
The Constitution of Algorithms

The MIT Press January 2021

Inside Technology

Edited by Wiebe E. Bijker, Trevor J. Pinch, and Rebecca Slayton

A list of books in the series appears at the back of the book.

The MIT Press January 2021

The Constitution of Algorithms

Ground-Truthing, Programming, Formulating

Florian Jaton

The MIT Press
Cambridge, Massachusetts
London, England

The MIT Press January 2021

© 2020 Massachusetts Institute of Technology

This work is subject to a Creative Commons CC-BY-NC-ND license.

Subject to such license, all rights are reserved.

The open access edition of this book was made possible by generous funding from

Arcadia—a charitable fund of Lisbet Rausing and Peter Baldwin.

This book was set in Stone Serif and Stone Sans by Westchester Publishing Services.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Jaton, Florian, author. | Bowker, Geoffrey C., writer of foreword.

Title: The constitution of algorithms : ground-truthing, programming, formulating /

  Florian Jaton ; foreword by Geoffrey C. Bowker.

Description: Cambridge, Massachusetts : The MIT Press, [2020] | Series: Inside

  technology | Includes bibliographical references and index.

Identifiers: LCCN 2020028166 | ISBN 9780262542142 (paperback)

Subjects: LCSH: Algorithms--Case studies. | Computer programming--Case studies. |

  Algorithms--Social aspects. | Mathematics--Philosophy.

Classification: LCC QA9.58 .J38 2020 | DDC 518/.1--dc23

LC record available at https://lccn.loc.gov/2020028166

10  9  8  7  6  5  4  3  2  1

The MIT Press January 2021

To Fanny

The MIT Press January 2021

The MIT Press January 2021

Foreword    ix

Acknowledgments    xi

Introduction    1

I	 Ground-Truthing    27

	1	 Studying Computer Scientists    31

	2	 A First Case Study    51

II	 Programming    87

	3	 Von Neumann’s Draft, Electronic Brains, and Cognition    93

	4	 A Second Case Study    135

III	 Formulating    197

	5	 Mathematics as a Science    203

	6	 A Third Case Study    237

Conclusion    283

Glossary    291

Notes    299

References    325

Index    365

Contents

The MIT Press January 2021

The MIT Press January 2021

Algorithms pervade our lives. They are political, cultural, and social facts

that have become central to all parts of our existence over the past fifty

years. Certainly, we had their forerunners before: endless checklists, safety

protocols, and rules of conduct—each designed to take us out of ourselves

and align our bodies, our selves with a bureaucratic or technical machine

(in Foucault’s better term, a set “dispositifs techniques”). Bureaucracy makes

us act like machines, algorithms seek to make us into machines.

A corollary is that if we want to do fundamental social science and envi-

sion new forms of political life we need to go where the action is. We need

to get to know algorithms from the inside. They did not parachute down

from another planet to invade us (much as it may feel like this): they are

human, fallible creations. The difficulties here are that social scientists and

political actors often don’t really understand the technical stakes, and sym-

metrically the computer scientists don’t really get the social stakes.

This is precisely why this book is so important. It is a foundational text

for exploring algorithms as a new form of social actor. How do algorithms

get constructed to be effective actors; how do humans get constructed so

that they create algorithms which surpass human understanding? Jaton’s

quest here has been fearless: go where the questions are, and locate the

technical, social, and political issues on their home ground. As I read this

book, I was constantly delighted as when reading a fine novel by not know-

ing what was going to come next (von Neumann architecture, tests for

nascent computer engineers)—but by immediately feeling a sense of inevi-

tability once the steps were taken.

I’ve been playing with a vision latterly of humans becoming progres-

sively more irrelevant to the operation of our political economy: we do

what we can but are increasingly interstitial. There is little doubt that we

Foreword

Geoffrey C. Bowker

The MIT Press January 2021

x	 Foreword

are creating machines that are more intelligent than we are and algorithms

that know us better than we do ourselves. That’s just fine. But how much

richer and more beautiful a world we will create if we suffuse our algorithms

with our own deeply held values created over thousands of years?

This book is not just for computer scientists or for social studies of sci-

ence scholars: it speaks to some of the fundamental questions of human

existence in this epoch. It provides tools and concepts for us to co-engineer

our world (our planetary system, our species, our computers).

Chapeau! Florian. Happy reading all.

The MIT Press January 2021

More than politeness, it is a matter of intellectual integrity to warmly thank

those who helped me become the author of this book. To begin with, I

would like to express my deepest gratitude to the members of the computer

science laboratory who let me follow their day-to-day activities. Having

an ethnographer around for more than two years must have been an odd

experience. Yet I could not have wished for more comprehension toward

my research topic and patience toward my clumsiness. It goes without say-

ing that this inquiry could not have been written without the support of

these brilliant computer scientists who quickly became my colleagues and

friends.

If I enjoyed spending time in this computer science laboratory, it was

also thanks to its director. By giving me an office, providing me with insight-

ful feedback, and asking me to actively participate in the daily life of her

laboratory, Sabine Süsstrunk of the Swiss Federal Institute of Technology

Lausanne (EPFL) immensely facilitated my integration. I simply could never

have dreamed of a better interdisciplinary collaboration.

My mentor Dominique Vinck has given me so many valuable tips,

insights, and feedback throughout this inquiry that I wish I could have

applied the following seal on the cover of this document: Dominique

Vinck Inside®. It has been a privilege to be the student of such an inspiring

professor.

This book also benefited from the insights of my colleagues at the

Institute of Social Sciences of the University of Lausanne. Marc Audétat,

Lola Auroy, Nicolas Baya Laffite, Boris Beaude, Luca Chiapperino, Laetitia

Della Bianca, Olivier Glassey, Sara Guzmán, Anna Jobin, Nicky Lefeuvre,

Pierre-Nicolas Oberhauser, Francesco Panese, Andréas Perret, Jessica Pidoux,

Acknowledgments

The MIT Press January 2021

xii	 Acknowledgments

Margarita Rodriguez, Yohana Ruffiner, Marie Sautier, Romina Seminario,

Tatiana Smirnova, Léa Stiefel, and Mylène Tanferri Machado: they all

greatly contributed to my intellectual education. And I would like to extend

a special thank you to Alexandre Camus, who, besides having given me great

suggestions, has also stood for my fears, rants, and sudden bursts of joy (and

despair).

To transform what was then a cumbersome thesis into an acceptable

book, I benefited from a postdoctoral research stay at the Centre de Soci-

ologie de l’Innovation of Mines Paristech, PSL Research University. And

without the precise advice and comments of Félix Boilève, Jérôme Denis,

Quentin Dufour, Liliana Doganova, Evan Fisher, Clément Gasull, Cornelius

Heimstädt, Antoine Hennion, Brice Laurent, Fabian Muniesa, Émilie Perault,

David Pontille, Mathieu Rajaoba, and Loïc Riom, this book would contain

many more weaknesses than it has today. I also warmly thank Nassima

Abdelghafour, Madeleine Akrich, Marie Alauzen, Mathieu Baudrin, Victoria

Brun, Béatrice Cointe, Jean Danielou, Catherine Lucas, Alexandre Mallard,

Morgan Meyer, Florence Paterson, Mathilde Pellizzari, Vololona Rabeharisoa,

Roman Solé-Pomies, Sophie Tabouret, Félix Talvard, Carole-Anne Tisserand,

Didier Torny, Frédéric Vergnaud, and Alexandre Violle for having welcomed

me to their wonderful research center.

Easily distressed by administrative duties, I have been lucky to benefit

from the help of amazing secretaries throughout my PhD and postdoctoral

grants. To a great extent, it is thus thanks to Françoise Behn, Marianna

Schismenou, Alba Brizzi, and Joëlle de Magalhaes that I could finally pro-

duce this document.

Funding is integral part of research. Thus I thank the Swiss National

Science Foundation for its financial support throughout the completion

of this work. Funding such a fundamental research project at the intersec-

tion of philosophy and computer science was for sure a risky investment.

I cannot, of course, decide whether this work keeps the numerous prom-

ises I made to get both my PhD (POLAP1 148948) and postdoctoral grants

(P2LAP1 184113). I can only assert that over the past few years, a great part

of my vital energy was dedicated to the accomplishment of this project. I

also wish to extend my thanks to the Société Académique Vaudoise for its

generous support between October and December 2018.

From 2016 to 2017, I spent a year abroad at the EVOKE Lab and Studio

of the University of California, Irvine (UCI) as part of my PhD program.

The MIT Press January 2021

Acknowledgments	 xiii

With regard to this formative experience, I must start by thanking Myles,

Kyle, Dave, and Laura Jeffrey who never stopped considering me as part

of their Californian family. I am also very grateful to my UCI colleagues at

that time—Anja Bechmann, Roderic Crooks, Simon Penny, John Seberger,

and Aubrey Slaughter—who greatly helped the completion of the book’s

second, third, and fourth chapters. And what can I say about the amazing

collections of the University of California Libraries? Without the daily invis-

ible work of University of California librarians, I could not have accessed

the crucial references I needed to propose, I hope, innovative propositions.

However, this Californian experience would have been impossible without

the unconditional support of Geoffrey C. Bowker who believed in this proj

ect from the very beginning.

Obviously, this document benefited from the support of MIT Press, Inside

Technology Series. In this regard, I want to thank the series’ editorial staff

for their kindness and unfailing availability throughout the publication

process. I am also grateful to the anonymous reviewers and copyeditors who

contributed to making this work better that it initially was. Of course, and

this concerns all those who helped me to produce this book; all mistakes

and low passes remain mine.

My close friends have helped, supported, and inspired me so much during

my not-yet-really-started academic career that it will be unfair not to name

them. Thus from the bottom of my heart, I want to thank Julien Bugnon,

Gabriel Buser, Frédéric Clerc, Loïs de Goumoëns, Christophe Durant, Simon

Duvoisin, Antoine Favre, Vincent Klaus, Nicolas and Vanessa Krieg, Naïke

and Stéphane Lévy, Mathieu and Nancy Morier, Marco Picci, Coralie Pittet,

Estelle and Vincent Rossire, Mathias Schild, Lucas Turrian, Nicolas Vautier,

and Élise Vinckenbosch. It is a real privilege to be your friend.

As this work is the direct product of their unconditional affection, I

finally wish to express my deepest gratitude to my mother, Katia; my father,

Jean-Pierre; my sister, Laure; my brother, Damien; and my niece, Lina. And

to Fanny, who lovingly supports me in the vicissitudes of intellectual life:

Thank you for bringing infinite light.

The MIT Press January 2021

The MIT Press January 2021

For critics and advocates alike, if we want to know algorithms, we may need to

live with them.

—Seaver (2013, 11)

Let us start this introduction in medias res, in the middle of things:

Rearrangement 1

The election of Donald Trump in November 2016 was quite surprising:

how could such a controversial figure reach the White House? The rea-

sons, of course, are innumerous. But what if one of them was Facebook

(Lapowsky 2016)? After all, Trump supporters never stopped using this

platform to spread out disputed contents. What if voters were brain-

washed by the “fake news” Facebook contributed to diffusing? What if

this extensive interlinking participated in Trump’s advertisement and

fundraising? However harsh this claim might be, it seriously harms the

image of the web application that would rather help to “connect people”

than to build border walls (Isaac 2016). It seems then that monitoring

needs to be increased, even though it may contradict some assumptions

Mark Zuckerberg elevates as precepts (Zuckerberg 2016). The main tar-

get is the “News Feed,” the spine of the application that displays stories

posted by Facebook users. What about slightly modifying how News Feed

automatically selects new stories to make it ignore “low quality posts”?

This may help restore Facebook’s public image, at least for a little bit, at

least for a little while. And after several months of in-house research and

testing, a new algorithm is made operational that—based on frequen-

cies of posts and URLs of links—identifies spam users and automatically

Introduction

The MIT Press January 2021

2	 Introduction

deprioritize the links they share (Isaac and Ember 2016). According to one

of Facebook’s vice presidents, this new method of computation should

significantly reduce the diffusion of “low quality content such as clickbait,

sensationalism, and misinformation” (Mosseri 2017).

Rearrangement 2

Planet Mars is a distant location. But hundreds of millions of kilometers

did not dishearten the US National Aeronautics and Space Administra-

tion (NASA) from sending the robotic rover Curiosity to explore its sur-

face. On May 6, 2012, the costly vehicle safely lands on Gale Crater.

Quite a feat! Amazing high-resolution pictures are soon available on

NASA’s website, showing the world the jagged surface of this cold and

arid planet. Of course, Curiosity is far more than a remote-controlled car

taking exotic pictures. It is a genuine laboratory on wheels with many

high-tech instruments: two cameras for true-color and multispectral imag-

ing, two pairs of monochrome cameras for navigation, a robotic arm

with an ultrahigh-definition camera, a laser-induced spectrometer, solar

panels, two lithium-ion batteries, and so on (Jet Propulsion Laboratory

2015). Yet there is an obvious cost to this amazing remote-controlled

laboratory: it needs to move its 350 kilograms (low gravity considered).

The sharp, rocky surface of Mars does not alleviate the constant efforts

of Curiosity’s wheels, irremediably wearing down. And in January 2014,

the situation becomes alarming (Webster 2015): Is there a way to extend

the lifetime of Curiosity’s wheels? After much research, a new driving

algorithm becomes operational in June 2017 that uses real-time data

from the navigation cameras to adjust Curiosity’s speed when it comes

to sharp Martian pebbles (Good 2017). By reducing the load of Curios-

ity’s leading and middle wheels up to 20 percent, this new method of

computation for navigation is considered a serious boost for the mission

(Sharkey 2017).

Rearrangement 3

Israeli secret services in the West Bank are used to dismantling organ

izations they define as terrorist by means of preventive actions and intim-

idation. But what about individuals who commit attacks on a whim? Just

like several police departments in the United States (Berg 2014), Israeli

The MIT Press January 2021

Introduction	 3

secret services are now supported by a security software whose algorithm

generates profiles of potential attackers based on aggregated data posted

on social media. Yet while several US civil courts are seriously consid-

ering the harmful bias of these new methods of computation (Angwin

et al. 2016; Liptak 2017), Israeli military justice as applied to suspected

Palestinian “attackers” prevents them from having any sort of legal pro-

tection. Thanks to the ability of the West Bank military commander to

stamp administrative detentions, these “dangerous profiles” can be sen-

tenced to a renewable six-month incarceration without any possibility of

appeal. Many Palestinians targeted by this state-secret technology “have

served long years without ever seeing a court” (Gurvitz 2017).

Rearrangement 4

How can people be made to eat more Nutella? It has not been easy these

recent years for the Italian brand of chocolate spread. When palm oil

production threatened remote orangutans, only a small fraction of citi-

zens was eager to criticize its use in Nutella’s recipe. But in May 2016,

as soon as palm oil is suspected of speeding up the spread of cancer

among Nutella consumers, there starts to be a worrying drop in sales

(Landini and Navach 2017). For Nutella, something needs to be done to

reconnect with the stomachs of its customers. What about a fresh new

marketing campaign? In collaboration with advertising agency Ogilvy &

Mather Italia, seven million uniquely designed Nutella jars are soon pro-

duced and sold in record time (Nudd 2017). At the heart of this success-

ful marketing move lies an algorithm that computes a carefully selected

set of colors and figures to generate unique pop patterns (Leadem 2017).

