers and acrylic enamels 

which revealed no differences by IR spectroscopy could be easily differentiated using Py-GC 

(Cassista and Sandercock,1994). MacDougall et al. also showed examples in their book 

chapter that two white acrylic melamine original automotive paints which have very similar 

IR spectra show different pyrograms (MacDougall et al.,2001). Burns and Doolan conducted 

a pilot project to compare Py-GC/MS results for 75 paint samples (including basecoats ,’solid 

paint’ paints and clear coats) with known FTIR groupings and the result showed that all 

examined samples could be distinguished including those in the sample FTIR groups (Burns 
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and Doolan,2005a). The authors further demonstrated the discriminating power of Py–

GC/MS by successfully dividing 300 clear coats that were indistinguishable by FTIR into several 

subgroups (Burns and Doolan,2005b). Plage et al. evaluated the differentiation of 25 

automotive clear coats which were assigned to 8 different FTIR groupings using Py-GC/MS 

(Plage et al.,2008). Their results showed that only three pairs remained undifferentiated after 

Py-GC/MS analysis, which provided a DP of 0.99. Ziȩba-Palus et al. applied Py-GC/MS to 

differentiate 36 styrene acrylic urethane clearcoats that were indistinguishable on the basis 

of their infrared spectra and elemental composition and used likelihood ratio model to deliver 

information about the evidential value of the results of Py-GC/MS (Zięba-Palus et al.,2008). 

Similarly, the authors conducted another research to identify the polymer binder in 60 

automotive paint samples using both IR and Py-GC/MS and concluded that Py-GC/MS can 

provide additional information helpful in further characterization and discrimination of paint 

having similar IR spectra (Ziȩba-Palus et al.,2008a). Moreover, this same group of scientists 

performed a study to compare the polymer binder of 150 automobile acrylic clearcoat 

samples using Py-GC/MS and demonstrated that the application of Py-GC/MS can lead either 

to the complete differentiation or to the split of subclasses (Zięba-Palus et al.,2008b). 

Milczarek et al. put their focus on the primer layer of automotive paint and successfully 

achieved good discrimination between 10 epoxy primer layers that have similar IR spectra 

using Py-GC/MS (Milczarek et al.,2009). The authors also suggested that the epoxy paints 

should better be analyzed after derivatization process since it increases the number and 

amount of the pyrolysis products. 

One of the main issues concerned in Py-GC/MS analysis of automobile paint is its 

reproducibility, a standardized protocol should therefore be established. A summary of 

Pyrolysis and GC conditions founded in several representative studies is listed in Table 6. The 

variables in the pyrolysis process include temperature-rise-time, pyrolysis temperature, 

sample mass, carrier gas type, split ratio and flow rate. From the summary, the pyrolysis and 

GC conditions vary a lot. Generally, a minimum of 10-30 µg of sample are required for Py-

GC/MS (Muehlethaler et al.,2013; Wright et al.,2020). Helium is the most commonly used 

carrier gas. The ideal size of the column for automobile paint analysis is a capillary column 

with 30mx 0.25mm ID x0.25 μm film thickness. As for other factors, they need to be 

standardized according to the involved instrument and sample condition. 
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Table 6. A summary of pyrolysis and GC conditions used for automobile paint analysis. 

 

 

 

 

 

 

 

Author/year Sample
Sample 

mass
Py type Ramp

Temperat

ure
time

Interface 

temp
Column

Injector 

temp

Split 

ratio

Carrier 

gas
Flow rate Temperature program

McMinn et al.,1985 Paint panels 30 μg

CDS 

Pyroprobe/

quartz tube

off 750 °C 5s 175 °C

Fused silica 

capillary column 

30mx 0.25mm

165 °C 20/1 Helium 0.76 mL/min

Set at 40°C for 3 min, ramped 

to 250°C at 25°C/min, and 

held at 250°C for 2 min.

Cassista and 

Sandercock,1994
Paint panels 20-30 μg

CDS 

Pyroprobe/

quartz tube

off 980 °C 10s NA

Fused silica 

capillary column 

30mx 0.25mmID 

x0.25 μm film 

thickness

200°C 39/1 Hydrogen 2 mL/min

Set at 0°C for 1 min, ramped 

to 300°C at 12°C/min, and 

held at 300°C for 6 min.

Kochanowski and 

Morgan,2000
Topcoats

less than 

100 μg

CDS 

Pyroprobe/

quartz tube

15 °C/ms650 °C 15s 250 °C

5% phenyl–95% 

methyl 

polysiloxane-

coated column 30 

m × 0.25-mm i.d., 

0.25-μm film 

thickness

250 °C 60/1 Helium 1 mL/min

Set at 50°C for 1min, ramped 

to 300 °C at 10 °C/min, and 

held at 300 °C for 10 min

Burns and 

Doolan,2005
Topcoats 20-70 μg

CDS 

Pyroprobe/

quartz tube

NA 750 °C 2s 250 °C

30m (i.d. 0.25 mm, 

film thickness 0.25 

μm)

250 °C 20/1 Helium 25 mL/min

Set at 40°C for 3min, ramped 

to 280 °C at 10 °C/min, and 

held at 280 °C for 10 min

Plage et al.,2008 Clear coat NA

CDS 

Pyroprobe/

quartz tube

NA 550 °C 20s 250 °C

35% phenyl–65%-

dimethyl 

polysiloxane 

capillary column 30 

m, 0.25 mm, 0.25 

μm film thickness

NA NA Helium 1.5 mL/min
Set at 40°C for 3 min, ramped 

to 300°C at 20°C/min.

Ziȩba-Palus et 

al.,2008a
Clearcoat NA

CDS 

Pyroprobe/

quartz tube

NA 400 °C/ 750 °CNA NA

35% phenyl–65%-

dimethyl 

polysiloxane 

capillary column 30 

m, 0.25 mm, 0.25 

μm film thickness

NA NA Helium NA

Set at 40°C for 2min, ramped 

to 300 °C at 10 °C/min, and 

held at 300 °C for 2 min, 

ramped to 320 °C at 30 

°C/min, and held at 320 °C 

for 3 min,

Zieba-Palus et 

al.,2008
Clear coat 50-100 μg

CDS 

Pyroprobe/

quartz tube

NA 750 °C 20S NA

35% phenyl–65%-

dimethyl 

polysiloxane 

capillary column 30 

m, 0.25 mm, 0.25 

μm film thickness

NA NA Helium NA

Set at 40°C for 2min, ramped 

to 300 °C at 10 °C/min, and 

held at 300 °C for 2 min, 

ramped to 320 °C at 30 

°C/min, and held at 320 °C 

for 3 min,

Zieba-Palus et 

al.,2008b
Clear coat 50-100 μg

CDS 

Pyroprobe/

quartz tube

NA 750 °C 10s NA

35% phenyl–65%-

dimethyl 

polysiloxane 

capillary column 30 

m, 0.25 mm, 0.25 

μm film thickness

NA NA Helium NA

Set at 40°C for 2.5min, 

ramped to 320 °C at 10.5 

°C/min, and held at 320 °C 

for 5 min

Milczarek et 

al.,2009
Primer NA

CDS 

Pyroprobe/

quartz tube

NA 750 °C NA NA

35% phenyl–65%-

dimethyl 

polysiloxane 

capillary column 30 

m, 0.25 mm, 0.25 

μm film thickness

NA NA Helium NA

Set at 40°C for 2.5min, 

ramped to 320 °C at 10.5 

°C/min, and held at 320 °C 

for 5 min

 Yang et al.,2015 Topcoats 50 μg
Funace 

type
550°C NA NA

An Ultra Alloy-1 

metal coated with 

dimethyl 

polysiloxane 

capillary column

 (30 m, 0.25 mm id, 

0.25 mm 

filmthickness)

300°C 10/1 Helium 1 mL/min

Set at 40°C for 2min, ramped 

to 130 °C at 12 °C/min, and 

held at 130 °C for 1 min, 

ramped to 300 °C at 12 

°C/min, and held at 300 °C 

for 8 min,

Pyrolysis GC
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3.8. Population studies of automotive paint 
 

In the field of forensic science, automotive paint serves as an important type of evidence. The 

role of forensic scientist is not only to analyze the paint via different types of analytical 

instruments, but also to interpret the obtained results and provide the evidential value of 

paint evidence to the court. Therefore, forensic scientist should be aware of every aspect of 

paint evidence, including but not limited to the paint composition, the paint layer structure, 

the paint population information such as the frequency or distribution of automotive 

manufacturers and colors, the discriminating capabilities of every single technique used and 

their limitations. More importantly, forensic scientists should be able to evaluate the rarity of 

physical and chemical features of the analyzed paint, i.e., the evidential value of paint 

evidence using this information. The population study is the type of study in which a large 

amount of automotive paint samples is randomly selected and compose a set of reference 

samples that can be representative of a population of interest. The variations of the different 

characteristics of the samples are observed or analyzed by analytical techniques so that the 

frequency information of the commonness of some specific features are obtained. The 

discrimination capabilities of involved analytical techniques are also verified.  

Over the past three decades, several population studies have been conducted in different 

countries. These studies often involve full examination of microscopical and chemical features 

of paint layers. A summary of the current existing population studies is presented in Table 7. 

The authors and year of publications, the countries where population studies were conducted, 

the top three vehicle makes, colors and layer numbers, the technique used, and the total 

discriminating power are listed in the table. 

Table 7. Summary of the automotive paint population studies conducted. 

Authors, Year 
of publication 

Country 

Total 
number 

of 
samples 

(N) 

Top 3 
vehicle 
makes 

Top 3 
vehicle 
colors 

Top 3 
layer 

number 
Techniques used 

DP (Number of 
Non 

differentiated 
pairs) 

Gothard,1976 Australia 500 
GM 

Leyland 
Ford 

White 
Green 
Blue 

3 
4 
2 

Microscopy, chemical 
tests, IR, Emission 

spectrometry (ES), Py-GC 
0.99998 (2) 

Ryland and 
Kopec,1979 

US 
(Northeastern) 

200 
GM 
Ford 

Chrysler 

Brown/gold 
Green 
blue 

3 
2 
4 

Microscopy, solvent tests 
IR, ES, SEM-EDX, Py-GC, 

neutron activation 
analysis 

1.00000(0) 

Edmondstone 
et al.,2004 

Canada 260 
GM 
Ford 

Chrysler 

Red 
Blue 

White 
NA Microscopy, ATR-FTIR 0.99997 (1) 

Reynolds et 
al.,2018 

US 231 

 
GM 

Chrysler 
Ford 

 
Grey/Silver 
Red/Purple 

Blue 

 
4 
3 
5 

 
Microscopy, FTIR, SEM-

EDX 
0.99992 (2) 

Kruglak et 
al.,2019 

US 
(Northeastern) 

200 
Honda 
Toyota 
Nissan 

White 
Silver 
Grey 

4 
5 
6 

Microscopy, Ultraviolet–
Visible (UV-VIS) 

Microspectrophotometry 
(MSP), FTIR, Raman 

1.0000 (0) 

Soong et 
al.,2020 

Singapore 256 
Honda 
Toyota 

Hyundai 

Black 
White 
Grey 

4 
3 
6 

Microscopy, FTIR, SEM-
EDX 

0.99981 (1) 
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As shown in Table 7, the frequency information obtained from the population studies such as 

make, color and layer number, may have periodical and geographical variations. Forensic 

scientists should interpret paint evidence based on their specific context. It is therefore 

important to continuously conduct these population studies and update the dynamic 

situation of the automotive paint distribution. 

It is also shown in Table 7 that a rather high discriminating power can be achieved with the 

combination of different analytical methods. The undifferentiated pairs left in each study 

are all reported to be vehicles of same make, model and color. Some are even manufactured 

at the same plant in the same or relevant years. This result can be explained as automotive 

paints are mass products. Therefore, to reach the best discrimination of paint, it is 

recommended to set a standard protocol which includes various analytical techniques for 

paint examination in laboratories.  

 

3.9. Color surveys of automotive paint 
 

Automotive paint color is one of the most important features in forensic automotive paint 

analysis. It is not only the key feature when grouping paint samples in population studies, but 

also the first considered variable when evaluating the rarity of a paint sample. Although 

population studies can provide the frequency of color, the assignment of an occurrence 

frequency to an automotive paint color requires sufficient color distribution data. The need 

drives the launch of color surveys. These surveys were carried out in the US (Ryland et 

al.,1981), Canada(Buckle et al.,1987; Volpé et al.,1988; Stone et al.,1991), Ireland(McDermott 

et al.,1999), Australia (Jackson et al.,2015) and Singapore (Soong et al.,2020). Compared to 

population studies, these color surveys often contain several thousands of samples, which 

the occurrence of a color is more representative. In the article of Jackson et al., they have 

made a comparison chart of color surveys that have been conducted in those mentioned 

countries(Jackson et al.,2015). Soong et al. have also made a comparison figure of color 

distribution of these color survey in their recent published article (Soong et al.,2020). 

From those comparison data, it is noted that blue was the most common color in most of the 

surveys conducted in Northern America (Canada and US) in 1980’s. However, a clear 

difference of color trend has been noticed since the most common color has become white 

according to the surveys conducted after 2010 in Australia. Soong et al. reported that white 

is also the most commonly encountered automotive colors in Singapore. This observed color 

trend corresponds to the distribution of the world’s most popular automotive color provided 

by the industry paint experts such as PPG, BAFS and Axalta. In their regional and global 

automotive colour popularity/trend reports, white has been reported as worldwidely the 

most popular color since 2015 (As an example, see Figure 2 in Chapter 2, page 6). 

In Europe, very few color surveys were found. According to the data from EPGT website, 

among 18486 samples that collected from metal substrates of automotives in the EUCAP 
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database, grey (24%), blue (20%), red (13%), green (11%), black (8%) and white (7%) are the 

most common colors. 

In Switzerland, the Federal Statistical Office (FSO) has been continuously compiling the data 

relating to the color of registered vehicles. Figure 17 illustrates the color distribution of the 

registered vehicles from 2016 to 2020 according to the data from FSO. Being slightly different 

from the world trend, grey is the most common color in Switzerland for the last 5 years. Black 

and white are the second and third most frequently observed colors.  

 

Figure 17. Color distribution of registered vehicles in Switzerland from 2016 to 2020, according to the 
data provided by the Federal Statistical Office (FSO). 

 

Apart from color frequency information, information on the chemical composition of a certain 

color of automotive paint is equally important since the rarity of chemical features need to 

be evaluated as well when interpreting the evidential value. Very few studies that concern 

only one specific color were published. A summary of these studies is provided in Table 8. 

Although white is the most common color of automotive paint, little research has been 

carried out on white automotive paint. White is considered as one of the most difficult colors 

encountered in forensic paint discrimination since it has little variety of pigment formulation. 

White pigments are all inorganic pigments. Titanium dioxide (TiO2) in the form of rutile is the 

most common white pigment in use (Henson and Jergovich,2001). Its unrivalled opacity and 

durability make it widely used in paint layers. Most of the white paint studies were carried 

out in the field of architectural paints. Although the formulation and application of 

automobile paint and architectural paint is different from each other, they are all composed 

of resin, pigments and extenders. Worthwhile information about white architectural paint 

can still be learned and referenced for the forensic analysis of automotive white paint.  
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Table 8. Summary of studies carried out on automotive paint of a single color. 

Color 
Authors, Year of 

publication 
Total number of 

samples (N) 
Techniques used Information provided 

Grey Massonnet,1996 124 
Microscopy 

MSP 
FTIR 

DP of microscopy relating to illuminations 
DP of MSP 

DP of FTIR relating to each layer 
chemical composition detected by FTIR 

Red 

Massonnet and 
Stoecklein,1999a, 

1999b, 1999c 

98 organic pigments 
59 red paint samples 

Thin Layer Chromatography 
(TLC) 
FTIR 

Raman 

DP of single instrument 
IR and Raman spectra of organic pigments 

Eyring et al.,2007 34 

 
ATR-FTIR  

MSP 
 

 
Red paint having identical color code can be 
differentiated by analyzing their clear coat 

and primer. 

Lambert, 2017 54 Raman 
DP of Raman 

Best laser for red paints 

Kruglak et al.,2019 26 

Microscopy 
UV-VIS MSP 

FTIR 
Raman 

DP of UV-VIS MSP 
Chemical Composition of each layer 

Blue 

Zięba-Palus and 
Michalska,2014 

66 Raman 
DP of Raman 

best laser for blue paints 

Michalska et al., 
2015 

55 Raman 
DP of Raman 

785 nm laser performance for blue paints 

White Eyring et al.,2007 70 
ATR-FTIR  

MSP 
SEM/EDX 

White paint having identical color code can 
be differentiated by analyzing their clear coat 

and primer. 

 

Bell et al. carried out a study where 39 resin samples used for the manufacture of architectural 

finishes were analyzed by FTIR and Raman (Bell et al.,2005a). They reported that Raman 

spectroscopy has considerable advantages over the established FT-IR method for the 

discrimination of resins used for paint manufacture. Furthermore, the authors conducted 

another study where 51 white architectural paints were analyzed by FTIR and Raman (Bell et 

al.,2005b). They reported that the largest discriminating feature was the type of resin 

presented in Raman spectra. The authors stressed that rutile was presented in all the samples, 

no discrimination could be achieved based on that. However, the presence or absence of 

some inorganic pigment and extenders such as calcium carbonates or dolomite can be the 

second discriminating feature for white paint analysis. Moreover, by measuring the relative 

band intensity ratios of some important features after normalizing the spectra to the intensity 

of the strong rutile band at 610 cm-1, it was possible to provide more discrimination. Stewart 

et al. reported a similar work on the characterization of multilayer samples of white 

architectural paint (Stewart et al.,2012). Their results confirmed that white paint could be 

differentiated by the overall composition and the relative proportions of some components 

detected by Raman spectroscopy. Wright et al. carried out comparative analyses of 50 single-

layer white architectural paints using FTIR, SEM/EDX and Py-GC/MS and reported that the 

overall discriminating power was 99.35% (Wright et al.,2013). With this information, high 

discrimination of automobile white paint can be expected since paint layer was the additional 

feature comparing single-layer architectural paint that may lead to more discrimination. 

It is noted that all the Raman analysis in the mentioned studies were carried out with a 785 

nm diode laser. This is due to the fact that the use of other lasers may produce unacceptable 

level of fluorescence, while the 785 nm laser provide excellent spectra (Bell et al.,2012). 
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3.10. Chemometrics in forensic automotive paint 
 

Chemometrics is a discipline that uses mathematical and statistical approaches to manipulate 

and interpret experimental data and derive maximum chemical information from data 

(Adams,2004). Chemometrics techniques have become a popular approach for the 

interpretation of the data obtained from instrumental analysis. Unlike traditional subjectively 

visual comparisons of sample spectra, chemometrics provide an objective manner for the 

classification and comparison of samples. Chemometrics often have better sensitivity and can 

minimize subjective bias that may occur during visual comparison. Studies have 

demonstrated that chemometrics allow for a comparable correct but quicker classification of 

samples compared to the visual classification (Muehlethaler et al.,2011; Muehlethaler et 

al.,2013b; Muehlethaler et al.,2014).  

Since the instrumental spectra all contain large number of variables, multivariate statistical 

methods are effective at these spectral data interpretations. Unsupervised methods such as 

principal component analysis (PCA), hierarchical cluster analysis (HCA) and supervised 

methods such as Linear Discriminant Analysis (LDA), Soft Independent Modeling of Class 

Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Support Vector 

Machine Discriminant Analysis (SVMDA) are all powerful statistical methods that have been 

widely used for the interpretation of automotive paint analysis (Duarte et al.,2020). 

Comprehensive introductions and explanations of these statistical methods can be found in 

several references (Shaver,2001; Adams,2004; Gemperline,2006; Brereton,2007; Mark and 

Workman,2007; Brereton,2009; Wehrens,2011; Rencher and Christensen,2012). A brief 

introduction of the most frequently used methods (PCA, HCA, LDA, SIMCA and CCSWA) will 

be given below. 

Principal Component Analysis. PCA is an exploratory tool to identify patterns and extract key 

variables from multivariate data. The goal of PCA is to reduce the number of variables while 

keeping the maximum total variance explained in the first principal components. PCA 

captures the most variation in a dataset by rotating and projecting the original variables onto 

a new axis (see Figure 18). The axis should convey the maximum variation, known as the first 

principal component (PC). The procedure is continued to find the second, third axis (often 

perpendicular to each other) which has most of the remaining variance, until all the principal 

components have been calculated (Adams,2004). The new coordinates are generated, known 

as scores, and the new dimensions are linear combinations of the original variables, called 

loadings, which can reflect the variables in the original data that have a significant weighting 

on a PC. Thus, the original dataset can by reconstructed by a small number of these PCs, 

strong patterns and structures can also be revealed (Brereton,2009). Each sample will be 

represented by the scores on the PCs. By plotting the scores for the first two or three PCs, it 

is possible to map the sample by individual dots. Samples that have similar scores on PCs 

would be clustered into groups, which often indicate that these sample have similar chemical 

compositions. By examining the loadings, it is possible to get the information about which 

variables have a significant impact on a PC that can lead to the separation and clustering of 

the samples (Adams,2004). 
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Figure 18. A simplified scheme of the transformation of original data into principal components. 
(https://blog.bioturing.com/2018/06/14/principal-component-analysis-explained-simply/) 

The power of PCA is to provide a direct mapping of multivariate data into a two- or three-

dimensional space containing most of the information in the original data so that the 

classification and interpretation of spectra data can be easily conducted (Wehrens,2011). This 

advantage makes PCA the most frequently used method in automobile paint analysis (Duarte 

et al.,2020). Almost all the studies would apply PCA to the obtained FTIR or Raman spectra 

data for the classification and interpretation (Lambert et al.,2014; Lavine et al.,2014a; Fasasi 

et al.,2015; Lavine et al.,2015; Maric et al.,2016; Lavine et al.,2016a; Lavine et al.,2016c; 

Ferreira et al.,2017; Ferreira et al.,2017; Lavine et al.,2017). 

Hierarchical cluster analysis. Cluster analysis is an exploratory, powerful investigative tool, 

which can aid in determining and identifying the structure or the grouping in the data. It is 

based on the distances between variates calculated by various distance metrics, the greater 

the distance between objects the less their similarity. The commonly used distance metrics 

include the Euclidean distance, the Minkowski distance, the Mahalanobis distance, the 

Pearson correlation and so on, different clustering results may be obtained using different 

measures (Adams,2004). It is necessary to try all methods in order to get the most appropriate 

result (Wehrens,2011). Among these, HCA is the most frequently applied methods in 

automotive paint analysis and often used in association with PCA and other methods (Fasasi 
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et al.,2015; Yang et al.,2015; Lavine et al.,2016a; Lavine et al.,2016c; Perera et al.,2018; 

Duarte et al.,2020). This is because the data like automobile paint spectra often have a 

hierarchical structure where groups consist of many sub-groups and this structure can be 

visualized in a tree-like dendrogram (see Figure 19). The y-axis of the dendrogram indicates 

the ‘distance’ between different groups, whereas the connections show where the different 

groups merge into one bigger group. Different algorithms such as single, average, complete 

linkage, and Ward’s method are available for hierarchical methods. It is also necessary to try 

all the algorithms for the best results.  

 

Figure 19. A typical cluster dendrogram (https://stats.stackexchange.com/questions/82326/how-to-
interpret-the-dendrogram-of-a-hierarchical-cluster-analysis) 

 

Linear Discriminant Analysis. Discriminant analysis, or referred to as classification or 

supervised pattern recognition, is a method used to identify and categorize unknown samples 

based on the information of parent groups obtained from unsupervised pattern recognition 

(Adams,2004). To apply discriminant analysis, the data set is often divided into two sets, one 

group contains a suitable amount of data as a training set, the other group serves as validation 

set. The training set is trained by various parametric or non-parametric algorithms, thus 

deriving the classification rule or discriminant function. The developed classification rule is 

then validated by the validation set. LDA is a commonly used classification technique when 
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the covariance matrices for both groups are known and similar. LDA generates discriminant 

functions through linear combinations of the original variables, thus providing maximum 

separation between subgroups (Adams,2004). The validated model is then used to predict 

the classification of the unknown samples, providing a probability of correct classification. In 

the analysis of automobile paint, LDA is often applied in combination with PCA for the 

classification (Kochanowski and Morgan,2000; Lavine et al.,2011; Maric et al.,2012; Lavine et 

al.,2014a). 

Soft Independent Modeling of Class Analogy. SIMCA is another supervised pattern 

recognition that is based on PCA. In PCA, the data set is structured and classified into several 

groups, each group is then independently modelled in SIMCA. The developed models are used 

to classify unknown samples by comparing the residual variance of a sample with the average 

residual variance of a group (Lavine and Davidson,2006; Brereton,2007). Similar to 

discriminant analysis, SIMCA develops the models using a training set and the models can be 

validated by a validation set. The advantage of SIMCA is that It is a ‘soft’ classification method, 

which means the unknown sample can be grouped into one group, more than one group or 

even no group (Lavine and Davidson,2006).  

Common Components and Specific Weights Analysis. CCSWA is a multiblock statistical 

method and used in the case where different sets of data obtained from the same samples 

need to be combined together (Mazerolles et al.,2006). It is considered as an extension of 

PCA. Each data set (obtained from one analytical technique) can be considered as a block. 

Similar to PCA, the common components of each block were determined by specific weights 

that correspond to the variability of the block so that the structure of the considered block 

can be projected to these representative common components. Like the loadings plots of a 

PCA, the specific weights associated to the blocks for each common component allow us to 

visualize the importance of the original variables on the global projection. The information 

within a block can thus be studied, as well as the relations between different blocks. This 

technique was first applied to the analysis of food products (Mazerolles et al.,2006). Lambert 

et al applied CCSWA to combine the red household paint data obtained from IR and Raman 

spectroscopy and the results of this study successfully showed patterns groups of the 

analyzed paints (Lambert et al.,2016). 
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4. Project & Methodologies 
 

 

4.1. Aim of the project  
 

Automobile paint evidence is one of the most common types of trace evidence that could be 

encountered in forensic case work. In order to get a better understanding of automobile paint 

composition from a forensic perspective and to provide data that can be used for the 

evaluation of automobile paint evidence, considerable research has been conducted. Most of 

these studies either focus on assessing the discriminating power of one particular instrument 

or combined analytical instruments for characterization and identification of the chemical 

composition of automobile paints (Duarte et al.,2020). Even though automobile paint 

evidence is well exploited from various aspects, the author finds that there is still much worth 

exploring and many questions waiting to be answered. 

1) Several studies seek to assess the frequency of physical and chemical composition and 

color of automobile paints so as to provide population data that could be used for 

determination of evidential value of paint evidence in particular regions (Gothard,1976; 

Ryland and Kopec,1979; Volpé et al.,1988; Stone et al.,1991; McDermott et al.,1999; 

Edmondstone et al.,2004; Reynolds et al.,2018; Kruglak et al.,2019; Soong et al.,2020). 

Regardless of whether it is an analytical instrument performance study or a population 

study, for the purpose of validity and representativeness, the sample sets in these studies 

must include the greatest diversity. This means that the samples must be collected from 

different manufacturers and have a large range of colors. In these studies, after using 

various analytical methods, there are always samples that could not be differentiated. The 

last remaining indistinguishable samples tend to have a common feature, that is, they are 

of same color and come from the same make, model and have same or similar production 

year, e.g., the study by Edmonstone et al. and Reynolds et al. (Edmondstone et al.,2004; 

Reynolds et al.,2018). These common conclusions reached by different authors provide 

the impression that as long as OEM samples come from same make, model, plant and 

year, they are non-differentiable. The proposition that “if automotive paints come from 

the same manufacturer, have same color and model, are produced in the same assembly 

plant in the same year, they cannot be distinguished”, however, still needs to be verified. 

This leads to the first question:  to what extent OEM-paint from mass-produced vehicles 

of same color, manufactured by same make, can be differentiated and under what 

conditions can this be done? 

 

2) Automotive OEM coating products are now provided by rather few transnational coating 

suppliers such as PPG, DuPont and BASF, which may lead to a high degree of similarity in 

paint composition (Kirkbride,2015). However, automobile manufacturers tend to choose 

their unique coating technology, application process and paint formulation to form brand 

characteristics as well as to meet customers’ needs. Therefore, the diversity of paint 
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between different manufacturers is expected to be high and detectable. The above-

mentioned studies have well demonstrated this statement by means of highly 

discriminating results. Several studies have also demonstrated that even when only the 

clear coat is examined, one can correlate the chemical formation to the vehicle origin 

(Maric et al.,2012; Lavine et al.,2015). Additionally, if color factors are added into 

comparison, paint samples can be more easily differentiated. A good example of this can 

be found in a recent population study including 200 samples of different makes and colors 

– all of them differentiable using optical examination and instrumental methods (Kruglak 

et al.,2019) .As previously mentioned, due to different coating processes and raw material 

ratios selected by automotive manufacturers, from a forensic analysis perspective, vehicle 

make may be the simplest discriminating factor. However, identification factors for 

automobile paint also include model, production year, assembly plant as well as topcoat 

color codes (assigned to some specific colors). One study has shown that the assembly 

plant plays as an anchor for automobile paint samples in the PDQ database (Lavine et 

al.,2014). The author states that “as the primer and clear coat layer are often unique to 

the assembly plant where these layers were applied, combining chemical information 

obtained from the FTIR spectra of the two primer layers and from the clear coat layer 

makes it possible to rapidly and accurately identify the make and model of the automobile 

within a limited production year range from the paint system alone” (Lavine et al.,2016b). 

However, it is still unclear whether or not the assembly paint is the key discriminating 

feature. If the samples have the same make, model, color and are produced in the same 

assembly plant but in different years, what conclusions can be drawn? What will the 

conclusion be if the samples have the same make, model, color and production year but 

are produced in different plants? In addition, even if there are studies demonstrating that 

the assembly plant can be identified in a sample set where they all come from the same 

make within a limited production year, these studies involve only North American 

manufacturers (Audette and Percey,1982; Lavine et al.,2014; Lavine et al.,2015; Lavine et 

al.,2016a; Affadu-Danful et al.,2023). Although there is regional variation, whether this 

conclusion can be applied globally or only across North America is yet to be confirmed. 

Interestingly, research aimed at answering the above questions is rare. This leads to the 

second question: which identifying factor (model, topcoat color code, production years, 

assembly paint) contributes the greatest towards non differentiation of samples? 

 

3) Paint evidence is regarded as class evidence (i.e., not unique), it possesses class 

characteristics and can be associated only with a group and never with a single source. 

This is because automobile coating is applied batch-to-batch to the body-in-white and is 

considered mass produced. From the perspective of the manufacturer, in order to 

maintain production quality, the paint composition ratio and coating application for the 

same vehicle model tend to be consistent. In theory, the same batch of products should 

have exactly the same chemical composition when leaving the plant. However, according 

to a presentation given by Stoecklein and Palenik in 1998 (Stoecklein and Palenik,1998), 

depending on the quality of painting devices and numerous errors that may occur in 

coating application process, corrective work may be conducted on primer, primer surfacer 

or topcoats (such as repaint a second topcoat). Moreover, as automotive paint is 
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multilayer paint, primer/primer surfacer batch changes may occur during the working 

period of one batch of color paint. Automobile paint may show inhomogeneity or have 

inconsistent composition and layer structure in or between batches or even in the 

different parts of same vehicle (despite having a highly consistent appearance in color). 

The inter-sample and intra-sample variability need to be further explored. This leads to 

the third question: what is the degree of inter-sample and intra-sample variability as 

well as batch variation in automotive paint? 

 

 

4) Automobile paint is a multilayer coating system. The layer sequence is the most important 

characteristic for discrimination. This feature can be examined under an optical 

microscope all at once if a thin cross section is prepared. However, when it comes to the 

identification of chemical composition, the examination must be inspected layer by layer 

using various instruments. It is usually quite time-consuming and not economical if all the 

layers must be analyzed. Maric et al. have conducted several studies demonstrating that 

excellent differentiation between vehicle manufactures can be achieved by analyzing only 

the clear coat using FTIR and Raman spectroscopy (Maric et al.,2012; Maric et al.,2016).  

Eyring et al. have demonstrated that samples that have identical color codes can be 

mostly distinguished by examining only the clear coat and fully discriminated with 

additional comparison, without the need to analyze the basecoat (Eyring et al.,2007). 

However, there is still a lack of information to conclude that the basecoat or other layers 

have less discriminating power. Massonnet dealt with this topic on grey metallic 

automotive paint (Massonnet,1996), this need to be updated and confirmed with other 

color of paint. This leads to the fifth question: which single layer can contribute the 

greatest distinction and what layer combination examination can provide sufficient 

evidential value?  

 

This project derives from the interest and need to study these questions. Thus, the aim of this 

project is to answer the following questions: 

 

1. To what extent OEM-paint from mass-produced vehicles of same color 

manufactured by same make, can be differentiated and under what conditions can 

this be done? 

2. Which identifying factor (model, topcoat color code, production years, assembly 

paint) contributes the greatest towards non differentiation of samples? 

3. What is the degree of inter-sample and intra-sample variability as well as batch 

variation of automotive paint? 

4. Which single layer can contribute the greatest distinction and what layer 

combination examination can provide sufficient evidential value? 

This project aims to answer aforementioned questions by analyzing a carefully selected 

sample set using various methods and applying a reasonable analytical sequence. 
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4.2. Methodological work plans 
 

Since the information obtained in this research is ultimately used to serve the deeper 

understanding of automotive paint and should be representative, the selected samples and 

analytical methods should be closest to practical conditions. The methodological work plans 

of this research are as follows:  

1) Select and collect an ideal sample set based on the aim of this study. 

To get profound information about paint composition and focus on the issues mentioned 

before, the scope of samples should be representative paint from a specific manufacturer 

and color, but with as many models, production years and plants as possible. The chosen 

manufacturer and color should be common and popular, the samples involved should be 

street samples collected from different regions, which can represent the actual situation 

of samples encountered in real casework. The choice of these limitations will be described 

in detail in the following chapters. 

2) Design the proper analytical sequence for this study. 

The analytical result is ideal to be obtained by conventional techniques so that the data 

could be widely used in routine casework. As described in Chapter 3, microscopic 

techniques, FTIR, Raman spectroscopy, Pyrolysis GC/MS are the most common analytical 

methods used in paint examination and therefore expected to be applied in this research. 

The sequence of analysis is expected to be from physical (Microscopic examination) to 

chemical (FTIR, Raman spectroscopy, Py-GC/MS). These analytical instruments are able to 

provide information from every aspect.  

3) Optimize the sample preparation and experimental parameters for all instruments 

involved. 

 

This research aims to assess the differences in the samples themselves, in other words, to 

explore inter-sample variability. Consequently, images and spectra obtained from each 

instrument must be of high quality and reproducible. Intra-sample variability caused by 

sample preparation variation or instrument errors must be minimized or even eliminated. 

It is imperative to standardize sample preparation procedure, optimize experimental 

parameters for each instrument based on some valid protocols and always analyze 

samples with the same calibrated instrument under same condition. 

 
4) Characterize physical and chemical features of samples and determine the DP of 

each instrument from different perspective. 

 

Each layer of paint is expected to be systematically analyzed by the chosen methods, 

physical and chemical properties would be compared and grouped. These features should 

be fully explored in order to provide answers to the proposed questions. Discriminating 
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power of each instrument or combined methods with regard to different paint features 

need to be calculated.  

 

5) Process obtained instrumental data with the help of chemometric techniques. 

 

Chemometrics are nowadays popular and powerful techniques for data visualization and 

comparison objectively. Proper statistical methods will be selected and used to visualize 

and group data based on the sample information. Visual comparison and statistical results 

will be cross checked and the discriminating power of both methods will be calculated and 

compared. 

 

6) Combine all the obtained information and provide answers to the proposed 

questions. 

 

When all the necessary data are obtained, they need to be combined and interpreted to 

provide answers to the proposed questions. What conclusions can be drawn from this 

project and how they can be used will be evaluated. 

 

 

 

4.3. Analytical sequence 
 

Analytical results should be obtained by conventional techniques so that the data could be 

widely used in routine casework. As described in Chapter 3, microscopic techniques such as 

FTIR spectroscopy, Raman spectroscopy, and Py-GC/MS, are the most commonly applied 

analytical methods used in paint examination and have therefore been chosen for this 

research. A scheme of the analytical sequence in this study is illustrated in Figure 20.   

 

 

 

 

 

 

 

 

 

Figure 20. Analytical sequence of this study 

Color and texture, layer sequence, relative layer thicknessStep 1: Microscopy

• All samples including subsamples

Binder type, pigments and extenders, additivesStep 2: FTIR spectroscopy

• Each layer of all samples including subsamples

• Generation of a representative sample set

Pigments and extendersStep 3: Raman spectroscopy

• Each layer of all representative samples

Further information about binder 
compositionStep 4: Py-GC/MS

• The samples that cannot be differentiated by FTIR and Raman spectroscopy
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5. Sample set selection and collection 
 

 

5.1. Sample set selection 
 

Driven from the aim of this research, the idea for sample selection is to restrict sample 

diversity to one specific manufacturer and color but at the same time achieve the greatest 

diversity within this scope, i.e., as many models, production years and assembly plants as 

possible. Within the controllable variables, to which extent automotive paint of same make 

and color can be distinguished, can be evaluated. The more diverse the samples involved, the 

better the proposed questions can be answered. Due to the time constraint of this project, it 

is not possible to involve as many samples as possible. In order to obtain the most 

representative results, the chosen make and color should be the most common one.  

As previously described, white is considered as one of the most difficult colors encountered 

in forensic paint discrimination due to its little variety of pigment formulation. Differentiating 

white automotive paint is quite challenging, but it is the perfect choice to inspect to which 

extent automotive paint is able to be distinguished. What’s more, white is also the world- 

widely most common color in recent 5 years and is reported to be the most common 

encountered color in several regions. The in-depth information of white automotive paint 

would be helpful in forensic practice. Thus, white is chosen for this project. 

As for the manufacturer, the automotive paints from American manufacturers (such as GM, 

Ford and Chrysler) have been fully explored by different experts over the past two decades. 

It is good to focus on some other make. China is currently the country with the largest motor 

vehicle ownership in the world. According to the data published by Traffic Administration of 

the Ministry of Public Security of China, by 2017, there are 217 million cars registered in China 

(Xinhua,2018). Considering the convenience and feasibility of sampling, combined with the 

author’s background, the sampling site is selected in China. Annual car sales data published 

by China Association of Automobile Manufacturers (CAAM) showed that Volkswagen(VW) has 

the largest passenger cars population in China (CAAM,2018). Volkswagen has two large joint 

ventures in China, producing 31 models in 14 assembly plants (FAW-Volkswagen ; SAIC-

Volkswagen). This meets the needs of sample diversity within the range perfectly.  

Therefore, the sampling target for this research is decided as white Volkswagen passenger 

cars produced in China. The additional advantage of sampling in China is that these samples 

can also be compared with the white Volkswagen paint samples existing in the EUCAP 

databases to determine the geographical variations. 
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5.2. Sample collection 
 

In June 2018, sixty-two samples were collected from vehicles that were placed in accident 

vehicle parking lots belonging to traffic police as well as VW service shops in Guangzhou, 

shanghai, Suzhou, Xuzhou and Beijing.  Each sampling vehicle was photographed and 

information including manufacturing company, model, year, VIN code, color code and 

sampling locations was recorded in a standard sampling form (as shown in Figure 21). For 

each vehicle, intact paint chips were collected from three to five positions of the metal 

substrate (two front doors and front engine block). In the situation where this sampling 

manner was not allowed, samples were taken from the damaged areas. Before sampling, 

target locations and tools were cleaned using ethanol. Each sample was then placed 

individually into a small paper envelope and labeled with a marker.  

样品编号 

Sample No. 

 品牌 
Company 

 车型 
Model 

 

型号 
Type 

 制造年月
production year 

 

车辆识别代号 
VIN Code 

 

颜色代码 
Paint color Code 

 颜色 
Color 

单色     金属  
Solid         Metallic  

采样位置 
Picking Psition 

 

      
补充信息 
Additional 

information 

Photo/Repaint 

 

Figure 21. Paint sampling form 

☐左侧 Left 

高度 Height(cm) 

                      

☐右侧 Right         

高度 Height(cm) 

                      

☐前部 Front       

高度 Height (cm) 

                     

☐后部 Back      

高度 Height(cm) 
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5.3. Sample constitution 
 

After collection, each sample and its corresponding subsamples (paint collected from 

different locations on a single vehicle) were assigned unique reference numbers, starting with 

'W001'. If subsamples were available, they were designated as 'W001_1', 'W001_2', and so 

on. The associated details, such as manufacturing company, model, production year, color 

code, color description, and VIN code, were meticulously recorded in Table 9 Overall, a total 

of 62 samples, comprising 135 subsamples, were successfully gathered. 

As Volkswagen is a German brand, in order to produce their vehicles in Mainland China, it 

collaborated with two different Chinese state-owned companies, i.e. First Automobile Work 

Group Corp., Ltd. (FAW) and Shanghai Automotive Industry Corporation Motor Corp., Ltd 

(SAIC). As a result, the collected samples encompass vehicles from these two different 

manufacturing companies. Referring to the 'Company' column in Table 9, F-VW represents 

vehicles manufactured by FAW-Volkswagen, while S-VW designates those produced by SAIC-

Volkswagen. 

Involved models, production years and color codes were sorted and counted.  A total of 15 

different models were collected (see Table 10). These samples are characterized by three 

distinct color codes: LB9A, LC9A, and LY9H, corresponding respectively to color descriptions 

of "candy white," "pure white," and "polar white" (as illustrated in Figure 22). The samples 

also cover a wide range of years from 2002 to 2018, the distribution is shown in Figure 23. 

Table 9. Sample set and relevant information. 

Reference number Company Model 
Production Year 

m/d/y 
Color Code Color Description VIN 

W001_1 

F-VW Bora 3/13/2002 NA NA LFVBA21J923006494 W001_2 

W001_3 

W002_1 

F-VW Sagitar 12/29/2017 LC9A Pure white LFV2A21K6H4331566 W002_2 

W002_3 

W003_1 

S-VW Polo 11/2017 NA NA LSVG446R8H216340 W003_2 

W003_3 

W004_1 

S-VW Polo 2003 NA NA LSVFA49J13200153 W004_2 

W004_3 

W005 F-VW Jetta 9/24/2014 LB9A Candy white LFV2A2BS3E4645928 

W006_1 

F-VW New Bora 11/23/2016 LC9A Pure white LFV2A215XG3193593 W006_2 

W006_3 

W007_2 

S-VW Santana 6/4/2013 LY9H Polar white LSVAB4BR5DN059987 W007_3 

W007_4 

W008_1 
F-VW Jetta NA NA NA LFVAA11A4Y2013633 

W008_2 

W009_1 

S-VW New Lavida 2/2/2015 LY9H Polar white LSVNN2188FN023316 W009_2 

W009_3 

W010_1 
S-VW Santana 12/23/2017 LY9H Polar white LSVN04BR4HN277660 

W010_2 
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W010_3 

W011 S-VW Polo 7/14/2017 LY9H Polar white LSVG226R6H2096580 

W012_1 
S-VW New Lavida 11/16/2017 LY9H Polar white LSVWY418XHN387568 

W012_2 

W013_1 

F-VW Jetta 10/19/2010  NA Polar white LFV2A11G1A3148822 
W013_2 

W013_3 

W013_4 

W014 S-VW New Lavida 6/1/2017 LY9H Polar white LSVNB4185H2097432 

W015 S-VW New Lavida 6/1/2017 LY9H Polar white LSVNB4186H2097729 

W016 S-VW New Lavida 6/1/2017 LY9H Polar white LSVNB4186H2097606 

W017_1 
S-VW Tiguan 8/21/2015 LY9H Polar white LSVXZ65N4F2168181 

W017_2 

W018 S-VW New Lavida 12/11/2016 LY9H Polar white LSVWF2180G2312727 

W019_1 

S-VW Polo 3/9/2017 LY9H Polar white LSVG226R7H2040681 W019_2 

W019_3 

W020_1 

S-VW Santana 6/12/2016 LY9H Polar white LSVFT2BR8GN118803 
W020_2 

W020_3 

W020_4 

W021_1 

S-VW Polo 8/18/2016 LY9H Polar white LSVG026R9G212867 
W021_2 

W021_3 

W021_4 

W022_1 

S-VW Touran 4/10/2010 LB9A Candy white LSVVM41T0A2539599 W022_2 

W022_3 

W023_1 

F-VW Sagitar 12/4/2017 LC9A Pure white LFV2A21K4H4304592 

W023_2 

W023_3 

W023_4 

W023_5 

W024_1 

S-VW Tiguan 2/4/2012 LB9A Candy white LSVUG65N3C2025047 

W024_2 

W024_3 

W024_5 

W024_6 

W025_1 

S-VW Polo 11/8/2016 LY9H Polar white LSVG066R5G2014107 

W025_2 

W025_3 

W025_4 

W025_5 

W026_1 

W-VW Goco 10/25/2012 LC9A Pure white WVWB151K7DK006679 W026_2 

W026_3 

W027_1 

S-VW Passat 3/21/2004 NA Candy white LSVCG49F442267866 W027_2 

W027_3 

W028_1 

S-VW Passat 7/16/2003 LB9A Candy white LSVCC49F432297377 W028_2 

W028_3 

W029 F-VW Bora 2002 NA NA LFVBA21J623008333 

W030 S-VW Tiguan 12/2/2016 LY9H Polar white LSVXZ65N1G2217919 

W031 S-VW Tiguan 12/15/2017 LY9H Polar white LSVUC60T2H2217052 

W032_1 
S-VW Gran Lavida 11/8/2015 LY9H Polar white LSVGF6189F2235379 

W032_2 

W033_1 
S-VW New Lavida 2/6/2014 LY9H Polar white LSVN42185EN024375 

W033_2 

W034_1 
F-VW New Bora 7/15/2017 LC9A Pure white LFV2A1150H3138257 

W034_2 
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W035_1 
F-VW New Bora 3/3/2018 LC9A Pure white LFV2A2152J3879702 

W035_2 

W036 F-VW Sagitar 11/29/2017 LC9A Pure white LFV2A21K4H4299359 

W037_1 
S-VW Lavida 1/19/2009 LC9X DEEP BLACK LSVAB418892184743 

W037_2 

W038 F-VW Jetta 9/28/2008 NA ALPINE WHITE LFV2A11G883147533 

W039 S-VW Polo 11/25/2017 LY9H Polar white LSVG446R6H2169534 

W040 S-VW Polo 12/12/2015 LY9H Polar white LSVG026R2F2172962 

W041_1 
S-VW Santana 10/27/2017 LY9H Polar white LSVNY2BR7HN233746 

W041_2 

W042_1 
S-VW New Lavida 4/12/2017 LY9H Polar white LSVWR2188H2056068 

W042_2 

W043 S-VW Gran Lavida 5/28/2015 LY9H Polar white LSVFV618XF2621761 

W044_1 
S-VW Passat 6/2/2017 LY9H Polar white LSVD78A44HN083814 

W044_2 

W045 S-VW Lamando 2/8/2018 LY9H Polar white LSVCL6BM3JN030683 

W046_1 
S-VW Passat 10/10/2013 LY9H Polar white LSVCH6A49DN183012 

W046_2 

W047_1 
S-VW New Lavida 8/12/2017 LY9H Polar white LSVWY2180HN336715 

W047_2 

W048_1 
S-VW New Lavida 3/8/2018 LY9H Polar white LSVWY218XJ2067923 

W048_2 

W049 S-VW New Lavida 10/10/2016 LY9H Polar white LSVWA2182G2252867 

W050_1 
S-VW Polo 10/29/2012 LY9H Polar white LSVFB26R2C2112164 

W050_2 

W051_1 
S-VW Lamando 12/25/2017 LY9H Polar white LSVCJ2BM5HN145360 

W051_2 

W052_1 
S-VW Tiguan 3/7/2017 LY9H Polar white LSVUC60T7H2033709 

W052_2 

W053_1 
S-VW New Lavida 5/16/2014 LY9H Polar white LSVNV4184EN064438 

W053_2 

W054 S-VW New Lavida 11/21/2016 LY9H Polar white LSVWL2189G2292728 

W055_1 
S-VW Lavida 2/19/2014 LY9H Polar white LSVFV6180E2055009 

W055_2 

W056 S-VW New Lavida 12/15/2014 LY9H Polar white LSVNU2181EN140611 

W057_1 
S-VW New Lavida 5/27/2017 LY9H Polar white LSVWT2189HN286900 

W057_2 

W058_1 
S-VW Tiguan 4/13/2013 LB9A Candy white LSVUL25N9D2063467 

W058_2 

W059_1 
F-VW New Bora 12/29/2013 LC9A Pure white LFV2A2152D3223097 

W059_2 

W060_1 

F-VW Golf 8/21/2012 LB9A Candy white LFV3B21K0C3277505 W060_2 

W060_3 

W061 F-VW Bora 2/26/2003 NA Candy white LFVBA11J233010236 

W062_1 

S-VW New Lavida 1/1/2018 LY9H Polar white LSVWY4186J2010663 W062_2 

W062_3 
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Table 10. List of model and number of collected samples. 

Model Sample no. 

Bora 3 

Sagitar 3 

Jetta 4 

New Bora 4 

Golf 1 

Polo 9 

Santana 4 

New Lavida 16 

Tiguan 6 

Touran 1 

Passat 4 

Gran Lavida 2 

Lavida 2 

Lamando 2 

Goco 1 

Total  62 

 

 

 

Table 11. list of plant code and plant location of collected samples (n=61). 

Manufacturing 
company 

Plant code Plant location Number of samples 

W-VW K Osnabrück 1 

F-VW 
3 Changchun 10 

4 Chengdu 4 

S-VW 

2 Anting 31 

Ni Nanjing 13 

No Ningbo 2 



56 
 

 

Figure 22. Pie chart of sample distribution based on color code(n=62). 

 

 

 

Figure 23. Histogram of sample distribution based on vehicle production year(n=62). 
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VIN of a vehicle is a unique identifying code consisting of 17 characters. It displays one 

vehicle’s specific features such as the origin of the vehicle, the manufacturer, the production 

year, the assembly plant. By decoding VIN, known information such as make and production 

year can be crosschecked and additional information such as assembly plant of the sample 

can be discovered. After decoding VIN of each sample, it was found that 60 samples were 

produced in 5 different plants in China and one sample was produced in Germany. The plant 

code corresponding to each company, the plant location and the number of vehicles 

produced by each plant were listed in Table 11 (Wikipedia,2023). To be noticed, due to a 

recording error and the age of production, the plant information of W008 could not be 

identified. 

The color codes LB9A and LC9A were found in NEXA AUTOCOLOR® vehicle identification 

plates. Their color and identification information are presented in Figure 24. This 

identification plate could be used to physically compare the colors of paint chips with the 

same color code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. NEXA AUTOCOLOR® vehicle identification plates with the color code LB9A and LC9A. 
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6. Optimization and standardization of sample 

preparation method and experimental parameters 
 

 

This research aims to assess the differences in the samples themselves, in other words, to 

explore inter-sample variability. Consequently, images and spectra obtained from each 

instrument must be of high quality and reproducible. Intra-sample variability caused by 

sample preparation variation or instrument errors must be minimized or even eliminated. It 

is imperative to standardize sample preparation procedure, optimize experimental 

parameters for each instrument based on valid protocols and then adapt these validated 

parameters and procedure to the whole sample set.  Therefore, a selective sub-sample set 

was generated for the optimization, standardization, and validation of the instrumental 

settings for this study. The construction of this test sample set is described in chapter 6.1. All 

the consideration and preliminary results concerning the above aspects with regard to each 

analytical method will be summarized in chapter 6.2 (microscopy), 6.3 (FTIR), 6.4 (Raman) and 

6.5 (Py-GC/MS). 

 

6.1. Selection of test sample set 
 

The select set was deliberately designed to contain specific identifying factor combinations. 

In this way, the preliminary study can not only be used to optimize and standardize the 

instrumental parameters, but also to explore whether some characteristics can be associated 

with any particular factor. Therefore, 15 samples including 3 color codes were selected to be 

a part of the test sample set, only one sub-sample per vehicle was chosen as a representative 

for the sample. The complete information of these 15 samples is listed in Table 12.  

The sample set covers 3 different color codes, containing three types of combinations listed 

as follows: 

• Same model, same assembly plants but different production year  

• Same model, same production year but different assembly plants 

• Same model, same production year, and same assembly plants 
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Table 12. Select sample set and relevant information. 

Reference 
number 

Model 
Production 

year 
Color code Assembly Plant 

W006_1 New Bora 2016 

LC9A 

Plant Changchun W034_1 New Bora 2017 

W035_1 New Bora 2018 

W023_5 Sagitar 2017 
Plant Chengdu 

W002_3 Sagitar 2017 

W012_1 New Lavida 2017 

LY9H 

Plant Nanjing 

W014 New Lavida 2017 

Plant Anting 
W018 New Lavida 2016 

W019_2 Polo 2017 

W021_4 Polo 2016 

W020_3 Santana 2016 Plant Nanjing 

W005 Jetta 2014 

LB9A 

Plant Chengdu 

W022_3 Touran 2010 
Plant Anting 

W058_1 Tiguan 2013 

W060_1 Golf 2012 Plant Changchun 

 

 

6.2. Optimization and standardization of the parameters for 

optical examination 
 

6.2.1. Sample preparation 
 

Optical examination is always the first step in forensic paint analysis. A thin cross section is 

the recommended sample format since it can not only provide information as to the color, 

layer sequence, layer thickness under microscopy, but also be used for IR spectroscopy 

analysis (ASTM-E1610-18). In this study, a cross section of each sample is made by a 

microtome and then mounted onto a microscope slide for the examination using different 

microscopic techniques. The sample preparation procedure used in the author’s laboratory is 

well-established and validated by forensic casework practice and proficiency tests. This 

procedure is used in this study and as follows: 

1) A small size (1 mm x 1 mm) of paint film is picked from each sample and cleaned with 

ethanol. 

2) The paint film is then placed in the mold vertically and then embedded with a standard 

resin (Technovit 2000 LC Heraeus Kulzer light curing resin). A resin block is mounted 

onto the mold.  

3) The mold containing the sample is cured using the Heraeus Kulzer Technotray CU 

Curing Light for 15 minutes. An inclusion is then obtained. 
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4) The inclusion is then mounted onto the Leica RM2265 – Fully Motorized Rotary 

Microtome using a steel knife and cut into a 5-µm thick cross-section. The rest of the 

inclusion is kept for Raman analysis (see chapter 6.4). 

