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Abstract: Calculation of an optimal tariff is a principal challenge for pricing actuaries. In this

contribution we are concerned with the renewal insurance business discussing various mathe-

matical aspects of calculation of an optimal renewal tariff. Our motivation comes from two

important actuarial tasks, namely a) construction of an optimal renewal tariff subject to busi-

ness and technical constraints, and b) determination of an optimal allocation of certain premium

loadings. We consider both continuous and discrete optimisation and then present several al-

gorithmic suboptimal solutions. Additionally, we explore some simulation techniques. Several

illustrative examples show both the complexity and the importance of the optimisation ap-

proach.
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ming

1. Introduction

Commonly, insurance contracts are priced based on a tariff, here referred to as the market tariff. In mathemat-

ical terms such a market tariff is a function say f : Rd → [m,M ] where m,M are the minimal and the maximal

premiums. For instance, a motor third party liability (MTPL) market tariff of key insurance market players in

Switzerland has d > 15. Typically, the function f is neither linear nor a product of simple functions.

In non-life insurance, many insurance companies use different f for new business and renewal business. There

are statistical and marketing reasons behind this practice. In this paper we are primarily concerned with non-

life renewal business. Yet, some findings are of importance for pricing of insurance and other non-insurance

products. We shall first discuss three important actuarial tasks and then present various mathematical aspects

of relevance for pricing actuaries.

Practical actuarial task T1: Given that a portfolio of N policyholders is priced under a given market tariff

f , determine an optimal market tariff f∗ that will be applied in the next portfolio renewal.

Typically, actuarial textbooks are concerned with the calculation of the pure premium, which is determined by

applying different statistical and actuarial methods to historical portfolio data, see e.g., [1–4]. The tariff that

determines the pure premium of a given insurance contract will be here referred to as the pure risk tariff. In

mathematical terms this is a function say g : Rd1 → [m1,M1] with d1 ≥ 1.

In the actuarial practice, pure premiums are loaded, for instance for large claims, provisions, direct expenses

and other costs (overheads, profit, etc.).

Actuarial mathematics explains various approaches for loading insurance premiums; in practice very commonly

a linear loading is applied. We shall refer to the function that is utilised for the calculation of the premium of
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an insurance coverage based on the costs related to that coverage as actuarial tariff; write gA : Rd2 → [m2,M2]

for that function.

Despite the importance of task T1, the current actuarial literature has not dealt with its mathematical aspects.

On the other side, practising actuaries are constantly confronted with various black-box type solutions available

from external services or in few cases have developed their own internal models.

Practical actuarial task T2: Given a pure risk tariff g, construct an optimal actuarial tariff gA that includes

various premium loadings.

Since by definition there is no unique optimal actuarial tariff, the calculations leading to it can be performed

depending on the resources of pricing and implementation team.

To this end, let us briefly mention an instance which motivates T2: Suppose for simplicity that the insurance

portfolio in question consists of two groups of policyholders A and B with nA and nB policyholders, respectively.

All the contracts are to be renewed, say at the next 1st of January. The pricing actuary calculates the actuarial

tariff which shows that for group A, the yearly premium to be paid from each policyholder is 2’000 CHF and for

group B, say 500 CHF. For this portfolio, overhead expenses (or expenses not directly allocated to an insurance

policy) are calculated (estimated) to be X CHF for the next insurance period. The amount X can be distributed

to N = nA +nB policyholders in different ways, for instance each policyholder will have to pay X/(nA +nB) of

those expenses. Another alternative approach could be to calculate it as a fix percentage of the pure premiums.

The principal challenge for pricing actuaries is that the policyholders are already in the portfolio and might be

very sensitive to any change of their premiums, especially when the insurance risk does not change.

At renewal (abbreviated as @R in the following) given that the insured risk does not change, if the new offered

premium is different from the current one, the policyholder can cancel the contract. Clearly, another com-

mon reason for cancelling the insurance contract is also the competition in the insurance market. Consequently,

the solutions of T1-T2 need to take into account the probability of renewal of the policies at the point of renewal.

As illustrated above for T2, the percentage of premium increase δi for the ith policyholder @R can be fixed,

i.e., δi ∈ ∆ where say ∆ = {0%, 5%, 10%}. Such increases are often used in practice especially if the distribution

channel is primarily dominated by the tied agents. A clear advantage of such type of tariff modification is that

it can be straightforwardly implemented with minimal implementation costs. Therefore, instead of T2 a simpler

task which is very often encountered in the insurance practice (but surprisingly not in actuarial literature) is as

follows:

Practical actuarial task T3: Modify for any i ≤ N the premium Pi of the ith policyholder @R by a fixed

percentage, say δi ∈ ∆i with ∆i a discrete set (for instance ∆i = {0%, 5%, 10%}) so that the new set of premiums

P ∗i = Pi(1 + δi), 1 ≤ i ≤ N

are optimal under several business constraints. Moreover, determine the new market tariff f∗ which yields P ∗i ’s.

There are several difficulties related to the solutions of the actuarial tasks T1-T3. In practice the market

tariff is very complex for key insurance coverages such as motor or household insurance. A typical f utilised in

insurance practice is as follows (consider only two arguments for simplicity)
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f(x, y) = min
(
M0,max(eax+by,m0 +m1x+m2y)

)
.(1.1)

The exponential term in f is very common in practice since both claim frequency and average claim sizes are

modelled using generalised linear models (GLM’s) with log-link function. The reason for the choice of log-link

functions is the ease of IT implementation. Both min and max functions in (1.1) prevent the premiums from

being extremes. These are often decided by empirical findings and insurance market constraints.

Even if we know the optimal P ∗i ’s that solve T3, when the structure of f (and also of f∗) is fixed say as in

(1.1), then the existence of an optimal f∗ that gives exactly P ∗i ’s is in general not guaranteed. Note that due

to technical reasons, the actuaries can change the coefficients that determine f , say a, b and so on, but the

structure of the tariff, i.e., the form of f in (1.1) is in general fixed when preparing a new renewal tariff due to

implementation costs.

The main goal of this contribution is to discuss various mathematical aspects that lead to optimal solutions of

both actuarial tasks T1 and T3. Further we analyse eventual implementations of our optimisation problems

for renewal business. Optimisation problems related to new business are more involved and will therefore be

treated in a forthcoming contribution.

To this end, we note that in the last 12 years many insurance companies in Europe have already implemented

price optimisation techniques. Very recent contributions focus on the issues of price optimisation, mainly from

the ethical and regulation points of view, see [5–7]. It is important to note that optimality issues in insurance

and reinsurance business, not directly related to the problems treated in this contribution, have been discussed

in various contexts, see e.g., [8–14] and the references therein.

Brief organisation of the rest of the paper: Section 2 describes the different optimisation settings from the

insurer’s point of view. In Section 3, we provide partial solutions for problem T3. Section 4 describes the

different algorithms used to solve the optimisation problems followed by some insurance applications to the

motor line of business presented in Section 5.