States of affairs change. In November 2016, News Feeds of Facebook users

were subjected to spammers diffusing hoaxes and “fake news” that are pre-

sumed to have played a role in the election of Donald Trump. One month

later, these News Feeds temporarily became monitored lists of stories worth

being read. Similarly, Curiosity’s weight together with sharp Martian peb-

bles first seriously affected the robot’s wheels, thus compromising the initial

duration of the mission. Yet a few years later, several changes in the loco-

motion system slowed down this unexpected wear. In another case, Israeli

secret services were at first powerless against attacks that were not prepared

The MIT Press January 2021

4	 Introduction

within dismantable cell organizations. Yet these services soon were able

to identify suspects and put them in jail without any kind of legal proce-

dure. Finally, Nutella was first an old-fashioned chocolate spread whose

recipe included orangutan-endangering and cancer-related palm oil. It then

became, temporarily, a trendy pop product. For better or worse, collective

configurations are rearranged, thus forming new states of affairs; relation-

ships between humans and nonhumans are reconstituted, thus temporarily

establishing new networks. According to this ontological position that is

often called “process thought,”1 the collective world is constantly reshaped

in this way.2

That being said, we may wish to comprehend some of the dynamics

of these messy rearrangements (RTs). After all, as we all have to coexist on

the same planet, getting a clearer view of what is going on could not hurt;

documenting a tiny set of the innumerous relationships that shape the

world we inhabit may equip us with some kind of navigational instrument.

Together, where do we go? What are we doing? What is going on? These are

important, legitimate questions.

To address these questions, two approaches are generally used. Broadly

speaking, the first approach consists in postulating the existence of aggre-

gates capable of inducing states of affairs. Depending on academic tradi-

tions, such aggregates take different names: they are sometimes called

“social forces,” “fields and habitus,” “economic rationality,” or “social struc-

tures,” among many other variations. These differently named yet a priori

postulated aggregates are all pretenders to the definition of the social (or

society), an influential yet evanescent matter that supposedly surrounds

individuals and orientates their actions. The scientific study of this matter

and the states of affairs it engenders is what I call the science of the social or,

more succinctly, social science.

The second approach—the one this book embraces—consists in consider-

ing the social not as an evanescent matter surrounding individuals but as the

small difference produced when two entities come into contact and tempo-

rarily associate with each other (Latour 2005).3 This approach assumes that

every new connection between two actants—humans (Bob, the president,

Mark Zuckerberg) or nonhuman entities (a wheel, a virus, a document)—

makes a small difference that can, sometimes, be accounted for. If we accept

calling “social” the small difference produced when two actants temporally

The MIT Press January 2021

Introduction	 5

associate with each other, we may call “socio-logy” the activity that consists

in producing specialized texts (logos) about these associations (socius).4 Our

initial four RTs are small examples of such an activity: Facebook, Curiosity,

Israeli secret services, and Nutella temporarily associate themselves with new

actants, and the blending of these new connections contributes to the for-

mation of new configurations summarized within a text. Had I added several

rearrangements and accounted for their constitutive associations a bit more

thoroughly, I would have produced a genuine sociological work. On the con-

trary, had I invoked some hidden force to explain these reconfigurations;

had I attributed the modifications of each state of affairs to some a priori pos-

tulated aggregate (e.g., economic rationality, society, culture), I would have

produced a small work of social science. This distinction between sociology

and social science will accompany us throughout this book. It is thus impor

tant to keep in mind that the present volume is—or, at least, is intended to

be—a sociological work.

With these clarifications in mind, let us have a closer look on our four

small sociological RTs. What do we see? We quickly notice that each RT

is affected by an “algorithm,” for now loosely defined as a computerized

method of calculation. These four algorithms can be considered entities—or

actants—as they all produce differences within specific configurations. In

that sense, these algorithms are fundamentally not dissimilar to the other

actants they, at some point, associate with. In RT1, there is Facebook, Don-

ald Trump, spams, supporters, News Feed, a new algorithm, a Facebook

vice president, and many other actants that, together, rearrange some state

of affairs. In RT2, there is Mars, NASA, sharp pebbles, a navigational algo-

rithm, lithium-ion batteries, and many other actants that, together, rear-

range some state of affairs. The same is true of RT3 and RT4: algorithms are

actants among many other actants.

Yet a closer look nonetheless suggests that the algorithms of our RTs pos-

sess characteristics that make them not completely akin to, say, sharp Mar-

tian pebbles or lithium-ions batteries. Contrary to such “firm” actants, the

algorithms of our RTs appear more fluid; they seem to be able to move very

quickly and make connections with other actants that were at first remote

from each other. In RT1, Facebook’s new algorithm can, in the end (and yet

temporarily), associate itself with News Feeds of millions of users located

all around the world almost instantaneously. In RT2, NASA’s algorithm can

The MIT Press January 2021

6	 Introduction

reach Mars to make Curiosity’s wheels cope with, potentially, all sharp Mar-

tian pebbles. In RT3, the algorithm used by Israeli secret services can clas-

sify thousands of social media texts sent by hundreds of thousand people

located throughout a two-thousand square-mile territory. In RT4, Ogilvy &

Mather Italia’s algorithm can create millions of uniquely designed patterns

instructing Nutella’s packaging factories in Italy and France. It seems then

that these algorithms can circulate and link up initially sparse actants in a

very short amount of time. This is a nontrivial characteristic. To underline

these algorithms’ fluidity (they circulate), swiftness (they are fast), and dis-

tributivity (they are simultaneously scattered and united), let us temporar-

ily categorize them as devices, a special category of actant that, according to

philosopher Gilles Deleuze, is “tangled, multi-linear ensembles [that] trace

processes that are always at disequilibrium, sometimes coming close to each

other, sometimes getting distant from each other” (Deleuze 1989, 185).

If we continue considering our four RTs, we also quickly notice that each

of these fluid, swift, and distributed devices called algorithms contributes

to modifying a network of relationships. In every RT, one algorithm—

well supported by many other entities (researchers, data, tests, computers,

etc.)—participates in making Facebook less subject to the spread of hoaxes

(RT1), Curiosity’s wheels a bit more durable (RT2), Palestinians definitely

more “jailable” (RT3), and Nutella temporarily more salable (RT4). Along

with all the entities they are associated with, these methods of calculation

seem then to participate in changing power dynamics: Facebook, Curios-

ity’s wheels, Israeli security services, and Nutella become temporarily stron-

ger than Trump-spamming supporters, sharp Martian pebbles, West Bank

potential “terrorists,” and palm oil scandals, respectively.

Scholars of Science and Technology Studies (STS)—a subfield of sociology

and social science that aims to document the co-constitution of science,

technology, and the collective world5—are nowadays prone to analyze

algorithms’ propensity to modify power dynamics in, for example, labor

markets (Kushner 2013; Steiner 2012), surveillance strategies (Introna 2016;

Introna and Wood 2002; Kraemer, van Overveld, and Peterson 2010), cor-

porate finance (Lenglet 2011; MacKenzie 2014; Muniesa 2011a), cultural

habits (Anderson 2011; Hallinan and Striphas 2014), or interpersonal rela-

tionships (Beer 2009; Bucher 2012). These scholars’ works are of the most

importance as they raise and maintain wakefulness with regard to what

The MIT Press January 2021

Introduction	 7

computerized methods of calculation do. Yet I must warn the reader right

from the start: what algorithms do is not the main topic of this book.

However, as soon as one takes seriously into consideration the banal

fact that objects and devices wear down and change, that “they break, mal-

function and have to be constantly mended, retrofitted and repurposed”

(Domínguez Rubio 2016, 60), thorough sociological studies of what algo-

rithms do should be coupled with the studies of the maintenance and

repair work required to keep them doing what they do. Whereas mainte-

nance and repair work is currently receiving the attention of an increas-

ing number of studies (e.g., de la Bellacasa 2011; Domínguez Rubio 2014,

2016; Denis and Pontille 2015; Lea and Pholeros 2010; Strebel, Bovet, and

Sormani 2018), very few have specifically explored the work required to

keep algorithms doing what they do (but see Crooks 2019). It is a shame

since the differences algorithms produce should be, at least in principle,

proportional to the work required to make them continue to produce such

differences in constantly evolving situations. If we continue to draw upon

our four initial RTs, we can for example imagine that to keep on protecting

users from spammers, Facebook’s new monitoring algorithm may need to

be actualized to detect unexpected forms of trolling (RT1). Similarly, if Curi-

osity’s balance of weight happens to change—such as if it loses a piece of

equipment—the parameters of its driving algorithm will have to be modi-

fied (RT2). In a similar vein, due to the progressive accumulation of small

differences in the computer equipment of Israeli secret services, the soft-

ware package allowing the new security algorithm to effectively compute

social media data and generate profiles will have to be slightly updated

(RT3). Finally, for its algorithm to keep on supporting effective marketing

coups, Ogilvy & Mather Italia will need to keep on convincing its clients

that consumers are attached to singular products (RT4). In short, we can

make the fair assumption that without constant efforts to make algorithms

keep on fitting with constantly changing situations (and vice versa), these

devices will not produce differences for very long. Although the work nec-

essary to preserve the agency of algorithms (Introna 2016) is surely more

and more common in contemporary economies, it remains poorly docu-

mented. Unfortunately, I will not contribute to filling in this gap; despite

the need for such studies to better understand the collective world we live

in, this book does not deal with the maintenance of algorithms.

The MIT Press January 2021

8	 Introduction

What is this book’s topic, then? We have quickly seen that, from a socio

logical standpoint, algorithms can be considered two kinds of entities:

devices that do things and devices that need things in order to keep on

doing what they do. Both views are, I believe, of great significance. Yet my

work follows a different path. Instead of starting from algorithms as devices

and studying their agency or need for maintenance, this book starts from

unrelated entities (e.g., documents, people, desires) and tries to account

for how they come into contact to form, in the end, devices we may call

“algorithms.” In short, I am studying what is happening before algorithms

become fluid, swift, and distributed devices. Of course, things are not so

clear-cut; as we will see, projections on both agency and maintenance

requirements of future algorithms may impact on their constructions.

Moreover, already constructed algorithms participate in the formation of

new algorithms. But still, it is important for the reader to understand that

I will mainly inquire into the practical activities by which algorithms are

progressively assembled in assignable locations rather than what they may

suggest or require once they are assembled.

Negative Invisibilities

Already at this point, a question may arise: Why is it important to account

for the formation processes of algorithms? Why spending time and energy

writing—and reading—about their constitution? Are there not other things

to do than making the activities by which algorithms come into existence

visible?

Certainly. As Star and Strauss (1999) have suggested, some activities need

to remain provisionally invisible—that is, not accounted for—otherwise the

results of these activities may lose some of their capacities. The circus is one

example: making publicly visible the infrastructure and training practices

required to design and master, say, a Cirque du Soleil trapeze act may nega-

tively affect the act itself. Wonder, surprise, or enchantment would poten-

tially be counteracted by the down-to-earth and uncertain operations that

enabled the act. Here, a sociological account would take the risk of spoiling

the act; it may lower the act’s capacity to act.6 Following the distinction

made by Star and Strauss (1999, 23), the relative invisibility of the trapeze

act is, in that sense, positive: it helps the product of these circus practices

to be, by lack of a better term, adequate. The lack of any publicly available

The MIT Press January 2021

Introduction	 9

account and the presence of secrecy help the act become an act, just as they

help the public become the public of the act. In such a very specific situa-

tion, one may assume there is a mutual desire to believe in mastery.

But as soon as there are controversies about the products of some prac-

tices, the terms of their adequacy are disputed; when some capacity to act

is put into question, disagreements about its formation need to be con-

fronted. Let us, for example, imagine that the same Cirque du Soleil trapeze

act leads to an accident. If disputes arise about this accident, there will

be requests to make visible the practices that contributed to producing it.

From being positively invisible, the practices required to do this trapeze act

would become negatively invisible: for the different parties of the dispute

to become able to negotiate, empirical accounts of how this act comes into

existence will become necessary. What does the Cirque du Soleil need to

perform this controversial act? Which elements could be changed to readjust

this fragile assemblage? In short, in order to propose compromises, in order

to better compose, disputants will benefit from empirical accounts of the

practices of trapeze;7 documenting what performers and entertainers cher-

ish and fear and what they are attached to might allow constructive dissen-

sions about the agency of what they produce to unfold.

Despite its obvious limits, this small imaginary example indicates that the

request for visibility is somewhat correlated with the rise of controversies.

When there are controversies over the products of practices, these products

cannot be considered adequate anymore: positive invisibilities may thus

switch to negative invisibilities that themselves call for empirical accounts—

which can take the form of sociological investigations—on which disputes

may arise and negotiations unfold. Of course, these accounts are very risky

as they inherently speak in the name of individuals (Latour 2005, 121–140).

To make visible what communities of practice need and cherish, and what

they are attached to, the sociological account that may establish common

grounds for further contentious negotiations would need to overcome many

trials: Does the account make visible the actants that are crucial to the work

of the practitioners? Do surprising but empirically supported connections

unfold? Does the account propose new grips for collective composition?

A single “no” to any one of these questions would make the sociological

account fail to fulfill its initial commitment.

What about algorithms? Not so long ago, these devices attracted little

attention. They were certainly involved in changing power relations, but

The MIT Press January 2021

10	 Introduction

these processes were not, or only to a limited extent, public issues. Things

began to change in the late 1990s when sociologists started to question the

discourse on empowerment and information accessibility put forward by

the promoters of web technologies.8 Hoffman and Novak (1998) showed,

for example, that the accessibility and use of web technologies in the United

States were largely function of racial differences. Lawrence and Giles (1999)

stressed that, contrary to the promotional rhetoric of almost unlimited

access, the search engines available in the late 1990s were only able to index

a small and oriented fraction of the web. In the same vein, Introna and Nis-

senbaum (2000) underlined the underground—and potentially harmful—

influence of the heuristics used for the classification of URLs by these same

late-1990s search engines. The post-9/11 period that followed focused on

criticisms of biases in programs and algorithms—the term appeared at that

time in the critical literature9—for surveillance and preventive detection.

In his study of the social implications of data mining technologies, Gandy

(2002) warned, for example, that they are the gateway to rational discrimi-

nation, potentially strengthening correlative habits between social status

and group membership. From a political economy perspective, Zureik and

Hindle (2004) discussed biometric algorithms’ propensity to trivialize social

profiling, categorization, and exclusion of national groups. Another exam-

ple is the work of Introna and Wood (2004): their analysis of facial recog-

nition algorithms highlighted the potential biases of these devices, which

were often, at that time, presented as impartial. This line of sociological

research led, at the beginning of the 2010s, to numerous investigations

on discriminations (e.g., Kraemer, van Overveld, and Peterson 2010; Gil-

lepsie 2014 Steiner 2012) and invisibilizations (Bucher 2012; Bozdag 2013)

induced by the use of algorithms.

