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Abstract. It is well known that the evolution of cooperative behaviour
is dependant upon certain environmental conditions. One such condition
that has been extensively studied is the use of a spatially structured pop-
ulation, whereby cooperation is favoured by a reduced number of inter-
actions between cooperators and selfish cheaters. However, models that
address the role of spatial structure typically use an individual-based ap-
proach, which can make analysis unnecessarily complicated. By contrast,
non-spatial population genetics models usually consist entirely of a set of
replicator equations, thereby simplifying analysis. Unfortunately, these
models cannot traditionally be used to take account of spatial structure,
since they assume that interaction between any pair of individuals in a
population is equally likely. In this paper, we construct as model that is
still based on replicator equations, but where spatial localisation with re-
spect to the number of interactions between individuals is incorporated.
Using this model, we are able to successfully reproduce the dynamics
seen in more complex individual-based models.

1 Introduction

It is well known that the existence of spatial structure in a population can (al-
though not always, e.g. [1]) facilitate the evolution of cooperative strategies. For
example, consider an evolving population of individuals playing the Prisoner’s
Dilemma game, where the payoff that an individual receives modifies its fitness.
If an individual plays only one round against each opponent, and the opponents
are drawn at random, then a population initialised with a mixture of cooperate
and defect strategies will evolve towards every individual playing defect [2]. This
situation corresponds to a freely-mixed world with no spatial structure, since an
individual is equally likely to interact with any other member of the population.
On the other hand, if the population has a spatial structure, so that an individ-
ual only plays against its neighbours, then it is possible for spatial clusters of
cooperators to persist [3]. This is due to the fact that for the cooperate strategy
to be viable, the cooperator must play against other cooperators and minimise
contact with defectors.

These two cases of freely-mixed and spatial worlds are often modelled using
different techniques. To model the evolution of the population in the freely-mixed
case, it is only necessary to keep track of the proportion of individuals playing



each strategy. How the frequency of each strategy changes over time can then
be calculated by means of differential or difference equations; this is known as a
replicator dynamics model [4]. By contrast, the modelling of the evolution of a
spatially structured population is usually achieved by explicitly representing each
individual; this technique is known as individual-based modelling. An example
of such a model is that of the spatial Prisoner’s Dilemma produced by Nowak &
May [3], where a rectangular grid was divided into cells, with each cell containing
one individual. In this model, interactions only occurred between neighbouring
cells.

The problem with using an individual-based model is that it can be a dif-
ficult and lengthy task to understand the root processes causing the observed
behaviour [5]. For example, Nowak & May [3, 6] found that chaotic patterns of
cooperate and defect cells emerged in their apparently simple 2D grid model.
Conversely, replicator dynamics models are easy to analyse due to their trans-
parency; the processes at work are explicitly stated in the difference equations.
However, they cannot be used in the spatial case because they assume that each
individual is equally likely to interact with any other individual. In this paper
we aim to present a model that combines the simplicity of replicator equations
with the ability of individual-based approaches to model spatially-structured
populations.

Our model is based on the scenario of different growth (replication) rates
under resource-limited conditions. Specifically, we assume that a trade-off ex-
ists between growth rate and efficiency of resource usage, an idea that has been
widely explored in biological models. Specific examples of existing models that
address this trade-off include individual-based models of bacterial growth [7–9],
and models of the virulence versus productivity trade-off in disease organisms
[10, 11]. Such models usually consider two strategies; a low growth rate / high
efficiency strategy (cooperative), and a high growth rate / low efficiency strategy
(selfish). If none of the limiting resource is shared between individuals playing
different strategies, then the cooperative type will win due to its efficiency ad-
vantage. Conversely, if the resource is freely-shared between different strategies,
then the selfish type will win, due to its larger growth rate [7–9]. This is despite
the fact that the wasteful resource usage of the selfish type means that it will
reach a smaller biomass than if all individuals used the cooperative strategy, a
scenario known as the “Tragedy of the Commons” [12].

We model groups of individuals using the same growth rate / efficiency strat-
egy as indivisible “colonies”, where the ratio of colony biomasses (sizes) can be
interpreted as strategy frequencies. A colony therefore represents a particular
growth rate strategy. By treating all individuals with the same strategy / geno-
type uniformly, our model is still able to use replicator equations. This amounts
to an assumption that spatial structure within a colony does not matter with
respect to the result of competition with another colony, i.e. that the effect of
spatial localisation between individuals playing the same strategy is insignifi-
cant. A key aim of this paper is to show that given this assumption, the results
with respect to the evolution of cooperation are unchanged compared to those



models that do explicitly model spatial structure between individuals playing
the same strategy.

