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Abstract: Define a γ-reflected process Wγ(t) = YH(t)−γ infs∈[0,t] YH(s), t ≥ 0, γ ∈ [0, 1] with {YH(t), t ≥

0} a fractional Brownian motion with Hurst index H ∈ (0, 1) and a negative linear trend. In risk theory

Rγ(t) = u−Wγ(t), t ≥ 0 is the risk process with tax of a loss-carry-forward type and initial reserve u ≥ 0,

whereas in queueing theory W1 is referred to as the queue length process. In this paper, we investigate

the ruin probability and the ruin time of Rγ over a reserve dependent time interval.
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1 Introduction

Let {XH(t), t ≥ 0} be a standard fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1), i.e., XH

is a centered Gaussian process with almost surely continuous sample paths and covariance function

Cov(XH(t), XH(s)) =
1

2
(|t|2H + |s|2H− | t− s |2H), t, s ≥ 0.

Define a γ-reflected process

Wγ(t) = YH(t)− γ inf
s∈[0,t]

YH(s), t ≥ 0, (1)

where γ ∈ [0, 1] is the reflection parameter and YH(t) = XH(t)− ct, t ≥ 0 with some constant c > 0.

In the actuarial literature Rγ(t) = u −Wγ(t), t ≥ 0, u ≥ 0 is referred to as the risk process with tax of a

loss-carry-forward type; see, e.g., [2]. In queuing theory W1 is referred to as the queue length process (or

the workload process); see, e.g., [3, 17]. We refer to [4, 9, 10, 22, 23, 24, 12] for some recent studies of W0.

Next, define the ruin time of the γ-reflected process Wγ by

τγ,u = inf{t ≥ 0 : Wγ(t) > u} (with inf{∅} =∞). (2)

∗School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
†Department of Actuarial Science, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland

1



Further let Tu, u ≥ 0 be a positive function and define the ruin probability over a reserve dependent time

interval [0, Tu] by

ψγ,Tu(u) := P (τγ,u ≤ Tu) .

Hereafter, ψγ,∞(u) = P (τγ,u <∞) denotes the ruin probability over an infinite-time horizon.

The ruin time and the ruin probability for both Tu = T ∈ (0,∞) and Tu = ∞ for all u large are studied

in [20, 19]; see also [10, 22, 23]. In [20] the exact asymptotics of ψγ,T (u) and ψγ,∞(u) are derived, which

combined with the results in [22] and [10] lead to the following interesting asymptotic equivalence

ψγ,T (u) = CH,γψ0,T (u)(1 + o(1)), u→∞ (3)

for any T ∈ (0,∞] and γ ∈ (0, 1), with CH,γ some known positive constant. The recent contribution

[19] investigates the approximation of the conditional ruin time τγ,u|(τγ,u < ∞). As shown therein the

following convergence in distribution (denoted by
d→)

τγ,u − t0u
Ac,HuH

∣∣∣(τγ,u <∞)
d→ N (4)

holds as the initial reserve u tends to infinity for any γ ∈ [0, 1), where N is an N(0, 1) random variable

and

t0 =
H

c(1−H)
, Ac,H = t

H+ 1
2

0 c−
1
2 . (5)

See also [23, 24, 25, 7] for related results. Of course, the ruin time and the ruin probability are studied

extensively in the framework of other stochastic processes, see, e.g., [2, 15, 16, 14].

With motivation from [4] and [8], as a continuation of the aforementioned studies, in this contribution

we shall analyze the ruin probability and the conditional ruin time of the γ-reflected process Wγ over the

reserve dependent time interval [0, Tu]. Allowing the time horizon to be adjusted by the initial reserve

level u of the portfolio is one of the new features in this contribution. The motivation for doing so is the

insurance rational that if the company allocates a high initial reserve u to a specific insurance portfolio,

then the time horizon that this portfolio is not ruined, say with at least 99% probability, should be closely

related to the level u. Our investigation shows that considering a time horizon that depends on the initial

reserve u leads to interesting theoretical results which are also of interest for future practical actuarial

work.