This research direction has continued in recent years, with increasingly

comprehensive works revealing the contrasting, and often questionable,

effects of algorithms on contemporary societies (e.g., Crawford and Calo

2016; Noble 2018; O’Neil 2016; Pasquale 2015). These awareness-raising

efforts were also reported in the press, further making algorithms matters of

public concern (e.g., Mazzotti 2017; Risen and Poitras 2017; Smith 2018). This

dynamic—too complex to be thoroughly dealt with in this introduction10—

has led to the current situation where the collective world is steadily affected

by controversies over algorithms. A quick look at the news, at the time of

writing, suffices to remind us of it. UK police is about to use a new algorithm

The MIT Press January 2021

Introduction	 11

to identify online hate crime on social media (Roberts 2017)? This soon trig-

gers hostile reactions from the nonprofit organization “Big Brother Watch,”

ready to “fight any attempt to curb free speech online” (Parker 2018). A new

algorithm is published in an academic journal that can presumably deduce

people’s sexuality from photographs of faces (Levin 2017)? The Gay & Lesbian

Alliance Against Defamation soon condemns such a “dangerous and flawed

research that could cause harm to LGBTQ people around the world” (Ander-

son 2017).11 Facebook’s algorithm continues to bombard a grieved woman

by parenting ads after the stillbirth of her son (Brockell 2018)? Thousands

of tweets soon denounce gender bias from tech companies (Mahdawi 2018).

Every week, a new dispute arises regarding the consequences—actual or

potential—of new algorithms, often preceded by changing attributive nouns

such as big data, machine learning, or more recently, artificial intelligence.

The intended relevance of this book should be considered in the light of

the current controversies over the agency of algorithms. Following in the

footsteps of authors such as Bechman and Bowker (2019), Barocas and Selbst

(2016), and Grosman and Reigeluth (2019)—to whom I shall return later in

the book—my aim here is to propose intellectual tools to prepare the elabora-

tion of compromises. The invisibility of the practices underlying the devel-

opment of algorithms can indeed no longer be considered positive: as they

are the object of repeated disputes, it is now certainly important, or at least

interesting, to document the practical processes that enable them to come

into existence. Roughly put, if sociology has looked, with a certain success,

at the effects of algorithms, it is now time for it to inquire into the causes of

these effects, however distributed and multiple they may be. A gap needs to

be filled in; by means of empirical accounts of how computer scientists and

engineers nurture algorithms, some risky yet refreshing grounds for con-

structive disputes may be provided.12 The needs, attachments, and values

of those who design algorithms—as documented by my limited sociolog

ical account—may contradict other needs, attachments, and values. But

at least, in these days of controversies, parties in dispute may slowly start

to negotiate, as Walter Lippmann says, “under their own colors” (1982,

91). Yet before considering how I intend to effectively run this inquiry into

the practical formation of algorithms, I quickly need to further specify its

political dimension. To do so, I shall now make a quick detour by discussing

the unconventional term “constitution” I use here to qualify my venture.

The MIT Press January 2021

12	 Introduction

Why “Constitution” (And Not Simply “Construction”)?

At the beginning of this introduction, I asserted that the collective world is

constantly rearranged: heterogeneous entities never stop associating with

each other, the blending of these associations temporarily establishing new

states of affairs. From this (debatable) ontological position, it follows that

the world is not “out there,” ready to be grasped from some outside stand-

point. Instead, according to this processual ontology, the world is always

becoming; it is the active product of associations between human and non-

human actants.

Yet one may rightly argue that everything is not always reinvented. While

some associations bring about ephemeral actants (e.g., a cry of joy, tears of

sadness, laughs at some joke), some other associations bring about actants

that are more enduring. Many entities that populate/generate the collective

world are of this sort: Mark Zuckerberg, the planet Mars, West Bank jails,

Nutella jars—just to mention some entities we encountered in our small ini-

tial RTs—are quite enduring entities. Such actants, thanks to their ability to

live on beyond the here and now of their instantiation, may in turn associate

themselves with other actants, thus contributing to the continuous genera-

tion of the collective world. Such relatively stable actants possess some dura-

bility that allows them to bring about and orient what is becoming.

If we continue considering differences among actants, we quickly notice

that some durable actants can move from one place to another more or less

easily. Let us keep on using familiar entities to illustrate this point. If we

consider the planet Mars and West Bank jails, these entities appear rather

static. It is difficult for them to associate with actants capable of making

them deviate from their initial trajectories: without important mobilization

efforts, the planet Mars and West Bank jails will just stay where they are.

This is not quite the case for Mark Zuckerberg who, once associated with

actants such as “shoes,” “cars,” or “roads,” can markedly change his initial

trajectory and, in turn, associate himself with other actants that were at

first distant from him. Yet, largely due to his body envelope, Mark Zucker-

berg’s relative mobility is rather costly: in order for him to somehow keep

on being Mark Zuckerberg, in order for him to maintain most of his dura-

bility while he is moving, he would need to associate with many other

actants (e.g., oxygen, food, space for his legs, coffee breaks) protecting him

from being too much altered. In the case of Nutella jars, the story is a bit

The MIT Press January 2021

Introduction	 13

different. They too need to associate with other actants to deviate from

their initial trajectories (e.g., supply chain managers, railway lines, sale con-

tracts, delivery people). But contrary to Mark Zuckerberg, one can make the

fair assumption that Nutella jars’ alteration is slower: due to their proper

materiality, due to their own medium, they can, for example, be stored,

piled up, and handled without being significantly transformed. Among our

exemplary durable entities, Nutella jars seem then the most durable and

mobile: when compared to the planet Mars, West Bank jails, or even Mark

Zuckerberg—and when provided adequate associations—these jars can

move from one place to another without being too much altered.

When cumulated, durability and mobility are nontrivial characteris-

tics: entities that combine both abilities are more likely to associate with

other entities, thus actively contributing to the generation of the collective

world. But a very special category of entities cumulates another ability that

makes them certainly the most world-generative of all. These entities go by

different names: Jack Goody calls them “graphical objects” (1977); Bruno

Latour and Steve Woolgar call them “inscriptions” (1986, 43–91); Dorothy

Smith calls them “accounts” or “documents” (1974). But no matter how

these are labeled, sociologists have long emphasized on these actants’ fasci-

nating capacity to be durable and mobile and to carry with them some char-

acteristics of other actants—or of other associations between actants. This

is essentially what texts, tables, graphs, or drawings do: thanks to the pres-

ence and constant maintenance of specific habits, rules, and technologies—

what Jérôme Denis (2018) calls scriptural infrastructures—these often durable

and mobile inscriptions can host some aspects of actants and associations

and present them again (re-present) somewhere else. This scriptural trans-

port of (part of) actants—that itself necessitates many other actants to

unfold—may in turn create a link between what has happened and what

is to become. This sounds like an odd statement, but such a phenomenon

is in fact very common: Every time I read a New York Times article, a con-

nection is made between what has happened in the past (some events)

and what is happening now (me, considering this event and, eventually,

reacting to it). Of course, this connection, this link has been formatted in

order to be hosted in the specific materiality of the inscription I am con-

sidering (here, the newspaper article). Such a link is thus always a partial,

but potentially faithful, in-formed version of what has happened. When

I’m reading the New York Times, I don’t see migrants struggling to reach

The MIT Press January 2021

14	 Introduction

Europe in horrendous conditions; I see a flat surface with words that re-

present me those migrants; this re-presentation triggering in me feelings of

helplessness, shame, and despair, evanescent actants that will, in turn, con-

tribute to the continuous generation of the collective world (though quite

insignificantly). To qualify inscriptions’ capacity to carry some properties

of actants-associations and establish formatted yet generative connections

between times and locations, I shall use the term “re-presentability.” More

than just being durable and mobile actants, inscriptions are thus also re-

presentable: they can—together with suitable infrastructures—carry, trans-

port, and display properties that are not only theirs.

Durability, mobility, re-presentability: these are capacities not to be under-

estimated. Inscriptions, despite their often-modest appearances (lists of num-

bers, drawings, articles, tables, graphs), greatly participate in the shaping of

our world. A new molecule appears that revolutionizes our understanding

of the human hypothalamus? As well documented by Latour and Woolgar

(1986), such an association-prone actant derives, to a large extent, from

inscriptions assembled, accumulated, compiled, and compared within and

between laboratories. A new management technique starts to align corpo-

rate activities to a single arbitrary standard? As proposed by Thévenot (1984)

and Yates (1989), such Taylorist normalization—and its consequences—

heavily relies on measures, coding, and equity methods whose scriptural

circulation allows the centralization of control over the workers. A new

algorithm is published that may ignite original avenues of research in digi-

tal image processing? As I will try to show throughout this book, the for-

mation of such an actant owes a great deal to the production, circulation,

transformation, and compilation of many different types of inscriptions.

We will more thoroughly examine the world-generative capacity of inscrip-

tions in due time (especially in chapters 4, 5, and 6). For now, suffice it to

say that these durable, mobile, and re-presentable actants contribute a lot

to what is constantly happening.

But whatever their generative power, “inscriptions” do not exist by

themselves: they obviously need to be produced before they start to circu-

late. In that sense, every inscription needs to be inscribed. Extracting some

aspects of associations (or “events”; at this point, both terms are equivalent)

and re-presenting them on flat, durable media is not at all evident: What

part of the event shall be kept and written down? What language shall be

used? What protocol shall be followed to later compare this inscription

The MIT Press January 2021

Introduction	 15

with some others and produce, in turn, new compiled inscriptions? Consid-

ering the world-generative potential of inscriptions, these are major issues,

most of time supported by organizational and professional practices with

their own goals, rules, and principles that every day engage hundreds of

millions of people and instruments. This oriented work consisting in pro-

ducing inscriptions and, eventually, capitalizing on their world-generative

potential is what Dorothy Smith (1974) calls “the fabric of documentary

reality.”13 And this fabric is highly political.

To illustrate her point, Smith takes the a priori mundane example of

birth certificates. Inscribing a birth on a report is, in fact, not evident nor

neutral. It is the product of an organizational and professional practice that

shapes births and their accounts in very peculiar terms, very different from,

say, how mothers and fathers may want to remember it. As she put it:

“Jessie Franck was born on July 9th, 1963” appears maximally unequivocal in this

respect. But as we examine how it has been fabricated it becomes apparent that its

character as merely a record is part of how it has been contrived. Everything that

a mother and a father might want to have remembered as how the birth of Jessie

Franck was for them is stored elsewhere and is specifically discarded as irrelevant

in the practices of the recording agency. The latter is concerned only to set up

a certified and permanent link between the birth of a particular individual—an

actual event, and a name and certain social coordinates essential to locating that

individual—the names of her parents, where she was born, etc. (Smith 1974, 264)

Birth certificates are very selective—they only keep a very small part of

birth events—and this selection is oriented toward the potential of such

concise inscriptions—their features can, in turn, be used for identification

purposes or government statistics. Moreover, as being inscriptions that can

be remobilized in other spaces, birth certificates and their desired purposes

make a specific version of births that will, in many cases, impose on other

concurrent versions. Despite their very partial and partisan origins, these

circulating inscriptions will form a fulcrum for other inscriptions, progres-

sively establishing formal, factual, and so-called “neutral” versions of births.

This political aspect of inscription practices which aim to make partial

partisan versions of events does not only concern administration. The

power of Smith’s argument lies in that it is also applicable to any inscription

as it is materially impossible to fully inscribe an event in all its subtleties:

choices need to be made regarding what will be kept (and formatted) and

what will be ignored. What inscriptions gain as world-generators also lose

as world-betrayers, the latter being even a condition to the former.14

The MIT Press January 2021

16	 Introduction

With these elements in mind, let us now come back to this present book.

Have I not said it intends to be a sociological work? Have I not said it

intends to account for associations that progressively form devices we call

algorithms? At this point, these assertions can be further specified. Sociol-

ogy, as a professional activity that consists in producing specialized texts

(logos) about associations (socius), does not escape what I shall now call

“Dorothy Smith’s law”: however descriptive it is, sociology brings into

being—by means of inscriptions—partial realities to the detriment of other

realities. What is true for administrators (Desrosières 2010), economists

(MacKenzie, Muniesa, and Siu 2007), or scientists (Latour 1987) is also true

for sociologists: while describing realities by means of texts, they also enact

these realities.

As Law and Urry (2004, 396) well summarized it, there is no innocence:15

a text, however faithful—and some texts are definitely more faithful than

others—is also a wishful accomplishment. I must then admit that what I

intend to do in this book is not only describing what happens in particular,

algorithm-related, situations: due to this book’s very existence as a textual

inscription, it is also an attempt at enacting a world to the detriment of

other enacted worlds. My gesture is thus analytical and political: it aims to

produce a descriptive account of how algorithms come into existence—we

can keep that—but also, and in the same movement, to propose a new ver-

sion of their realities. The motivation behind this analytico-political move

were presented in the previous section: in these days of controversies over

the agency of algorithms, a refined—yet formatted and thus intrinsically

limited—account of their inner components may establish grounds for

constructive disputes about and with algorithms.

To come back to the title of this section, I assume the classical notion of

“construction” does not well express such a venture. Construction has been

for sure a useful term for sociology as it has equipped many valuable cri-

tiques of naturalized matters: studies on the construction of gender (Lorber

and Farrell 1991), patriarchy (Lerner 1986), or maternity (Badinter 1981),

just to mention some classics, have all been wonderfully liberating. But

considering recent developments in STS and sociology in general, it appears

that construction suffers from being two-faced: while it well expresses its

descriptive aspirations—showing how results have been produced—it also

tends to hide its political claims—generating realities to the detriment of

others.16 Due to its propensity to hide “Dorothy Smith’s law” under the

The MIT Press January 2021

Introduction	 17

cover of analytical ambitions, I consider it wiser to renounce using the term

“construction” to qualify my overall gesture.

I am not the first sociologist to dismiss construction. It is in fact quite

a popular move, motivated by more or less the same arguments as pre-

sented above. Law and Urry (2004) prefer to use “enactment” as it better

expresses the performativity of descriptive ventures. Latour (2013), inspired

by Souriau ([1943] 2015), has recourse to “instauration” as it underlines the

fragility of practical, succeeding assemblages. Ingold (2014), in the wake

of Rorty (1980), gives priority to “edification” as it stresses the continu-

ous and never fully achieved aspect of what is about to happen. All these

notions are surely interesting alternatives to construction. But at the risk of

feeding in a sociological jargon already well supplied, I choose here to use

the notion of “constitution” as it has the significant advantage of contain-

ing natively a double signification: a process by which something occurs

as well as a document advocating for rights and prerogatives. Here lies an

interesting tension that may recall the assumed ambivalence of my gesture:

describing and contesting. Moreover, as a constitution is never fixed once

and for all (it can be amended, completed, abolished), the notion forces us

to recognize the necessary incompleteness of my venture, the three activi-

ties that I try to put into existence here—ground-truthing, programming,

and formulating (more on this later, obviously)—must be considered partial

and temporary. Many more gerund articles, as long as they are supported

by empirical materials, can be potentially added to the present constituent

act of algorithms.