5) The obtained cross-section is permanently mounted onto a microscope slide using 

Gurr@ XAM Neutral Medium, improved white (xylene, refractive index: 1.4920-

1.4950). 

6) Each microscope slide is then labeled with a unique sample number. 

 

 

6.2.2. Instrumentation 
 

In this study, a Zeiss Axio Imager.Z2m microscope is used for all the optical observations. It is 

a combined reflected-light/transmitted-light motorized microscope which is also equipped 

with fluorescence light sources, removable polarizer/analyzer and a Zeiss AxioCam 506 color 

digital camera, making it a comprehensive instrument that can be used to analyze samples 

using various techniques. This microscope is associated with software ZEN 2.3 (blue edition) 

which can conduct all the settings of a microscope as well as image acquisition, processing 

and analysis. All the microscope settings, camera settings and display settings can be saved, 

reloaded and applied to subsequent examinations. This allows the sample to be observed and 

photographed under the same conditions every time. 

 

6.2.3. Color calibration of microscope 
 

Apart from the number of layers, layer sequence, texture of each layer, color is another 

important feature that needs to be recorded during optical examination. Digital imaging 

allows samples to be fixed, presented and compared. However, the microscope illumination 

(source), the quality and stability of digital camera, white balance and monitor display 

accuracy all have an impact on the color accuracy of digital images(Clymer and Wei,2014). 

Any slight alteration of these elements may lead to inaccurate color display. In order to 

achieve the most accurate reproducibility as well as deliver stable performance regardless of 

changes in microscope and camera settings, it is necessary to perform color calibration.  

A color reference card called "Fuji HCT 01F35T" produced by HutchColor, LLC. is used for color 

calibration. It is a transparent film with many color patches and is of the same size as a 

microscope slide. It is equipped with a unique reference file that records standard CIE XYZ and 

CIE L*a*b* values for each patch. Once the set-up of the microscope and the camera are 

complete, the image of calibration slide is captured. For each patch, the image color space 

data can be read in Adobe Photoshop and then compared with the reference file. Ideally, the 

images should have a* and b* values within about ± 1.0 of the reference files. More tolerance 

is allowed in L* values, e.g. ± 2.0, but all L* errors should be in roughly the same direction 

(HutchColor,2019). If this is not the case, it indicates an improper setting of the microscope 
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and camera. All the settings should be calibrated until the captured image color space values 

match the reference data (HutchColor,2019). In theory, any changes to the settings will affect 

the color space value of the image, a new calibration slide image needs to be taken for each 

new calibration. This process is repeated every time the setting is changed. This leads to a 

cumbersome and repetitive workflow. Therefore, it is necessary to provide a more efficient 

and practical workflow to minimize the number of additional calibration repeats(Wei et 

al.,2015).  

Adobe Photoshop is a well-known image processing software developed by Adobe Inc. Adobe 

Bridge is an organization tool program developed by Adobe whose function is to manage 

multimedia files and connect the various applications of Adobe system. Camera Raw software 

is a plug-in with Adobe Photoshop and adds functionality to Adobe Bridge. It gives these 

applications the ability to import and process images(AdobePhotoshop). Using these software, 

images can be calibrated and processed in batches since they provide all the camera and 

display settings similar to Zeiss Zen software. Once the microscope is set to Kohler 

illumination, the camera and display settings need to be adjusted to adapt to the condition 

of sample. Sample images and color calibration slide images are then acquired under the same 

recorded conditions. The color calibration can be performed in the abovementioned Adobe 

software all at the same time. In Adobe software, acquired images can be imported in batches. 

The color space values of several patches on the calibration slide image are first checked and 

compared with the given reference file. If necessary, image setting such as exposure time, 

white balance and tone curve are edited until the displayed color space values match the 

given reference data. All the edit settings are consequently copied and applied to all sample 

images. In this way, color calibrated images are generated. A workflow modified based on 

that by Wei et al. (Wei et al.,2015) ,is shown in Figure 25. 

As previously mentioned, a big advantage of the involved Zeiss microscope and its supporting 

software is that all settings can be saved and applied to further experiments. As a result, once 

the workflow is executed for the first time, the applicable settings can be recorded so that 

the setting adjustment can be skipped in the following examination by reloading the recorded 

settings. The acquired calibration slide image can then be reused as a color calibration 

reference within a reasonable period. It is, of course, ideal to capture an image of the 

calibration slide during each examination. Thus, all the captured calibration slide images can 

be compared to see if the settings of microscope are stably applied. 

Overall, by performing color calibration on the microscope, any color variance caused by the 

instrument can be eliminated and color display of sample image is deemed accurate. 
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* ‘Good’ means that the live image should not be overexposed, the white balance is roughly correct, and the color of 

the sample looks similar to the color observed through the ocular. 

Figure 25. Workflow of color calibration. 

 

6.2.4. Preliminary study for the selection and optimization of 

illuminations 
 

Automobile paint can reveal diverse characteristics under different illuminations. Common 

illumination types used in forensic analysis of automobile paint include transmitted light 

(bright field/dark field), incident light (bright field/dark field), polarization, and fluorescence 

illumination. Due to their variable sensitivity to different samples, these illumination types 

tend to provide different discriminating power (Massonnet,1996). In this study, going through 

all the illumination types would be quite time consuming. Furthermore, some of the 

illumination techniques might not provide much discrimination. Additionally, the choice of 

magnification often depends on the size of the sample. Generally, it should be large enough 

to observe detailed features in the paint layer. Therefore, it is necessary to conduct a 

preliminary study to test the performance of each illumination on the white paint sample and 

determine the optimum illumination parameters.  

On microscope

Set up microscope(kohler) using a 
sample slide

Adjust the microscope/camera/display 
until the image looks good*

record the settings and capture the 
images of samples

Set up color calibration slide

Capture the image of calibration slide at 
the recorded settings

On computer with 
Adobe software

Carry all samples images and color 
calibration slide image to the computer 

with Adobe Photoshop and Bridge

Load all images in Adobe Bridge and 
open with Camera Raw

Adjust edit settings of color calibration 
slide image according to the reference 

data (given by HCT)

Copy all the edit settings and apply 
them to all sample images to generate 

the color calibrated images
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The test was conducted on the select sample set described in chapter 6.1. A paint chip of each 

sample was first placed on a microscope slide and observed using incident light (bright field 

and dark field). A small paint film, approximately 1mm x 1mm in size, was carved from each 

paint chip. The 5-µm cross section was obtained by embedding and microtomy. They were 

prepared and mounted following the procedure described in chapter 6.2.1. The mounted 

samples were examined using transmitted light (bright field/dark field), polarization, and 

fluorescence illumination and their DPs were calculated. A standardized analytical strategy as 

well as the illumination parameters was generated based on the examination results of this 

sample set.  

Paint chip surface examination. The dry mounts of paint chips were first observed with 

the 10x, 20x and 50x objectives using incident light bright field. The magnification provided 

by 10x objective was too low to observe the detailed characteristic of paint surface. On the 

contrary, the magnification of the 50x objective was too high to obtain a focused plane. The 

20x objective was found to be the reasonable choice and allowed for the observation of 

detailed surface characteristics on a relatively well focused plane. The select sample set was 

then observed with the 20x objective using incident light in bright field (RL BF) and darkfield 

(RL DF). The color, pigment appearance, surface morphology, and defects were examined and 

recorded.  

Cross section examination. The mounted cross sections were first observed with 10x, 

20x and 40x objectives respectively using transmitted light bright field. The magnification 

provided by 10x objective was too low to observe the detailed characteristic of each layer. On 

the contrary, the magnification of the 40x objective was too high to observe the complete 

layer structure in the field of view. The 20x objective was found to be the more reasonable 

choice permitting the observation of layer structure as well as detailed characteristics in the 

field of view. The select sample set was then observed with the 20x objective using 

transmitted light bright field (TL BF)/dark field (TL DF) illumination mode, crossed polarized 

light (POL) and fluorescence illumination mode. Three fluorescent filters, namely DAPI 

(excitation:357-371 nm/emission: 397 nm), Alexa Fluor 488 (AF 488, excitation:450-490 

nm/emission:515 nm), and Alexa Fluor 546 (AF 546, excitation:510-560 nm/emission: 590 

nm), were available for observation with the Zeiss microscope. The layer sequence, color, 

texture, and morphology of each layer for each illumination type were recorded.  

Calculation of discriminating power (DP). Samples were visually compared with each 

other based on their observed physical features under each illumination. The discriminating 

power of each illumination technique was calculated and displayed in Table 13. It is worth 

noting that the discrimination of samples under incident light was quite challenging because 

it was uncertain whether the surface morphological features of the clear coat (such as striae 

and defects) were essential or accidental. Thus, it was decided that they would not be taken 

into consideration when differentiating between samples. The differentiation depended 

mainly on the observed color and texture of the basecoat. Whether the surface morphology 

was characteristic needed to be further verified by the intra-sample variability examination.  
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Table 13. Discriminating power of each illumination technique. 

 
Illumination 

Undifferentiated 
pairs 

DP 
(n=15)  

RL BF 55 0.476 

RL DF 51 0.514 

TL BF 16 0.848 

TL DF 5 0.952 

POL 8 0.924 

DAPI 26 0.752 

AF 488 55 0.476 

AF 546 54 0.486 

 

As presented in Table 13, both transmitted light bright field/dark field and crossed polarized 

light offers promising discrimination in this test. On contrary, incident light bright field/dark 

field as well the fluorescence illumination could not well distinguish white automotive paint 

samples. Since incident light could not reveal as many discriminant characteristics as well as 

other illuminations and introduced additional difficulties in characterization, it was excluded 

from this study. As for the decision for all the rest illuminations, a detailed discussion is 

presented in the following section. 

 

Characterization and classification. Based on observations under incident light, all the 

samples were characterized as white solid paint. This was confirmed under polarized light as 

no effect pigments were observed in the basecoat with the exception of very few birefringent 

particles. The layer sequence, relative layer thickness, color, and texture of layer were 

observed and differentiated under transmitted illumination, both in bright field and dark field. 

It was found that two samples had repainted basecoats and clear coats on top of their original 

coatings. In such cases, only the OEM system was considered. In bright field illumination, 16 

out of 105 pairs were undifferentiated, giving a DP of 0.848. 5 pairs remained 

undistinguishable under dark field illumination, providing a higher DP of 0.952 in terms of 

further discrimination of basecoat texture and primer color. The samples had either a three-

layers (clearcoat-basecoat-primer) or a four-layers (clearcoat-basecoat-primer surfacer-

primer) structure. The number of samples in these two groups was approximately equal, i.e., 

8 three-layer samples and 7 four-layer samples. The classification based on the layer sequence 

and characteristics observed in bright field and dark field are presented in Figure 26. 

Representative examples for layer structure of each group in dark field illumination mode are 

presented in Figure 27. It is worth noting that the color and texture of the basecoat and the 

primer surfacer of the four-layers samples were highly similar. Since bright field and dark field 

illumination were able to reveal significant information pertaining to the physical features of 

the sample and generated a high DP, they will both be applied to the whole sample set. Dark 

field illumination, in particular, would be the first choice for characterization and 

discrimination of paint samples. 
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Figure 26. Classification of the select sample set using transmitted light bright field and dark field. 
Red boxes indicate the undifferentiated pairs. 

 

Polarized light provided a DP of 0.924 where 8 pairs could not be differentiated. Polarized 

light did help with further discrimination; however, it could not provide as much additional 

information as dark field illumination since the pairs remained undifferentiated. Thus, 

polarized light will not be considered the first choice for this study. Only the samples that 

could not be differentiated by dark field illumination would be observed under polarized light 

for potential further discrimination. 

The overall performance of the samples under three fluorescent illuminations was not ideal. 

Only the primer reacted to fluorescence illumination and all samples exhibited similar 

fluorescence emission (color). Consequently, the DP of the three fluorescent illuminations 

were rather low. Surprisingly, it was found that Alexa Fluor 488 fluorescence was capable of 

further differentiation of the pairs that were not previously distinguishable by dark field 

illumination. Under Alexa Fluor 488 fluorescence illumination, the undifferentiated pair, 

W012_1 and W014, exhibited different characteristics, in which the basecoat of W012_1 

presented greenish fluorescence, while the one of W014 did not (see Figure 28). The same 

was true for the pair, W021_4 and W058_1 (see Figure 29). The samples under Alexa Fluor 

546 and DAPI fluorescence revealed similar characteristics but not as obvious as under Alexa 

Fluor 488. Only the pair of W002_3 and W005 remained undifferentiated under fluorescence 

illumination. As a result, only Alexa Fluor 488 fluorescence will be applied to the 

undifferentiated samples, the other two were excluded.  
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Figure 27. Dark field images of cross-sections of a) Sample W023_5 with three layers, and b) Sample 
W035_1 with four layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Images of cross-sections of Sample W012_1 and W014 under transmitted light dark field 
(a and b, respectively) and under Alexa Fluor 488 fluorescence illumination (c and d, respectively). 
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Figure 29. Images of cross-sections of Sample W021_4 and W058_1 under transmitted light dark 
field (a and b, respectively) and under Alexa Fluor 488 fluorescence illumination (c and d, 

respectively). 

  

 

 

 

 

 

 

 

 

Figure 30. Dark field images of cross-sections of a) Sample W034_1 produced in 2017, and b) Sample 
W035_1 produced in 2018. They were all Volkswagen NEW BORA produced in the same plant. 
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Correlation between physical properties and sample origin. Once the optimization 

and characterization were done, the correlation between physical properties and sample 

origin was explored. Results showed that the layer sequence of one model would remain the 

same regardless of whether they were produced in different plants in different years.  

However, variation was found in samples of same model from same plant but produced in 

different years. For example, sample W034_1 and W035_1 originated from two Volkswagen 

NEW BORA cars produced in 2017 and 2018, respectively. They both had the same color code 

‘LC9A’ and were produced in plant Changchun. Interestingly, variability in the color of the 

primer and the relative thickness between the clear coat and the basecoat under dark field 

illumination was observed (see Figure 30).  

Variability was also found in samples of the same model and production year but produced 

in different plants. These samples were W012_1 and W014, two Volkswagen New Lavida 

produced in plant Nanjing and plant Anting, respectively. They were both produced in 2017 

with the color code ‘LY9H’. These samples were undifferentiated using transmitted light in 

bright field and dark field mode. The variation was only observed under Alexa Fluor 488 

fluorescence illumination where the basecoat of these two samples showed distinct 

fluorescence characteristics, as illustrated in Figure 28. 

Regarding samples originating from the same model, production year, and assembly plants 

(specifically W002_3 and W023_5), they could not be distinguished using microscopic 

examination. 
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6.2.5. Standardization of analytical strategy for the whole set 
 

This preliminary study has proved that microscopy is a powerful technique for white 

automotive paint analysis. The physical properties of each sample including the number of 

layers, layer sequence, relative layer thickness, color and texture of each layer can be 

determined. Based on the results discussed in the previous section, the analytical strategy as 

well as the involved illumination for microscopy was decided as follows. The cross sections of 

each sample, along with their respective subsamples, will be prepared and mounted using the 

methodology elucidated in Chapter 6.2.1. Subsequently, these mounted samples will be 

subjected to observation under transmitted light bright field and dark field illumination, 

employing a 20x objective. The images of the samples will be captured with the assistance of 

a color-calibrated microscope. A comparison will then be conducted among the samples, 

focusing on their layer structure, individual layer color and texture, and the relative thickness 

of each layer. For the samples with sub-samples, the comparison will first be conducted within 

the sample subset. For those with subsamples, the intra-sample variability will also be 

examined. If subsamples have identical physical features, the subsample largest in quantity 

with the most complete layer structure will be selected to represent this sample. If not, all 

the different subsamples should be selected and join the whole comparison. Any 

undifferentiated pairs will be further examined using polarized light and Alexa Fluor 488 

fluorescence illumination. The samples will ultimately be organized into groups based on 

visual comparison, and the discriminating power of each illumination method will be 

quantified. Additionally, efforts will be made to uncover correlations between physical 

attributes and identifying factors.  
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6.3. Optimization and standardization of the parameters for 

FTIR analysis 
 

6.3.1. Sample preparation 
 

Automobile paint is often analyzed by FTIR in transmission mode (with the microscope 

accessory) using cross-section or thin paint smear with or without support (ASTM-E2937-18 ; 

EPGT(EPG-GDL-002),2022). The cross sections are conventionally cut vertically with respect 

to paint surface so that a complete layer sequence can be obtained. IR spectra of each layer 

are then acquired by moving the sample stage until the spot of aperture window is directly 

onto the desired layer. The aperture size must be adapted with the size of paint layer.  

A collaborated project between the University of Lausanne (UNIL) and the Bundeskriminalamt 

(BKA) was carried out for optimization of inter-laboratory comparability of IR spectra from 

automotive paint layers in 2018 (Lambert,2018). A strict acquisition procedure including an 

instrument health check, sample preparation procedure for transmission mode, support 

selecting (no support, KBr, half diamond cell), and the optimization of measurement 

parameters was defined. Among these, a horizontal cross section method was introduced, 

and its effect was studied. This method involves placing the small paint film parallel to the 

bottom of the mold (rather than perpendicular) when embedding. The cross section obtained 

from microtome is then a horizontal cross section of each layer. The surface of the section is 

then large enough to cover the standard spot size of the aperture (normally 50μm×50μm), 

which can remain steady and allow for a good signal-to-noise ratio (SNR) and good spectra 

reproducibility. 

However, from practical aspect, the sample preparation process proves especially challenging, 

particularly for those with four layers where the basecoat measures a thin 10-20 µm. The 

resemblance in color and texture for basecoat and primer surfacer further complicates 

differentiation within these thin sections. Consequently, assurance about the absence of layer 

contamination in horizontal cross-sections becomes uncertain. Considering the comparison 

of performance against the required effort, combined with the complexities and uncertainties 

linked to horizontal cross-section preparation, their inclusion in FTIR measurements within 

this thesis is deemed unwarranted. Hence, the conventional method of preparing 5 µm 

vertical cross-sections was employed. The aperture size must be adapted with the size of paint 

layer.  

The effect of using different supports on spectral performance was studied in aforementioned 

project. Results showed that the best signal-to-noise ratio was obtained when cross sections 

were measured without any support. The paint section should ideally be flat to allow for a 

good spectral contrast and SNR (Chalmers et al.,2012b). However, this is not easily achieved 

when the sample has no support. Thus, a custom-made stage with a size of 75mm x 25mm 

was specially designed for mounting samples without any support (see Figure 31). The stage 

is a steel sheet containing two lines of eight holes in total with a diameter of 1mm (the top 

line) and 2mm (the line below). A cross section of the paint sample is placed above the hole, 
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stretched out and flattened using a drop of methanol. The methanol will evaporate after a 

while, leaving the section adhered onto the stage. The sample is subsequently placed on the 

IR microscope stage and analyzed without a support (i.e., there is only air between the sample 

and the detector). Any empty hole can be used for background acquisition. 

 

 

 

 

 

 

 

 

Figure 31. A custom-made steel stage for no support sample preparation. 

 

6.3.2. Instrumentation and calibration 
 

In this research, a Thermo iS50 FTIR spectrometer coupled with a Nicolet Continuum FTIR 

Microscope from Thermo Electron Corp., equipped with a 32x objective and a mercury 

cadmium telluride detector (MCT/A), is used for all infrared analysis.  

Routine health checks for FTIR spectrometers are performed to maintain the stability of the 

instrument. Calibration of the instrument, however, is always an indispensable step before 

running experiments. Three standard guideline from ASTM and one from EPGT (ASTM-E1421-

99[2015]e1 ; ASTM-E1866-97[2013] ; ASTM-E2937-18 ; EPGT,2022) are used as references for 

setting up the calibration protocol for FTIR analysis.  

Since the MCT detector must be cooled down with liquid nitrogen, the instrument should be 

allowed 20 minutes to settle after the addition of liquid nitrogen. The signal of the instrument 

is then checked using the software OMNIC 9.1 and recorded in the instrument’s logbook. The 

calibration will then be executed using a standard matte-finish polystyrene film (NIST 

SRM1921b certified polystyrene, approximately 38-μm thick, having a 2.5-cm aperture). Two 

spectra acquired and stored following the last major instrument maintenance are used as 

references, namely Reference 1 and Reference 2, respectively. Reference 1, in terms of single-

beam energy spectrum of an empty beam, is a background acquisition spectrum with no 

support (only air is in the optical path during acquisition). Reference 2 is a transmittance 

spectrum of the polystyrene standard. The details are discussed as follows:  
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1) Energy spectrum test 

This test is setup for examination of any changes in energy level. Two background spectra are 

acquired one after each other and overlaid to detect any differences. If no difference is 

observed, one of the acquired background spectra is then compared with Reference 1 and 

used to calculate the energy ratio at 4000/2000 cm-1, 2000/1000 cm-1 in the range of 95 to 

105 % T. The value is then noted. 

2) 100%-line test 

This test is performed to check if the noise or baseline is within the accepted range. The 100% 

transmittance line of the background spectrum displays the ordinate range, which should be 

between 99-101%. Root mean square (RMS) values in the range of 2000 cm-1 to 2200 cm-1 

should also be recorded.  

3) Polystyrene Subtraction Test 

A new transmittance spectrum of the polystyrene standard needs to be acquired and then 

overlaid with Reference 2. The reference spectrum is then subtracted from this new spectrum. 

The residue is then plotted over a range of −1 to +1 % T and interpreted by checking how 

much residue is left. 

4) Automated Polystyrene check 

An automated application programmed by Danny Lambert based on the recommendations 

of the National Institute of Standards & Technology (NIST) was designed for a health check of 

the FTIR instrument. This application provides a warning when the frequency scale (x-axis) 

should be corrected by a specific technician. The material used for this check is certified 

polystyrene from NIST (SRM1921b). Six IR spectra of the certificated polystyrene should be 

acquired using the request acquisition parameters. They are then loaded in the application 

for an automated calibration of the sum as well as the difference between the chosen peak 

mean and standard deviation. This procedure results in a peak table where a “pass” or “fail” 

of the test will be indicated (see Figure 32). 

 

Figure 32. A peak table of the automated polystyrene check showing a “pass” test result. 
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In addition to the utilization of standard calibration materials, an 'in-lab' reference was 

formulated for the purpose of quality control. The ‘in-lab’ reference is a sample selected from 

the sample set, serving as an internal standard throughout the study. This ‘in-lab’ standard 

reference was selected from the sample having more than one subsample with a thicker layer. 

To ensure consistency, a cross section of this reference sample was prepared and mounted 

permanently on a custom-made steel sheet sample stage. This approach guarantees the 

unwavering status and orientation of the reference sample. Prior to commencing each sample 

analysis session, the basecoat of this reference was subjected to measurement using a fixed 

aperture size of 50 x 15 µm at a random location. The resultant data was then stored, 

following the calibration procedures that were previously described.  

 

6.3.3. Optimization and standardization of instrumental settings 
 

Since the FTIR instrument and the samples involved in different automobile paint study can 

never be the same, the instrumental settings from different literature often vary a lot. When 

samples are measured by FTIR spectrometer equipped with a microscope, the MCT detector 

is the only choice. Consequently, the spectral range is often in the 650/700 - 4000 cm-1 or 

400/450 - 4000 cm-1 range if It is a broadband MCT detector (Massonnet and Stoecklein,1999b; 

Ryland et al.,2001; Kruglak et al.,2019). The objectives and gains are seldom mentioned in the 

literature. The number of scans are not standardized and vary greatly in literature, e.g. 64 

(Beauchaine et al.,1988), 128 (Wright,2010; Kruglak et al.,2019), 200 (Reynolds et al.,2018), 

256 (Zięba-Palus and Borusiewicz,2006; Zięba-Palus et al.,2011), 512 (Ziȩba-Palus et al.,2008a; 

Zięba-Palus and Trzcińska,2013). The variable aperture size is often adapted to the layer 

thickness. A resolution at 4 cm-1 is mostly used. From the literature, it is difficult to determine 

which instrumental settings are ideal for this study.  

Thesis of Muehlethaler (Muehlethaler,2015) employed a design of experiment to assess 

various factors, including resolution, number of scans, sample thickness, paint type, and FTIR 

measurement window size, with the aim of determining optimal measurement conditions. 

His findings indicated that among these factors, paint type exhibited the least influence. 

Consequently, the measurement conditions delineated in his thesis can be readily extended 

to the samples examined in the current study. In conjunction with the previously referenced 

investigation, the initially established optimal measurement conditions, which have 

undergone evaluation, utilization, and recommendation not only within Muehlethaler’s thesis 

but also in the aforementioned project (Lambert,2018) and the ASTM standards and EPGT 

guidelines, are comprehensively presented in Table 14. 

These measurement parameters are initially applied to the select sample set to evaluate their 

efficacy, and subsequently adjusted, if necessary, based on the samples' performance. Each 

layer of every sample underwent five measurements, each measurement was measured from 

different locations of the same section. Quality and reproducibility of spectra were the 

guiding criteria for parameter optimization.   
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Table 14. Instrumental settings for validation study. 

PARAMETERS CONDITIONS 
Instrument Thermo iS50 FTIR spectrometer 
Acquisition Mode  Transmission though FTIR microscope 
Detector MCT/A 
Apodization function Blackmann-Harris 
Objective 32x 
Spectral Range 650-4000 cm-1 
Gain Automatic 
Resolution  4 cm-1 
Scans  32 
Aperture Size Depend on the thickness of layer 

 

 

 

6.3.3.1. Spectra quality and reproducibility 
 

The quality of spectra was initially visually inspected, adhering to the criteria outlined in the 

ASTM standard and EPGT guidelines. The reason for the observed problems and solutions to 

the problems were investigated.  The assessment results were then documented in Table 15. 

 

Table 15. Spectra quality criteria and performance within the selected sample set. 

PARAMETER CRITERIA OBSERVED PROBLEM CAUSE SOLUTIONS 

Transmission 
Range 

Optimal range: 
100% to 10% 

1) Baseline exceed 
100%  
2) Baseline lower 
than 80% 

1) Incorrectly acquired 
background spectrum 
2) Scattered and 
reflected radiation 

1) Recollect background 
and redo measurement  
2) Remount the cross 
section on the sample 
stage  

Baseline Stable and flat 

Curved baseline Less flat sample surface 1) Remount the cross 
section on the sample 
stage 
 

Noise Smooth  

Noisy baseline 1) too small aperture 
size 
2) low number of scans 

1) Enlarge aperture size 
if possible 
2) Increase number of 
scans 

 

 

The acquired spectra generally exhibited good quality upon visual inspection. The majority of 

identified issues stemmed from suboptimal sample preparation and incorrect background 

spectrum acquisition. These problems can be effectively resolved through sample re-

preparation or background spectrum re-acquisition. Conversely, the impact of smaller 

aperture sizes is inevitable due to the inherent nature of thin paint layers. Additionally, the 

issue of noise can be mitigated by increasing the number of scans.  
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The evaluation of reproducibility involved assessing intra-sample and inter-sample variability 

using Pearson correlation coefficients, a statistical method that calculates the similarity 

between different spectra. This was carried out on IBM® SPSS® Statistics V.28.0.1.1(14) 

software. The resulting intra-sample variability within five replicates of each layer for every 

individual sample was calculated, along with the inter-sample variability for each layer. This 

information is visualized in Figure 33. 

Overall, the study's reproducibility yielded positive results, with low levels of intra-sample 

variability and prominent inter-sample variability. Nevertheless, It is important to 

acknowledge that certain measurements exhibited notable cases of intra-sample variability. 

This can be primarily attributed to inconsistent baseline quality, a consequence of insufficient 

sample preparation. For instance, the significant intra-sample variability observed in the 

clearcoat can be attributed to this factor. Additionally, noise introduced by employing a small 

aperture size has contributed to greater intra-sample variability, as evidenced in the basecoat 

of sample W060. 

Addressing these concerns, employing a flatter section surface can effectively mitigate 

abnormal baselines. Regarding noise reduction, enlarging the aperture size isn't always 

feasible. Alternatively, augmenting the number of scans serves to minimize background noise 

in spectra, concurrently enhancing the signal-to-noise ratio. 

In the assessment, 32 scans and 64 scans were compared for reproducibility. The outcomes 

are illustrated in Figure 34. The findings indicate that for aperture sizes smaller than 50x15 

µm, 64 scans lead to lower intra-variability. Conversely, when the aperture size meets the 

minimum optimal threshold (1250 µm or 50x25 µm), increasing the number of scans doesn't 

significantly affect intra-sample variability. Consequently, considering a balance between 

improving measurements for thinner layers and not excessively prolonging acquisition time, 

the choice of 64 scans was favored over 32 scans. 

The internal standard reference (basecoat) was consistently measured before the 

commencement of each experiment, enabling the assessment of instrument stability's 

reproducibility. The lowest level of intra-sample variability was identified across different 

measurement days, as shown in Figure 35. This was also illustrated in Figure 33 (highlighted 

in red rectangular) to have a parallel comparison with other intra-sample variability. The 

predominant source of variability stemmed from random measurement position, resulting in 

the capture of a more intensity talc peak.  

Given the overall homogeneity of the samples and the low intra-sample variability, taking into 

account the scale of the sample set, it was determined that a minimum of 3 replicates would 

be suitable. However, in cases where the samples exhibit heterogeneity, it is necessary to 

increase the number of replicates for a more comprehensive representation. 
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Figure 33. Box plots illustrating the intra-sample and inter-sample variability of each layer within the 
chosen sample set (calculated by raw spectra). 

 

 

 

 

 

 

 

Figure 34. Box plots comparing the intra-sample variability between 32 scans and 64 scans, utilizing 
varying aperture sizes (aperture size in µm).  
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Figure 35. Over time reproducibility check result using internal standard (IR). 

 

 

6.3.3.2. Pretreatment 
 

Indeed, while obtaining optimal spectrum measurements is the most efficient way to mitigate 

variability, It is not always achievable due to factors such as sample characteristics, quantities, 

and potential external contamination. Consequently, post-measurement data pre-processing 

becomes a crucial step in multivariate processing. Standard normal variate (SNV) and 

detrending with a polynomial order of 2 (det2) proved to be an effective pretreatment 

process that enables optimum correction of the scattering effects encountered in the raw 

spectra and offers many practical advantages for its implementation (Muehlethaler,2015). 

This pretreatment method was chosen to test its adaptability for this sample set. Samples 

with layers exhibiting larger intra-variability were selected for the test. The results, presented 

in Figure 36, reveal a substantial reduction in intra-sample variability and an increase in inter-

sample variability. 

 

 

Figure 36. box plot illustrating the comparing the intra- and inter-sample variability between raw 
data and pretreated data (SNV + Detrending 2). 

 

Principal Component Analysis (PCA) was also performed on both raw spectra and pretreated 

data to visualize the cluster projection, as shown in Figure 37. The application of pretreatment 

notably clustered similar samples and increased the differentiation between different 

Mean: 0.9956 
Max: 0.998 
Min: 0.993 
Std Deviation: 0.00163882 
Variance: 2.68573E-06 
Q1: 0.9945 
Q3: 0.997 
Median: 0.996 
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samples. In some cases, two samples that were almost indistinguishable (Pearson correlation 

= 0.99) remained challenging to separate.  

Consequently, the SNV with detrending technique demonstrated its effectiveness for this 

sample set and was chosen as the preferred pretreatment method for raw spectra. 

 

 

 

 

 

 

 

 

 

 

Figure 37. PCA score plot showing the projection of raw spectra (a) and pretreated spectra (b). 

 

 

6.3.3.3. Statistical Validation 
 

Since the experimental parameters and pretreatment methods have been established, a 

statistical classification and validation process was conducted using LDA as a single-

classification method, as well as SIMCA as a multi-classification method. The clearcoat dataset 

was chosen for this validation due to its significant intra-sample variability. 

Prior to conducting the statistical validation, the acquired spectra underwent a visual quality 

check, followed by characterization and comparison. It was observed that spectra within the 

range of 3100-2828 and 1800-680 cm-1 exhibited abundant peaks corresponding to various 

functional groups and compounds. This spectral range was selected for statistical analysis as 

it encapsulated the complete chemical information of a sample while minimizing irrelevant 

data. 

To streamline the subsequent supervised methods, unsupervised method PCA was initially 

conducted on the pretreated data to reduce the number of variables. HCA was also conducted 

for the cluster analysis. 

The visual characterization, along with the results obtained from both visual comparison, PCA 

separation and HCA clustering, are consolidated and presented in Table 16.  

 

a) b) 
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Table 16. Visual characterization and comparison, PCA and HCA grouping result (n=13). 

Chemical class Visual grouping PCA 
HCA 

(Complete linkage + correlation) 

PUR+STY 

 

W002, W020, W023 

 

W012, W014, W018 

 

W002 

W020, W023 

W012, W014, W018 

 

 

W002, W012, W014, W018, W020, W023 

PUR W005 W005 W005 

ACR+STY+MEL+PUR 

 

W019 

W021 

W034 

W035, W058, W060 

 

 

W019 

W021 

W034 

W035, W058, W060 

 

 

W019 

W021 

W034 

W035, W058, W060 

Discriminating power 88.5% 91% 77% 

 

PCA was initially conducted on the complete clearcoat dataset, as depicted in Figure 38. The 

score plot was generated utilizing the first two principal components (PC), which collectively 

contribute to 88% and 5% of the overall variance, respectively. This PCA process effectively 

segregates samples into two primary groups based on the chemical composition of the 

clearcoat. Notably, the ACR sample group can be further subdivided into two distinct 

subgroups by considering the second principal component (PC2), which is due to the intensity 

of melamine peak according to the loading plot of PC2. However, within each initial PCA-

defined group, distinguishing between individual samples was challenging due to their 

minimal differentiation. In response, additional PCA analyses were undertaken on the subsets 

of samples that exhibited such limited differentiation (as indicated by the dashed line). When 

samples were found to be randomly dispersed across the entire score plot, they were deemed 

undifferentiated. For instance, samples like W035, W058, W060, or W20, W23, as well as 

W012, W014, W018, fell under this category of undifferentiated distribution.  

The PCA separation closely mirrors the outcomes obtained through visual comparison. It 

efficiently visualizes the underlying data structure and groupings in a straightforward and 

rapid manner. Consequently, PCA was included as a robust alternative that facilitates the 

process of sample discrimination in further analysis. 

In contrast, the results from HCA exhibit diminished discriminative power, and determining a 

clear separation criterion becomes challenging. Achieving a more reasonable and reliable 

separation necessitates the generation of a Receiver Operating Characteristic (ROC) curve, 

which demands a substantial investment of effort. The clustering outcomes, unfortunately, 

fall short of meeting the desired standards. As a consequence, this analysis will not be 

implemented in the subsequent stages. 
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Figure 38. PCA score plot constructed for the IR spectra of the clearcoat, according to the first two 
principal components (PCs). Subsequent PCA analyses were carried out on specific groups of samples 

(identified by dashed lines) that initially displayed minimal differentiation.  

 

The validation of the statistical models was performed for each supervised model using an 

independent validation set. Since the dataset consisted of more variables than samples, PCA 

scores were employed as the input data for LDA. Moreover, due to the limitation of the 

available dataset, the maximum number of usable components was confined to 3. SIMCA was 

also based on the PCA model. From the 5 replicates, a random selection of 3 replicates formed 

the training set for each method. The remaining 2 replicates constituted the validation set, 

utilized to assess method performance metrics such as classification accuracy, false positive 

rate, and false negative rate. The results were presented in Table 17.  

Both classification methods have yielded generally favorable outcomes, with LDA exhibiting 

a higher rate of correct classification. It is worth noting that the high number of false positives 

observed in SIMCA is attributed to the existence of samples that are indistinguishable. In the 

context of SIMCA, these undifferentiated samples were categorized into multiple classes. 

When the samples possess distinct discriminative characteristics, LDA proves effective in 

achieving accurate classifications or predictions. However, in situations where a significant 

number of samples are difficult to differentiate, LDA can lead to an increased occurrence of 

false positives. On the other hand, SIMCA presents an advantage by offering a broader range 

of potential sources for unknown samples, which proves more practical for forensic paint 

investigation. 

 

 

 

PUR+STY ACR+MEL+STY 
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Table 17. Performance of two classification methods 

PARAMETNER LDA 
SIMCA 
(5%) 

TRUE POSITVE 17 23 
FALSE POSITIVE 9 65 

FALSE NEGATIVE 9 2 
TRUE NAGATIVE 303 247 

CORRECT CLASSIFICATION RATE 0.9467 0.7988 
MISCLASSIFICATION RATE 0.0533 0.1982 

SENSITIVITY 0.6538 0.9200 
SPECIFICITY 0.9712 0.7917 

FALSE NEGATIVE RATE 0.3462 0.0800 
FALSE POSITIVE RATE 0.0288 0.2083 

POSITIVE PREDICTIVE POWER 0.6538 0.2614 
NEGATIVE PREDICTIVE POWER 0.9712 0.9920 
GENERAL DIAGNOSTIC POWER 0.9231 0.9231 

 

 

 

6.3.4. Standardization of FTIR analysis protocol of whole sample set 
 

As outlined in the preliminary study, the optimized instrumental parameters produce high-

quality spectra that exhibit strong consistency, thereby effectively presenting extensive 

chemical insights from each sample. The preprocessing techniques facilitate maximal 

variation between samples and minimal variability within individual samples. Reliable 

statistical approaches such as PCA and LDA offer substantial support for distinguishing 

between samples and enabling classification. The validation of the instrumental parameters, 

preprocessing steps, and statistical model was conducted using LDA and SIMCA, thereby 

confirming their suitability for implementation. The procedure for IR analysis of the entire 

sample collection is summarized in Table 18. 

It is essential to emphasize that while this protocol forms a foundational criterion and should 

be uniformly applied to all samples, practical scenarios might necessitate adaptability based 

on the conditions of each sample. In certain instances, modifying multiple factors may be 

necessary to ensure optimal quality. It is of utmost importance to document any such 

alterations. 
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Table 18. Protocol for the IR analysis of the whole sample set in this thesis. 

Step 1: Sample preparation 
• Prepare vertical cross sections of 5 µm thickness following the procedure described in chapter 6.2.1 

• Mount the cross section on the custom-made steel stage. 

• Ensure that the surface of the cross section is flat. 

Step 2: IR measurement 
Instrument calibration Signal check, 100% line test, Polystyrene check 

Instrumental settings 

Instrument Nicolet iS50 FTIR spectrometer 

Acquisition Mode  Transmission though FTIR microscope 

Detector MCT/A 

Apodization function Blackmann-Harris 

Objective 32x 

Spectral Range 650-4000 cm-1 

Gain Automatic 

Resolution  4 cm-1 

Scans  64 

Aperture size Depend on the thickness of layer 

Reproducibility check 
Measure the basecoat of internal standard using an aperture size of 50 x 15µm 
before conducting the experiment 

Replicates 
• Begin with a minimum of 3 replicates.  

• Increasing the number of replicates if significant variability observed. 

Step 3: Spectra quality check  
• Visually inspect the acquired spectra for quality assurance (% transmission, baseline, noise, defects, 

contaminations).  

• Re-prepare and re-measure the sample if any issues are identified. 

Step 4: Pretreatment  
Methods SNV+ detrending with a polynomial order of 2 

Software Unscrambler X 10.1 (CAMO software) 

Spectra range 3100-2828 and 1800-680 cm-1 

Step 5: Visual characterization and Classification 
• Identify functional groups through comparison with literature and available databases. 

• Perform visual comparison and classification based on the presence/absence of peaks or relative 
intensity. 

Step 6: Statistical discrimination and classification  
Reproducibility Check Measure intra sample variability of internal standard 

Methods 

PCA • Data structure visualization  

• Intra sample variability check. 

LDA  • Discrimination 

• Classification 

Software 
• IBM® SPSS® Statistics V.28.0.1.1(14) 

• Unscrambler X 10.1 

Step 7: Validation (Blind test) 
Measurement 5 samples measured by another person using the same protocol 

Classification 
• PCA projection 

• LDA or SIMCA prediction  

Software Unscrambler X 10.1 
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6.4. Optimization and standardization of the parameters for 

Raman analysis 
 

6.4.1. Sample preparation 
 

A study by Lambert et al. demonstrates that sample preparation method has a significant 

influence on the variability of Raman measurements (Lambert et al.,2014). The authors 

recommend that automobile paint samples should be polished and then directly analyzed on 

the surface. Since the inclusions of samples are already prepared for optical examinations, 

the rest resin blocks are used for Raman measurements. The surface of inclusions (also the 

transversal surface of paint sample) are polished by  PRESI Mecatech – 234 automatic 

polishing machine using a four-steps procedure which has been programmed into the 

machine by Lambert (Lambert,2017). Detailed parameters of each polishing step are 

displayed in Table 19. After polishing, the samples are dried under air flow and the surface is 

cleaned with ethanol. 

Table 19. Four-steps procedure and parameters for inclusion polishing 

Step 

Rotation 
Speed of 
Polishing 

Platen 

Rotation 
Speed of 
Polishing 

Head 

Force per 
Specimen 

Time 
Reflex 

magnetic pad 
Polishing Agents 

Step 1 120RPM* 80RPM 0.00daN 15s 
P2400 

(10µm grit) 
Continuous water flow 

Step 2 120RPM 80RPM 0.00daN 15s 
P4000 

(5µm grit) 
Continuous water flow 

Step 3 120RPM 80RPM 0.50daN 60s NT3μ 
Diamond Suspension 

Reflex LDM 3μ 

Step 4 120RPM 80RPM 0.00daN 120s NT1μ 
Diamond Suspension 

Reflex LDM 1μ 

* RPM: rotations per minute 

 

6.4.2. Instrumentation and calibration 
 

As previously emphasized, in order to minimize variations caused by the instrument, only one 

Raman instrument is used for acquisition of Raman spectra of the samples throughout this 

research. The Raman instrument used in this research is the Renishaw Invia Confocal 

Microscope equipped with various laser sources with operational wavelengths of 488 and 515 

nm (Argon, Ar + Laser), 633 nm (Helium and Neon, He-Ne Laser), and 785 nm (Near infrared, 

diode lasers, NIR Diode Laser).  

Systematic errors produced by the instrument nevertheless exist. Hence, calibration 

procedures should be performed prior to conducting Raman measurements. Calibration of 

Raman spectroscopy involves mainly two types: the Raman wavenumber shift calibration in 
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the abscissa dimension and the Raman relative intensity response calibration in the ordinate 

dimension (Mann and Vickers,2001). Two ASTM standard guides were published based on 

these topics (ASTM-E1840-96[2014] ; ASTM-E2911-13) and are used as references for 

calibration. 

 

6.4.2.1. Raman wavenumber shift calibration 
 

Instrument calibration is an important step for maintaining instrument health and the stable 

output of spectra. Modern Raman Spectrometers are all equipped with an internal standard 

for quick calibration. The standard is a silicon wafer mounted inside the instrument which will 

present a peak at 520 cm-1. It is designed for fast calibration that can performed on a daily 

basis before sample analysis and/or after changing between lasers. However, due to its one 

single peak, this particular calibration may lack frequency accuracy. A more complex standard 

is thus required.  

The internal standard sample, which is described in chapter 6.3.2 emerges as an ideal choice. 

This internal standard was prepared using the standard procedure described in the previous 

section. The basecoat of this reference was measured under the same conditions before 

running sample analysis. The acquired spectra are then compared with each other to see if 

wavenumber shift is of a reasonable value (with standard deviations less than 1.0 cm-1). The 

standard spectra can additionally be useful for monitoring the instrument stability. 

 

6.4.2.2. Correction of Raman relative intensity response function  
 

Raman Relative intensity response calibration is another key point for accuracy of Raman 
result. The procedure allows for comparison of Raman spectra acquired from differing 
instruments, excitation, wavelengths, and laboratories. Instrumental response will vary with 
different machines due to the use of different laser excitation wavelengths, and detector 
efficiencies. It is also possible to observe variations on the same instrument after a 
component change or after service work has been performed (ASTM-E2911-13). The ASTM 
Standard Guide for Relative Intensity Correction of Raman Spectrometers is a comprehensive 
protocol for this calibration. The following procedure is summarized based on this standard.  
 
The simplest way to check Raman intensity is to compare the peak intensity at 520 cm-1 of the 
silicon reference. Calibration of the Raman intensity (y axis) allows to correct for variations in 
spectral peak intensities by obtaining a relative luminescence intensity correction curve using 
NIST SRM standard fluorescent glass. It has a smooth surface on one side and a frosted surface 
on the other side. The frosted surface is used for calibration. Each glass is equipped with a 
calibrated certified relative spectral intensity that could be used to produce the corrected 
curve. Raman shift wavenumbers calibration needs to be accomplished and verified before 
this calibration. To achieve the best accuracy, the luminescence spectrum of the glass must 
be acquired over the same Raman range, with the same data point density, and using the 
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same instrumental parameters as for sample data acquisition. After acquisition, the relative 
intensity correction curve is obtained by dividing the calculated certified relative spectral 
intensity by the measured luminescence spectrum of the SRM. The generated curve can be 
then used for correction of sample measurements by multiplying it by the measured Raman 
spectrum of the sample.  
 
 

6.4.3. Preliminary study for the selection and optimization of 

instrumental settings 
 

Although it is well known that Raman spectroscopy can provide reliable information about 

pigments as well as extenders used in paint, little research has been conducted on automobile 

white paint. Studies of white paint are mostly conducted on single or multilayer white 

architectural paint(Bell et al.,2005a; Bell et al.,2005b; Bell et al.,2012; Stewart et al.,2012).  

These studies have demonstrated the remarkable discriminatory potential of Raman 

spectroscopic methods in distinguishing between various white paint samples, with the 785 

nm diode laser being the preferred choice for white paint analysis. Despite the compositional 

similarity between white automobile paint and white architectural paint, the efficacy of 

Raman spectroscopy in discriminating white automobile paint requires validation. Moreover, 

the experimental parameters for examining white automobile paint necessitate optimization, 

tailored to the specific instrument. 

A preliminary study, conducted as a master project Chuankai Wang, has delved into this 

subject matter (WANG et al.,2019). The project focused solely on the basecoat within the 

select sample set (n=15). It concluded that the 785 nm laser effectively unveiled optimal 

sample information within the range of 200 to 2000 cm-1 and exhibited strong discriminatory 

capabilities, achieving an 85.7% discriminating power (15 distinguishable pairs out of 15 

samples). 

However, the project only employed a single sample for the experimental parameter 

optimization, which proved inadequate for assessing inter-sample variability stemming from 

the laser utilization. The possibility of alternative lasers offering significant discrimination 

while yielding lower-quality spectra remains uncertain. Additionally, whether the 785 nm 

laser is indeed the most suitable choice for other paint layers has remained unexplored. The 

study also encountered reproducibility issues that require further investigation. Thus, there 

arises a necessity to undertake a renewed selection and optimization of instrumental settings 

using a more extensive sample pool.  

Consequently, a total of three samples have been carefully chosen for the purpose of 

optimization. Within this selection, two types of layer structures are represented – one with 

three layers and two with four layers. These samples exhibit discernible variations in their 

clearcoat and basecoat, while also displaying undifferentiated primer surfacers and similar 

primers, as determined through IR analysis. Following the parameter optimization, a 

preliminary study was undertaken. This study involved employing the optimized parameters 
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to the select sample set of 15 samples for adaptability checks, to ensure that the optimized 

parameters are effectively applied and validated across the broader numbers of samples.  

Sample preparation.  

The resin block containing each sample was polished using a PRESI Mecatech–234 automatic 

polishing machine following the four-step procedure listed in Table 19.  

Optimization of the experimental parameters.  

The magnification of the microscope was first tested. Samples were observed using the 5x, 

20x, 50x, and 100x objectives. It was found that 5x and 20x magnification were too low to 

precisely locate the desired measuring point while 100x magnification was too high to see the 

entire layer sequence as well as to obtain a focused plan. The 50x objective (NA 0.75) met the 

above requirements and was therefore selected.  

Regarding the spectral range, the primary bulk of information pertaining to pigments and 

extenders was all presented within the lower region. This was confirmed by conducting 

measurements within both the 200-4000 cm-1 range and the 200-2000 cm-1 range. Notably, 

the spectra held minimal valuable insights within the span of 2000-4000 cm-1. Consequently, 

the decision was made to narrow down the wavenumber range for subsequent 

measurements to between 200 and 2000 cm-1. 

Subsequently, an examination of laser performance was conducted. Raman signals obtained 

using the 633nm laser were significantly obscured by fluorescence, revealing no meaningful 

information. Similarly, the 515nm and 488nm lasers yielded only minimal information, 

accompanied by poor spectral quality. Among all four lasers tested, the 785nm laser emerged 

as the most suitable choice, not only for the basecoat but also for other layers. It was also 

found that the limited information garnered from the 515nm and 488nm lasers largely 

overlapped with the data acquired through the 785nm laser. The information derived from 

the 515nm laser did not contribute any supplementary value to the characterization or 

differentiation process. In contrast, the 785nm laser provided the maximum amount of 

sample information, coupled with excellent spectral quality in general.  

In terms of laser power and exposure time, their settings needed to be tailored to the signal 

response of the samples. Thus, standardization was not feasible. Typically, the exposure time 

was set at 10 seconds, and the laser power should be gradually increased to its maximum 

intensity without causing damage to the sample. This approach aimed to achieve a spectrum 

characterized by an improved signal-to-noise ratio, and thus, good quality.  

Once the laser power and exposure time have been optimized but continue to yield a 

relatively noisy spectrum, the next step involves increasing the number of accumulations. 

Raman accumulation serves a role similar to the scans in IR analysis. It refers to the process 

of repeatedly measuring Raman spectra at the same location or under the same conditions 

and then combining or averaging these spectra to improve the signal-to-noise ratio and obtain 

a more reliable and accurate Raman spectrum. 
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Figure 39 illustrates a comparison between Raman spectra obtained from a single 

measurement and those obtained through 8 accumulations. Notably, the baseline of the 8 

accumulations displays a smoother profile in contrast to the single measurement. 

Furthermore, Figure 40 provides a boxplot representation of the intra-sample variability 

assessment. Using 8 accumulations can significantly minimize the intra-sample variability and 

therefore included in the instrument optimization.  

 

 

 

 

 

 

 

 

 

Figure 39. Spectra quality comparison between single measurement (green) and 8 accumulations 
(red).  

 

 

 

 

 

 

Figure 40. Box plots illustrating the intra-sample of each layer for single measurement and 8 
accumulations. C for clearcoat, B for base coat, PS for primer surfacer and P for Primer.  

 

Based on the previous assessments, the optimized parameters for Raman measurement is 

summarized in Table 20. 
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Table 20. Optimized Raman spectroscopy parameters used in this preliminary study. 

Laser objective Laser power Exposure time Spectra range Accumulation 

785 nm 50x depends 10s 200-2000 cm-1 8  
 

Subsequently, this configuration was implemented for the chosen sample set to undertake 

performance evaluation and validation. Given that 1) basecoat had already been extensively 

studied in the master project; 2) the presence of the primer surfacer was limited to only a 

subset of the samples; and 3) the primer itself produced spectra of poor quality and limited 

information, the validation test was conducted on the clearcoat of the selected sample set.  

Furthermore, due to the minimal intra-sample variability and the increased acquisition time 

resulting from the accumulation, the number of replicate measurements was trimmed down 

to three. More measurement should be taken if heterogeneity is encountered during the 

measurement.  

Following acquisition, all Raman spectra underwent initial correction for cosmic rays, followed 

by automated baseline correction using Wire 5.5 software. Subsequently, the spectra were 

imported into Thermo Fisher Scientific Inc.'s software 'OMNIC 9.12.928' for characterization 

and visual comparison. The preprocessing techniques previously employed for IR spectra 

were similarly applied to the Raman data to evaluate their applicability. 

PCA was carried out for data visualization and to aid in discrimination. Additionally, LDA and 

SIMCA were utilized for classification and validation purposes. 

 

Visual spectra quality check.  

The spectra, on the whole, demonstrated excellent quality and homogeneity across the three 

replicates. Upon visual inspection, one notable observation was that certain clearcoat 

samples exhibited peaks associated with titanium dioxide in their spectra. However, cross-

referencing with the IR spectra confirmed the absence of titanium dioxide in the clearcoat. 

This could be attributed to the diagonal embedding of some samples, resulting in the laser 

penetrating through the transparent clearcoat and detecting the titanium dioxide in the 

basecoat. This issue, though not entirely avoidable due to the lack of perfectly vertical 

embedding, fortunately doesn't impact discrimination as there are no informative peaks in 

that area. Consequently, wavenumbers below 670 cm-1 were excluded. Similarly, the range 

between 1800 and 2000 cm-1, containing no meaningful information, was also excluded. 

Hence, the wavenumber range of 670-1800 cm-1 was selected for further analysis. 

Intra and inter sample variability. 

Figure 41 depicts the calculation of intra and inter-sample variability using Pearson correlation 

coefficients, revealing an overall low level of intra-sample variability. Notably, four samples 

exhibited exceptionally high correlation values almost equal to 1, which prevented their 

appearance in the general box plot. Conversely, three samples displayed relatively high intra-
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sample variability. This deviation was attributed to the presence of baseline variations within 

these samples. As a remedy, pretreatment procedures are necessary to resolve this issue. 

 

 

 

 

 

 

Figure 41. box plot of intra and inter sample variability within clearcoat.  

 

As a part of quality control and reproducibility check, the internal standard reference 

(basecoat) was consistently measured prior to the beginning of each experiment. This practice 

served to evaluate the instrument's stability and reproducibility over time. Notably, the most 

consistent results in terms of intra-sample variability were observed when measurements 

were taken on different days, as depicted in Figure 42. This was also illustrated in Figure 41 

(highlighted in red rectangular) to have a parallel comparison with other intra-sample 

variability.  

 

 

 

 

 

 

Figure 42. Over time reproducibility check result using internal standard (Raman). 

 

Pretreatment and classification. 