2. Objective functions and Business Constraints

2.1. Theoretical Settings. For simplicity, and without loss of generality, we shall assume that the renewal

time is fixed for all i = 1, . . . , N policyholders already insured in the portfolio with the ith policyholder paying

the insurance premium Pi for the current insurance period. Each policyholder can be insured for different

insurance periods. Without loss of generality, we shall suppose that @R each insurance contract has the option

to be renewed for say one year, with a renewal premium P ∗i := Pi(1 + δi).

Suppose that the renewal probability for the ith contract is a function of Pi and some parameters describing

the risk characteristics of the policyholder. At renewal, by changing the premium, this probability will depend

on the premium change δi, the previous premium Pi and other risks characteristics. Therefore we shall assume

that this probability is

Ψi(Pi, δi),(2.1)

where Ψi is a strictly positive function depending eventually on i (when the risk characteristics of the ith

policyholder are tractable). This is a common assumption in logistic regression, where Ψi is the inverse of the

logit function (called also expit), or Ψi is a univariate distribution function.

In order to consider the renewal probabilities in the tariff and premium optimisation tasks, the actuary needs

to know/determine Ψi(Pi, δi) for any δi ∈ ∆i, where ∆i is the range of possible changes of premium (commonly
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0 ∈ ∆i). Estimation of Ψi’s is non-trivial; it can be handled for instance using logistic regression, see Section

4.1.2 below for more details.

In practice, depending on the market position and the strategy of the insurance company, different objective

functions can be used for the determination of an optimal actuarial tariff or market tariff. We discuss below

two important objective functions:

O1) Maximise the future expected premium volume @R:

In our model, the current premium volume for the portfolio in question is V =
∑N
i=1 Pi, whereas the

premium volume in case of complete renewal is

V ∗ =

N∑
i=1

P ∗i =

N∑
i=1

Pi(1 + δi).

Given the fact that not all policies might renew, let us denote by N@R the random number of policies

which will be renewed. Since we can treat each contract as an independent risk, then

N@R =
N∑
i=1

Ii,

with I1, . . . , IN independent Bernoulli random variables satisfying

P {Ii = 1} = Ψi(Pi, δi), 1 ≤ i ≤ N.

Clearly, the expected percentage of the portfolio to renew is given by (set below δ = (δ1, . . . , δN ))

θ(δ) =
E {N@R}

N
=

N∑
i=1

E {Ii}
N

=
1

N

N∑
i=1

Ψi(Pi, δi).(2.2)

The premium volume @R (which is random) will be denoted by V@R. It is simply given by

V@R :=

N∑
i=1

IiPi(1 + δi).

Consequently, considering the interest in maximising the premium volume, then the objective function

in this setting is given by

qvol(δ) := E {V@R} =

N∑
i=1

Pi(1 + δi)E {Ii} =

N∑
i=1

Pi(1 + δi)Ψi(Pi, δi).(2.3)

Note that P1, . . . , PN are known, therefore the optimisation will be performed with respect to δi’s only.

O1’) Minimise the variance of V@R: If the variance of V@R is large, the whole renewal process can be ruined.

Therefore along O1 the minimisation of the variance of V@R is important. In this model we have

qvar(δ) := V ar(V@R) =

N∑
i=1

[Pi(1 + δi)]
2Ψi(Pi, δi)[1−Ψi(Pi, δi)].(2.4)

O2) Maximise the expected premium difference @R: Let τi = Piδi be the premium difference for the ith

policyholder and set τ := (τ1, . . . , τN ). The total premium difference @R is
∑N
i=1 Iiτi, with expecta-

tion

qdif (τ ) = E

{
N∑
i=1

Iiτi

}
=

N∑
i=1

τiΨi(Pi, δi).(2.5)
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It is not difficult to formulate other objective functions, for instance related to the classical ruin probability,

Parisian ruin (see e.g., [15]), or future solvency and market position of the insurance company. Moreover, the

objective functions can be formulated over multiple insurance periods.

Due to the nature of insurance business, there are several constraints that should be taken into account for

the renewal business optimisation, see [16] and the references therein. Typically, the most important business

constraints relate to the strategy of the company and the concrete insurance market. We formulate few important

constraints below:

C1) Expected retention level @R should not be less say than 70%. Although the profit and the volume

of premiums at renewal are important, all insurance companies are interested in keeping most of the

policyholders in their portfolios. Therefore there is commonly a lower bound imposed on the expected

retention level ` at renewal. For instance ` ≥ 90% means that the expected percentage of customers

that will not renew their contracts should not exceed 10%. In mathematical terms, this is formulated

as

θrlevel(δ) =
E {N∗}
N

≥ `.(2.6)

C2) A simple constraint is to require that the renewal premiums P ∗i ’s are not too different from the ”old”

ones, i.e.,

δi ∈ [a, b], τi := Piδi ∈ [A,B], 1 ≤ i ≤ N(2.7)

for instance a = −5%, b = 10% and A = −50, B = 300.

Several other constraints including those related to reputational risk, decrease of provision level for tied-agents,

and loss of loyal customers can be formulated similarly and will therefore not be treated in detail.

2.2. Practical Settings. In insurance practice the cost of optimisation itself (actuarial and other resources)

needs to be also taken into account. Additionally, since the total volume of premiums at renewal is large,

an optimal renewal tariff is of interest (business relevant) only if it produces a significant improvement to the

current tariff. Therefore, for practical implementations, we need to redefine the objective functions. For a given

positive constant c, say c = 1′000, we redefine (2.3) as

qcvol(δ1, . . . , δN ) := c
⌊
E {V@R} /c

⌋
= c
⌊ N∑
i=1

Pi(1 + δi)Ψi(Pi, δi)/c
⌋
,(2.8)

where bxc denotes the largest integer smaller than x. Similarly, we redefine (2.4) as

c
⌊
V ar(V@R)/c

⌋
= c

⌊ N∑
i=1

{Pi(1 + δi)}2Ψi(Pi, δi)[1−Ψi(Pi, δi)]/c
⌋
.(2.9)

Finally, (2.5) can be written as

qcdif (τ1, . . . , τN ) = c
⌊ N∑
i=1

τiΨi(Pi, δi)/c
⌋
.(2.10)

For implementation purposes and due to business constraints, τi’s can be assumed to be certain given positive

integers. Therefore a modification of (2.7) can be formulated as

δi ∈ [a, b] ∩ (c−11 Z), τi := Piδi ∈ [A,B] ∩ (c1Z), 1 ≤ i ≤ N,(2.11)

where c1 > 0, for instance c1 = 100.