As mentioned above, a novel aspect of this paper is that Tu will be a function changing with the initial

reserve u according to three different scenarios defined with the help of (4). In Theorem 2.1 below we
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show that similar asymptotic equivalence as in (3) still holds for all the three scenarios. In Theorem

2.2 we derive a truncated Gaussian approximation for the (scaled) conditional ruin time over the long

time horizon, whereas for the short and the intermediate time horizons an exponential approximation is

possible.

We organize this contribution as follows: The main results are presented in Section 2 followed then by a

section dedicated to the proofs.

2 Main Results

For the time horizon [0, Tu] we shall consider three interesting scenarios which are specified by determining

the relation between Tu and the initial reserve u. In view of (4) asymptotically (and roughly speaking) the

mean of the ruin time equals t0u and its standard deviation equals Ac,Hu
H (see also (5)). Therefore, for

the choices of Tu, both t0u and Ac,Hu
H should be utilized as scaling parameters, leading to the following

three scenarios:

1) The short time horizon: limu→∞ Tu/u = 0 =: s0;

2) The intermediate time horizon: limu→∞ Tu/u = s0 ∈ (0, t0);

3) The long time horizon: limu→∞
Tu−t0u
Ac,HuH

= x ∈ (−∞,∞].

Hereafter we shall write N for an N(0, 1) random variable with survival function Ψ(·), and

Hα = lim
S→∞

1

S
E

(
exp

(
sup
t∈[0,S]

(√
2Xα/2(t)− tα

)))
∈ (0,∞)

for the Pickands constant, where Xα/2 is a standard fBm with Hurst index α/2 ∈ (0, 1). Another

important constant is Piterbarg’s one defined by

Pbα = E

(
exp

(
sup

t∈[0,∞)

(√
2Xα/2(t)− (1 + b)tα

)))
∈ (0,∞), α ∈ (0, 2), b > 0.

We refer to [26, 18, 6, 9, 5, 1, 11, 20, 8, 13, 27, 21, ?] for properties and extensions of the Pickands and

Piterbarg constants. As shown in [4] for the 0-reflected risk process W0 with H ∈ (0, 1) we have:

(i) If limu→∞ Tu/u = s0 ∈ [0, t0), then

ψ0,Tu(u) = DH
(
u+ cTu
THu

)( 1−2H
H

)+

Ψ

(
u+ cTu
THu

)
(1 + o(1)), u→∞, (6)
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where

DH =


2−

1
2H (H − c0)−1H2H , if H < 1/2,

2(1−c0)
(1−2c0) , if H = 1/2,

1 if H > 1/2,

with c0 =
cs0

1 + cs0
. (7)

(ii) If limu→∞
Tu−t0u
Ac,HuH

= x ∈ (−∞,∞], then

ψ0,Tu(u) = ψ0,∞(u)Φ(x)(1 + o(1)), u→∞, (8)

where Φ(x) = 1−Ψ(x) and

ψ0,∞(u) = 2
1
2
− 1

2H

√
π√

H(1−H)
H2H

(
cHu1−H

HH(1−H)1−H

)1/H−1

Ψ

(
cHu1−H

HH(1−H)1−H

)
(1 + o(1)). (9)

Our first result below shows the asymptotic relation between the ruin probability ψγ,Tu of the γ-reflected

process Wγ and that of the 0-reflected process W0. Consequently, in the light of (i) and (ii) above the

exact asymptotics as u→∞ of ψγ,Tu(u) follows easily.