For all these reasons, this book’s title The Constitution of Algorithms should

be understood as the putting into text and existence—simultaneously

empirical and activist—of what algorithms shall be. At the very end of the

inquiry, in light of the accounted elements, I will come back to the implica-

tions of this analytical/insurrectional gesture in a section borrowing from

Antonio Negri’s (1999) work on “constituent power.” For now, let us just

note and accept this ambivalence by using the term constitution, a con-

stant reminder of this inquiry’s bipolarity.

A Laboratory Study

At this point, I have no other choice than to ask the reader to follow me—at

least temporarily—in assuming that in these days of controversies over the

The MIT Press January 2021

18	 Introduction

agency of algorithms, the invisibility of the work required to design, shape,

and diffuse them is negative as it prevents disputing parties from having

common grounds for negotiations. Let us also assume that one way to pro-

pose such grounds, and thus to suggest constructive disputes and composi-

tion attempts, could be to conduct sociological inquiries in order to make

visible the work practices required to make algorithms come into existence.

Let us finally assume that this volume is an attempt at such an inquiry that,

in its capacity as a world-generative inscription, cannot but be a partial,

partisan, and open-ended (while also faithful and empirical) constitution

of algorithms. If we accept these debatable assumptions, the next question

could be: How can I effectively run such a partial, empirical, and activist

inquiry? On what materials can I ground it?

It would be tempting to use readily available sources, such as the many

academic papers and manuals describing the internal workings of algo-

rithms. This is in fact what several STS scholars have done in some very

interesting works.17 However, I have reasons to believe that the sole use of

these sources surreptitiously contributes to the perpetuation of the negative

invisibility of algorithms’ components. Regarding computer science papers

published in academic journals, it would, of course, be incorrect to say that

this literature is erroneous: on the contrary, it attests to what is about to,

perhaps, become scientifically true.18 But as many important science stud-

ies have shown, these scientific publications tend to report the results of

processes, not the practical activities that led to those results. Under these

conditions, it is problematic to solely use academic publications to make

the formation of algorithms visible since these documents are themselves

supported and framed by unstated elements. Michael Lynch (1985) well

summarized this problem inherent in the analysis of scientific publications:

[Methods sections of scientific research papers] supply step-by-step maxims of

conduct for the already competent practitioner to assimilate within an indefinite

mix of common sense and unformulated, but specifically scientific, practices of

inquiry. These unformulated practices are necessarily omitted from the domain of

study when science studies rely upon the literary residues of laboratory inquiry as

the observable and analyzable presence of scientific work. (Lynch 1985, 3)

Moreover, for entangled reasons we will cover throughout this book, authors

of academic papers tend also to defend their algorithms against concur-

rent algorithms. A claim published in a scientific journal is indeed directed

against other claims and is intended to obtain the reader’s support. Hence

The MIT Press January 2021

Introduction	 19

the importance of captation techniques that aim “to lay out the text so

that wherever the reader is there is only one way to go” (Latour 1987, 57).

These conviction habits and the additional necessity they provide—essential

elements to establish objective constructions—tend to purify the scientific

accounts of algorithms of the many disparate elements that have contrib-

uted to their textual existence. When relying on these documents to analyze

computerized methods of calculation, it is therefore the hesitations, doubts,

and “infra-ordinary” equipment and writings that tend to escape the ana-

lyst’s gaze.19

But what about the numerous manuals that teach us how to design

algorithms?20 Do they not provide descriptions of how to assemble com-

puterized methods of calculation? Are they not, in that sense, connectors

between algorithms and the collective world they contribute to shaping?

These pedagogical resources are certainly crucial to inculcate students and

newcomers with the basic components of computerized methods of cal-

culation, which are essential to their sociological analysis. Yet, as Lucy

Suchman (1995) reminded us, these resources are, by definition, normative

accounts of how work should be done, not of how work is effectively done.

This is a crucial but often forgotten precision: “[These] normative accounts

represent idealization and typifications. As such, they depend for their

writing on the deletion of contingencies and differences” (Suchman 1995,

61). Instead of accounting for what it is being done during mundane situ-

ations, manuals account for what ought to be done. They are (important)

peremptory recipes, not empirically grounded accounts of practices.21 This

is, I believe, the main limitation of contemporary studies that rely mainly

upon textbooks and classes on algorithmic design: they inform about how

contemporary pedagogues want algorithms to be constructed, not on how

these algorithms are constructed on a day-to-day basis. Instead of getting

closer to computer scientists by accounting for their work, these studies,

otherwise very interesting, tend to move them further away.22

Academic papers and manuals are therefore sources that should be han-

dled with precautions. But how to reach what these sources, which remain

useful and important, contribute to keeping out of sight? How to get a

higher definition, yet still intrinsically limited, picture of the work required

to assemble algorithms? Fortunately, for this very specific purpose, I can

rely on a proven STS analytical genre often labeled “laboratory study.” The

first such studies appeared in the 1970s, mostly in the United States. In a

The MIT Press January 2021

20	 Introduction

sense, the collective (Western) world was at that time not so dissimilar to

the one we are experiencing today: controversies about types of agencies

were arising continuously. But instead of algorithms, these controversies

mostly concerned scientific facts often developed in life science, physics,

and neurology. For many reasons that are too entangled to be discussed

in this introduction,23 several scholars felt the need to deflate the delusive

aspect of scientific facts by sociologically accounting for mundane prac-

tices of natural scientists trying to manufacture certified knowledge (Col-

lins 1975; Knorr-Cetina 1981; Lynch 1985; Latour and Woolgar 1986). The

method of these scholars was quite radical: in reaction to the authoritative

precepts of epistemology, these authors borrowed from ethnography its

in situ analytical perspective to document “the soft underbelly of science”

(Edge 1976). As Latour and Woolgar put it:

We envisaged a research procedure analogous with that of an intrepid explorer

of the Ivory Coast, who, having studied the belief system or material production

of “savage minds” by living with tribesmen, sharing their hardship and almost

becoming one of them, eventually returns with a body of observations which he

can present as a preliminary research report.  … We attach particular importance

to the collection and description of observations of scientific activity obtained in

a particular setting. (1986, 28; emphasis in the original)

Instead of starting from scientific theories, minds, or “laws of Reason,”

these laboratory ethnographers—who actively participated in the launch-

ing of Science and Technology Studies—decided to start from mundane

actions and work practices to document and make visible how scientific

facts were progressively assembled. Several other monographs accounting

for the practices of physicists (Traweek 1992; Sormani 2014) and design

engineers (Vinck 2003) followed the seminal 1980s laboratory studies, each

time providing insightful new results. We will cover some of these results in

due time. For now, suffice it to say that the present sociological inquiry is

based almost entirely on these works. But what does that concretely imply?

It first implies locating places where individuals work daily to assemble

algorithms. For my case, this localization exercise was not very difficult

as I was institutionally close to a European technical institute with about

twenty computer science laboratories working every day to propose new

algorithms and to make them circulate in broader academic and indus-

trial networks. A more arduous task was to convince the director of one

these laboratories to let me describe the practical shaping of algorithms as

The MIT Press January 2021

Introduction	 21

an “intrepid explorer.” Fortunately, institutional movements related to the

establishment of a new institute of digital humanities enabled me to share

my research ambitions with a computer science professor open to inter-

disciplinarity.24 And after several trials, I could be part of her laboratory of

digital image processing for two and half years, from November 2013 to

March 2016. These were no passive moments: as required by the analytical

genre of laboratory studies and also by the rules of the laboratory to which

I was affiliated as full member, I had to participate in the life of the labora-

tory and thus become somewhat competent. Although the skills I progres-

sively acquired certainly did not make me become a computer scientist,

they were nonetheless crucial for speaking adequately about issues that

mattered to my new colleagues. But participating and discussing were not

enough: I also had to write down, collect, and compile what I did, saw, and

discussed. Very concretely, this implied taking a lot of notes. Discussions,

meetings, presentations, actions: everything I experienced had, ideally, to

be written down, referenced in notebooks and computer documents to be

later retrieved, compared, sampled, and analyzed. This full-time data com-

pilation work implied one last move: after my stay within the computer sci-

ence laboratory—during which I participated in projects, held discussions

with colleagues, observed what they did, wrote down as much as I could,

and made presentations about my preliminary results (processes that have

deeply transformed me and the sociology I now do)—I had to return to

my own community of research to more thoroughly work on the collected

materials and write an investigation report that, progressively, has become

the present book.

But these all-too-basic elements—that will be more thoroughly presented

in chapter 1—elude one important question: How to effectively account

for, and thus write down and analyze, what computer scientists do as they

try to shape new algorithms within their laboratory? How to experience,

capture, and analyze their actions?

Courses of Action

As soon as one is convinced of, and enabled to, undertake a laboratory

study to document—in a partial yet faithful way—the constitution of algo-

rithms, one quickly lands in uncharted territory. If there are laboratory

studies of life sciences, physics, medicine, or brain sciences, very little has

The MIT Press January 2021

22	 Introduction

been published on computer science work.25 The cost of entry and the time

required to carry out this type of investigation certainly contributed to this

situation. But it is also possible that a peculiar habit of thought partici-

pated in this disinterest. Indeed, for entangled reasons I will try to tackle in

chapters 3 and 5, the fair assumption that computer code and mathematics

actively contribute to the shaping of computerized methods of calculation

is often doubled with the not-so-fair assumption that both code and mathe

matics have no, or little, empirical thickness. This assumed evanescence of

the ingredients of algorithms contributes, in turn, to making them appear

inscrutable. This common habit—that Ziewitz (2016) associated with an

“algorithmic drama”26—may have discouraged sociologists from entering

sites where algorithms are shaped, diffused, and maintained: Why bother

trying to inquire into these places since everything happens in the heads of

those who work there?

But like any ethnographer involved in the daily work of a scientific

laboratory—trying to participate, talk adequately, and compile empirical

materials—I quickly realized that very few things could be attributed to the

brains of my colleagues, however clever they were. Of course, they never

stopped doing things—writing on scratch paper, comparing graphs, typing

on keyboards, inspecting databases, moving their mouse cursors, taking cof-

fee breaks—that at first appeared unrelated. But as I stubbornly accounted

for these things in my logbooks, I soon realized that the succession of these

small elementary “blocks” of action sometimes ended up forming bigger

accomplishments: a database, a script, a complete program, an algorithm.

By remaining continuously with my new colleagues in their laboratory,

conscientiously writing down observations and even recording some work

sequences (with their prior authorization), I was soon forced to admit

that what we call “practice” is in fact a term without opposite (Latour 1996).

In the artificial setting of my laboratory study, accounting for as many

associations as possible, I soon realized that the much-debated distinction

between “theory” and “practice” was an artifact. In the laboratory, there

were only practices whose successions ended up sometimes forming “data-

bases,” “computer programs,” “mathematical models,” or “algorithms.” A

little-equipped retrospective look on these trajectories could easily ignore

their importance. But once I managed to slow these trajectories down

and patiently account for them—sometimes with the help of those who

The MIT Press January 2021

Introduction	 23

were realizing them—I realized that I could almost do without any internal

“abstract” cognitive mechanisms.

Following the seminal work of Jacques Theureau (2003), I shall use the

term courses of action for these accountable chronological sequences of ges-

tures, looks, speeches, movements, and interactions between humans and

nonhumans whose articulations may end up producing something (a piece of

steel, a plank, a court decision, an algorithm, etc.).27 Sticking to this generic

definition is crucial as it will help us resist the supposed abstraction of com-

puter science work: what ends up being called a “mathematical model,”

“code,” or even “algorithm” must be, one way or another, the product of

accountable courses of action unfolding within specific situations and car-

ried out by assignable actants. Moreover, I shall include under the generic

term “activity” courses of action unfolding in different times and locations

that yet lead to related achievements. In this volume, an activity will then

be understood as a set of intertwining courses of actions sharing common finali-

ties. The three parts of this volume are all adventurous attempts to present

activities taking part to the formation of algorithms; hence their respective

titles ending with ing: ground-truthing, programming, formulating.

This leads to one potential limitation of courses of action as laboratory

studies allow them to be accounted for. I mentioned earlier that trajectories

must often be slowed down to identify the courses of action whose articula-

tion may lead to the formation of something. This slowing down is salutary

as it allows many crucial shaping actions to unfold. But it also has one flaw:

it forces one to proceed very slowly. As a consequence, any small a priori

mundane course of action may unfold on a dozen pages, thus limiting the

number of cases.28

Three Gerund Parts (But Potentially More)

I hope the reader has gotten a sense of why I decided to make this inquiry,

how I tried to conduct it, and where it may eventually lead. But before

diving in this exploratory study, I shall briefly present the three parts of

this book that, following my action-oriented methodology, are all gerunds:

ground-truthing, programming, formulating.

Part I mainly deals with the work required to define problems capable

of being solved computationally. In chapter 1, I present the overall setting

The MIT Press January 2021

24	 Introduction

of the inquiry and introduce basic notions in digital image processing and

standard algorithmic study. In chapter 2, I go directly to the heart of the

matter and follow a group of young computer scientists trying to publish one

of their algorithms. During this first case study of image processing in the

making, we will encounter what computer scientists call “ground truths”: ref-

erential repositories that work as material bases for algorithms. The centrality

of ground truths and of the work required to build them make me assert that,

to a certain extent, we get the algorithms of our ground truths.

Part II tries something that has rarely been attempted: considering com-

puter programming as a practical, situated activity. In chapter 3, I propose

historical and conceptual reasons why programming has resisted—and

still resists—ethnographic scrutiny. At the end of the chapter, I focus on

the computational metaphor of the mind, the main conceptual stumbling

stone preventing any close analysis of computer programming practices.

In chapter 4, building on notions and concepts introduced in the previ-

ous chapters, I carefully describe computer programming courses of action

I attended during my laboratory study. Besides opening new avenues of

research, this second case study leads, inter alia, to the following proposi-

tion: a programmer may never solve any problem.

In part III, I consider the role of mathematics in the formation of algo-

rithms. In chapter 5, I first build on STS-inspired inquiries into mathematics

to present mathematical practices as stakeholders of scientific activity. I

then use this unconventional view on mathematics to define formulat-

ing as the activity of translating entities until they acquire the same form

as previously-defined mathematical objects. In chapter 6, I build on these

theoretical arguments to account for courses of action that successfully

formulated some of the relationships among the data of a ground-truth

database. This third and last case study will also make us appreciate some

of the numerous links between ground-truthing, programming, and formu-

lating activities, entangled processes that, sometimes, leads to the shaping

of algorithms. These elements will finally allow me to touch on the topic

of machine learning and artificial intelligence, here considered audacious

yet costly attempts at automating formulating practices. In the conclusion,

I develop some corollaries of the empirical and theoretical elements this

inquiry unfolded.