Two pretreatment methods, SNV and SNV combined with detrending using a polynomial 

order of 2 (det2), were assessed based on the PCA score plot. As depicted in Figure 43, the 

PCA score plot generated from SNV-pretreated data exhibited notable separation among 

different samples. The projections of same samples were closely clustered. Conversely, the 

addition of det2 did not enhance separation; rather, it seemed to magnify the intra-sample 

variability to some extent (as shown in dashed line in Figure 43). It is noteworthy that the 

baseline-corrected Raman spectra did not exhibit any discernible nonlinear trends, rendering 

this type of pretreatment unnecessary for the clearcoat samples. Consequently, solely SNV 

Mean: 0.99944 
Max: 0.99992 
Min: 0.99827 
Std Deviation: 0.0004 
Variance: 1.72232E-07 
Q1: 0.99925 
Q3: 0.99978 
Median: 0.99958 
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pretreatment was chosen as the essential method, and detrending will be implemented only 

if deemed necessary. 

 

 

 

 

 

 

 

 

Figure 43. PCA score plots of SNV-pretreated data (a) and SNV+det2-pretreated data (b) 
according to the first two PCs, which account for around 74% of the total variance. 

 

PCA offers superior discrimination capabilities when contrasted with visual grouping, as 

shown in Table 21. Nevertheless, It is important to note that certain separations observed in 

the PCA results might be attributed to baseline variations rather than indicative of the actual 

presence or absence of specific Raman bands. Consequently, It is imperative to validate the 

outcomes of PCA grouping by closely examining the spectra themselves. 

 

Table 21.Visual grouping and PCA separation of the select sample set (n=15). 

GROUP VISUAL GROUPING PCA SEPARATION 
1 W002, W023 W002, W023 
2 W005 W005 

3 W012, W020 
W012 
W020 

4 W014, W018 W014, W018 
5 W006 W006 

6 W019, W021 
W019 
W021 

7 W022, W035, W060 
W022 
W035 
W060 

8 W034 W034 
9 W058 W058 

DISCRIMINATING 
POWER (%) 

93.3% 98.1% 
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Statistical validation. 

Similar to the approach employed in IR analysis, LDA were conducted based on the foundation 

of the PCA model to validate the supervised model. Due to the constraint of limited replicates, 

the application of SIMCA using the training set could not be accomplished. In a similar vein, 

for each method, a training set was formed by randomly selecting 2 out of the 3 replicates. 

The remaining replicate was reserved as the validation set, used to evaluate performance 

metrics of the methods including classification accuracy, false positive rate, and false negative 

rate. The outcomes of these assessments were then presented in Table 22. LDA yielded 

generally promising results. It is important to note that these outcomes might not be fully 

representative, but this concern won't affect subsequent blind tests. 

 

 

Table 22. Performance of LDA 

PARAMETNER LDA 

TRUE POSITVE 12 
FALSE POSITIVE 3 

FALSE NEGATIVE 3 
TRUE NAGATIVE 102 

CORRECT CLASSIFICATION RATE 0.9500 
MISCLASSIFICATION RATE 0.0500 

SENSITIVITY 0.8000 
SPECIFICITY 0.9714 

FALSE NEGATIVE RATE 0.2000 
FALSE POSITIVE RATE 0.0286 

POSITIVE PREDICTIVE POWER 0.8000 
NEGATIVE PREDICTIVE POWER 0.9714 
GENERAL DIAGNOSTIC POWER 0.8750 
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6.4.4. Standardization of Raman analysis protocol 
 

A comprehensive Raman analysis protocol has been formulated, drawing from the 

preliminary investigation, and is outlined in Table 23. Certain adjustments might be made to 

tailor with sample conditions. Any changes will be documented. 

Table 23. Protocol for the Raman analysis of the whole sample set in this thesis. 

Step 1: Sample preparation 
• Prepare vertical cross sections of 5 µm thickness following the procedure described in chapter 6.2.1 

• Mount the cross section on the custom-made steel stage. 

• Ensure that the surface of the cross section is flat. 

Step 2: Raman measurement 
Instrument calibration Wavenumber shift calibration (silicon and internal standard) 

Instrumental settings 

Instrument Renishaw Invia Confocal Microscope 

Laser  785 nm 

Objective 50x 

Spectral Range 200-2000 cm-1 

Exposure time 10s 

Laser power Adjust according to sample 

Accumulation 8 

Grating 1200m/l 

Reproducibility check 
Measure the basecoat of internal standard (same standard utilized for IR 
analysis) before conducting the experiment 

Replicates 
• Begin with a minimum of 3 replicates.  

• Increasing the number of replicates if significant variability observed. 

Step 3: Spectra quality check  
• Visually inspect the acquired spectra for quality assurance (noise, defects, contaminations).  

• Automate baseline substrate and cosmic ray removal. 

Step 4: Pretreatment  
Methods SNV, detrending with a polynomial order of 2 if need 

Software Unscrambler X 10.1 (CAMO software) 

Step 5: Visual characterization and Classification 
• Identify Raman bands through comparison with literature and available databases. 

• Perform visual comparison and classification based on the presence/absence of peaks or relative 
intensity of peak. 

Step 6: Statistical discrimination and classification  
Reproducibility Check Measure intra sample variability of internal standard 

Methods 

PCA • Data structure visualization  

• Intra sample variability check. 

LDA  • Discrimination 

• Classification 

Software 
• IBM® SPSS® Statistics V.28.0.1.1(14) 

• Unscrambler X 10.1 

Step 7: Validation (Blind test) 
Measurement 5 samples measured by another person using the same protocol 

Classification 
• PCA projection 

• LDA prediction  

Software Unscrambler X 10.1 
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6.5. Optimization and standardization of the parameters for 

Py-GC/MS 
 

Py-GC/MS have been demonstrated to be capable of providing further discrimination for the 

samples that cannot be distinguished by FTIR and Raman (Cassista and Sandercock,1994; 

Challinor,2001; Henson and Jergovich,2001; MacDougall et al.,2001; Burns and Doolan,2005a; 

Eyring et al.,2007; Ziȩba-Palus et al.,2008a; Soong et al.,2020). In this study, this method is 

selected as an additional technique for extending the information obtained from vibrational 

spectroscopy and providing further discrimination. Therefore, the samples involved in this 

method are those remain undifferentiated after IR and Raman analysis. 

However, it is important to note that the reproducibility of Pyrolysis-GC/MS results can be 

influenced by sample preparation and experimental parameters, especially when dealing with 

complex paint samples. Therefore, it is necessary to establish a specific protocol that can be 

adapted to the characteristics of the paint samples used in this study. This protocol should 

take into account the paint type and optimize the experimental parameters to ensure reliable 

and reproducible results.  

In this study, the optimization and standardization of sample preparation methods and 

experimental parameters for white automotive paint in Py-GC/MS analysis were conducted 

through a master project (Wild,2022). The goal was to develop a standardized analysis 

protocol based on reported parameters found in the literature, which were summarized in 

Chapter 3.8 (Table 6).  

This chapter focuses on preparing paint samples for Pyrolysis-GC/MS analysis, discussing both 

the sample preparation method and the optimization of pyrolysis GC/MS parameters. The 

optimization process involved varying parameters such as sample mass, pyrolysis 

temperature, carrier gas type, flow rate, and temperature ramp. By systematically varying 

these parameters and analyzing the resulting pyrograms, the optimal conditions for white 

automotive paint analysis were determined. 
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6.5.1. Sample preparation 
 

According to various guidelines for pyrolysis GC/MS paint analysis (ASTM-E1610-18 ; 

EPGT,2022), the sample size is an important factor that influences the applicability and 

reproducibility of the technique. In order to ensure reliable and meaningful results, samples 

selected for comparison should fall within a ±20% weight range, and efforts should be made 

to achieve similar volumes and shapes to minimize additional sources of variability. While the 

recommended sample size in the guidelines is a minimum of 5-10 µg, it should be noted that 

working with smaller sample sizes can present challenges in terms of sample manipulation 

and handling. A review of the literature (refer to Table 6) reveals that the majority of research 

studies have utilized sample weights ranging from 30 to 100 µg. Therefore, the sample size 

involved in this study was decided to be around 30-50 µg. The reproducibility with regards to 

this sample size was also tested during the optimization process and will be discussed in the 

following chapter.  

 

6.5.1.1. Preparation for reference standards 
 

The initial investigation of IR analysis in the chosen sample set revealed an indistinguishable 

basecoat in a subgroup of seven samples. All these samples featured polyurethane as their 

primary binder. Further differentiation was necessary. During parameter optimization and 

standardization, reference polyurethane standards were required for comparison and 

analysis. However, obtaining pure polyurethane standards posed difficulties due to their 

limited availability. Instead, reference polyurethane paint samples were acquired from local 

repair shops. Although uncertified and invalidated, these samples provided reference points 

for analysis. Their FTIR spectra were compared with those of the analyzed samples, resulting 

in the selection of two closely resembling references: R2 (clearcoat) and R4 (white paint), as 

illustrated in Figure 44.  

Creating the reference standards involved applying the wet paint acquired from repair shops 

onto glass plates, allowing it to dry. The dried paint was then scraped from the glass slide and 

cut into fragments using a scalpel under a macroscope. Each fragment's weight was measured 

using an analytical balance, and only chips falling within the predefined weight range of 35 ± 

20% µg were chosen for subsequent analysis. 

The selected reference chips were positioned at the bottom of the sample cup and inserted 

into the pyrolyzer's Auto-shot Sampler. To account for potential background signals or 

contamination, an empty cup was inserted between each sample, acting as a "blank run." 

During the optimization of pyrolysis temperature, ten replicates of the reference samples 

were analyzed on the same day. Additionally, a second sequence involving five replicates was 

conducted one to two weeks later to assess result reproducibility. This rigorous approach 

ensured the reliability and consistency of the analysis.  
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Figure 44. Comparison of IR spectra of Sample W014 (top) that contain polyurethane binder with the 
reference polyurethane white paint R4 (middle) and polyurethane resin R2 (bottom). 

 

 

6.5.1.2. Preparation for multi-layer automotive paint 
 

In the case of multi-layer paint analysis, it is crucial to physically isolate the target layer from 

other layers in order to effectively characterize the binder. Since the particular interest in this 

study is for the basecoat layer, a protocol for isolating the basecoat layer from the entire 

sample has been established. This protocol will be discussed in detail, outlining the steps and 

procedures for achieving the physical separation of the basecoat layer.  

In this study, two isolation methods were employed and compared for the purpose of 

isolating the basecoat layer: vertical cross sections of 20 µm thickness and horizontal sections 

of 5 µm thickness. The creation of vertical cross section followed the protocol described in 

chapter 6.2.1, while the creation of horizontal sections followed a similar protocol, but with 

the paint chips placed horizontally in the resin block during the embedding step.  

Given that the samples in this study encompass two types of layer structures, namely OEM3 

(a three-layer structure) and OEM4 (a four-layer structure), a sample was chosen from Group 

OEM3 and another from Group OEM4 to assess the feasibility of preparing both types of 

samples.  The dark field images of vertical cross sections of these two samples and the 

thickness of basecoat are illustrated in Figure 45. 
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Figure 45. Dark field images of vertical cross sections used for basecoat isolation test: a) Sample 
W019, displaying an OEM4 structure; b) Sample W062, illustrating an OEM3 structure. The basecoat 

thickness is indicated on the images.   

Preparing the samples poses several challenges that need to be addressed. The first challenge 

involves having a sufficient amount of paint material available. The initial extent of the 

basecoat’s surface depends on the dimensions and contours of collected paint chips. During 

the preparation of horizontal sections, if the paint chip is too thin or not perfectly aligned 

horizontally with the resin block's surface, the amount of basecoat recovered per microtomic 

slice is reduced (see Figure 46). Additionally, depending on the flatness and quality of paint 

chips, the basecoat's shape within the microtomic slice isn't consistently uniform; it could be 

rectangular, round, S-shaped, U-shaped, or even contain voids (see Figure 47). For practical 

purposes and to minimize the variability introduced due to the shapes of samples, the 

basecoat often can't be isolated in strict accordance with its actual shape. Therefore, It is 

crucial to acknowledge the necessity of ensuring that the basecoat possesses adequate 

surface area to be uniformly shaped during cutting. However, achieving this in practice to 

retain a sufficient amount of material for analysis can be challenging.  

 

  

 

 

 

 

 

 

Figure 46. Horizontal sections with a) minimal amount of basecoat and b) significant amount of 
basecoat. 

15 µm 
25 µm 

a) b) 

0.5 mm 0.5 mm 

a) b) 
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Figure 47. illustration of the shapes and morphologies encountered during the preparation process of 
the basecoat: a) U-shaped basecoat; b) basecoat with voids. 

 

Another intricate step involves the manual cutting process required to isolate the basecoat. 

For the vertical cross section of 20 µm thickness, the manipulation area is remarkably small, 

presenting significant challenges in isolation. This challenge is even more evident for the 

OEM4 sample. This is due not only to the extremely thin basecoat of the OEM4 sample but 

also to the minute color contrast between the basecoat and the primer surfacer, as 

exemplified in Figure 45a. When operating under a stereo macroscope, discerning the 

boundary between these layers becomes exceedingly challenging, rendering the isolation of 

the basecoat without any cross-contamination from adjacent layers highly uncertain. Similar 

challenges arise in the case of horizontal sections. Although the manipulation surface area is 

larger here, the thinness of the basecoat and the striking resemblance in color between the 

basecoat and primer surfacer pose challenges. It becomes arduous to consistently identify 

potential layer overlaps. These challenges and the considerable effort required for 

meticulously isolating the basecoat from OEM4 samples make the task highly demanding and 

practically unfeasible.  

While dealing with the OEM3 sample offers relatively better ease, the same fundamental 

issue persists, particularly concerning the overlap of the clearcoat with the basecoat, as 

indicated in Figure 48. Extra care needs to be exercised to prevent any potential 

contamination. Thus, a margin is consistently maintained along the edges of the basecoat, 

preventing minor mingling between layers or with the resin employed to create the block. 

Regions with holes are also sidestepped due to the uncertainty concerning potential 

influences from other layers or the resin of the block. 

 

 

 

  

0.5 mm 0.5 mm 

a) b) 
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Figure 48. Illustration of basecoat and clearcoat superimposition in horizontal sections. 

 

The obtained prepared samples were analyzed by Py-GC/MS to test the pyrogram quality and 

reproducibility. By comparing the two methods, it was determined that the preparation 

method using horizontal sections offered better handling feasibility and resulted in higher 

quality pyrograms. This was primarily due to the larger surface area available for manipulation 

and the ability to control the shape of the sections. Additionally, the presence of color 

differences among the layers facilitated the recognition and isolation of the basecoat layer.  

The following steps were followed to isolate the basecoat layer using the preferred method: 

1) Select a small size (2 mm x 2 mm) paint from each sample, giving preference to the 

flattest chips. Clean the paint with ethanol. 

2) Place a mold on a flat surface and add several drops of standard resin (Technovit 2000 

LC Heraeus Kulzer light curing resin) into the bottom of the mold. Ensure that the resin 

surface is level. Next, position the mold into the Heraeus Kulzer Technotray CU Curing 

Light device and allow the resin to cure for 2 minutes. Place the paint chips horizontally 

on the partially cured resin and fill the mold with additional resin. Finally, mount a 

resin block onto the mold. Cure the mold containing the sample for 15 minutes. 

3) Mount the resin block onto the Leica RM2265 – Fully Motorized Rotary Microtome 

and cut it into sections that are 5 µm thick. Place the resulting slices onto a microscopic 

slide in sequential order. 

4) Observe and identify the slices that contain the basecoat layer. Select one desired slice 

containing the basecoat layer and place it onto a microscopic slide. Flatten the slice 

by adding a few drops of methanol. Using a razor blade, carefully cut out the basecoat 

layer, ensuring that other layers are not included. 

5) Weigh the isolated basecoat layer using an analytical balance (XP2U Ultra Micro 

Balance, Mettler Toledo). 

6) If the weight of the isolated basecoat layer meets the specified criteria, place it into a 

measuring cup for further analysis. 

 

0.15 mm 
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6.5.2. Instrumentation and calibration 
 

The Py-GC/MS system used in this study consisted of a Single-Shot Pyrolyzer (PY-3030S) 

equipped with an Auto-Shot Sampler (AS-1020E) from Frontier Lab. The sample cups used 

with the auto-shot sampler were Eco-Cup LF type from Frontier Lab. The coupled GC/MS 

system was from Agilent Technologies and included an 8890 GC System (G3540A), an Agilent 

J&W GC Columns, DB-35MS (30 m, 0.25 mm, 0.25 µm), and a 5977B GC/MSD System 

(G7077B). The analysis of the pyrograms was performed using the MSD ChemStation Data 

Analysis Application. 

Before running the analysis on the samples, the instrument underwent a self-calibration 

procedure called Autotune. A tune report was generated from this calibration to evaluate the 

performance of the 5977 MSD tune. The parameters recorded in the tune report were 

compared to acceptance criteria. The software included a 'Tune Evaluation' function to check 

if any results were outside the specified limits. 

In addition to the self-calibration procedure, the system was also calibrated using a 

polystyrene standard. This standard, known as the polystyrene standard sample (P/N: PY1-

4908), consisted of a 2.5 mg film of polystyrene with 5wt% mestearate. A solution was 

prepared by adding 0.5 ml of dichloromethane to the standard, and then further diluted at a 

ratio of 1:4 with dichloromethane. This standard was used to verify the stability of the 

instrumentation. The standardized polystyrene analyses were performed every week during 

the experiment period, and the results were compared with the previous week's analyses to 

check the peak position (retention time) as well as the relative intensities of certain 

pyrolyzates. Through visual comparison and statistical processing, it was determined that the 

variability between the analytical results was minimal, indicating good stability over time. 

By conducting these performance checks, the Py-GC/MS system demonstrated sufficient 

stability to enable comparison of analysis results across different days. The calibration 

procedures and stability tests performed ensured the reliability and accuracy of the system 

for the analysis of the paint samples in this study. 
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6.5.3. Optimization and standardization of the parameters for Py-

GC/MS  
 

6.5.3.1. Choices of parameters 
 

The pyrolysis temperature is a crucial parameter in Py-GC/MS analysis as it determines the 

extent of bond dissociation and the formation of pyrolysis products. For the analysis of 

polyurethane-based samples, which is the binder used in this sample set, it is important to 

choose a pyrolysis temperature that ensures complete pyrolysis without causing excessive 

bond breakage. 

The specific type of polyurethane resin used in the samples can influence the temperature 

required for the dissociation of urethane bonds. Different isocyanates and polyols used in the 

resin formulation can have varying thermal stability and reactivity. As a result, the pyrolysis 

temperature needs to be optimized to achieve the desired pyrolysis products for analysis. 

In this study, three different pyrolysis temperatures were tested: 450°C, 550°C, and 650°C. 

These temperatures were selected based on their common usage in the literature and their 

reported effectiveness in facilitating the dissociation of various types of paint. By testing 

different pyrolysis temperatures, it becomes possible to identify the optimal temperature 

that provides complete pyrolysis and the generation of characteristic pyrolysis products 

specific to polyurethane-based samples. 

The pyrolysis time was set at 12 seconds due to the consistency provided by the autosampler, 

where the time of staying in the pyrolysis part remains the same regardless of the software 

settings. Additionally, the interface temperature was set at 300°C. 

For the gas chromatography part, a commonly used oven program was employed, starting 

with an initial temperature of 40°C for 3 minutes. A temperature ramp of 10 to 20°C per 

minute was then applied, increasing the temperature up to 320°C, which was maintained for 

approximately 10 minutes. The interface temperatures typically ranged from 280°C to 320°C. 

Furthermore, a 35% diphenyl-/65% dimethylpolysiloxane capillary column with dimensions of 

30 m x 0.25 mm x 0.25 µm was selected for the analysis. 

Table 24 provides a summary of the experimental parameters tested in this study, including 

the pyrolysis temperatures, pyrolysis time, interface temperature, oven program, and the 

mass spectrometry settings. 
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Table 24. Tested experimental parameters of the Py-GC/MS 

Pyrolysis parameters 

 Temperature of pyrolysis [°C] 450/550/650 

Pyrolysis time [s] 12 

Interface [°C] 300 

Gas chromatography parameters 

 Initial temperature 40°C for 3 min 

Ramp 10°C/min 

Final temperature 320°C for 10 min 

Injector temperature 280°C 

Split Ratio 50 :1 

Carrier gas He 

Flow 1 ml/min 

MSD Transfer Line 300°C 

Column type 35% phenyl- 65% dimethyl polysiloxane 
capillary column (30 m, 0.25 mm, 0.25 µm) 

Mass spectrometry parameters 

 Tune Type EI (Electron Impact) 

Scanning parameters Weights: 29 - 550 amu 
Threshold: 30 
Scan speed [u/s]: 1.562  
Frequency [scans/s]: 2.8 

Electron multiplier voltage ( ΔEMV) 0 

 

 

 

6.5.3.2. Experimental parameters determination 
 

The analysis results obtained from different pyrolysis temperatures were discussed in detail 

in the master thesis generated from this project (Wild,2022). The thesis provides a 

comprehensive discussion on the visual characterization and comparison of pyrograms, 

highlighting the compounds generated and identified at each temperature along with their 

corresponding retention times. The reproducibility of the results obtained at each 

temperature is also examined through visual comparison of pyrograms and statistical analysis. 

In this section, only a brief summary of the analysis results will be presented.  

From the visual comparison of pyrograms, it was observed that the pyrograms obtained at 

450°C had a lower number of peaks compared to those obtained at 550°C and 650°C. This is 

attributed to the lower fragmentation of compounds at the lower temperature. Therefore, 

the method with a pyrolysis temperature of 450°C was discarded due to its lower number of 

peaks and lower discrimination potential. On the other hand, the pyrograms obtained at 

550°C and 650°C were qualitatively well interpretable and exhibited a sufficient number of 

peaks for potential discrimination. Both methods were found to be similar in terms of quality, 

with a slight shift of peaks towards lower retention times for the 650°C method compared to 

the 550°C method. 
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In terms of reproducibility, both the 550°C and 650°C methods showed similar results upon 

visual comparison of pyrograms. However, statistical treatments, such as Principal 

Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), favored the 650°C method, 

which exhibited slightly less variance, particularly between replicas analyzed on different days. 

This was also supported by the calculated relative standard deviations (RSD) of the 

component areas, which were often lower for the 650°C method compared to the 550°C 

method. 

Based on these findings, the chosen pyrolysis temperature for the analysis of the samples is 

650°C. However, it should be noted that the results at 550°C and 650°C were very close in 

terms of both quality and reproducibility. 

During the analysis process, a recurring issue that arises is the variation in air entry observed 

in some samples or analysis sequences. This phenomenon is not directly related to the 

percentage of nitrogen (N2) indicated in the machine's parameters report. Even with a low 

percentage of air entry, there can still be a significant impact on the Total Ion Chromatogram 

(TIC) data. This problem led to the decision of excluding the first ten minutes of data during 

result presentation to mitigate the effect of air entry. However, this approach resulted in the 

loss of valuable information present in that time range. To avoid this loss of information while 

still addressing the air entry issue, a 3D extraction was performed. This involved removing the 

air ion values and recalculating the sum of the abundances of each non-deleted ion for every 

point of the pyrogram. By implementing this method, the influence of air entry on the results 

was effectively minimized. 

Preliminary tests were also conducted on the undifferentiated samples to assess the 

method's sensitivity and the isolation of the basecoat. These tests followed the procedure 

outlined in 6.5.1. Results demonstrated that increasing the electron multiplier voltage (EMV) 

by 200 could improve the detector's amplification and enhance sensitivity. Pyrogram 

comparisons indicated that increasing the EMV by 200 not only maintained the desired peak 

abundance but also reduced air entry. 

Based on the analysis of the reference polyurethane samples and the tests conducted on the 

sample set, the optimized parameters summarized in will be utilized for the analysis of the 

entire sample set.  
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Table 25. Optimized experimental parameters of the Py-GC/MS that used for the analysis of the 
target sample set. 

Pyrolysis parameters 

 Temperature of pyrolysis [°C] 650 

Pyrolysis time [s] 12 

Interface [°C] 300 

Gas chromatography parameters 

 Initial temperature 40°C for 3 min 

Ramp 10°C/min 

Final temperature 320°C for 10 min 

Injector temperature 280°C 

Split Ratio 50 :1 

Carrier gas He 

Flow 1 ml/min 

MSD Transfer Line 300°C 

Column type 35% phenyl- 65% dimethyl polysiloxane 
capillary column (30 m, 0.25 mm, 0.25 µm) 

Mass spectrometry parameters 

 Tune Type EI (Electron Impact) 

Scanning parameters Weights: 29 - 550 amu 
Threshold: 30 
Scan speed [u/s]: 1.562  
Frequency [scans/s]: 2.8 

Electron multiplier voltage ( ΔEMV) 200 

 

 

6.5.4. Standardization of analytical strategy for the target sample set 
 

Pyrolysis-GC/MS offers the potential to provide additional information and distinction for 

samples that remain indistinguishable through FTIR and Raman analyses. Consequently, the 

Py-GC/MS analysis will be applied to the basecoat of undifferentiated samples. However, 

considering the challenges and labor involved in isolating the basecoat from OEM4 samples, 

this thesis will not address the undifferentiated OEM4 samples. 

Of particular note is that, based on IR analysis, the majority of undifferentiated basecoat 

samples stem from OEM3 paint samples with a polyurethane binder. The preliminary tests 

conducted in the master project have developed a specific protocol tailored to the 

characteristics of the polyurethane basecoat samples in this study. Thus, for the samples that 

could not be differentiated via FTIR and Raman, they were initially prepared following the 

protocol outlined in Chapter 6.5.1.2 , and subsequently subjected to Py-GC/MS analysis using 

the parameters outlined in Table 25. The gathered data were then characterized by 

identifying the compounds generated and their corresponding retention times. 

Discrimination was pursued through visual comparison and statistical analysis of the 3D 

extraction data. 
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7. Microscopic characterization of the sample set 
 

 

The whole sample set, including 62 samples and 135 sub-samples, was prepared, and 

examined using the protocol presented in chapter 6.2.5. The results are discussed in the 

following subchapters. 

 

7.1. Intra-sample variability 
 

To clarify, in this context, the term "intra-sample variability" refers to the observed 

differences within the subsamples collected from various positions of a vehicle. Due to the 

practical conditions under which the samples were collected, 19 out of the 62 samples were 

collected from a single position. This means that analyzing variations within subsamples was 

not possible for these samples. For the remaining 43 samples, an analysis of layer structure, 

relative layer thickness, layer color, and layer morphology was conducted to investigate intra-

sample variability. Among these 43 samples, 34 (79%) exhibited significant intra-sample 

variability in terms of layer structure or relative layer thickness. The reasons behind this 

substantial intra-sample variability in this sample set were investigated. Figure 49 illustrates 

the distribution of samples resulting from the examination of intra-sample variability, along 

with the identified causes for such variability. Figure 50 exhibits the intra sample variability of 

some samples.  

 

 

Figure 49. Pie chart showing distribution of samples and identified causes of intra-sample variability. 
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Figure 50. Illustration of intra sample variability revealed from microscopic examination. 

First, it is noted that most of the layer structure variability occurred when the involved vehicle 

had been repainted. 41.2% (14 out of 34) of the intra-sample variability is caused by this 

repainted fact. In this study, samples were collected from vehicles placed in accident vehicle 

parking lots or VW service shops. It is highly likely that these vehicles have suffered at least 

one damage or one scratch. Unlike the OEM coating system, there is no standardized layer 

sequence for a refinishing paint system. This results in an unusual paint layer structure and 

makes the repainted layer more distinguishable than the OEM system. When a vehicle has 

been repainted, samples taken from different locations may have very dissimilar layer 

structures and colors, as illustrated in Figure 51, where the four subsamples from different 

locations of sample W024 have distinct layer structures, with only sample W024_6 

maintaining the original paint system (OEM paint) and the other three locations having only 

the repainted paint system.  

Second, the remaining 58.8% (20 out of 34) of the intra-sample variability is due to relative 

layer thickness variation or color difference. Sample preparation can inevitably introduce 

errors to the absolute thickness of each layer; however, the relative layer thickness is not easy 

to change. Thus, if the relative layer thickness variation is observed, it can be concluded that 

this variation comes from the sample itself rather than from the sample preparation. Figure 

52 provides an example of the relative layer thickness variation between the subsamples. 

Both sample W019_1 and sample W019_3 have 4 layers and can be identified as OEM paint, 

but the relative layer thickness regarding clearcoat, basecoat, and primer surface of the two 

subsamples are not negligible. 

It is surprising that such widespread variation was observed in this sample set, as a 

standardized paint line should produce paint layers with consistent characteristics regardless 

of which segment of the vehicle enters the paint shop. Nevertheless, the absolute layer 

thickness difference of one specific layer is scaled in micron and is often less than 5 µm. This 

subtle variation is acceptable when comparing to the size of the operation machine. 
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Figure 51. Images of cross-sections of 4 sub-samples from sample W024 under transmitted light dark 
field, a) sample W024_2, from the right front door; b) sample W024_3, from the front hood; c) 

sample W024_5, from left front door and d) sample W024_6 from the right rear door. 

 

 

 

 

 

 

 

 

 

Figure 52. Images of cross-sections of 2 sub-samples from sample W019 under transmitted light dark 
field, a) sample W019_1, from the front hood; b) sample W019_3, from the left front door. 
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The presence of intra-sample variability is an important consideration for forensic 

practitioners when collecting reference samples for comparative analysis in actual casework. 

In the present study, 79% of the samples exhibited significant intra-sample variability in terms 

of layer structure, relative layer thickness and layer color. While this variability provides 

important reminders about the importance of collecting reference samples in close proximity 

to the area of damage, it poses a significant challenge for inter-sample comparisons. 

Specifically, differentiation based on relative layer thickness between samples is extremely 

difficult and can lead to substantial uncertainty in the results. 
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7.2. Layer structure and distribution 
 

Based on the layer structure of each sample, the whole sample set can be divided into three 

main groups:  

Group OEM3: a three-layer structure, defined as OEM3. The paints in this group, from the 

innermost to the outmost, consist of primer, basecoat, and clearcoat, as shown in Figure 53a. 

Group OEM4:  a four-layer structure, named OEM4, contains primer, primer surfacer, 

basecoat and clearcoat (see Figure 53b).  

Group Repainted: a repainted structure, called repainted. This group of paints retains no 

OEM system at all, and the layer structure has no specific pattern. The number of layers can 

vary from only one layer to nine layers, as shown in Figure 53c and Figure 53d. For those 

repainted samples, only the innermost and outmost layer can be firmly defined as primer and 

basecoat, respectively. For the remaining layers in between, It is hard to tell the function of 

every layer. 

To be noticed, some samples had refinishing layers on top of their OEM system. They were 

either repainted in the refinishing department of original carmaker before delivery to 

customers, this type of refinish often has an extra basecoat and clearcoat that share the same 

characteristics as the OEM basecoat and clearcoat (confirmed by IR analysis), as shown in 

Figure 54a. In this study they are defined as original refinishing (OR).  Another type of 

refinishing layers has no such ordered layer structure. They were often repainted in either 

repair shop or local workshop and have very dissimilar characteristics, as presented in Figure 

54b. This type of refinish is given a symbol R. These two types of samples were grouped 

according to their retained OEM systems regardless of the refinishing layers.  

When considering each sub-sample as an individual sample, the layer distribution of the 

whole sample set (n=135) is illustrated in Figure 55. Due to the widespread intra-sample 

variability, some sub-samples from the same vehicle might belong to different groups. Among 

135 sub-samples, 106 sub-samples have OEM paint system. These samples have adequate 

value to meet the research goal of this thesis. 

When counting the layer distribution per vehicle, samples were categorized into OEM groups 

as long as OEM system remained in one of the sub-samples. Samples were classified into 

repainted group only if there was no OEM system in any of the sub-samples. Therefore, the 

layer distribution per vehicle is determined and presented in Figure 56. In this sample set, 26 

samples (41.9%) belong to group OEM3, 28 samples (45.2%) belong to group OEM4, 8 

samples (12.9%) have no OEM system and belong to group repainted. 
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Figure 53. Dark field images of cross-sections of a) Sample W023_1 with three OEM layers; b) Sample 
W050_2 with four OEM layers; c) Sample W022_1 with one layer; d) Sample W004_2 with nine 

layers. 

 

  

 

 

 

 

 

 

 

 

Figure 54. Dark field images of cross-sections of a) Sample W025_3, with original refinishing (OR) 
layers on top of the OEM four-layer system, and b) Sample W040, with refinishing (R) layers on top of 

the OEM four-layer system. 
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Figure 55. Layer distribution of the whole sample set per sub-sample (n=135): OEM3 and OEM4 
refers to the paints having original three-layer structure or four-layer structure, respectively; OEM3/4 
+ OR refers to the paints having extra original refinishing layers on top of their OEM system; OEM3/4 

+ R refers to the paints having extra refinishing layers on top of their OEM system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56. Layer distribution of the whole sample set per vehicle (n=62). 

n=135 
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7.3. Characterization and classification 
 

Group OEM3: The samples within this group consist of three layers. Although slight 

differences are present among the samples in terms of layer thickness, color, and morphology, 

since they are produced by the same manufacturer and featured the same color, they 

definitely share several common characteristics. The innermost layer in this three-layer 

structure is the primer. It exhibits a granular morphology and is often light grey in color. 

Typically, the primer's thickness falls within the 15-25 µm range. Notably, since paint chips 

are scraped from the car body, complete separation from the car body is occasionally 

unattainable due to paint adhesion. This leads to the fact that the measured primer thickness 

in this study is thinner than the actual thickness that the primer should have achieved during 

the coating process. The basecoat within this group is homogeneously white and thicker than 

primer, typically ranging from 23-40 µm. Microscopic observation reveals little variation in 

basecoat color. However, layer thickness varies significantly across samples. Additionally, 

birefringent particles have been identified in the basecoat, but they are not evenly distributed, 

contributing to some degree of heterogeneity. The outmost layer is the clearcoat, which is 

transparent and homogeneous. No particles were detected in this layer. Layer thickness of 

clearcoat can vary from 28 µm up to 74 µm. Samples within this group are readily 

distinguishable from the other two groups based on their layer structure. Within-group 

comparison yields differentiation primarily through the color of the primer and the relative 

layer thickness between the basecoat and clearcoat. 

Group OEM4: This particular group comprises 28 samples and features four original layers. 

As usual, the innermost layer is the granular primer, grey in color. In contrast to Group OEM3, 

samples in this category possess an additional layer referred to as the primer surfacer, 

positioned between the primer and basecoat. This layer is relatively thick and appears white, 

containing birefringent particles. Its color and morphology closely resemble the 

characteristics of the basecoat. The layer thickness falls within the range of 23-55 µm. 

Basecoat of this group is a thin, homogeneous white layer without any birefringent particles 

inside. Layer thickness is in the range of 10-38 µm. Notably, the relative layer thickness 

between the primer surfacer and basecoat can vary significantly, reaching ratios as high as 

3.5:1. The outmost clearcoat is also homogeneous, with the thickness between 28 and 85 µm.  

Group repainted: Each sample belonging to this specific group exhibits a very distinct layer 

structure. It is challenging to pinpoint common features that can be summarized. Only the 

innermost layer can be identified as primer. Normally, primer in this group has different 

characteristics not only comparing to group OEM3 and OEM4, but also from sample to sample 

within the same group. In general, the primer in this category still retains granular 

morphology. However, there are added birefringent particles of large size in primer and the 

color vary from grey to light brown, some of them are brighter than others. It is worth noting 

that repainted structures often lack a clearcoat, thus making the basecoat the outermost 

layer in these samples. The basecoat's color and morphology exhibit significant variations, 

with some even displaying a granular texture and looking more silver than white under 

transmitted dark field illumination. The layers in between have no similar features at all. 
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These intermediary layers either consist of several overlapping white layers, or suddenly in 

the middle there is a thick filler layer in between two white layers. The functions of those 

layers are hard to categorize. These unusual structure and irregular characteristics make 

samples from this group easy to differentiate from the rest of samples. 

After classifying the entire sample set into three distinct groups based on their layer 

structures, the focus shifted towards classifying samples within each group. As previously 

noted, the prevalence of intra-sample variability proved to be remarkably high, which in turn 

posed a substantial challenge during inter-sample comparisons. Even when considering 

variations in relative layer thickness, achieving definitive discrimination became an intricate 

task. 

Furthermore, in the dark field examination, heterogeneity within the basecoat regarding 

color was observed. Stripes displaying varying color shades were evident across most of the 

samples. The underlying reasons for this phenomenon were investigated. It is possible that 

this observation could be attributed to the unevenness of the sample itself, similar to the 

lighter stripe noted in Figure 57a. Another hypothesis proposes that the microtomic process 

introduced an inevitable rough surface to the samples, potentially leading to variations in 

color shade. As illustrated in Figure 57b, the section within the red circle appears to 

encompass numerous small patches, each exhibiting a different white color shade. This form 

of heterogeneity, although subtle, can make the differentiation of samples somewhat 

challenging.  

 

 

 

 

 

 

 

 

Figure 57. Dark field images of cross-sections of a) Sample W032_2, a lighter stripe presents in the 
red circle; and b) Sample W021_3, color shade due to rough surface. 

 

Initially, the approach was to designate a solitary sub-sample as the representative for the 

entire vehicle and employ this sub-sample for comparisons with other samples. However, this 

strategy encountered a major stumbling block - the rational selection criteria can’t be 

reasonably determined. The inter-sample variability curve and the intra-sample variability 

curve often exhibited substantial overlap. Consequently, choosing different sub-samples from 

two samples and conducting comparisons could yield disparate conclusions. 

a ) b ) 
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Hence, the author opted for a revised strategy. The new approach for comparisons was 

shaped as follows: 

1) When conducting comparisons within group OEM3 or OEM4, only the OEM system is 

taken into consideration. While the presence of additional OR or R layers indeed 

renders the sample distinct from the standard OEM3 samples, It is important to note 

that this study primarily concentrates on discriminating OEM paints. Any 

supplementary differentiation brought about by additional repainted layers is not 

pertinent to the objectives of this study and, consequently, will not be considered.  

2) Given the uniform color of each layer in the sub-sample, discrimination should 

primarily focus on comparing the colors of individual layers, particularly the primer. 

3) If differentiation can’t be achieved based on color, the comparison should shift to 

relative layer thickness, but excluding the primer. The ratio between the remaining 

layers, such as basecoat versus clearcoat for group OEM3, and primer surfacer versus 

basecoat versus clearcoat for group OEM4, should be computed and summarized. 

Subsequently, the ranges of these ratios for two samples must be compared. If the 

ranges do not overlap, the samples should be deemed distinct. Conversely, if the 

ranges significantly overlap, the samples should be classified as indistinguishable.  

 

With these criteria, classification results based on transmitted light bright field and then dark 

field is presented in Figure 58. The discriminating power for both illuminations has been 

computed and is presented in Table 26. The undifferentiated pairs after these two 

illuminations are further observed and compared using polarized light and Alexa Fluor 488 

fluorescence illumination. The discriminating powers resulting from adding these two 

illuminations are also presented in Table 26. 

It should be noted that the final discrimination results differ from the preliminary test. The 

preliminary test achieved a higher discriminating power for both bright field and dark field 

than the final discriminating power. In the preliminary test, only one subsample was chosen 

and compared with other subsamples, excluding consideration of intra-sample variability. 

However, with the inclusion of more subsamples in the comparison, the range of intra-sample 

variability has expanded, sometimes fully overlapping with inter-sample variability, rendering 

discrimination difficult to achieve. Consequently, the final discriminating power is lower than 

that of the preliminary test. In practical applications, the collection of more reference samples 

becomes essential to establish a range of intra-sample variability, thereby preventing false 

negatives. 
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Figure 58. Classification of the whole sample set (considering only OEM layers) using transmitted 
light bright field and dark field illumination. Red boxes indicate the undifferentiated pairs. 

 

 

Table 26. Discriminating power of microscopic examination using transmitted light bright field and 
dark field as well as polarized light and fluorescence AF488 when considering only OEM layers. 

 
Illumination 

Undifferentiated 
pairs 

DP 
(n=62)  

TL BF 333 82.4% 

TL DF 281 85.1% 

TL DF+POL 281 85.1% 

TL DF+AF 488 150 92.1% 
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It is important to note that this discriminating power is the outcome of solely considering the 

OEM paint system for the samples belonging to Group OEM3 or OEM4. Differentiation 

resulting from the addition of extra repainted layers on top of the OEM paint system has not 

been factored into this analysis. However, It is still valuable to examine the discrimination 

outcomes when accounting for all existing layers of samples. This would likely lead to a higher 

discriminating power, providing a representation of the true inter-sample variability within 

the entire sample set. This is summarized in Table 27. 

 

Table 27. Discriminating power of microscopic examination using transmitted light bright field and 
dark field as well as polarized light and fluorescence AF488 when considering all existing layers. 

 
Illumination 

Undifferentiated 
pairs 

DP 
(n=62)  

TL BF 193 89.7% 

TL DF 163 91.4% 

TL DF+POL 163 91.1% 

TL DF+AF 488 79 95.8% 

 

 

Consequently, upon the completion of the microscopic examination encompassing 

transmitted light bright field, dark field, polarized light, and Alexa Fluor 488 fluorescence 

illumination, a total of 150 pairs of samples within this set were found to be undifferentiated 

when solely considering OEM layers of a given sample. This number decreases to 79 pairs 

when taking into account all the existing layers of the samples. 
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7.4. Correlation between physical properties and sample 

origin 
 

Once the characterization and classification were done, the correlation between physical 

properties and sample origin was explored. When doing this, since repainted samples had no 

OEM paint system, they are not taken into consideration. Therefore, only 54 samples that 

belong to either group OEM3 or OEM4 are counted. Results showed that the layer sequence 

can be correlated to assembly plant. The distribution of samples with regards to six plants and 

the layer system is presented in Figure 59. In most of the cases, one assembly plant produces 

only one type of layer system regardless of the model and production year. Among the five 

plants, plant Anting seems to produce more than one layer system. After the investigation, 

the plant Anting uses the same plant code “2” but actually there are three sub-plants under 

this code, named Anting I, Anting II, and Anting III. With regards to each sub-plant, only one 

type of layer system is produced. Surprisingly, exceptions were discovered.  Sample W009, 

W043, and W055 belong to Lavida family, all the other samples from Lavida family have an 

OEM3 layer structure but these three samples had OEM4 layer structures. The reason behind 

it was not clear. Perhaps there are more plants behind the plant code, maybe these vehicles 

are actually produced in other production lines. But in general, it is the plant that determines 

the layer structure of a vehicle.  

 

 

 

 

 

 

 

 

 

 

 

Figure 59. Sample distribution with regards to assembly plants and the layer system. 
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Regarding the color code of the paint samples, it is noteworthy that it can be linked to the 

manufacturing company and plants. Specifically, the sample set contains two manufacturing 

companies (F-VW and S-VW), and three types of color codes, namely LB9A, LC9A, and LY9H. 

Each plant employs two color codes for their products, with LC9A exclusively used in two F-

VW plants and LY9H solely present in two S-VW plants. However, LB9A is utilized by all plants 

and is the only color code included in the European paint database, implying its worldwide 

applicability. Intriguingly, the color code demonstrates no association with either the layer 

structure or color of the samples. Due to the diverse basecoat color, differentiation based on 

color is not achievable via microscopic observation. Thus, the role of color code in 

distinguishing between samples is unclear, and further exploration is warranted to investigate 

any potential correlation between the color code and the chemical composition of the 

samples. 

Despite being produced on the same production line, samples of the same model still exhibit 

variability, particularly in terms of the color of the primer and relative thickness. This was 

demonstrated in the preliminary study (Chapter 6.2.4), where samples W034 and W035, 

although of the same model and produced in the same plant, differed in primer color due to 

being manufactured in different years. Similarly, samples W014 and W016, which shared 

identical production information, including production date and plant location, had different 

clearcoat to basecoat layer thickness ratios. Although the basecoat layer thickness was 

consistent for both samples, the clearcoat of Sample W016 was significantly thicker than that 

of Sample W014. This disparity in clearcoat thickness can be attributed to the inability of the 

coating devices to precisely control the thickness of the paint layer. Thus, it is crucial to 

consider the potential impact of production variations and equipment limitations when 

analyzing automotive paint samples. 

The high level of intra-sample variability observed during the microscopic examination has 

raised questions about the potential impact of coating quality on the chemical stability of the 

samples. To further investigate this possibility, all 135 sub-samples were subjected to FTIR 

analysis to assess their chemical composition. The results of this analysis will be discussed in 

the upcoming chapter, providing insight into the extent to which intra-sample variability may 

exist with regard to the chemical properties of the samples. 
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8. Characterization and classification with FTIR 
 

 

The microscopic examination of the sample set provided initial insights and led to the 

classification of samples into three distinct groups based on their physical features. However, 

a large number of samples (150 pairs), still remained indistinguishable using this method 

alone. Therefore, it became necessary to explore the chemical composition of the samples in 

order to achieve further discrimination. FTIR was chosen as the second method of analysis 

after microscopy due to its ability to reveal the chemical components of paint layers such as 

binders, pigments, or additives. Given the observed intra-sample variability of samples with 

respect to relative layer thickness, it was decided that all samples (n=62) and their subsamples 

(n=135) should be analyzed with FTIR to determine if the chemical composition of each layer 

also exhibits such variability. Each layer of every sample was measured using the same 

calibrated instrument and under identical conditions, as outlined in Table 18 (Chapter 6.3.4). 

The measuring window was adapted in accordance with the thickness of each layer in the 

paint system being considered (10-50 μm x 50 μm).  

The characterization of each layer was performed by comparing the characteristic bands of 

chemical groups with several reference books (Caddy,2001; MacDougall et al.,2001; Buzzini 

and Stoecklein,2005; Ryland and Suzuki,2011), commercial IR databases of coatings, polymers, 

additives, inorganics that are presented in Thermo Fisher’s Omnic software (HR coatings 

technology, HR Comprehensive Forensic FT-IR collection, HR Polymer and Additives, HR 

Inorganics, HR Polymer Additives and Plasticizers, HR Polymer Sample Library, Industrial 

Coatings), and European databases of paints available in EUCAP. The reference spectra 

employed for comparison with the IR spectra of automotive paint samples within this thesis, 

discussed in the subsequent subchapters, were sourced from the databases mentioned above. 
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8.1. Intra-sample variability 
 

After conducting microscopic analysis, all 135 sub-samples underwent FTIR analysis. 

Measurements were taken from each layer of every sample, with three replicates obtained 

from each layer. It is important to note that in this context, the term "intra-sample variability" 

encompasses not only the variability observed among subsamples collected from different 

positions of a vehicle but also within the three replicates obtained from the same layer. 

Regarding the variability within replicates acquired from different positions of the same layer, 

it was found to be minimal. The spectra exhibited homogeneity in terms of peak position and 

relative peak intensity (see Figure 60). However, there were instances where the replicates 

slightly differed in baseline variations, as illustrated in Figure 61. This type of variability could 

be easily eliminated through baseline correction and normalization, posing no challenges for 

inter-sample comparisons. 

 

 

 

 

 

 

 

 

Figure 60. Three IR raw spectra measured from the clearcoat of sample W006_1, showing the 
homogeneity within the replicates. 

 

 

 

 

 

 

 

 

 

Figure 61. Three IR raw spectra measured from the clearcoat of sample W020_1, showing the 
variability within the replicates in terms of baseline variation. 



120 
 

Since the IR measuring window was adjusted to match the thickness of each layer in this study, 

thinner layers were more likely to capture components from adjacent layers, leading to 

increased intra-sample variability. In some cases, layers were too thin to be effectively 

measured (e.g., layers thinner than 10 µm). Variability could arise from the situation where 

the measuring window was too thin and the boundary between two layers was indistinct, 

causing the IR measurement of a layer to capture components from the adjacent layer. For 

instance, Figure 62 presents five IR spectra measured from the basecoat of sample W021_4, 

with a layer thickness of only 10 µm. Variations in the intensity of the peak at 1510 cm-1 were 

observed among these five replicates. However, this variation was caused by "contamination" 

from the primer surfacer, which exhibits a strong, sharp peak at 1510 cm-1. This type of 

variability was specific to the basecoat of samples from Group OEM4 due to their thin layer 

thickness. To mitigate this issue, after each measurement, the IR spectra of the basecoat were 

carefully examined and compared with those of the primer surfacer or clearcoat to identify 

potential "contaminations." 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 62. Five IR spectra measured from the basecoat of sample W021_4, showing intra variabilities 
due to the thin measuring window size. The variation observed from the 5 replicates are highlighted 

in red.  
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Figure 50 visually represents the intra-sample variability as observed during the microscopic 

examination. Within this context, layer structure variations due to repainting effects as well 

as the variations in relative layer thickness and color were the two main reasons behind intra-

sample variability concerning physical characteristics. To assess the intra-sample variability in 

terms of chemical composition for these two types of samples, a separate evaluation was 

undertaken. 

Specifically, for subsamples with varying layer structures, the chemical composition was 

compared between layers of the same type. In most cases, only the basecoat composition 

could be compared. It was observed that although the layer structure may vary due to 

repainting effects, the original equipment manufacturer (OEM) layers remained relatively 

homogeneous, while the repainted basecoat differed significantly from the OEM layer. For 

example, Figure 63 illustrates the IR spectra obtained from the basecoat of sample W002. 

Within this sample, subsamples W002_3 and W002_4 exhibited different layer structures, 

with W002_4 having two additional repainted layers on top of the OEM paint system. 

However, the original basecoat of W002_3 and W002_4 displayed spectra that were 

indistinguishable, while the extra repainted basecoat of W002_4 exhibited a distinct chemical 

composition compared to the original basecoat. As a result, when comparing between 

samples, only those with an exclusively OEM system are taken into consideration to ensure 

consistency and accuracy in the analysis.  

 

 

 

 

 

 

 

 

 

Figure 63. Dark field images of sample W002_3 (a) and sample W002_4 (b) and IR spectra obtained 
from basecoats of these samples (c). 
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In the case of subsamples from repainted vehicles where no OEM paint system remained, a 

comparison between the primer and basecoat revealed that the basecoat exhibited greater 

intra-sample variability compared to the primer. The primer of these subsamples displayed 

relatively homogeneous characteristics, while the basecoat showed variations depending on 

the location. This is exemplified in Figure 64, where subsamples W013_3 and W013_4 

showcase uniform primer but distinct basecoat characteristics. This variability could 

potentially introduce complexities in inter-sample comparisons. 

However, it should be noted that the coating formula of refinished layers differed significantly 

from that of OEM paint. Despite the intra-sample variability, the refinished paint could still be 

easily differentiated from OEM paint due to their distinct formulations. This distinction is 

evident in Figure 65, where the basecoat of repainted sample W013 differs from the basecoat 

of OEM sample W014. This differentiation remains irrespective of the intra-sample variability 

seen in sample W013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64. Dark field images of sample W013_3 (a) and sample W013_4 (b) and IR spectra obtained 
from the primer (c) and the basecoat (d) of these samples. 
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Figure 65. IR spectra obtained from sample W013_3(top), sample W013_4 (middle) and sample 
W014(bottom). 

 

In samples displaying differences in relative layer thickness or layer color, the OEM paint 

layers generally exhibited homogeneity. It is worth addressing that intra-variability in the 

physical characteristics of a sample does not necessarily indicate variability in its chemical 

characteristics. Figure 66 illustrates this point, where two non-differentiated IR spectra 

obtained from the primer of sample W062_2 and W062_3 are shown, despite their color 

difference in primer.  

However, subtle intra-sample variability was still observed in some samples. This variability 

was observed across all layers, as shown in Figure 67 with two IR spectra obtained from 

sample W019_2 and W019_3, highlighting the subtle intra-sample variability (indicated in the 

red zone) among their clearcoat. Among the layers, the primer exhibited the greatest intra-

sample variability, likely due to its lower spectral quality and less homogeneous nature 

compared to the other layers. This can be observed in the PCA score plots of primer spectra, 

where spectra from the same sample were projected discreetly and displayed a large distance 

between each other (see chapter 8.5.6). 

The number of samples that contain intra-sample variability related to peak present/absence 

within each layer were calculated, which from clearcoat to primer, is 3, 6, 1, 6 respectively. 

When visually comparing samples, all subsamples and respective replicates were taken into 

consideration. It is important to note that all the observed intra-sample variabilities did not 

affect the characterization of chemical categories.  

In conclusion, the IR analysis conducted on the whole sample set revealed minimal intra-

sample variability in terms of chemical characteristics. This finding indicates that the chemical 

compositions of the samples could be accurately characterized, facilitating reliable 

comparisons between them. It is important to note that all subsequent characterizations and 
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classifications discussed in the subsequent chapters will be grounded in the analysis of 

individual vehicles (n=62). 

 

 

 

 

 

 

 

 

 

 

 

Figure 66. Dark field images of sample W062_2 (a) and sample W062_3 (b) and IR spectra obtained 
from primer of these samples (c). 

 

 

 

 

 

 

 

 

 

 

 

Figure 67. IR spectra obtained from sample W019_2(top) and sample W019_3(bottom). The 
observed differences are highlighted in red zone. 
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8.2. Characterization of clearcoat 
 

Out of the 62 samples in the sample set, eight of them belong to the repainted group and 

have no clearcoat, while three samples (W017, W022, W030) failed to acquire spectra data 

due to sample preparation, only 51 samples contain clearcoat. Based on the previous three 

groups generated by microscopic examination, further discrimination and characterization 

were made. Notably, only OEM systems were taken into account for samples that featured 

additional repainted layers. In these 51 samples, 3 were found to have intra-sample variability 

related to the presence or absence of small peaks.  

Table 28 summarizes the results of the visual characterization of FTIR spectra obtained from 

the clearcoat of all white automotive paints, classifying the samples into two main groups 

based on the chemical categories of the binders used in the paint. Each group of spectra is 

then individually analyzed to identify the constituents detected by FTIR in the investigated 

paints. Further visual comparisons were carried out to identify distinguishable subgroups 

within each group. These comparisons relied on the presence or absence of certain peaks and 

the relative intensities of the peaks detected in the IR spectra. To ensure the homogeneity of 

the analyses, all replicas of each sample were taken into consideration. The subgroups were 

also summarized in Table 28, which highlights the main differences observed between the 

spectra of samples with similar characterization. 

Table 28. Summary of visual characterization and groupings based on the FTIR spectra of the 
clearcoat of the automotive paint samples in this thesis (n=51). 