Theorem 2.1 Let Wγ be the γ-reflected process defined in (1) with H ∈ (0, 1) and γ ∈ (0, 1). We have

i) If limu→∞ Tu/u = s0 ∈ [0, t0), then

ψγ,Tu(u) =MH,γψ0,Tu(u)(1 + o(1)), u→∞, (10)

where

MH,γ =


P

1−γ
γ

2H , if H < 1/2,

2−2c0
2−2c0−γ , if H = 1/2,

1 if H > 1/2.

ii) If limu→∞
Tu−t0u
Ac,HuH

= x ∈ (−∞,∞], then

ψγ,Tu(u) = P
1−γ
γ

2H ψ0,Tu(u)(1 + o(1)), u→∞. (11)

Remarks. a) For the case that γ = 1 we can add: Under the statement i) above similar arguments as in

the proof of Theorem 2.1 show that (10) holds as u→∞, with MH,1 = DH (see (7)). For ii) in Theorem

2.1, depending on the values of x different asymptotics will appear; those derivations are more involved

and will therefore be omitted here.

b) As discussed in [4, 25] also of interest is the investigation of the maximum losses given that ruin occurs,

which, in our setup, is defined as

L(γ, u) :=

(
sup

t∈[0,Tu]
Wγ(t)− u

)∣∣∣∣∣(τγ,u ≤ Tu). (12)
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Under the assumptions of Theorem 2.1, we have that if i) is satisfied, then

(1 + cs0)
uL(γ, u)

T 2H
u

d→ E , u→∞,

and if ii) is valid, then

c2H(1−H)2H−1

H2H

L(γ, u)

u2H−1
d→ E , u→∞.

Here (and in the sequel) E denotes a unit exponential random variable. Note in passing that the last

convergence in distribution is clear when γ = 0, H = 1/2 and Tu =∞ since it is known that the random

variable supt∈[0,∞)W0(t) is exponentially distributed with parameter 2c.

Next, we establish approximations for the conditional ruin times. It turns out that for the long time

horizon the (scaled) conditional ruin time can be approximated by a truncated Gaussian random variable.

Surprisingly, this is no longer the case for the short and the intermediate time horizons where the (scaled)

conditional ruin time is approximated by an exponential random variable.

Theorem 2.2 Let Wγ be the γ-reflected process defined in (1) with H ∈ (0, 1) and γ ∈ (0, 1), and let τγ,u

be the ruin time defined as in (2). We have

1) If limu→∞ Tu/u = 0, then

Hu2(Tu − τγ,u)

T 2H+1
u

∣∣∣(τγ,u ≤ Tu)
d→ E , u→∞.

2) If limu→∞ Tu/u = s0 ∈ (0, t0), then

(1 + cs0)(H − (1−H)cs0)(Tu − τγ,u)

s2H+1
0 u2H−1

∣∣∣(τγ,u ≤ Tu)
d→ E , u→∞.

3) If limu→∞
Tu−t0u
Ac,HuH

= x ∈ (−∞,∞], then

τγ,u − t0u
Ac,HuH

∣∣∣(τγ,u ≤ Tu)
d→ N

∣∣∣(N < x), u→∞.

3 Proofs

In this section, we shall present the proofs of both theorems displayed in Section 2. We start with the

proof of Theorem 2.1. First note that for any u > 0

ψγ,Tu(u) = P

(
sup

t∈[0,Tu]
Wγ(t) > u

)

= P

(
sup

0≤s≤t≤Tu

(
Z(s, t)− c(t− γs)

)
> u

)
,
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where Z(s, t) := XH(t)− γXH(s), s, t ≥ 0. Further, by the self-similarity of the fBm XH

ψγ,Tu(u) = P
(

sup
0≤s≤t≤1

Yu(s, t) >
u

THu

)
, (13)

where, for any u > 0

Yu(s, t) =
Z(s, t)

1 + cTu
u (t− γs)

, s, t ≥ 0. (14)

For the proof of statement i) in Theorem 2.1 we shall make use of the following result.