Although ground-truthing, programming, and formulating activities fol-

low each other in the present volume, they do not necessarily do so in the

The MIT Press January 2021

Introduction	 25

“real” life of action. In places such as the computer science laboratory we

will soon get to know, these activities form a whirlwind process whose ele

ments influence each other in a dance of agency (Pickering 1995). Moreover,

even though this book’s narrative thread is sequential—with subsequent

chapters sometimes referring to previous ones—one may browse through

it in different ways. Readers interested in ethnographic accounts may, for

example, jump from one case study to another before eventually coming

back to more theoretical pieces such as chapters 3 and 5. Readers who favor

conceptual ventures may wish to go the other way round, starting with intel-

lectual matters before coming back to down-to-earth accounts of practices.

Of course, curious readers without specific expectations may also follow the

book’s thread, starting from chapter 1 and ending with the conclusion.

As mentioned earlier, it is important to keep in mind—almost like a

mantra—that these three activities forming an empirical and partisan ver-

sion of what algorithms shall be are not fixed nor exclusive. Even though

they form, I believe, a refreshing and faithful conception of how algorithms

come into existence, the precise ecology of algorithms would clearly benefit

from further investigations. There are surely many more activities contrib-

uting to the formation of algorithms that future ethnographies and case

studies will, hopefully, unfold. In that sense, although this volume does

intend to bring about an alternative action-oriented constitution of algo-

rithms, my arguments should also be considered preliminary propositions

asking for further considerations.

At any rate, inscriptions make worlds only when read: at this point, my

main concern is that readers—sociologists interested in the constitutive

relationships of algorithms; computer scientists curious about an alterna-

tive action-oriented account of their work; or in fact, anyone concerned

about the power, and beauty, of algorithms—are intrigued enough to come

with me to explore some of the things that are happening in a computer

science laboratory.

The MIT Press January 2021

The MIT Press January 2021

I  Ground-Truthing

The MIT Press January 2021

The MIT Press January 2021

The fact that techniques mediate advances suggests a way in which mathemati-

cal problems that arise in society are ultimately in some relationships with the

techniques which that society has forged. This, in turn, suggests that mathemati-

cians, like societies, can only pose those questions to which a potentiality of a

response exists.

—Ritter (1995, 72)

The introduction presented the rationale of this inquiry. Now, obviously,

the hard work begins: effectively doing it! We will start smoothly though,

with two straightforward chapters. Chapter 1 specifies the overall setting of

the inquiry: a well-respected computer science laboratory that specializes

in digital image processing; I shall call it “the Lab.” I start by presenting

its environment and some aspects of its organization as well as its place,

modest but substantive, in the heterogeneous ecosystem of computer sci-

ence industry. I will also consider methodological matters and discuss the

notion of algorithm as it is generally presented in the specialized literature.

Chapter 2 starts in the middle of things at the Lab’s cafeteria during a work-

ing session where the Group—three young computer scientists—tries to

coordinate the development of a new algorithm. After a quick parenthesis

where I present the basic issues at stake, we will closely follow this project,

meeting along the way entities called “ground truths” whose importance in

the constitution of algorithms we will learn to appreciate. The last section

of chapter 2 will be a brief summary.

The MIT Press January 2021

The MIT Press January 2021

This inquiry took place in a European technical institute (ETI) between

November 2013 and February 2016. This public school was integral part of

the global academic landscape and hosted more than five thousand under-

graduate and twenty-five hundred graduate students in five faculties: basic

sciences, engineering, life sciences, architecture, and computer science.

In this investigation, I will mainly focus on the computer science faculty

(CSF), one of the most renowned within the ETI for its ability to attract

foreign students and professors, to raise important research funds, and to

engage in numerous partnerships with the industry.

Over the time of this inquiry, the CSF employed nearly forty professors

supervising the training of more than 780 undergraduate and 550 graduate

students. The CSF professors were supported in their teaching activities by

around 250 doctoral students who were also working on the completion of

their PhD theses, generally over four years. Research among CSF members

was extremely varied, ranging from theoretical computer science and hard-

ware architecture to machine learning and signal processing. Significant

human and material resources were invested to gird the whole domain of

computer science and take active part to its development.

Teaching, research, and administrative activities of the CSF were mainly

located in six buildings linked to each other by a system of paths, foot-

bridges, and underground passages. Within this complex, the most recent

building (inaugurated in 2004) served as a nerve center, housing most of the

laboratories, the best equipped conference rooms, and the faculty’s cafete-

ria, highly prized for its breathtaking view of the surroundings (figure 1.1).

Opposite the CSF’s main building, on the other side of a small road, was

another complex of buildings housing around one hundred start-ups and

1  Studying Computer Scientists

The MIT Press January 2021

32	 Chapter 1

spin-offs as well as several offices of large companies and service provid-

ers. Created in the 1990s, this innovation area had the explicit purpose

of bringing fundamental research outputs closer to the industry, accord-

ing to dynamics of scientific valorization close to those analyzed by Lili-

ana Doganova (2012). Members of this innovation area often interacted

with members of the CSF during both formal and informal events, many of

which took place in the CSF main building.

However, the vast majority of CSF students did not launch start-ups at

the end of their training programs. Rather, they tended to be hired by large

national and international technology companies. This was particularly true

for doctoral students whose research funds were frequently supported by large

companies such as Google, IBM, NEC, or Facebook following calls for proj

ects, thus creating multiple and regular professional connections. Visiting

trips and internships were also routinely organized within technology com-

panies as part of master’s and doctoral programs. This was another distinctive

feature of CSF: within the ETI, CSF students had the greatest employability.

But public money nonetheless constituted the main financial resource

for ongoing research projects. Here, too, the CSF seemed to have a strategic

Figure 1.1
The CSF main building. On the left and right sides of the central patio, lines of offices

and seminar rooms. In the center of the image, in air-conditioned rooms with

glazed windows, three server farms store local programs, experiments, and databases.

On the top floor, illuminated, one can discern the entrance to the faculty cafeteria.

The MIT Press January 2021

Studying Computer Scientists	 33

advantage within the ETI, heavily capitalizing on and participating in pub-

lic speeches reporting the advent of a new industrial revolution around

big data, machine learning, and artificial intelligence. In addition, thanks

to the CSF’s reputation as a potential trainer of a new generation of digital

entrepreneurs (with several iconic precedents participating in this reputa-

tion), its financing requests could play the renewal of industry card, a goal

explicitly put forward by national research funding agencies. Relative to its

size within the ETI, the CSF was thus one of the faculties to which the most

public research funds were allocated.

Although the CSF hosted cutting-edge computer equipment, its premises

remained open most of the time. From 7 a.m. to 7 p.m., apart from incon-

spicuous surveillance cameras placed in sensitive areas such as server farms,

no special security procedures were in place. Unlike, for example, Vincent-

Antonin Lépinay’s (2011) analysis of General Bank’s trading rooms, my

ethnographic inquiry was largely conducted in an open environment with

no explicit surveillance mechanisms. For example, it was common to meet

tourists who came to visit and photograph the high-tech architecture of

the CSF premises. From 7 p.m. to 7 a.m., the security system was comple-

mented by two night watchmen and locked entrance doors (with alarms)

for those without an access card.

Nevertheless, while the CSF premises remained open most of the time, I

of course needed institutional support to collaborate with computer scien-

tists and document their courses of action. Without an e-mail address and

an account within the administrative system, it was, for example, impos-

sible to connect to the CSF servers or use advanced software, both constitut-

ing the basic infrastructure of most ongoing projects. Moreover, given the

deliberately small size of most of the CSF laboratories (around twenty col-

laborators under the supervision of a professor), it was impossible to blend

into the mass and investigate in a hidden way.

As a Science and Technology Studies (STS) sociologist without any for-

mal training in computer science, I first had difficulty raising the interest of

the CSF professors as my research questions appeared too abstract and their

impact too uncertain. Fortunately, at some point I had the opportunity to

surf on a broader institutional movement seeking to bring the CSF closer to

the faculty of human sciences (FHS) of a neighboring university to which I

was then affiliated. In early 2013, with the stated desire to penetrate cultural

spheres, the ETI’s management started to invest in the establishment of a

The MIT Press January 2021

34	 Chapter 1

center for digital humanities. As this movement involved the recruitment

of new teaching and research staff, it quickly created links between human-

ity scholars of FHS—some of them STS-inspired—and computer scientists of

ETI, and it was in this context of disciplinary rapprochement that I met the

director of a laboratory that specialized in digital image processing. After

several furtive yet decisive exchanges, I obtained her support to apply for a

national fellowship promoting interdisciplinary research. Following several

selection rounds, my application was finally retained in September 2013,

therefore committing me to run a four-year FHS-CSF doctoral project with

the stated ambition of carrying out an ethnographic inquiry into the for-

mation of algorithms.1 This dual institutional affiliation allowed me to be

officially accredited as full member of CSF’s image-processing laboratory

for a period of two-and-a-half years. From November 2013 to March 2016, I

had not only the same rights as any laboratory member, notably in terms of

research infrastructure, but also the same prerogatives, notably in terms

of presentation of results. While these conditions of investigation were at first

quite tough—after all, I had initially no experience in computer science—

they gave me the unique opportunity to stay, observe, and work for what I

will from now on call “the Lab.”

The Lab

The Lab was located on the third floor of the CSF main building. Typical of

the organization of the CSF, it was centered upon the tutelary figure of a full

professor, the director of the Lab. The director was assisted by a secretary

dealing with administrative issues that were often complex due to the high

proportion of collaborators who came from abroad (especially from Persia,

India, and China).2 Among these collaborators, one postdoc student stayed

at the Lab for one-and-a-half years. An invited scholar also had a desk and

took active part in teaching and research activities. Members of spin-offs,

sometimes related to the innovation area mentioned earlier, also stayed

within the Lab for the duration of their fund raising, ranging from one to

two years. It was not uncommon for these spin-off collaborators to make

presentations at Lab seminars (more on this later), though in these situa-

tions the other collaborators were required to respect an unofficial “nondis-

closure arrangement.” Some collaborators in between two research contracts

were also sometimes hired as “scientists,” a temporary position allowing

The MIT Press January 2021

Studying Computer Scientists	 35

them to pursue their ongoing work in decent conditions. However, most

of the Lab’s members were PhD students aged from twenty-three to thirty

years old and generally holders of four-year employment contracts, at the

end of which they were asked to submit doctoral theses allowing them

to become doctors of computer science. During my time in the Lab, the

number of PhD students varied from six to ten and depended on the num-

ber of submitted theses and awarded research contracts. In parallel to their

research activities, these students also had to work as teaching assistants for

bachelor’s and master’s classes, including those given by the Lab’s director.

All in all, for the two-and-a-half years of my collaboration, the Lab hosted

between ten and sixteen people, including myself.

Like many CSF professors, the director continuously tried to establish

community dynamics within her Lab. This involved, for example, bringing

cakes and biscuits to encourage informal chatting at the end of the weekly

Lab meetings, during which one or two collaborators presented their work

in progress. Two Lab dinners at nearby restaurants were also organized each

year; one around Christmas, the other at the end of June. Echoing a cor-

porate outing, a two-day excursion was organized during the summer as

well. The Lab’s PhD students also contributed to this dynamic by frequently

organizing “after-work” outings to the school pub on their own initiative.

All these facilitation efforts effectively created and maintained relation-

ships among collaborators, many of whom had initially arrived in the Lab

without knowing anyone in the area.

To some extent, the architectural organization of the Lab also partici-

pated in these community dynamics as the seven offices, generally occu-

pied by two researchers facing each other, were each aligned along the same

hall (see figures 1.2 and 1.3). The Lab also had a private cafeteria that pro-

vided tables, chairs, fridges, and coffee machines. As we will see later, this

cafeteria was often used as a meeting point, even though the Lab had its own

seminar room.

If these community dynamics, greatly encouraged by the Lab’s direc-

tor, did contribute to creating an enriching work environment, then they

also went along with managerial aspects. For example, attendance and con-

tribution to Lab meetings were mandatory, with each collaborator being

required to make at least one presentation per semester. In addition, similar

to corporate settings, collaborators were required to inform the secretary in

the event of illness or incapacity, thus suggesting they should be at the Lab

The MIT Press January 2021

36	 Chapter 1

Figure 1.2
The Lab’s hall. On the left, behind closed doors, the Lab’s cafeteria and seminar room.

On the right, seven offices most of the time occupied by two researchers.

Figure 1.3
Inside one of the Lab’s offices. Two researchers were generally facing each other, though

they were behind one to three large monitors.

The MIT Press January 2021

Studying Computer Scientists	 37

every working day unless otherwise specified. Moreover, scientific collabo-

rators were asked to meet with the director at least once every two weeks to

inform her of their research progress. This allowed the director to have an

actualized view on the ongoing projects while committing collaborators to

sharing results, questions, problems, or doubts with her.

This leads us to one central element penetrating many aspects of the

Lab: researchers were asked to produce outputs. This incentive to produce

tangible results derived from a broader dynamic, now common to research

institutions desiring to achieve, and maintain, the heights of the academic

rankings of world universities (Espeland and Sauder 2016). Although most

of the CSF laboratory directors held stable academic positions, they none-

theless had to be accountable for the performance of their research teams as

the category of output having the greatest impact on these evaluations were

articles published in peer-reviewed journals and conferences. Most of the

research efforts I attended and participated in were then directed toward

this very specific goal: publishing peer-reviewed articles. Despite its close

relations with the tech industry and its effective support for the launch of

spin-offs, the Lab was, in that sense, mainly academic-paper oriented.

But what was the content of the peer-reviewed articles that members of

the Lab sought to publish in academic journals and conference proceed-

ings? What was the Lab working on? The research field of the Lab was

existentially linked to the advent of a piece of equipment called the charge-

coupled device (CCD). The history of the CCD’s development, from its

patented concept at Bell Labs in the late 1960s to the many norms and stan-

dards that supported its industrialization during the 1990s, is a long and

tortuous story.3 In addition, a precise understanding of its now-stabilized

internal functioning would require foundations in solid-state physics.4 For

what interests us here—superficially understanding the main topic of the

Lab’s academic papers—we can just focus on what CCDs and their different

variations such as complementary metal-oxide semiconductors (CMOSs)5

allowed the Lab to do (i.e., the potentialities these devices suggest).

In a nutshell, through the translation of electromagnetic photons into

electron charges as well as their amplification and digitalization, CCDs and

CMOSs—as industrially produced devices supported by many standards—

enable the production of digital images constituted of discrete square ele

ments called pixels.6 Organized according to a coordinate system allowing the

identification of their locations within a grid, these discrete pixels—assigned

The MIT Press January 2021

38	 Chapter 1

eight-bit red, green, and blue values in the case of color images (see figure 1.4)—

have the ability to be processed by computer programs that are themselves,

most of time, inspired by certified mathematical statements. Many terms of

the former sentence will be discussed at length in the following chapters.