Spatial localisation in interactions between strategies / colonies is introduced
by providing each colony with its own resource supply. The degree of spatial
localisation can then varied by changing the amount of this resource that is
shared with the other colony. This approach can therefore model completely
spatial and freely-mixed worlds, as well as positions between these extremes.

The key concept of spatially structured populations that is relevant to the
evolution of cooperation is a reduced frequency of interactions with
non-neighbours. By introducing degree of spatial localisation as degree of re-
source segregation, we aim to capture this key concept. We then hypothesise
that this is all that is necessary to capture the competition and invadability
dynamics seen in more complex models.

The advantage of this minimal approach is that it allows our model to contain
fewer parameters and assumptions compared to those that use an individual-
based approach. For example, the authors of grid-world style individual-based
models must make decisions such as to only allow an individual to reproduce
if there is an empty cell next to it, as was the case in [8]. It is then not clear
whether this decision will affect the results obtained. The aim of our minimally
spatial model is to include only the concept of space in a population which affects
the evolution of cooperation, namely reduced interactions with non-neighbours.
Consequently, the number of modelling decisions to be made are minimised.
Furthermore, the use of replicator equations eases analysis by making explicit
the processes at work.

2 A Minimal Model of Colony Growth

A definition of the symbols used throughout this paper is provided in Table 1.
The change in biomass of a colony at each time-step in our model is as stated

in (1).

bi(t+1) = bi(t) + gi(t) − ki(t) (1)

This shows that the biomass of a colony changes due to both growth and death.
The process of colony growth is then as defined in (2). Specifically, the magnitude
of biomass increase made by a colony is proportional to both its biomass and
to the amount of available resource, where the constant of proportionality is its
intrinsic growth rate, as defined by its strategy. The amount of growth a colony
can make is therefore limited by the amount of resource that is available to it.

gi(t) = Gibi(t)ri(t) (2)

The amount of mortality suffered by the colony is given in (3), and is proportional
to biomass and inversely proportional to resource availability.

ki(t) =
Kbi(t)

ri(t) + 1
(3)



Table 1. Definition of symbols.

Symbol Definition

G Growth rate constant

U Resource usage rate constant

I Resource influx constant

K Death rate constant

D Resource diffusibility constant

b Biomass

g Growth achieved at a given time-step

k Death at given time-step

r Available resource level

c Resource consumed at given time-step

d Magnitude of resource diffusion

β Modification of d based on relative colony biomasses

M Maximum effect that β can have

i Colony index

t Time index

The amount of resource consumed by the colony at a time-step (4) is proportional
to its growth, with its intrinsic resource usage rate, defined by its strategy, as
the constant of proportionality.

ci(t) = Uigi(t) (4)

The net change in a colony’s resource level depends upon three things (5): the
resource used during growth (4), a constant influx from the environment to the
colony, and exchange of resource with a competing colony via diffusion (6).

ri(t+1) = ri(t) + I − ci(t) + di(t) (5)

di(t) = D
(

βj(t)rj(t) − βi(t)ri(t)

)

(6)

The diffusion process in (6) acts to try and equilibrate the resource levels of two
competing colonies, i and j. How large an effect this has depends on two things:
The setting of the resource diffusibility constant and a term β, defined in (7)
and (8) below. Changing the diffusibility constant has the effect of varying the
degree of spatial localisation; if it is set to 0.5, then each colony’s resource supply
is shared freely with the other colony. On the other hand, if it is set to 0 then
no movement of resource (interaction) between colonies occurs.

βi(t) = 1, if bi(t) > bj(t) (7)

βi(t) = 1 + (M − 1)

(

1

bi(t)

)

, otherwise (8)

The role of β, as defined in (7) and (8), is to make the magnitude of the force
of diffusion dependant upon the respective colonies’ biomasses. This is moti-
vated by the idea of outward geometric colony growth from a single point in a



spatial world. Specifically, in a small colony, a greater proportion of the colony
members will be on the colony’s edge and therefore in contact with members
of the competing colony. By contrast, in a larger colony, a greater proportion
of the colony’s members will be shielded from such contact by the layer of edge
members. Therefore, small colonies will have a greater proportion of their mem-
bers interact with the rival colony, hence providing the motivation for increased
resource sharing if a colony is small. The purpose of (7) is to make this change
operate in one direction only, i.e. so that the amount of resource transferred
via diffusion can only ever be increased by this effect. M is a constant that
determines the maximum effect that this process can have.

Finally, it is worth stressing that movement of resource only occurs between,
and not within, colonies. Within a colony, all individuals are treated in a non-
differentiated manner. This factor allows colony growth to be modelled via the
replicator equation (1).