Such modifications of both objective functions and constraints show that for practical implementation, there is

no unique optimal solution of the optimisation problem of interest.
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Remarks 2.1. i) If two different insurance contracts are renewed through different distributional channels,

then typically different constraints are to be applied to each of those policies. Additionally, the cancellation

probabilities could be different, even in the case where both policyholders have the same risk profile. Therefore,

in order to allow for different distributional channels, we only need to adjust the constraints and assume an

appropriate cancellation pattern.

ii) In practice, Ψi’s can be estimated by using for instance logistic regression. At random, customers are offered

@R higher/lower premiums than their Pi’s i.e., δi’s are chosen randomly with respect to some prescribed distri-

bution function. An application of the logistic regression to the data obtained (renewal/non renewal) explains

the cancellation (or renewal) probability in terms of risk factors as well as other predictors (social status, etc.).

In an insurance market dominated by tied-agents this approach is quite difficult to apply.

iii) Different policyholders can renew their contracts for different periods. This case is included in our assump-

tions above.

iv) Most tariffs utilised in practice, for instance an MTPL one, consist of hundreds of coefficients (typically

more than 300). Due to a dominating product structure, modern insurance tariffs consists of many individual

cells, say 200’000 in average. However, most of these tariff cells are empty. In most cases less than 15% of the

cells determine 80% of the total premium volume in the portfolio. For instance, it is quite rare that a Ferrari

is insured for a TPL risk by a 90 years old lady, living in a very small village. With this in mind, the relevant

number N in practical optimisation problems does not exceed 10’000. Our algorithms and simulation methods

work fairly well for such N .

3. Solutions for T3

The main difficulty when dealing with the actuarial task T3 lies on the complexity of Ψi’s since these functions

are:

a) in general not known,

b) difficult to estimate if past data are partially available,

c) even when these functions are known, the constraints C1-C2 and the objective functions O1,O1’,O2 are in

general not convex. We discuss next a partial solution for T3.

Problem T3a: Given P1, . . . , PN determine δ∗ = (δ∗1 , . . . , δ
∗
N ) such that

qvol(δ
∗) is maximal, qvar(δ

∗) is minimal(3.1)

under the constraints

θrlevel(δ) ≥ `, l ≤ δ ≤ u,

where l and u are 2 vectors such that their components li, ui ∈ (−1, 1) for i ≤ N .

Problem T3b: Determine the market tariff f∗ from P ∗1 , . . . , P
∗
N .

The solution (an approximate one) of T3b can be easily derived. Given P ∗1 , . . . , P
∗
N , and since the structure

of the market tariff is known, then f∗ can be determined (approximately) by running a non-linear regression

analysis with resoine variables P ∗i ’s.

Below we shall focus on task T3a dealing with the determination of the optimal premiums P ∗i ’s at renewal.

In insurance practice, the functions Ψi, i ≤ n can be assumed to be piece-wise linear and non-decreasing. This

assumption is indeed reasonable, since for very small τi or δi the cancelation probability should not change.

However, that assumption can be violated if for instance at renewal the competition modifies also their new

business premiums. For simplicity, these cases will be excluded in our analysis, and thus we assume that the
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decision for accepting the renewal offer is not influenced by the competition.

We list below some tractable choices for Ψi’s:

Ma) Suppose that for given known constants πi, ai, bi

Ψi(Pi, δi) = πi(1 + aiδi + biδ
2
i ), 1 ≤ i ≤ N.

In practice, πi, ai, bi need to be estimated. Clearly, the case that bi’s are equal to 0 is quite simple and

tractable.

Note in passing that a simple extension of the above model is to allow ai and bi to differ depending on

the sign of δi.

Mb) One choice motivated by the logistic regression model commonly used for estimation of renewal proba-

bilities is the expit function, i.e.,

Ψi(Pi, δi) =
1

1 + c−1i e−Tiδi
, 1 ≤ i ≤ N,

where ci, Ti’s are known constants (to be estimated in applications), see e.g., [17] .

We note that Model Ma) can be seen as an approximation of Model Mb).

Mc) Finally, we consider the case where Ψi’s are determined only for specific δi’s. For instance, for the ith

policyholder Ψi depends on Pi and δi as follows

index 1 2 3 4 5 6 7 8 9

δi( in %) -20 % -15 % -10% -5% 0% 5% 10% 15% 20%

Pi(1 + δi) 80 85 90 95 100 105 110 115 120

Ψi(Pi, δi) 0.999 0.995 0.990 0.975 0.950 0.925 0.900 0.875 0.825

Table 3.1. Renewal probabilities as a function of premiums of the ith policyholder.

The Model Ma) is simple and tractable and can be seen as an approximation of a more complex one. Moreover,

it leads to some crucial simplification of the objective functions in question.

4. Optimisation Algorithms

4.1. Maximise the expected premium volume @R. In this section, we consider the objective function O1

subject to the constraint function C1. Our optimisation problem can be formulated as follows

max
δ

qvol(δ), δ := (δ1, . . . , δN )

subject to θrlevel(δ) > `,

l ≤ δ ≤ u,

(4.1)

where qvol and θrlevel are defined repectively in (2.3) and (2.6). Further l := (l1, . . . , lN ), u := (u1, . . . , uN ) are

such that li, ui ∈ (−1, 1) for i ≤ N .

4.1.1. Probability of renewal Ψi as in Ma). We consider the case where the probability of renewal Ψi is

Ψi := Ψi(Pi, δi) = πi(1 + aiδi + biδ
2
i ).

• Setting bi = 0, we have

Ψi := Ψi(Pi, δi) = πi(1 + aiδi).(4.2)

Since Ψi ∈ (0, 1) should hold for all policyholders i ≤ N , we require that

ai ∈ (1− 1

πi
,

1

πi
− 1), δi ∈ (−1, 1), πi > 0
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for all i ≤ N .

The assumption bi = 0 implies that (4.1) is a quadratic programming (QP) problem subject to linear

constraints. It has a global maximum if and only if its objective function is concave, which is the case

when ai < 0. Hence we shall assume that ai ∈ (1− 1
πi
, 0) for any i ≤ N .

Scenario 1: We consider the optimisation problem (4.2) without the upper and lower bounds con-

straints. In view of (4.2), the optimisation problem (4.1) can be reformulated as follows

min
δ
f(δ) =

1

2
δ>Qδ + c>δ, δ = (δ1, . . . , δN )>,

subject to g(δ) = a>δ − b ≤ 0,

(4.3)

where

c = (−π1P1(1 + a1), . . . ,−πNPN (1 + aN ))>

describes the coefficient of the linear terms of f , Q is a diagonal and positive definite matrix describing

the coefficients of the quadratic terms of f determined by

Q =


−2π1P1a1 0 0 . . . 0

0 −2π2P2a2 0 . . . 0

0 . . . −2πiPiai . . . 0

0 0 0 . . . −2πNPNaN

 .

Since (4.3) has only one constraint, a is a vector related to the linear coefficients of g and is given by

a = −(π1a1, π2a2, . . . , πNaN )>.

Furthermore, we have that

b =

N∑
i=1

πi −N`.

Note in passing that the constant term of the objective function f is not accounted for in the resolution

of (4.3).