For now, it is enough to comprehend that in each of the seven offices of the

Lab as well as in many other scientific and industrial locations, pictures of

buildings, shadows, mountains, smiles, or elephants—as produced by stan-

dardized CCDs and CMOSs—were also considered two-dimensional signals

that could be processed by means of computerized methods of calculation.7

The design and shaping of these methods, their presentation within aca-

demic papers, and their expression as computer programs able to automati-

cally compute the constitutive elements of digital photographs (often called

“natural images”) was the main research focus of the Lab.8 This specific area

of practice was and is generally called “two-dimensional digital signal pro

cessing” or, more succinctly, “image processing” or “image recognition” (when

it deals with recognition tasks).

Even though spending time and energy assembling computerized meth-

ods of calculation capable of processing CDD- and CMOS-derived pixels in

0

x axis

y axis

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

Pixel (5;1), color
(225;240;221)

Pixel (7;4), color
(138;151;225)

Pixel (1;3), color (225;240;247)

Figure 1.4
Schematic of the pixel organization of a digital photograph as enabled by industri-

ally produced and standardized CCDs and CMOSs. The schematic on the right is an

imaginary zoom of the digital photograph on the left. Every pixel is identified by its

location within a coordinate system (x/y). Moreover, assuming the image on the left

is a color image, each pixel is described by three complementary values, commonly

referred to as a red, green, and blue (RGB) color scheme. As most standard computers

now express RGB values as eight-bit memory addresses (e.g., one byte), these triplets

can vary from zero to 255 or, in hexadecimal writing, from 00 to FF.

The MIT Press January 2021

Studying Computer Scientists	 39

meaningful ways might at first sound esoteric, such an activity plays an impor

tant role in contemporary economies.9 This is to be related with the unpre

cedented production, circulation, and accessibility of digital photographs:10

thanks to image-processing algorithms, these numerous two-dimensional

signals have become traces potentially indicating habits, attributes, prefer-

ences, and desires. Instead of a noisy, expansive stream of inscrutable data,

the many digital photographs produced and shared every day have turned

into valuable assets (Birch and Muniesa 2020) with the advent of image pro

cessing and recognition. This is a phenomenon whose magnitude must be

grasped. Giant technology services companies such as Facebook, Google,

Amazon, Apple, IBM, or Microsoft all have laboratories whose members work

every day to manufacture new algorithms to commercially exploit the infi-

nite potential of digital photographs, tangible expressions of what users,

clients, and partners are assumedly attached to.11 Nation-states are not to

be left out either; powerful public agencies also massively invest in image

processing to make use of the capabilities of digital photographs for security,

control, and disciplinary purposes.12 In recent years, similar to what Hine

(2008) described for the case of biological systematics, image processing has

been seen as a resource in control and planning and, to this end, has increas-

ingly become the object of strategic policy concern and support.

All this may sound gloomy. However, image processing is inextricably

a fascinating research area with many dedicated academic journals13 and

conferences.14 The research issue is indeed appealing: how to make box-like

computing machines see and possibly use their formalist ecology to make

them detect, recognize, and reveal things that we, as bipedal mammals,

cannot grasp with our organic senses? Huge academic efforts are invested

every day in the development of algorithms capable of manipulating CCD-

and CMOS-enabled pixels to make computers become genuine visual equip-

ment. It is important to note, however, that a clear-cut boundary among

image-processing groups cannot be easily drawn: academic researchers are

funded by public agencies but also by private companies that themselves

are sometimes solicited by public agencies that then take part in the devel-

opment of industrial products. For better or worse, these heterogeneous

actants associate with each other and cooperatively participate in the devel-

opment and worldwide diffusion of image-processing algorithms through

computing devices. And at its own level, the Lab was participating in this

highly collective endeavor.

The MIT Press January 2021

40	 Chapter 1

Yet one may rightly object that a sixteen-person academic laboratory

for image processing such as the Lab is not akin to, say, a giant technology

services company such as Google or a powerful state agency such as the

National Security Agency. How dare I treat on the same level a small yet

respected academic institution welcoming an ethnographer interested in

the manufacture of algorithms and gigantic actors attached to secrecy and

daily contributing to the progressive establishment of a “black box society”

(Pasquale 2015)? It is true that important differences exist between an algo-

rithm as an academic proposition and an algorithm as a commercial product

or an actual control device (notably in terms of optimization and software

implementation). Nevertheless, it is crucial to specify that academic contri-

butions such as those of the Lab do irrigate the work of large industrial and

state actors. These connections are often made visible during in-house talks

where alumni working in the industry are invited to discuss their ongoing

projects in academic settings. During my stay at the Lab, I attended many

such talks and was at first surprised to find that behind a priori impressive

affiliations such as Google Brain or IBM Watson lay a computer scientist not

so dissimilar to the ones I daily interacted with, saying more or less the same

things, and working in teams of similar proportions (though for a signifi-

cantly different salary). For example, in November 2015, the director of the

Lab invited an Instagram employee—an alumnus of the Lab—to talk about

their new browsing system whose main components derived from a paper

published in the Proceedings of the 2014 IEEE Conference on Computer Vision

and Pattern Recognition. In June 2014, a former Lab member working for

NEC in a five-person team also presented her ongoing algorithmic project

as deriving from a series of papers presented at the 2013 European Confer-

ence on Computer Vision in which she participated. Other people—mostly

from IBM and Google—also took part in these “invited talks” organized by

the Lab and neighboring CSF signal-processing laboratories, most of the

time mentioning and using state-of-the-art publications.15 Actors who were

officially part of the industry appeared then closely connected to the aca-

demic community, working in teams of similar size, participating in the

same events, and sharing the same references. Better still, this continuous

interaction between academic laboratories such as the Lab and the gigantic

tech industry was a two-way street: companies like Google, Facebook, and

Microsoft also organized academic events, sponsored international confer-

ences, and published papers in the best-ranked journals (see figure 1.5).16

The MIT Press January 2021

D
ee

p
R

es
id

u
al

Le
ar

n
in

g
fo

r
Im

ag
e

R
ec

o
g

n
it

io
n

K
ai

m
in

g
H

e
X

ia
n

g
yu

Z
h

an
g

S
h

ao
q

in
g

R
en

Ji
an

S
u

n
M

ic
ro

so
ft

R
es

ea
rc

h
{k

ah
e,

v-
xi

an
g

z,
v-

sh
re

n
,j

ia
n

su
n

}@
m

ic
ro

so
ft

.c
o

m

A
b

st
ra

ct

D

ee
pe

r
ne

ur
al

 n
et

w
or

ks
 a

re
 m

or
e

di
ffi

cu
lt

to
 t

ra
in

.
W

e
pr

es
en

t
a

re
si

du
al

 l
ea

rn
in

g
fr

am
ew

or
k

to
 e

as
e

th
e

tr
ai

ni
ng

of

 n
et

w
or

ks
 t

ha
t

ar
e

su
bs

ta
nt

ia
lly

 d
ee

pe
r

th
an

 t
ho

se
 u

se
d

pr
ev

io
us

ly
.

W
e

ex
pl

ic
itl

y
re

fo
rm

ul
at

e
th

e
la

ye
rs

 a
s

le
ar

ni
ng

re
si

du
al

fu

nc
tio

ns

w
ith

re

fe
re

nc
e

to

th
e

la
ye

r
in

pu
ts

,
in

-
st

ea
d

of

le
ar

ni
ng

un

re
fe

re
nc

ed

fu
nc

tio
ns

.
W

e
pr

ov
id

e
co

m
pr

eh
en

si
ve

 e
m

pi
ri

ca
l e

vi
de

nc
e

sh
ow

in
g

th
at

 th
es

e
re

si
du

al

ne
tw

or
ks

 a
re

 e
as

ie
r

to
 o

pt
im

iz
e,

 a
nd

 c
an

 g
ai

n
ac

cu
ra

cy
 f

ro
m

co

ns
id

er
ab

ly
 in

cr
ea

se
d

de
pt

h.
 O

n
th

e
Im

ag
eN

et
 d

at
as

et
 w

e

0
1

2
3

4
5

6
0

1020

it
er

. (
1e

4)

training error (%)

0
1

2
3

4
5

6
01020

it
er

. (
1e

4)

test error (%)

56
-l

ay
er

20
-l

ay
er

56
-l

ay
er

20
-l

ay
er

Fi
g

u
re

1.
T

ra
in

in
g

er
ro

r
(l

ef
t)

an
d

te
st

er
ro

r
(r

ig
h

t)
o

n
C

IF
A

R
-1

0
w

it
h

20
-l

ay
er

an
d

56
-l

ay
er

“p
la

in
”

n
et

w
o

rk
s.

T
h

e
d

ee
p

er
n

et
w

o
rk

h

as
h

ig
h

er
tr

ai
n

in
g

er
ro

r,
an

d
th

u
s

te
st

er
ro

r.
S

im
ila

r
p

h
en

o
m

en
a

o
n

Im
ag

eN
et

is
p

re
se

n
te

d
in

Fi
g

.4
.

Fi
g

ur
e

1.
5

Ex
am

p
le

 o
f

an
 a

ca
d

em
ic

 p
ap

er
 p

u
bl

is
h

ed
 b

y
an

 in
d

u
st

ri
al

 r
es

ea
rc

h
 t

ea
m

. T
h

is
 p

ap
er

 d
ea

li
n

g
w

it
h

 d
ee

p
 n

eu
ra

l n
et

w
or

ks
 f

or
 im

ag
e

re
co

gn
i-

ti
on

 w
on

 t
h

e
be

st
 p

ap
er

 a
w

ar
d

 o
f

th
e

20
16

 I
EE

E
C

on
fe

re
n

ce
 o

n
 C

om
p

u
te

r
V

is
io

n
 a

n
d

 P
at

te
rn

 R
ec

og
n

it
io

n
.

T
h

ou
gh

 c
op

yr
ig

h
te

d
 b

y
th

e

In
st

it
u

te
 o

f
El

ec
tr

ic
al

 a
n

d
 E

le
ct

ro
n

ic
s

En
gi

n
ee

rs
 (

IE
EE

)
(t

h
e

of
fi

ci
al

 e
d

it
or

 o
f

th
e

co
n

fe
re

n
ce

’s
 p

ro
ce

ed
in

gs
),

 it
s

co
n

te
n

t
is

 f
re

el
y

av
ai

la
bl

e
in

th
e

ar
X

iv
​.o

rg
 r

ep
os

it
or

y.
 S

ou
rc

e:
 H

e
et

 a
l.,

 2
01

6.
 R

ep
ro

d
u

ce
d

 w
it

h
 p

er
m

is
si

on
 f

ro
m

 I
EE

E.

The MIT Press January 2021

42	 Chapter 1

Nonetheless it remains true that academic publications are not commer-

cial products; if university and industrial laboratories both publish papers

presenting new image-processing algorithms, then these methods are rarely

workable as they are. To become genuine goods capable of making impor

tant differences in the collective world, they must take part in wider pas-

sivation and valuation processes that will significantly modify their initial

properties (Callon 2017; Muniesa 2011b). Depending on their circulation

within differentiated networks, some computerized methods of calcula-

tion initially designed by industrial or academic image-processing laborato-

ries can thus remain very specialized and intended for ad hoc purposes (e.g.,

superpixel segmentation algorithms), whereas others can become widespread

and industrially implemented in broader assemblages such as digital cameras

(e.g., red-eye-removal algorithms), expensive software, and large informa-

tion systems (e.g., text-recognition algorithms, compression schemes, or fea-

ture clustering). However, before they may circulate in broader networks and

hybridize to the point of becoming parts of larger systems, image-processing

algorithms first need to be designed, discussed, and shared among a heteroge-

neous research community in which the Lab played an active role. Whether

widespread or specialized, image-processing algorithms—also sometimes just

called “models” within the computer science community—first need to be

nurtured, trained, evaluated, and compared in places like the Lab.

Developing image-processing algorithms and publishing them in peer-

reviewed academic journals and conferences was thus a central activity within

the Lab, and it was this activity that I intended to account for. Yet I still had to

find a way to document the courses of action that took place there.

Collecting Materials

Thanks to my interdisciplinary research contract, I was part of the Lab for

two-and-a-half years. Just as any other collaborator, I had a desk, an e-mail

address, and an account within the administrative system. Yet despite these

optimal conditions for ethnographic investigation, it would be an under-

statement to claim that the first days were difficult: everything happening

around me seemed at first out of reach. Fortunately, the rules of the Lab that

I had to observe quickly allowed me to experience assignable situations. I

divided these situations progressively into seven different yet interrelated

The MIT Press January 2021

Studying Computer Scientists	 43

types whose systematic account and referencing ended up constituting my

corpus of field data.

The first type of situation I experienced was the Lab meetings I mentioned

earlier. During these weekly meetings, the Lab’s members gathered in a small

conference room to attend and react to presentations of works in progress.

Every PhD student (me included), postdoc, spin-off member, or invited

scholar were asked to make at least one presentation each semester. These

meetings turned out to be crucial to my inquiry for at least three reasons.

First, they helped me identify the research topics of my new colleagues. I

could then use this information to initiate discussions with them in more

informal settings. Second, Lab meetings allowed me to present my research

project as well as some of its preliminary propositions in front of the whole

Lab. These mandatory exercises thus forced me to put my exploratory intu-

itions to the test and, often, retrofit them. Third, these situations gave me

opportunities to share doubts and needs as in September 2015 when I used

this tribune to publicly ask for help in my attempts to better document com-

puter programming practices (more on this in chapter 4). Yet although these

Lab meetings were essential to the advancement of my inquiry, most of the

data I will use in the following chapters were not collected during these situa-

tions. Indeed, as these meetings mostly dealt with results of ongoing research

projects within the Lab, the empirical processes and courses of action that led

to these results were generally not at the center of the discussions.

The second type of situation was conferences organized by the Lab and

neighbored signal-processing laboratories. As mentioned earlier, some of

these conferences were invited talks where alumni working in the industry

came to discuss ongoing projects. Other conferences were closer to tradi-

tional keynotes and gave the floor to prominent researchers, mainly from

academic institutions. Though, again, I do not directly use data collected

from these conferences in the empirical chapters, these events were none-

theless crucial situations to experience and account for as they allowed me

to identify current debates in computer science and better appreciate some

of the relationships between research and industry.

A third type of situation I experienced was the so-called Group meet-

ings in which I participated between November 2013 and June 2014. These

Group meetings were part of an image-processing project to which the Lab’s

director had assigned me, and they were precious for my ethnographic

The MIT Press January 2021

44	 Chapter 1

inquiry as they made me encounter what computer scientists call ground

truths—inconspicuous entities that are yet central to the formation of algo-

rithms. These entities will be introduced in chapter 2 and will accompany

us throughout the rest of the book.

A fourth type of situation took place at the office desks of the Lab. Finding

appropriate ways to account for these “desk situations” was an important

felicity condition of this inquiry as it was at these precise moments and loca-

tions that courses of action crucial to the actual construction of algorithms

often took place. I had the chance to follow and account for such desk situ-

ations during a small part of the image-processing project to which I was

assigned between November 2013 and June 2014 (more on this in chapter 6)

as well as during several computer programming episodes that took place

between September 2015 and February 2016 (more on this in chapter 4).