3 Investigations with the Model

This section details three scientific questions that can be addressed with the
model, presenting detailed results of our investigations into the first two. In all
of the experiments, we consider two competing growth rate / resource efficiency
strategies. Namely, a cooperative strategy that uses resource efficiently but that
grows at a slower rate, and a selfish strategy that grows at a faster rate but that
wastes the growth-limiting resource.

It should be noted that we do not, in these experiments, introduce new
strategies via mutation. Instead, we explore how strategy frequencies change
through time, in the style of evolutionary game theory [13]. Finally, throughout
this paper, the setting of the model constants given in Table 2 are used.

Table 2. Settings of model constants used throughout the paper.

Constant Value

Gselfish 0.02

Gcooperative 0.01

Uselfish 0.2

Ucooperative 0.1

I 1

K 0.1

M 2

3.1 Equilibrium Size of Cooperative and Selfish Colonies under
Varying Degrees of Spatial Localisation

The most obvious question that can be addressed with the model is how the equi-
librium size of competing colonies of cooperative and selfish individuals varies
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Fig. 1. Equilibrium biomasses of cooperative and selfish colonies.

as the degree of spatial localisation changes. This question can be addressed
through our model by starting each colony off with unit biomass and iterating
through the difference equations until the equilibrium biomasses are reached.
The results of this, for varying D, are presented in Fig. 1.

These results successfully reproduce those found in more complex models.
Specifically, in a freely-mixed world (large D) the slower growing cooperators are
driven extinct by their less efficient but faster growing rivals, as in the “Tragedy
of the Commons” [12]. Conversely, under maximal spatial localisation coexis-
tence of both types is obtained, with the cooperators reaching a larger biomass.
Therefore, our model has successfully captured the relevant concepts of spatial
localisation, without recourse to individual-based modelling.

What happens between the extremes of freely-mixed and maximal spatial
localisation cannot be predicted directly from the equations. In particular, an
interesting finding is that as soon as D moves above a critical threshold, the
cooperative colony is driven to extinction. The reason for this sudden extinction
is that when the cooperative colony’s biomass drops below a critical size then
it looses too much resource to the selfish colony, due to the β term defined in
(8). The loss of a large amount of resource means that the cooperative colony
can no longer maintain its biomass level, i.e. its biomass loss due to mortality
is greater than its biomass increase due to growth. This then sets off a positive
feedback loop whereby as the cooperative colony’s biomass decreases it looses
more resource to the selfish colony, which then causes its biomass to drop even
further and so on. It is the initiation of this positive feedback loop that causes
the cooperative colony to go extinct as soon as D rises above the threshold.

3.2 Invadability Dynamics

Our model can also be used to investigate issues of strategy invadability [13].
Means by which an invader playing another strategy can arise in nature include
genetic mutation [11, 14], phenotypic switching of individuals due to changing
environmental conditions [9] and migration of individuals from other demes [15].



Invasion scenarios are created in our model by allowing a colony of one strategy
to grow to equilibrium biomass, and then introducing a colony of a different
strategy into the same world. A successful invasion is one in which the invading
colony survives above 0 biomass and therefore moves the strategy frequencies
to a new equilibrium. On the other hand, if the invasion fails then the strategy
frequencies will remain at their previous equilibrium, i.e. where the host strategy
is at fixation.

The invadability dynamics present in existing models that we aimed to recre-
ate are, firstly, that a single selfish mutant should always be able to invade into
a cooperative host. In other words, a colony of cooperators should always be
vulnerable to exploitation by a selfish cheater that grows at a faster rate. The
second dynamic seen in other models is that cooperators can only invade into a
selfish host if there is a sufficient number of them, so that the majority of their
interactions will be with each other, rather than with the host. This idea of there
being fewer interactions with the host in a larger invading colony is captured in
our model by the fact that the amount of resource exchanged between host and
invader via diffusion is inversely proportional to the biomass of the invader, as
per (8). We therefore hypothesised that all that is required to reproduce this
dynamic is to make the amount of resource shared / number of interactions
between host and invader inversely proportional to the number of invaders.

We first considered the vulnerability to invasion of a cooperative host by
a selfish invader. The results obtained were that an invading selfish colony of
unit biomass could always survive and grow, regardless of the degree of spatial
localisation. The equilibrium strategy frequencies reached after an invasion under
varying degrees of spatial localisation are shown in Fig. 2. The key trend is that
the frequency of the selfish strategy increases with D, as would be expected from
the results in section 3.1. Furthermore, at settings of D above approximately 0.32
the cooperative host is driven to extinction by the growth of the invader. The
conclusion is that a coexistence of cooperative host and selfish invading strategies
is reached in worlds with moderate degrees of spatial localisation (D < 0.32),
while the invading selfish strategy reaches fixation in more freely-mixed worlds
(D ≥ 0.32).

