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Abstract 

As a powerful phenotyping technology, metabolomics has provided new opportunities in 

biomarker discovery through metabolome-wide association studies (MWAS) and 

identification of metabolites having regulatory effect in various biological processes. 

While MAS-based metabolomics assays are endowed with high-throughput and 

sensitivity, large-scale MWAS are doomed to long-term data acquisition generating an 

overtime-analytical signal drift, inherent to liquid chromatography-MS technique that 

can hinder the uncovering of true biologically relevant changes. 

We developed “dbnorm”, a package in R environment, which allows visualization and 

removal of signal heterogeneity from large metabolomics datasets. “dbnorm” integrates 

advanced statistical tools to inspect dataset structure, at both macroscopic (sample 

batch) and microscopic (metabolic features) scales. To compare model performance on 

data correction, “dbnorm” assigns a score, which allows the straightforward 

identification of the best fitting model for each dataset. Herein, we show how “dbnorm” 

efficiently removes signal drift among batches to capture the true biological 

heterogeneity of data in two large-scale metabolomics studies. 
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Introduction 

Large metabolome datasets, generated by metabolomics assays, have become an 

essential source of information about molecular phenotypes in system biology studies 1-

3. As an intermediate molecular layer between genes and disease phenotypes, metabolite 

levels and the corresponding pattern of changes are highly associated with the degree of 

perturbation in biological systems and rewired metabolic networks in a given phenotype 

41-12. 

Liquid chromatography-mass spectrometry (LC-MS) has become the most widely used 

experimental platform in the study of the metabolome, owing to the progressive 

improvement of the instrumental conditions in terms of sensitivity and selectivity 13. 

However, LC-MS based metabolomics assays suffer from the inherent variation in the 

distribution of signal measurements and/or in the signal sensitivity and intensity driven 

by external factors13. This signal drift remains a major limitation to data normalization 

in biomedical and clinical studies, adding up to the biological inter-individual variability 

and unavoidable technical variation introduced during sample preparation14. In 

particular, such drift can significantly compromise the technical precision and signal 

stability in large-scale studies, where the data acquisition for several hundred to 

thousands of biological samples needs to be done in different analytical blocks (i.e. 

batches) over several weeks or even months14,15. In this case the largest variance in the 

dataset may be assigned to the batch effect or experimental run order, thus hindering 

the real biological difference and true functional signals, leading to data 

misinterpretation 14,16,17. Therefore, prior to any chemometrics analysis, large 

metabolomic datasets need to be corrected for the unwanted analytical, within- and 

between- batch variation, in order to make data comparable and reveal biologically 

relevant changes 18. 

In most of the LC-MS-based metabolomics data processing workflows, signal intensity 

drift correction is performed using quality control (QC) samples per metabolite feature. 

QC samples are aliquots of a QC pool, representative of entire sample set. QC samples 

are injected within each batch periodically (every 4-10 samples) to monitor signal drift 

over time and evaluate the system performance and data quality19-21. However, in large-

scale studies, the preparation of such QC samples may be difficult due to large number 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.01.22.914051doi: bioRxiv preprint first posted online Jan. 22, 2020; 

http://dx.doi.org/10.1101/2020.01.22.914051
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

of samples, whose handling would involve additional freeze-thaw cycles. Moreover, one 

may want to start the data acquisition before finalizing the sample collection. In such 

cases, surrogate QC samples are required 19,22-25.  In general, the drift correction using 

QCs is based on the assumption that the same sources of variation apply to the 

metabolites present in both biological samples and QCs, as their representative pools. 

In a majority of QC-based workflow, an equalization step is considered for batch-effect 

correction to remove signal intensity drift via several commonly proposed algorithms, 

such as batch-ratio-based correction 26, regression-based models 19,26,27 and/or linear 

and non-linear smoothing algorithms (e.g. lowess-model )19,27-30. Beyond the algorithm-

specific assumptions, the fundamental premise of all QC-based correction models is that 

QCs and study samples contain the same metabolite features 23,27, a condition that might 

not be met when using surrogate QC sample. In this case, the features that are detected 

in the subject of study, but are missing in the QCs, must be excluded before the 

application of a QC-based correction model. This limitation leads to loss of information 

in the metabolic phenotyping and may bias new discoveries 19,31,32. 

Another implemented solution for correcting signal drift in the analytical measurements 

via LC-MS-based metabolomics is spiking stable isotope-labeled metabolites into 

samples prior to metabolite extraction. This procedure is supposed to control both signal 

fluctuation during cross-comparison of different batches and biases introduced during 

sample preparation 33,34. However, metabolome size and diversity are too high to be 

completely covered by corresponding internal standards35, and signal variability for 

internal control metabolites may not truly reflect that of other endogenous or /and 

exogenous compounds, due to the difference in their chemical properties 25,36. Hence, 

this method should not be favored for the correction of potential batch effects in 

metabolomics assays 37.  