Next, we define the Lagrangian function

L(δ, λ) = f(δ) + λg(δ),

where λ is the Lagrangian multiplier.

Given that Q is a positive definite matrix, the well-known Karush-Kuhn-Tucker (KKT) conditions (see

for details [18][p. 342]) 
∇L(δ∗, λ∗) = 0,

λ∗g(δ∗) = 0,

g(δ∗) ≤ 0,

λ∗ ≥ 0

(4.4)

are sufficient for a global minimum of (4.3) if they are satisfied for a given vector (δ∗, λ∗). Thus, in the

sequel, we provide an explicit solution for this type of optimisation problem. Typically, (4.3) can be

reduced to the Markowitz mean-variance optimisation problem, see [19, 20] .

Setting δ1 = δ +Q−1c, then (4.3) can be expressed as the following standard quadratic program

min
δ1

1

2
δ1
>Qδ1,

subject to a1
>δ1 ≤ b1,

(4.5)
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with b1 = b + a>Q−1c. It should be noted that the constant term (when replacing δ1 by δ + Q−1c in

(4.5)) does not play any role in the resolution of (4.5).

Let δ∗ be the optimal solution of (4.5). The KKT conditions defined in (4.4) can be explicitly written

as follows: 

Qδ∗ + λ∗a = 0,(4.6a)

λ∗(a>δ∗ − b1) = 0,(4.6b)

a>δ∗ − b1 ≤ 0,(4.6c)

λ∗ ≥ 0,(4.6d)

where 0 = (0, . . . , 0)> ∈ RN .

If λ∗ = 0, then δ∗ = 0 follows directly from (4.6a) implying

δ∗ = −Q−1c.

In view of (4.6d) the other possibility is λ∗ > 0, which in view of (4.6b) implies a>δ∗ = b1. Further

from (4.6a) δ∗ = −λ∗Q−1a, hence

δ∗ = −Q−1(λ∗a+ c),

with λ∗ = −(a>Q−1a)−1b1.

Scenario 2: We consider that (4.3) has lower and upper bounds constraints. Thus, the optimisation

problem at hand can be formulated as follows

min
δ

1

2
δ>Qδ + c>δ,

subject to a>δ − b ≤ 0,

l ≤ δ ≤ u.

(4.7)

The constraints in (4.7) can be grouped into one equation

Aδ ≥ d,

where A is a (2N + 1)×N matrix and d a vector of dimension 2N + 1 respectively given by

A =



π1a1 π2a2 π3a3 . . . πNaN

1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . . . . .

...

0 0 . . . 1 0

0 0 . . . 0 1

−1 0 0 . . . 0

0 −1 0 . . . 0
...

...
. . . . . .

...

0 0 . . . −1 0

0 0 . . . 0 −1



, d =



−b
l1

l2
...

lN−1

lN

−u1
−u2

...

−uN−1
−uN



.

Since we have a convex objective function and a convex region given by constraints, the solution δ∗ is

unique and we can transform the above optimisation problem to a bound constrained one using duality.
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Hence, (4.7) can be rewritten as follows

min
δ
f(δ) =

1

2
δ>Cδ − c̃>δ,

subject to g(δ) = δ ≥ 0,

(4.8)

with C = AQ−1A> a square matrix of dimension (2N + 1) and c̃ = AQ−1c+ d a vector of dimension

(2N + 1). Since A has rank N implying that Q is an N × N positive definite matrix, then C is also

positive definite.

If δ∗ is the solution of (4.8), then δ∗ = Q−1
(
A>δ∗ − c

)
is the solution of (4.7). We refer to [21] for the

description of the algorithm and Appendix A.

• Hereafter we shall assume that bi 6= 0 implying that Ψi is of the form

Ψi := Ψi(Pi, δi) = πi(1 + aiδi + biδ
2
i ).(4.9)

Given bi ∈ (−1, 0) and δi ∈ (−1, 1), the condition Ψi ∈ (0, 1) holds if and only if

ai ∈
(

max (1− 1

πi
,−1− bi),min (1 + bi,

1

πi
− 1)

)
for i ≤ N . Clearly, under (4.9) we have that (4.1) is a non-linear optimisation problem with also

non-linear constraints. The most popular method discussed in the literature for solving this type of

optimisation problem is the Sequential Quadratic Programming (SQP) method see e.g., [22–24]. It is

an iterative method that generates a sequence of quadratic programs to be solved at each iteration.

Typically, at a given iterate xk (4.1) is modelled by a QP subproblem subject to linear constraints and

then solution to the latter is used as a search direction to construct a new iterate xk+1.

Plugging (4.9) in (4.1), the optimisation problem at hand can be reformulated as

min
δ
f(δ) = −

N∑
i=1

Piπi(1 + (1 + ai)δi + (ai + bi)δ
2
i + biδ

3
i ),

subject to

g(δ) = −
N∑
i=1

πi(1 + aiδi + biδ
2
i ) +N` ≤ 0,

h1(δi) = δi − ui ≤ 0 for i ≤ N,

h2(δi) = −δi + li ≤ 0 for i ≤ N,

(4.10)

where f , g, h1 and h2 are continuous and twice differentiable.

The main steps required to solve (4.10) are described in Appendix A.

4.1.2. Probability of renewal Ψi as in Mb). We consider the following model for the renewal probability:

Ψi := Ψi(Pi, δi) =
1

1 + c−1i e−Tiδi
, 1 ≤ i ≤ N,(4.11)

where ci is a constant that depends on the probability of renewal for δi = 0 denoted by πi given by

ci =
πi

1− πi
and Ti < 0 is a constant (to be estimated in applications) that measures the elasticity of the policyholder

relative to the premium change. The greater |Ti| the more elastic the policyholder is to premium change. Under
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(4.11) we have that (4.1) is a non-linear optimisation problem subject to non-linear constraints, which can be

solved by SQP algorithm described in Appendix A.

Remarks 4.1. If δi are close to 0, then using Taylor expansion Mb) can be approximated by Ma) as follows

Ψi(Pi, δi) ≈
ci

1 + ci

(
1 +

ciTi
1 + ci

δi −
T 2
i (ci − 1)

2(1 + ci)2
δ2i

)
,

where

πi =
ci

1 + ci
, ai =

ciTi
1 + ci

, bi = −T
2
i (ci − 1)

2(1 + ci)2
.(4.12)

4.1.3. Probability of renewal Ψi as in Mc). In this model δi belongs to a discrete set, which we shall assume

hereafter to be

D = {−20%,−15%,−10%,−5%, 0%, 5%, 10%, 15%, 20%}.

Also, the renewal probabilities Ψi’s are fixed for each insured i based on δi for i ≤ N as defined in Table 3.1. In

this section we deal with a Mixed Discrete Non-Linear Programming (MDNLP) optimisation problem. Thus,

(4.1) can be reformulated as follows

min
δ
f(δ) = −

N∑
i=1

Pi(1 + δi)Ψi(Pi, δi),

subject to g(δ) = −
N∑
i=1

Ψi(Pi, δi) +N` 6 0,

and δi ∈ D, 1 ≤ i ≤ N.