GROUP/BINDER TYPE SUB-GROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

GROUP 1 
PUR+(STY) 

 

1.1 
W002, W007, W020, W023, 

W036, W053 
Peaks presented at 1728 cm-1 and 1157 

cm-1, additional peak at 846 cm-1 

1.2 

W010, W012, W014, W015, 
W016, W018, W032, W041, 
W042, W044, W045, W047, 

W049, W051, W054 

Peaks presented at 1733 cm-1 and 1162 
cm-1 

1.3 W005, W033, W046 
Sharper peak at 1130 cm-1, absence of 

peaks at 3084 cm-1, 3061 cm-1, 3027 cm-

1, and 700 cm-1 

1.4 W048, W062 Broad peak at 1546 cm-1 

1.5 W026 Additional peak at 1550 cm-1 

GROUP 2 
ACR+PUR+STY+MEL 

2.1 
W001, W027, W028, W034, 

W061 
Low intensity of peak at 1690 cm-1, 

additional peak at 1455 cm-1 

2.2 
W003, W011, W019, W021, 
W031, W039, W050, W052, 

W055 

High intensity of peaks at 1550 cm-1, 
1470 cm-1, and 1360 cm-1 

2.3 
W006, W009, W024, W035, 
W043, W058, W059, W060 

High intensites of peaks at 1690 cm-1, 
1465 cm-1, and 1242 cm-1 

2.4 W025, W040 
Highest intensities of peaks at 1690 cm-1, 

1465 cm-1, and 1242 cm-1 
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8.2.1. Group 1 – clearcoat 
 

This group comprises 27 samples (see Group 1 in Table 28), which share the same chemical 

information as determined by FTIR analysis, representing approximately 53% of the total 

sampling in this study. A typical spectrum of the analyzed group displays significant 

characteristic absorption peaks at 3380, 2936, 2862, 1732, 1690, 1526, 1465, 1242, 1162, and 

765 cm-1. The broad peak at 3380 cm-1 is attributed to the stretching vibration of the O-H 

group, while the bands around 2936 and 2860 cm-1 correspond to the C-H asymmetric and 

symmetric stretching vibrations, respectively. The strong absorption peaks at 1732 and 1690 

cm-1 can be attributed to the stretching vibration of the carbonyl group (C=O). The peak at 

1526 cm-1 is due to the stretching vibration of C-N and N-H bond in urethane, while the peak 

at 1465 cm-1 can be attributed to the symmetric bending vibration of the methylene (-CH2-) 

groups. The peak at 1242 cm-1 corresponds to the stretching vibration of the C-O bond, while 

the peak at 1162 cm-1 corresponds to the stretching vibration of the C-O-C bond in ether. 

Finally, the absorption at 765 cm-1 is attributed to the out-of-plane bending vibration of the 

C-H group. Overall, these characteristic peaks are consistent with those that constitute the 

FTIR fingerprints of polyurethane. The characteristic peaks of this group as well as a 

comparison between a reference polyurethane clearcoat produced by Dupont are shown in 

Figure 68. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68. Comparison of a representative IR spectrum of the clearcoat of sample W041_1 (top) with 
a reference polyurethane clearcoat (bottom) produced by DuPont (DuPont Imron 6000 series, 

clearcoat). Characteristic peaks of polyurethane are annotated on the spectrum of sample W041_1. 
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In addition to polyurethane, a significant number of samples in this group also exhibit faint 

peaks at 3060, 3026, and 700 cm-1 in their IR spectra. The two subtle peaks located at 3060 

and 3026 cm-1 correspond to the stretching vibrations of the aromatic C-H bond, while the 

peak at 700 cm-1 is attributed to the out-of-plane bending vibration of the aromatic ring. 

These characteristic peaks align with the IR spectrum of styrene, a commonly utilized polymer 

in industry. A graphical representation of the characteristic styrene peaks observed in the 

sample, along with a comparison to a standard styrene IR spectrum, is depicted in Figure 69. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69. Comparison of a representative IR spectrum of the clearcoat of sample W002_3 (top) with 
a standard styrene spectrum (bottom). Characteristic peaks of styrene are annotated on the 

spectrum of sample W002_3. 
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8.2.2. Group 2 – clearcoat 
 

This group is composed of 24 samples (see Group 2 in Table 28), accounting for approximately 

47% of the total sample set. The IR spectra of these 24 samples reveal distinct absorption 

bands, which include a broad band at 3380 cm-1, corresponding to the O-H stretching 

vibration. The medium bands observed at 2957, 2930, and 2873 cm-1 represent the C-H 

asymmetric and symmetric stretching vibrations. Furthermore, a strong band located at 1730 

cm-1 is attributed to the stretching vibration of the carbonyl group (C=O). Additionally, the 

medium band at 1380 cm-1 arises from the C-H bending vibration, while the strong band at 

1170 cm-1 corresponds to the C-O-C stretching vibration. Lastly, the medium band observed 

at 1088 cm-1 can be assigned to the C=O stretching vibration. These characteristic bands are 

consistent with those typically observed for acrylic resins. Based on the results of the IR 

spectrum analysis, it can be inferred that acrylic resin is the primary resin present in these 24 

samples. Figure 70 displays the characteristic peaks of acrylic from the sample as well as a 

comparison between a reference acrylic paint produced by Dupont. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70. Comparison of a representative IR spectrum of the clearcoat of sample W003_1 (top) with 
a reference acrylic paint (bottom) produced by DuPont (Acrylic Enamel, DuPont). Characteristic peaks 

of acrylic are annotated on the spectrum of sample W003_1. 
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Apart from the primary resin, the IR spectra of the sample set revealed characteristic peaks 

from additional resins. All the samples in this group exhibit characteristic peaks at 3084, 3061, 

3027, 1490, 760, and 700 cm-1. The three weak peaks at 3084, 3061, and 3027 cm-1 

correspond to the stretching vibrations of the aromatic C-H bond. The peak at 1490 cm-1 is 

attributed to the deformation of the aromatic ring, while the peak at 760 cm-1 corresponds to 

the bending of the C-H bond in the aromatic ring. The peak at 700 cm-1 is assigned to the out-

of-plane bending vibration of the aromatic ring. These characteristic peaks are consistent with 

the IR spectrum of styrene. Therefore, based on the analysis of the IR spectra, it can be 

concluded that the samples in this group contain styrene as one of the additional resins in 

their clearcoat. Characteristic peaks of styrene presented in the sample as well as a 

comparison between a standard styrene IR spectrum is illustrated in Figure 71. 

The IR spectra of the 24 samples also revealed the presence of additional peaks at 1550 and 

815 cm-1. These peaks were observed in all the samples of the group and can be assigned to 

the symmetric and asymmetric triazine ring breathing vibrations of melamine, respectively. 

Melamine is a nitrogen-rich compound commonly used in the production of formaldehyde-

melamine resins, which are widely used in coatings and adhesives due to their excellent 

properties such as hardness, scratch resistance, and durability (Lambourne and Strivens,1999). 

The presence of melamine in these samples can be attributed to its use as a crosslinking agent 

in the formulation of the clearcoat (Caddy,2001). Figure 71 illustrates the distinctive peaks of 

melamine found in the sample, along with a comparison to a standard butylated melamine-

formaldehyde resin. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71. Comparison of the representative IR spectrum of the clearcoat from sample W003_1 (top) 
containing styrene and melamine with a standard styrene spectrum (middle) and a standard 

melamine spectrum (bottom). The characteristic peaks of styrene and melamine are annotated on 
the spectrum of sample W003_1. 
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Polyurethane peaks were detected in all samples within this group. Depending on the 

concentration of polyurethane in the clearcoat, the peaks at 1690 and 1465 cm-1 may vary in 

intensity between samples. Figure 72 shows the clearcoat spectra of two samples in this 

group, with one sample exhibiting a strong polyurethane peak while the other does not. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72. Comparison of the IR spectra of two samples in the group; sample W025_5 (top) showing 
strong peaks from polyurethane and sample W001 (bottom) with very low concentration of 

polyurethane. The polyurethane characteristic peaks are annotated on the spectrum of sample 
W025_5. 
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8.2.3. Classification and discrimination of clearcoat 
 

Table 29 provides a summary of the characteristic compounds identified from the IR spectra 

of the clearcoat for each sample examined in this study.  

 

Table 29. Summary of characteristic compound based on the FTIR spectra of the clearcoat of the 
automotive paint samples in this thesis (n=51) 

BINDER 

Sample\ 
Composition 

PUR ACR 
ALK 
IPH 

ALK 
OPH 

MEL STY 

W001  X   X X 
W002 X     X 
W003 X X   X X 
W005 X      
W006 X X   X X 
W007 X     X 
W009 X X   X X 
W010 X     X 
W011 X X   X X 
W012 X     X 
W014 X     X 
W015 X     X 
W016 X     X 
W018 X     X 
W019 X X   X X 
W020 X     X 
W021 X X   X X 
W023 X     X 
W024 X X   X X 
W025 X X   X X 
W026 X    X X 
W027  X   X X 
W028  X   X X 
W031 X X   X X 
W032 X     X 
W033 X      
W034  X   X X 
W035 X X   X X 
W036 X     X 
W039 X X   X X 
W040 X X   X X 
W041 X     X 
W042 X     X 
W043 X X   X X 
W044 X     X 
W045 X     X 
W046 X      
W047 X     X 
W048 X     X 
W049 X     X 
W050 X X   X X 
W051 X     X 
W052 X X   X X 
W053 X     X 
W054 X     X 
W055 X X   X X 
W058 X X   X X 
W059 X X   X X 
W060 X X   X X 
W061 X X   X X 
W062 X     X 
Total 47 24   25 48 
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Based on the chemical composition of the binders in the analyzed paint, two main groups can 

be distinguished among the considered samples (see Figure 73). The majority of samples (53%) 

contain polyurethane resin as the binder, alongside additional styrene. The remaining 24 

samples (47%) utilize acrylic resin as the primary binder, in conjunction with polyurethane, 

styrene, and melamine as additional resins. This outcome is consistent with findings from 

various studies, in which the authors concluded that polyurethane and acrylic-melamine 

resins are most commonly detected in clear coats (Maric et al.,2012; Bender,2013; Lavine et 

al.,2014b; Houck and Siegel,2015). 

 

 

 

 

 

 

 

 

 

 

 

Figure 73. Distribution of binder type characterized in clearcoat. 

 

Based on the subgroups presented in Table 28, it is possible to determine the discriminating 

power of visual comparisons of spectra obtained for clearcoat using FTIR. The discriminating 

power (DP) can be calculated according to Smalldon and Moffat (Smalldon and Moffat,1973) 

based on the number of pairs of undifferentiated samples (199 pairs, for a total of 51 samples). 

The subgroups of spectra after visual comparisons result in a DP of 84.4%.  

To gain further insight into the groupings, the original information and physical features were 

examined. An interesting observation is that the chemical composition of the clearcoat 

appears to be closely associated with the layer sequence. For instance, all samples in Group 

1 except Sample W026, which contain polyurethane binder type, display the OEM3 paint 

system. Similarly, all the samples in Group 2, which have an acrylic with styrene and melamine 

modified binder type, exhibit the OEM4 system. Sample W026 was collected from a vehicle 

produced in Germany. The observed non-conformity of this sample with the pattern observed 

in the other Chinese-produced samples can be attributed to its distinct origin. However, 

except for the pattern observed for the binder type of the clearcoat in relation to the layer 

structure, no correlation was found within the identifying factor for the undifferentiated pairs. 
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8.2.4. Exploratory analysis 
 

A comprehensive analysis of 318 IR spectra of clearcoat (from 51 samples with 106 
subsamples) was conducted using a global PCA to effectively visualize the underlying data 
structure. All the spectra were pre-treated with baseline offset, SNV normalization and 
detrended with a polynomial order of 2, following the established procedure. The variables 
in the range of 3100-2828 and 1800-680 cm-1 (2888 points) were selected for.  
 
Figure 74 provides an overview of the PCA model, displaying the projections of IR spectra 

based on the first two principal components (PC1 and PC2), which account for 95% of the 

total sampling variance. Remarkably, the PCA analysis yielded the same groupings as those 

observed through visual comparison of the IR spectra, which were based on the binder types 

employed in the clearcoat. Two prominent clusters were formed on the PCA score plot, 

aligning with the distinct binder types (as depicted in Figure 74a). Further interpretation of 

the loadings associated with the first principal component (PC1, as shown in Figure 74b) 

revealed the positive influence of wave numbers corresponding to characteristic peaks of 

polyurethane, while negative values predominantly stemmed from the signal corresponding 

to characteristic peaks of acrylic, melamine, and styrene. Moreover, the loading for the 

second principal component (PC2, illustrated in Figure 74d) reflected the signal of 

polyurethane present in certain samples where acrylic, melamine, and styrene served as the 

main binder types, effectively separating these samples into two distinct subgroups. The PCA 

score plot, when examined individually for each sample, provided a detailed depiction of the 

groupings that aligned consistently with those obtained through visual comparison (Figure 

74c). 

To explore deeper into the differentiation within each binder group, additional PCA analyses 

were undertaken. However, the outcomes of these analyses fell short of the desired 

separation results. The majority of samples exhibited close projection, making it challenging 

to discern distinct clusters. Visual examination revealed that many samples were 

distinguished by minute peaks or, in some instances, remained undifferentiated. A proven 

method to enhance this situation involves baseline treatment through Savitzky-Golay type 1st 

derivative (with polynomial order 2 and 5 smoothing points), which has been demonstrated 

to maximize inter-sample distances (Lambert,2017). Subsequently, the baseline-offset data 

underwent this treatment, followed by SNV normalization. The overall PCA results reaffirmed 

the same separation pattern based on binder type as shown in Figure 74. However, when 

individual PCA analyses were conducted on each binder group, improved separation was 

attained. Figure 75 and Figure 76 present the results of PCA separation and the relative 

similarity of samples within the two chemical classes, respectively. 

Figure 75 shows that when considering the first two principal components (which account for 

75% of the total variance), only three distinct clusters were observed. The loading plot of PC1 

indicates that the separation was based on the peaks at 1733, 1460, 1162, 1130, and 846 cm-

1. The presence, absence, or peak shift at these positions explain why samples within the same 

chemical class can be differentiated into subgroups. With the addition of PC3 and PC4, two 
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more clusters can be distinguished based on the peak at 1540 cm-1. Consistent with visual 

comparison, the polyurethane group exhibits five clusters when considering the first four 

principal components of this model. 

Figure 76Figure 75 depicts the PCA separation results within the class of acrylic-melamine-

styrene. Four clusters can be distinguished based on the first two principal components, 

which account for 64% and 14% of the total variance. This separation aligns with the visual 

groupings. The weights of PC1 and PC2 reveal that peaks at 1690, 1550, 1465, and 1130 cm-1 

have a significant impact on the separation. The relative intensity of these peaks is the reason 

behind the visual groupings. The addition of more PCs does not add more distinct groups.  

The visual comparison of clearcoat IR spectra revealed nine clusters, and these clusters were 

successfully visualized using the first four principal components of the PCA model (see Table 

28). Therefore, based on these groups, a discriminatory power of 84.4% can be obtained by 

PCA observation of the IR spectra of the clearcoat of the paint systems in this study (199 

undifferentiated pairs, for a total of 51 samples). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74. PCA score and loading plots according to the first two principal components for the IR 
spectra dataset of clearcoat (n=51): (a) PCA score plot where spectra were represented using 

different colors and shapes according to the binder type characterized on the spectra; (b) loading plot 
of PC1, with peaks of characterized binder that significantly impact the separation on PC1 

highlighting on the plot; (c) sample distribution based on PC1 and PC2, which account for 95% of 
total variance; (d) loading plot of PC2, with peaks of characterized binder that significantly impact 

the separation on PC1 highlighting on the plot.  
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Figure 75. PCA score and loading plots for clearcoat IR spectra of samples from group polyurethane 
(n=27): (a) PCA score plot based on PC1 and PC2, which account for 51% and 24% of the total 

variance, respectively. 4 clusters were generated on this score plot; (b) loading plot of PC1, with 
peaks of characterized binder that significantly impact the separation on PC1 highlighting on the 

plot; (c) PCA score plot based on PC3 and PC4, accounting for 9% and 4% of the total variance, 
respectively. Two more clusters can be separated based on PC4; (d) loading plot of PC4, with peaks 

that significantly impact the separation on PC4 highlighting on the plot. 

 

 

 

 

 

 

 

 

 

Figure 76. PCA score and loading plots for clearcoat IR spectra of samples from group acrylic 
modified by melamine and styrene (n=24): (a) PCA score plot based on PC1 and PC2, which account 
for 64% and 14% of the total variance, respectively. 4 clusters were generated on this score plot; (b) 
loading plot of PC1 and PC2, with peaks that significantly impact the separation highlighting on the 

plot. 
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Apart from the chemical class and individual sample number, the data structure can also be 

elucidated based on several predetermined identifying factors, as depicted in Figure 77. The 

PCA score plots of clearcoat IR spectra are presented in relation to manufacturing companies 

(Figure 77a), layer structure of paint samples (Figure 77b), assembly plants (Figure 77c), and 

vehicle models (Figure 77d). Analyzing these PCA score plots reveals that, with the exception 

of sample W026, all samples displaying the OEM3 layer structure exhibit the polyurethane 

binder type, whereas samples with the OEM4 paint system consistently contain an acrylic 

binder type modified with styrene and melamine. 

No discernible structure linked to the manufacturing company, assembly plant, or vehicle 

model emerges from this exploratory analysis (Figure 77b-d). It appears that both F-VW and 

S-VW manufacturing companies in China employ both types of binder in their clearcoat 

application formula. Most assembly plants (Plant Changchun, Plant Chengdu, Plant Ningbo, 

and Plant Osnabrück) exclusively utilize a single type of binder in their clearcoat. An exception 

was observed in Plant Anting and Plant Nanjing, where two different binder types were found 

in their respective products. Upon further investigation, it was revealed that Plant Anting 

consists of three sub-plants sharing the same plant code. Each sub-plant operates its 

independent production line, employing different layer systems and thus utilizing different 

binder types. However, the exception in Plant Nanjing remains unexplained. Apart from that 

exception (Sample W009), all other vehicles produced in Plant Nanjing exhibit the same layer 

system and binder type. Furthermore, Sample W009 corresponds to the New Lavida model, 

while all other vehicles of the same model display the OEM3 layer system, whereas only 

Sample W009 has the OEM4 system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 77. PCA score plots according to the first two principal components of all IR spectra of 
clearcoats, respectively according to the layer structure (a), their manufacturing companies (b), their 

assembly plants (c) and the model of vehicles(d). 
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8.3. Characterization of basecoat 
 

In this section, the characterization of a total of 62 samples is presented. Among these 

samples, some did not have an original equipment manufacturer (OEM) system, and in these 

cases, the outmost layers were considered as basecoat. These samples were exclusively found 

in the repainted group. On the other hand, for samples that retained their OEM system, only 

the original basecoat was taken into account for analysis, despite their additional repainted 

layers. 

Table 30 summarizes the results of the visual comparison of FTIR spectra obtained from the 

basecoat of all white automotive paints, classifying the samples into 7 groups based on the 

chemical categories of the binders, pigments and extenders used in the paint. Each group of 

spectra is then individually analyzed to identify the constituents detected by FTIR in the 

investigated paints. Further visual comparisons were carried out to identify distinguishable 

subgroups within each group, as presented in the table. 

Table 30. Summary of visual characterization and groupings based on the FTIR spectra of the 
basecoat of the automotive paint samples in this thesis (n=62). 

GROUP/COMPOSITION SUB-GROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

Group 1 
PUR+ALK IPH+TALC+TIO2 

1.1 

W002, W005, W010, 
W012, W014, W015, 
W016, W018, W020, 
W023, W032, W033, 
W036, W041, W042, 
W044, W045, W046, 
W047, W049, W051, 

W053, W054 

Sample different from others as follows 

1.2 W007 Relative intensities of peaks at 1730 and 1690 cm-1 

Group 2 
PUR+MEL+TIO2 

2.1 W048 Samples different from others as follows 

2.2 W062 Absence of peak at 1515 cm-1, additional peak at 915 cm-1 

Group 3 
ACR+ALK IPH+MEL+PUR 

+TIO2 
 

3.1 W001, W061 Shoulder peak at 1690 cm-1 
3.2 W027, W028, W050 Relative intensities of peaks at 1305 and 1240 cm-1 

3.3 
 W003, W011, W021, 

W039 
Relative intensities of peaks at 2933, 1690 and 1140 cm-1 

3.4 W017, W043 Higher peak at 1690 cm-1 
3.5 W006, W059 Relative intensities of peaks at 2933 and 1690 cm-1 

3.6 
W022, W024, W058, 

W060 
Relative intensities of peaks at 2933,1305 and 1040 cm-1 

3.7 W030, W031, W052 Relative intensities of peaks at 2933 and 1305 cm-1  
3.8 W009 Relative intensities of peaks at 2933, 1690 and 1305 cm-1 
3.9 W034 Relative intensities of peaks at 2933,1305 and 1096 cm-1 

3.10 W035 Relative intensities of peaks at 1690, 1305 and 1096 cm-1 

3.11 W019, W025, W040 
Relative intensities of peaks at 1690, 1305, 1240, 1170 and 

1130 cm-1 

3.12 W055 Peak broader at around 1240 cm-1 

Group 4 
ACR+PUR+MEL+TALC+TIO2 

- W026 Single sample of the group 

Group 5 
PUR+ STY+TIO2 

5.1 W004 Samples different from others as follows 
5.2 W029 Absence of peak at 1165 cm-1 
5.3 W037 Additional peak at 1175 cm-1, absence of peak at 1165 cm-1 
5.4 W038 Broader peak at 1165 cm-1 
5.5 W056 Additional peaks at 1270 and 1126 cm-1 
5.6 W057 Relative intensities of peaks at 1075 and 1030 cm-1 

Group 6 
ALK OPH+MEL+TIO2 

- W008 Single sample of the group 

Group 7 
ACR+MEL+STY+TIO2 

- W013 Single sample of the group 
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8.3.1. Group 1 – basecoat 
 

Representing approximately 39% of the total samples in this study, this group is composed of 

24 samples that share the same binder type as determined by FTIR analysis (see Group 1 in 

Table 30). A typical spectrum of the analyzed group displays diagnostic absorption peaks at 

3370, 2935, 2860, 1725, 1690, 1526, 1465, 1378, 1302, 1242, 1140, 1095, 1075 and 730 cm-1. 

The broad peak at 3370 cm-1 is a characteristic stretching vibration of the hydroxyl (-OH) group. 

The peaks at 2935 and 2860 cm-1 correspond to the symmetric and asymmetric stretching 

vibrations, respectively, of the methylene (-CH2-) groups. The strong peak at 1725 cm-1 is 

attributed to the stretching vibration of the carbonyl (C=O) group, while the strong peak at 

1690 cm-1 is attributed to the C=O stretching vibration of the urethane groups. The medium 

peak at 1526 cm-1 is due to the stretching vibration of C-H and N-H bond of the urethane 

groups, while the strong peak at 1465 cm-1 can be attributed to C-H bending vibrations. The 

weak peaks at 1378 cm-1 could be attributed to the deformation vibrations of the C-H group 

in the aromatic ring, while the peak at 1302 and 1242 cm-1 was due to the C-O vibration of 

isophthalic ester. The peaks at 1140, 1095 and 1075 cm-1 can all correspond to the C-O-C 

stretching. Based on the distinctive absorption peaks identified in the analyzed group, it can 

be inferred that the primary resin in the basecoat is polyurethane, with isophthalic alkyd 

serving as an additional resin. Figure 78 illustrates the diagnostic peaks of polyurethane as 

well as isophthalic alkyd found in the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 78. A representative IR spectrum of the basecoat of sample W041_1 with characteristic peaks 
of polyurethane and isophthalic alkyd annotated on the spectrum. 
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In addition to the binder types, FTIR analysis also revealed the presence of pigments and 

extenders in the analyzed samples. The IR spectra showed a rising absorbance towards 700 

cm-1, indicating the presence of titanium dioxide (TiO2), which is the most common inorganic 

pigment used for generating white color in paint. The characteristic peaks at 3678 and 1020 

cm-1 correspond to the peaks of talc, a commonly used extender in paint formulations. Overall, 

these results suggest that the analyzed basecoats contain TiO2 as a white pigment and talc as 

an extender. Figure 79 illustrates the distinctive peaks of TiO2 and talc found in the sample, 

along with a comparison to the reference spectra of pure TiO2 and talc. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 79. Comparison of the representative IR spectrum of the basecoat from sample W041_1 (top) 
containing talc and TiO2 with reference spectra of pure talc (middle) and pure TiO2 (bottom). The 

characteristic peaks of talc and TiO2 are annotated on the spectrum of sample W041_1.  
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8.3.2. Group 2 – basecoat 
 

Out of the total sample set, this group is comprised of only 2 samples (see Group 2 in Table 

30), accounting for a mere 3% of the total sample set. The primary resin present in this group 

has been identified as polyurethane, based on the distinctive absorption peaks observed in 

the FTIR spectra. In addition, melamine has also been detected in these samples, suggesting 

its use as an additional resin in the formulation. The characteristic absorption peaks of both 

polyurethane and melamine are illustrated in detail in Figure 80, providing a clear 

representation of their respective IR spectra. 

In this group of basecoats, the presence of TiO2 was detected as expected. However, 

interestingly, no talc was detected in any of the samples, which suggests that talc was not 

added as an extender in the basecoat formulation. The absence of talc in these basecoats may 

indicate the use of different formulation strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 80. A representative IR spectrum of the basecoat of sample W048_1 with characteristic peaks 
of polyurethane and melamine annotated on the spectrum. 
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8.3.3. Group 3 – basecoat 
 

This group is composed of 27 samples, representing 43.5% of the total samples (see Group 3 

in Table 30). Based on the observed peaks in the IR spectra of this group, several absorption 

bands can be attributed to specific functional groups present in the basecoat. The peaks at 

2960, 2934 and 2874 cm-1 can be attributed to aliphatic C-H stretching, while the strong peak 

at 1730 cm-1 corresponds to the stretching vibrations of carbonyl groups (C=O). The peaks at 

1472 and 1373cm-1 can be attributed to the deformation vibrations of methyl and methylene 

groups. The peak at 1302 and 1240 cm-1 correspond to the C-O stretching vibrations of the 

isophthalic ester. The peaks at 1170 and 1070 cm-1 correspond to C-O stretching vibrations. 

Finally, the peak at 730 cm-1 is due to the out-of-plane bending of four adjacent hydrogens on 

the aromatic ring. Based on the identified functional groups, the primary resin in this group 

of basecoats may be a mixture of acrylic and isophthalic alkyd. The distinctive peaks of acrylic 

and isophthalic alkyd found in the sample, along with a comparison to a reference spectrum 

of acrylic modified alkyd, are illustrated in Figure 81. 

In addition to the primary resin peaks, the FTIR spectra of the basecoat revealed two 

additional diagnostic peaks. The peak at 1550 cm-1 is attributed to the in-plane deformation 

of the triazine ring, while a small sharp peak at 815 cm-1 corresponds to the out-of-plane 

triazine ring vibration (see Figure 81). These two peaks suggest the presence of melamine as 

an additional resin in the formulation. TiO2 was also detected in the basecoat, as expected. 

There is one distinguishing characteristic of this group - the presence of a peak at 1690 cm-1. 

This peak confirms the presence of polyurethane in the formulation, which allows further 

discrimination within this group according to the relative intensity of this peak. 

 

 

 

 

 

 

 

 

 

 

Figure 81. Comparison of the representative IR spectrum of the basecoat from sample W001_3 (top) 
containing acrylic and isophthalic alkyd with a reference spectrum of acrylic modified alkyd (bottom). 
The characteristic peaks of isophthalic alkyd, acrylic and melamine are annotated on the spectrum of 

sample W001_3.  
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8.3.4. Group 4 – basecoat 
 

The analysis of this group revealed a single sample, which accounted for only 1% of the total 

samples (see Group 4 in Table 30). The observed peaks in the IR spectra of this group suggest 

the presence of both acrylic and polyurethane resins in the basecoat, with the former being 

the primary resin. Specifically, the absorption bands at 2960, 2873, 1380, 1170, and 1075 cm-

1 are characteristic of acrylic resin, while the peaks at 1690, 1465, and 1242 cm-1 indicate the 

presence of polyurethane. Additionally, the peaks at 1550 and 815 cm-1 confirm the presence 

of melamine as an additional resin. Furthermore, the absorption bands at 3678 and 1020 cm-

1 are indicative of talc usage as an extender in the formulation. TiO2 was also detected in the 

basecoat, as expected. A representative spectrum from this group is shown in Figure 82, with 

relevant peaks annotated for ease of interpretation. 

 

Figure 82. A representative IR spectrum of the basecoat of sample W026_3 with characteristic peaks 
of acrylic, polyurethane, melamine, and talc annotated on the spectrum. 
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8.3.5. Group 5 – basecoat 
 

This group consists of 6 samples, accounting for 10% of the total samples and is characterized 

by distinctive peaks in the FTIR spectra (see Group 5 in Table 30). The peaks at 3380, 2933, 

2860, 1690, 1526, 1465, 1243, 1162, and 762 cm-1 are indicative of the presence of 

polyurethane, which is identified as the primary resin in this group. In addition, peaks at 3083, 

3060, 3027, 1601, 1490, 762, and 700 cm-1 can be attributed to styrene, which is used as an 

additional resin in the formulation. Figure 83 illustrates a representative spectrum from this 

group with annotated peaks corresponding to polyurethane and styrene. TiO2 was found in 

this group, but the concentration was notably lower compared to the previous groups. This 

can be inferred from the gradual rise in the spectrum towards 700 cm-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 83. A representative IR spectrum of the basecoat of sample W004_1 with characteristic peaks 
of polyurethane and styrene annotated on the spectrum. 
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8.3.6. Group 6 – basecoat 
 

This group comprises only one sample, representing a negligible 1% of the total samples 

analyzed (see Group 6 in Table 30). The sample spectrum exhibits diagnostic absorption peaks 

at various wavenumbers, including a carbonyl stretch at 1730 cm-1, an aromatic C=C stretch 

at 1580 cm-1, a C-H bending of an aromatic ring at 1470 cm-1, a C-H stretching vibration of 

aliphatic groups at 1265 cm-1, and C-O stretching vibrations at 1120 cm-1, 1070 cm-1, and 1040 

cm-1. The presence of these peaks collectively suggests the presence of ortho-phthalic alkyd 

resin in the sample. Furthermore, the detection of peaks at 1550 cm-1 and 815 cm-1 signifies 

the presence of melamine as an additional resin. Figure 84 illustrates the characteristic peaks 

of this group and a comparison between a reference alkyd melamine binder. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 84. Comparison of a representative IR spectrum of the basecoat of sample W008_2 (top) with 
a reference alkyd melamine binder (bottom). Characteristic peaks of ortho-phthalic alkyd and 

melamine are annotated on the spectrum of sample W008_2. 
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8.3.7. Group 7 – basecoat 
 

Within this particular group, there was a sole sample that constituted a mere 1% of the overall 

sample set (see Group 7 in Table 30). The analysis of this sample's IR spectra unveiled distinct 

peaks indicating the presence of acrylic resin in the basecoat. Notably, absorption bands at 

2960, 2873, 1480, 1380, 1370, 1260, 1160, and 1075 cm-1 exhibited characteristic peaks of 

acrylic resin. Furthermore, the peaks observed at 1550 and 815 cm-1 confirm the presence of 

melamine as additional resin. Despite their subtle nature, the peaks at 3062, 3027, and 1490 

cm-1 further indicated the existence of styrene. As anticipated, the basecoat also 

demonstrated the detection of TiO2. A representative spectrum from this specific group has 

been provided in Figure 85, with characteristic peaks labeled accordingly. 

 

 

 

 

 

 

 

 

 

 

 

Figure 85. A representative IR spectrum of the basecoat of sample W013_1 with characteristic peaks 
of acrylic, melamine and styrene annotated on the spectrum. 
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8.3.8. Classification and discrimination of basecoat 
 

Table 31 provides a summary of the characteristic compounds identified from the IR spectra 

of the basecoat for each sample examined in this study. Based on the analysis of the chemical 

composition of binders, pigments, and extenders in the paint samples, the basecoats were 

classified into seven distinct groups, as depicted in Figure 86. Notably, two major groups were 

observed in the figure. The first group, representing 43.5% of the total sample set, displayed 

a mixture of acrylic and isophthalic alkyd binders. Furthermore, this group included melamine 

and polyurethane resins, along with TiO2 as the pigment. The second major group, comprising 

38.7% of the total sample set, exhibited a combination of polyurethane resin, isophthalic 

alkyd, and melamine resins. Additionally, this group contained TiO2 and talc as pigments and 

extenders, respectively. By identifying these distinct groups based on their chemical 

compositions, a comprehensive understanding of the basecoats was obtained.  

The analysis of basecoat spectra in the studied samples has provided valuable insights into 

the composition of the resins and the presence of additional components, as illustrated in 

Figure 87. Polyurethane resin emerged as the most common binder, accounting for 96.8% of 

the total samples. The second largest binder type was isophthalic alkyd, found in 82.3 % of 

the samples. Acrylic resin constituted a smaller proportion of 46.8%, while orthophthalic alkyd 

resin was detected in only 1.6% of the samples.  

Additionally, the analysis revealed the presence of additional resins in the majority of the 

samples. Melamine was commonly detected as an additional resin, present in 51.6% of the 

samples. Styrene was detected in 11.3% of the samples as an additional component, mainly 

among repainted samples with the primary resin being polyurethane.  

Regarding pigments and extenders, the presence of TiO2 was detected in all samples, which 

aligns with its role in imparting the characteristic white color observed under microscopic 

analysis. Talc, on the other hand, was the most commonly detected extender, found in 40% 

of the samples. 

Through visual comparison and groupings of the basecoats obtained from IR analysis 

(summarized in Table 30), a total of 278 sample pairs remained undifferentiated, resulting in 

a discriminating power of 85.3% (278 undifferentiated pairs out of a total of 62 samples).  
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Table 31. Summary of characteristic compound based on the FTIR spectra of the basecoat of the 
automotive paint samples in this thesis (n=62) 

BINDER  PIGMENTS/EXTENDERS 

Sample\ 
Composition 

PUR ACR ALK IPH ALK OPH MEL STY TiO2 Talc 

W001 X X X  X  X  
W002 X  X    X X 
W003 X X X  X  X  
W004 X     X X  
W005 X  X    X X 
W006 X X X  X  X  
W007 X  X    X X 
W008    X X  X  
W009 X X X  X  X  
W010 X  X    X X 
W011 X X X  X  X  
W012 X  X    X X 
W013  X   X X X  
W014 X  X    X X 
W015 X  X    X X 
W016 X  X    X X 
W017 X X X  X  X  
W018 X  X    X X 
W019 X X X  X  X  
W020 X  X    X X 
W021 X X X  X  X  
W022 X X X  X  X  
W023 X  X    X X 
W024 X X X  X  X  
W025 X X X  X  X  
W026 X X   X  X X 
W027 X X X  X  X  
W028 X X X  X  X  
W029 X     X X  
W030 X X X  X  X  
W031 X X X  X  X  
W032 X  X    X X 
W033 X  X    X X 
W034 X X X  X  X  
W035 X X X  X  X  
W036 X  X    X X 
W037 X     X X  
W038 X     X X  
W039 X X X  X  X  
W040 X X X  X  X  
W041 X  X    X X 
W042 X  X    X X 
W043 X X X  X  X  
W044 X  X    X X 
W045 X  X    X X 
W046 X  X    X X 
W047 X  X    X X 
W048 X    X  X  
W049 X  X    X X 
W050 X X X  X  X  
W051 X  X    X X 
W052 X X X  X  X  
W053 X  X    X X 
W054 X  X    X X 
W055 X X X  X  X  
W056 X     X X  
W057 X     X X  
W058 X X X  X  X  
W059 X X X  X  X  
W060 X X X  X  X  
W061 X X X  X  X  
W062 X    X  X  
Total 60 29 51 1 32 7 62 25 
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Figure 86. Proportion of samples according to the combination of infrared characterizations. Seven 
groups (combinations) can be distinguished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 87. Distribution of infrared characterizations with the basecoat of 62 vehicles. 
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After conducting visual comparisons and groupings, the relationship between chemical 

composition and the original vehicle information was examined. Similar to the observations 

made for the clearcoat, the chemical composition of the basecoat also appears to be closely 

tied to the layer structure. For instance, it was found that all samples belonging to the OEM3 

paint system exhibited a polyurethane binder type. Furthermore, all 27 samples in Group 3 

(see Table 30), characterized by an acrylic mixed with isophthalic alkyd binder type, 

corresponded to the OEM4 system. As expected, Sample W026 displayed a unique chemical 

profile that differed from the rest of the Chinese-produced samples, owing to its distinct 

origin. In addition, the basecoat compositions of repainted samples exhibited distinct 

chemical features that were easily distinguishable from both the OEM paint and from each 

other. 
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8.3.9. Exploratory analysis 
 

A total of 321 IR spectra of basecoats, obtained from 62 samples with 107 subsamples, were 

subjected to PCA analysis. Prior to analysis, the dataset underwent the same preprocessing 

steps, including baseline offset, SNV normalization, and detrending with a polynomial order 

of 2. The analysis specifically focused on variables within the range of 3700-3650 cm-1, 3100-

2828 cm-1, and 1800-680 cm-1, resulting in a dataset comprising 3035 variables. These 

preprocessing steps and the defined spectral range aimed to enhance the quality and 

relevance of the data for the subsequent PCA analysis. 

Figure 88 provides an overview of the PCA model generated from the analyzed dataset, 

showing the projections of IR spectra based on the first four principal components (PC1 to 

PC4), which collectively account for 89% of the total variance. The corresponding loading plots 

are displayed in Figure 89. 

In the PCA scatter plot (Figure 88a), samples are projected based on PC1 and PC2, revealing 

13 distinct clusters (marked in dashed circle and rectangular). Examining the loading plot for 

PC1 (Figure 89a), wavenumbers at 1690 and 1465 cm-1, associated with polyurethane, exhibit 

the highest positive correlation. Conversely, wavenumbers at 1730, 1550, 1480, 1280, 1170, 

and 1075 cm-1 show notable negative correlation, corresponding to spectral features of acrylic 

and melamine. The loading plot for PC2 (Figure 89b) indicates that PC2 is influenced by the 

signals of polyurethane, acrylic, and isophthalic alkyd. These factors contribute significantly 

to the observed separation in the score plot. Samples projected on the right side of the scatter 

plot mainly contain polyurethane, while those on the left side mainly contain acrylic and 

melamine. Therefore, the observed separation primarily arises from the different chemical 

categories or compositions of the samples, aligning with visual characterization and 

comparison results.  

However, 7 groups of samples remained undifferentiated, and there were overlaps among 

groups with identical chemical classes in the scatter plot based on PC1 and PC2 (marked in 

dashed rectangular in Figure 88a). The addition of PC3 successfully separated 3 samples from 

Group 6 (highlighted in a red dashed rectangular in Figure 88a) into individual cluster, as 

shown in the red dashed circle in Figure 88b. Group 3 also became well separated from Group 

2 in Figure 88b. Furthermore, the addition of PC4 allowed the differentiation of two samples 

in Group 7 (highlighted with green dashed line in Figure 88a and Figure 88c), and some 

samples from Group 2 are well separated from the rest (indicated with a blue dashed line in 

Figure 88a and Figure 88c). PC3 primarily relates to polyurethane and melamine, while PC4 is 

influenced by talc and styrene (Figure 89c-d).  
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This PCA model failed to differentiate samples from Group 1 to Group 5. As a result, additional 

PCA analyses were performed on samples from each of these groups individually. However, 

even with these additional analyses, the samples from Group 1 to Group 3 could not be 

effectively differentiated.  

Eventually, a total of 25 groups could be distinguished using the PCA model. The grouping 

results of the PCA analysis is presented in Table 32. This resulted in a total of 361 pairs of 

samples remaining undifferentiated, leading to a discriminating power of 81% for the PCA 

observation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 88. PCA score plots according to the first four principal components of the dataset of IR 
spectra of basecoat (n=62): a) projections according to PC1 and PC2; b) projections according to PC1 
and PC3; c) projections according to PC1 and PC4. 7 groups of undifferentiated spectra according to 

the set of principal components of the model are highlighted with dashed rectangles (groups 
observed according to the dispersions of the spectra). Samples that well separated from the rest 

were highlighted in dashed circle. 
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Figure 89. loadings of the first four principal components (a to d, respectively) of the PCA model on 
the 321 IR spectra of basecoat. The wave numbers corresponding to characteristic peaks of the 

characterized resin or extenders are highlighted using different shapes and colors. 

 

Table 32. Summary of PCA-based groupings of basecoat (n=62)  

 GROUP SAMPLES  CHEMICAL COMPOSITION 

 1 
W002, W005, W010, W012, W014, W015, W016, W018, W020, W023, 
W032, W033, W036, W041, W042, W044, W045, W046, W047, W049, 

W051, W053, W054 
PUR+ALK IPH+TALC+TIO2 

 2 
W001, W003, W006, W009, W011, W017, W021, W022, W024, W039, 

W043, W052, W059, W060, W061 
ACR+ALK IPH+MEL+PUR+TIO2 

 3 W019, W025, W040 ACR+ALK IPH+MEL+PUR+TIO2 

 4 W007 PUR+ALK IPH+TALC+TIO2 

 5 W048 PUR+MEL+TIO2 

 6 W062 PUR+MEL+TIO2 

 7 W026 ACR+PUR+MEL+TALC+TIO2 

 8 W027 ACR+ALK IPH+MEL+PUR+TIO2 

 10 W028 ACR+ALK IPH+MEL+PUR+TIO2 

 11 W030 ACR+ALK IPH+MEL+PUR+TIO2 

 12 W031 ACR+ALK IPH+MEL+PUR+TIO2 

 13 W034 ACR+ALK IPH+MEL+PUR+TIO2 

 14 W035 ACR+ALK IPH+MEL+PUR+TIO2 

 15 W050 ACR+ALK IPH+MEL+PUR+TIO2 

 16 W055 ACR+ALK IPH+MEL+PUR+TIO2 

 17 W058 ACR+ALK IPH+MEL+PUR+TIO2 

 18 W004 PUR+ STY+TIO2 

 19 W008 ALK OPH+MEL+TIO2 

 20 W013 ACR+MEL+STY+TIO2 

 21 W029 PUR+ STY+TIO2 

 22 W037 PUR+ STY+TIO2 

 23 W038 PUR+ STY+TIO2 

 24 W056 PUR+ STY+TIO2 

 25 W057 PUR+ STY+TIO2 

 

a) 
b) 

c) d) 

PUR ACR ALK IPH   STY  MEL   TALC 
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The data structure of the IR spectra of the basecoats, specifically focusing on 54 OEM paint 

samples, was investigated and depicted in Figure 90. The PCA score plots were generated to 

analyze the dataset according to the first two principal components, highlighted by chemical 

categories (Figure 90a), layer structure (Figure 90b), manufacturing companies (Figure 90c), 

assembly plants (Figure 90d), topcoat color codes (Figure 90e), and vehicle models (Figure 

90f).  

Figure 90a indicate that the samples were well separated based on the different binder type 

as samples projected on right side of the scatter plot mainly contain polyurethane as their 

main binder type, while those on the left side are mainly acrylic based binder.  

Analyzing these PCA scatter plots reveals that, for the chemical characteristic of samples with 

regards to layer structure, manufacturing company, assembly plant, topcoat color codes and 

vehicle models, similar pattern as what was observed for clearcoat, emerges from this 

exploratory analysis (Figure 90b-f), were describes as follows:  

1) All samples displaying the OEM3 layer structure exhibit the polyurethane-based 

binder type, whereas samples with the OEM4 paint system consistently contain an 

acrylic based binder type (Figure 90b).  

2) It appears that both F-VW and S-VW manufacturing companies in China employ both 

types of binder in their basecoat application formula (Figure 90c).  

3) Most assembly plants (Plant Changchun, Plant Chengdu, Plant Ningbo, and Plant 

Osnabrück) exclusively utilize a single type of binder in their basecoat. On the contrary, 

for Plant Anting and Plant Nanjing, two different binder types were found in their 

respective products. The reason behind was consistent with what was found for 

clearcoat as Plant Anting actually consists of three sub-plants operating its 

independent production line (Figure 90d).  

4) It was found that samples that share the same topcoat color code do not always have 

identical chemical composition for their basecoat (Figure 90e). The reason behind 

needs to be further investigated.  

5) Variations were found among samples of the same model. Figure 90f depicts samples 

of the model 'New Lavida' represented by a brown horizontal line, and these samples 

are widely scattered in the scatter plot, indicating batch variations within the same 

vehicle model. The same observation was obtained among the samples of the model 

‘Passat’ represented by a pink circle in the figure.  
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Figure 90. PCA score plots according to the first two principal components of all IR spectra of 
basecoats, respectively highlighted by the chemical categories (a), layer structure (b), their 

manufacturing companies (c), their assembly plants (d), their topcoat color codes (e), and the model 
of vehicles(f). 
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8.4. Characterization of primer surfacer 
 

Out of the 62 samples in the sample set, only 28 samples were investigated for the 

characterization of primer surfacer since it only exists in paint that has an OEM4 structure. Of 

the remaining 34 samples that were not analyzed, 26 belonged to group OEM3, which did not 

have primer surfacer, and 8 from the repainted group failed to identify the layer of primer 

surfacer due to their irregular layer structure.  

The results of the visual characterization of FTIR spectra obtained from the primer surfacer of 

the 28 samples are summarized in Table 33, which classifies the samples into five groups 

based on the chemical categories of the binders, pigments, and extenders used in the layer. 

Each group of spectra is then individually analyzed to identify the constituents detected by 

FTIR in the investigated paints. Further visual comparisons were carried out to identify 

distinguishable subgroups within each group, as presented in the table, highlighting the main 

differences observed between the spectra of samples with similar characterization. 

 

Table 33. Summary of visual characterization and groupings based on the FTIR spectra of the primer 
surfacer of the automotive paint samples in this thesis (n=28). 

GROUP/COMPOSITION SUB-GROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

GROUP 1 
EPY+PUR+MEL 

+TALC+BAS+TIO2 
 

- 

W003, W006, W009, W011, 
W017, W019, W021, W022, 
W024, W025, W027, W028, 
W030, W031, W039, W040, 
W043, W050, W052, W055, 

W058, W059, W060 

Non differentiated within the group 

GROUP 2 
ALK IPH+EPY+MEL 

TALC+TIO2 
- W001 Single sample in the group 

GROUP 3 
ALK IPH+PUR+EPY 
+TALC+ALS+TIO2 

3.1 W035 High intensity of peak at 1690 cm-1 

3.2 W061 Low intensity of peaks at 1690 cm-1 

GROUP 4 
ALK IPH+MEL+ 

TALC+TIO2 
- W034 Single sample in the group 

GROUP 5 
ALK TER+ACR+MEL+ 

BAS+TIO2 
- W026 Single sample in the group 
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8.4.1. Group 1 – primer surfacer 
 

This group is composed of 23 samples, representing the majority of the total samples at 82% 

(see Group 1 in Table 33), and displays abundant absorption peaks in a typical spectrum. The 

peaks observed at 1610, 1510, 1240, 1180, and 830 cm-1 are indicative of the presence of 

epoxy resin in the samples of this group. The peak at 1610 cm-1 corresponds to the C=C 

stretching vibrations of the aromatic ring, while the peak at 1510 cm-1 corresponds to the C=C 

stretching vibrations of the aliphatic ring. The peak at 1240 cm-1 corresponds to the C-O-C 

stretching vibration. The peaks at 1180 and 830 cm-1correspond to the C-O and C-H bending 

vibrations, respectively. Together, these peaks suggest the presence of epoxy resin in the 

samples of this group. The peaks at 1730 and 1690 cm-1, which corresponds to the stretching 

vibration of the carbonyl group (C=O) of polyurethane, is a prominent feature in the spectra 

of this group. The existence of polyurethane is further confirmed by the presence of peaks at 

1465 cm-1, which correspond to the symmetric bending vibration of the methylene (-CH2-) 

groups. Apart from the two resins, the peaks at 1550 (in-plane deformation of the triazine 

ring) and 815 cm-1 (out of plane triazin ring vibration) indicate the presence of melamine, 

which is commonly used as a crosslinker in coating formulations. The rising trend in the 

spectrum towards 700 cm-1 is attributed to the presence of TiO2, which is consistent with the 

microscopic observation of a white color in the primer surfacer. The presence of talc as an 

extender in this group is evidenced by the absorption peaks observed at 3676 and 1020 cm-1. 

Moreover, the strong peaks detected at 1180, 1120 and 1080 cm-1 suggest a high 

concentration of barium sulfate. It is worth noting that talc and barium sulfate are commonly 

used as fillers in paint formulations to improve their properties such as hiding power and 

abrasion resistance. The identification of these fillers in this group can provide valuable 

insights into the composition of the paint and its potential performance. Figure 91 illustrates 

a representative spectrum of this group, with the characteristic peaks of polyurethane, epoxy, 

melamine, talc, and barium sulfate labeled accordingly, in comparison with the reference 

spectra of epoxy, melamine, talc and barium sulfate. 
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Figure 91. Representative Spectrum of the primer surfacer of sample W003_3 (up) with reference 
spectra of epoxy, melamine, talc, and barium sulfate (bottom). Characteristic peaks of polyurethane, 

epoxy, melamine, talc, and barium sulfate are annotated on the spectrum. 
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8.4.2. Group 2 – primer surfacer 
 

This group comprises a single sample, representing only 3% of the total sample set (see Group 

2 in Table 33). The spectrum of this group displays prominent absorption peaks, which were 

analyzed to identify the constituents present in the primer surfacer. The strong peak observed 

at 1728 cm-1 corresponds to the stretching vibration of the carbonyl (C=O) group, while the 

peaks at 1467, and 1375cm-1 are attributed to the deformation vibrations of the C-H group 

deformation vibrations of methyl and methylene groups. The peaks observed at 1303, 1240, 

1140, 1095 and 1075 cm-1 can all correspond to the C-O stretching vibrations of the 

isophthalic ester. The peak at 730 cm-1 corresponds to the out-of-plane bending vibration of 

C-H groups in aromatic rings. Based on the distinctive absorption peaks identified in the 

analyzed group, it can be inferred that the primary resin present in the primer surfacer of this 

group is isophthalic alkyd. In addition to that, peaks at 1610, 1510 and 830 cm-1 reveal the 

presence of epoxy, while the peaks at 1550 and 815 cm-1 indicate the presence of melamine. 

TiO2 and talc were also detected in this group. Figure 92 illustrates a representative spectrum 

of this group, with the characteristic peaks of isophthalic alkyd, epoxy, melamine, and labeled 

accordingly. 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 92. A representative IR spectrum of the primer surfacer of sample W001_1 with characteristic 
peaks of isophthalic alkyd, epoxy, melamine, and talc annotated on the spectrum. 
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8.4.3. Group 3 – primer surfacer 
 

This particular group is composed two samples, accounting for 7% of the overall sample set 

(see Group 3 in Table 33). Despite its small representation, the spectrum of this group displays 

notable absorption peaks, which were carefully analyzed to identify the constituents present 

in the primer surfacer. Notably, the strong peak observed at 1728 cm-1 corresponds to the 

stretching vibration of the carbonyl (C=O) group, while the peaks at 1375 cm-1 is attributed to 

the deformation vibrations of the C-H group in the aromatic ring. Additionally, the peaks 

observed at 1304, 1240, 1095, and 1075 cm-1 all correspond to the C-O stretching vibrations 

of the isophthalic ester. The peak at 730 cm-1 corresponds to the out-of-plane bending 

vibration of C-H groups in aromatic rings. These distinctive absorption peaks point to the 

primary resin present in the primer surfacer of this group being isophthalic alkyd. 

Further analysis of the spectrum revealed the presence of other chemical constituents. Peaks 

at 1690 and 1465 cm-1 confirmed the presence of polyurethane, while peaks at 1610, 1510, 

and 830 cm-1 revealed the presence of epoxy. TiO2 and talc were also detected in this group, 

and It is worth noting that peaks at 3700 and 3620 cm-1 indicate the presence of aluminum 

silicate, also known as clay or kaolinite. It is a type of clay mineral commonly used as a filler 

in paint formulations. It can contribute to the hiding power of the paint, allowing it to cover 

and hide the substrate effectively. 

To provide a clear and detailed representation of this group's spectrum, Figure 93 illustrates 

a representative spectrum with the characteristic peaks of isophthalic alkyd, epoxy, 

polyurethane, talc, kaolinite, and their respective labels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 93. A representative IR spectrum of the primer surfacer of sample W035_1 with characteristic 
peaks of isophthalic alkyd, epoxy, polyurethane, talc and kaolinite annotated on the spectrum. 
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8.4.4. Group 4 – primer surfacer 
 

This group is represented by a single sample, which accounts for only 3% of the total sample 

set (see Group 4 in Table 33). The spectrum of this group contains several absorption peaks, 

including a strong peak at 1728 cm-1 as well as peaks at 1475, 1373, 1304,1240, 1095, 1075, 

and 730 cm-1. Based on these distinctive peaks, it can be inferred that the primary resin in the 

primer surfacer of this group is isophthalic alkyd. Additionally, peaks at 1550 and 815 cm-1 

confirmed the presence of melamine, while TiO2 and talc were also detected. A 

representative spectrum of this group with the characteristic peaks of isophthalic alkyd, 

melamine, talc, and their respective labels can be seen in Figure 94. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 94. A representative IR spectrum of the primer surfacer of sample W034_2 with characteristic 
peaks of isophthalic alkyd, melamine, and talc annotated on the spectrum. 
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8.4.5. Group 5 – primer surfacer 
 

This group comprises a single sample, representing only 3% of the total sample set (see Group 

5 in Table 33). The spectrum of this group displays several prominent absorption peaks, which 

were analyzed to identify the constituents present in the primer surfacer. The strong peak 

observed at 1727 cm-1 corresponds to the stretching vibration of the carbonyl (C=O) group. 

The peak at 1270 cm-1 is attributed to the C-H bending vibrations in the aromatic ring. Peaks 

at 1120 cm-1 and 1104 cm-1 correspond to the C-O-C stretching. The peak at 1020 cm-1 is 

attributed to the C-H bending vibrations in the aliphatic chain. The peak at 730 cm-1 

corresponds to the out-of-plane bending vibration of C-H groups in aromatic rings. Based on 

these distinctive absorption peaks, it can be inferred that the primary resin present in the 

primer surfacer of this group is terephthalic alkyd. In addition to the presence of terephthalic 

alkyd, peaks at 1475 cm-1, 1373 cm-1, 1180 cm-1, and 1080 cm-1 indicate the presence of acrylic. 