Alternatively, using models and algorithms that are not dependent on QCs might be a 

genuine and alternative way to compensate for technical sources of variation in a large-

scale/ long-run study. In particular, there has been a growing interest in adopting and 

applying specific statistical methods that were originally developed for microarray based 

gene expression data to adjust for unwanted variation in metabolomics data. Such 

methods include removal of unwanted variation (RUV) model38-40, linear model for 

microarray data (LIMMA)36,41, and ComBat using empirical Bayes methods (EB) 17,42-44,45. 

While these models can successfully correct for unwanted variation, they rely on a set 
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of assumptions limiting their application to metabolomics data. For example, on one 

hand RUV model depends on prior knowledge of metabolome features (variables) 

detected in the study groups, because it settles the analytical variation based on the 

behavior of negative control features, whose levels are supposed to remain constant in 

different biological conditions 36,39. On the other hand, LIMMA model strictly dependent 

on some additional information on sample metadata such as biological covariates, which 

are used for the design of the model matrix 41. In contrast, ComBat has the flexibility to 

adjust batch effect by integrating information on both batches and biological covariates 

or just on batches if demography of population is not available 9,14. This function is 

developed in the global term of “Parametric shrinkage adjustment” and accommodates 

batch effect in three steps: data standardization, batch effect estimation via empirical 

priors and batch effect removal using the adjusted estimators 45. Although making strong 

parametric estimation, ComBat has been recognized for its superior performance in 

adjustment of unwanted variation compared to several others models 42. ber is another 

statistical model that was developed for batch effect correction in gene expression data. 

It is based on a two-stage regression procedure and uses linear fitting for both location 

and scale (L/S) parameters 46. Interestingly, this model showed a better performance in 

microarray data compared to the empirical Bayes model implemented in ber, but was 

never tested for metabolomics data 46. 

Herein, we describe “dbnorm”, a new package in R environment, which incorporates a 

collection of functions applicable to large-scale metabolomics datasets for data 

visualization and for normalization cross batches. 

Results 

1. Statistical modeling for intra- and inter-batch signal drift correction 

in large-scale metabolomics datasets 

Despite their efficiency in removing intra- and inter-batch signal drift, the application of 

QC-based approaches might be limited by the impossibility to have QC samples highly 

representative of the whole sample set, particularly in large-scale population studies. To 

overcome this issue, statistical models that were originally developed for microarray gene 

expression data can be used to address the unwanted variation (e.g. batch effect) in 

metabolomics data. These statistical models offer the flexibility to accommodate signal 

variation across multiple batches based only on the sequence of acquisition, or 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.01.22.914051doi: bioRxiv preprint first posted online Jan. 22, 2020; 

http://dx.doi.org/10.1101/2020.01.22.914051
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

integrating also other available population demographic characteristics (i.e. 

treatment)9,14, which is recommended in case of uneven study design. 

We developed a new R package “dbnorm” in which, besides several functions for pre-

processing of data and estimation of missing values, we assembled two distinct functions 

for batch effect correction based on statistical models: ComBat (both parametric and non-

parametric), that was already in use for metabolomics data normalization, and ber, that 

we propose here as an additional tool for drift adjustment across multiple batches in 

metabolomics datasets. The performance of these two statistical models was assessed 

on two different big metabolomics datasets, using traditional QC- based methods (ie. 

lowess -model) as a reference for result comparison. Of note, for each analyzed dataset, 

“dbnorm” generates diagnosis plots and calculates a score value which helps users to 

easily choose the statistical correction model which best fits their data structure. The 

statistical models and the underlying algorithms are explained in the method section.  

The implementation of this package is publicly available at 

https://github.com/NBDZ/dbnorm 

2. Drift correction in a large-scale targeted metabolomics dataset from a 

human prospective cohort study  

The first dataset employed to test “dbnorm” is a set of targeted metabolites from plasma 

samples of 1,079 individuals, analyzed in 11 analytical batches over a period of 12 

months, and yielding data on 239 metabolites detected across all samples (see method 

section).  

 Across-batch drift assessment  

As previously described, in the majority of large-scale metabolomics experiments, QCs 

are periodically analyzed throughout an analytical run to allow for signal drift and data 

quality assessment. Therefore, distribution of QC signal is indicative of amplitude of 

analytical variation in the analyzed dataset. To perform the QC-based drift correction on 

the above specified dataset acquired on human cohort, we retrieved the data for 135 

QCs injected periodically, every 10 samples. Unsupervised principal component analysis 

(PCA) of acquired individual metabolic signatures, including 239 detected metabolites, 

revealed a clear distinction between QC sets analyzed in different batches or 

experimental runs (Fig.1A), with the first two principal components (PCs) explaining 65% 
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of the variance mainly derived from batch effect or analytical variability (Supplementary 

Figure 1A).  