(4.13)

In general, this type of optimisation problem is very difficult to solve due to the fact that the discrete space

is non-convex. Several methods were discussed in the literature for (4.13), see e.g., [25]. The contribution

[26] proposed a new method for solving the MDNLP optimisation problem subject to non-linear constraints.

It consists in approximating the original non-linear model by a sequence of mixed discrete linear problems

evaluated at each point iterate δk. Also, a new method for solving a MDNLP was introduced by using a

penalty function, see the recent contributions [18, 27] for more details. The algorithmic solution of (4.13) is

described in Appendix B.

4.2. Maximise the retention level @R. We consider the case where the insurer would like to keep the

maximum number of policyholders in the portfolio @R. Therefore the optimisation problem of interest consists

in finding the optimal retention level @R whilst increasing the expected premium volume by a fixed amount

say C in the portfolio. Hence, the optimisation problem can be formulated as follows

max
δ

1

N

N∑
i=1

Ψi(Pi, δi),

subject to

E(P ∗) > E(P ) + C,

l ≤ δ ≤ u,

(4.14)

where E(P ∗) =
∑N
i=1 Pi(1+δi)Ψi(Pi, δi) is the expected premium volume @R, E(P ) =

∑N
i=1 Piπi is the expected

premium volume before premium change and C is a fixed constant which can be expressed as a percentage of the

expected premium volume before premium change. We remark that C can be interpreted as a certain premium

loading.
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Clearly, (4.14) is a non-linear optimisation problem, which can be solved by using the SQP algorithm already

described in Appendix A).

5. Insurance Applications

In this section, we consider a simulated dataset that describes the production of the motor line of business

of an insurance portfolio. We simulate premiums from an exponential random variable with mean 1′204.

Also, the probability of renewal before premium change, πi for i = 1, . . . , N , are known and estimated by the

insurance company for each category of policyholders based on historical data. Given that the behaviour of

the policyholders is unknown at the time of renewal, the probability of renewal Ψi, depends on πi and δi for

i = 1, . . . , N . If δi is positive, then Ψi decreases whereas if δi is negative, it is more likely that the policyholder

will renew the insurance policy, thus generating a greater Ψi. In the following paragraphs, we are going to

present some results related to the optimisation problems formulated in the last section.

5.1. Optimisation problem Ma).

5.1.1. Maximise the expected premium volume @R. We consider, first, the optimisation problem defined in

(4.1). In this case, the probability of renewal Ψi is defined in Ma) and set bi = 0 for i = 1, . . . , N . Given that

ai < 0 for i ≤ N , the probability of renewal Ψi increases when δi is negative and decreases when δi is positive,

thus describing perfectly the behaviour of the policyholders that are subject to a decrease, respectively increase,

in their premiums @R. The table below describes some statistics on the data for 10′000 policyholders.

Premium at time 0

Min 200

Q1 491

Q2 909

Q3 1’605

Max 9’061

No. Obs. 10’000

Mean 1’204

Std. Dev. 990

Table 5.1. Production statistics for the motor business.

We consider the constraint that the expected percentage of the policyholders to remain in portfolio @R is at

least 85%. By solving (4.1) in Matlab with the function quadprog, we obtain the optimal δ for each policyholder.

We denote by t0 the time before premium change and by t1 the time after premium change. Figure 5.1 below is

a comparative histogram describing the number of policyholders at time t0 and at time t1 with respect to the

different premium ranges and the average optimal δ for each premium range.
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Figure 5.1. Number of policyholders based on premium range.

As seen in Figure 5.1, 32% of the policyholders have a premium below 600 CHF vs. 30% @R due to an average

optimal increase in premium of 8%. The average optimal δ decreases gradually for premiums between 600 CHF

and 2′200 CHF. Premiums above 2′200 CHF account for only 16% of the portfolio with an average optimal δ

of 8%. Typically, in practice, insurance companies are likely to increase the tariffs of policyholders with low

premiums as a small increase in the price will not have a great impact on the renewal of the policy. However,

for policies with large premium amount, a small increase in the price can lead to the surrender of the policy.

Therefore, the results in Figure 5.1 are accurate from the insurance company’s perspective when increasing/

decreasing the premiums paid by the policyholders. It should be noted here that we neglect the cases of bad

risks and large claims. We look at a homogeneous portfolio where the occurrence of a claim is low and the claim

amounts are reasonable.

Next, we consider two scenarios:

Scenario 1 The expected percentage of the policyholders (abbreviate as EPP) to remain in portfolio @R is

at least 75%,

Scenario 2 The EPP to remain in portfolio @R is at least 85%.

Table 5.2 below summarises the optimal results when solving (4.1) and examines the effect of both scenarios on

the expected premium volume and the expected number of policyholders in the portfolio @R.
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Constraints on the retention level 75% 85%

Range of δ (%) (-10,20) (-20,30) (-10,20) (-20,30)

Growth in expected premium volume @R (%) 15.78 23.03 8.70 12.96

Growth in expected number of policies @R (%) -3.52 -5.25 -0.16 -0.16

Average optimal delta (%) 19.99 29.90 7.97 11.89

Number of increases 10’000 10’000 6’196 6’528

Number of decreases - - 3’804 3’472

Table 5.2. Scenarios testing.

Scenario 1 The optimal δ for both bounds corresponds approximately to the maximum value (upper bound)

of the interval. This is mainly due to the fact that EPP @R to remain in portfolio is at least 75%. Therefore,

the main goal is to maximise the expected premium volume at time t1.

Scenario 2 For EPP @R to remain in portfolio of at least 85%, Table 5.2 shows an increase in the expected

premium volume which is less important than the one observed in Scenario 1. However, the expected number

of policyholders in the portfolio @R is higher and is approximately the same as at t0.

Hereafter, we shall consider EPP @R to remain in portfolio to be at least 85%. Commonly in practice the

size of a motor insurance portfolio exceeds 10′000 policyholders. However, solving the optimisation problems

for δ using the described algorithms when N is large requires a lot of time and heavy computation and may

be costly for the insurance company. Thus, an idea to overcome this problem is to split the original portfo-

lio into subportfolios and compute the optimal δ for the subportfolios. One criteria that can be taken into

account for the split is the amount of premium in our case. However, in practice, insurance companies have

a more detailed dataset, thus more information on each policyholders, so the criterion that are of interest for

the split include the age and gender of the policyholders, the car type, age and value. Table 5.3 and Table

5.4 below describe the results when splitting the original portfolio into three and four subportfolios, respectively.