Furthermore, peaks at 1550 cm-1 and 815 cm-1 show the presence of melamine. Barium 

sulfate was also detected, due to the strong absorption peaks at 1120 cm-1, 1080 cm-1, and 

983 cm-1. The rising trend towards 700 cm-1 indicates the presence of TiO2. Figure 95 shows 

a representative spectrum with the characteristic peaks of terephthalic alkyd, acrylic, 

melamine, barium sulfate and their respective labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 95. A representative IR spectrum of the primer surfacer of sample W026_3 (top) in comparison 
with reference spectra of terephthalic alkyd (middle) and barium sulfate (bottom). Characteristic 

peaks of isophthalic alkyd, acrylic, and barium sulfate are annotated on the spectrum. 
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8.4.6. Classification and discrimination of primer surfacer 
 

Table 34 provides a summary of the characteristic compounds identified from the IR spectra 

of the primer surfacer for each sample examined in this study. Upon analyzing the various 

combinations of binder, pigments and extenders, it was found that the primer surfacer 

samples could be categorized into five groups (as illustrated in Figure 96). The predominant 

group of samples (accounting for 82% of the total sample set) exhibited an epoxy resin in 

combination with polyurethane and melamine resins, accompanied by the presence of TiO2, 

talc, and barium sulfate as pigments and extenders. 

 

Table 34. Summary of characteristic compound types based on the FTIR spectrum of the primer 
surfacer of the automotive paint samples in this thesis (28 samples) 

                                                     BINDER PIGMENTS/EXTENDERS 

Sample\ 
Composition 

EPY PUR ACR ALK IPH ALK TER MEL TiO2 ALS BAS TALC 

W001 X   X  X X   X 
W003 X X    X X  X X 
W006 X X    X X  X X 
W009 X X    X X  X X 
W011 X X    X X  X X 
W017 X X    X X  X X 
W019 X X    X X  X X 
W021 X X    X X  X X 
W022 X X    X X  X X 
W024 X X    X X  X X 
W025 X X    X X  X X 
W026   X  X X X  X  
W027 X X    X X  X X 
W028 X X    X X  X X 
W030 X X    X X  X X 
W031 X X    X X  X X 
W034    X  X X   X 
W035 X X  X   X X  X 
W039 X X    X X  X X 
W040 X X    X X  X X 
W043 X X    X X  X X 
W050 X X    X X  X X 
W052 X X    X X  X X 
W055 X X    X X  X X 
W058 X X    X X  X X 
W059 X X    X X  X X 
W060 X X    X X  X X 
W061  X   X  X X  X 
Total 25 25 1 3 3 26 28 2 24 25 
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The characterization of primer surfacer spectra in the studied samples has revealed the 

presence of five binder types (see Figure 97). Epoxy resin combined with polyurethane is the 

predominant type, comprising 82% of the total samples, while isophthalic alkyd, terephthalic 

alkyd and acrylic are present at lower proportions of 10.7%, 10.7% and 3.5%, respectively. 

Furthermore, melamine is a commonly detected additional resin in 93% of the samples, often 

found in association with epoxy and polyurethane, which was identified in 89% of the samples. 

The presence of TiO2 was detected in all samples, consistent with its role in providing the 

characteristic white color observed under microscopic analysis. Talc was the most commonly 

detected extender, found in a majority of the samples (89%). Barium sulfate, another type of 

extender, was also detected in 86% of the samples, primarily in conjunction with an epoxy-

polyurethane- melamine type of binder. In addition, a small number of samples (7%) 

contained aluminum silicate.  

 

 

 

 

 

 

 

 

 

 

 

Figure 96. Proportion of samples according to the combination of infrared characterizations. Five 
groups (combinations) can be distinguished. 

 

 

 

 

 

 

 

 

Figure 97. Distribution of infrared characterizations with the primer surfacer of 28 vehicles. 
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The discriminating power for the visual comparisons of primer surfacer spectra was 

determined based on the subgroups presented in Table 33, taking into account the number 

of pairs of undifferentiated samples (253 pairs, for a total of 28 samples). This resulted in a 

discriminating power of 33.1%.  

After characterizing and classifying the undifferentiated samples, the correlation between 

their chemical properties and origin was investigated. The samples with an OEM4 layer 

structure were found to originate from three different assembly plants: 20 vehicles from Plant 

Anting of S-VW company, 7 vehicles from Plant Changchun of F-VW company, and 1 vehicle 

from Plant Osnabrück in Germany. The primer surfacer formulations of the 20 vehicles from 

Plant Anting were found to be very consistent, with no differentiation observed based on 

their IR spectra despite variations in model and production year. In contrast, the primer 

surfacer formulations of the 7 vehicles from Plant Changchun were diverse, with four 

different types of primer surfacer composition observed. The consistency of primer surfacer 

formulations at Plant Anting could potentially make it easier to link a paint sample to a specific 

plant or production batch. However, it could make it more difficult to link the paint sample to 

a particular model or production year of a vehicle. 
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8.4.7. Exploratory analysis 
 

An exploratory analysis of all 165 IR spectra of primer surfacer (from 28 samples with 55 

subsamples) was conducted using PCA to effectively visualize the underlying data structure. 

Baseline correction, SNV normalization and detrending with a polynomial order 2 were 

applied for the pretreatment of the dataset. The variables in the range of 3750-3600, 3100-

2828 and 1800-680 cm-1(3200 points) were selected for analysis.  

Figure 98 provides an overview of the PCA model generated from this dataset, displaying the 

projections of IR spectra based on the first two principal components (PC1 and PC2) and 

relevant loading plots. Figure 98a presents a PCA score plot obtained from the analysis of all 

samples. The plot reveals three prominent clusters. Upon examining the loading plot on PC1 

(Figure 98b), it is evident that wavenumbers at 1270, 1180, 1120, and 1080 cm-1 exhibit the 

greatest positive correlation, which are associated with terephthalic alkyd and barium sulfate, 

suggesting that these factors are responsible for the observed separation in the score plot. 

Conversely, wavenumbers at 1725, 1305, 1240, and 730 display notable negative correlation, 

which are the spectral features of isophthalic alkyd, indicating their contribution to the 

separation of samples as well. Therefore, the separation in Figure 98a is primarily driven by 

the different chemical categories or compositions of the samples, which is consistent with 

that of visual characterization and comparison.  

However, the first two PCs explain only 73% of the total variance, the addition of more PCs 

does not add more distinct groups. Additional PCA analysis was therefore conducted on the 

overlapping clusters (highlighted in red and green dashed line in Figure 98a), in order to 

achieve further separation and differentiation. Figure 98c and Figure 98d illustrate the 

resulting score plots derived from the first two PCs. These plots provide enhanced 

visualization and improved separation of the samples, enabling a clearer distinction between 

the previously overlapping clusters. To comprehend the reasons behind this improved 

separation, Figure 98e and Figure 98f depicts the loading plots focusing on PC1. These loading 

plots highlight the spectral features or wavenumbers that contribute significantly to the 

separation observed in the score plots. As showed in Figure 98c and Figure 98e, sample W035 

and sample W061 can be separated due to the spectral features that correspond to that of 

polyurethane, indicating the concentration of polyurethan in these two samples are different. 

As for Figure 98d, sample W003, W006 and W011 are separated from the rest of samples due 

to the wavenumber at 1020 cm-1, which is the characteristic peak of talc. When checking back 

the spectra, the intensity of talc in these samples are different from the rest.  

Additional PCA was performed on the undifferentiated samples, as indicated by the dashed 

line in Figure 98d. In the end, PCA analysis resulted in the generation of 9 distinct groups as 

presented in Table 35. However, there were still 20 samples that could not be differentiated 

based on the PCA results. Based on these groups, a discriminatory power of 49.7% can be 

obtained by PCA analysis of the IR spectra of primer surfacer (190 undifferentiated pairs, for 

a total of 28 samples). 
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Figure 98. PCA score and loading plots obtained from the dataset: a) PCA score plot obtained from 
the analysis of all samples (n=28), employing the first two principal components (PCs). The different 

chemical categories are marked on the figure; b) loading plot specifically focusing on PC1, 
highlighting the underlying wavenumbers and spectra features responsible for the observed 

separation in the score plot; c) Additional PCA score plot derived from the first two PCs. This PCA 
analysis was conducted on the overlapping samples in the green box; d) Additional PCA score plot 
derived from the first two PCs. This PCA analysis was conducted on overlapping samples in the red 

box; e) loading plots focusing on PC1. This loading plot highlights the spectral features that 
contribute significantly to the separation observed in c); f) loading plots focusing on PC1. This loading 

plot highlights the spectral features that contribute significantly to the separation observed in d). 

Table 35. Summary of PCA-based groupings of primer surfacer (n=28)  

GROUP SAMPLES  CHEMICAL COMPOSITION 

1 
W009, W017, W019, W021, W022, W024, W025, W027, 
W028, W030, W031, W040, W043, W050, W052, W055, 

W058, W059, W060 
EPY+PUR+MEL+TALC+BAS+TIO2 

2 W001 ALK IPH+EPY+MEL TALC+TIO2 

3 W003 EPY+PUR+MEL+TALC+BAS+TIO2 

4 W006 EPY+PUR+MEL+TALC+BAS+TIO2 

5 W011 EPY+PUR+MEL+TALC+BAS+TIO2 

6 W034 ALK IPH+MEL+TALC+TIO2 

7 W035 ALK IPH+PUR+EPY+TALC+ALS+TIO2 

8 W061 ALK IPH+PUR+EPY+TALC+ALS+TIO2 

9 W026 ALK TER+ACR+MEL+BAS+TIO2 

 

a) b) 

c) d) 

ALK TER/BAS 

ALK IPH 

1725 
1305 1240 730 

1270 

1180 
1120 

1080 

e) f) 

1725 

PUR 

1690 

1465 
765 

1020 

Talc 

ALK TER 

ALK IPH 

EPY PUR 
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The data structure of the IR spectra of the primer surfacer was explored, taking into account 

several predetermined identifying factors, as illustrated in Figure 99. The PCA score plots of 

the IR spectra, specifically pertaining to manufacturing companies (Figure 99a), assembly 

plants (Figure 99b), and vehicle models (Figure 99c), were generated to analyze the dataset. 

Since all samples in this dataset exhibit an OEM4 layer system, the correlation between 

chemical composition and layer structure was not investigated.  

Consistent with visual comparison, the PCA score plots yielded similar conclusions. Notably, 

samples from Plant Anting of S-VW company showed a high level of consistency, as indicated 

by the clustering of data points in the score plot (Figure 99a and Figure 99b). Despite 

variations in vehicle model and production year, there was minimal differentiation observed 

based on their IR spectra. In contrast, samples from Plant Changchun exhibited greater 

diversity, with more discrete data points represented in the score plot. 

Regarding vehicle models, it was found that the paint formulation within the same model is 

not always consistent. Figure 99c illustrates this phenomenon, where the green triangles 

represent spectra from a specific model called 'New Bora'. These triangles are distributed 

across different clusters, which are separated based on chemical categories. This indicates 

the presence of significant batch variance, where the entire paint formulation can undergo 

changes after a certain period. 

In summary, the PCA analysis of the primer surfacer IR spectra, considering factors such as 

manufacturing companies, assembly plants, and vehicle models, confirmed the findings 

obtained from visual comparison. The results highlighted the consistency of samples from 

Plant Anting, the diversity of samples from Plant Changchun, and the existence of batch 

variance within the same vehicle model. 

 

 

 

  

 

 

 

 

 

 

 

Figure 99. PCA score plots according to the first two principal components of all IR spectra of primer 
surfacer, respectively according to their manufacturing companies (a), their assembly plants (b) and 

the model of vehicles(c). 

a) b) 

c) 
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8.5. Characterization of primer 
 

The characterization of primer was performed on 60 out of the 62 samples in the set, as 

spectra data could not be obtained for the primer of W029 and W037 due to its thin thickness. 

The FTIR spectra obtained from the primer of these 60 samples were visually characterized, 

and the results are presented in Table 36. The samples were classified into four groups based 

on the chemical categories of the binders, pigments, and extenders used in the layer. Further 

visual comparisons were carried out to identify distinguishable subgroups within each group, 

as presented in the table, highlighting the main differences observed between the spectra of 

samples with similar characterization. Each group of spectra was then analyzed individually 

to identify the constituents detected by FTIR in the investigated paints. 

 

Table 36. Summary of visual characterization and groupings based on the FTIR spectra of the primer 
of the automotive paint samples in this thesis (n=60). 

GROUP/COMPOSITION SUB-GROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

GROUP 1 
EPY+ALS 

 

1.1 W001 
Very high intensities of peaks at 3695, 3620, 
1035 and 1012 cm-1, rising towards 700 cm-1 

1.2 
W002, W005, W023, W036, 

W056 
Relative intensities of peaks at 3695, 3620, 

1035 and 1012 cm-1 

1.3 W007, W033, W046 
Relative intensities of peaks at 3695, 3620, 

1105, 1083, 1035 and 1012 cm-1 

1.4 

W009, W010, W013, W017, 
W020, W022, W027, W028, 
W030, W031, W041, W043, 

W044, W052, W053 

Relative intensities of peaks at 1105, 1083, 
1035, 1012 and 758 cm-1 

1.5 
W012, W014, W015, W016, 
W018, W032, W042, W047, 
W048, W049, W054, W062 

Relative intensities of peaks at 3695, 3620, 
1105, 1083, 1035 and 1012 cm-1 

1.6 

W003, W006, W011, W019, 
W021, W025, W026, W039, 
W040, W045, W050, W051, 

W055, W060 

Relative intensities of peaks at 3695, 3620, 
1105, 1083, 1035 and 1012 cm-1 

1.7 W024 
Relative intensities of peaks at 3695, 3620, 

1105, 1083, 1035 and 1012 cm-1 

1.8 W034, W058 
Relative intensities of peaks at 3695, 3620, 

1105, 1083, 1035 and 1012 cm-1 

1.9 W035 
Relative intensities of peaks at 3695, 3620, 

1105, 1083, 1035, 1012 and 758 cm-1 

1.10 W061 
Relative intensities of peaks at 3695, 3620, 

1035 1012 cm-1 and 700 cm-1 

GROUP 2 
EPY 

2.1 W008 Rising towards 700 cm-1 

2.2 W057 
Relative intensities of peaks at 1130 and 

1103 cm-1 

2.3 W059 
Relative intensities of peaks at 1130 and 

1103 cm-1, no rising towards 700 cm-1 

GROUP 3 
ALK OPH + 

NCL+BAS+TALC 
- W038 Single sample in the group 

GROUP 4 
ACR+STY+TALC 

- W004 Single sample in the group 
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8.5.1. Group 1 – primer 
 

This group comprises the majority of samples, with 55 samples having identical chemical 

composition, accounting for 92% of the total sample set (see Group 1 in Table 36). A typical 

spectrum of the analyzed group displays diagnostic absorption peaks at 3036, 2955, 2931, 

2872, 1610, 1510, 1460, 1413, 1300, 1240, 1180, 1105, 1083, 1040, 1012 and 830 cm-1. The 

absorption peak between 3000 and 2800 cm-1 corresponds to the stretching vibration of C-H 

bonds in aromatic compounds. The peaks at 1610 and 1510 cm-1 are associated with the C= C 

stretching vibration of the aromatic bisphenol ring. The peaks at 1460 and 1413 cm-1 are 

associated with the bending vibration of the methyl (CH3) group. The peak at 1300 cm-1 is 

associated with the stretching vibration of C-N bonds in amides, which could indicate the 

presence of an amide binder. The broad peak at 1240 cm-1 is due to C6H4-O stretching. The 

peaks at 1183 and 1103 cm-1 are associated with the stretching vibration of C-O bonds. The 

peak at 1083 and 1040 cm-1 correspond to the stretching vibration of C-O bonds in aliphatic 

compounds. Finally, the peak at 830 cm-1 is associated with the out-of-plane bending of two 

adjacent hydrogens on the aromatic ring. Based on these absorption peaks, it appears that 

the binder used in the primer is likely to be epoxy resin. In addition to the binder types 

identified, the spectrum also revealed the presence of pigments and extenders in the 

analyzed samples. The characteristic peaks at 3695, 3620, 1103, 1035, 1012, and 915 cm-1 

correspond to the diagnostic peaks of aluminum silicate. Figure 100 illustrates the distinctive 

peaks of epoxy resin and clay found in the sample, along with a comparison to the reference 

spectra of pure epoxy resin and clay. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 100. Comparison of the representative IR spectrum of the primer from sample W040 (top) 
containing epoxy resin and clay with reference spectra of pure epoxy resin (middle) and pure clay 

(bottom). The characteristic peaks of epoxy and clay are annotated on the spectrum of sample W040.  
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8.5.2. Group 2 – primer 
 

This group is composed of 3 sample, representing 5% of the total sample set (see Group 2 in 

Table 36). The IR spectrum of this group closely resembles that of group 1, with diagnostic 

peaks observed at 1610, 1510, 1240, 1180 and 830 cm-1, suggesting the use of epoxy resin as 

the binder. However, the absence of aluminum silicate in this sample distinguishes it from 

group 1. Figure 101 provides a representative spectrum of this group, displaying the 

characteristic peaks of epoxy resin labeled on the spectrum for reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 101. A representative IR spectrum of the primer of sample W059_1 with characteristic peaks 
of epoxy resin annotated on the spectrum. 
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8.5.3. Group 3 – primer 
 

This group consists of only one sample, constituting a mere 1.5% of the total sample set (see 

Group 3 in Table 36). In contrast to the previous groups, the spectrum of this particular sample 

exhibits distinctive absorption peaks, implying the existence of a different type of binder. The 

peaks at 1650, 1280, 1065, 840 and 750 cm-1 correspond to the characteristic vibrations of 

nitrocellulose. Specifically, the peaks at 1650, 1280 and 840 cm-1 are associated with the O-

NO2 stretching vibrations, while the peak at 1065 cm-1 is due to the C-O stretching vibration. 

These findings strongly suggest that the binder type in this sample is nitrocellulose. 

Additionally, the spectrum also displays peaks at 1727, 1457, 1382, 1123 and 1065 cm-1, which 

indicate the presence of orthophthalic alkyd. Furthermore, peaks at 3678 and 1020 cm-1 are 

suggestive of the existence of talc, whereas the peaks observed at 1180 and 1123 cm-1 may 

arise from the presence of barium sulfate. A representative spectrum of this group with the 

characteristic peaks of nitrocellulose, orthophthalic alkyd, talc, barium sulfate, and their 

respective labels can be seen in Figure 102, along with a reference spectrum of nitrocellulose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 102. A representative IR spectrum of the primer of sample W038 (top) in comparison with a 
reference spectrum of nitrocellulose (bottom). Characteristic peaks of nitrocellulose, orthophthalic 

alkyd, talc and barium sulfate annotated on the spectrum. 
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8.5.4. Group 4 – primer 
 

This group comprises a solitary sample, representing only 1.5% of the total sample set (see 

Group 4 in Table 36). The corresponding spectrum exhibits a limited number of distinctive 

peaks. The diagnostic peaks at 1730, 1450, 1380, 1260, 1170, 1150 cm-1 strongly suggest the 

primary resin used in this layer is acrylic. Specifically, these peaks are associated with the 

characteristic vibrations of the C=O, C-H, and C-O groups of acrylic resin. The peaks at 3060 

cm-1, 3026 cm-1, 1601 cm-1, 1490 cm-1, 1450 cm-1, 760 cm-1 and 700 cm-1 are indicative of 

styrene, which may be present as a modification. Moreover, the peaks at 3676 cm-1, 1020 cm-

1 and 670 cm-1 suggest the presence of talc. Figure 103 displays a representative spectrum 

with the characteristic peaks of acrylic, styrene, talc, and their respective labels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 103.  A representative IR spectrum of the primer of sample W004_1 (top) in comparison with 
reference spectra of styrene (middle) and talc (bottom). Characteristic peaks of acrylic, styrene and 

talc are annotated on the spectrum. 
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8.5.5. Classification and discrimination of primer 
 

Table 37 provides a summary of the characteristic compounds identified from the IR spectra 

of the primer for each sample examined in this study. The primer spectra of the studied 

samples reveal the presence of three primary resin types, as depicted in Figure 104. Epoxy 

resin is the predominant type, accounting for 97% of the total samples. In contrast, acrylic 

and orthophthalic alkyd are present at lower proportions of 1.5% each. Furthermore, two 

types of additional resins were detected in two samples, with one sample containing styrene 

and one sample containing nitrocellulose, respectively. Aluminum silicate was detected in 92% 

of the samples, primarily in conjunction with the epoxy resin, while only a small number of 

samples contained talc. 

These findings demonstrate the prevalence of epoxy resin as the primary component of 

primer, with acrylic and nitrocellulose present in relatively small proportions. Notably, the 

samples that contain acrylic and nitrocellulose binder types for their primer are those that 

have been repainted, indicating the great diversity of binders used in refinishing formulations. 

After examining the different combinations of primary and additional resins, along with the 

presence or absence of certain extenders, the primer samples could be classified into four 

distinct groups (as shown in Figure 105). The majority of the samples (92% of the total sample 

set) were found to contain epoxy resin combined with aluminum silicate as extenders. 

The discriminating power for visual comparisons of primer spectra was calculated using the 

subgroups listed in Table 36, taking into account the number of undifferentiated pairs 

(totaling 276 pairs from 60 samples), resulting in a discriminating power of 84.4 %. 

Following the classification of undifferentiated samples, an investigation was conducted to 

explore any potential correlation between their chemical properties and origin. However, no 

discernible pattern was found that could be linked to any specific identifying factors, such as 

company, model, assembly plant, or production year. Unlike clearcoat or basecoat layers, the 

primer type could not be associated with the layer structure. In other words, paint samples 

from different company, model, layer structure or assembly plant could have undifferentiated 

primer compositions.  
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Table 37. Summary of characteristic compound types based on the FTIR spectra of the primer of the 
automotive paint samples in this thesis (60 samples) 

BINDER PIGMENTS/EXTENDERS 

Sample\ 
Composition 

EPY ALK OPH ACR STY NCL BAS ALS TiO2 Talc 

W001 X      X X  
W002 X      X   
W003 X      X   
W004   X X     X 
W005 X      X   
W006 X      X   
W007 X      X   
W008 X       X  
W009 X      X   
W010 X      X   
W011 X      X   
W012 X      X   
W013 X      X   
W014 X      X   
W015 X      X   
W016 X      X   
W017 X      X   
W018 X      X   
W019 X      X   
W020 X      X   
W021 X      X   
W022 X      X   
W023 X      X   
W024 X      X   
W025 X      X   
W026 X      X   
W027 X      X   
W028 X      X   
W030 X      X   
W031 X      X   
W032 X      X   
W033 X      X   
W034 X      X   
W035 X      X   
W036 X      X   
W038  X   X X   X 
W039 X      X   
W040 X      X   
W041 X      X   
W042 X      X   
W043 X      X   
W044 X      X   
W045 X      X   
W046 X      X   
W047 X      X   
W048 X      X   
W049 X      X   
W050 X      X   
W051 X      X   
W052 X      X   
W053 X      X   
W054 X      X   
W055 X      X   
W056 X      X   
W057 X       X  
W058 X      X   
W059 X         
W060 X      X   
W061 X      X X  
W062 X      X   
Total 58 1 1 1 1 1 55 3 2 
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Figure 104. Distribution of infrared characterizations with the primer of 60 vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 105. Proportion of samples according to the combination of infrared characterizations. Four 
groups (combinations) can be distinguished. 
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8.5.6. Exploratory analysis 
 

A total of 339 IR spectra of primer (from 60 samples with 113 subsamples) was analyzed using 

PCA to visualize the underlying data structure. The dataset underwent baseline correction, 

SNV normalization and detrending with a polynomial order of 2 were as preprocessing steps. 

The analysis focused on variables in the range of 3750-3600, 3100-2828 and 1800-680 cm-1 

(3200 points).  

Figure 106 illustrates the PCA model generated from this dataset, depicting the projections 

of IR spectra based on the first four principal components, which account for 84% of the total 

variance. The scatter plot in Figure 106a shows a large group of samples discretely spread out 

in the center. However, two samples stand out as outliers, positioned far away from the main 

cluster of spectra (indicated by the dashed line in Figure 106a).  

The loadings of the first principal component (PC1, Figure 107a) help identify the factors 

responsible for the observed distribution in the scatter plot. PC1 is influenced by positive 

values corresponding to the spectral features of epoxy, as well as by negative values 

associated with characteristic peaks of aluminum silicate. Analyzing the loadings of the 

second principal component (PC2, Figure 107b), it becomes apparent that wavenumbers at 

1510, 1240, and 830 cm-1 exhibit significant negative correlation, indicating their association 

with epoxy resin. Conversely, positive values in PC2 primarily relate to peak at 1105 cm-1 

which belongs to epoxy. Despite PC1 and PC2 explaining 60% of the total variance, it is 

challenging to separate samples based on these two components due to the majority of 

spectra having similar chemical compositions. 

By considering the third and fourth principal components, additional separation becomes 

possible. Five samples, marked by the dashed line in Figure 107b to d, can be differentiated 

from the majority of the spectra. The loadings of the third principal component (PC3, Figure 

107c) indicate that the separation is based on the concentration of TiO2 in the samples, while 

the loadings of the fourth principal component (PC4, Figure 107d) are predominantly 

influenced by positive values corresponding to characteristic peaks of epoxy. 

Notably, most of the separated samples are identified as outliers since the PCA model 

primarily captures the components of epoxy resin and aluminum silicate. Samples that 

deviate from this chemical composition are considered outliers and cannot be effectively 

represented by this model. Ultimately, seven samples can be distinguished from the majority 

of the spectral cloud when considering the first four principal components, leaving 53 samples 

undifferentiated. 

Subsequently, an additional PCA was performed on the IR spectra from these 53 samples, 

excluding the previously identified outliers and those samples that could be differentiated in 

the previous model. The goal is to determine if there are any internal variations or similarities 

among these samples that can be captured by the PCA analysis.  
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Figure 106. PCA score plots according to the first four principal components of the dataset of IR 
spectra of primer (n=60): a) projections according to PC1 and PC2; b) projections according to PC3 

and PC4; c) projections according to PC2 and PC4; d) projections according to PC1 and PC4. Samples 
that well separated from the rest were highlighted in dashed rectangular. 

 

 

 

 

 

 

 

 

 

 

 

Figure 107. loadings of the first four principal components (a to d, respectively) of the PCA model on 
the 339 IR spectra of primer. The wave numbers corresponding to characteristic peaks of the 

characterized resin or extenders are highlighted using different shapes and colors. 
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Figure 108 displays the scatter plots resulting from PCA analysis on the 53 samples, revealing 

distinct patterns and enabling further separation within this subset of data. In the scatter plot 

based on the first two PCs (Figure 108a), four clusters can be observed, denoted by dashed 

lines. However, there is noticeable overlap between these clusters. The loadings of these PCs 

(Figure 109) indicate that the separation is primarily driven by peaks related to epoxy and 

aluminum silicate. Since all samples in this PCA model contain epoxy and aluminum silicate, 

the differentiation is mainly based on variations in peak intensity rather than the presence or 

absence of specific components. The sample in green dashed line was identified as outlier and 

thus separated from the rest sample set. PC1 accounts for 43% of the total variance and 

mainly contributes to the separation between clusters. Although PC4 has a lesser impact on 

the separation, combining PC1 and PC4 leads to improved cluster separation, as depicted in 

Figure 108b. One cluster (highlighted by a red dashed line) is completely distinct from the 

others, while the remaining two clusters still exhibit some overlap. Consequently, additional 

PCA was performed on the samples from the two overlapped clusters in an attempt to achieve 

further separation. However, despite these efforts, satisfactory differentiation between the 

samples could not be achieved, and it was determined that they would remain 

undifferentiated. 

It is important to note that there is slightly higher intra-sample variability in the IR spectra of 

the primer due to inconsistent baseline (could not be fully eliminated by pretreatment), 

contributing to the overlap between clusters. This variability within the same sample limits 

the effectiveness of PCA separation compared to visual comparison. After conducting PCA 

analysis on the IR spectra of the primer, a total of 11 groups were generated, as presented in 

Table 38. However, despite these efforts, 846 pairs of samples out of the total of 60 remained 

undifferentiated. This outcome resulted in an overall discriminating power of 55.2%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 108. PCA score plots of IR spectra of primer (n=53): a) projections according to PC1 and PC2; b) 
projections according to PC1 and PC4 

 

a) b) 



179 
 

 

 

 

 

 

 

 

 

 

Figure 109. loadings of the first two principal components (a and d, respectively) of the additional 
PCA model on IR spectra of primer(n=53). The wave numbers corresponding to characteristic peaks of 

the characterized resin or extenders are highlighted using different shapes and colors. 

 

 

Table 38. Summary of PCA-based groupings of primer (n=60)  

 GROUP SAMPLES  CHEMICAL COMPOSITION 

 1 
W012, W014, W015, W016, W018, W032, W042, W047, W048, W049, 

W054, W062 
EPY+ALS 

 2 

W002, W003, W005, W006, W007, W009, W010, W011, W013, W017, 
W019, W020, W021, W022, W023, W024, W025, W026, W030, W031, 
W033, W034, W035, W036, W039, W040, W041, W043, W044, W045, 
W046, W050, W051, W052, W053, W055, W056, W058, W059, W060 

EPY+ALS 

 3 W001 EPY+ALS 

 4 W061 EPY+ALS 

 5 W027 EPY+ALS 

 6 W028 EPY+ALS 

 7 W004 ACR+STY+TALC 

 8 W008 EPY 

 10 W038 ALK OPH +NCL+BAS+TALC 

 11 W057 EPY 
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The data structure of the IR spectra of the primer, specifically focusing on 54 OEM paint 

samples, was investigated and depicted in Figure 110. The PCA score plots were generated to 

analyze the dataset based on manufacturing companies (Figure 110a), layer structure (Figure 

110b), assembly plants (Figure 110c), and vehicle models (Figure 110d). However, no 

noticeable structure linked to these factors could be discerned from the exploratory analysis, 

as the majority of primer exhibited the same chemical composition. 

However, variations were observed among samples from the same assembly plant, as well as 

among samples of the same vehicle model. For instance, in Figure 110c, the scatter plot 

highlights IR spectra of samples from Plant Nanjing (indicated by orange diamonds), are 

widely dispersed and projected in different regions, indicating batch variations within the 

plant. Similarly, Figure 110d depicts samples of the model 'New Lavida' represented by a 

purple horizontal line, and these samples are also widely scattered in the scatter plot, 

indicating batch variations within the same vehicle model. These observations further 

emphasize the existence of variability within the primer samples, even when they share the 

same chemical class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 110. PCA score plots according to the first two principal components of all IR spectra of primer, 
respectively according to their manufacturing companies (a), their layer structure (b), their assembly 

plants (c) and the model of vehicles(d). 
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8.6. Discussion 
 

8.6.1. Blind test 
 

Although this research focuses on the exploratory analysis of paint variation within the same 

car make and color, it is important to validate that the adopted analytical procedure can be 

relied upon for the discrimination of these samples. To validate the adopted procedure, blind 

tests were executed. Five samples (one subsample from each vehicle), designated as A to E, 

were randomly chosen by a collaborator. Measurement was conducted by another 

collaborator. 

The complete statistical procedure was subsequently applied to these selected samples in a 

blind manner. For enhanced sample classification accuracy, initial PCA projections were 

conducted to determine the chemical class of each sample (see Figure 111). Then PCA models 

were selected for LDA and SIMCA classification. Specifically, the PCA scores were utilized for 

LDA (3 components used), while individual PCA models were employed for SIMCA 

classification. The predicted classifications for each replicate of each layer were then 

integrated to generate the prospective class assignment for each sample. The databases 

containing all the spectra (including all replicates) from this study were constructed using the 

OMNIC software and subsequently employed for database searches. The outcomes of the 

classification are comprehensively detailed in Table 39. 

Due to the extensive number of undifferentiated samples within each layer, the accuracy of 

classification using LDA posed challenges, as it can only assign a single class. Despite 

combining classified results from all replicates, LDA struggled to accurately classify samples. 

Predicting the class of each layer from a single sample using LDA did not result in a consensus 

classification, consequently leading to classification failure. Nevertheless, all the false 

positives identified by LDA were, in fact, attributed to the actual undifferentiated groups the 

samples originated from, which often contains at least 15 undifferentiated samples.  

In contrast, SIMCA and database search exhibited the advantage of providing multiple 

potential sources, some of which included the actual class of these samples. However, 

correctly classifying A, C, and E proved to be quite difficult, given their highly similar chemical 

profiles, resulting in elevated false positive rates. Another complicating factor in the blind 

tests was the influence of baseline variations. Certain samples exhibited curved baselines due 

to uneven surfaces during measurement. This occasionally caused projections of these 

samples to diverge significantly from the original dataset. Consequently, SIMCA classified 

these samples into no class at the 5% significance level. Successful classification requires the 

manual correction of the baseline effect and reducing the significance level to 1%. 

Conventional database search, based on ‘correlation’ between search spectra and database 

spectra, generally yielded good results regardless of baseline effects. Due to the high 

similarity, the hit list sometimes presented exceedingly high 'match values' over 99% even 

after 100 hits. All the hits with a 'match value' obtained from the correlation algorithm 
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surpassing 98% were documented. Furthermore, a visual comparison of spectra was 

conducted before any potential hits were recorded, ensuring a reliable classification process. 

Ultimately, all samples were accurately classified through SIMCA and database search. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 111. PCA projections for blind test samples (scatter plot in green, highlighted in red circles): a) 
clearcoat; b) basecoat; c) primer surfacer and d) primer. 
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Table 39. Blind tests results of LDA, SIMCA classification and database searches for 5 
unknown samples. 

SAMPLE LAYER 
PCA PROJECTED 
CHEMICAL CLASS 

LDA 
SIMCA 
(1%) 

DATABASE SEARCH (>98%) 
INTEGRATED 
PREDICTION 

ACTUAL 
SAMPLE 

A 

C PUR 
W051, 
W033, 
W023 

W036, W049, W010, 
W018, W007, W051, 

W054 

W018, W010, W032, 
W054, W042, W016, 
W041, W051, W047, 
W044, W014, W015, 

W045 

LDA  
Fail 
 
SIMCA 
W049 
 
Database 
W054, W049, 
W047, W032, 
W018, W014, 
W015 
 
 

W049 
B PUR 

W018, 
W014, 
W020 

W047, W049, W054 

W015, W054, W049, 
W044, W045, W041, 
W047, W010, W020, 
W032, W046, W014, 
W012, W005, W018 

P EPY+ALS 
W047, 
W062 

W049, W015, W047, 
W011 

W047, W049, W032, 
W054, W016, W062, 
W018, W015, W014, 
W012, W042, W048 

B 

C 
ACR+MEL+STY+

PUR 
W034, 
W061 

W040 W025, W040 
LDA 
Fail 
 
SIMCA 
W040 
 
Database 
W025, W040 

W040 

B ACR 
W030, 
W052 

W040, W043, W061 W040, W025, W019 

PS EPY+PUR 
W025, 
W028 

W040, W043 
W025, W040, W055, 
W059, W050, W060, 

W043, W021 

P EPY+ALS W053 
W040, W039, W011, 

W005, W058 

W003, W011, W040, 
W051, W050, W039, 
W019, W055, W025 

C 

C PUR 
W002, 
W048, 
W053 

W036, W049, W007, 
W051, W018, W041, 
W044, W047, W054, 

W010, W014 

W047, W051, W044, 
W045, W032, W020, 
W010, W012, W016, 
W018, W041, W042, 
W054, W015, W049 

LDA 
Fail 
 
SIMCA 
W047 
 
Database 
W047, W032, 
W015, W012, 
W016, W018, 
W042, W054, 
W049 

W047 
B PUR 

W014, 
W016 

W002, W014, W005, 
W047, W054, W015 

W054, W044, W047, 
W015, W041, W016, 
W049, W042, W020, 
W032, W012, W014, 
W010, W018, W016 

P EPY+ALS 
W060, 
W062 

W047, W049, W015, 
W011 

W047, W049, W054, 
W016, W062, W048, 
W015, W014, W032, 
W012, W042, W018 

D 

C 
ACR+MEL+STY+

PUR 
W003 

W031, W039, W052, 
W050 

W039, W003, W052, 
W055, W031, W019, 

W011 

LDA 
Fail 
 
SIMCA 
W039 
 
Database 
W003, W039, 
W011 

W039 

B ACR W055 W040, W039, W043 
W003, W039, W011, 
W021, W052, W031 

PS EPY+PUR W003 W039 

W039, W003, W011, 
W019, W021, W030, 
W055, W052, W050, 
W031, W027, W028 

P EPY+ALS 
W017, 
W031 

W040, W039, W011, 
W058, W005 

W003, W051, W011, 
W040, W039, W060 

E 

C PUR W023 
W020, W007, W051, 

W018 

W018, W010, W032, 
W020, W047, W051, 
W054, W042, W016, 
W018, W045, W044, 
W014, W012, W049,  

LDA 
Fail 
 
SIMCA 
W020 
 
Database 
W020 

W020 

B PUR 
W007, 
W053 

W020, W042, W036, 
W062 

W041, W020, W044, 
W054, W032, W049, 
W016, W047, W015 

P EPY+ALS W046 W020, W011 W020, W027 
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8.6.2. Discriminating power and inter-sample variability 
 

Inter-sample variability refers to the differences or variations observed between different 

samples within the dataset. It reflects the diversity and heterogeneity among individual 

samples, providing insights into the range of characteristics present within the group. In this 

study, inter-sample variability is assessed based on the chemical categories of samples and 

the discriminating power (DP) obtained from the IR analysis of each layer. 

Table 40 presents a summary of the discriminating power with regards to each individual layer, 

considering visual comparison and PCA-based separation across the entire sample set (n=62). 

Visual comparison revealed varying levels of discrimination capability among different layers, 

with the basecoat exhibiting the highest discriminating power and the primer surfacer 

displaying the lowest. The discriminating power obtained from PCA slightly differed from 

those of visual comparison. However, it is important to note that the PCA models established 

might not fully represent the true classification, as PCA is an unsupervised method. To build 

a more accurate classification model, supervised statistical methods such as linear 

discriminant analysis should be utilized. Therefore, in this study, PCA was primarily used for 

data structure visualization, and the further discussion on classification and discrimination 

relied on visual comparison.  

Table 41 provides an overview of the chemical categories identified from each layer through 

IR analysis, along with the number of samples within each category. Table 42 summarizes the 

groups of samples that could not be differentiated based on each layer. It was observed that 

the chemical classes identified from each layer within this sample set were quite diverse, 

particularly for the basecoat. However, this diversity primarily stemmed from the variations 

in chemical compositions among repainted samples. With the exception of the primer layer, 

where the primer of two repainted samples could not be differentiated from that of OEM 

samples, all the undifferentiated samples from other layers were OEM paint samples. 

 

 

 

Table 40. Discriminating power of each layer based on visual comparison and PCA (n=62) 

Layer type 
DP of Visual 
comparison 

Undifferentiated 
pairs of visual 
comparison 

DP of PCA 
Undifferentiated 

pairs of PCA 
Total number of 

samples 

Primer 84.4% 276 55.2% 846 60 

Primer surfacer 33.1% 253 49.7% 190 28 

Basecoat 85.3% 277 81% 361 62 

Clearcoat 84.4% 199 84.4% 199 51 
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Table 41. Chemical categories identified from each layer by IR analysis (n=62). 

Layer 
type 

Number 
of class 

Identified chemical class 
Number of samples 

within each class 
Total sample 

number 

Primer 

1 EPY+ALS 55 

60 
2 EPY 3 

3 ALK OPH + NCL+BAS+TALC 1 

4 ACR+STY+TALC 1 

Primer 
surfacer 

1 EPY+PUR+MEL+TALC+BAS+TIO2 23 

28 

2 ALK IPH+EPY+MEL+TALC+TIO2 1 

3 ALK IPH+PUR+EPY+TALC+ALS+TIO2 2 

4 ALK IPH+MEL+TALC+TIO2 1 

5 ALK TER+ACR+MEL+BAS+TIO2 1 

Basecoat 

1 PUR+ALK IPH+TALC+TIO2 24 

62 

2 PUR+MEL+TIO2 2 

3 ACR+ALK IPH+MEL+PUR+TIO2 27 

4 ACR+PUR+MEL+TALC+TIO2 1 

5 PUR+STY+TIO2 6 

6 ALK OPH+MEL+TIO2 1 

7 ACR+MEL+STY+TIO2 1 

Clearcoat 
1 PUR+(STY) 27 

51 
2 ACR+MEL+STY+PUR 24 

 

 

Table 42.  Groups of samples that could not be differentiated from IR analysis based on each 
layer(n=62). 

Layer 
type 

Group 
No. 

Undifferentiated samples 

Primer 

1 W002, W005, W023, W036, W056 

2 W007, W033, W046 

3 
W009, W010, W013, W017, W020, W022, W027, W028, W030, W031, W041, W043, W044, 

W052, W053 

4 W012, W014, W015, W016, W018, W032, W042, W047, W048, W049, W054, W062 

5 
W003, W006, W011, W019, W021, W025, W026, W039, W040, W045, W050, W051, W055, 

W060 

6 W034, W058 

Primer 
surfacer 

1 
W003, W006, W009, W011, W017, W019, W021, W022, W024, W025, W027, W028, W030, 

W031, W039, W040, W043, W050, W052, W055, W058, W059, W060 

Basecoat 

1 
W002, W005, W010, W012, W014, W015, W016, W018, W020, W023, W032, W033, W036, 

W041, W042, W044, W045, W046, W047, W049, W051, W053, W054 

2 W001, W061 

3 W027, W028, W050 

4  W003, W011, W021, W039 

5 W017, W043 

6 W006, W059 

7 W022, W024, W058, W060 

8 W030, W031, W052 

9 W019, W025, W040 

Clearcoat 

1 W002, W007, W020, W023, W036, W053 

2 
W010, W012, W014, W015, W016, W018, W032, W041, W042, W044, W045, W047, W049, 

W051, W054 

3 W005, W033, W046 

4 W048, W062 

5 W001, W027, W028, W034, W061 

6 W003, W011, W019, W021, W031, W039, W050, W052, W055 

7 W006, W009, W024, W035, W043, W058, W059, W060 

8 W025, W040 
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To enhance the practicality of the results and ensure a clearer understanding of the chemical 

characteristics and differences among OEM paints of the same manufacturer and color, the 

data were further analyzed by focusing solely on OEM paint. By considering the inter-sample 

variability and recalculating the discriminating power within the OEM sample subset (n=54), 

the obtained data becomes more precise for interpretation.  

The chemical classes associated with each layer in these OEM samples are summarized in 

Table 43. It was observed that epoxy binder was the only binder type used in the primer of 

OEM paint samples analyzed in this study. Although the discrimination power of the primer 

surfacer layer was low, it exhibited a diverse range of chemical classes. In the case of the 

basecoat layer, despite the presence of four chemical classes, polyurethane and acrylic-based 

resins were the predominant binder types used. The same trend was observed for the 

clearcoat layer. 

 

Table 43. Chemical categories identified from each layer in OEM samples by IR analysis (n=54) 

Layer 
type 

Class No. Identified chemical class 
Number of samples 

within each class 
Total sample 

number 

Primer 
1 EPY+ALS 53 

54 
2 EPY 1 

Primer 
surfacer 

1 EPY+PUR+MEL+TALC+BAS+TIO2 23 

28 

2 ALK IPH+EPY+MEL+TALC+TIO2 1 

3 ALK IPH+PUR+EPY+TALC+ALS+TIO2 2 

4 ALK IPH+MEL+TALC+TIO2 1 

5 ALK TER+ACR+MEL+BAS+TIO2 1 

Basecoat 

1 PUR+ALK IPH+TALC+TIO2 24 

54 
2 PUR+MEL+TIO2 2 

3 ACR+ALK IPH+MEL+PUR+TIO2 27 

4 ACR+PUR+MEL+TALC+TIO2 1 

Clearcoat 
1 PUR+(STY) 27 

51 
2 ACR+MEL+STY+PUR 24 

 

The discriminating power of each paint layer was recalculated using a dataset limited to 54 

OEM paint samples. The discrimination capabilities of different layer combinations were also 

evaluated to understand their effectiveness in distinguishing OEM paint samples. However, it 

is important to note that when considering the entire OEM sample set, due to the different 

layer structure of samples in Group OEM3 or Group OEM4, the total number of samples 

included in each layer combination varies. To homogenize layer structure and the total 

number of samples within each combination, a segregation was implemented for Group 

OEM3 and Group OEM4. Subsequently, the discrimination capabilities of each layer and 

different layer combinations within the two groups were reassessed.  All the results are 

explicated in Table 44.  

Generally, the discriminative capability varied among different layers, with the clearcoat 

being the most discriminative and the primer surfacer the least. The inter-sample variability 

among OEM paint samples of the same manufacturer and color was relatively high, except 

for the primer surfacer. 
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Within the context of Group OEM3, the primer yields the highest discriminating power of 

73.5%, while the basecoat displays the least discrimination capability, giving a mere 22.1%. 

The combination of the primer and clearcoat layers amplifies the discrimination potential of 

IR analysis, providing the highest discrimination power of 83.1%. It is important to underline 

that due to the low discrimination of the basecoat, additional measurements of the basecoat 

only reduced undifferentiated pairs by one. Consequently, the final discriminative power 

derived from IR analysis of all layers in Group OEM3 (n=26) is 83.3%. 

In contrast, Group OEM4 exhibited a different trend. The basecoat layer in Group OEM4 

showed the highest discriminative potential at 93.7%, while the primer surfacer had the 

lowest at 33.1%. Combining the primer and basecoat layers provided the highest 

discrimination capability, resulting in a peak discriminative power of 96.3%. Interestingly, 

additional clearcoat or primer surfacer measurements minimally enhanced discrimination. 

Consequently, the ultimate discriminative power extracted from comprehensive IR analysis 

of all layers within the samples of Group OEM4 (n=28) is 96.8%. 

 

Table 44. Discriminating power of individual layer and different layer combination from IR analysis of 
OEM paint (n=54). 

 
Whole OEM sample set 

(n=54) 
Group OEM3 

(n=26) 
Group OEM4 

(n=28) 

Layer type 
DP 

(Undifferentiated pairs) 
Total number 

of samples 
DP 

(Undifferentiated pairs) 
DP 

(Undifferentiated pairs) 

Primer (P) 82.0% (258) 54 73.5% (86) 72.8% (103) 

Primer surfacer (PS) 33.1% (253) 28  33.1% (253) 

Basecoat (B) 80.6% (277) 54 22.1% (253) 93.7% (24) 

Clearcoat (C) 84.4% (199) 51 61.8% (124) 80.1% (75) 

P+PS 75.9% (91) 28  75.9% (91) 

P+B 94.6% (77) 54 80.6% (63) 96.3% (14) 

P+C 93.7% (90) 54 83.1% (55) 90.7% (35) 

PS+B 93.9% (23) 28  93.9% (23) 

PS+C 78.0% (83) 28  78.0% (83) 

B+C 90.4% (138) 54 63.7% (118) 94.7% (20) 

P+PS+B 96.3% (14) 28  96.3% (14) 

P+PS+C 90.7% (35) 28  90.7% (35) 

P+B+C 95.4% (66) 54 83.4% (54) 96.8% (12) 

PS+B+C 95.0% (19) 28  95.0% (19) 

P+PS+B+C 96.8% (12) 28  96.8% (12) 

Final DP 95.4% (66) 54 83.4% (54) 96.8% (12) 

 

When combining the final discrimination results of Group OEM3 and Group OEM4, a total of 

66 pairs of samples remained undifferentiated, as summarized in Table 45, which also 

includes the corresponding vehicle information. Notably, the overall discriminating power 

achieved from the IR analysis of the sample set of 54 OEM white VW automotive paint 

samples was 95.4%. Considering the entire sample set (n=62), the discriminating power 

obtained from IR analysis was 96.5%. These results highlight the effectiveness of FTIR 

analysis in differentiating automotive paint samples, even within a specific sample set 

consisting of paint from the same manufacturer and color (white). Despite the limited 

diversity in pigment among white automotive paints, FTIR analysis proved to be a reliable 
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method for characterizing and discriminating automotive paint samples. This also 

underscores the rarity of physical and chemical characteristics within the automotive paint 

samples, further reinforcing the evidential value of paint analysis in forensic investigations. 

Upon examining the vehicle information of the undifferentiated sample pairs, it was observed 

that most of the undifferentiated samples were produced by the same manufacturing 

company (S-VW), despite differences in models, production years, and assembly plants (e.g., 

samples in Group 2, 3, 4, 10). It is worth noting that the assembly plants of this company are 

geographically close to each other, suggesting the possibility of using the same paint supplier 

and coating formula for these plants. In contrast, samples from the other company (F-VW) 

could be mostly differentiated, except for one group of samples that share the same model, 

production year, and assembly plant (Group 1). Generally, samples from the two different 

joint ventures can be easily distinguished. The geographic distribution of these 

undifferentiated samples associated with assembly plants is illustrated in Figure 112. 

 

Table 45. Properties of undifferentiated sample groups by visual comparison of IR spectra of all layers 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Topcoat 
color code 

Assembly 
plant 

Layer 
structure 

1 

W002 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W023 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W036 F-VW Sagitar 2017 LC9A Chengdu OEM3 

2 
W033 S-VW New Lavida 2014 LY9H Nanjing OEM3 

W046 S-VW Passat 2013 LY9H Nanjing OEM3 

3 

W010 S-VW Santana 2017 LY9H Nanjing OEM3 

W041 S-VW Santana 2017 LY9H Nanjing OEM3 

W044 S-VW Passat 2017 LY9H Nanjing OEM3 

4 
W020 S-VW Santana 2016 LY9H Nanjing OEM3 

W053 S-VW New Lavida 2014 LY9H Nanjing OEM3 

5 
W045 S-VW Lamando 2018 LY9H Ningbo OEM3 

W051 S-VW Lamando 2017 LY9H Ningbo OEM3 

6 

W012 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W014 S-VW New Lavida 2017 LY9H Anting OEM3 

W015 S-VW New Lavida 2017 LY9H Anting OEM3 

W016 S-VW New Lavida 2017 LY9H Anting OEM3 

W018 S-VW New Lavida 2016 LY9H Anting OEM3 

W032 S-VW Gran Lavida 2015 LY9H Anting OEM3 

W042 S-VW New Lavida 2017 LY9H Anting OEM3 

W047 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W049 S-VW New Lavida 2016 LY9H Anting OEM3 

W054 S-VW New Lavida 2016 LY9H Anting OEM3 

7 

W003 S-VW Polo 2017 Unknown Anting OEM4 

W011 S-VW Polo 2017 LY9H Anting OEM4 

W021 S-VW Polo 2016 LY9H Anting OEM4 

W039 S-VW Polo 2017 LY9H Anting OEM4 

8 
W027 S-VW Passat 2004 Unknown Anting OEM4 

W028 S-VW Passat 2003 LB9A Anting OEM4 

9 

W030 S-VW Tiguan 2016 LY9H Anting OEM4 

W031 S-VW Tiguan 2017 LY9H Anting OEM4 

W052 S-VW Tiguan 2017 LY9H Anting OEM4 

10 
W017 S-VW Tiguan 2015 LY9H Anting OEM4 

W043 S-VW Gran Lavida 2015 LY9H Anting OEM4 

11 
W025 S-VW Polo 2016 LY9H Anting OEM4 

W040 S-VW Polo 2015 LY9H Anting OEM4 
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Figure 112. Geographic distribution of undifferentiated samples associated with assembly plants. The 
chemical profiles (IR) of each undifferentiated samples pairs are listed in the figure. 
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8.6.3. Correlation between chemical properties and vehicle 

information  
 

In this section, a specific subset of the dataset consisting of 54 OEM paint samples was 

investigated. Previous sections have discussed the correlation between chemical properties 

and sample origin, with a focus on each layer. To gain a deeper understanding of the complete 

chemical profiles combining all layers, The samples were further analyzed in relation to 

manufacturing company, assembly plant, and the layer system. Figure 113 provides an 

overview of the associations between these factors and the chemical characteristics. 

Notably, sample W026 stood out as it exhibited a completely different chemical profile 

compared to the remaining 53 Chinese-produced vehicles. This finding suggests the presence 

of geographic variation among samples from the same manufacturer. It was discovered that 

for the 53 Chinese-produced OEM paint samples, the chemical composition of samples varied 

significantly depending on the layer system. Samples with an OEM3 paint system displayed 

distinct chemical profiles compared to those with an OEM4 system, regardless of their 

manufacturing company or assembly plant. 

The assembly plant emerged as a key determinant of the chemical properties, as samples 

from the same plant tended to exhibit similar chemical profiles. This trend held true 

regardless of the specific manufacturing company, model, or production year. However, it is 

important to note that within each assembly plant, there were still variations and 

undifferentiated groups of samples, as depicted in Figure 113. 

These findings highlight the intricate relationship between chemical properties, sample origin, 

and the layer system. The presence of geographic variation and the influence of the assembly 

plant underscore the complexity of the factors shaping the chemical profiles of the 

automotive paint samples. 

It was observed that even among OEM paint samples that originated from the same 

manufacturing company, shared the same color and model, and were produced in the same 

assembly plant in the same year, there were instances where their chemical features differed. 

For instance, sample W019 exhibited distinct chemical characteristics compared to other 

samples with the same model "Polo," despite being produced in the same year as samples 

W003, W011, or W039. Similarly, samples W048 and W062 could be differentiated from each 

other, despite sharing identical vehicle information, including manufacturing company, model, 

production year, and assembly plant. 
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Figure 113. Chemical profiles (IR) of the entire samples in relation to manufacturing company, 
assembly plant, and the layer system. Groupings obtained from visual comparison within each plant 
are listed. Samples highlighted in red represent those that have a different layer structure from the 
rest of the samples. Samples highlighted in green represent those that were not produced in China. 

 

These variations in chemical features within such closely matched samples can be attributed 

to batch variations. This factor can introduce subtle but significant differences in the chemical 

composition of the paint samples. Hence, even in cases where the vehicle information is 

identical, the chemical profiles may vary, indicating the rarity of chemical features of a specific 

vehicle. 

Regarding the topcoat color code, information is available for 50 out of the 54 OEM samples. 