    Importantly, total ion current (TIC) in the QCs showed a 10-fold signal intensity drift 

across batches, with a gradual signal decrease from 1.3 107 ion counts in batch 1 to 5 

106 ion counts in batch 11 (Supplementary Figure 2). Consistently with that, the relative 

log abundance (RLA) plot showed a moderate drift in the total centered median ion 

intensity across the experimental runs (Figure 1C). Moreover, multivariate unsupervised 

hierarchical clustering analysis (HCA) confirmed the sample clustering per batch, as 

depicted in Figure 1E. To correct for within and between batch effects and normalize the 

data prior to statistical analysis, we applied the statistical models implemented in 

“dbnorm” R package, namely  ber and ComBat (both parametric and non-parametric 

versions). PCA was applied to assess the efficiency of drift correction. The score plot 

showing the centered cluster of QCs between different batches was indicative of batch 

effect removal, with  variance explained by PC1 and 2 reduced to < 40 % (Figure 1B and 

Supplementary Figure 1B, 3A, B). In parallel, across-batch RLA plot showed the adjusted 

median signal intensity between batches (Figure 1D, 1F).  

Following the data quality assessment using QCs, we performed explorative statistical 

analysis of biological samples comprising the analyzed individuals, prior to and following 

the drift correction. PCA plot of raw data (i.e. prior to drift correction) generated in both 

positive and negative ionization modes showed sample clustering by batch order (Figure 

2A). In addition, probability density function plots (PDF plots) of metabolite distribution 

across batches showed shifted PDFs  for the majority of metabolites detected in the study 

samples (see example of 3-Hydroxy-3-methylglutarate and 2',3'-cyclic phosphate 3'-CMP 

in Supplementary Figure 4A and B). In parallel, Adjusted-Coefficient of Determination 

(Adj. R. squared) revealed the high dependency between variability in the dataset and 

across-batch signal drift, with > 50% of variability explained by batch for most 

metabolites (Figure 2D and Supplementary Table 1).  

We thus employed the three available statistical models implemented in the “dbnorm” R 

package (ber, parametric and non-parametric ComBat) to accommodate the signal drift 

observed in the whole dataset. To evaluate their efficiency to correct the signal drift 

within- and between- batches, we compared them to reference QC-based models, such 

as lowess. In general, the spatial separation predictive of batch effect was significantly 

reduced after correction of data with all tested models (Figures 2B-C and Supplementary 
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Figure 3C-D).  By applying both types of correction algorithms (QC–based and non-QC 

based), the largest variance captured by PC1 decreased from about 50% observed in the 

raw dataset to less than 20 %. Besides, overlapped PDFs plots was observed after data 

correction using either QC-based model (Supplementary Figure 4 C,D) or statistical 

models (Supplementary Figure 4 E-J). Of note, lowess-corrected dataset lacked 

xanthosine 5’-monophosphate metabolite when compared to the datasets generated by 

statistical models. This metabolite is a good example of a low abundant metabolite, likely 

present in only one portion of samples and thus below the limit of detection in QC 

samples due to the pooling - dilution effect. 

Although the QC-based lowess model considerably reduced the batch-associated signal 

variability, as indicated by the decrease of the Adj. R. squared value compared to raw 

data (Figure 2E),  the signal intensity for some metabolites was still strongly associated 

with the injection order over time estimated by regression model (Figure 2E, 

Supplementary Table 2). As an example, the clear batch-dependent shift in the signal 

intensity of citrate that was observed in the raw data, was preserved for some batches 

in the lowess-corrected data (Supplementary Figure 5A, B). In contrast, in all datasets 

that were corrected with one of the “dbnorm” statistical methods (ber, parametric and 

non-parametric models), the average intensity of this metabolite remained constant 

across batches (Supplementary Figure 5C-E). Accordingly, the use of statistical models 

improved to a greater extent the decrease in the batch-associated signal intensity drift 

compared to QC-based model (Figure 2F, Supplementary Figure 6 and Supplementary 

Table 3,4,5).  

Depending on proportion of variability explained by the batch,  the “dbnorm” tool will 

calculate a score for the maximum variability defined in each model to facilitate the 

conclusion about the model which provides the best compromise for drift correction 

considering the consistency of overall model performance for all detected metabolites. 

As shown in Supplementary Figure 7 and Supplementary Table 6, in this cohort study, 

the maximum variability detected for a metabolite was at 0.78 (78%) for the lowess- 

corrected dataset. Similarly, for the non-parametric ComBat corrected dataset, a residual 

maximum variation of 0.60 (60%) was still detected (Supplementary Table 5 and 6), 

indicating the remaining, for some metabolites, of the signal drift across batches. In 

contrast, the datasets corrected by ber- and parametric ComBat -models presented a 

similar performance in this study, with a maximum variability associated to the batch < 
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0.01 (1%) (Supplementary Table 3,4 and 6). These results indicates that ber- and 

parametric models are more efficient in normalizing the signal intensity changes in this 

large-scale metabolomics dataset. The maximum adjusted R-squared for each model is 

presented in the Supplementary Table 6. 