Growth in % @R
Premium Range Average optimal δ Expected number of policies Expected premium volume

< 600 8.60% -0.27% 9.17%

(600,1’200) 7.29% -0.03% 8.25%

> 1′200 8.05% -0.17% 8.99%

After the split 8.00% -0.16% 8.84%

Before the split 7.97% -0.16% 8.70%

Difference - 0% -0.13%

Table 5.3. Split into 3 subportfolios.
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Growth in % @R
Premium Range Average optimal δ Expected number of policies Expected premium volume

< 500 8.99% -0.34% 9.50%

(500, 800) 6.27% 0.15% 7.41%

(800, 1’400) 7.66% -0.09% 8.49%

> 1′400 8.47% -0.26% 9.31%

After the split 7.99% -0.16% 8.95%

Before the split 7.97% -0.16% 8.70%

Difference 0% -0.23%

Table 5.4. Split into 4 subportfolios.

In Table 5.3 and 5.4, we consider that the insurer would like to keep 85% of the policyholders in each subport-

folios, thus a total of 85% of the original portfolio. However, in practice, the constraints on the retention level

@R are specific to each subportfolio. In this regard, the insurance company sets the constraints on the expected

number of policies for each subportfolios so that the constraint of the overall portfolio is approximately equal

to 85%. The error from the split into three, respectively four subportfolios is relatively small and is of -0.13%,

respectively -0.23% for the expected premium volume @R.

Remarks 5.1. i) This application is mostly relevant when dealing with a non linear optimisation problem of a

large insurance portfolio.

ii) In the following sections, we limit the size of the insurance portfolio to 1’000 policyholders as the algorithms

used thereafter to solve the optimisation problems are based on an iterative process which is computationally

intensive.

5.1.2. Maximise the expected premium volume and minimise the variance of the premium volume. Similarly

to the asset allocation optimisation problem in finance introduced by Markowitz [28], the insurer performs a

trade-off between the maximum aggregate expected premiums and the minimum variance of the total earned

premiums, see e.g., [29] for a different optimality criteria.

We present in Figure 5.2 the comparison of the optimal results computed with the function gamultiobj of Matlab

2016a for the following scenarios:

• Scenario 1: the expected premium volume and the variance of the premium volume are optimised

simultaneously as in Problem T3a,

• Scenario 2: only the expected premium volume is maximised.

The same constraint on the retention level is used for both scenarios and δ ∈ (−30%, 30%). The histograms

in Figure 5.2 represent the optimal variance whilst the dashed curves depict the optimal expected volume. We

notice that all the optimal results are normalised with the results obtained from the assumption that the insurer

will not change the premiums for next year.
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Figure 5.2. Optimal results with different objective function scenarios.

For both Scenarios, the maximum expected volume is associated with higher variance. In this respect the lower

the retention level the higher the expected volume and the higher the variance. Furthermore, compared to Sce-

nario 2, Scenario 1 results in smaller expected volume but yields a smaller variance. We show next in Table 5.5

the optimal results for the different constraints on the retention level and the possible range of premium changes.

Retention level constraints 75% 85%

Range of δ ( %) (-10,20) (-20,30) (-10,20) (-20,30)

Aggregate expected future premiums @R ( %) 103.57 103.66 99.90 103.90

Variance of the aggregate future premiums @R ( %) 109.76 113.08 98.41 101.05

Expected number of policies @R ( %) 98.95 98.84 99.98 99.99

Average optimal δ ( %) 6.13 6.82 1.68 1.98

Average optimal increase ( %) 18.50 26.92 11.82 20.32

Average optimal decrease ( %) -8.33 -16.32 -8.92 -17.10

Number of increases 539 535 511 510

Number of decreases 461 465 489 490

Table 5.5. Scenario 1 optimal results based on different retention levels .

It can be seen that the optimal variance @R increases with the range of the possible premium changes δ. For

instance when the insurer would like to keep at least 75% of the policyholders, the variance @R increases from

109.76 for δ ∈ (−10%, 20%) to 113.08 for δ ∈ (−20%, 30%), respectively. Furthermore, the increase in variance

@R is associated with an increase of the expected volume @R. This means that the riskier the portfolio the

more the insurance company earns premiums.

5.1.3. Maximise the retention level @R. We consider here that the insurer would like to maximise the EPP

@R to remain in portfolio whilst increasing the expected premium volume @R by a certain amount C needed

to cover, for instance, the operating costs and other expenses of the insurance company. Figure 5.3 below
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describes the results obtained from solving the optimisation problem (4.14) defined in Section 4.2 using the

fmincon function in Matlab for C = 95′000 and δ ∈ (−10%, 20%).

Figure 5.3. Number of policyholders based on premium range.

In practice, the amount C needed to cover the expenses of the company is set by the insurers. In fact, C can

be expressed as a percentage of the expected premium volume at time t0. Therefore, we consider three different

loadings: 9%, 10% and 11% thus adding an amount of 85′000, respectively 95′000 and 105′000 to the expected

premium volume at time t0. We consider two ranges for δ, namely δ ∈ (−10%,−20%) and δ ∈ (−20%,−30%).

Values for C C = 85′000 C = 95′000 C = 105′000

Range of δ ( %) (-10,20) (-20,30) (-10,20) (-20,30) (-10,20) (-20,30)

Growth in expected number of policies( %) -2.19 -2.06 -2.50 -2.36 -2.82 -2.67

Growth in expected premium volume( %) 8.90 8.90 9.95 9.95 11.00 11.00

Average optimal δ ( %) 13.92 15.82 15.12 17.23 16.60 18.64

Table 5.6. Scenario testing - Retention

Table 5.6 shows that when C increases, the expected number of policyholders @R decreases whereas the average

optimal δ increases.

5.2. Optimisation problem Mb). We consider the probability of renewal Ψi as defined in Mb). As discussed

in Section 4.1.2, Ti describes the behaviour of the policyholders subject to premium change. For instance, let us

consider a policyholder whose probability of renewal without premium change πi is 0.95. Figure 5.4 shows that

the greater Ti the more the curve of the renewal probability goes to the right thus the less elastic the policy-

holder is to premium change. Conversely as Ti decreases, the more elastic the policyholder is to premium change.
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Figure 5.4. Renewal probability with respect to premium change for different values of Ti

In this section, we will only consider the case where the insurer would like to maximise the expected premium

volume @R. The constraint on the retention level is assumed to be of 85%.

Figure 5.5. Number of policyholders based on premium range.

Figure 5.5 shows that the average optimal δ for premiums less than 1’200 CHF is constant for the different

premium ranges at 20% which corresponds to the maximum value that δ can take. However, for premiums

greater than 1’200 CHF, the average optimal δ decreases to -6%. As stated in Section 5.1.1, insurers are

more likely to increase the premiums of policyholders with small premium amounts and decrease the premiums

of policyholders with large premium amounts. Thus, the results obtained in Figure 5.5 are accurate as they
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describe the behaviour of the insurer when increasing, respectively decreasing the premiums of the policyholders.