Table 46 presents the groupings of samples within each topcoat color code group, determined 

through visual comparison of the basecoat. As discussed earlier during the exploratory 

analysis of the basecoat, it was evident that samples sharing the same topcoat color code do 

not consistently exhibit identical chemical compositions in their basecoat. Instead, these 

samples with the same color code can be further differentiated into multiple groups, 

indicating significant variations in their chemical characteristics.  
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Table 46. groupings of samples within each topcoat color code group based on IR analysis of 
basecoats (n=50) 

Topcoat 
color code 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Assembly 
plant 

Layer 
structure 

LC9A 

1 

W002 F-VW Sagitar 2017 Chengdu OEM3 

W023 F-VW Sagitar 2017 Chengdu OEM3 

W036 F-VW Sagitar 2017 Chengdu OEM3 

2 
W006 F-VW New bora 2016 Changchun OEM4 

W059 F-VW New bora 2013 Changchun OEM4 

3 W034 F-VW New bora 2017 Changchun OEM4 

4 W035 F-VW New bora 2018 Changchun OEM4 

5 W026 W-VW GoCo 2012 Osnabrück OEM4 

LB9A 

1 W005 F-VW Jetta 2014 Chengdu OEM3 

2 W060 F-VW Golf 2012 Changchun OEM4 

3 

W022 S-VW Touran 2010 Anting OEM4 

W024 S-VW Tiguan 2012 Anting OEM4 

W058 S-VW Tiguan 2013 Anting OEM4 

4 W028 S-VW Passat 2003 Anting OEM4 

LY9H 

1 

W010 S-VW Santana 2017 Nanjing  OEM3 

W012 S-VW New Lavida 2017 Nanjing OEM3 

W014 S-VW New Lavida 2017 Anting OEM3 

W015 S-VW New Lavida 2017 Anting OEM3 

W016 S-VW New Lavida 2017 Anting OEM3 

W018 S-VW New Lavida 2016 Anting OEM3 

W020 S-VW Santana 2016 Nanjing OEM3 

W032 S-VW Gran Lavida 2015 Anting OEM3 

W033 S-VW New Lavida 2014 Nanjing OEM3 

W041 S-VW Santana 2017 Nanjing OEM3 

W042 S-VW New Lavida 2017 Anting OEM3 

W044 S-VW Passat 2017 Nanjing OEM3 

W045 S-VW Lamando 2018 Ningbo OEM3 

W046 S-VW Passat 2016 Nanjing OEM3 

W047 S-VW New Lavida 2017 Nanjing OEM3 

W049 S-VW New Lavida 2016 Anting OEM3 

W051 S-VW Lamando 2017 Ningbo OEM3 

W053 S-VW New Lavida 2014 Nanjing OEM3 

W054 S-VW New Lavida 2016 Anting OEM3 

2 W007 S-VW Santana 2013 Nanjing OEM3 

3 W048 S-VW New Lavida 2018 Anting OEM3 

4 W062 S-VW New Lavida 2018 Anting OEM3 

5 

W011 S-VW Polo 2017 Anting OEM4 

W021 S-VW Polo 2016 Anting OEM4 

W039 S-VW Polo 2017 Anting OEM4 

6 
W017 S-VW Tiguan 2015 Anting OEM4 

W043 S-VW Gran LAVIDA 2015 Anting OEM4 

7 

W019 S-VW Polo 2017 Anting OEM4 

W025 S-VW Polo 2016 Anting OEM4 

W040 S-VW Polo 2015 Anting OEM4 

8 

W030 S-VW Tiguan 2016 Anting OEM4 

W031 S-VW Tiguan 2017 Anting OEM4 

W052 S-VW Tiguan 2017 Anting OEM4 

9 W009 S-VW New Lavida 2015 Nanjing OEM4 

10 W050 S-VW Polo 2012 Anting OEM4 

11 W055 S-VW Lavida 2014 Anting OEM4 
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9. Characterization and classification with Raman 
 

The FTIR analysis of the entire sample set has provided valuable insights into the chemical 

composition of each layer of the paint samples. However, there are still 66 pairs of samples 

that remain undifferentiated. To further discriminate these pairs, it becomes necessary to 

perform Raman analysis. While Raman spectroscopy is often used in conjunction with IR 

spectroscopy as a complementary technology, its potential for differentiating all layers of 

automotive paint samples with the same car make and color has not been extensively 

explored. Conducting a comprehensive Raman analysis on the entire sample set can provide 

a deeper understanding of the diversity in chemical composition within this closely related 

set of samples. 

To streamline the Raman analysis, it was decided to include only 54 OEM paint samples. This 

decision was based on several factors. Firstly, all repainted samples have already been 

differentiated from the rest of the OEM samples using FTIR analysis, making further 

discrimination using Raman unnecessary. Secondly, since the valuable and useful data for 

interpretation would be obtained only from OEM paint samples, there is no need to consider 

the repainted samples. Lastly, all the undifferentiated samples are OEM samples, indicating 

the need to continue the analytical sequence to achieve further discrimination. One 

representative subsample from each vehicle was chosen for Raman analysis, resulting in the 

analysis of each layer from a total of 54 samples using Raman spectroscopy. 

As discussed in Chapter 6.4, the Raman analysis in this study utilized a Raman Renishaw InVia 

system equipped with a Leica DM2600M microscope with a 50x objective. A near-infrared 

785nm diode laser was found to be the most suitable laser for analysis. The laser had a 

maximum power of 233mW at the sample and 332mW at the source. Laser power modulation 

was employed to prevent detector saturation for the samples under study. A 1200 l/mm 

grating was used for all experiments, and the wavenumber range considered was between 

200 and 2000 cm-1. The exposure time for each measurement was set at 10s, and the number 

of accumulations was 8. Data acquisition was performed using Renishaw's software 'Wire 5.5'. 

To minimize temperature-related variability, all measurements were conducted at a constant 

room temperature of 22°C. Intra-sample variability was evaluated by performing three 

replicates for each layer of every paint sample. The obtained spectra were visually compared 

using Thermo Fisher Scientific Inc.'s software 'Omnic 9.12.928'. 

For the characterization of each layer, the characteristic bands of chemical groups were 

compared with Raman spectra from various commercial Raman databases of coatings, 

polymers, additives, and inorganics available in Thermo Fisher's Omnic software. These 

databases include Ahura Raman, Aldrich Raman, FDM Raman Inorganics, FDM Raman 

Organics 780, HR Raman Inorganics, Law Enforcement and Security Raman Library, Mineral 

Raman Database, Raman Dyes and Pigments, and Raman Spectroscopic Library of Natural and 

Synthetic Pigments. 
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9.1. Intra-sample variability 
 

It is known that the IR analysis conducted on the sample set revealed minimal intra-sample 

variability in terms of chemical characteristics. In the Raman analysis, one representative 

subsample from each vehicle was chosen for Raman spectroscopy, resulting in the analysis of 

a total of 54 samples. Measurements were taken from each layer of every sample, with three 

replicates obtained from each layer. In this context, "intra-sample variability" refers to the 

variability observed within the three replicates obtained from different positions within the 

same layer. 

After acquisition, the raw spectra were processed using baseline subtraction and cosmic ray 

removal in Renishaw's software 'Wire 5.5'. The three replicates for each layer were then 

compared to assess the intra-sample variability. It was found that the spectra generally 

exhibited homogeneity in terms of peak position and relative peak intensity. This 

homogeneity is also reflected in the PCA scatter plots, where the three replicates from one 

sample are projected close to each other. However, there were instances where the replicates 

showed slight differences in baseline variations, particularly in clearcoats, as illustrated in 

Figure 114a. These baseline variations can cause the projections of the replicates on the PCA 

scatter plot to be far apart from each other, even after the spectra underwent preprocessing 

treatments, as shown in Figure 114b (the projections of the three spectra presented in Figure 

114a are marked in a dashed circle). This introduces uncertainty in PCA-based separation. 

However, it does not pose a problem for visual comparison. Therefore, when such situations 

occur in PCA analysis, the spectra are visually verified. 

In conclusion, the Raman analysis conducted on the sample set revealed minimal intra-sample 

variability. This finding indicates that the chemical compositions of the samples can be 

accurately characterized, enabling reliable comparisons between them. 
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Figure 114. Three Raman spectra measured from the clearcoat of sample W007 (a) and their 
projections on PCA scatter plot (b), showing the variability within the replicates in terms of baseline 

variation.  
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9.2. Characterization of clearcoat 
 

The clearcoat analysis and characterization encompassed all 54 samples in the set, yielding 

high-quality spectra from 8 accumulations. The samples were then categorized into three 

distinct groups based on identified chemical categories within the spectra, as presented in 

Table 47 (page 199). Individual analysis of each group's spectra enabled the identification of 

Raman-detected constituents in the paints. Detailed discussions of these findings will be 

presented in the subsequent subchapters. 

 

 

9.2.1. Group C1  
 

Group C1 consists of a single sample, accounting for 2% of the total samples. As depicted in 

Figure 115, the Raman spectrum of this sample exhibits a fluorescence curve, rendering it 

incapable of determining the chemical composition through Raman analysis. Consequently, 

the spectra from this sample remain uncharacterized. 

 

 

 

 

 

 

 

 

 

 

 

Figure 115. Representative spectrum of the clearcoat of sample W061 from Group C1. Raman spectra 
(raw) acquired with a laser at 785nm. 
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9.2.2. Group C2  
 

Group C2 comprises 27 samples, representing 50% of the total sample set. Figure 116a 

displays a representative spectrum from this group, highlighting the characteristic peaks 

identified in the spectrum. In contrast to other layers, clearcoats do not contain any detected 

pigment or extender, resulting in an abundance of peaks originating from the binder. One 

distinctive feature observed in this group is the presence of double peaks at 1756 and 1730 

cm-1, attributed to C-O stretches from the polyurethane binders. Furthermore, the spectrum 

exhibits identifiable peaks at 1602, 1583, 1156, 1031, 1001, and 620 cm-1, which closely align 

with the reference Raman spectrum of styrene presented in Figure 116b. It is worth 

highlighting that while the IR analysis did not show high concentrations of styrene, it 

constitutes the major component of the peaks observed in the Raman spectra. Unfortunately, 

the remaining peaks couldn't be identified using the available databases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 116. Representative Raman spectrum of the basecoat of sample W002 (up) with reference 
Raman spectrum of styrene (bottom). Characteristic peaks of polyurethane and styrene are 

annotated on the spectrum. 
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9.2.3. Group C3 
 

Group C3 consists of 26 samples, accounting for 48% of the total sample set. Figure 117 

showcases a representative spectrum from this group, emphasizing the characteristic peaks 

identified within the spectrum. Similar to Group C2, the spectrum exhibits discernible peaks 

at 1602, 1583, 1156, 1031, 1001, and 620 cm-1, which are associated with styrene. One 

distinct feature that differentiates this group from Group C2 is the higher intensity of the peak 

at 1730 cm-1, which can be attributed to C-O stretches of acrylic resin. Although the peak at 

1756 cm-1 is still present in the spectra, its intensity is relatively low. The variation in peak 

intensity indicates that the primary binder used in the clearcoat of samples from this group is 

acrylic resin, a finding that is supported by the results of IR analysis. Another notable 

discriminative feature is the high intensity of peak at 976 cm-1 in all spectra of this group. 

Unfortunately, the specific composition associated with this peak could not be identified. One 

hypothesis suggests that it might originate from melamine. However, the reference Raman 

spectrum of melamine indicates that the key peak of melamine typically appears at 678 cm-1, 

which is not present in the spectra of this group.  

 

 

 

 

 

 

 

 

 

 

Figure 117. Representative Raman spectrum of clearcoat of sample W039 from Group C3, with 
annotated characteristic peaks of acrylic, polyurethane, and styrene. 
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9.2.4. Classification and discrimination of clearcoat 
 

The Raman spectra obtained from clearcoats exhibited overall excellent quality. Only one 

sample showed uninformative spectra due to fluorescence effects. Although not all peaks in 

the clearcoat spectra could be identified, it was still possible to classify the chemical class of 

each group based on differences in peak intensities at 1756 and 1730 cm-1, and further 

discrimination could be achieved by considering the presence or absence of specific peaks 

within each group. The results of visual comparison and the corresponding chemical class for 

each group are summarized in Table 47. Additionally, the key differences observed among 

spectra with similar characterizations are highlighted in the table. 

Through visual comparison of the clearcoat spectra obtained using a 785 nm Raman laser, 

172 pairs of samples could not be differentiated, resulting in a discriminating power of 88% 

(172 undifferentiated pairs out of a total of 54 samples). 

 

Table 47. Summary of visual groupings of clearcoat (n=54) 

GROUP/COMPOSITION SUBGROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

Group C1 
FLUORESCENCE 

- W061 Fluorescence curve 

Group C2 
PUR+STY 

2.1 W002, W007, W023, W036, W053 
Identical peaks at 1756, 1730, 

1602, 1583, 1156, 1031, 1001 and 
620 cm-1.  

2.2 W010, W014, W015, W016, W018 Extra peak at 1640, 1567, 976 cm-1 

2.3 
W012, W020, W032 W041, W042, 
W044, W045, W047, W049, W051, 

W054 
Extra peak at 1567, 976 cm-1 

2.4 W005, W033, W046 
Extra peak at 1567, 976 and 857 

cm-1, no peak at 845 cm-1 
 2.5 W048, W062 Higher peak intensity at 976 cm-1 
 2.6 W026 Extra peak at 1280, 976 cm-1 

Group C3 
ACR+PUR+STY 

3.1 
W003, W011, W019, W021, W030, 
W031, W039, W050, W052, W055 

Identical peaks at 1756, 1730, 
1602, 1583, 1156, 1031, 1001, 976 

and 620 cm-1 

3.2 
W009, W017, W022, W024, W025, 
W035, W040, W043, W059, W060 

Extra peak at 806 cm-1, no peak at 
872 cm-1 

3.3 W001 
Peak lower at 1756, 976 and 592 

cm-1, no peak at 872 cm-1 

3.4 W027, W028, W034 
Peak lower at 1756 and 592 cm-1, 

no peak at 872 cm-1 
3.5 W006 No peak at 1625 cm-1 

3.6 W058 Extra peak at 925 and 792 cm-1 
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9.2.5. Exploratory analysis 
 

Sample W061 was excluded from the dataset of Raman spectra due to its non-informative 

fluorescence curve. This resulted in a dataset of 159 Raman spectra obtained from the 

clearcoat of 53 samples, which were subjected to PCA analysis for visualizing the underlying 

data structure. Prior to analysis, all spectra underwent pre-treatment steps including baseline 

offset, and SNV normalization. The analysis focused on variables within the range of 1800-

670 cm-1, resulting in a dataset of 1031 variables for PCA analysis. 

Figure 118 provides an overview of the PCA model generated from the dataset, displaying the 

projections of Raman spectra based on the first three principal components, which account 

for 93% of the total variance. On the scatter plot based on the first two principal components 

(Figure 118a), two distinct clusters were clearly observed and marked within a dashed 

rectangular. The loadings for PC1 (Figure 119a) revealed the positive values were primarily 

influenced by wave numbers corresponding to characteristic peaks of styrene, while negative 

values predominantly stemmed from the signal corresponding to characteristic peaks of 

polyurethane. This separation aligns with the visual comparison results, as samples from 

Group C2 were projected on the left side of the scatter plot, while samples from Group C3 

were projected on the right side. Additionally, the loadings for PC2 and PC3 (Figure 119b-c) 

indicate that the separation was also influenced by uncharacterized peaks at 1450 and 976 

cm-1. 

Through the PCA analysis, a total of 13 groups were distinguished, as presented in Table 48. 

However, there are still 278 pairs of samples that remain undifferentiated, resulting in a 

discriminating power of 80.5% (with 278 undifferentiated pairs out of a total of 54 samples). 

 

 

Table 48. Summary of PCA-based groupings of clearcoat (n=54)  

GROUP SAMPLES  VISUAL GROUPS 

1 W061 Group C1 

2 W002, W007, W023, W036, W053 

Group C2 

3 
W010, W012, W014, W015, W016, W018, W020, W032, 
W041, W042, W044, W045, W047, W048, W049, W051, 

W054, W062 

4 W005 

5 W033 

6 W046 

7 W026 

8 W003, W011, W019, W030, W031, W039, W050, W052, W55 

Group C3 

9 
W006, W009, W022, W024, W027, W028, W034, W035, 

W043, W035, W058, W059, W60 

10 W021, W040 

11 W001 

12 W017 

13 W025 
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Figure 118. PCA score plots performed on the clearcoats (n=53). The first 3 PCs explained 93% of the 
total variance and were all considered for discrimination. Two main clusters with 12 finer clusters 

were generated and marked in dashed line. 

 

 

 

 

 

 

 

 

 

 

 

Figure 119. loadings of the first three PCs (a to c, respectively) of the PCA model generated from the 
clearcoat Raman spectra (n=53). The wave numbers corresponding to characteristic peaks of the 

characterized component are highlighted using different shapes and colors. 
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As always, the data structure was investigated based on several predetermined identifying 

factors, as depicted in Figure 120. The PCA score plots of clearcoat Raman spectra are 

presented in relation to manufacturing companies (Figure 120a), layer structure of paint 

samples (Figure 120b), assembly plants (Figure 120c), and vehicle models (Figure 120d). The 

observed patterns were largely consistent with the findings from the IR spectra analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 120. PCA score plots according to the first two principal components of Raman spectra of 
clearcoat (n=53), respectively highlighted by their manufacturing companies (a), their layer structure 

(b), their assembly plants (c), and the model of vehicles (d). 
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9.3. Characterization of basecoat 
 

The analysis and characterization of the basecoat were conducted on the entire set of 54 

samples. Subsequently, the samples were classified into three distinct groups based on the 

identified chemical categories in the spectra, as summarized in Table 49 (page 206). Each 

group of spectra underwent individual analysis to identify the constituents detected by 

Raman in the investigated paints. The findings of these analyses will be discussed in the 

subsequent subchapters. 

 

9.3.1. Group B1 
 

Group B1 comprises a single sample, representing 2% of the total samples. As presented in 

Figure 121, the Raman spectrum of this sample display a fluorescence curve, making it unable 

to determine the chemical composition through Raman analysis. Consequently, the spectra 

from this sample remain uncharacterized.  

 

 

 

 

 

 

 

 

 

 

 

Figure 121. Representative spectrum of the basecoat of sample W061 from Group B1. Raman spectra 
(raw) acquired with a laser at 785nm. 
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9.3.2. Group B2 

Group B2 consists of 27 samples, accounting for 50% of the total sample set. The Raman 

spectra in Figure 122 reveal prominent peaks at 448 and 610 cm-1, indicating the presence of 

titanium dioxide in the form of rutile, the primary inorganic pigment used in the basecoat. 

Another distinctive feature observed in this group is the double weak but broad peaks at 1756 

and 1730 cm-1, with slightly higher intensity at 1756cm-1. Despite efforts using a commercial 

database, these peaks could not be identified. However, considering the binder types 

obtained from IR analysis, all samples in this group contain polyurethane resin. Therefore, it 

can be inferred that these characteristic peaks originate from the polyurethane resin. Within 

the group, further differentiation can be made based on variations in the 1700-700 cm-1 

regions, although confidently identifying each specific peak in these regions remains 

challenging. 

Figure 122. Representative Raman spectra of Group B2 obtained from the basecoat of: a) Sample 
W023; b) Sample W010; c) Sample W048; d) Sample W026. Common Spectral Features of Group B2 

Highlighted in the Figure. 

a) 

b) 

c) 

d) 

Common 
feature 

Common 
feature 
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9.3.3. Group B3  
 

Group B3 consists of 26 samples, representing 48% of the total sample set. Figure 123 displays 

several spectra of this group, highlighting the key features observed. The dominant 

characteristics in all the spectra are the two prominent peaks at 448 and 610 cm-1 from rutile 

pigment. Notably, the absence of a peak at 1756 cm-1 and the higher intensity of the peak at 

1730 cm-1 differentiate this group from Group B2. The peaks at 1002 and 1305 cm-1 suggest 

the presence of isophthalic acid. Despite attempts using database search, the specific 

composition of each peak could not be all determined. However, upon comparing with the 

results from IR analysis, it is evident that all samples in this group contain acrylic combined 

with isophthalic alkyd as the primary binder type. Consequently, these samples have been 

categorized accordingly. Furthermore, subgroups within Group B3 can be formed based on 

variations observed in the range of 1700-700 cm-1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 123. Representative Raman spectra of Group B3 obtained from the basecoat of: a) Sample 
W003; b) Sample W006; c) Sample W017; d) Sample W035. Common Spectral Features of Group B3 

Highlighted in the Figure. 
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9.3.4. Classification and discrimination of basecoat 
 

Samples with the detected pigment could not be differentiated, similar to the primer surfacer. 

While identifying the composition of each peak proved challenging, certain trends became 

evident. The presence or absence of a peak at 1756 cm-1 and variations in the peak intensity 

at 1730 cm-1, which attributed to different binder types, served as key factors in dividing the 

samples into two primary groups. Notably, significant variations were observed in the 700-

1700 cm-1 range, enabling visual comparison of spectra for sample discrimination. The 

findings from visual grouping, along with the identified chemical class for each group, are 

summarized in Table 49. Furthermore, the main differences observed among spectra with 

similar characterizations are emphasized in the table. 

By visually comparing the basecoat spectra acquired through Raman analysis with a 785 nm 

laser, it was found that 339 pairs of samples could not be differentiated, indicating a 

discriminating power of 76.3% (339 undifferentiated pairs out of a total of 54 samples). 

 

 

Table 49. Summary of visual groupings of basecoat (n=54) 

GROUP/COMPOSITION SUBGROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

Group B1 
FLUORESCENCE 

- W061 Fluorescence curve 

Group B2 
PUR+TIO2 

2.1 

W005, W007, W010, W012, W014, 
W015, W016, W018, W020, W032, 
W033, W041, W042, W044, W045, 
W046, W047, W049, W051, W053, 

W054 

Identical peaks at 1756, 1730, 
1605, 1304, 1002, 610, and 444 

cm-1.  

2.2 W002, W023, W036 Extra peak at 1537 cm-1 
2.3 W048, W062 Extra peak at 976 cm-1 

2.4 W026 
Extra peaks at 1530, 987 and 750 

cm-1 

Group B3 
ACR+ALK IPH+TIO2 

3.1 

W003, W009, W011, W021, W022, 
W024, W027, W028, W030, W031, 
W039, W043, W050, W052, W055, 

W058 

Identical peaks at 1730, 1605, 
1304, 1040, 1002, 976, 610, and 

444 cm-1. 

3.2 W006, W059 
Extra peaks at 1537, 777,740and 

685 cm-1 
3.3 W034, W035 No peak at 1040 cm-1 
3.4 W001 No peak at 976 cm-1 
3.5 W017 Extra peak at 1030 cm-1 
3.6 W060 Extra peak at 990 cm-1 
3.7 W019, W025, W040 Extra peaks at 1756 and 990 cm-1 
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9.3.5. Exploratory analysis 
 

Due to the presence of fluorescence and its significant impact on the statistical model 

generation, Sample W061 was excluded from the dataset prior to conducting exploratory 

analysis. Consequently, the dataset consisted of 159 Raman spectra obtained from the 

basecoat of 53 samples, which were subjected to PCA analysis to visualize the underlying data 

structure. Due to extensive similar profile of samples, Raman spectra underwent pre-

treatment steps including baseline offset, Savitzky-Golay type 1st derivative baseline 

treatment and SNV normalization to maximize the inter-sample variability. The analysis 

specifically focused on variables within the range of 1800-800 cm-1, resulting in a dataset 

comprising 912 variables for PCA analysis. 

Figure 124 illustrates the PCA model generated from the dataset, displaying the projections 

of Raman spectra based on the first four principal components. These components account 

for 70% of the total variance. On PC1, which explains 38% of the total variance, the sample 

set was separated into two primary groups: Group B1 and Group B2 (Figure 124a). The 

loadings for PC1 (Figure 125a) revealed that this separation was primarily influenced by the 

spectral characteristics of polyurethane, acrylic, and isophthalic alkyd. By incorporating PC4, 

additional discrimination was achieved (Figure 124b), particularly within Group B1, where a 

distinct separation is observed based on a peak at approximately 1540 cm-1 (Figure 125b). In 

contrast, the projections of spectra from samples in Group B2 exhibited a more dispersed 

distribution without clear clusters. To achieve a confident separation, an additional PCA 

analysis focusing on Group B2 samples was conducted. The resulting PCA scatter plot (Figure 

126a) displays 11 distinct clusters. The loadings (Figure 126b) indicated that the model was 

primarily influenced by peaks at 1606, 1040, 1002, and 976 cm-1. While the exact 

compositions corresponding to these peaks could not be determined with certainty, their 

presence, absence, or relative intensity contribute to the observed separation.  

Ultimately, the PCA analysis enabled the distinction of a total of 15 groups. The grouping 

results are presented in Table 50. There are still 306 pairs of samples that remain 

undifferentiated, resulting in a discriminating power of 78.6% (with 306 undifferentiated pairs 

out of a total of 54 samples). 
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Figure 124. PCA score plots performed on the Raman spectra of basecoats (n=53): a) projections 
based on PC1 and PC2, two main clusters (Group B1/B2) are marked in dashed rectangular; b) 

projections based on PC1 and PC4, with more discrimination achieved in Group B1 in red dashed 
rectangular.  

 

 

 

 

 

 

 

Figure 125. loadings of PC1 (a) and PC4 (b) of the PCA model generated from the basecoat Raman 
spectra (n=54). The wave numbers corresponding to characteristic peaks of the characterized 

component are highlighted using different shapes and colors. 

 

 

 

 

 

 

 

 

Figure 126. PCA score and loading plot for the basecoat of samples from Group B2 (n=26): a) 
projections based on the first two PCs. 11 clusters were generated using the first two PCs; b) loading 

plot for the first two PCs.  

Group B1 (PUR) 

Group B2 (ACR) 

Group B1 (PUR) 
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Table 50. Summary of PCA-based groupings of basecoat (n=54)  

GROUP SAMPLES  VISUAL GROUPS 

1 W061 Group B1 

2 
W005, W007, W010, W012, W014, W015, W016, W018, 
W020, W032, W033, W041, W042, W044, W045, W046, 

W047, W049, W051, W053, W054 
Group B2 

3 W002, W023, W036 

4 W048, W062 

5 W026 

6 
W003, W011, W021, W022, W024, W025, W027, W028, 

W030, W031, W039, W043, W052, W058 

Group B3 

7 W001, W035 

8 W040 

9 W034 

10 W009 

11 W006 

12 W019 

13 W017 

14 W055 

15 W059 

16 W060 

 

 

Similar to the IR analysis, the data structure of the basecoat Raman spectra was also 

investigated and visualized in Figure 127. PCA score plots were generated to analyze the 

dataset with regards to various factors, including chemical categories (Figure 127a), layer 

structure (Figure 127b), manufacturing companies (Figure 127c), assembly plants (Figure 

127d), topcoat color codes (Figure 127e), and vehicle models (Figure 127f). The observed 

patterns were largely consistent with the findings from the IR spectra analysis, with a few 

exceptions noted. 

1) In Figure 127a, the distribution of samples according to the identified chemical classes 

revealed an interesting observation. One sample categorized as acrylic was projected 

on the right side of the scatter plot, where all the samples containing polyurethane 

binder were located. Upon further examination of the Raman spectra for this sample, 

it was discovered that although it was classified as acrylic, it also contained a high 

proportion of polyurethane as an additional resin. This finding was subsequently 

confirmed by cross-checking the IR spectra of the sample. 

2) Additionally, in Figure 127b, two samples with an OEM4 layer structure were not 

projected on the same side as the other samples with an OEM4 layer structure. Upon 

analyzing their IR and Raman spectra, it was revealed that these two samples actually 

contained both acrylic and polyurethane resins. While the polyurethane served as an 

additional resin, the proportion of polyurethane in these two samples was significantly 

higher. This explains why these samples were projected on the right side of the scatter 

plot. 
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Figure 127. PCA score plots according to the first two principal components of Raman spectra of 
basecoats (n=53), respectively highlighted by the chemical categories (a), layer structure (b), their 

manufacturing companies (c), their assembly plants (d), their topcoat color codes (e), and the model 
of vehicles(f). 
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9.4. Characterization of primer surfacer 
 

The characterization of primer surfacer was limited to samples with a OEM4 system, resulting 

in only 28 samples being involved in the analysis. The primer surfacer spectra obtained in this 

study also exhibited good quality. The samples were subsequently classified into four groups 

based on the chemical categories identified from the spectra, as summarized in Table 51 

(page 215). Each group of spectra was individually analyzed to identify the constituents 

detected by Raman in the investigated paints. These findings will be discussed in the 

subsequent subchapters. 

 

9.4.1. Group PS1 
 

This group consists of only 1 sample, accounting for 3.5% of the total sample set. In Figure 

128, the Raman spectra of this sample exhibit a distinct characteristic—a fluorescence curve. 

Unfortunately, this fluorescence curve does not provide sufficient information for the 

characterization of specific chemical groups. As a result, the spectra from this sample remain 

uncharacterized, and it is not possible to determine the chemical composition based on the 

Raman analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 128. Representative spectrum of the primer surfacer of sample W061 from Group PS1. Raman 
spectra (raw) acquired with a laser at 785nm. 
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9.4.2. Group PS2  
 

This group, known as Group PS2, consists of 23 samples, accounting for 82% of the total 

sample set. The Raman spectra of these samples, depicted in Figure 129, exhibited identical 

peaks at 1730, 1606, 1304, 1188, 1112, 1002, 987, 610, and 444 cm-1. The bands around 444 

and 610 cm-1 indicated the presence of rutile pigment. The peak at 987 cm-1 was attributed 

to the symmetric stretching vibration of barium sulfate (SO42-). Additionally, the peaks at 

approximately 1111 and 1185 cm-1 were assigned to C–C backbone and C–C out-of-plane 

vibrations, respectively, which could be characterized as the epoxy binder(De Gelder et 

al.,2005). The bands at 1606 cm-1 also indicated the presence of epoxy resin, while the peak 

at 1730 cm-1 was attributed to C-O stretches from the polyurethane binders. These 

identifications were further supported by IR analysis, which revealed the presence of epoxy 

resin combined with polyurethane resins in this group of primer surfacers, along with TiO2 

and barium sulfate as pigments and extenders. Notably, isophthalic acid was not identified in 

the FTIR spectra but was detected in the Raman spectra. Upon revisiting the FTIR spectra of 

this sample group, it was found that all the spectra exhibited peaks at 1305, 1240, and 730 

cm-1, which were not annotated in Figure 91. These peaks are actually characteristic peaks of 

isophthalic alkyd. This finding underscores the importance of combining both IR and Raman 

analysis for the comprehensive identification and characterization of automotive paint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 129. Representative Raman spectrum obtained from the primer surfacer of Sample W009 
from Group PS2, with characteristic peaks annotated on the spectrum. 
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9.4.3. Group PS3  
 

Group PS3 consists of 3 samples, representing 11% of the total samples. As depicted in Figure 

130, a significant distinction between this group and Group PS2 is the absence of a peak at 

987 cm-1, indicating that the samples in this group do not contain barium sulfate. A common 

feature among the samples in Group PS2 is the presence of peaks at 1002 and 1304 cm-1, 

suggesting the presence of isophthalic acid. This finding was corroborated by FTIR analysis, 

which confirmed that the IR spectra of samples in this group indeed contained isophthalic 

alkyd as the primary binder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 130. Representative Raman spectra obtained from the primer surfacer of: a) Sample W034 

from Group PS3; and b) sample W009 from Group PS2. Characteristic peaks of each group are 
annotated on the spectra. 
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9.4.4. Group PS4  
 

Group PS4 consists of only 1 sample, representing 3.5% of the total samples. A notable 

characteristic that sets this sample apart from the other groups is the absence of a peak at 

1002 cm-1 and the presence of a relatively strong peak at 987 cm-1. The absence of the peak 

at 1002 cm-1 suggests the presence of a different binder type in this sample, as shown in 

Figure 131. The identification of the IR spectra of this sample confirms this conclusion, as it 

indicates the presence of terephthalic alkyd combined with acrylic as the binder. However, in 

the Raman spectra, there are fewer discernible peaks from the binder, making the 

characterization of the binder in this sample more challenging. 

 

 

 

 

 

 

 

 

 

 

 

Figure 131. Representative Raman spectra obtained from the primer surfacer of: a) Sample W026 
from Group PS4; b) sample W009 from Group PS2; and c) Sample W034 from Group PS3. 

Characteristic peaks of each group are annotated on the spectra. 
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9.4.5. Classification and discrimination of primer surfacer 
 

The key features observed in all the obtained spectra were the two large peaks at 448 and 

610 cm-1, which were attributed to titanium dioxide in the form of rutile. However, it was not 

possible to differentiate samples based on the detected pigment alone. The region of 800-

1800 cm-1 exhibited weak but abundant peaks, allowing for differentiation between samples. 

However, not all peaks in this region could be identified, even with the assistance of known 

chemical composition information obtained from IR analysis and database searches. In other 

words, not all compositions detected from the IR analysis could be identified from the Raman 

spectra. Consequently, only the compositions that could be confidently identified from the 

Raman spectra of the primer surfacer were marked. The results of visual grouping and the 

identified chemical compositions for each group are summarized in Table 51. The main 

differences observed between the spectra of samples with similar characterizations were also 

emphasized in the table. 

Through visual comparison of the primer surfacer spectra obtained from Raman analysis using 

a 785 nm laser, a total of 191 sample pairs remained undifferentiated, resulting in a 

discriminating power of 49.5% (191 undifferentiated pairs out of a total of 28 samples).  

 

Table 51. Summary of visual groupings of primer surfacer (n=28)  

GROUP/COMPOSITION SUB-GROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

Group PS1 
FLUORESCENCE 

- W061 Fluorescence curve 

Group PS2 
EPY+ALK IPH+PUR 

+BAS+TIO2 

2.1 

W009, W011, W017, W019, W021, 
W022, W024, W025, W027, W028, 
W030, W031, W040, W043, W050, 
W052, W055, W058, W059, W060 

Identical peaks at 1730, 1606, 
1304, 1188, 1112, 1002, 984, 610, 

and 444 cm-1.  

2.2 W003, W039 Extra peak at 1530 cm-1 
2.3 W006 Sharper peak at 1450 cm-1 

Group PS3 
ALK IPH+TIO2 

3.1 W001 
Poor quality, only peaks at 1002, 

610 and 444 cm-1 can be identified  

3.2 W034 
Extra peaks at 1538, 990, 745 and 

687 cm-1 

3.3 W035 
No peaks at 1538, 990, 745 and 

687 cm-1 

GROUP 4 
Uncharacterized 

binder+BAS+TIO2 
- W026 Single sample in the group 
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9.4.6. Exploratory analysis 
 

A total of 80 Raman spectra from the primer surfacer of 28 samples were subjected to PCA 

analysis to visualize the underlying data structure. Considering the large number of 

undifferentiated samples, all spectra underwent pre-treatment including baseline offset, 

Savitzky-Golay type 1st derivative baseline treatment and SNV normalization. The analysis 

focused on variables within the range of 1800-800 cm-1, resulting in a dataset comprising 912 

variables for PCA analysis. 

Figure 132 illustrates the PCA model generated from this dataset, displaying the projections 

of Raman spectra based on the first two principal components, which account for 95% of the 

total variance. However, the presence of significant fluorescence signal in sample W061 and 

background noise in sample W001 resulted in most of the samples being accumulated in the 

center without any discernible pattern. To address this issue, the two outliers (W061 and 

W001) were identified and subsequently removed from the dataset. 

Subsequently, an additional PCA analysis was conducted on the remaining 78 Raman spectra 

from the primer surfacer of the remaining 26 samples. Figure 133 summarizes the PCA model 

generated from this new subset, showcasing the projections of Raman spectra based on the 

first four principal components, which account for 92% of the total variance within this subset. 

The two-dimensional score plots obtained using PC1 and PC2 confirmed the presence of three 

larger clusters (with four finer groupings), based on the binder and extender used in the 

primer surfacer, as depicted in Figure 133a (each cluster marked within dashed rectangles). 

By comparing derivative spectra with the original spectra, the corresponding loading plots for 

PC1 and PC2 (Figure 134a and Figure 134b) revealed that peaks at approximately 987, 1002, 

and 1606 cm-1, corresponding to spectral features of barium sulfate, isophthalic acid, and 

epoxy, respectively, significantly contributed to the separation of the clusters. The inclusion 

of PC3 and PC4 allowed for further separation within Group PS2 (highlighted by a red dashed 

line in Figure 133b and Figure 133c). PC3 is associated with epoxy, while PC4 is influenced by 

the extra tiny peak at 1530 cm-1(Figure 134c and Figure 134d). 

Eventually, considering the previously identified outliers, a total of eight groups could be 

distinguished using the PCA model. The grouping results of the PCA analysis are presented in 

Table 52. However, there is a group of 21 samples that remained undifferentiated, resulting 

in a discriminating power of 44.4% (with 210 undifferentiated pairs out of a total of 28 

samples). 

The data structure of the Raman spectra of the primer surfacer, with respect to the 

information on vehicle origin, was not investigated further. This decision was based on the 

observation that the grouping results obtained from the Raman spectra analysis mirrored the 

patterns observed in the IR analysis. Consequently, conducting additional analysis on the 

Raman spectra did not yield any additional information or insights. 
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Figure 132. PCA scatter plot of all Raman spectra of primer surfacer (n=28) according to the first two 
principal components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 133. PCA score plots for the primer surfacer Raman spectra of new subset(n=26): (a) 
Separation for 3 larger groups based on PC1 and PC2, which account for 63% and 17% of the total 

variance, respectively; (b) projections based on PC1 and PC3, accounting for 63% and 10% of the total 
variance, respectively, with sample W006 separated from the rest of Group PS2; (c) projections based 

on PC1 and PC4, accounting for 63% and 2% of the total variance, respectively, with sample W039 
separated from the rest of Group PS2. 
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Figure 134. loadings of the first four principal components (a to d, respectively) of the PCA model 
generated from the primer surfacer Raman spectra of new subset (n=26). The wave numbers 

corresponding to characteristic peaks of the characterized component are highlighted using different 
shapes and colors. 

 

Table 52. Summary of PCA-based groupings of primer surfacer (n=28)  

GROUP SAMPLES  VISUAL GROUPS 

1 W061 Group PS1 

2 
W003, W009, W011, W017, W019, W021, W022, W024, 
W025, W027, W028, W030, W031, W040, W043, W050, 

W052, W055, W058, W059, W060 Group PS2 
3 W039 
4 W006 

5 W001 
Group PS3 6 W034 

7 W035 

8 W026 Group PS4 

 

 

 

 

 

a) b) 

c) d) 

1530 

EPY BAS ALK IPH 
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9.5. Characterization of primer 
 

The analysis and characterization of primer was performed on all 54 samples in the set. The 

primer spectra obtained in this study exhibited mostly poor quality, posing challenges in 

sample identification and differentiation based on spectral analysis. The response of the 

primer to the laser varied greatly among samples, requiring different laser powers for 

accurate measurements. Increasing the laser power often resulted in primer burning, further 

complicating the acquisition of high-quality spectra. 16 accumulations were added onto the 

original spectra in order to increase signal to noise ratio, thus obtaining better quality of 

spectra. Due to the poor quality, only one measurement was taken from each primer. The 

samples were classified into two groups based on the chemical categories identified from the 

spectra. Each group of spectra was analyzed individually to identify the constituents detected 

by Raman in the investigated paints and were discussed in the following subchapters. 

 

9.5.1. Group P1  
 

This particular group, identified as Group P1, consists of 1 sample, representing 1.8% of the 

total samples. The spectra within this group exhibit a distinct characteristic—they lack 

discernible peaks or features that would enable the characterization of specific chemical 

groups. Instead, the spectra in Group P1 only display a fluorescence curve, as depicted in 

Figure 135. As a result, at this stage of the analyses, the spectrum from Group P1 remains 

uncharacterized, as it does not provide sufficient information for identification or 

classification. 

 

 

 

 

 

 

 

 

 

 

Figure 135. Representative spectra of the primer of samples forming "Group P1". Raman spectra 

(raw) acquired with a laser at 785nm. 
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9.5.2. Group P2  
 

Group P2 comprises 53 samples, representing 98.2% of the total sample set. Within this group, 

a subset of 7 samples exhibited spectra of good quality, enabling the characterization of their 

chemical composition. However, the remaining 46 samples displayed the same characteristic 

peaks, albeit with lower intensity, resulting in lower-quality spectra compared to the 

aforementioned seven samples. 

Figure 136 illustrates a spectrum of good quality, exhibiting distinct Raman bands at 1610, 

1185, 1111, 638, 610, and 444 cm-1. The IR analysis revealed that all primers in the sample set 

contained epoxy resin, in combination with titanium dioxide and aluminum silicate as 

pigments and extenders. In the Raman spectra, the presence of peaks at approximately 610 

and 444 cm-1 indicated the presence of rutile form of TiO2, while the shoulder peak at 

approximately 638 cm-1 was attributed to the presence of aluminum silicate. The peaks at 

approximately 1111 and 1185 cm-1 were assigned to C–C backbone and C–C out-of-plane 

vibrations, respectively, originating from the epoxy resin.  

Although there are variations in the relative intensity and response to the laser within this 

group, all the Raman bands show up at the same positions. Consequently, two subgroups 

were formed within the same chemical class based on spectral quality. One subgroup includes 

7 samples with distinct peaks, while the other subgroup contains 46 samples with less intense 

characteristic peaks. However, this grouping outcome won't serve as a basis for discrimination, 

all 53 samples in Group P2 remain undifferentiated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 136. Representative Raman spectrum obtained from the primer of Sample W018 from Group 
P2, with characteristic peaks annotated on the spectrum.  
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9.5.3. Classification and discrimination of primer 
 

The analysis of primer spectra posed challenges due to the poor quality of the majority of the 

spectra. As a result, drawing definitive conclusions based on visual comparison alone proved 

difficult, and no additional compositional information beyond what was obtained from the IR 

analysis could be identified from the Raman spectra. Within Group P1, the single sample 

provided no information. 

Furthermore, within Group P2, the primer spectra could not be differentiated from each other 

based solely on the position of characteristic Raman bands. The results of the grouping, 

obtained through visual comparison, are summarized in Table 53. 

A significant number of samples remained undifferentiated following the Raman analysis of 

the primer, with an exceptionally high number of undifferentiated pairs (1378 pairs). The 

calculated discriminating power was merely 3.7% (1378 undifferentiated pairs out of a total 

of 54 samples). Even when accounting for the variations in the relative intensity of peaks 

observed in Group P2, a substantial 1056 pairs of samples still remained undifferentiated, 

resulting in a discriminating power of 26.2%. This underscores that the Raman analysis of the 

primer did not yield the same level of discrimination as offered by the IR analysis. As such, 

Raman analysis of the primer proves to be less optimal for automotive paint analysis.  

 

Table 53. Summary of visual comparisons within the previously defined groups (primer). 

GROUP/COMPOSITION SUB-GROUP SAMPLES  DIFFERENCE WITHIN THE GROUP 

GROUP P1 
FLUORESCENCE 

-  W061 All fluorescence, no difference 

GROUP 2 
EPY+ALS+TIO2 

- 
W002, W003, W005, W006, W018, 

W052, W062 
Raman bands at 1610, 1185, 
1111, 638, 610, and 444 cm-1 

- 

W001, W007, W009, W010, W011, 
W012, W014, W015, W016, W017, 
W019, W020, W021, W022, W023, 
W024, W025, W026, W027, W028, 
W030, W031, W032, W033, W034, 
W035, W036, W039, W040, W041, 
W042, W043, W044, W045, W046, 
W047, W048, W049, W050, W051, 
W053, W054, W055, W058, W059, 

W060 

Lower intensities at 
aforementioned position, mainly 

present only TiO2 peaks 
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9.5.4. Exploratory analysis 
 

A total of 54 Raman spectra from the primer of the analyzed samples in this study were 

investigated using PCA to visualize the data structure. Prior to applying the exploratory 

algorithms, the raw spectra data underwent baseline correction, normalization, and 

detrending with a polynomial order of 2. Variables in the range of 1640-380 cm-1 (1321 points) 

were selected. 

In Figure 137a, the PCA model is summarized by displaying the projections of the Raman 

spectra based on the first two principal components, which account for 95% of the total 

sampling variance. The majority of samples were projected closely together and close to the 

center, with only a few samples distributed far away from the center. By examining the 

weights (loadings) of the first principal component (PC1, Figure 137b), the influence of 

positive values corresponding to titanium dioxide can be highlighted. However, this 

separation was primarily based on the spectra quality, as the samples distributed far away 

from the center exhibited discernible peaks with generally higher intensities. Despite these 

observations, confident discrimination could not be achieved based on this PCA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 137. PCA scatter plot according to the first two principal components (a) of the set of Raman 
spectra of primer (785nm) and the loadings for PC1(b).  

a) 

b) 
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9.6. Discussion  
 

9.6.1. Blind test 
 

Blind tests were carried out to validate the Raman protocol. A total of five samples, denoted 

as A to E, were randomly selected. These samples were measured by a different collaborator. 

The same procedure as the FTIR blind test was employed in these tests. However, LDA was 

excluded due to its constrained classification capability for less discriminant sample groups. 

For enhanced sample classification accuracy, initial PCA projections were conducted to 

determine the chemical class of each sample (see Figure 138). Then PCA models were then 

selected for SIMCA classification. The classification outcomes achieved using SIMCA and 

database search are detailed in Table 54.  

The databases were established using OMNIC software by uploading all spectra, including 

replicates, acquired from Raman analyses of each layer. The search results were generated 

using the 'correlation' algorithm. All the hits with a 'match value' obtained from the 

correlation algorithm surpassing 95% were documented. In this context, the conventional 

database search stands out for its simplicity and speed—offering distinct advantages. Unlike 

SIMCA, which requires the determination and creation of individual PCA models one by one—

an often-time-consuming process—database search offers a more streamlined approach. 

Additionally, database search facilitates direct spectra comparison, a feature that proves 

valuable in the identification and elimination of certain false positives. Given the remarkably 

identical chemical profiles in the basecoat and primer surfacer—resulting in a group of 21 

undifferentiated samples, respectively—numerous potential sources become plausible. 

However, due to space limitations, only the initial ten samples from this group have been 

included in the table. This underscores the complexity and challenges associated with 

distinguishing between such closely related layers in automotive paint analysis. 

It is worth noting that the clearcoat of Sample D lacks spectra data due to an incorrect layer 

identification. However, this does not significantly impact the final classification, as Sample D 

could be accurately identified using its unique basecoat.  

Furthermore, It is important to note that primer classification was initially excluded due to its 

limited discriminatory capability. However, the quality of primer spectra does offer some level 

of support to the classification process. While not as robust as other layers, the primer spectra 

still provide valuable information that contributes to the overall classification efforts. 

Ultimately, all samples were accurately classified through these approaches. 
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Figure 138. PCA projections for blind test samples (scatter plot in green, highlighted in red circles): a) 
clearcoat; b) basecoat; c) primer surfacer. 
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Table 54. Raman blind tests results of SIMCA and database searches for 5 unknown samples. 

SAMPLE LAYER 
PCA PROJECTED 
CHEMICAL CLASS 

SIMCA 
(1% or 5%) 

DATABASE SERATCH 
 (>95%) 

INTERGREATED 
PREDICTION 

ACTUAL 
SAMPLE 

A 

C Group C2 W048, W062 W062, W048 SIMCA 
W062 
Database 
W062 

W062 
B Group B2 W026, W007, W062, W042, W048, W062 

P Group P2 - W062 

B 

C Group C2 W014, W041, W048, W047 
W054, W041, W051, W012, 
W047, W049, W045, W044 

SIMCA 
W014, W041, 
W047 
Database 
W054, W041, 
W051, W047, 
W044 

W041 
B Group B2 

W002, W010, W018, W016, 
W015, W014, W049, W041, 
W046, W020, W047, W045, 
W033, W032, W005, W053, 

W012, W026, W007 

W051, W047, W045, W018, 
W041, W020, W005, W010, 

W046, W014, W044 

P Group P2   

C 

C Group C3 W021, W050  
W030, W011, W019, W052, 
W021, W031, W039, W055, 

W050, W003 

SIMCA 
W021, W050 
 
Database 
W011, W030, 
W050, W052, 
W021 W050 

B Group B3 

W035, W052, W043, W060, 
W050, W030, W039, W021, 
W024, W031, W028, W027, 
W003, W022, W058, W055 

W024, W022, W011, W058, 
W021, W052, W030, W003, 

W028, W050  

PS Group PS2 

W022, W028, W060, W040, 
W027, W050, W025, W003, 
W021, W058, W055, W017, 
W043, W019, W030, W039, 

W009 

W052, W022, W019, W059, 
W060, W021, W025, W030, 
W011, W050, W040, W028 

P Group P2   

D 

C    SIMCA 
W006, W043, 
W060, W039, 
W021, W028, 
W058, W055, 
 
 
Database 
W006 

W006 

B Group B3 

W006, W059, W043, W060, 
W050, W039, W021, W024, 
W031, W028, W003, W022, 

W058, W055 

W006 

PS Group PS2 

W006, W028, W060, W040, 
W027, W025, W003, W021, 
W058, W055, W017, W043, 
W019, W030, W039, W009 

W043, W006, W027, W009 

P Group P2 - W006 

E 

C Group C2 W036, W023, W002, W062 W036, W002, W023 SIMCA 
W002, W036, 
W023 
Database 
W002, W023, 
W036 

W023 
B Group B2 

W002, W023, W036, W012, 
W007, W014 

W002, W036, W023 

P Group P2   
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9.6.2. Discriminating power and Inter-sample variability 
 

Similar to the IR analysis, the inter-sample variability revealed from Raman analysis is 

assessed by examining the chemical categories of the samples and the discriminating power 

(DP) obtained from analyzing each layer. 

Table 55 presents a summary of the discriminating power for each layer, considering both 

visual comparison and PCA-based separation across the entire sample set of 54 OEM paint 

samples. The results show that different layers exhibit varying levels of discrimination 

capability, with the clearcoat showing the highest discriminating power and the primer 

displaying the lowest. It should be noted that the discriminating power obtained from PCA 

may differ slightly from that of visual comparison due to the potential uncertainty introduced 

by baseline variations, as discussed in the previous section. Therefore, visual comparison is 

primarily relied upon for classification and discrimination analysis. 

Table 56 presents an overview of the chemical categories identified from each layer through 

Raman analysis, including the number of samples assigned to each category. These categories 

were determined by cross-referencing the identification from the IR analysis to assist in the 

classification of the Raman spectra, with only the identifiable features listed. Due to the 

limited diversity in pigment among white automotive paints, the characterization of Raman 

spectra revealed mainly the resins used in paint samples as well. No additional pigment or 

extender composition was detected from Raman analysis.  

 

Table 55. Discriminating power of each layer based on visual comparison and PCA (n=54). 

Layer type 
DP of Visual 
comparison 

Undifferentiate
d pairs of visual 

comparison 
DP of PCA 

Undifferentiate
d pairs of PCA 

Total number 
of samples 

Primer (P) 10.7%  1278 - - 54 

Primer surfacer (PS) 49.5%  191 44.4% 210 28 

Basecoat (B) 76.3%  339 78.6% 306 54 

Clearcoat (C) 88.0% 172 80.5% 278 54 

 

Table 56. Chemical categories identified from each layer by Raman analysis (n=54). 

Layer 
type 

Number 
of classes 

Identified chemical class 
Number of samples 

within each class 
Total sample 

number 

Primer 
1 Fluorescence 1 

54 
2 EPY+ALS+TIO2 53 

Primer 
surfacer 

1 Fluorescence 1 

28 
2 EPY+ALK IPH+PUR+BAS+TIO2 23 

3 ALK IPH+TIO2 3 

4 Uncharacterized binder+BAS+TIO2 1 

Basecoat 

1 Fluorescence 1 

54 2 PUR +TIO2 27 

3 ACR+ALK IPH+TIO2 26 

Clearcoat 

1 Fluorescence 1 

54 2 PUR+STY 27 

3 ACR+PUR+STY 26 
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Table 57 summarizes the groups of samples that could not be differentiated based on each 

layer.  

 

Table 57. Groups of samples that could not be differentiated from Raman analysis of each layer. 

Layer 
type 

Group 
No. 

Undifferentiated samples 

Primer 1 

W001, W002, W003, W005, W006, W007, W009, W010, W011, W012, W014, W015, W016, 
W017, W018,W019, W020, W021, W022, W023, W024, W025, W026, W027, W028, W030, 
W031, W032, W033, W034, W035, W036, W039, W040, W041, W042, W043, W044, W045, 
W046, W047, W048, W049, W050, W051, W052, W053, W054, W055, W058, W059, W060, 

W062 

Primer 
surfacer 

1 
W009, W011, W017, W019, W021, W022, W024, W025, W027, W028, W030, W031, W040, 

W043, W050, W052, W055, W058, W059, W060 

2 W003, W039 

Basecoat 

1 
W005, W007, W010, W012, W014, W015, W016, W018, W020, W032, W033, W041, W042, 

W044, W045, W046, W047, W049, W051, W053, W054 

2 W002, W023, W036 

3 W048, W062 

4 
 W003, W009, W011, W021, W022, W024, W027, W028, W030, W031, W039, W043, W050, 

W052, W055, W058 

5 W034, W035 

6 W006, W059 

7 W019, W025, W040 

Clearcoat 

1 W002, W007, W023, W036, W053 

2 W010, W014, W015, W016, W018 

3 W012, W020, W032 W041, W042, W044, W045, W047, W049, W051, W054 

4 W005, W033, W046 

5 W048, W062 

6 W003, W011, W019, W021, W030, W031, W039, W050, W052, W055 

7 W009, W017, W022, W024, W025, W035, W040, W043, W059, W060 

8 W027, W028, W034 

 

 

Similar to the FTIR analysis, the discriminating capabilities of different layer combinations 

were also assessed, and separate evaluations were conducted for Group OEM3 and Group 

OEM4. The results are summarized in Table 58. It is important to note that while the primer 

analysis did separate the samples into two groups, the resulting discriminating power remains 

relatively low. Additionally, the separation is primarily driven by differences in the responses 

to the laser, and therefore, may not comprehensively reflect the samples' chemical 

characteristics. The primer analysis does not contribute any supplementary discrimination.  