Lemma 3.1 Let {Yu(s, t), s, t ≥ 0}, u > 0 be a family of Gaussian random fields defined as in (14) with

H ∈ (0, 1) and γ ∈ (0, 1). If the condition of statement i) in Theorem 2.1 is satisfied, then for any u

large enough, the variance function V 2
Yu

(s, t) = E
(
Y 2
u (s, t)

)
of the Gaussian random field Yu attains its

maximum over the set E := {(s, t) : 0 ≤ s ≤ t ≤ 1} at the unique point (0, 1). Moreover,

VYu(0, 1) =
u

u+ cTu

holds for all u > 0.

Proof of Lemma 3.1 First note that direct calculations yield

V 2
Yu(s, t) =

D(s, t)

(1 + cTu
u (t− γs))2

with D(s, t) = (1− γ)t2H + (γ2 − γ)s2H + γ(t− s)2H . It follows further that

∂V 2
Yu

(s, t)

∂s
=

(
1 +

cTu
u

(t− γs)
)−4(

(2H(γ2 − γ)s2H−1 − 2Hγ(t− s)2H−1)
(

1 +
cTu
u

(t− γs)
)2

+2γ
cTu
u
D(s, t)

(
1 +

cTu
u

(t− γs)
))

,

∂V 2
Yu

(s, t)

∂t
=

(
1 +

cTu
u

(t− γs)
)−4(

(2H(1− γ)t2H−1 + 2Hγ(t− s)2H−1)
(

1 +
cTu
u

(t− γs)
)2

−2
cTu
u
D(s, t)

(
1 +

cTu
u

(t− γs)
))

.

Thus if
∂V 2

Yu
(s,t)

∂s =
∂V 2

Yu
(s,t)

∂t = 0, then

s2H−1 + (t− s)2H−1 = t2H−1. (15)

Moreover, since 2H − 1 < 1 the above does not hold in the interior of the set E. Therefore, we conclude

that the maximum point of V 2
Yu

(s, t) over E is on one of the three lines l1 = {(0, t), 0 ≤ t ≤ 1}, l2 =

{(s, t), 0 ≤ s = t ≤ 1} or l3 = {(s, 1), 0 ≤ s ≤ 1}. It can be shown that on l1 the maximum is attained
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uniquely at (0, 1) and on l2 the maximum is attained uniquely at (1, 1). Clearly, both (0, 1) and (1, 1) lie

on the line l3. Consequently, the maximum point of V 2
Yu

(s, t) over E is on l3. Moreover, we have that

(
V 2
Yu(s, 1)

)′
=

2cγTu
u

(
1 +

cTu
u

(1− γs)
)−3

f cTu
u

(s),

where, for any d > 0

fd(s) = 1− γ − (γ − γ2)s2H + γ(1− s)2H − H

d
(1 + d− dγs)

×
(
(1− γ)s2H−1 + (1− s)2H−1

)
, s ≥ 0.

Next, we show that for any γ ∈ [0, 1) and d ∈ [0, H
1−H )

fd(s) < 0, ∀s ∈ (0, 1) (16)

holds. Let us first rewrite fd(s) as

fd(s) = (1− γ) + γ(1−H)(1− s)2H − γ(1− γ)(1−H)s2H

−H
(

1 +
1

d
− γ
)

(1− s)2H−1 − H

d
(1 + d)(1− γ)s2H−1.

Note that

1− γ < (1− γ)(1− s)2H−1 + (1− γ)s2H−1, s ∈ (0, 1),

hence replacing 1− γ by (1− γ)(1− s)2H−1 + (1− γ)s2H−1 in the above equation yields

fd(s) < (1− γ)(1− s)2H−1 + (1− γ)s2H−1 + γ(1−H)(1− s)2H − γ(1− γ)(1−H)s2H

−H
(

1 +
1

d
− γ
)

(1− s)2H−1 − H

d
(1 + d)(1− γ)s2H−1

<

(
1−H − H

d

)
((1− s)2H−1 + (1− γ)s2H−1)− γ(1− γ)(1−H)s2H ,

where in the second inequality we used the fact that

γ(1−H)(1− s)2H ≤ γ(1−H)(1− s)2H−1, ∀s ∈ (0, 1).