The second question that we consider is the size of a cooperative colony
necessary to invade a selfish host. Figure 3 shows the necessary size under varying
degrees of spatial localisation, where the necessary biomasses for invasion have
been rounded to the nearest integer. Below a threshold value of D = 0.17,
invasion by unit biomass is always successfully. Above this point, but below
a second threshold, cooperative colonies with larger biomasses can successfully
invade. Such colonies of greater than unit biomass are analogous to clusters in
grid-world style models. The advantage of clusters of cooperators comes from
reduced interactions with the selfish host. Our model has shown that this can be
achieved simply by making the amount of resource shared inversely proportional
to the invader’s biomass.
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Fig. 2. Equilibrium strategy frequencies after invasion of a cooperative host by a selfish
colony, under varying degrees of spatial localisation, D.
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Fig. 3. Biomass of a cooperative colony necessary to invade a selfish host, under varying
degrees of spatial localisation, D. Invasion is not possible for values of D above 0.28.

3.3 Genetic Mutation as a Means of Adaptively Setting the Growth
Rate / Efficiency Trade-Off

The previous section considered invadability dynamics where the invading strat-
egy was very different from that of the host, i.e. there was a large difference in
their growth rate / efficiency parameter setting. However, the strategy space in
our model is continuous, allowing for a small change in strategy to arise, e.g.
via genetic mutation. It may therefore be possible for the canonical cooperative
strategy used throughout this paper to evolve through a series of successive small
mutations, where each mutant is slightly less selfish than the host strategy. Of
most significance is the fact that this may be able to occur in worlds where the
canonical cooperative type cannot invade directly as an individual (colony of
unit biomass).

We therefore address in this section the question of whether or not a single
mutant (colony of unit biomass) that is only slightly more cooperative than the
established selfish strategy can successfully invade. We hypothesise that this only



slightly more cooperative mutant will be able to invade at settings of D where a
more cooperative type cannot. The reasoning is that the closer the mutant is to
the established selfish type, the faster it will grow and prevent a large resource
flow away from itself via (8).

To test this hypothesis, we considered a world occupied by a single selfish
colony at equilibrium biomass and where D = 0.24. At this setting, an initial
biomass of 3 is necessary for the cooperative strategy to invade a host selfish
colony (see Fig. 3). However, we considered a strategy whose growth and resource
usage rates are both 95% of that of the selfish type, i.e. only slightly more
cooperative. We found that unit biomass of this strategy could invade a host
selfish colony, with equilibrium strategy frequencies of 0.49 for the host and
0.51 for the invader. This successful invasion by unit biomass of a slightly more
cooperative type suggests that the canonical cooperative type could arise via a
series of small mutations in worlds where it cannot invade directly.

4 Conclusion

It is well known from a plethora of existing individual-based models that a spa-
tially structured population can promote cooperative behaviour. In this paper,
we have presented a very simple model, based on replicator equations, that allows
us to reproduce key results from these more complex models. In particular, we
have chosen to capture the concept of spatial localisation in interactions between
individuals using the concept of degree of resource sharing. Although our model
is framed in terms of colony growth, the questions that it addresses are much
more general and are fundamental to explaining the evolution of cooperative
behaviour.

The first key conclusion from our model is that, in order to capture the ef-
fects of spatial localisation on the evolution of cooperation, it is only necessary
to model the effect of spatial localisation between individuals playing different
strategies; individuals playing the same strategy can be treated homogeneously.
The second key conclusion is that the invadability results from individual-based
spatial models, in which cooperators can usually only invade in clusters, can be
reproduced simply by making the amount of resource shared inversely propor-
tional to the invader’s biomass. This therefore captures the notion of a spatial
cluster of cooperators, without having to use a more complex grid-world style
model or a social network [16].

It is unavoidable that choices are made about the specific details of the equa-
tions defining the model, and of the settings of the constants. It follows that
changing these details would quantitatively change the results, e.g. the values of
D for which strategy coexistence is sustainable and the colony sizes necessary for
invasion. However, qualitative properties of the dynamics should be robust, i.e.
there should always be a threshold value of D below which strategy coexistence is
sustainable. Furthermore, there were less choices to be made with our approach
than with an individual-based model. From this perspective, our results are more
robust than those of individual-based models, since there are less parameters to



be set. On the other hand, our model is more general than traditional replica-
tor dynamics approaches, as we have been able to model spatial localisation,
something that cannot be done with a traditional replicator dynamics model.

In future work, we intend to investigate the relationship between our model
and spatial and freely-mixed versions of the Prisoner’s Dilemma game. In par-
ticular, we would like to make explicit the relationship between the cooperative
and selfish strategies of colony growth in our model and the cooperate and defect
strategies in the Prisoner’s Dilemma.
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