Mirroring the trends observed in the overall sample set's discrimination power, both within 

Group OEM3 and Group OEM4, the combination of basecoat and clearcoat demonstrated the 

highest discrimination capability in the case of considering only two layers. Remarkably, 

within Group OEM3, this specific combination proved to be the sole effective choice, given 

that primer did not yield any additional discrimination potential. This layer combination 

ultimately resulted in a discriminating power of 77.5% for Group OEM3. The same principle 

applies to the three-layer combination within Group OEM4. Here, the integration of primer 
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surfacer, basecoat, and clearcoat forms the genuine three-layer combination, yielding the 

highest discrimination power of 92.1%. This value also represents the ultimate discriminating 

power derived from the Raman analysis of samples within Group OEM4. 

 

Table 58. Discrimination power of single layer and different layer combination from Raman analysis 
(n=54) 

 
Whole OEM sample set 

(n=54) 
Group OEM3 

(n=26) 
Group OEM4 

(n=28) 

Layer type 
DP 

(Undifferentiated pairs) 
Total number 

of samples 
DP 

(Undifferentiated pairs) 
DP 

(Undifferentiated pairs) 

Primer (P) 10.7% (1278) 54 0% (325) 7.1% (351) 

Primer surfacer (PS) 49.5% (191) 28  49.5% (191) 

Basecoat (B) 76.3% (339) 54 34.2% (214) 66.9% (125) 

Clearcoat (C) 88.0% (172) 54 75.7% (79) 75.4% (93) 

P+PS 49.5% (191) 28  49.5% (191) 

P+B 76.3% (339) 54 34.2% (214) 66.9% (125) 

P+C 88.0% (172) 54 75.7% (79) 75.4% (93) 

PS+B 74.9% (95) 28  74.9% (95) 

PS+C 82.5% (66) 28  82.5% (66) 

B+C 91.8% (117) 54 77.5% (73) 88.4% (44) 

P+PS+B 74.9% (95) 28  74.9% (95) 

P+PS+C 82.5% (66) 28  82.5% (66) 

P+B+C 91.8% (117) 54 77.5% (73) 88.4% (44) 

PS+B+C 92.1% (30) 28  92.1% (30) 

P+PS+B+C 92.1% (30) 28  92.1% (30) 

Final DP 92.8% (103) 54 77.5% (73) 92.1% (30) 

 

When considering the discrimination results of all layers, there were a total of 103 pairs of 

samples that remained undifferentiated. The undifferentiated groups of samples and the 

corresponding vehicle information are listed in Table 59. This indicates that the overall 

discriminating power achieved from the Raman analysis of the sample set of 54 OEM white 

VW automotive paint samples was 92.8% (103 undifferentiated pairs out of 54 samples). 

These findings underscore the potential of Raman analysis as an alternative to FTIR for 

distinguishing automotive paint samples effectively, although it may not be as robust as 

FTIR. 

After closely examining the vehicle details of the undifferentiated sample pairs, a consistent 

pattern became evident, aligning with the observations made during the IR analysis. The 

majority of undifferentiated samples could be traced back to the same manufacturing 

company (S-VW), even when considering variations in models, production years, and 

assembly plants (for example, samples in Groups 2, 4, 7, 10).  

However, It is important to highlight that Group 3 displayed a different pattern. Here, 

undifferentiated samples originated from different manufacturing companies, featuring 

diverse models and color codes, yet sharing non-differentiable basecoat and clearcoat layers. 

A cross-reference with the IR analysis outcomes further revealed the inability of IR analysis to 

differentiate the basecoat and clearcoat of these three samples. Sample W005, produced by 

a different manufacturing company than W033 and W046, could be distinctly differentiated 

solely through IR analysis of the primer layer. 
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In conclusion, the Raman analysis conducted in this study confirmed the identified chemical 

characteristics of the samples, which were consistent with the findings from the IR analysis. 

Despite the samples belonging to the same manufacturer and color (white), there was 

significant diversity and inter-sample variability observed within this specific sample set.  

 

 

Table 59. Properties of undifferentiated sample groups by visual comparison of Raman spectra of all 
layers 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Topcoat 
color code 

Assembly 
plant 

Layer 
structure 

1 

W002 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W023 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W036 F-VW Sagitar 2017 LC9A Chengdu OEM3 

2 
W007 S-VW Santana 2013 LY9H Nanjing OEM3 

W053 S-VW New Lavida 2014 LY9H Nanjing OEM3 

3 

W005 F-VW Jetta 2014 LB9A Chengdu OEM3 

W033 S-VW New Lavida 2014 LY9H Nanjing OEM3 

W046 S-VW Passat 2013 LY9H Nanjing OEM3 

4 

W010 S-VW Santana 2017 LY9H Nanjing OEM3 

W014 S-VW New Lavida 2017 LY9H Anting OEM3 

W015 S-VW New Lavida 2017 LY9H Anting OEM3 

W016 S-VW New Lavida 2017 LY9H Anting OEM3 

W018 S-VW New Lavida 2016 LY9H Anting OEM3 

5 

W012 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W020 S-VW Santana 2016 LY9H Nanjing OEM3 

W032 S-VW Gran Lavida 2015 LY9H Anting OEM3 

W041 S-VW Santana 2017 LY9H Nanjing OEM3 

W042 S-VW New Lavida 2017 LY9H Anting OEM3 

W044 S-VW Passat 2017 LY9H Nanjing OEM3 

W045 S-VW Lamando 2018 LY9H Ningbo OEM3 

W047 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W049 S-VW New Lavida 2016 LY9H Anting OEM3 

W051 S-VW Lamando 2017 LY9H Ningbo OEM3 

W054 S-VW New Lavida 2016 LY9H Anting OEM3 

6 
W048 S-VW New Lavida 2018 LY9H Anting OEM3 

W062 S-VW New Lavida 2018 LY9H Anting OEM3 

7 

W011 S-VW Polo 2017 LY9H Anting OEM4 

W021 S-VW Polo 2016 LY9H Anting OEM4 

W030 S-VW Tiguan 2016 LY9H Anting OEM4 

W031 S-VW Tiguan 2017 LY9H Anting OEM4 

W050 S-VW Polo 2012 LY9H Anting OEM4 

W052 S-VW Tiguan 2017 LY9H Anting OEM4 

W055 S-VW Lavida 2014 LY9H Anting OEM4 

8 
W027 S-VW Passat 2004 Unknown Anting OEM4 

W028 S-VW Passat 2003 LB9A Anting OEM4 

9 
W003 S-VW Polo 2017 LY9H Anting OEM4 

W039 S-VW Polo 2017 LY9H Anting OEM4 

10 

W009 S-VW New Lavida 2015 LY9H Nanjing OEM4 

W022 S-VW Touran 2010 LB9A Anting OEM4 

W024 S-VW Tiguan 2012 LB9A Anting OEM4 

W043 S-VW Gran Lavida 2015 LY9H Anting OEM4 

11 
W025 S-VW Polo 2016 LY9H Anting OEM4 

W040 S-VW Polo 2015 LY9H Anting OEM4 
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9.6.3. Correlation between chemical properties and vehicle 

information  
 

Figure 139 provides a summary of the correlation between the chemical properties identified 

from the Raman analysis and the sample groupings based on vehicle information, including 

manufacturing company, assembly plant, and the layer system. The observed correlations 

were consistent with those obtained from the IR analysis. However, no additional patterns or 

correlations were identified specifically from the Raman analysis. Notably, it was observed 

that a greater number of distinct groups could be distinguished within each assembly plant 

compared to the findings from the IR analysis. This suggests that the Raman analysis provided 

additional resolution and discrimination capabilities for identifying variations in the chemical 

properties within the same assembly plant. 

 

 

 

 

 

 

 

 

 

 

Figure 139. Chemical profiles (Raman) of the entire samples in relation to manufacturing company, 
assembly plant, and the layer system. Groupings obtained from visual comparison within each plant 

are listed.   

Regarding the topcoat color code, Table 60 displays the groupings of samples within each 

topcoat color code group, determined through visual comparison of the basecoat Raman 

spectra. This analysis was conducted on a subset of 50 OEM paint samples for which the 

topcoat color code information was available. The results revealed a similar trend to that 

observed in the IR analysis. While the discriminant power of Raman analysis was slightly lower, 

it was still able to differentiate samples with the same color code into multiple groups. This 

indicates substantial variations in the chemical characteristics of the paint samples, even 

within the context of shared topcoat color codes. 

This section mainly discusses the findings from solely Raman analysis. As for the comparison 

between the results obtained from IR and Raman analysis, as well as the observations derived 

from combining the findings of both techniques, a detailed discussion will be provided in 

Chapter 11 of the thesis. Chapter 11 will delve into the similarities, differences, and 
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complementary aspects of IR and Raman analysis, highlighting their respective strengths and 

limitations in characterizing the chemical properties of the automotive paint samples. 

 

Table 60. groupings of samples within each topcoat color code group based on Raman analysis of 
basecoat (n=50) 

Topcoat 
color code 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Assembly 
plant 

Layer 
structure 

LC9A 

1 

W002 F-VW Sagitar 2017 Chengdu OEM3 

W023 F-VW Sagitar 2017 Chengdu OEM3 

W036 F-VW Sagitar 2017 Chengdu OEM3 

2 
W006 F-VW New bora 2016 Changchun OEM4 

W059 F-VW New bora 2013 Changchun OEM4 

3 
W034 F-VW New bora 2017 Changchun OEM4 

W035 F-VW New bora 2018 Changchun OEM4 

4 W026 W-VW GoCo 2012 Osnabrück OEM4 

LB9A 

1 W005 F-VW Jetta 2014 Chengdu OEM3 

2 W060 F-VW Golf 2012 Changchun OEM4 

3 

W022 S-VW Touran 2010 Anting OEM4 

W024 S-VW Tiguan 2012 Anting OEM4 

W058 S-VW Tiguan 2013 Anting OEM4 

4 W028 S-VW Passat 2003 Anting OEM4 

LY9H 

1 

W007 S-VW Santana 2013 Nanjing OEM3 

W010 S-VW Santana 2017 Nanjing  OEM3 

W012 S-VW New Lavida 2017 Nanjing OEM3 

W014 S-VW New Lavida 2017 Anting OEM3 

W015 S-VW New Lavida 2017 Anting OEM3 

W016 S-VW New Lavida 2017 Anting OEM3 

W018 S-VW New Lavida 2016 Anting OEM3 

W020 S-VW Santana 2016 Nanjing OEM3 

W032 S-VW Gran Lavida 2015 Anting OEM3 

W033 S-VW New Lavida 2014 Nanjing OEM3 

W041 S-VW Santana 2017 Nanjing OEM3 

W042 S-VW New Lavida 2017 Anting OEM3 

W044 S-VW Passat 2017 Nanjing OEM3 

W045 S-VW Lamando 2018 Ningbo OEM3 

W046 S-VW Passat 2016 Nanjing OEM3 

W047 S-VW New Lavida 2017 Nanjing OEM3 

W049 S-VW New Lavida 2016 Anting OEM3 

W051 S-VW Lamando 2017 Ningbo OEM3 

W053 S-VW New Lavida 2014 Nanjing OEM3 

W054 S-VW New Lavida 2016 Anting OEM3 

2 
W048 S-VW New Lavida 2018 Anting OEM3 

W062 S-VW New Lavida 2018 Anting OEM3 

3 

W009 S-VW New Lavida 2015 Nanjing OEM4 

W011 S-VW Polo 2017 Anting OEM4 

W021 S-VW Polo 2016 Anting OEM4 

W030 S-VW Tiguan 2016 Anting OEM4 

W031 S-VW Tiguan 2017 Anting OEM4 

W039 S-VW Polo 2017 Anting OEM4 

W043 S-VW Gran LAVIDA 2015 Anting OEM4 

W050 S-VW Polo 2012 Anting OEM4 

W052 S-VW Tiguan 2017 Anting OEM4 

W055 S-VW Lavida 2014 Anting OEM4 

4 

W019 S-VW Polo 2017 Anting OEM4 

W025 S-VW Polo 2016 Anting OEM4 

W040 S-VW Polo 2015 Anting OEM4 

5 W017 S-VW Tiguan 2015 Anting OEM4 



232 
 

10. Characterization and classification with Py-

GC/MS 
 

 

As mentioned previously, this chapter was summarized from a master project. 

During the IR analysis of the basecoat samples, it was observed that among the 26 samples 

with an OEM3 layer system, all of them contained polyurethane basecoat. However, 23 of 

these samples could not be differentiated using FTIR analysis, indicating limited 

discrimination power. Raman analysis also did not provide significant additional 

discrimination, as 21 of the samples remained undifferentiated. To further enhance the 

discrimination capabilities, Pyrolysis-GC/MS analysis was performed on these samples 

following the strategy outlined in Chapter 6.5.  

This chapter will present the analysis results obtained from Pyrolysis-GC/MS, showcasing the 

chemical information and discrimination capabilities provided by this technique. The 

obtained chromatograms and mass spectra will be analyzed and interpreted to identify key 

compounds and chemical markers that can differentiate between the samples. The discussion 

will also address the challenges and limitations encountered during the Pyrolysis-GC/MS 

analysis of the paint samples.  

 

10.1. Sample set 
 

Basecoat samples from 23 vehicles with an OEM3 layer system, which were undifferentiated 

in the IR analysis, were selected for pyrolysis GC/MS analysis. The sample information for this 

group is provided in Table 61. This represents the largest undifferentiated group of samples 

even after Raman analysis. 

By focusing on the basecoat layer, further exploration of the correlation between topcoat 

color code and chemical characteristics can be conducted. In this group, all the samples were 

found to contain polyurethane as the primary binder, with isophthalic resin serving as an 

additional resin in the basecoat formulation.  

The pyrolysis GC/MS analysis of these samples aims to identify and analyze the pyrolysis 

products, providing detailed information about the chemical compounds present in the 

basecoat layer. 
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Table 61. Sample set involved in pyrolysis GC/MS analysis and vehicle information. 

Sample No. Company Model Production year Topcoat color code Assembly plant 

W002 F-VW Sagitar 2017 LC9A Chengdu 

W005 F-VW Jetta 2014 LB9A Chengdu 

W010 S-VW Santana 2017 LY9H Nanjing 

W012 S-VW New Lavida 2017 LY9H Nanjing 

W014 S-VW New Lavida 2017 LY9H Anting 

W015 S-VW New Lavida 2017 LY9H Anting 

W016 S-VW New Lavida 2017 LY9H Anting 

W018 S-VW New Lavida 2016 LY9H Anting 

W020 S-VW Santana 2016 LY9H Nanjing 

W023 F-VW Sagitar 2017 LC9A Chengdu 

W032 S-VW Gran Lavida 2015 LY9H Anting 

W033 S-VW New Lavida 2014 LY9H Nanjing 

W036 F-VW Sagitar 2017 LC9A Chengdu 

W041 S-VW Santana 2017 LY9H Nanjing 

W042 S-VW New Lavida 2017 LY9H Anting 

W044 S-VW Passat 2017 LY9H Nanjing 

W045 S-VW Lamando 2018 LY9H Ningbo 

W046 S-VW Passat 2013 LY9H Nanjing 

W047 S-VW New Lavida 2017 LY9H Nanjing 

W049 S-VW New Lavida 2016 LY9H Anting 

W051 S-VW Lamando 2017 LY9H Ningbo 

W053 S-VW New Lavida 2014 LY9H Nanjing 

W054 S-VW New Lavida 2016 LY9H Anting 
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10.2. Results and discussion 
 

The 23 samples that initially showed indistinguishable basecoat by FTIR analysis were 

prepared and measured using Py-GC/MS with the optimized experimental parameters. Three 

replicates were performed for each sample to assess the intra-sample variability and ensure 

reliable results. During the analysis, the sample cups were placed in the autosampler of the 

pyrolyzer, with an empty cup inserted between each sample as a blank run to account for any 

potential background signals or contamination. 

 

10.2.1. Intra-sample variability 
 

To evaluate the intra-sample variability, the pyrograms of each sample were visually 

compared within the replicates. It should be noted that intra-variability between the three 

replicates of the same sample were rarely observed. When such variabilities did emerge, they 

usually pertained to variations in relative intensities, or the presence/absence of a peak 

situated closely to the background. Six samples demonstrated this type of intra-sample 

variability. Figure 140 provides an illustration of intra-sample variability attributed to the 

presence or absence of a peak in close proximity to the background, as observed in Sample 

W044.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 140. Three pyrograms of sample W044, showing the intra-sample variability which is marked 
in rectangular.  
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A single sample (W046) exhibited significant intra-sample variability in one of its three 

replicates. As depicted in Figure 141, in one of the replicates of Sample W046, a prominent 

peak emerged around 5.00 minutes, whereas this peak was absent in the pyrograms of the 

other replicates. Notably, the peaks differing among the replicates did not align with the 

peaks observed in the pyrogram of the mounting resin used to embed the analyzed paint.   

 

 

Figure 141. Three pyrograms of sample W046, showing the intra-sample variability which is marked 
in rectangular. 

In the context of the existing intra-sample variability, when comparing samples, if the three 

replicates exhibited no notable variability, a single representative pyrogram was chosen for 

further comparison with other samples. Conversely, if the replicates displayed noticeable 

variation, all three were retained for inter-sample comparison. Any variations observed in the 

inter-sample comparison were deemed significant only when all three replicates distinctly 

deviated from the pyrograms of other samples. 

In addition to this, statistical techniques, specifically PCA, were employed to visualize the 

structure of the data and identify patterns within the dataset. The pyrogram data were 

extracted in 3D (similar to the approach used for reference samples), and values attributed 

to light ions, particularly those originating from the air, were eliminated to enhance data 

quality. The outcomes of these analyses will be elaborated upon in the subsequent chapter. 

 

5 .0 0 1 0 .0 0 1 5 .0 0 2 0 .0 0 2 5 .0 0 3 0 .0 0 3 5 .0 0
0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

3 5 0 0 0 0 0

4 0 0 0 0 0 0

4 5 0 0 0 0 0

T im e -->

A b u n d a n c e

T IC : 2 7 _ 4 _ 2 2 _ 4 6 _ 1 _ 3 .D \ d a ta .m s
T IC : 2 7 _ 4 _ 2 2 _ 4 6 _ 1 _ 1 .D \ d a ta .m s
T IC : 2 7 _ 4 _ 2 2 _ 4 6 _ 1 _ 2 .D \ d a ta .m s



236 
 

10.2.2. Identification of compound and visual comparison 
 

In Figure 142, a typical pyrogram obtained from the analysis is displayed, showcasing the main 

peaks observed. The mass spectra of these peaks were identified using the NIST17 Mass 

Spectral Library, which is a valuable resource for compound identification. Visual comparisons 

were conducted by overlaying the pyrograms and examining the presence or absence of 

specific peaks. 

Table 62 provides a comprehensive list of the peaks observed in the 23 samples, along with 

the identification of compounds based on the NIST17 database. Up to 95 compounds were 

found in the chromatographic pattern obtained from the samples. It is worth noting that 

several compounds could not be conclusively identified using the database and are labeled as 

"unknown." However, some of these unknown compounds play a significant role in 

distinguishing one sample from another, highlighting their importance in the analysis. These 

differences serve as distinguishing factors that contribute to the unique characteristics of 

each sample. Table 63 presents the summary of the visual groupings conducted between 

samples, based on the differences observed and outlined in Table 62.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 142. representative pyrogram of sample W012, with main peaks marked on the pyrogram. 
The identification of these peaks is presented in Table 62. 
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Table 62. List of Compounds Identified in the Samples. 

n° Rt Compound (Qual NIST 17) W002 W005 W010 W012 W014 W015 W016 W018 W020 W023 W032 W033 W036 W041 W042 W044 W045 W046 W047 W049 W051 W053 W054 

1 0.16 unknown                         
2 1.53 unknown                         
3 1.59 1-propene, 2-methyl- (87)                         
4 1.69 unknown                         
5 1.87 unknown                         
6 1.96 unknown                         
7 2.92 1-butanol (90)                         
8 3.00 benzene (91)                         
9 3.26 unknown                         
10 3.84 2-propenoic acid, 2-methyl- , 

methyl ester (94) 
                        

11 4.10 unknown                         
12 4.60 unknown                         
13 4.73 2-propenoic acid, 2-methyl- (81)                         
14 4.84 unknown                         
15 4.96 unknown                         
16 5.81 unknown                         
17 6.14 oxepane (83)                         
18 6.25 unknown x x       x x  x x    x x x x x x   
19 6.46 cyclopentanone (91)                         
20 6.83 unknown                         
21 6.99 ethylidenecyclobutane (80)                         
22 7.15 unknown                         
23 7.60 2-propenoic acid, butyl ester (83)                         

24 7.78 
styrene (94) 
or 1,3,5,7-cyclooctatetraene (94) 

                      
 

25 8.63 hexanal, 2-ethyl- (80)  x x x x x x x   x x x x x x x x x x x  x 

26 8.69 benzene (90)  x          x      x   x    
27 8.81 unknown                         
28 8.94 unknown                         
29 9.06 2-propenoic acid, 2-methyl-, butyl 

ester (83) 
 x          x      x       

30 9.13 unknown                         
31 9.50 alpha-methylstyrene (81)                         
32 9.76 unknown                         
33 10.03 benzaldehyde (87)                         
34 10.18 unknown  x x x x x x x   x x  x x x x x x x x  x 

35 10.36 unknown  x x x x x x x   x x  x x x x x x x x  x 

36 10.45 benzene, 3-butenyl- (86)                         

37 10.63 
benzonitrile (91) 
or tricyclo-hex-3-ene-3-carbonitrile 
(91) 

                      

 

38 10.74 benzene (90)                        

39 10.80 unknown   x x x x x x   x   x x x x  x x x  x 

40 10.88 unknown                         
41 11.02 benzene, 1-ethynyl-4-methyl- (86)                         
42 11.19 unknown                         
43 11.32 unknown                         
44 11.36 unknown                         
45 11.47 unknown  x x x x x x x   x x  x x x x x   x  x 

46 11.54 unknown   x x x  x x x  x   x x x x  x x x x x 

47 12.07 unknown       x x                 
48 12.55 benzylisocyanate (95)                         
49 12.73 unknown                         
50 12.83 benzoic acid (90)       x x                 
51 12.90 unknown                         
52 13.12 ethanol, 2-(2-butoxyethoxy)- (90) x x  x x x x x x x x x x x x   x   x x x 

53 13.45 unknown                        

54 13.56 unknown                        

55 13.69 unknown       x x                 
56 13.85 dimethylbenzonitrile (94)   x x x x x x   x   x x x x x x x x  x 

57 13.92 unknown       x x                 
58 13.98 unknown       x x                 
59 14.33 benzene, 1-methylethenyl- (91)       x x     x    x        
60 14.35 unknown x x  x     x x x x  x x   x x x x  x 

61 14.54 unknown                         
62 15.24 benzene, 1,2,3,5-tetramethyl- (80)  x x x x x x x   x x  x x x x x x x   x 

63 15.36 unknown       x x                 
64 15.40 unknown  x x x x x x x x  x x x x x x x x x x x  x 

65 15.86 unknown                        

66 16.07 hexane, 1,6-diisocyanato- (90)                        

67 16.20 1,3-benzenedicarbonitrile (81)                        

68 16.43 unknown x  x x x x x x x x x  x x x x x  x x x x x 

69 16.56 naphthalene, 2-ethenyl- (81)                        
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70 16.68 phthalic anhydride (94)                        

71 17.08 unknown                        

72 17.12 unknown                        

73 17.21 unknown                        

74 17.29 cyclohexene (87)                        

75 17.79 unknown x    x x x x x x   x    x    x x   

76 17.91 unknown   x x x x x x x  x  x x x x x    x  x 

77 17.96 unknown                        

78 18.03 unknown       x x                

79 18.18 unknown       x x                

80 18.23 unknown       x x                

81 18.40 unknown       x x                

82 18.61 cyclohexane, 5-isocyanato-1- 
(isocyanatomethyl)-1,3,3-
trimethyl- (90) 

      x x                

83 18.90 cyclohexane, 5-isocyanato-1- 
(isocyanatomethyl)-1,3,3-
trimethyl- (83) 

                       

84 19.43 unknown                        

85 20.63 unknown                        

86 20.77 unknown             x           

87 20.98 1-hexadecene (89)   x x x x x x x  x x  x x x   x x x x x 

88 21.62 unknown       x x                

89 21.83 unknown  x x x x x x x   x x  x x x x x x x x  x 

90 22.04 1,2-benzenedicarboxylic acid (83)                         

91 22.97 pentafluoropropionic acid, 4-
hexadecyl ester (91) 

  x      x             x   

92 23.12 unknown   x                      
93 24.63 unknown             x            

94 24.82 unknown                         x                     

95 25.01 unknown                         x                     

Note: "Rt" refers to the retention time of each compound. The compound names provided are the result of a 

search in the NIST17 database. The "Qual" column indicates the comparison value assigned by NIST17. Columns 

3-25 indicate the presence or absence of the corresponding peak or compound in each sample. Absence of the 

peak is marked with ‘x’ in the table. 

Table 63. Summary of visual groupings based on the pyrograms of the basecoat of the samples in this 
sample set (n=23). 

Group Sample 
No. 

Company Model Production year Topcoat color 
code 

Assembly plant 

1 
W002 F-VW Sagitar 2017 LC9A Chengdu 

W023 F-VW Sagitar 2017 LC9A Chengdu 

2 

W005 F-VW Jetta 2014 LB9A Chengdu 

W033 S-VW New Lavida 2014 LY9H Nanjing 

W046 S-VW Passat 2013 LY9H Nanjing 

3 
W014 S-VW New Lavida 2017 LY9H Anting 

W015 S-VW New Lavida 2017 LY9H Anting 

4 
W016 S-VW New Lavida 2017 LY9H Anting 

W018 S-VW New Lavida 2016 LY9H Anting 

5 
W047 S-VW New Lavida 2017 LY9H Nanjing 

W049 S-VW New Lavida 2016 LY9H Anting 

6 

W012 S-VW New Lavida 2017 LY9H Nanjing 

W032 S-VW Gran Lavida 2015 LY9H Anting 

W041 S-VW Santana 2017 LY9H Nanjing 

W042 S-VW New Lavida 2017 LY9H Anting 

W054 S-VW New Lavida 2016 LY9H Anting 

7 W036 F-VW Sagitar 2017 LC9A Chengdu 

8 W020 S-VW Santana 2016 LY9H Nanjing 

9 W045 S-VW Lamando 2018 LY9H Ningbo 

10 W010 S-VW Santana 2017 LY9H Nanjing 

11 W044 S-VW Passat 2017 LY9H Nanjing 

12 W051 S-VW Lamando 2017 LY9H Ningbo 

13 W053 S-VW New Lavida 2014 LY9H Nanjing 
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By analyzing the grouping results in Table 63, it is observed that there are 17 pairs of samples 

that could not be differentiated from each other, resulting in a discriminating power of 93.3% 

(17 undifferentiated pairs out of 23 samples). 

Upon examining the vehicle information of the undifferentiated sample pairs, a noticeable 

pattern emerged across six undifferentiated sample groups. Among these groups, the 

majority of undifferentiated sample pairs (for instance, those in Groups 1, 3, 4) were 

manufactured within the same assembly plant, during the same or similar production years, 

and had identical topcoat color codes. Likewise, samples in Group 5 and 6 shared the same 

manufacturing company (S-VW), despite variations in models, production years, or assembly 

plants. However, an interesting observation arises in Group 2. Despite their undifferentiated 

nature, these three samples have remarkably distinct origins, originating from different 

manufacturing companies, featuring diverse models, assembly plants, and topcoat color 

codes. 

Conversely, upon reviewing the vehicle information of distinguishable samples, it was found 

that samples which initially shared indistinguishable vehicle information could indeed be 

differentiated through Py-GC/MS analysis. This phenomenon is illustrated in Figure 143, 

wherein the pyrograms of the basecoat for both Sample W002 and Sample W036 are 

displayed. Notably, these two samples, which remained undifferentiated through IR or Raman 

analysis, share identical origins, including the manufacturer, assembly plant, production year, 

and topcoat color code. However, their pyrograms showcase a pronounced dissimilarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 143. Pyrograms of basecoat of Sample W002 (top) and Sample 036 (bottom). The observed 
differences are highlighted in red.  
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10.2.3. Exploratory analysis 
 

The pyrogram data underwent a 3D extraction process to eliminate the influence of light ion 

values, particularly those originating from air entry. This extraction involved removing the 

light ion values and recalculating the sum of the abundances for each non-deleted ion at every 

data point. The dataset was then normalized using the area sum and subjected to a double 

square root transformation as a preprocessing step for statistical analysis. PCA was 

subsequently conducted on the normalized data. Groupings related to the identifying factors 

such as plant, model, and topcoat color code were examined to investigate whether any 

discernible patterns could be identified based on these factors.  

Figure 144 provides an overview of the PCA model generated from the dataset, displaying the 

projections of pyrograms based on the first two principal components, which account for 95% 

of the total variance, highlighted by individual sample number (Figure 144a), assembly plants 

(Figure 144b), topcoat color codes (Figure 144c), and vehicle models (Figure 144d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 144. PCA score plots according to the first two principal components of pyrograms of basecoat 
(n=23), respectively highlighted by their individual sample number (a), their assembly plant (b), their 

topcoat color codes (c), and the model of vehicles (d). 
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The repeatability of the pyrograms between replicates is an important observation and 

indicates the consistency of the analytical method. In this study, the pyrograms of the three 

replicates of the same sample show no major visual differences, it suggests that the analysis 

is producing consistent and reproducible results for that particular sample. This is further 

supported by the close projections of the three replicates in the PCA scatter plot. However, it 

is worth noting that some samples exhibit significant intra-sample variability, where the 

projections of the three replicates are far away from each other in the PCA plot. This variability 

could be attributed to the differences in the relative intensities or in the presence/absence of 

a peak very close to the background. 

The observation that three samples with a different color code (LC9A) are clearly separated 

from the rest of the cluster in the PCA model suggests that there is a distinct chemical 

composition associated with these specific color codes (Figure 144c). On the other hand, the 

lack of a discernible pattern related to assembly plants or vehicle models suggests that these 

factors may have a minimal influence on the chemical composition of the paint samples in 

this study.  

It is important to note that the PCA analysis conducted on the whole dataset without pre-

selecting the variables may not fully capture the observed differences obtained from visual 

comparison. In order to optimize the analysis and consider the relevance of each compound, 

a selection of variables should be performed by examining the correlation of the variables 

using loading plots and considering the coefficient of variations for each compound. However, 

due to time limitations, this step was not completed in the scope of this study. 

Indeed, even though the PCA model may not be optimized for further discrimination, it can 

still provide valuable insights into the chemical properties of the sample set. The patterns 

observed in the PCA plot can help in gaining a deeper understanding of the relationships and 

similarities among the samples based on their chemical profiles. 

While additional analyses and variable selection techniques could enhance the discrimination 

capabilities, the initial patterns observed in the PCA model can serve as a starting point for 

further investigations and discussions. 

Analyzing and identifying automotive paint using Py-GC/MS is indeed a challenging task, and 

further research can be conducted to delve deeper into this topic. While this thesis did not 

explore the full extent of this direction, it provides a foundation for future projects to expand 

upon. 
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10.2.4. Blind test 
 

In this study, two samples were chosen at random, and blind test was performed on both 

samples using the same protocol for validation. To gain a better understanding of the data 

and its potential distribution, PCA projection was initially employed, and the results are 

visually represented in Figure 145. This visualization allowed for an initial exploration of the 

data's underlying patterns and variations. 

Subsequently, LDA was employed as a classification technique to further investigate the 

samples. The results of this analysis are presented in Table 64. It is noteworthy that while the 

predictive potential of the model was relatively lower, it is still significant that all the samples 

were correctly classified.  

These results demonstrate the potential utility of Py-GC/MS in characterizing and further 

discriminating automotive paint samples. Further refinement and optimization of the variable 

selection could potentially enhance its predictive capabilities in future studies. 

 

 

 

 

 

 

 

 

 

 

Figure 145. PCA projections for blind test samples (in green).  

 

 

Table 64. Blind test results from LDA for 2 unknown samples. 

SAMPLE 
LDA CLASSIFICATION 

(PREDICTIVE POTENTIAL) 
ACTUAL SAMPLE 

A W005(56%), W033(21.5%), W014(20.5%) W033 

B W047(50.6%), W010(32%), W049 (17%) W047 
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10.2.5. Discussion 
 

The Py-GC/MS analysis conducted within the scope of this study has demonstrated its utility 

as a powerful tool for characterizing and discriminating white basecoats. This capability is 

particularly pronounced in cases where FTIR and Raman spectroscopy exhibit limited 

discriminating power. Nevertheless, the achievement of reproducible and reliable results 

through Py-GC/MS analysis demanded a substantial investment of effort. The determination 

of optimal sample preparation methods and experimental parameters specific to each paint 

type required extensive experimentation and diligence. 

As discussed in chapter 6.5.1.2, the isolation of the basecoat from a multi-layer system, 

particularly when the layer was exceedingly thin and closely resembled adjacent layers in 

color, posed an exceeded challenge. In practical terms, this practical challenge must be 

factored into the analytical process, given that the enhanced discriminatory capabilities of Py-

GC/MS may be difficult to achieve if the quantity and quality of the sample, as well as the 

timeframe, do not permit for a robust analysis. 

Another issue that emerged during the analysis pertains to the air entry into some of the 

samples. This phenomenon not only affects visual comparisons but also presents a notable 

impact on statistical analyses. Consequently, it becomes imperative to devise a strategy to 

mitigate the influence. The adoption of a 3D data extraction approach, on the one hand, 

facilitates the removal of ions originating from the air, thereby enabling a more precise 

comparison of the information derived solely from the samples themselves. However, it 

should be noted that this approach leads to larger data files and a long data processing 

duration. 

Upon examination of the discrimination outcomes, it was observed that samples sharing a 

common origin could be effectively distinguished through the application of Py-GC/MS 

analysis. This subtle differentiation, which is uniquely unveiled through Py-GC/MS analysis, 

primarily arises from batch variation. Nevertheless, it is noteworthy that despite the 

comprehensive differentiation capacity of Py-GC/MS, there were instances where three 

samples, each originating from distinct manufacturing companies, featuring diverse models, 

assembly plants, and topcoat color codes, remained indistinguishable following Py-GC/MS 

analysis.  
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11. General discussion 
 

 

In this chapter, the discussion will address any unique insights or additional information that 

emerged from combining all the analytical results, providing a comprehensive understanding 

of the paint samples' physical and chemical characteristics. Only OEM paint samples were 

considered in this chapter.  

 

11.1. Comparison of IR and Raman analysis results 
 

Traditionally, IR and Raman analysis have been utilized to investigate the composition of 

samples from different perspectives. IR analysis is primarily employed for the characterization 

and identification of binders and additives used in paint, while Raman analysis focuses more 

on the pigments and extenders present in the paint. However, in the context of this study, 

which specifically focuses on white-colored samples, there may be limited information about 

the pigments available for Raman detection and identification. As such, it is crucial to conduct 

a comparison between IR and Raman analysis individually to ascertain the type of information 

that can be obtained from each technique. This comparative analysis will aid in understanding 

the strengths and limitations of each method. 

Table 65 offers a comprehensive overview of the chemical composition attributed to each 

layer, as determined through the application of FTIR and Raman technique. Both IR and 

Raman analysis can provide valuable insights into the composition of the samples from similar 

aspects, including the binders, pigments, and extenders, with FTIR offering a more detailed 

identification. It is worth noting that while Raman analysis is based on the results of FTIR 

identification, it can still reveal additional compositional information that may have been 

missed initially. For instance, the Raman spectra of the primer surfacer layer consistently 

indicated the presence of isophthalic alkyd, which was not initially identified in all FTIR spectra. 

Upon revisiting the FTIR spectra, it was discovered that isophthalic alkyd resin was indeed 

present in the majority of primer surfacer, but its identification may have been overlooked 

due to other abundant peaks information from other components. Therefore, Raman analysis 

could complement the chemical profile obtained from FTIR analysis, serving as a confirmation 

tool. However, no additional binders, pigments, or extenders were detected through Raman 

analysis that were not already identified in the FTIR spectra. 
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Table 65. Comparison of chemical composition of each layer identified from FTIR and Raman 

Layer 
type 

Class No. Identified chemical class from FTIR Identified chemical class from Raman 

Primer 
1 EPY+ALS EPY+ALS+TIO2 

2 EPY  

Primer 
surfacer 

1 EPY+PUR+MEL+TALC+BAS+TIO2 EPY+ALK IPH+PUR+BAS+TIO2 

2 ALK IPH+EPY+MEL+TALC+TIO2 ALK IPH+TIO2 

3 ALK IPH+PUR+EPY+TALC+ALS+TIO2 Uncharacterized binder+BAS+TIO2 

4 ALK IPH+MEL+TALC+TIO2  

5 ALK TER+ACR+MEL+BAS+TIO2  

Basecoat 

1 PUR+ALK IPH+TALC+TIO2 PUR +TIO2 

2 PUR+MEL+TIO2 ACR+ALK IPH+TIO2 

3 ACR+ALK IPH+MEL+PUR+TIO2  

4 ACR+PUR+MEL+TALC+TIO2  

Clearcoat 
1 PUR+(STY) PUR+STY 

2 ACR+MEL+STY+ PUR ACR+PUR+STY 

 

 

Table 66 provides a comparison of the discriminating power (DP) of FTIR and Raman analysis 

for different layers and layer combinations in 54 OEM automotive paint samples as well as a 

separated evaluation for Group OEM3 and Group OEM4. The DP values represent the ability 

of each technique to differentiate between samples based on their composition. The results 

were obtained from visual comparison. 

When considering individual layers, both FTIR and Raman techniques demonstrate 

comparable performance in distinguishing clearcoat, basecoat and primer surfacer. Clearcoat 

stands out as the layer with the highest discrimination capability when analyzed using Raman 

analysis, even higher than that of using IR analysis. This finding was consistent with the study 

by Maric et al., where they demonstrated that Raman spectroscopy is more discriminating 

than IR spectroscopy for analyzing automotive clearcoats (Maric et al.,2016).  However, the 

discrimination power of primer surfacer is relatively low for both FTIR and Raman techniques. 

This limitation can be attributed to the limited sample size and the lack of diversity in the 

sample origin, as the majority of the samples were produced in the same plant. IR and Raman 

techniques exhibit notably differing discrimination capabilities when applied to primer 

analysis. IR analysis yields a high discriminating power (DP) of 82.0%, while Raman analysis 

provides only a marginal 10%. Raman's low discrimination capability for primer primarily 

stems from the poor quality of spectra and the limited information they convey. Consequently, 

for effective primer discrimination, IR analysis is the preferred choice. Conversely, Raman 

proves to be more potent in differentiating the clearcoat layer.  

Moving on to layer combinations, it can be seen that the discrimination power varies 

depending on the specific combination. However, It is generally observed that IR analysis 

offers superior discriminatory capability compared to Raman analysis.  
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Table 66. Comparison of discriminating power of IR and Raman analysis of each layer and layer 
combination for OEM sample set (n=54) 

 
Whole sample set 

(n=54) 
Group OEM3 

 (n=26) 
Group OEM4 

 (n=28) 

Single layer/ 
Layer 

combination 

DP of  
FTIR 

DP of 
Raman 

Total 
number of 

samples  

DP of  
FTIR 

DP of 
Raman 

DP of  
FTIR 

DP of 
Raman 

P 82.0% 10.7%    54 73.5% 0 72.8% 7.1% 

PS 33.1% 49.5% 28   33.1% 49.5% 

B 80.6% 76.3% 54 22.1% 34.2% 93.7% 66.9% 

C 84.4% 88.0% 54 61.8% 75.7% 75% 75.4% 

P+PS 75.9% 49.5% 28   75.9% 49.5% 

P+B 94.6% 76.3% 54 80.6% 34.2% 96.3% 66.9% 

P+C 93.7% 88.0% 54 83.1% 75.7% 90.7% 75.4% 

PS+B 93.9% 74.9% 28   93.9% 74.9% 

PS+C 78.0% 82.5% 28   78.0% 82.5% 

B+C 90.4% 91.8% 54 63.7% 77.5% 94.7% 88.4% 

P+PS+B 96.3% 74.9% 28   96.3% 74.9% 

P+PS+C 90.7% 82.5% 28   90.7% 82.5% 

PS+B+C  95.0% 92.1% 28   95.0% 92.1% 

P+B+C 95.4% 91.8% 54 83.4% 77.5% 96.8% 88.4% 

P+PS+B+C 96.8% 92.1% 28   96.8% 92.1% 

Final DP (pairs) 95.4% (66) 92.8% (103) 54 83.4% (54) 77.5% (73) 96.8% (12) 92.1% (30) 

 

Overall, both IR and Raman analysis demonstrate comparable capabilities in characterizing 

and distinguishing OEM automotive white paint samples. Each technique can effectively 

differentiate the individual layers of automotive paint, with IR offering a slightly better 

discriminating result. This study demonstrated Raman spectroscopy can serve as an 

alternative to FT-IR for discrimination of white automotive paint. However, the combination 

of both techniques might provide a more comprehensive chemical profile of the automotive 

paints and enhance the certainty of identification. By utilizing both IR and Raman analysis, a 

more robust and reliable characterization of the paint samples can be achieved.  
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11.2. Combination of IR and Raman analysis results 
 

As previously mentioned, the combination of FTIR and Raman analysis provides a more 

comprehensive chemical profile of automotive paints. In this section, the chemical profiles of 

54 OEM automotive white paints obtained from the integrated analysis of both techniques 

will be summarized. Additionally, the undifferentiated samples, inter-sample variability, and 

potential correlations between the chemical profiles and vehicle information will be explored 

based on the integrated information. 

Initially, there was a plan to adapt multiblock statistical methods to combine the IR and 

Raman analysis results. However, upon closer examination, it was found that the IR and 

Raman analysis provided similar information from a similar perspective. Consequently, the 

statistical combination of the two data sets did not yield additional information but rather 

resulted in overlapping information. Therefore, it was decided not to include this method in 

the thesis. Instead, the combined information was obtained by simply merging the grouping 

results from visual comparison to determine the undifferentiated groups. 

 

11.2.1. General combination results 
 

Table 67 displays the chemical profiles revealed within each OEM paint layer through the 

integration of FTIR and Raman analyses. Moreover, the table indicates the outcomes of 

grouping within each class, where samples from Group OEM3 are denoted in blue and those 

from Group OEM4 are highlighted in orange. The undifferentiated groups of samples are 

indicated by underlined entries.  

Concerning the chemical profile, in the primer layer, it was observed that epoxy binder was 

the only type used in the OEM paint samples. Aluminum silicate was commonly combined 

with the epoxy binder as an extender, and titanium was also detected in most of the samples. 

Moving on to the primer surfacer layer, although a diverse range of chemical classes was 

identified, the majority of samples contained isophthalic alkyd combined with epoxy binder. 

The variation in chemical classes was attributed to the presence of additional resins such as 

polyurethane or melamine, as well as the use of different extenders like barium sulfate or talc. 

In the basecoat layer, it was found that both polyurethane-based and acrylic-based resins 

were predominantly used as binders. The chemical profile of the basecoat layer was strongly 

influenced by the layer structure. Similar trends were observed in the clearcoat layer, with 

the presence of polyurethane-based and acrylic-based resins. Within each chemical class, the 

samples exhibited further differentiation into several groups, indicating a high level of inter-

sample variability. The high discriminating power achieved through the combined FTIR and 

Raman analysis of white automotive paint samples not only highlights the discrimination 

capabilities of both techniques but also underscores the significant inter-sample variability 

within this specific sample set.  
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Table 67. Chemical composition of each layer identified from integrated FTIR and Raman analysis and 
the groupings (OEM3 in blue and OEM4 in orange). 

Layer type 
Class 
No. 

Identified chemical class Sample groupings 

Primer 
(54) 

1 EPY+ALS+TIO2 

1) W002, W005, W023, W036 
2) W007, W033, W046 
3) W009, W010, W017, W020, W022, W027, W028, W030, W031, 

W041, W043, W044, W052, W053 
4) W012, W014, W015, W016, W018, W032, W042, W047, W048, 

W049, W054, W062 
5) W003, W006, W011, W019, W021, W025, W026, W039, W040, 

W045, W050, W051, W055, W060 
6) W034, W058 
7) W001 
8) W024 
9) W035 
10) W061 

2 EPY 11) W059 

Primer 
surfacer 

(28) 
1 

EPY+ALK IPH+PUR+MEL 
+TALC+BAS+TIO2 

1) W009, W011, W017, W019, W021, W022, W024, W025, W027, 
W028, W030, W031, W040, W043, W050, W052, W055, W058, 
W059, W060 

2) W003, W039 
3) W006 

2 ALK IPH+EPY+MEL+TALC+TIO2 4) W001 

3 
ALK IPH+PUR+EPY 
+TALC+ALS+TIO2 

5) W035 
6) W061 

4 ALK IPH+MEL+TALC+TIO2 7) W034 

5 ALK TER+ACR+MEL+BAS+TIO2 8) W026 

Basecoat 
(54) 

1 PUR+ALK IPH+TALC+TIO2 

1) W005, W010, W012, W014, W015, W016, W018, W020, W032, 
W033, W041, W042, W044, W045, W046, W047, W049, W051, 
W053, W054 

2) W002, W023, W036 
3) W007 

2 PUR+MEL+TIO2 
4) W048 
5) W062 

3 
ACR+ALK IPH+MEL+PUR+ 

TIO2 

6) W003, W011, W021, W039 
7) W006, W059 
8) W019, W025, W040 
9) W022, W024, W058, W060 
10) W027, W028, W050 
11) W030, W031, W052 
12) W001 
13) W009 
14) W017 
15) W034 
16) W035 
17) W043 
18) W055 
19) W061 

4 ACR+PUR+MEL+TALC+TIO2 20) W026 

Clearcoat 
(54) 

1 PUR+STY 

1) W002, W007, W023, W036, W053 
2) W020 
3) W010, W014, W015, W016, W018 
4) W012, W032, W041, W042, W044, W045, W047, W049, 

W051, W054 
5) W048, W062 
6) W005, W033, W046 
7) W026 

2 ACR+MEL+STY+(PUR) 

8) W003, W011, W019, W021, W030, W031, W039, W050, W052, 
W055 

9) W009, W017, W022, W024, W035, W043, W059, W060 
10) W025, W040 
11) W027, W028, W034 
12) W001 
13) W006 
14) W058 
15) W061 
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The discriminating power of combining both FTIR and Raman techniques for the analysis of 

each layer, as well as different layer combinations, was calculated. A division was also applied 

to Group OEM3 and Group OEM4. All the results are presented in Table 68. 

The combined technique demonstrates higher discriminative capability for samples within 

Group OEM4 compared to those within Group OEM3, resulting in only 7 pairs of samples 

remaining undifferentiated and yielding a robust discriminating power of 98.1%. The 

relatively lower discrimination within Group OEM3 can be attributed to the high similarity of 

basecoat compositions among OEM3 samples. 

 

Table 68. Discriminating power of combined FTIR and Raman analysis for each layer and layer 
combinations within OEM sample set (n=54). 

 
Whole OEM sample set  

(n=54) 
Group OEM3  

(n=26) 
Group OEM4 (n=28) 

Single layer/  
Layer combination 

DP 
 (Undifferentiated pairs) 

Total 
number of 

samples 

DP 
(Undifferentiated pairs) 

DP  
(Undifferentiated pairs) 

P 82.0% (258) 54 73.5% (86) 72.8% (103) 

PS 49.5% (191) 28  49.5% (191) 

B 85.0% (215) 54 40.6% (193) 94.2% (22) 

C 90.5% (136) 54 78.8% (69) 82.3% (67) 

P+PS 82.8% (65) 28  82.8% (65) 

P+B 94.9% (73) 54 81.5% (60) 96.6% (13) 

P+C 95.8% (60) 54 91.4% (28) 91.5% (32) 

PS+B 95.5% (17) 28  95.5% (17) 

PS+C 86.2% (52) 28  86.2% (52) 

B+C 94.8% (75) 54 81.2% (61) 96.3% (14) 

P+PS+B 97.6% (9) 28  97.6% (9) 

P+PS+C 94.4% (21) 28  94.4% (21) 

PS+B+C  97.4% (10) 28  97.4% (10) 

P+B+C 97.3% (38) 54 91.7% (27) 97.1% (11) 

P+PS+B+C 98.1% (7) 28  98.1% (7) 

Final 97.6% (34) 54 91.7% (27) 98.1% (7) 

 

 

After combining the FTIR and Raman analysis results of all layers in the 54 OEM automotive 

white paint samples, a total of 34 sample pairs remained undifferentiated, resulting in a 

discriminating power of 97.6%. The undifferentiated sample groups and their corresponding 

vehicle information are listed in Table 69. The geographic distribution of these 

undifferentiated samples associated with assembly plants is illustrated in Figure 146.  

Upon conducting the integrated analysis, it was found that there are a total of 11 distinct 

groups of samples, while 34 sample pairs remain undifferentiated. Those samples in Group 1, 

2, 5, 9, 10, 11 that were undistinguished by IR analysis, retained their undifferentiated status 

following subsequent Raman analysis. Conversely, Raman analysis contributed to the further 

discrimination of the rest samples. For instance, samples from Group 4 and Group 6 or 

samples from Group 7 and Group 8, originally assigned to the same undifferentiated sample 

group in IR analysis, could indeed be differentiated through Raman analysis. 
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Further examination of the vehicle information associated with these undifferentiated sample 

pairs revealed interesting insights. Most of the undifferentiated samples shared the same 

model, were produced in the same assembly plants, and had the same or similar production 

year and topcoat color code. Assembly plants are found to be a significant factor contributing 

to the lack of discrimination. Despite variations in model or production year, samples from 

the same assembly plant may be undifferentiated, as shown in Group 2, 3, and 6. This suggests 

that the assembly plant plays a crucial role in determining the chemical composition of the 

automotive paint used. 

It was also found that the majority of these undifferentiated sample groups originated from 

the same company (S-VW), indicating a high level of consistency in the paint formula used by 

S-VW. In contrast, samples from the other company, F-VW, displayed a higher level of 

differentiation, with only one undifferentiated sample group (Group 1) identified. This 

suggests that F-VW utilizes different paint formulations or suppliers, resulting in more 

distinguishable chemical profiles. 

Interestingly, it was observed that even when samples shared the same model, were 

produced in the same assembly plant, and had the same production year, they could still 

exhibit subtle differences. For example, sample W011 (Polo 2017) and sample W039 (Polo 

2017) displayed slight variations despite their identical vehicle information. These differences 

were only revealed by Raman analysis and could be attributed to batch variations. Further 

discussion on these subtle differences will be explored in the next sections. 
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Table 69. Undifferentiated sample groups by combined IR and Raman analysis of all layers. 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Topcoat 
color code 

Assembly 
plant 

Layer 
structure 

1 

W002 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W023 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W036 F-VW Sagitar 2017 LC9A Chengdu OEM3 

2 
W033 S-VW New Lavida 2014 LY9H Nanjing OEM3 

W046 S-VW Passat 2013 LY9H Nanjing OEM3 

3 
W041 S-VW Santana 2017 LY9H Nanjing OEM3 

W044 S-VW Passat 2017 LY9H Nanjing OEM3 

4 

W014 S-VW New Lavida 2017 LY9H Anting OEM3 

W015 S-VW New Lavida 2017 LY9H Anting OEM3 

W016 S-VW New Lavida 2017 LY9H Anting OEM3 

W018 S-VW New Lavida 2016 LY9H Anting OEM3 

5 
W045 S-VW Lamando 2018 LY9H Ningbo OEM3 

W051 S-VW Lamando 2017 LY9H Ningbo OEM3 

6 

W012 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W032 S-VW Gran Lavida 2015 LY9H Anting OEM3 

W042 S-VW New Lavida 2017 LY9H Anting OEM3 

W047 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W049 S-VW New Lavida 2016 LY9H Anting OEM3 

W054 S-VW New Lavida 2016 LY9H Anting OEM3 

7 
W003 S-VW Polo 2017 Unknown Anting OEM4 

W039 S-VW Polo 2017 LY9H Anting OEM4 

8 
W011 S-VW Polo 2017 LY9H Anting OEM4 

W021 S-VW Polo 2016 LY9H Anting OEM4 

9 
W025 S-VW Polo 2016 LY9H Anting OEM4 

W040 S-VW Polo 2015 LY9H Anting OEM4 

10 
W027 S-VW Passat 2004 Unknown Anting OEM4 

W028 S-VW Passat 2003 LB9A Anting OEM4 

11 

W030 S-VW Tiguan 2016 LY9H Anting OEM4 

W031 S-VW Tiguan 2017 LY9H Anting OEM4 

W052 S-VW Tiguan 2017 LY9H Anting OEM4 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 146. Geographic distribution of undifferentiated samples associated with assembly plants. The 
chemical profiles of each undifferentiated sample pair are listed in the figure. 
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11.2.2. Choice of technique / layer 
 

Automotive paint constitutes a complex multilayer coating system. In forensic analyses of 

such paints, the procedure often entails a layer-by-layer examination and identification 

utilizing various instruments. This approach can be time-intensive and cost-inefficient if 

applied to all layers. This study has evaluated and summarized the discriminative capabilities 

of IR and Raman techniques for each layer as well as their combinations, as outlined in Table 

66 and Table 68. Through the combination of these two tables, the optimal technique for each 

layer analysis and the most suitable layers for achieving best discrimination can be discerned. 

The decision on layer/technique selection, along with the comparison of results to existing 

literature that addresses this matter, is presented in Table 70. This decision-making process 

was guided by the highest achieved discriminating power.  

By comparing the discriminating power of IR and Raman analyses for individual layers, the 

superior technique for discriminating samples using a singular layer was determined. For 

instance, in the case of analyzing clearcoat, Raman has exhibited a more effective 

discrimination capacity than IR. This observation aligns with research findings of Maric and 

Affadu-Danful et al. (Maric,2014; Affadu-Danful et al.,2023). 

In scenarios where only IR is available, the examination of a sole layer points to clearcoat as 

the most discriminatory in this sample set. This outcome is also in harmony with the findings 

of Eyring et al., who have demonstrated that samples with identical color codes can largely 

be differentiated by solely examining the clear coat (Eyring et al.,2007). They further indicated 

that, through supplementary primer analysis, robust discrimination can be achieved without 

the necessity of analyzing the basecoat. Notably, the outcome contrasts with the conclusions 

drawn by Massonnet, whose study indicated that, within her sample set, clearcoat offered 

the least discriminating power, while primer surfacer yielded the highest (Massonnet,1996). 