Since for any d ∈ [0, H
1−H )

1−H <
H

d

we conclude that (16) is valid. Consequently, by (16) and the fact that

lim
u→∞

cTu
u

= cs0 <
H

1−H
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we obtain (
V 2
Yu(s, 1)

)′
< 0, ∀s ∈ (0, 1).

Hence the maximum of V 2
Yu

(s, t) over the set E is attained at the unique point (0, 1). This completes the

proof. �

Proof of Theorem 2.1 i). First, note that (13) can be rewritten as

ψγ,Tu(u) = P
(

sup
0≤s≤t≤1

Yu(s, t)

VYu(0, 1)
>
u+ cTu
THu

)
.

Next, in order to establish the claim by applying Theorem 4.1 (see Appendix) we need to verify the

assumptions A1–A3 therein. This can be done by employing similar arguments as in the proof of Theorem

2.5 in [20]. Indeed, it follows that for any fixed large u

VYu(s, t)

VYu(0, 1)
=


1− (H − c(u))(1− t)− γ(H − c(u))s+ o(1− t+ s), H > 1/2,

1− (12 − c(u))(1− t)− γ(1− γ
2 − c(u))s+ o(1− t+ s), H = 1/2,

1− (H − c(u))(1− t)− γ−γ2
2 s2H + o(1− t+ s2H), H < 1/2

(17)

holds as (s, t)→ (0, 1), where c(u) = cTu
u+cTu

. Furthermore, for any u > 0

1− Cov
(
Yu(s, t)

VYu(s, t)
,
Yu(s′, t′)

VYu(s′, t′)

)
=

1

2

(
| t− t′ |2H +γ2 | s− s′ |2H

)
(1 + o(1)) (18)

holds as (s, t), (s′, t′) → (0, 1). In addition, there exists a positive constant Q such that, for all u large

enough

E

((
Yu(s, t)

VYu(0, 1)
− Yu(s′, t′)

VYu(0, 1)

)2
)
≤ Q(|t− t′|2H + |s− s′|2H)

holds for all (s, t) ∈ E. Therefore, by the fact that

lim
u→∞

c(u) = c0 =
cs0

1 + cs0
< H

and using Theorem 4.1 we obtain that

ψγ,Tu(u) = DH,γ

(
u+ cTu
THu

)( 1−2H
H

)+

Ψ

(
u+ cTu
THu

)
(1 + o(1)) (19)

as u→∞, where

DH,γ =


2−

1
2H (H − c0)−1H2HP

1−γ
γ

2H , if H < 1/2,

4(1−c0)2
(1−2c0)(2−2c0−γ) , if H = 1/2,

1 if H > 1/2.
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Combining the above formula with (6) we obtain (10).

Next, we present the proof of statement ii). Assume first that

lim
u→∞

Tu − t0u
Ac,HuH

= x ∈ R.

In view of (4)

lim
u→∞

P
(
τγ,u − t0u
Ac,HuH

≤ x
∣∣∣τγ,u <∞) = Φ(x)

Clearly, the above is equivalent to

lim
u→∞

P
(

sup0≤t≤t0u+xAc,HuH Wγ(t) > u
)

P (τγ,u <∞)
= Φ(x).

implying

ψγ,Tu(u) = ψγ,∞(u)Φ(x)(1 + o(1))

as u → ∞, which together with (8) and Theorem 1.1 in [20] yields the validity of (11). Finally, assume

that limu→∞
Tu−t0u
Ac,HuH

=∞. For any positive large M

ψγ,t0u+MAc,HuH (u) ≤ ψγ,Tu(u) ≤ ψγ,∞(u)

holds for all u large enough, hence

Φ(M) ≤ lim inf
u→∞

ψγ,Tu(u)

ψγ,∞(u)
≤ lim sup

u→∞

ψγ,Tu(u)

ψγ,∞(u)
≤ 1.

Letting thus M →∞ yields

ψγ,Tu(u) = ψγ,∞(u)(1 + o(1)), u→∞.