 

 

Figure 1. Detection of batch effect in LC-MS targeted metabolomics analysis of QC samples of a human 

cross-sectional study. Principal components analysis (PCA) of plasma metabolome in QC samples shows 
that in raw data the main source of variance is the inter-batch variability (A), which is removed after 
adjustment through ber- model (B). Relative log abundance (RLA) plots of data showed average distribution 
of the metabolites in QC samples before (C) and after batch effect removal using ber-model (D). For corrected 
data RLA median is close to zero and shows lower variation compared to raw data. Dendrogram of raw data 
(E) clearly visualizes the batch-dependent pattern on QC samples (clustered sets of samples according to 
the analytical run), while this pattern is abolished in ber-corrected data (F). The colors are indicative of the 
batch number. Graphs are generated on LC-MS data obtained in positive polarity mode along 11 batches of 
analysis.  
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Figure 2. Detection of batch effect and its correction in LC-MS targeted metabolomics analysis of 1079 

samples of a human cross-sectional study. 1079 plasma samples were analyzed by LC-MS targeted 
metabolomics in 11 analytical batches. Principal components analysis (PCA) of raw data (A) shows 
separation of sample clusters mainly triggered by batch order. This separation is removed after adjustment 
through lowess (B) or ber- model (C). Adjusted Coefficient of Determination (Adjusted R-squared) estimated 

by regression model shows the dependency of dataset variability to batch level. The raw dataset presents 
high variability (D), which is completely removed in the dataset corrected by using ber -statistical model (F), 
while lowess-corrected data (E) still shows some level of association between batch and some metabolites, 
with the highest dependency to the level of 78%. 

 

 Treatment of batch effects improves downstream differential 
analysis  

To investigate to which extent the quality of data might affect the data interpretation in 

this study, we next explored the impact of each type of correction algorithms on the 

downstream statistical and metabolic pathway analysis. 

All the subjects of this prospective cohort study were previously phenotyped for kidney 

functionality and associated parameters, such as age, sex, and creatinine clearance, as 

an indicator of renal impairment to estimate the severity of a kidney disease47. In 

addition, Glomerular Filtration Rate (GFR), a major surrogate of kidney function, is 

measured on a continuous scale and estimated by Chronic Kidney Disease Epidemiology 

Collaboration (CKD-epi)48,49 (Methods). We thus took advantage of this  information to 

have further indication on the performance of the different statistical models employed 

for data correction. We first evaluated the correlation between creatinine levels, 

determined by the targeted LC-MS/MS metabolomics experiment with that of measured. 

We looked at 5 datasets: raw data, lowess- corrected, ber-corrected and parametric- and 
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nonparametric- ComBat -corrected. All applied normalization models improved the 

correlation between creatinine levels measured routinely with an enzymatic assay and 

those obtained using targeted LC-MS/MS analysis. The correlation coefficient (r) passed 

from 0.18 observed in raw MS data, to 0.5 in the lowess-corrected data and up to 0.6 

for the data corrected by statistical models (Figure 3A). Using a multiple regression 

model, we found that the expected significant correlation between the outcome of renal 

failure such as CKD-epi and creatinine (predictor) revealed only when data are corrected 

for batch effect through either QC-based or statistical-based models, as shown by the 

increased absolute regression coefficients and decreased p-value in both lowess-and ber-

corrected data (Figure 3B). Likewise, other metabolites that are known to be associated 

to renal failure such as gluconate, citrulline, and hippurate47, showed a significant 

association to CKD-epi level only in the lowess- or ber- adjusted data (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity.preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for this. http://dx.doi.org/10.1101/2020.01.22.914051doi: bioRxiv preprint first posted online Jan. 22, 2020; 

http://dx.doi.org/10.1101/2020.01.22.914051
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

 

Figure 3. Impact of the correction of batch effect in LC-MS targeted metabolomics analysis of a human 

cross-sectional study on downstream functional analyses. Pearson correlation between levels of creatinine 
as measured by clinical test and its levels, as measured in LC-MS metabolomics analysis, before or after 
batch effect correction (A). The correlation increases from 0.18 in the raw dataset, to 0.5 in the lowess-
corrected dataset, to a maximum level of 0.61 in the datasets corrected via statistical models (ber, ComBat 

– par - and ComBat-N par). *** indicates p-value <0.001. (B) Association of CKD-epi and metabolite levels 
fails in detecting significant association with creatinine levels in raw data, while this expected association 
is observed in both lowess- and ber-corrected datasets. The model is adjusted by age and sex. 
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3. Drift correction in a large-scale untargeted metabolomics dataset 

from a mouse model study 

3.1 Across batch drift assessment 

Untargeted metabolome profiling is mostly employed to increase the chance of identifying 

unexpected discriminant biological signal, as it allows for the detection of as many 

metabolite features as possible from diverse chemical classes, without an a priori 

hypothesis. Due to high levels of noise and redundancy, the use of a robust statistical 

model for batch effect correction is even more important in untargeted metabolomics 

datasets. Here, the aim was to evaluate further the efficiency of ber-, parametric- and 

non-parametric ComBat models, implemented in “dbnorm” tool, for batch effect removal 

in a dataset acquired in a full scan mode in an untargeted assay. 