A fifth type of situation was the numerous classes and tutorials in which

I participated throughout my time at the Lab. From basic signal-processing

classes to advanced Python programming tutorials, a significant part of

my time and energy was dedicated to learning the language of computer

science. Even if I do not directly use elements I saw in classes or during

tutorials in the following case studies, these situations nonetheless greatly

helped me speak with my computer scientist colleagues. Though quite time

consuming—again, I had initially no experience in computer science—

these learning activities were crucial prerequisites to interact adequately

with my fellow workers about issues that mattered to them.

A sixth type of situation was the semi-structured interviews I conducted

throughout my stay at the Lab. These interviews were initially exploratory

in nature and aimed to give me a better understanding of how my col-

leagues saw their work. However, as the investigation progressed, I instead

used interviews as retroactive tools to revisit with Lab members the events

for which I could only partially account. This helped me fill in some of the

many gaps in my data.

Finally, a seventh generic type of situation was the informal discussions I

had daily with the Lab’s members. Although I conducted twenty-five semi-

structured interviews, these were clearly not as valuable as the numerous con-

versations I had during coffee breaks, lunches, Christmas parties, corporate

outings, or after-work sessions at the pub. Besides facilitating my integration

within the Lab, these situations helped me share what I was experiencing and

documenting. During these informal moments, I could, for example, discuss

The MIT Press January 2021

Studying Computer Scientists	 45

past presentations, recently published papers, ongoing projects, forthcoming

programming operations, or unclear elements I had seen in class.

From November 2013 to April 2016, I spent most of my working time in

and around the Lab, switching among these seven types of situations and

trying to account for them in my logbooks the best I could. At the end of

the day, sometimes until late in the evening, I used a text editor to clean

up these notes, classify them according to an increasingly consistent taxon-

omy, and reference them to the paper pages from which they derived (see

figure 1.6). This collecting and referencing system was at first very messy

as the number of situational categories increased to the point of no lon-

ger being relevant and my single initial Word document became increas-

ingly cumbersome. However, after a couple of months, I could identify the

seven different yet interrelated situational categories I have just presented,

and thanks to the computer programming skills I progressively acquired

through classes and tutorials, I decided to stick to individual .txt files whose

content could be browsed by simple yet powerful Python programs I started

to draft (see figure 1.7). Once systematized, this ad hoc data management

plan more or less nimbly allowed me to juggle my digitized data while main-

taining access to the original paper notes.

In April 2016, after a small farewell party, I left the Lab with around one

thousand pages of handwritten notes; two thousand .txt files; a dozen mod-

ulable Python scripts; and hundreds of audio, image, and movie record-

ings as well as numerous half-finished analytical propositions. And with all

these empirical materials literally under my arm, I (temporarily) exited my

field site, asking myself serious questions about the significance of all this.

A Torturous Interlude

Ethnography is a transformative experience. Encountering worlds and writ-

ing about them—what is the point of even trying such an odd exercise?

Computer science now gives me comfort. And as for my former sociolo-

gist peers, what will they think of this new me? I cannot talk anymore.

Hell of a journey, significant metamorphosis: “I understand, and since I

cannot express myself except in pagan terms, I would rather keep quiet,”

someone said a long time ago. Yet words shall be written, promises kept,

and something not forgotten: my new “new” colleagues (the former ones)

have all gone through similar journeys. After all, we are in the same shaky

The MIT Press January 2021

l
-
m
e
e
t
i
n
g
_
1
4
1
1
0
6
_
n
k
_
d
e
e
p
-
l
e
a
r
n
i
n
g
-
o
n
-
m
a
n
u
s
c
r
i
p
t
s
_
l
4

-
2
7
-
3
8
.
t
x
t

N
K
'
s

p
r
o
j
e
c
t

i
s

p
a
r
t

o
f
a
b
r
o
a
d
e
r

d
i
g
i
t
a
l
i
z
a
t
i
o
n

p
r
o
j
e
c
t
o
n
l
i
t
e
r
a
r
y
h
a
n
d
w
r
i
t
t
e
n
m
a
n
u
s
c
r
i
p
t
s
(
c
f
.

d
i
s
c
u
s
s
i
o
n
_
1
4
1
0
1
3
_
n
k
_
g
r
o
u
n
d
-
t
r
u
t
h
-
f
o
r
-
d
e
e
p
-

l
e
a
r
n
i
n
g
_
l
3
-
7
4
-
8
0
)
;
h
e
h
a
s
a
l
r
e
a
d
y
e
n
h
a
n
c
e
d
t
h
e

p
a
g
e
l
a
y
o
u
t
o
f
h
i
s
c
o
r
p
u
s
a
n
d
d
e
s
i
g
n
e
d
a
m
o
d
e
l
f
o
r

t
e
x
t
-
l
i
n
e
e
x
t
r
a
c
t
i
o
n
.
H
e
n
o
w
w
o
r
k
s
o
n
f
e
a
t
u
r
e

e
x
t
r
a
c
t
i
o
n
.

T
h
e
s
t
a
t
e
d
g
o
a
l
h
e
r
e
i
s
:

-
i
n
v
e
s
t
i
g
a
t
e
c
h
a
n
g
e
s
o
f
h
a
n
d
w
r
i
t
i
n
g
s
t
y
l
e

-
i
n
v
e
s
t
i
g
a
t
e
m
o
d
e
l
s
'
t
o
l
e
r
a
n
c
e
t
o
h
a
n
d
w
r
i
t
i
n
g

v
a
r
i
a
b
i
l
i
t
y

-
i
d
e
n
t
i
f
y
w
r
i
t
e
r
s
f
r
o
m
t
h
e
i
r
h
a
n
d
w
r
i
t
i
n
g

s
t
y
l
e

I
n
s
h
o
r
t
,
t
h
e
m
a
i
n
q
u
e
s
t
i
o
n
i
s
:
i
s
i
t
p
o
s
s
i
b
l
e
t
o

f
i
n
d
/
c
o
m
p
u
t
e
f
e
a
t
u
r
e
s
t
o
i
d
e
n
t
i
f
y
d
i
f
f
e
r
e
n
c
e
s
i
n

t
h
e
h
a
n
d
w
r
i
t
t
e
n
s
t
y
l
e
o
f
a
w
r
i
t
e
r
?

Fi
g

ur
e

1.
6

Ex
ce

rp
t

fr
om

 o
n

e
of

 m
y

lo
gb

oo
ks

 a
n

d
 it

s
tr

an
sl

at
io

n
 in

to
 a

 .t
xt

 f
il

e.
 O

n
 t

h
e

le
ft

, n
ot

es
 t

ak
en

 d
u

ri
n

g
a

La
b

m
ee

ti
n

g
on

 N
ov

em
be

r
16

, 2
01

4.

O
n

 t
h

e
ri

gh
t,

 t
h

e
tr

an
sl

at
io

n
 o

f
th

es
e

n
ot

es
 i

n
to

 a
 .

tx
t

fi
le

.
T

h
e

n
am

e
of

 t
h

e
fi

le
 s

ta
rt

s
w

it
h

 “
l-

m
ee

ti
n

g,
”

th
u

s
in

d
ic

at
in

g
it

 r
ef

er
s

to
 a

 L
ab

m
ee

ti
n

g.
 T

h
e

se
co

n
d

 s
ec

ti
on

,
“1

41
10

6,
”

re
fe

rs
 t

o
th

e
d

at
e

of
 t

h
e

lo
gb

oo
k

en
tr

y.
 T

h
e

th
ir

d
 s

ec
ti

on
,

“n
k,

”
re

fe
rs

 t
o

th
e

in
it

ia
ls

 o
f

th
e

co
l-

la
bo

ra
to

r
th

e
n

ot
e

co
n

ce
rn

s.
 T

h
e

fo
u

rt
h

 s
ec

ti
on

, “
d

ee
p

-l
ea

rn
in

g-
on

-m
an

u
sc

ri
p

ts
,”

 r
ef

er
s

to
 t

h
e

ti
tl

e
of

 t
h

e
p

re
se

n
ta

ti
on

. T
h

e
fi

ft
h

 a
n

d
 l

as
t

se
ct

io
n

 (
l4

–2
7–

38
)

in
d

ic
at

es
 t

h
e

lo
ca

ti
on

 o
f

th
e

or
ig

in
al

 n
ot

e,
 h

er
e

in
 lo

gb
oo

k
n

u
m

be
r

4,
 f

ro
m

 p
ag

e
27

 t
o

p
ag

e
38

.

The MIT Press January 2021

Studying Computer Scientists	 47

boat, trying to write faithful sociological documents from scattered empiri-

cal data. But how can I do justice to my limited yet empirical materials,

distorted voices of those for whom I proposed to become the spokesperson

(without any mandate)? I lack everything: a history, a medium, a language.

Where do I start? Maybe in the middle of things, as always. Back to fun-

damentals, to practices, to courses of action. Read and reread classics; dive

again and again into my materials while sharing them with my colleagues

who are gradually becoming pairs again (how could I have forgotten that?).

Half-relevant things start to emerge—almost-analytical propositions. What

data can make them bloom in a written document? Not even a fraction, an

infinitesimal quantity: tiny snapshot of an enlightened world. Accountable

activities start taking shape on text pages. But are they still readable? Inscrip-

tions only make worlds when read. Conceptual shortage: both computer

science and sociology may not have the means to confront the manufac-

ture of algorithms. The slightest little programming sequence soon sug-

gests the rewriting of computers’ history; any small formula demands an

alternative philosophy of mathematics (what a cluttered topic!). We walk

around with eyes wide shut. Gradually, though, patterns emerge: courses of

action become vectors tracing genuine, accountable activities; an impres-

sionist draft from which adversarial lines appear: they may be powerful

but not inscrutable. How could we start composing with algorithms? The

hope is so dim, and the means so limited. “A voice cries out in the desert,”

and so on and so on. Enough laments: the whole thing is driven by issues

1. import OS
2. import mmap
3.
4. for i in os.listdir(“/Users/florianjaton/logbook"):
5. if i.endswith(“txt”):
6. f = open(i)
7. s = mmap.(f.fileno(), 0, access=mmap.ACCESS_READ)
8. if s.find(“ground truth” and “NK”) != -1:
9. file = open(“0_list-entries”, “a”)
10. file.write(i)
11. file.write(“\n”)

Figure 1.7
Example of a small Python script used to browse the content of the .txt files. This

script, working as a small computer program, makes the computer list the names of

the .txt files whose content include the keywords “ground truth” and “NK” in a new

document named “0_list-entries.”

The MIT Press January 2021

48	 Chapter 1

more important than my small personal troubles. And I guess I must now

validate my return ticket to propose a partial-yet-empirical constitution of

algorithms, somehow.

Algorithm, You Say?

Going through the previous, unusual section, I hope the reader could

appreciate that writing an ethnographic document about the shaping of

algorithms can somewhat be tortuous—even more so when one realizes

that in computer science the notion of algorithm is rarely problematic! As a

sociologist and ethnographer interested in the manufacture of algorithms,

I indeed landed in an academic field whose most illustrious figures have

dedicated—and still dedicate—their lives to the study of algorithms. To

many computer science professionals then, the fuss about “what an algo-

rithm is” is overhyped; as one colleague suggested me on my first week

in the Lab, taking the local undergraduate course in “algorithmic study”

may allow me to complete my research in record time… In order to specify

my analytical gesture, it is thus important to look at this well-established

computer-science-oriented take on algorithms to consider the present work

as an original complement to it.

When browsing through the numerous—yet not infinite—computer sci-

ence manuals on algorithmic study, one notices algorithms are defined in

quite a homogeneous way. Authors typically start with a short history of

the term17 before quickly shifting to its general contemporary acceptation

as a systematic method composed of different steps.18 Authors then specify that

the rules of an algorithm’s steps should be univocal enough to be imple-

mented in computing devices, thus differentiating algorithms from other a

priori systematic methods such as cooking recipes or installation guides. In

the same movement, it is also specified that these step-by-step computer-

implementable methods always refer to a problem they are designed to

solve.19 This second definitional element assigns algorithms a function, allow-

ing computers to provide answers that are correct relative to specific prob

lems at hand.

Right after these opening statements, computer science manuals tend to

organize these functional step-by-step computer-implementable problem-

solving methods around “inputs” and “outputs.” The functional activity

of algorithms is thus further specified: the way algorithms may provide

The MIT Press January 2021

Studying Computer Scientists	 49

right answers to defined problems is by transforming inputs into outputs.

This third definitional movement leads to the standard well-accepted con-

ception of algorithm as “a procedure that takes any of the possible input

instances and transforms it to the desired output” (Skiena 2008, 3).20

These a priori all-too-basic elements are, in fact, not trivial as they push

ahead with an evaluation stance and frame algorithms in a very oriented

way. Indeed, by endowing itself with problems-inputs and solutions-outputs,

this take on algorithms can emphasize on the adequacy relation between these

two poles. The study of algorithms becomes then the study of their effective-

ness. This overlooking position is fundamental and penetrates the entire field

of algorithmic study whose scientific agenda is well summarized by Knuth:

“We often are faced with several algorithms for the same problem and we

must decide which is best” (1997a, 7; italics added).21 From this point, algo-

rithmic analyses can focus on the elaboration of meta-methods that allow

the systematization of the formal evaluation of algorithms.

Borrowing from a wide variety of mathematical branches (e.g., set the-

ory, complexity theory), methods for analyzing algorithms as proposed by

algorithmic students can be extremely elegant and powerful. Moreover, in

the light of the significant advances in terms of implementation, data struc-

turation, optimization, and theoretical understanding, this standard concep-

tion of algorithms as more or less functional interfaces between inputs and

outputs—themselves defined by specific problems—certainly deserves its

high respectability. However, I believe this standard conception has some lim-

its that, in these days of controversies over algorithms, are important enough

to suggest complementary alternatives that yet still need to be submitted.

First, the standard conception of algorithms overlooks the definition of

the problems that algorithms are intended to solve. According to this view,

problems and their potential solutions are already made, and the role of

algorithmic studies is to evaluate the effectiveness of the steps leading to

the transformation of inputs into outputs. Yet it is fair to assume that prob

lems and the terms that define them do not exist by themselves. As it is

shown in chapter 2 of this book, for example, problems are delicately irri-

gated products of problematization processes engaging habits, desires, skills,

and values. And these collective processes greatly participate in the way

algorithms—as problem-solving devices—will further be designed.

The second limit is linked to the first one: if one considers problemati-

zation as part of algorithmic design, the nature of the competition among

The MIT Press January 2021

50	 Chapter 1

algorithms changes. The best algorithms are not only the ones whose for-

mal characteristics certify their superiority but also the ones that managed

to associate with their problems’ definitions the procedures capable of eval-

uating their results. By concentrating on formal criterions—without taking

into account how these formalisms participated in the initial shaping of the

problems at hand—the standard conception of algorithms tends to cover

up the evaluation infrastructure and politics of algorithms. As shown in

chapter 2, for example, evaluative procedures do not necessarily follow the

design of algorithms; they also, sometimes, precede and influence it.