At the time of renewal, the insurer sets the constraints on EPP to remain in portfolio. Typically, when the

retention level is low, the expected premium volume @R is greater compared to the case when the retention

level is high. Therefore, we consider two different scenarios:

Scenario 1 The EPP @R to remain in portfolio is at least 75%,

Scenario 2 The EPP @R to remain in portfolio is at least 85%.

The table below summarises the optimal results when solving (4.1) for the different constraints.

Constraints on the retention level 75% 85%

Range of δ (%) (-10,20) (-20,30) (-10,20) (-20,30)

Growth in expected premium volume @R (%) 17.84 26.45 4.50 6.48

Growth in expected number of policies @R (%) -0.93 -1.41 -0.02 -0.02

Average optimal delta (%) 20.00 30.00 10.70 16.09

Number of increases 1’000 1’000 703 736

Number of decreases - - 297 264

Table 5.7. Scenarios testing.

Scenario 1 Table 5.7 shows that all policyholders are subject to an increase in their premiums and the average

optimal δ for the whole portfolio corresponds to the maximum change in premium for both bounds of δ.

Scenario 2 As seen in Table 5.7, the expected number of policyholders @R is approximately the same as the

one before premium change. However, the growth in expected premium volume is lower than in Scenario 1 due

to the fact that the average optimal δ for both bounds is lower.

Remarks 5.2. It should be noted that the probability of renewal defined in Mb) can be approximated by the prob-

ability of renewal defined in Ma) for δ relatively small (refer to Remark 4.1). Therefore, consider δ ∈ (−5%, 5%)

and a retention level ` = 85% @R. The table below describes the optimal results when using the logit model

Mb) and the polynomial model defined in Ma).

Model Logit Polynomial Difference*

Growth in expected premium volume @R 1.53% 0.47% 1.04%

Growth in expected number of policies @R -0.02% -0.02% 0%

Average optimal delta 2.97% 1.30% NR

Number of increases 796 619 NR

Number of decreases 204 381 NR

Table 5.8. Comparison between Ma) and Mb).

(*NR = Not Relevant)

Table 5.8 shows that for a small range of δ, the difference between the exact results obtained from Mb) and the

approximate results obtained from Ma) is relatively small and is of around 1% for the expected premium volume

@R and is of 0% for the expected number of policyholders @R. Thus, the approximate values tend to the real

ones when the range of δ tends to 0.

5.3. Optimisation problem Mc) and Simulation studies. In this Section, we consider the case where the

renewal probabilities Ψi are fixed for each insured i, as defined in Table 3.1. To solve the optimisation problem

(4.13), we use the MDNLP method described in Appendix B. The table below summarises the optimal results
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for a portfolio of 100’000 policyholders with respect to different constraints on the retention level at renewal.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.92 5.92 5.34 4.19 2.22 -1.24

Growth in expected number of policies @R (%) -7.89 -7.89 -5.26 -2.63 0.00 2.63

Average optimal delta (%) 15.00 15.00 10.00 4.82 -0.51 -6.37

Table 5.9. Scenario testing-Discrete optimisation

Table 5.9 shows that when the retention level increases, the expected number of policies increases whereas the

expected premium volume @R decreases. In fact, the average optimal δ decreases gradually from 15% for a

retention level of 85% to -6% for a retention level of 97.5%. Also, it can be seen that for a retention level of

95% the optimisation has a negligible effect on the expected number of policies and premium volume @R as

the average optimal δ is approximately null. Hence, no optimisation is needed in this case.

In addition to the MDNLP approach, we have implemented a simulation technique which consists in simulating

the premium change δ for each policyholder as described in the following pseudo algorithm:

• Step 1: Based on a chosen prior distribution for δ, sample the premium change for each policyholder,

• Step 2: Repeat Step 1 until the constraint on the retention level is satisfied,

• Step 3: Repeat Step 2 m times,

• Step 4: Among the m simulations take the simulated δ which gives out the maximum expected profit.

Next, we present the optimal results obtained through 1′000 simulations for the same portfolio. We shall

consider three different assumptions on the prior distribution of δ, namely:

• Case 1: Simulation based on the Uniform distribution

In this simulation approach, we assume that the prior distribution of δ is uniform. As highlighted in

Table 9.1- 9.2, the parameters of the uniform distribution and the possible values of the premium change

are chosen so that the constraint on the retention level is fulfilled. Actually, this choice is based on

many simulations trials that we have implemented in which for a fixed range of δ, the parameter of the

Uniform distribution is modified at each trial so that the retention level is reached. It should be noted

that the more the elements of δ, the smaller the bounds of the Uniform distribution. We present in

Table 5.10 the simulation results.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.13 5.11 4.02 1.87 -0.55 -4.10

Growth in expected number of policies @R (% ) -10.32 -6.64 -5.24 -2.61 0.04 2.73

Average optimal delta (%) 17.30 12.62 9.95 4.87 -0.36 -6.52

Table 5.10. Scenario testing- simulation approach: Uniform distribution.

• Case 2: Simulation based on practical experience

Next, we assume a prior distribution for δ which is based on the historical premium change of each

policyholder. Those prior distributions are presented in Figure 9.1 and the results are described in Table
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5.11 below.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.50 5.08 4.10 1.98 -0.87 -3.75

Growth in expected number of policies @R (% ) -9.19 -7.70 -5.26 -2.63 0.47 2.77

Average optimal delta (%) 16.2 13.9 10.0 4.92 -1.17 -6.25

Table 5.11. Scenario testing- simulation approach: practical experience

• Case 3: Simulation based on the results of the MDNLP

We use the empirical distribution of the optimal δ obtained from the MDNLP algorithm as a prior

distribution. The chosen distribution are shown in Figure 9.1 with different constraints on the retention

level. Table 5.3 below summarises the optimal results.

Retention level constraints (%) 85 87.5 90 92.5 95 97.5

Growth in expected premium volume @R (%) 5.92 5.92 3.90 1.61 -0.91 -4.05

Growth in expected number of policies @R (% ) -7.89 -7.89 -5.26 -2.63 0.00 2.63

Average optimal delta (%) 15.00 15.00 10.00 4.82 -0.51 -6.35

Table 5.12. Scenario testing- simulation approach.

It can be seen that the simulation approaches yield approximately to the same results obtained from the MDNLP

algorithm presented in Table 5.9.

6. Appendix A: Solution of (4.8)

Let I = {1, . . . , N}. The Lagrangian function related to (4.8) is

L(δ,λ) = f(δ) + λg(δ),

where λ := (λ1, . . . , λN ) are the Lagrangian multipliers. In this case, the KKT conditions below
Cδ∗ − c̃+ λ∗ = 0,

λ∗i δ
∗
i = 0,∀i ∈ I

δ∗i ≥ 0,∀i ∈ I
λ∗i ≥ 0,∀i ∈ I

(6.1)

hold for (δ∗,λ∗).

Let L be the subset of I such that λi > 0 and δ∗i = 0 for all i ∈ L if L is non-empty. Note that λi = 0 for i 6∈ L.