Consequently, (11) is valid, and thus the claim follows. �

Proof of Theorem 2.2 We start with the proof of statement 1). Set Tx(u) = Tu−xT 2H+1
u /u2. It follows

from (19) that, for any x > 0

P
(
u2(Tu − τγ,u)

T 2H+1
u

> x
∣∣∣τγ,u ≤ Tu) =

P
(

sup0≤t≤Tx(u)Wγ(t) > u
)

P
(
sup0≤t≤TuWγ(t) > u

)
=

DH,γ

(
u+cTx(u)
(Tx(u))H

)( 1−2H
H

)+
Ψ
(
u+cTx(u)
(Tx(u))H

)
DH,γ

(
u+cTu
THu

)( 1−2H
H

)+
Ψ
(
u+cTu
THu

) (1 + o(1))

= exp

−
(
u+cTx(u)
(Tx(u))H

)2
−
(
u+cTu
THu

)2
2

 (1 + o(1))
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→ exp(−Hx)

holds as u→∞ establishing the claim.

Next, we give the proof of statement 2). Similar arguments as above yield that, for any x > 0

P
(
Tu − τγ,u
u2H−1

> x
∣∣∣τγ,u ≤ Tu) = exp

−
(
u+c(Tu−xu2H−1)
(Tu−xu2H−1)H

)2
−
(
u+cTu
THu

)2
2

 (1 + o(1))

→ exp(−λx), u→∞,

where λ = (1+cs0)(H−(1−H)cs0)

s2H+1
0

. Finally, since by (11) for any y ≤ x

P
(
τγ,u − t0u
Ac,HuH

< y
∣∣∣τγ,u ≤ Tu) =

P
(

sup0≤t≤t0u+yAc,HuH Wγ(t) > u
)

P
(
sup0≤t≤TuWγ(t) > u

)
→ Φ(y)

Φ(x)
, u→∞

the claim of statement 3) follows, and thus the proof is complete. �

4 Appendix

We present below a generalization of Theorem D.3 and Theorem 8.2 in [26], which is tailored for the proof

of our main results. We first introduce the Piterbarg constant P̃bα, α ∈ (0, 2), b > 0 defined by

P̃bα = lim
S→∞

E

(
exp

(
sup

t∈[−S,S]

(√
2Xα/2(t)− (1 + b)|t|α

)))
∈ (0,∞),

where Xα/2 is a standard fBm defined on R; see also Theorem 2.1 for the Piterbarg constant Pbα. Set

E = {(s, t), 0 ≤ s ≤ t ≤ 1} and let {ηu(s, t), (s, t) ∈ E}, u ≥ 0 be a family of Gaussian random fields

satisfying the following three assumptions:

A1: The variance function σ2ηu(s, t) of ηu attains its muximum on the set E at some unique point (s0, t0)

for any u large enough, and further there exist four positive constants Ai, βi, i = 1, 2 and two functions

Ai(u), i = 1, 2 satisfying limu→∞Ai(u) = Ai, i = 1, 2 such that σηu(s, t) has the following expansion for u

large

σηu(s, t) = 1−A1(u)|s− s0|β1(1 + o(1))−A2(u)|t− t0|β2(1 + o(1)), (s, t)→ (s0, t0).

A2: There exist four constants Bi > 0, αi ∈ (0, 2), i = 1, 2 and two functions Bi(u), i = 1, 2 satisfying

limu→∞Bi(u) = Bi, i = 1, 2 such that the correlation function rηu(s, t; s′, t′) of ηu has the following

expansion for all u large

rηu(s, t; s′, t′) = 1−B1(u)|s− s′|α1(1 + o(1))−B2(u)|s− s′|α2(1 + o(1)), (s, t), (s′, t′)→ (s0, t0).
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A3: For some positive constants Q and γ, and all u large enough

E
(
ηu(s, t)− ηu(s′, t′)

)2 ≤ Q(|s− s′|γ + |t− t′|γ)

holds for any (s, t), (s′, t′) ∈ E.