Briefly, the metabolome profile of two types of adipose tissue, visceral (v-AT) and 

subcutaneous (sc-AT), was measured in mice fed with a high fat diet (HFD) and/or 

control diet (ctrl). The diet treatment was scheduled for 1 and 8 weeks. Overall, 264 

samples, including QCs, were analyzed in a full scan mode in an untargeted metabolomic 

assay with the data acquisition divided in three analytical batches. Data processing 

using XCMS software (https://xcmsonline.scripps.edu/) yielded 11,156 aligned 

metabolite features defining multiparametric metabolic signatures (or profiles). 

Unsupervised multivariate analysis of these metabolic profiles (i.e. PCA and HCA) 

supported the presence of a strong batch effect, with samples clustered in the 

corresponding analytical batches (Figure 4A). In addition, the adjusted coefficient of 

variation estimated by regression model indicated that the variability of certain 

metabolites can be entirely explained by the signal intensity drift between batches 

(Supplementary Figure 8B). Following the signal drift correction using statistical models, 

the batch effect was removed, as suggested by the PCA scores plot and HCA dendrogram 

(Figure 4B and D, Supplementary Figure 8A). The high variability observed in the raw 

dataset was strongly reduced by batch effect removal via statistical models for the 

majority of variables (metabolites), although a maximum variability of about 20% was 

still present for some variables in the data corrected by non-parametric ComBat model 

(Supplementary Figure 8B-F). Interestingly, as compared to parametric ComBat-

corrected represented in auto-scaled graph (Supplementary Figure 8D), the ber-

corrected dataset showed a lower dependency to the batch order,  with a consistent effect 

on all variables (metabolites), as demonstrated by the Adjusted R-squared which was 
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almost zero for all the detected features (Supplementary Figure 8C, F). The very low 

negative Adjusted R-squared values detected here are usually indicative of very poor 

fitted regression model, indicating a weak dependence to the signal drift or batch effect 

estimated by the model in the ber-dataset. 

3.2 Batch effect correction facilitates the discovery of biologically 

relevant changes  

We finally investigated the importance of data correction for unwanted variation in a 

large-scale untargeted metabolomics assay with the aim of capturing true biological 

differences due to treatment in our case study.  To this end, we compared the candidate 

list obtained from statistical analysis of raw data to that resulting from normalized data 

following the batch correction using the statistical models ber, parametric and non-

parametric ComBat, implemented in the “dbnorm” tool. While the majority of the 

significant changes were detected in all analyzed datasets, the list of candidate 

metabolites associated with the HFD treatment was more exhaustive after adjustment 

(Figure 4E). As depicted in the volcano plot (Figure 4F), the levels of several metabolite 

features (variables) were revealed as significantly different only after batch effect 

removal, thus suggesting that in the raw dataset some biological signals induced by HFD 

might be overlooked due to high analytical variability. Accordingly, the data 

interpretation using metabolite set enrichment analysis (MSEA) varied between raw and 

normalized datasets. For instance, several biological pathways including “Fatty acid 

biosynthesis”, “Retrograde endocannabinoid signaling” and “Biosynthesis of 

unsaturated fatty acids”, “Linoleic acid metabolism “, that were previously shown to be 

influenced by HFD in adipose tissue 50-52, were enriched only using the list of candidates 

as a result of statistical analysis of normalized datasets (Figure 4G). No significant 

difference was observed depending on the statistical model applied thus cross-validating 

the performance in drift correction. 
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Figure 4. Detection of batch effect and its correction in LC-MS untargeted metabolomics 

analysis of 264 adipose tissue samples and its impact on downstream analyses. PCA plot of 

mouse fat tissue metabolome acquired in negative polarity shows separation among the samples 

associated with the experimental run in raw data (A) which is removed after adjusting for batch 
effect using ber statistical model (B). Dendrogram of raw data shows sample clusters particularly 

for batch 1 (C), which are not seen anymore after batch effect removal using ber-function (D). The 

color core indicates the batch number. (E) Venn diagram shows the number of metabolites 

significantly altered by 8 weeks of HFD (with FDR < 0.05) before and after batch correction 
through statistical models (ber, ComBat-par and ComBat-Npar). Correction with either parametric 

or non-parametric ComBat results in the same list of differentially expressed metabolites. (F) 