We have that if L is empty, then by (6.1)

δ∗ = C−1c̃.(6.2)

Next suppose that L is non-empty and set R = I \ L. If R is empty, then the solution is found to be on the

boundary as above, i.e, δ∗i = 0 for all i. If R is non-empty, we have that λi = 0 for any i ∈ R. We need to

determine δ∗R which is the subvector of δ∗ determined by dropping the components with indices not in R. Since

C is positive-definite, then CR,R the submatrix of C determined by dropping the rows and columns with indices

not in R is positive definite and therefore non-singular. In view of (6.1) we obtain the solution

δ∗R = (CR,R)−1(−CR,Lδ∗L + c̃R) = (CR,R)−1c̃R
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and

λ∗L = c̃L − CL,Lδ∗L − CL,Rδ
∗
R = c̃L − CL,R

(
(CR,R)−1c̃R

)
.

For practical implementation, it is necessary to determine the index set L and this can be achieved by an

iterative approach, see [21].

To this end, we remark that in the proof above we used the fact that Q and C are positive definite, but did not

use the fact that Q is diagonal matrix.

7. Appendix B: Solution of (4.10)

Step 1: Let

L(δ, λ,µ,γ) = f(δ) + λg(δ) +

N∑
i=1

µih1(δi) +

N∑
i=1

γih2(δi)

be the Lagrangian function of (4.10) where λ ∈ R and µ,γ ∈ RN are the Lagrangian multipliers and

(δ0,λ0,µ0,γ0) an initial estimate of the solution. It should be noted that the SQP is not a feasible point

method. This means that neither the initial point nor the subsequent iterate ought to satisfy the constraints of

the optimisation problem.

Step 2: In order to find the next point iterate (δ1, λ1,µ1,γ1), the SQP determines a step vector s =

(sδ, sλ, sµ, sγ) solution of the QP subproblem evaluated at (δ0,λ0,µ0,γ0) and defined below

(7.1)

min
s

1

2
s>Hs+∇f(δ0)>s,

subject to

∇g(δ0)>s+ g(δ0) ≤ 0,

∇h1(δ0,i)
>s+ h1(δ0,i) ≤ 0 for i ≤ N,

∇h2(δ0,i)
>s+ h2(δ0,i) ≤ 0 for i ≤ N,

where H is an approximation of the Hessian matrix of L, ∇f the gradient of the objective function and ∇g,

∇h1 and ∇h2 the gradient of the constraint functions.

The Hessian matrix H is updated at each iteration by the BFGS quazi Newton formula. The SQP method

maintains the sparsity of the approximation of the Hessian matrix and its positive definetness, a necessary

condition for a unique solution.

Step 3: In order to ensure the convergence of the SQP method to a global solution, the latter uses a merit

function φ whose reduction implies progress towards a solution. Thus, a step length, denoted by α ∈ (0, 1), is

chosen in order to guarantee the reduction of φ after each iteration such that

φ(δk + αsk) ≤ φ(δk),

with

φ(x) = f(x) + r
(
g(x) +

N∑
i=1

h1(xi) +

N∑
i=1

h2(xi)
)

and r > max
1≤i≤N

(|λ|, |µi|, |γi|).

Step 4: The new point iterate is given by

(δ1, λ1,µ1,γ1) = (δ0 + αsδ, λ0 + αsλ,µ0 + αsµ,γ0 + αsγ).
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If the latter satisfies the KKT conditions (6.1), the SQP converges at that point. If not, set k = k + 1 and go

back to Step 2.

Remarks 7.1. It should be noted that the KKT conditions defined in (6.1) are known as the first order optimality

conditions, see e.g., [18]. Hence if for a given vector (δ∗, λ∗,µ∗,γ∗), the KKT conditions are satisfied, then

(δ∗, λ∗,µ∗,γ∗) is a local minimum of (4.10).

8. Appendix C: MDNLP optimisation problem (4.13)

Step 1: Given that Ψi is discrete and depends on the values of δi, we assume that Ψi can be written as a

function of δi as follows

Ψi(δi) = −0.9775δ2i − 0.4287δi + 0.9534 for δi ∈ D.

(4.13) is then treated as a continuous optimisation problem and the optimal solution is found by using one of

the methods described previously. We denote by δ∗ the continuous optimal solution.

Step 2: Let δ0 be the rounded up vector of δ∗ to the nearby discrete values of the set D. δ0 is considered

to be the initial point iterate. If δ0 is not a feasible point of (4.13), then (4.13) is approximated by a mixed

discrete linear optimisation problem at δ0 and is given by

min
δ
∇f(δ0)>(δ − δ0),

subject to g(δ0) +∇g(δ0)>(δ − δ0) 6 0,

and δ ∈ DN .

(8.1)

Step 3: (8.1) is solved by using a linear programming method and the branch and bound method, see [30] for

more details. We denote by δk the new point iterate. If δk is feasible and ||δk − δk−1|| < ε with ε > 0 small,

then the iteration is stopped. Else k = k + 1 and go back to Step 2.

Remarks 8.1. If, for a certain point iterate δ, the constraint of (4.13) is satisfied and δ ∈ DN then δ is a

feasible solution of the optimisation problem.

In general, it is very hard to find the global minimum of a MDNLP optimisation problem due to the fact that there

are multiple local minimums. Therefore, δ∗ is said to be a global minimum if δ∗ is feasible and f(δ∗) ≤ f(δ)

for all feasible δ.

9. Appendix D: Prior distribution for simulation

9.1. Simulation based on the Uniform distribution (simulation Case 1). The tables below describe

the range of δ with their respective distribution based on the different retention levels.

Retention level (%) 85 87.5 90

Range of δ(%) {15, 20} {10, 15} {0, 5, 10, 15}
Prior distribution U(0.85, 0.99) U(0.90, 0.99) U(0.04, 0.68)

Table 9.1. Possible range of δ and prior distribution uniformly distributed.

Retention level (%) 92.5 95 97.5

Range of δ(%) {−5, 0, 5, 10, 15} {−5, 0, 5, 10, 15} {−20,−10,−5, 0, 5, 10, 15}
Prior distribution U(0.05, 0.40) U(0.04, 0.21) U(0.002, 0.47)

Table 9.2. Possible range of δ and prior distribution uniformly distributed.
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9.2. Simulation based on practical experience and on the optimal premium changes from the

MDNLP algorithm. We depict in Figure 9.1 the prior distributions used in the simulation approach described

in Section 5.3. The red curves represent the prior distribution from practical experience (simulation Case 2)

while the blue curves are the empirical distribution of the optimal premium changes obtained with the MDNLP

algorithm (simulation Case 3).

(a) Retention level 85% (b) Retention level 87.5%

(c) Retention level 90% (d) Retention level 92.5%

(e) Retention level 95% (f) Retention level 97.5%

Figure 9.1. Prior distribution used in simulations studies: case 2 and case 3.
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