Theorem 4.1 If {ηu(s, t), (s, t) ∈ E}, u ≥ 0 is a family of Gaussian random fields satisfying A1–A3,

then

P

(
sup

(s,t)∈D
ηu(s, t) > u

)
= F (1)

α,β(u) F (2)
α,β(u) Ψ(u), as u→∞,

where

F (i)
α,β(u) =


ÎiHαiB

1
αi
i A

− 1
βi

i Γ
(

1
βi

+ 1
)
u

2
αi
− 2
βi , if αi < βi,

P̂
Ai
Bi
α1 , if αi = βi,

1 if αi > βi,

i = 1, 2,

with Γ(·) the Euler Gamma function and

P̂
A1
B1
α1 =

 P̃
A1
B1
α1 , if s0 ∈ (0, 1),

P
A1
B1
α1 if s0 = 0 or 1,

P̂
A2
B2
α2 =

 P̃
A2
B2
α2 , if t0 ∈ (0, 1),

P
A2
B2
α1 if t0 = 0 or 1,

Î1 =

 2, if s0 ∈ (0, 1),

1 if s0 = 0 or 1,
Î2 =

 2, if t0 ∈ (0, 1),

1 if t0 = 0 or 1.

Proof of Theorem 4.1 It follows from the assumptions A1–A2 that for any ε > 0 and for u large

enough we have

(A1 − ε)|s− s0|β1 + (A2 − ε)|t− t0|β2 ≤ 1− σηu(s, t) ≤ (A1 + ε)|s− s0|β1 + (A2 + ε)|t− t0|β2

as (s, t)→ (s0, t0), and

(B1 − ε)|s− s′|α1 + (B2 − ε)|t− t′|α2 ≤ 1− rηu(s, t; s′, t′) ≤ (B1 + ε)|s− s′|α1 + (B2 + ε)|t− t′|α2

as (s, t), (s′, t′)→ (s0, t0). Therefore, in the light of Theorem 8.2 in [26] we can get appropriate asymptotical

upper and lower bounds, and thus the claims follow by letting ε→ 0. The proof is complete. �
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[6] K. Dȩbicki. Ruin probability for Gaussian integrated processes. Stochastic Processes and their Ap-

plications, 98(1):151–174, 2002.

[7] K. D
‘
ebicki, E. Hashorva, and L. Ji. Gaussian risk model with financial constraints. Scandinavian

Actuarial Journal, in press, 2014.
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[18] E. Hashorva and J. Hüsler. Extremes of Gaussian processes with maximal variance near the boundary

points. Methodology and Computing in Applied Probability, 2(3):255–269, 2000.

[19] E. Hashorva and L. Ji. Approximation of passage times of γ-reflected processes with fBm input. J.

Appl. Probab., 51(3):713–726, 2014.

[20] E. Hashorva, L. Ji, and V.I. Piterbarg. On the supremum of γ-reflected processes with fractional

Brownian motion as input. Stochastic Process. Appl., 123:4111–4127, 2013.

[21] E. Hashorva, Z. Peng, and Z. Weng. On Piterbarg theorem for maxima of stationary Gaussian

sequences. Lithuanian Mathematical Journal, 53(3):280–292, 2013.
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[24] J. Hüsler and Y. Zhang. On first and last ruin times of Gaussian processes. Statistics & Probability

Letters, 78(10):1230–1235, 2008.

[25] S. G. Kobelkov. A limit theorem for the ruin time with power profits in the case of an integrated

Gaussian stationary process. Vestnik Moskov. Univ. Ser. I Mat. Mekh., (4):3–11, 2011.

13



[26] V.I. Piterbarg. Asymptotic methods in the theory of Gaussian processes and fields, volume 148 of

Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996.

[27] B. Yakir. Extremes in Random Fields: A Theory and its Applications. Higher Publication Press.

Wiley, New York, 2013.

14