Volcano plots of raw and ber-corrected data show the impact of HFD on the list of differentially 

expressed metabolites. The metabolites appearing as significantly regulated only in ber-corrected 

data are depicted as pink dots. (G) Circos plot showing the relative size of the metabolic pathways 
that are enriched in the different lists of metabolites differentially regulated in response to HFD, 
obtained before (raw data) or after correction for batch effect using either ber or ComBat statistical 

models. The circle’s segment on the top indicates the dataset type, with the differentially regulated 

metabolites defined in each dataset. Numbers on the bottom of the circle indicate the metabolic 

pathway, as defined in the legend below. The connecting bands link the enriched biological 

functions to the underlying differentially regulated metabolites. Grey connecting bands are 
associated to biological pathways enriched in all datasets. Green and blue connecting bands 
highlight biological pathways that are enriched only in ber- or ComBat-corrected datasets.  
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Discussion 

Metabolic profiling offers holistic determination of intermediate and end products of 

metabolism whose deviation from normal level might provide important information on 

the dysregulation of metabolic pathways in disease condition. Such changes can be 

caused by genetic disorders, environmental factors, drug treatment, etc. This 

information could help improving disease diagnosis, prognosis and treatment choice. 

However, population-based studies need great care of experimental design and post hoc 

equalization model to generate comparable sample sets across batches. Periodical 

injection of QC samples is one of the most commonly used methodology in the 

metabolomics community and is exploited by QC-based normalization models to correct 

for drift across batch effects. However, this methodology has the limitation of being 

dependent on the availability of QCs truly representative of all the study samples, whose 

adequate preparation is not always possible, particularly in large-scale  studies. If 

surrogate QC- samples are used, QC-based normalization methods might fail in 

removing batch effect homogenously for all the features characterizing the 

multiparametric metabolic profile. Our results confirm the limits of such correction 

methods. For instance, we show that in the human  dataset that we analyze, citrate 

levels remain highly associated to the batch order in the lowess-adjusted data, which 

might generate bias in data interpretation. On top of that, the analysis with a QC-based 

correction model is restricted only to the metabolites that are detected in both QC and 

study samples, thus potentially impairing the discovery of novel biological hits in a 

medical condition. In our dataset, xanthosine 5'-monophosphate is only detected in the 

study samples, but not in QCs, and is therefore discarded a priori by the lowess-model.  

In our human population dataset, while variability linked to batch is still present for 

some metabolites by using QC-based lowess correction model, all the statistical models 

implemented in the “dbnorm” package, present a higher performance on the overall 

correction of signal drift across batches, with parametric ComBat and ber showing the 

best score. However, we cannot exclude that other datasets, with a different data 

structure, might be more effectively adjusted by non parametric ComBat and QC-based 

models.  

Our results clearly demonstrate the substantive impact of data adjustment for analytical 

heterogeneity on the prediction of clinical outcomes. In the human study, data 

normalization triggered an increased association between eGFR (the outcome measured 
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via the CKD-epi formula) and creatinine, thus highlighting a pattern that was not 

detected in raw data. This also indicates that data correction performed on our dataset 

is not overfitting the data, but rather favoring the detection of biologically relevant 

differences. Knowing that ComBat- model is developed to avoid overfitting of the data in 

case of small sample set in each batch, we found computational advantages using the 

ber-model, thanks to higher speed in processing the metabolomic data.   

Similarly, in our mouse experiment, the statistical models compensating for across 

batch signal drift drastically decreased the high variability associated to batch level in 

the raw dataset to the almost zero level in the corrected datasets, with a more consistent 

removal observed when employing parametric ComBat-model and ber-model. Data 

correction and automation resulted in a slightly distinct list of differential features 

associated with HFD-treatment, with similar candidates given by ber-, parametric-

ComBat and non-parametric-ComBat models. Although the list generated by using raw 

data lacked only few metabolite candidates, this small difference impaired the 

enrichment of a series of biological pathways that are known to be affected by HFD 

treatment 46,48,49, thus reducing the biological significance of the results.   

In conclusion, in agreement with previous reports, our study supports the necessity of 

data cleaning from unwanted technical variation, which helps improving the detection 

of  biological mechanisms underlying a treatment or medical state. “dbnorm” is an 

efficient and user-friendly tool for removal of drift across batches. It  helps users to 

diagnose the presence of analytical drift thanks to several visual inspections based on 

advanced statistical inferences implemented in the package. In addition, different 

statistical models are implemented, namely ComBat- and ber-. In addition, several 

functions implemented in the “dbnorm” assist users to visualize the structure of large 

datasets after correction via the implemented methods, distinctively from the perspective 

of samples analyzed in the entire experiments and the features detected in the study 

samples. Notably, “dbnorm” and its application is not limited to the metabolomics data, 

but could be extended to other high-throughput techniques.    
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Methods 

Package 

“dbnorm” and its functions are explained in details in the Package Manual. Briefly, it 

includes distinct functions for pre-processing of data and estimation of missing values, 

conventional functions for batch effect correction based on statistical models, as well as 

functions using advanced statistical tools to generate several diagnosis plots to inform 

users about their data structure. The “dbnorm” package includes statistical tools which 

allows user to inspect the structure and quality of multidimensional datasets of large 

metabolomics datasets at both macroscopic and microscopic scale, namely at the sample 

batch level and metabolic feature level, respectively. 