In this study, the discriminative power obtained from clearcoat and primer analyses almost 

paralleled that of Eyring’s study, albeit not representing the optimal discrimination result 

within this sample set. Remarkably, the combination of primer and basecoat yielded a higher 

discriminating power of 94.9%. The addition of the clearcoat further elevated the overall 

discriminating power to 97.3%, emerging as the most fitting choice for a three-layer 

combination. In this context, delving into primer surfacer analysis didn't yield additional 

discrimination, rendering it unnecessary.  

In the context of Raman analysis, the choice of layers is notably constrained due to the 

virtually non-existent discriminative capability of Raman analysis of primer and the limited 

discrimination yielded from primer surfacer analysis. This limitation narrows down the 

preferable layers to basecoat and clearcoat. When it comes to a three-layer combination, the 

inclusion of primer surfacer marginally enhances the overall discrimination outcome by 

resolving four pairs of previously undifferentiated samples. This modification results in an 

improved discriminating power of 91.8%.  

If both techniques are accessible and employed for the analysis of individual layers, the 

integrated discriminating outcomes have been summarized in Table 68. Given that the most 



253 
 

effective technique for discriminating individual layers alternates between the two methods, 

it becomes interesting to combine the most effective discriminative outcomes of single layers. 

This assessment aims to evaluate whether the optimal combination can yield effective 

discriminative power while also reducing the measurement efforts by half. This combined 

result is summarized in Table 71. Upon comparison with the results in Table 68Error! 

Reference source not found., it becomes evident that this optimized combination yielded 

nearly identical discriminative capabilities as when both techniques were employed. 

Employing both techniques for analyzing each layer results in a reduction of a maximum of 14 

undifferentiated sample pairs and an increase of only 1% in discriminating power. By 

integrating the best technique for each layer, the optimal combination results in 37 pairs of 

undifferentiated samples (3 more pairs compared to when both techniques were employed), 

thus achieving a highly notable discriminating power of 97.4% (97.6% when both techniques 

were employed and combined).  

This highlights that utilizing both techniques for individual layer analysis is not 

indispensable for this sample set. If both techniques are at hand, analyzing primer with FTIR 

and clearcoat with Raman can yield exceptionally effective discriminative results, culminating 

in a discriminating power of 95.7%. These layers often constitute the surface layer and require 

minimal sample preparation.  

 

Table 70. Summary of choice of technique / layer of this study and the existing literature 

Choice of technique for single layer analysis  

Existing literature Involved layer Best technique Achieved DP 

This study 

Clearcoat (C) Raman 88.0% 

Basecoat (B) IR 80.6% 

Primer surfacer (PS) Raman 49.5% 

Primer (P) IR 82.0% 

Maric, 2014 Clearcoat Raman 97.6% 

Affadu-Danful et al. 
2023 

clearcoat Raman Not provided 

Choice of layer for best discrimination if only FTIR available  

Existing literature Involved layer No. Layer combination Achieved DP 

This study 

1 C 84.4% 

2 P+B/P+C 94.9%/93.2% 

3 P+B+C 97.3% 

Eyring et al., 2007 
1 C Not provided 

2 P+C 93% 

Massonnet, 1999 

1 PS 98% 

2 P+PS 99% 

3 P+PS+B 99% 

Choice of layer for the best discrimination if only Raman available  

Existing literature No. Of choice Choice of layer Achieved DP 

This study 

1 C 88% 

2 B+C 91.8% 

3 (only for Group OEM4) PS+B+C 92.1% 

De Gelder et al., 2005 1 B Not provided 

Choice of layer for the best discrimination if both technique available  

Existing literature No. of choice Choice of layer (employed technique) Achieved DP 

This study 
1 C (Raman) 88% 

2 P(IR)+C(Raman) 95.7% 
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3 P(IR)+B(IR)+C(Raman) 97.1% 

Table 71. Discriminating power of combined FTIR and Raman analysis when only one technique is 
employed for analysis individual layers. 

 
Whole OEM sample set 

(n=54) 
Group OEM3 

(n=26) 
Group OEM4 

(n=28) 

Layer combination 
(best technique)  

DP  
(Undifferentiated 

pairs) 

Total 
number 

of 
samples 

DP  
(Undifferentiated 

pairs) 

DP  
(Undifferentiated 

pairs) 

P(IR)+PS (Raman) 82.8% (65) 28   82.8% (65) 

P(IR)+B(IR) 94.6% (77) 54 80.6% (63) 96.3% (14) 

P(IR)+C (Raman) 95.7% (62) 54 90.8% (30) 91.5% (32) 

PS(Raman)+B(IR) 95.5% (17) 28  95.5% (17) 

PS(Raman)+C(IR) 82.5% (66) 28  82.5% (66) 

B(IR)+C(Raman) 93.8% (89) 54 77.2% (74) 96.0% (15) 

P(IR)+PS (Raman)+ B(IR) 97.4% (10) 28  97.4% (10) 

P(IR)+PS (Raman)+C(Raman) 94.2% (22) 28  94.2% (22) 

P(IR)+B(IR)+C(Raman) 97.1% (41) 54 91.1% (29) 96.8% (12) 

PS (Raman)+ B(IR)+C(Raman) 97.1% (11) 28  97.1% (11) 

P(IR)+PS (Raman)+ B(IR)+ C(Raman) 97.9% (8) 28  97.9% (8) 

Final DP 97.4% (37) 54 91.1% (29) 97.9% (8) 
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11.2.3. Correlations between chemical compound and vehicle 

information 
 

Figure 147 presents an overview of the correlation between the chemical characteristics of 

54 OEM automotive white paints, as identified from IR and Raman analysis, and various 

vehicle information including manufacturing company, layer structure, assembly plant, 

vehicle model, and production year. A significant observation is that a considerable number 

of distinct groups can be distinguished within each assembly plant.  

As observed from individual IR and Raman analyses, a distinct chemical profile was identified 

in an OEM paint sample (W026) from Germany, which sets it apart from the white OEM paint 

samples produced in China. The chemical characteristics of white OEM paint samples 

produced in China were found to be highly related to their layer structure, with all paints 

having an OEM3 layer structure exhibiting identical chemical classes regardless of 

manufacturing company, assembly plant, or model. The groupings observed within each 

assembly plant were primarily based on the addition or combination of different additional 

resins or extenders, although these differences were subtle. 

Furthermore, it is important to note that even samples with identical vehicle information may 

exhibit differentiation due to factors such as batch variation or weathering effects. These 

factors contribute to the nuanced variations observed within the sample set.  

In the following sections, the inter-sample variability within each identify factor will be 

discussed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 147. Chemical profiles identified from both IR and Raman analysis of OEM paint samples in 
relation to manufacturing company, assembly plant, and the layer system. Groupings within each 

plant based on the integrated analysis result are listed.   
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11.2.4. Sample variation related to topcoat color code 
 

 

Table 72 presents the color codes of samples within two groups of undifferentiated basecoat, 

as determined from the integrated IR and Raman analysis. It is evident from the table that 

different color codes do not necessarily indicate different chemical compositions, as 

undifferentiated basecoat samples may have different color codes. On the other hand, Table 

73 displays the groupings of samples within each topcoat color code group. The results 

obtained are consistent with the findings from the individual IR and Raman analyses, 

demonstrating that samples sharing the same topcoat color code do not consistently exhibit 

identical chemical compositions in their basecoat. Instead, samples with the same color code 

can be further differentiated into multiple groups, highlighting significant variations in their 

chemical characteristics. Moreover, it is important to note that different manufacturers, such 

as Volkswagen (VW), Audi, and Subaru, can use the same topcoat color code while utilizing 

entirely different binders in their paint formulations. This underscores that the observed lack 

of correlation between topcoat color codes and the chemical composition of the basecoat is 

an expected outcome 

In conclusion, the discrimination of samples does not show any correlation with the topcoat 

color code.  

 

Table 72. Topcoat color code of samples within two groups of undifferentiated basecoat samples. The 
undifferentiated basecoat samples that have different color codes are highlighted in bold. 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Topcoat 
color code 

Assembly 
plant 

Layer 
structure 

1 
 

W005 F-VW Jetta 2014 LB9A Chengdu OEM3 

W010 S-VW Santana 2017 LY9H Nanjing  OEM3 

W012 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W014 S-VW New Lavida 2017 LY9H Anting OEM3 

W015 S-VW New Lavida 2017 LY9H Anting OEM3 

W016 S-VW New Lavida 2017 LY9H Anting OEM3 

W018 S-VW New Lavida 2016 LY9H Anting OEM3 

W020 S-VW Santana 2016 LY9H Nanjing OEM3 

W032 S-VW Gran Lavida 2015 LY9H Anting OEM3 

W033 S-VW New Lavida 2014 LY9H Nanjing OEM3 

W041 S-VW Santana 2017 LY9H Nanjing OEM3 

W042 S-VW New Lavida 2017 LY9H Anting OEM3 

W044 S-VW Passat 2017 LY9H Nanjing OEM3 

W045 S-VW Lamando 2018 LY9H Ningbo OEM3 

W046 S-VW Passat 2016 LY9H Nanjing OEM3 

W047 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W049 S-VW New Lavida 2016 LY9H Anting OEM3 

W051 S-VW Lamando 2017 LY9H Ningbo OEM3 

W053 S-VW New Lavida 2014 LY9H Nanjing OEM3 

W054 S-VW New Lavida 2016 LY9H Anting OEM3 

2 

W027 S-VW Passat 2004 Unknown Anting OEM4 

W028 S-VW Passat 2003 LB9A Anting OEM4 

W050 S-VW Polo 2012 LY9H Anting OEM4 
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Table 73. groupings of samples within each topcoat color code group based on IR and Raman 
analysis of basecoats (n=50) 

Topcoat 
color code 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Assembly 
plant 

Layer 
structure 

LC9A 

1 

W002 F-VW Sagitar 2017 Chengdu OEM3 

W023 F-VW Sagitar 2017 Chengdu OEM3 

W036 F-VW Sagitar 2017 Chengdu OEM3 

2 
W006 F-VW New bora 2016 Changchun OEM4 

W059 F-VW New bora 2013 Changchun OEM4 

3 W034 F-VW New bora 2017 Changchun OEM4 

4 W035 F-VW New bora 2018 Changchun OEM4 

5 W026 W-VW GoCo 2012 Osnabrück OEM4 

LB9A 

1 W005 F-VW Jetta 2014 Chengdu OEM3 

2 W060 F-VW Golf 2012 Changchun OEM4 

3 

W022 S-VW Touran 2010 Anting OEM4 

W024 S-VW Tiguan 2012 Anting OEM4 

W058 S-VW Tiguan 2013 Anting OEM4 

4 W028 S-VW Passat 2003 Anting OEM4 

LY9H 

1 

W010 S-VW Santana 2017 Nanjing  OEM3 

W012 S-VW New Lavida 2017 Nanjing OEM3 

W014 S-VW New Lavida 2017 Anting OEM3 

W015 S-VW New Lavida 2017 Anting OEM3 

W016 S-VW New Lavida 2017 Anting OEM3 

W018 S-VW New Lavida 2016 Anting OEM3 

W020 S-VW Santana 2016 Nanjing OEM3 

W032 S-VW Gran Lavida 2015 Anting OEM3 

W033 S-VW New Lavida 2014 Nanjing OEM3 

W041 S-VW Santana 2017 Nanjing OEM3 

W042 S-VW New Lavida 2017 Anting OEM3 

W044 S-VW Passat 2017 Nanjing OEM3 

W045 S-VW Lamando 2018 Ningbo OEM3 

W046 S-VW Passat 2016 Nanjing OEM3 

W047 S-VW New Lavida 2017 Nanjing OEM3 

W049 S-VW New Lavida 2016 Anting OEM3 

W051 S-VW Lamando 2017 Ningbo OEM3 

W053 S-VW New Lavida 2014 Nanjing OEM3 

W054 S-VW New Lavida 2016 Anting OEM3 

2 W007 S-VW Santana 2013 Nanjing OEM3 

3 W048 S-VW New Lavida 2018 Anting OEM3 

4 W062 S-VW New Lavida 2018 Anting OEM3 

5 

W011 S-VW Polo 2017 Anting OEM4 

W021 S-VW Polo 2016 Anting OEM4 

W039 S-VW Polo 2017 Anting OEM4 

6 W017 S-VW Tiguan 2015 Anting OEM4 

7 W043 S-VW Gran LAVIDA 2015 Anting OEM4 

8 

W019 S-VW Polo 2017 Anting OEM4 

W025 S-VW Polo 2016 Anting OEM4 

W040 S-VW Polo 2015 Anting OEM4 

9 

W030 S-VW Tiguan 2016 Anting OEM4 

W031 S-VW Tiguan 2017 Anting OEM4 

W052 S-VW Tiguan 2017 Anting OEM4 

10 W009 S-VW New Lavida 2015 Nanjing OEM4 

11 W050 S-VW Polo 2012 Anting OEM4 

12 W055 S-VW Lavida 2014 Anting OEM4 
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11.2.5. Sample variation related to production year 
 

The production year of paint can have a significant influence on sample variation, as 

manufacturers often engage in renovation efforts that may involve changing production lines 

or altering paint formulations for specific car models over time. To illustrate, consider the 

case of the 'Passat' vehicle model. Initially, it was manufactured at Plant Anting during its early 

years. For instance, Sample W028, produced in 2003, and Sample W027, produced in 2004, 

both exhibited an OEM4 layer system, with clearcoat and basecoat formulas based on acrylic 

binders. Subsequently, a new production line was established at Plant Nanjing for this model. 

All vehicles manufactured in this new line at the new plant, such as W046 in 2016 and W044 

in 2017, featured an OEM3 layer system and utilized polyurethane-based binders for their 

clearcoat and basecoat. This exemplifies how the production year and manufacturing changes 

can impact the paint characteristics of specific car models. 

The variation in samples related to the production year was also systematically investigated 

by maintaining consistency in identifying factors, such as manufacturing company, assembly 

plant, and model, while varying only the sample production year. Two specific models, one 

with an OEM3 layer structure (New Lavida) and another with an OEM4 system (Polo), were 

selected for this analysis, resulting in the creation of two distinct sample sets. The specific 

details of these sample sets are summarized in Table 74. Each layer of the samples was 

analyzed separately to gain insights into how the production year influences the variation 

within each layer. The resulting groupings of each layer are presented Table 75. Samples 

within each group were undifferentiated and the production year contained in the 

undifferentiated sample group are listed in the table.  

From Table 75, it is evident that different production years do not necessarily result in sample 

variation, as samples produced in different years were found to have undifferentiated layers. 

For example, in both sample sets, the primer layer remains undifferentiated regardless of the 

production year. Conversely, samples produced in the same year may exhibit distinguished 

layers, as observed in set 2 where four samples of Model Polo produced in 2017 show 

differentiation in the primer surfacer layer. This difference is likely attributed to batch 

variation rather than weathering effects, as primer surfacer is not an outer layer and the 

clearcoat, which is more susceptible to weathering, remains undifferentiated among these 

four samples. These findings indicate that production year alone is not a significant factor 

contributing to sample differentiation or non-differentiation. Any sample variation related to 

the production year is most probably due to batch variation, which will be discussed in the 

next section. 
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Table 74. Information of two sample sets used for the investigation of sample variation related to the 
production year. 

Sample 
set 

Manufacturing 
company 

Model 
Assembly 

plant 
Layer structure Sample no. Production year 

Set 1 (9) S-VW New Lavida Anting OEM3 

W014 2017 

W015 2017 

W016 2017 

W018 2016 

W042 2017 

W048 2018 

W049 2016 

W054 2016 

W062 2018 

Set 2 (8) S-VW Polo Anting  OEM4 

W003 2017 

W011 2017 

W019 2017 

W021 2016 

W025 2016 

W039 2017 

W040 2015 

W050 2012 

 

 

Table 75. Groupings within each layer related to production year. 

Sample set Layer type Group no. Production year contained in the undifferentiated sample groups 

Set 1 
 

S-VW 
Anting 
OEM3 

New Lavida 

Primer 
- 

2016 (W018, W049, W054) 
2017 (W014, W015, W016, W042) 
2018 (W048, W062) 

basecoat 1 
2016 (W018, W049, W054) 
2017 (W014, W015, W016, W042) 

2 2018 (W048) 

3 2018 (W062) 

clearcoat 1 
2016 (W018) 
2017 (W014, W015, W016)  

2 
2016 (W049, W054) 
2017 (W042)  

3 2018 (W048, W062) 

Set 2 
 

S-VW 
Anting 
OEM4 
Polo 

Primer 

- 

2012 (W050) 
2015 (W040) 
2016 (W021, W025) 
2017 (W003, W011, W019, W039) 

Primer surfacer 

1 

2012 (W050) 
2015 (W040) 
2016 (W021, W025) 
2017 (W011, W019) 

2 2017 (W003, W039) 

basecoat 1 
2016 (W021) 
2017 (W003, W011, W039) 

2 
2015 (W040) 
2016 (W025) 
2017 (W019) 

3 2012 (W050) 

clearcoat 
1 

2012 (W050) 
2016 (W021) 
2017 (W003, W011, W019, W039) 

2 
2015 (W040) 
2016 (W025) 
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11.2.6. Batch variation 
 

Automotive paint batch refers to a specific quantity of vehicles that undergoes painting under 

uniform conditions and is assigned a unique identification or batch number for the paint. It 

typically represents a distinct manufacturing run or production cycle. Based on the existing 

literature, it is apparent that differentiation at the level of paint production batches is often 

arbitrary and influenced by various unknown factors, such as adjustments made during the 

manufacturing process, the diverse sources of raw materials, and the manufacturer's 

decisions regarding changes in paint formulations (Quevillon et al.,2019). It is important to 

note that paint batch differentiation is not strictly tied to the vehicle production year but 

rather associated with the size of the batch, which is often undisclosed to customers. 

Consequently, batch-to-batch variation cannot be reliably predicted or consistently observed. 

However, such variation can lead to significantly distinct chemical profiles, potentially 

enabling the differentiation of one production batch from others. In this study, no significant 

paint formula variations were detected.  

Alternatively, the batch variation may be so subtle that it may be ignored or may not be 

detectable. As previously discussed, the observed sample variation related to different 

production years is likely attributed to batch variation. In this study, subtle batch variations 

were observed when comparing samples with identical manufacturing company, model, and 

assembly plant but different production years, as indicated in Table 75.  

As shown in Table 75, within Set 1 for the vehicle model 'New Lavida', the basecoat of two 

samples (W048 and W062) produced in 2018 can be distinguished from those produced in 

2016 and 2017. Figure 148 displays the IR spectra of the basecoat from two samples produced 

in 2018 (W048 and W062) and one sample produced in 2017 (W042), highlighting batch 

variation resulting from different production years and within the same production year. The 

differentiation between the samples from 2018 and the sample from 2017 can be attributed 

to small changes in the paint formula, where the basecoat from 2018 includes melamine but 

excludes talc. Additionally, the samples from 2018 exhibit differentiation from each other due 

to variations in the concentration of melamine. 

Another example of batch variation can be observed within Set 2 for the vehicle model 'Polo'. 

Samples W021 and W025, both produced in 2016, exhibit undifferentiated primer and primer 

surfacer layers. However, differentiation between these samples can be observed in their 

basecoat and clearcoat layers. Figure 149 illustrates the variation detected in the IR spectra 

of the basecoat and clearcoat, indicating that the variation is attributed to differences in the 

concentration of polyurethane used in the basecoat and clearcoat layers. 

Subtle batch variation was also identified within Set 2. Sample W011 and W039, both 

produced in 2017, exhibit undifferentiated primer, basecoat, and clearcoat. However, these 

samples can be differentiated from each other based on subtle variations observed in the 

primer surfacer layer, as revealed by Raman analysis in Figure 150. 
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Py-GC/MS can also reveal subtle batch variation that could not detected by IR and Raman 

analysis, as shown in Figure 143. 

Since automotive paint consists of multiple layers, each layer is produced in separate batches. 

This means that while working with a specific batch of basecoat, changes in the batches of 

primer surfacer or clearcoat may occur. These variations in batch can contribute significantly 

to the inter-sample variability.  

In conclusion, these observations highlight the significant contribution of batch variation to 

the discrimination of samples with identical vehicle information. Variations in batch 

compositions can be effectively detected using IR, Raman and Py-GC/MS analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 148. IR spectra of basecoat of sample W042(red), sample W048 (purple) and sample W062 
(green), showcasing the batch variation among these samples. The observed variations are 

highlighted in red. 
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Figure 149. IR spectra of basecoat and clear coat of sample W021 and W025, showcasing the batch 
variation among these samples. The observed variations are highlighted in red. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 150. Raman spectra of primer surfacer of sample W011(red) and W039 (blue), showcasing the 
batch variation among these samples. The observed variations are highlighted in red. 
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11.3. Combination of IR and Raman results with other 

techniques 
 

11.3.1. IR + Raman + Microscopy 
 

Upon merging microscopic observations with FTIR and Raman results for 54 OEM automotive 

white paint samples (considering only OEM paint layers), 22 pairs of samples were 

indistinguishable, resulting in a discriminating power of 98.5%. The geographic distribution of 

these undifferentiated samples associated with assembly plants is illustrated in Figure 151 

and their corresponding vehicle details are outlined in Table 76.  

However, some OEM paint samples might have additional repainted layers on top of their 

OEM layers, the layer structures of these samples were actually different from those have no 

repainted layers. When taking this factor into consideration, an additional 4 pairs could be 

differentiated due to variations in layer structure (samples highlighted in grey within the 

table), reducing undistinguished pairs to 18, elevating discriminating power to 98.7%. When 

evaluated independently for Group OEM3 and Group OEM4 for OEM layers, the overall 

discrimination is 94.2%, leaving 19 pairs indistinguishable among 26 samples in Group OEM3, 

while only 3 pairs out of 28 remain indistinguishable in Group OEM4, resulting in a 

discriminating power of 98.9%. These values increase to 94.8% (17 indistinguishable pairs) 

and 99.7% (1 indistinguishable pairs) when considering all layers. 

If we consider the collective discriminating capacity derived from microscopy, IR, and Raman 

analyses across the entire sample set (n=62), the overall discriminating power rises to 99%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 151. Geographic distribution of undifferentiated samples associated with assembly plants 
after microscopy, IR and Raman analysis. 
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Table 76. Undifferentiated sample groups by combined microscopy, IR and Raman analysis. (Samples 
that actually have different layer structure were marked in grey). 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Topcoat 
color code 

Assembly 
plant 

Layer 
structure 

1 

W002 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W023 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W036 F-VW Sagitar 2017 LC9A Chengdu OEM3 

2 
W033 S-VW New Lavida 2014 LY9H Nanjing OEM3 

W046 S-VW Passat 2013 LY9H Nanjing OEM3 

3 
W041 S-VW Santana 2017 LY9H Nanjing OEM3 

W044 S-VW Passat 2017 LY9H Nanjing OEM3 

4 

W014 S-VW New Lavida 2017 LY9H Anting OEM3 

W015 S-VW New Lavida 2017 LY9H Anting OEM3 

W018 S-VW New Lavida 2016 LY9H Anting OEM3 

5 
W045 S-VW Lamando 2018 LY9H Ningbo OEM3 

W051 S-VW Lamando 2017 LY9H Ningbo OEM3 

6 

W012 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W032 S-VW Gran Lavida 2015 LY9H Anting OEM3 

W042 S-VW New Lavida 2017 LY9H Anting OEM3 

W047 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W049 S-VW New Lavida 2016 LY9H Anting OEM3 

7 
W003 S-VW Polo 2017 Unknown Anting OEM4 

W039 S-VW Polo 2017 LY9H Anting OEM4 

8 
W025 S-VW Polo 2016 LY9H Anting OEM4 

W040 S-VW Polo 2015 LY9H Anting OEM4 

9 
W027 S-VW Passat 2004 Unknown Anting OEM4 

W028 S-VW Passat 2003 LB9A Anting OEM4 

 

 

 

11.3.2. IR + Raman + Py-GC/MS for samples within Group OEM3  
 

As presented in Table 68, the overall capacity to differentiate samples within Group OEM3 

wasn't as robust as achieved for Group OEM4. The combined IR and Raman analysis across all 

three layers resulted in a discriminating power of 91.7%, leaving 27 pairs of samples 

undistinguished. Conversely, for Group OEM4, the discrimination power reached an 

impressive 98.1% with only 7 pairs remaining undistinguished. Py-GC/MS was employed on a 

limited subset comprising 23 samples belonging to Group OEM3, specifically those whose 

basecoat could not be differentiated through IR and Raman analysis. 

Upon integrating the discriminatory outcomes from Py-GC/MS with the results of FTIR and 

Raman analyses for the 26 automotive white paint samples within Group OEM3, a total 10 

pairs of samples were deemed indistinguishable, resulting in a discriminating power of 97%. 

The specific pairs of undistinguished samples and their corresponding vehicle information are 

detailed in Table 77. The geographic distribution of these undifferentiated samples associated 

with assembly plants is illustrated in Figure 152. 

It was noticed that combining Py-GC/MS did not significantly enhance the overall 

discriminatory power of Group OEM3 to match the discriminative ability observed in Group 
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OEM4. This observation suggests that samples with three layers share a remarkably similar 

profile within the same manufacturing company, regardless of varying models, production 

years, or assembly plants. 

 

Table 77. Undifferentiated sample groups by combined IR, Raman and Py-GC/MS analysis of samples 
within Group OEM3 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Topcoat 
color code 

Assembly 
plant 

1 
W002 F-VW Sagitar 2017 LC9A Chengdu 

W023 F-VW Sagitar 2017 LC9A Chengdu 

2 
W033 S-VW New Lavida 2014 LY9H Nanjing 

W046 S-VW Passat 2013 LY9H Nanjing 

3 
W014 S-VW New Lavida 2017 LY9H Anting 

W015 S-VW New Lavida 2017 LY9H Anting 

4 
W016 S-VW New Lavida 2017 LY9H Anting 

W018 S-VW New Lavida 2016 LY9H Anting 

5 

W012 S-VW New Lavida 2017 LY9H Nanjing 

W032 S-VW Gran Lavida 2015 LY9H Anting 

W042 S-VW New Lavida 2017 LY9H Anting 

W054 S-VW New Lavida 2016 LY9H Anting 

6 
W047 S-VW New Lavida 2017 LY9H Nanjing 

W049 S-VW New Lavida 2016 LY9H Anting 

 

 

 

 

 

 

 

 

 

 

 

Figure 152. Geographic distribution of undifferentiated samples associated with assembly plants 
after IR, Raman and Py-GC/MS analysis. 
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11.4. Global discriminating power 
 

The global discriminating power of each technique and that in each step of analytical 

sequence for the differentiation of 54 OEM paint (only consider the OEM layer) is summarized 

in Table 78. Samples originating from Group OEM4 generally exhibited a higher level of 

discriminative characteristics compared to samples from Group OEM3. The cumulative 

discriminatory power achieved through the utilization of all techniques to differentiate the 

set of 54 white OEM automotive paint samples reached 99.3%, resulting in only 10 pairs of 

samples remaining undifferentiated. 

 

Table 78. Discriminating power of each technique distinguishing among the 54 OEM automotive 
paint samples as well as the two layer groups (OEM3 and OEM4) 

STEPS TECHNIQUE 
OEM3 
(N=26) 

OEM4 
(N=28) 

TOTAL OEM 
(N=54) 

1 Microscopy 62.5% (122) 92.6% (28) 92.1% (150) 

2 FTIR 83.4% (54) 96.8% (12) 95.4% (66) 

3 Raman 77.5% (73) 92.1% (30) 92.8% (103) 

5 Microscopy + IR 93.8% (20) 98.7% (5) 98.3% (25) 

6 Microscopy + IR + Raman 94.2% (19) 98.9% (3) 98.5% (22) 

7 Microscopy + IR + Raman + Py-GC/MS 97.8%(7) - 99.3% (10) 

 

Table 79 provides a comprehensive overview of the collective discriminatory power of all 

techniques employed for distinguishing the entire sample set considering all the layers (taking 

into account actual different layer structure due to additional repainted layer on top of OEM 

system). Through the completion of the analytical sequence defined in this study, an 

impressive discriminative power of 99.6% was attained for this particular sample set, resulting 

in only 7 pairs of samples remaining undifferentiated. Further details concerning the vehicle 

information of these undifferentiated samples are presented in Table 80. The geographic 

distribution of these undifferentiated samples associated with assembly plants is illustrated 

in Figure 153. 

The findings indicate that while Raman analysis proved effective in distinguishing white 

automotive paint samples, it did not substantially enhance discrimination beyond the results 

of microscopy and IR analysis. Furthermore, the information revealed by Raman analysis 

demonstrated remarkable consistency with the outcomes of IR analysis. Consequently, in 

practical applications, conducting both IR and Raman analyses appears redundant for white 

automotive paint. 

However, considering the higher discriminating power demonstrated by Raman analysis in 

differentiating clearcoat layers, it could be advantageous to apply only one technique to each 

specific layer. This strategic approach has the potential to yield a higher discriminating power 

than a single technique could achieve on its own. Ultimately, this would lead to an equivalent 

discriminatory capability as employing both techniques, while streamlining the analytical 

process, as discussed in chapter 11.2.2. 
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Table 79. Discriminating power obtained from each stage of analytical sequence for differentiating 
62 automotive paint samples in this sample set. 

TECHNIQUE ENTIRE SAMPLE SET ALL THE LAYERS (N=62) 

MICROSCOPY 95.8% (79) 
MICROSCOPY + IR 98.9% (20) 
MICROSCOPY + IR + RAMAN 99% (18) 
MICROSCOPY + IR + RAMAN + PY-GC/MS 99.6% (7) 

 

 

Table 80. Vehicle information of undifferentiated samples by combined microscopy, FTIR, Raman and 
Py-GC/MS analysis 

Group 
No. 

Sample No. 
Manufacturing 

company 
Model 

Production 
year 

Topcoat 
color code 

Assembly 
plant 

Layer 
structure 

1 
W002 F-VW Sagitar 2017 LC9A Chengdu OEM3 

W023 F-VW Sagitar 2017 LC9A Chengdu OEM3 

2 
W033 S-VW New Lavida 2014 LY9H Nanjing OEM3 

W046 S-VW Passat 2013 LY9H Nanjing OEM3 

3 

W012 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W032 S-VW Gran Lavida 2015 LY9H Anting OEM3 

W042 S-VW New Lavida 2017 LY9H Anting OEM3 

4 
W047 S-VW New Lavida 2017 LY9H Nanjing OEM3 

W049 S-VW New Lavida 2016 LY9H Anting OEM3 

5 
W003 S-VW Polo 2017 Unknown Anting OEM4 

W039 S-VW Polo 2017 LY9H Anting OEM4 

 

 

 

 

 

 

 

 

 

 

Figure 153. Geographic distribution of undifferentiated samples associated with assembly plants 
after conducting the complete analytical sequence. 

 

In inclusion, the implemented analytical sequence in this study has demonstrated its efficacy 

in distinguishing samples with exceedingly similar origins. This finding underscores that 

despite the mass production of automotive paint, the analysis can still yield a notable level of 

discrimination. This observation underscores the significant evidential value inherent in paint 

analysis. 
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11.5. Geographic variation in Chinese Produced OEM Paint 

Samples and Samples from EUCAP Databases 
 

In this section, the geographic variation among Chinese produced OEM paint samples and 

samples from the EUCAP databases were investigated. The aim is to explore whether there 

are any discernible differences in the chemical composition of automotive paint samples 

based on their geographic origin.  

Initially, a search was conducted in the EUCAP databases using the keywords 'VW' and 'white' 

to retrieve IR spectra of basecoat. A total of 166 basecoat spectra were found in five solid 

basecoat databases from Germany, France, Belgium and Spain. When available (which was 

not always the case), the basecoat spectra were linked to specific identifiers known as 'FRCAP 

numbers'. These identifiers facilitated the connection of spectra from other layers originating 

from the same vehicle within other databases. It is important to note that the registered 

information for these spectra was frequently incomplete. This included missing production 

location information, or even instances where details such as model or production year were 

absent. Certain IR spectra were sourced directly from raw paint materials provided by paint 

suppliers like BASF and PPG. Often, these samples were not associated with specific vehicle 

models or production years, further complicating the geographic investigation. 

Among the registered spectra, only one topcoat color code (LB9A) and six models (Golf, Polo, 

Passat, Tiguan, Touran, Jetta) were discovered, which are consistent with either the color 

code or models produced in China. The six identified models in the EUCAP databases all 

exhibit a color code LB9A, which is different from the color code LY9H found in the Chinese-

produced vehicles. Furthermore, the chemical composition of basecoat and clearcoat within 

the same model also differs, as depicted in Figure 154. This reveals the geographic variation 

among Chinese and European produced OEM paint in terms of model and color code.  

However, It is noteworthy that while the European-produced sample (W026) in this dataset 

exhibited a distinct chemical profile in comparison to the Chinese-produced vehicles, It is 

crucial to acknowledge that the chemical classes identified in the Chinese-produced vehicles 

are not exclusive. Analogous profiles for each layer can also be found within the EUCAP 

database. For instance, Figure 155 presents a comparison between a Chinese-produced 

sample, W014, with a vehicle model 'New Lavida' and a topcoat color code 'LY9H', and a 

European-produced sample, 15162, with a vehicle model 'Polo' and a topcoat color code 

'LB9A'. The primer, basecoat, and clearcoat of these paints were examined and compared. 

The results depicted in the figure suggest that while not entirely indistinguishable, there are 

common identifiable chemical compounds used in both European and Chinese vehicles. This 

observation implies a lack of geographical variation in paint composition, irrespective of 

differences in model or color codes. 

Therefore, the data acquired from this study might not serve as a comprehensive investigative 

tool for providing specific vehicle information for inquiries in Europe. However, it can still be 

employed as a valuable data source for the purpose of interpretation.  
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Figure 154. IR spectra of vehicle model ‘Polo’, one produced in China (Sample W019, spectra in blue) 
and the other in Europe (Sample 15162, spectra in red), exhibit distinct chemical compositions in the 

clearcoat (a) and basecoat (b). 
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Figure 155. IR spectra of vehicles produced in China (Sample W014, spectra in blue) and Europe 
(Sample 15162, spectra in red), demonstrating similar chemical profiles in primer (a), basecoat (b) 

and clearcoat (c) regardless model or color code variation. 

a)

c 

b) 

c) 
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11.6. Global vision 
 

This study can be regarded as a specialized color block study, as it not only confines itself to a 

specific color but also narrows its focus to a particular car manufacturer. The samples selected 

originate exclusively from Volkswagen (VW) vehicles, all of which share the same color (white) 

and belong to a limited production timeframe, primarily ranging from 2010 to 2018. It is worth 

underscoring that this study represents not only the initial but also the sole research in which 

such a comprehensive and thorough investigation has been conducted on this specific 

category of closely related samples. The author believes that the investigation of this 

distinctive sample collection using conventional analytical techniques such as microscopy, 

FTIR, Raman spectroscopy, and Py-GC/MS can yield novel insights that may prove valuable to 

forensic practitioners. 

 

1) This study validates the discriminating capabilities of common techniques for closely 

similar samples. Each technique demonstrates a relatively high discriminating power. 

FTIR stands out as the most effective method for discriminating white automotive 

paint, with only 66 pairs of samples remaining undifferentiated (DP=95.4%). 

Additionally, this study highlights Raman spectroscopy as a viable alternative to FTIR, 

as it leaves only 103 pairs of samples undistinguished (DP=92.8%). 

 

2) It becomes evident in this study that, for white automotive paint, conducting both IR 

and Raman analyses for all layers may not be necessary, given the similar insights 

offered by both techniques. This similarity primarily arises from the limited 

information available for Raman detection and identification of white paint pigments. 

The complementary aspect of Raman analysis would become more pronounced when 

dealing with colored paint, where Raman analysis unveils abundant pigment 

information. Conversely, for neutral colors like white, grey, or black, the added 

discrimination offered by Raman analysis may be limited. 

 

3) Given the multiple layers in automotive paint, this study identifies the most effective 

techniques for analyzing individual layers and unveils optimal layer-technique 

combinations for distinguishing white automotive paint. Raman spectroscopy exhibits 

superior discriminatory power over IR when analyzing clearcoat, making it the 

preferred technique for this layer. This finding aligns with other studies conducted on 

Australian and North American paint samples (Maric et al.,2016; Affadu-Danful et 

al.,2023), further suggesting that Raman spectroscopy offers higher potential over 

FT-IR in identifying and discriminating automotive clearcoats, regardless of car make 

or production location. In this study, combining IR analysis for primer with Raman 

analysis for clearcoat achieves exceptionally effective discrimination, resulting in a 

discrimination power of 95.7% (only 62 undifferentiated pairs). This approach is 

consistent with the findings of Eyring et al., who, using a different sample set, 

demonstrated that robust discrimination can be attained by analyzing primer and 
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clearcoat through IR without the need to analyze the basecoat (Eyring et al.,2007). 

Thus, it is reasonable to infer that the combination of IR analysis for primer and 

Raman analysis for clearcoat represents the most effective approach for 

discriminating automotive paint, irrespective of car make or color. 

 

4)  This study collected samples from various locations within the same vehicle and 

assessed the intra-sample variability among these subsamples. The examination of 

white OEM automotive paint samples revealed significant intra-sample variability in 

terms of physical attributes, as evidenced by microscopic analysis. Out of 43 samples 

that had subsamples, a notable 79% of them exhibited variations in layer structure, 

relative layer thickness, and layer color, underscoring the diversity within individual 

samples in terms of their physical characteristics. Conversely, the intra-sample 

variability from a chemical standpoint was found to be minimal. Consequently, in 

practical forensic cases, it is imperative to gather reference samples from various 

locations within the vehicle and be cautious when making exclusion decisions solely 

based on observed microscopic variations. 

 

5) The analysis of white OEM automotive paint samples delved into the factors 

contributing to sample differentiation, including the vehicle model, production years, 

and assembly plant. This investigation unveiled a significant role played by the 

assembly plant in determining both the physical attributes and chemical profiles of 

the paints. Notably, samples originating from the same assembly plant exhibited 

identical layer structures and similar chemical compositions, irrespective of variations 

in the manufacturing company, model, or production year. This underscores the 

potent influence of the assembly plant in maintaining consistency in the physical and 

chemical characteristics within a specific group of samples. By identifying and 

combining the chemical information obtained from each layer, it is possible to 

determine the potential assembly plant of paint samples, thus further determine 

the make and model of a vehicle. Variations related to the production year, on one 

hand, were attributed to manufacturer decisions regarding changes in production 

lines or paint formulas for specific models over time, while on the other hand, they 

were primarily attributed to batch-to-batch variations. By obtaining these findings, 

this study offers a more comprehensive perspective on the paint market and 

manufacturing plants.  

 

6) This study delves deeply into the correlation between the chemical composition of the 

basecoat and the topcoat color code. Typically, automotive paint's topcoat color code 

enables the designation of the specific formula for an original color associated with a 

car brand, implying that identical topcoat color codes should yield identical 

appearances. However, the findings in this study reveal that sample discrimination 

does not align with the topcoat color code. In other words, undifferentiated 

basecoats may possess varying color codes, and samples sharing identical color 

codes do not consistently display identical chemical compositions in their basecoats. 
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This observation challenges the conventional assumption regarding the relationship 

between color codes and basecoat compositions.  

 

7) Geographic variations were identified between Chinese and European-produced OEM 

paints concerning both the model and color code. Notably, samples sharing the same 

model did not consistently belong to the same chemical class and have identical color 

codes. Consequently, the data generated from this study may not offer a 

comprehensive investigative tool for providing specific vehicle information within 

Europe. However, it is worth highlighting that, while not entirely indistinguishable, 

there are common and identifiable chemical compounds found in both European and 

Chinese vehicles. This observation suggests a lack of geographical variation in paint 

composition, regardless of different model or color codes. As such, the acquired data 

remains a valuable resource for interpretation purposes.  

 

8) This study ventured beyond the expectations of a typical population study, delving 

deeper into the occurrence of paint within a constrained range. In automotive paint 

interpretation, it is crucial to assess the occurrence of a particular paint being 

encountered in a relevant population. Typically, this involves multiplying the 

prevalence of a specific color by the occurrence of its chemical properties, often 

discerned through IR analysis. To achieve this, database searches are employed to 

locate matching spectra within the pertinent population. For instance, if the relevant 

population is limited to white Volkswagen (VW) vehicles, one must consider 

evaluating the proposition that the suspect's white VW was used in the commission 

of a crime (Hp) versus another white VW vehicle being involved (Hd). 

 

As previously noted, the available basecoat spectra for white VW vehicles in five 

EUCAP solid basecoat databases total only 166, a relatively small number compared 

to the overall 60,000 IR spectra in the EUCAP database. Furthermore, only a fraction 

of these spectra encompasses complete data from all layers originating from the same 

vehicle. By incorporating the IR spectra data obtained from this study into the 

existing databases, the occurrence of encountering the chemical properties of the 

given paint can be substantially reduced, particularly when considering all layers. 

Moreover, the inclusion of other techniques such as microscopy, Raman, and Py-

GC/MS was expected to further diminish the global occurrence of such paint. This 

study lays the groundwork for introducing a estimate factor aimed at reducing global 

occurrence. Notably, it became evident in this study that the supplementary use of 

either microscopy or Raman analysis reduced the number of undifferentiated paint 

samples by a factor of 2. The additional application of Py-GC/MS led to an even greater 

reduction, lowering the number of undifferentiated samples by a factor of 2. By 

incorporating these additional techniques into the assessment, it was estimated that 

the overall occurrence, as determined solely by IR analysis, could be reduced to at 

least ¼ , thereby enhancing the final likelihood ratio.  
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12. Conclusion & Perspective  
 

 

In this study, a total of 62 white Volkswagen automotive paint samples with 135 subsamples 

were collected in China, and they underwent a comprehensive analytical sequence for 

characterization. The analysis included microscopic examination, FTIR analysis, Raman 

analysis, and Py-GC/MS analysis. 

All these 135 subsamples were undertaken microscopic examination using transmitted light 

bright field and dark filed, polarized light, and Alexa Fluor 488 fluorescence illumination. 

Microscopic examination of the samples revealed three types of layer systems (OEM3, OEM4, 

and repainted) and significant intra-sample variability in terms of layer structure, relative 

layer thickness, and layer color. The examination identified 150 pairs of samples that 

remained undifferentiated, resulting in a discriminating power of 92.1%. Extending the 

consideration to all existing layers, the examination left 79 pairs of samples that were 

undifferentiated, yielding a discriminative power of 95.8%. 

FTIR analysis was then conducted on the entire set of samples, as well as a subset of 54 OEM 

automotive paint samples, to evaluate inter-sample variability and the correlation between 

chemical characteristics and sample origin. The analysis revealed minimal intra-sample 

variability. Repainted samples easily differentiated from OEM paint samples and from each 

other. The chemical composition of OEM paint samples showed a high correlation with the 

layer structure, with distinct chemical classes identified in the basecoat and clearcoat of 

OEM3 and OEM4 groups. However, it is worth noting that the primer layer exhibited a high 

level of similarity between the OEM3 and OEM4 groups. The chemical composition and 

characteristics of the primer were found to be quite identical in both groups, indicating a 

consistent formulation or composition of the primer layer regardless of the overall layer 

structure. This suggests that the primer layer may play a less significant role in differentiating 

between the OEM3 and OEM4 groups compared to the other layers in the paint system. The 

discriminating powers of FTIR analysis for each layer and layer combination were calculated. 

By combining the discrimination results from all layers, a total of 66 sample pairs remained 

undifferentiated, resulting in a discriminating power of 96.5% when considering all 62 

samples, and 95.4% when considering only the 54 OEM samples. 

Raman analysis was conducted on representative samples from the 54 OEM paints, examining 

each layer individually. It was found that Raman analysis provided similar information to FTIR 

analysis regarding binders and extenders but had limited contribution in pigment 

identification due to pigment formulation limitations in white paint. The discriminating 

powers of Raman analysis for each layer and layer combination were also calculated, with a 

higher discriminating power observed for the clearcoat compared to FTIR analysis. After 

combining the results from all layers, 103 sample pairs remained undifferentiated, resulting 

in a discriminating power of 92.8%. 
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A separate project focusing on analyzing white automotive paint basecoat using Py-GC/MS 

was performed. The basecoat of 23 samples that could not be differentiated by FTIR analysis 

was selected for analysis. The project explored the sample preparation method and optimized 

instrument settings for the analysis of polyurethane basecoat. Py-GC/MS analysis showed 

further discrimination for undifferentiated basecoat samples, with only 17 pairs of samples 

remaining undifferentiated and a discriminating power of 93.3%. 

By combining the results of FTIR and Raman analysis, the full chemical characteristics of OEM 

white automotive paint and the inter-sample variability were investigated. Raman analysis 

confirmed the chemical composition identified by FTIR analysis and provided additional 

characterization of certain compounds. The integration of FTIR and Raman analysis resulted 

in only 34 undifferentiated sample pairs, with a discriminating power of 97.6%. This 

highlighted the high discrimination capability of both techniques and revealed the unique 

physical and chemical properties of individual paint samples, providing strong evidential value 

for automotive paint analysis. 

While Raman analysis exhibited effectiveness in differentiating white automotive paint 

samples, it did not contribute significantly to discrimination beyond the outcomes of 

microscopy and IR analysis. Consequently, in practical scenarios, the utilization of both IR and 

Raman analyses appears to be redundant. An insightful approach uncovered in this study 

involves strategically applying the most discriminatory technique to a specific individual layer. 

In this context, employing Raman analysis for clearcoat and primer measurement and 

utilizing IR for basecoat and primer measurement yields a superior discriminating power 

(97.4%) than what a single technique could achieve on its own. Ultimately, this approach 

could achieve a similar level of discriminatory capability as employing both techniques 

(97.6%), while simultaneously simplifying the analytical process.  

The necessity of analyzing all layers was thoroughly examined, revealing that a highly effective 

discriminatory outcome can be achieved by analyzing the primer with IR and the clearcoat 

with Raman spectroscopy. This strategic combination resulted in an impressive discriminating 

power of 95.7%. Additionally, as these layers frequently constitute the surface layer and 

demand minimal sample preparation, this pairing emerges as the most efficient and cost-

effective choice. By comparing with the existing studies, it is reasonable to infer that the 

combination of IR analysis for primer and Raman analysis for clearcoat represents the most 

effective approach for discriminating automotive paint, irrespective of car make or color. 

Through the completion of the analytical sequence defined in this study, an impressive 

discriminative power of 99.6% was attained for this particular sample set, resulting in only 7 

pairs of samples remaining undifferentiated. 

The study thoroughly investigated the undifferentiated sample pairs, the correlation between 

paint characteristics and sample origin (manufacturing company, model, assembly plant), and 

the sample variability related to topcoat color, production year, batch variation, and 

geographic variation using the integrated data. The findings successfully addressed the 

research questions posed in this study as follows: 
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1) To what extent OEM-paint from mass-produced vehicles of same color manufactured 

by same make, can be differentiated and under what conditions can this be done? 

The investigation of white OEM automotive paint through microscopy, FTIR, Raman 

spectroscopy and Py-GC/MS revealed that paints originating from the same manufacturer, 

with the same color and model, and produced in the same assembly plant in the same year 

can potentially be differentiated based on their physical and chemical characteristics. Both 

individual FTIR and Raman analysis demonstrated the capability to achieve this level of 

discrimination. Furthermore, when the two techniques were combined, an even greater level 

of discrimination was achieved, allowing for further differentiation among the samples. This 

suggests that the combination of FTIR and Raman spectroscopy can enhance the ability to 

distinguish between mass-produced vehicles of the same color, manufactured by the same 

make, under specific conditions. Additionally, Py-GC/MS analysis extends the discriminatory 

capabilities by distinguishing white basecoats with identical origins that could not be 

differentiated through FTIR and Raman analyses alone. This study goes beyond the typical 

scope of population studies, delving deeper into the occurrence of paint within a constrained 

range and demonstrated the significant rarity of one specific paint encountered in casework.  

 

 

 

 

2) Which identifying factor (model, topcoat color code, production years, assembly paint) 

contributes the greatest towards non differentiation of samples? 

The analysis of the white OEM automotive paint samples revealed that the assembly plant 

played a significant role in determining the chemical properties of the paints. Samples 

originating from the same assembly plant exhibited similar chemical profiles, regardless of 

the specific manufacturing company, model, or production year. This indicates that the 

assembly plant has a strong influence on the consistency of the chemical composition 

within a specific group of samples. However, it is worth noting that even within the same 

assembly plant, variations in the chemical properties were still observed among the samples. 

This suggests that while the assembly plant contributes significantly to the non-differentiation 

of samples, there are other factors at play that contribute to the overall variation in the 

chemical profiles. By identifying and combining the chemical information obtained from 

each layer, it is possible to determine the potential assembly plant of paint samples, thus 

further determine the make and model of a vehicle. 
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3) What is the degree of inter-sample and intra-sample variability as well as batch 

variation of automotive paint? 

The analysis of the white OEM automotive paint samples revealed significant intra-sample 

variability in terms of physical features, as observed through microscopic examination. 

Among the 62 samples, 43 had subsamples, and 79% of them showed noticeable variations 

in layer structure, relative layer thickness, and layer color. This indicates that there is a 

considerable level of diversity within individual samples. In contrast, the intra-sample 

variability from a chemical feature perspective was found to be minimal. Both the IR and 

Raman analyses demonstrated consistent chemical compositions within each sample, 

indicating a high level of similarity in terms of chemical properties. Consequently, in practical 

forensic cases, it is imperative to gather reference samples from various locations within 

the vehicle and be cautious when making exclusion decisions solely based on observed 

microscopic variations.  

On the other hand, the inter-sample variability was found to be relatively high. The 

discrimination power of the microscopic examination (95.8%), IR analysis (96.5%), Raman 

analysis (92. 8 %), PY-GC/MS analysis (93.3%) all indicated significant variations among the 

samples within this sample set. This suggests that there are notable differences in the 

chemical and physical characteristics among the different samples. 

Batch variation was detected in this sample set. It was found that batch variation was the 

primary factor contributing to the differentiation of samples with identical manufacturing 

company, model, color, assembly plant, and production year. The presence of batch variation 

further supports the high level of variability observed in the samples. 

Overall, the high levels of intra-sample, inter-sample, and batch variation highlight the rarity 

of the physical and chemical properties exhibited by individual samples. These findings 

emphasize the importance of comprehensive analysis techniques in differentiating and 

characterizing automotive paint samples. 

 

4) Which single layer can contribute the greatest distinction and what layer combination 

examination can provide sufficient evidential value? 

The analysis of individual layers using FTIR and Raman spectroscopy demonstrated a relatively 

high discriminating power, with clearcoat analysis contributing the greatest discrimination 

among all the layers. In both FTIR and Raman analysis, the clearcoat exhibited the highest 

discriminating power, with Raman analysis of clearcoat achieving the highest discrimination 

capability (88.0%) among all the single layer analyses. 

When considering the combination of multiple layers, an insightful strategy has been 

identified: analyzing the primer with IR and the clearcoat with Raman spectroscopy. This 

approach not only demands minimal sample preparation but also yields remarkable 

discriminatory results, achieving a discriminating power of 95.8%, with a mere 60 pairs of 

samples remaining undifferentiated. This particular pairing stands out as the most efficient 

and cost-effective option, regardless of car make or color. 
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Through the systematic analysis of a meticulously chosen sample set comprising Chinese 

produced White Volkswagen automotive paint, this research has contributed to a better 

comprehension of the contemporary variations in manufactured automotive paint. By 

employing a comprehensive analytical sequence encompassing microscopy, FTIR 

spectroscopy, Raman spectroscopy, and Pyrolysis GC/MS, a thorough investigation of the 

chemical properties of the paint was conducted. 

Comparing the obtained results with samples from the European Coatings Automotive Paints 

(EUCAP) databases, it was observed that the chemical characteristics of Chinese produced 

paint exhibit similarities with those of European produced paints. This finding suggests a 

reduced level of geographic variation in automotive paint properties. 

The insights and data derived from this research hold significant value for the interpretation 

of automotive paint analysis in forensic casework as it broadens the existing population in 

current databases and lays the foundation for introducing an estimate factor to diminish 

global occurrence when employing supplementary techniques for automotive paint analysis. 

By expanding our understanding of the variations in contemporary automotive paint, forensic 

scientists and analysts can draw more accurate and informed conclusions when examining 

paint evidence in investigations. 

Although this study has paved the way for a deeper understanding of automotive paint 

analysis, certain areas remain unexplored. One notable aspect that warrants future 

investigation is the potential impact of weathering on paint samples. While this study did not 

delve into weathering effects, a promising avenue for further research lies in employing 

Attenuated Total Reflectance (ATR) spectroscopy to assess this aspect comprehensively. By 

including this dimension, a more comprehensive understanding of how paint samples may 

evolve over time can be gained. 

This study has unveiled a certain level of intra-sample variability stemming from distinct 

locations within the vehicle. To deepen the understanding, further research can focus on the 

frequency and prevalence of this intra-sample variability. This can be achieved through the 

collection of multiple samples from various parts of different vehicles. By conducting a 

systematic investigation on a broader scale, we can gain insights into the consistency of this 

variability across different contexts and vehicle types. This would not only enhance our 

comprehension of paint characteristics but also contribute to the refinement of analysis 

strategy in the context of forensic paint examination. 

The rich and informative data produced in this study opens avenues for further exploration 

into how this knowledge can be optimally utilized in aiding paint evidence interpretation and 

evaluation. To this end, conducting detailed case studies that apply the insights from this 

study to real-world scenarios could provide valuable insights. Such case studies would 

demonstrate their practical application within forensic analysis. 

While the statistical model developed in this study has proven valuable in discriminating 

between various paint samples, it may fall short in capturing subtle variations. As the field of 

data analysis continues to evolve, there is an opportunity to develop more advanced tools, 

such as machine learning algorithms, to build more powerful and robust models.  
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In conclusion, the comprehensive analysis and comparisons conducted in this research 

provide a solid foundation for future forensic investigations involving automotive paint. The 

findings contribute to the body of knowledge in this field and enhance the capabilities of 

forensic experts in determining the origin and characteristics of automotive paint samples. 
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