 Batch correction models implemented in the “dbnorm” are adapted from microarray 

analysis, namely, ber- model, a package from CRAN (ber: https://cran.r-project.org) and 

ComBat-model with both parametric and non-parametric setting, from sva package in R 

(sva;  https://bioconductor.org). In brief, ComBat uses EB method to remove location 

(mean) and scale (variance) of batch effect. Notably, EB model borrows information 

across genes and experimental conditions and assumes that systematic biases (i.e. batch 

effect) often influences many genes in the same way. Then it estimates variance for each 

gene within batch and across batches. And finally, standardized data (𝑍𝑖𝑗𝑔) is calculated 

via  

𝑍𝑖𝑗𝑔 =  
𝑌𝑖𝑗𝑔 −  �̂�𝑔 − 𝑋�̂�𝑔

�̂�𝑔
 

In which  𝑌𝑖𝑗𝑔 is expression value for gene g for sample j from batch i,  �̂�𝑔  is the overall 

gene expression, X is a design matrix for sample conditions, and �̂�𝑔 is the vector of 

regression coefficients corresponding to X and estimated variance of �̂�𝑔.  

In contrast, ber-function uses linear regression at two stages to estimate location and 

/or scales parameters: 

Stage 1: 𝑌𝑖𝑗𝑔 = 𝑋𝐵𝑔 + 𝐸 

Stage 2:  𝐷�̂� = 𝑋�̂�2 + 𝐹 
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In which Bb which is  𝑚𝑏 × 𝑔 matrix for batch l= 1,…,mb and gene in j = 1,…,g  is 

estimated by first regression model where E is a matrix of error. The second regression 

is applied on the squared residual of the first stage, �̂�2. 𝐷�̂� is the estimated matrix 

parameter for the scale batch. Upon calculation of its mean denoted by 𝜎�̂�
2 = (

1

𝑛
) ∑ 𝛿𝑖�̂�

2𝑛
𝑖=1   

for gene j, data are transformed to calculate and remove batch effect. 

Human prospective cohort study  

SKIPOGH (Swiss Kidney Project on Genes in Hypertension) is a family-based multi-

center population-based study exploring the role of genes and kidney haemodynamics 

in blood pressure (BP) regulation and kidney function. Method and population are 

described in details elsewhere 53-55.   

Animal experimentation 

All animal experiments and procedures were approved by the Swiss Veterinary Office 

(VD-2942.b. and VD-3378). C57/BL6 male mice were purchased from Janvier Labs and 

housed 5 per cage in the animal facility of Centre for Integrative Genomics, University of 

Lausanne. 

Four-week old mice were fed for two weeks with a 10% in fat chow diet (D12450J, 

Research Diet). At 6 weeks of age they were either shifted to a high-fat diet (HFD) 

containing 60% fat (D12492, Research Diet) or kept on a control diet for 1 or 8 weeks. 

Random blocking was used. Efficiency of the diet-induced obesity was followed by 

regular measurements of weight56. All animals were kept in a 12:12 h light:dark cycle 

with water and food ad libitum. All the mice were sacrificed by CO2 between ZT2 and 

ZT5. In this study sc-AT refers to inguinal subcutaneous adipose tissue in mice. 

Metabolomics 

Targeted metabolomics analysis conducted on the plasma samples of the human 

prospective cohort study study. Metabolites were extracted from 100 µL plasma samples 

using a methanol-ethanol solvent mixture in a 1:1 ratio. After protein precipitation, 

supernatant was evaporated to dryness and finally re-suspended to 100µL H2O 10% 

MeOH.  The samples were analyzed by LC-MRM/MS on a hybrid triple quadrupole-linear 

ion trap QqQLIT (Qtrap 5500, Sciex) hyphenated to a LC Dionex Ultimate 3000 (Dionex, 

Thermo Scientific). Analysis were performed in positive and negative electrospray 

ionization using a TurboV ion source. The MRM/MS method included 299 and 284 

transitions in positive and negative mode respectively, corresponding to 583 endogenous 
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metabolites. The Mass Spectrometry Metabolite Library (Sigma Aldrich) was used as 

reference material for the standard metabolites.  

The chromatographic separation was performed on a column Kinetex C18 (100x2.1 mm, 

2.6 µm). The mobile phases were constituted by A: H2O with 0.1% FA and B: ACN with 

0.1% FA for the positive mode. In the negative mode, the mobile phases were constituted 

by A: ammonium fluoride 0.5 mM in H2O and B: ammonium fluoride 0.5 mM in ACN. 

The linear gradient program was 0-1.5 min 2%B, 1.5-15 min up to 98%B, 15-17 min 

held at 98% B, 17.5 min down to 2%B at a flow rate of 250 µL/min. 

Total 1081 different plasma samples were analyzed in 11 batches over 12 months. 135 

and 156 QCs were periodically injected between sample runs in the positive- and 

negative- modes respectively. Surrogated QCs were considered in this study to prevent 

repeated thawing-refreezing cycles.  

The MS instrument was controlled by Analyst software v.1.6.2 (AB Sciex). Peak 

integration was performed with MultiQuant software v.3.0 (AB Sciex). The integration 

algorithm was MQ4 with a Gaussian smoothing of a half-width equal to 1.5 points. 

To obtain the fat metabolome profile in the mice, metabolites were extracted from 10-20 

mg of fat depots either sc-AT or v-AT using 400 µL of mix organic solvent comprising 

EtOH: MeOH: H2O in the proportion of 2:2:1 to remove protein efficiently as well as to 

extract polar and semi-polar metabolites successfully. All the samples were then 

vortexed mixed for 30 s, incubated for 10 min at 4°C and centrifuged for 10 min at 

14,000 rpm and 4 °C. The supernatants were removed and evaporated to dryness using 

speed vacuum concentrator (SpeedVac) and stored at -80°C until analysis. QCs were 

prepared by pooling all the tissue integrated in the study.  Extraction was done using 

similar protocol use for the samples. Supernatant were aliquots in 34 tubes considering 

similar quantity. Then they were treated like samples.  

Untargeted metabolomics approach applied in this study has been described in our 

previous paper 57. Metabolome profile of fat tissue was obtained from 264 samples 

including 32 QCs and 232 adipose tissue samples from mice v-AT and sc-AT. Data was 

acquired from both positive and negative polarities. Data acquisition in positive mode 

has been finalized in two days of continues run, while negative mode completed in three 

separated analytical runs. Raw data were transformed to mzXML format using 

MSConvert (Proteo Wizard 3.07155) and pre-processed for peak peaking, chromatogram 
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alignment and isotope annotation using open access XCMS online 

(https://xcmsonline.scripps.edu).  XCMS runs on UPLC-QExactive parameters by 

setting peak detection on Centwave. Overall, more than 20 thousands of M/Z values are 

sorted and aligned as the features of adipose tissue metabolome for the two acquisition 

polarities.  

Chemometrics and Pathway analysis 

For analysis, raw data generated in targeted metabolomics were log2-transformed for 

each metabolite. Further normalization for across-batch signal drift was don using either 

QC-based model specifically lowess-model from open access web page 

(http://prime.psc.riken.jp/Metabolomics_Software/LOWESS-Normalization/) or non-

QC based algorithms using “dbnorm” package. Notably, data for each mode of acquisition 

was treated separately for batch effect removal through either of QC-based or non QC-

based model, and then merged for visual check and downstream differential analysis.  

 A total of 239 different plasma metabolites detected in a human prospective cohort 

study study among which XANTHOSINE 5'-MONOPHOSPHATE was missing in QCs 

analyzed in positive modes. 

 Untargeted metabolomics data subjected to batch effect was also treated for 

normalization of across- batch signal drift using statistical methods implemented in the 

“dbnorm” package, which is also used for visualization of the outcome.  

Metabolome signature in either of study, human study and animal experiment, was 

obtained by linear logistic regression model using lm ( 

https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/lm  ) and 

limma package (), respectively.  In the study of SKIPOGH- prospective cohort study, GFR 

is estimated by an equation developed by the Chronic Kidney Disease Epidemiology 

Collaboration  (CKD-EPI) and used as an outcome of renal impairment , and its 

association with plasma metabolome is investigated by multiple regression testing 

adjusted for age and sex.  

In mouse model of obesity, we mainly focused on sc-AT metabolome signature driven by 

HFD after 8 weeks treatment, in comparison with their Ctrl counterpart. Subsequently, 

significant list was further searched and filtered against a Human Metabolome Database 

(HMDB; http://www.hmdb.ca) to keep only potential hits that were ultimately confirmed 

by MS2 spectra. Differential list in either of project, human prospective cohort study or 
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animal experiment, was then subjected for over-representation analysis (ORA) using web 

interface of ConsensusPathDB ( http://consensuspathdb.org ) to pinpoint biochemical 

pathways that are dysregulated and may have a causative relationship to the phenotype. 

The list of identifiers was mapped to predefined KEGG pathways database enlisted by 

4289 compound IDs. “p-value is calculated according to the hypergeometric test based 

on the number of physical entities present in both the predefined set and user-specified 

list of physical entities”  (http://cpdb.molgen.mpg.de/ ). The selection criteria was that 

at least two metabolites representing the biological pathways displayed a significance 

level < 5% (q-value <0.05). Pathway visualization was done by BioCircos package 

(https://cran.r-project.org/web/packages/BioCircos ). 
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