Third, the actual computerization of the iterative methods is not consid-

ered. Even though the standard conception of algorithms rightly insists on

the centrality of computer code for the optimal execution of algorithms,

this insistence takes the shape of programming methodologies that do not

consider the experience of programming as it is lived at computer termi-

nals. According to this standard conception of algorithms, writing num-

bered lists of instructions capable of triggering electric pulses in desired

ways is mainly considered a means to an end. But as it is shown in chap-

ters 4 and 6 of this book, programming practices—by virtue of the collec-

tive processes they require in order to unfold—also sometimes influence

the way algorithms come into existence.

Fourth, little is said about how mathematical statements end up being

enrolled for the transformation of inputs into outputs and how this enroll-

ment affects the considered algorithms. To the standard conception of

algorithms, mathematical statements appear out of the blue, ready to be

scrutinized by means of other mathematical statements capable of evaluat-

ing their effectiveness. Yet as the chapter 6 of this book indicates, enroll-

ing mathematical statements in order to operate the transformation of

inputs into outputs is a problematic process in its own right, and again,

this impacts the nature of algorithms. The initial conception of the dataset

and its progressive problematization, reorganization, and reduction engage

expectations and anticipations that fully participate in the ecology of algo-

rithms in the wild.

The present work therefore intends to open up algorithms and extend

them to processes that they are attached to but whose standard conception

prevents from appreciating. If this venture does not, of course, aim to con-

test the results of algorithmic studies, it intends to enrich it with grounded

sociological considerations.

The MIT Press January 2021

Let us start this ethnographic inquiry into the constitution of algorithms

with a first dive into the life of the Lab. More precisely, let us start on Novem-

ber 7, 2013, at the Lab’s cafeteria. At that time, I had only been at the Lab

for a few days. During my first Lab meeting, I introduced myself as an eth-

nographer who had four years to submit a PhD thesis on the practical shap-

ing of algorithms. Reactions had been courteous, although tinged with some

indifference. Attention went up a notch when the director told the invited

postdoc CL, the third-year PhD student GY, and the first-year PhD student BJ

that I would take part to their ongoing project. It is this project we will follow

in this first case study centered around several Group meetings, collective

working sessions where CL, GY, and BJ (and myself) tried to coordinate the

submission of a paper on a new algorithm.1

Entering the Lab’s Cafeteria

Around 3 p.m. on November 7, 2013, I (FJ) entered the Lab’s cafeteria for

the first Group meeting. By that time, the Group and the topic of the proj

ect had already been defined: previous discussions among the Lab asso-

ciates agreed that a new collective publication in saliency detection was

relevant regarding the state of the art as well as the expertise of CL, GY,

and BJ. Naturally, as any ethnographer freshly landed on his field site, I

was terribly anxious: Would I live up to the expectations? Would they help

me understand what they do? My participation in the project was clearly a

top-down decision as the Lab’s director had assigned me to the project to

help me properly start my inquiry. Would the Group welcome me? I tried

to read some papers on saliency detection that CL previously sent me but

2  A First Case Study

The MIT Press January 2021

52	 Chapter 2

I was confused by their tacit postulates. How would it be possible to detect

this strange thing called “saliency” since what is important in a digital

image certainly varies from person to person? And what is this odd notion

of “ground truth” that the papers’ algorithms seem to rely on? “Ground”

and “truth”: for an STS scholar, such a conjunction sounded highly prob-

lematic. As soon as I entered the Lab’s cafeteria though, the members of

the Group presented me with the ambitions of the project and how they

intended to run it:2

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “So you heard about saliency, right?”

FJ:  “Well, I’ve read some stuff.”

CL:  “Huge topic, but basically, when you look at an image, not everything

is important usually, and you focus only on some elements.  … What we

try to do basically, it’s like a model that detects elements in an image that

should attract attention.  … GY’s worked on a model that uses contrasts to

segment objects and BJ has a model that detects faces. We’ll use them as a

base.  … For now, most saliency models only detect objects and don’t pay

attention to faces. There’s no ground truth for that. But what we say is

that faces are also important and usually attract directly the attention.  …

And that’s the point: we want to include faces to saliency, basically.”

GY:  “And segment faces. Because face detectors output only rectangles.  …

There can be many applications [for the model], like in display or com-

pression for example.”

Many questions immediately arose. How and why is it important to focus

on “elements that should attract attention”? Why is it problematic not to

have a “ground truth” to detect “multiple objects and faces”? And what is

a ground truth anyway? Why is it related to “saliency” and its potential

industrial applications? Already at this early stage of the inquiry, the mean-

dering flows of ethnography somewhat deprive us from our landmarks. To

follow the Group and become able to fully explore these materials, some

more equipment is obviously needed. I will thus temporally “pause” the

account of the Group’s project and consider for a while the sociohistorical

background of saliency detection that underlies the Group’s framing of its

project. Once these introductory elements are acquired, I will be come back

to this first Group meeting.

The MIT Press January 2021

A First Case Study	 53

Backstage Elements: Saliency Detection and Digital Image Processing

“Saliency” for computer scientists in image processing is a blurry term with

a history that is difficult to track. The term “saliency” was gradually created

by straddling different—yet closely related—research areas. One point of

departure could be the 1970s when explicative models developed in cogni-

tive psychology and neurobiology3 started to schematize how the human

brain could quickly handle an amount of visual data that is far larger than

its estimated processing capabilities (Eason, Harter, and White 1969; Lappin

and Uttal 1976; Shiffrin and Gardner 1972).4 After many disputes and con-

troversies, a rough agreement about the overall process of humans’ “selec-

tive visual attention method” had progressively emerged that distinguishes

between two neuronal processes of selecting and gating visual information

(Itti and Koch 2001; Heinke and Humphreys 2004).5 On the one hand,

there is a task-independent and rapid “bottom-up visual attention process”

that selects conspicuous stimuli such as color contrasts, feature orienta-

tions, or spatial frequency. On the other hand, there is a slower “top-down

visual attention process” that operates selectively based on tasks to accom-

plish. The term “saliency map” was proposed by Koch and Ullman (1985)

to define the final result of the brain’s bottom-up visual attention process.

In the 1980s, the way that cognitive psychologists and neurobiologists

theorized two different “paths” for the brain to process light signals—one

fast and generic, the other slower and task-specific—inspired scientists whose

machines face a similar problem in computer vision: the stream of sampled

digital signals that emanated from CCDs were too large to be processed all

at once. From this point, two different classes of image-processing detection

algorithms have progressively been shaped. The first class was inspired by the

assumed bottom-up schematic process of visual attention and tried to detect

“low-level features” inscribed within the pixels of a given image, such as

intensity, color, orientation, and texture.6 Through the academic efforts of

Laurent Itti and Christof Koch in the 2000s (Itti, Koch, and Niebur 1998;

Itti, Koch, and Braun 2000; Itti and Koch 2001; Elazary and Itti 2008; Zhao

and Koch 2011), the term “saliency” was progressively assimilated into this

first class of algorithms that became labeled saliency-detection algorithms.

The second class of image-processing detection algorithms was inspired by

the assumed top-down schematic process of visual attention and is based

on “high-level features” that have to be learned by machines according to

The MIT Press January 2021

54	 Chapter 2

specific metrics (e.g., face or car detection). This often involves automated

learning procedures and the management of increasingly large databases

(Grimson and Lozano-Perez 1983; Lowe 1999).

Despite differences in terms of substratum, both high-level and low-level

detection algorithms were, and are, bound to the same construction work-

flow that consists of five interrelated and problematic steps:

1.	 The acquisition of a finite dataset.

2.	 On the data of this dataset, the manual labeling of clear targets, defined

here as the elements (faces, cars, salient regions) the desired algorithm

will be asked to detect.

3.	 The construction of a database gathering the unlabeled data and their

manually labeled counterparts. This database is usually called “ground

truth” by the research community.

4.	 The design of the algorithm’s calculating properties and parameters based

on a representative part of the ground-truth database.

5.	 The evaluation of the algorithm’s performances based on the rest of the

ground-truth database.

To illustrate this schematic workflow, let us hypothesize the existence of φ,

a standard detection algorithm in image processing. The very existence of

φ depends upon a finite set of digital images for which human workers have

previously labeled targets (e.g., faces, cars, salient regions). The unlabeled

images and their manually labeled counterparts are then gathered together

within a database to form the ground truth of φ. To design and code φ, the

ground truth is randomly split into two parts: the “training set” and the

“evaluation set.” The designers of φ would use the training set to extract for-

mal information about the targets, often with help of mathematical expres-

sions. Once formulated and translated into machine-readable code, the

algorithm φ is tested on the evaluation set to see how well it detects targets

that were not used to design its properties. From its confrontation with the

evaluation set, φ produces a precise number of outputs that can be qualified

either as “true positives,” “false negatives,” or “false positives,” thanks to the

previous human-labeling work. Out of this comparison between manually

designed targets and automatically produced outputs, statistical measures

such as precision (the fraction of detected items that were previously defined

as targets) and recall (the fraction of targets among the detected items) can

be obtained to compare and rank competing algorithms (see figure 2.1).

The MIT Press January 2021

A First Case Study	 55

One drawback of high-level detection algorithms is that they are task-

specific and cannot by themselves detect different types of targets: a face-

detection algorithm will detect faces, a car-detection algorithm will detect

cars, a plane-detection algorithm will detect planes, and so on.7 Yet, one of

the benefits of such high-level detection algorithms is that the definition of

their targets (faces, cars, planes) often involves minor ambiguities for those

who design them: cars, faces, or planes have rather unambiguous character-

istics that facilitate agreement. Targets and ground truths can then be man-

ually shaped by computer scientists in order to train high-level detection

algorithms. Moreover, these ground truths can also serve as referees among

competing high-level detection algorithms as they provide precision and

recall metrics. The subfield of face detection with its numerous ground truths

and algorithmic propositions provides a paradigmatic example of a highly

Figure 2.1
Schematic of precision and recall measures on φ. In this hypothetical example, φ

(grey background) detected thirty targets (true positives) but missed eighteen of them

(false negatives). This performance means that φ has a recall score of 0.62. The algo-

rithm φ also detected twelve elements that are not targets (false positives), and this

makes it have a precision score of 0.71. From this point, other algorithms intended to

detect the same targets can be tested on the same ground truth and may have better

or worse precision and recall scores than φ.

ELEMENTS DETECTED BY = true positives

= false positives

= false negatives

Precision =

Recall =

+
=

30
42

= 0.71

+
=

30
48

= 0.62

TARGETS OF

The MIT Press January 2021

56	 Chapter 2

developed and competitive topic in image processing since at least the 2000s

(see figure 2.2).

In the 2000s, unlike research in high-level detection, low-level saliency

detection had no “natural” ground truth allowing the design and evalua-

tion of computational models.8 At that time, if the task-independent and

adaptive character of saliency detection was theoretically interesting for

automatic image cropping (Santella et al. 2006), adaptive display on small

devices (Chen et al. 2003), advertising design, and image compression (Itti

2000), the absence of any ground truth that could allow the training and

evaluation of computational models prevented saliency detection from

being an active topic in digital image processing. As Itti, Koch, and Niebur

(1998) confessed when they tested the very first saliency-detection algo-

rithm on natural images:

Results Reported in Terms of Percentage Correct Detection (CD) and Number
of False Positives (FP), CD/FP, on the CMU and MIT Datasets

Face detection system CMU-130 CMU-125 MIT-23 MIT-20

Schneiderman & Kanade—Ea [170] 94.4%/65
90.2%/110
92.3%/8
93.6%/7
94.8%/7

84.5%/8

89.4%/3
91.5%/1
94.1%/3

79.9%/5
94.1%/64
74.2%/20
72.3%/6
87.1%/0

Schneiderman & Kanade—Wb [170]
Yang et al.—FA [217]
Yang et al.—LDA [217]
Roth et al. [157]
Rowley et al. [158] 86.2%/23

86%/8Feraud et al. [42]
Colmenarez & Huang [22] 93.9%/8122
Sung & Poggio [182]
Lew & Huijsmans [107]
Osuna et al. [140]
Lin et al. [113]
Guand Li [54]

aEigenvector coefficients.
bWavelet coefficients.

Figure 2.2
An exemplary comparison table among high-level face-detection algorithms. Two

ground truths are used for this comparison table from Carnegie Mellon University

(CMU) and the Massachusetts Institute of Technology (MIT). On the left, a list of

algorithms named according to the papers in which they were proposed. In this

table, the ‘Percentage of Correct Detection’ (CD) indicates the recall values and the

‘Number of False Positives’ (FP) suggests the precision values. Source: Hjelmås and

Low (2001, 262). Reproduced with permission from Elsevier.

The MIT Press January 2021

A First Case Study	 57

With many such [natural] images, it is difficult to objectively evaluate the model,

because no objective reference is available for comparison, and observers may disagree

on which locations are the most salient. (Itti, Koch, and Niebur 1998, 1258; italics

added)

Saliency detection in natural images is an equivocal topic not easily expressed

in a ground truth. Whereas it is usually straightforward (and yet time con-

suming) to define univocal targets for training and evaluating high-level

face-detection or car-detection algorithms, it is far more complex to do so

for saliency-detection algorithms because what is considered as salient in a

natural image tends to change from person to person. While in the 2000s

saliency-detection algorithms might have been promising for many indus-

trial applications, no one in the field of image processing had found a way to

design a ground truth for natural images.

In 2007, Liu et al. proposed an innovative solution to this issue and cre-

ated the very first ground truth for saliency detection in natural images.

Their shift was smart, costly, and contributed greatly to framing and estab-

lishing the subfield of saliency detection in the image-processing literature.

Liu et al.’s first move was to propose one possible scope of saliency detection

by incorporating concepts from high-level detection. According to them,

instead of trying to highlight salient areas within digital images, compu-

tational models for saliency should detect the most salient object within a

given digital image. They thus framed the saliency problem as being binary

and one-off object related. According to them, to get around the impasse

of saliency detection, saliency-detection algorithms should distinguish one

salient object from the rest of the image:

We incorporate the high-level concept of salient object into the process of visual

attention in each respective image. We call them salient objects, or foreground

objects that we are familiar with.  … We formulate salient object detection as a

binary labelling problem that separates a salient object from the background.

Like face detection, we detect a familiar object; unlike face detection, we detect a

familiar yet unknown object in an image. (Liu et al. 2007, 1–2)

Thanks to this refinement of the concept of saliency (from “anything that

first attracts attention” to “the one object in a picture that first attracts

attention”), Liu et al. could organize an experiment in order to construct

legitimate targets to be retrieved by computational models. They first ran-

domly collected 130,099 high-quality natural images from internet forums

and search engines. Then they manually selected 20,840 images that fit

The MIT Press January 2021

58	 Chapter 2

with their definition of the saliency problem: images that, according to

them, contained only one salient object. This initial selection operation

was crucial as it excluded images with several potential salient objects. The

result was an initial dataset of no complex pictures with mixed features (see

figure 2.3).

They then proceeded in two steps. First, they asked three human workers

to manually draw a rectangle on what they thought was the most salient

object in each image. For each image, Liu et al. then obtained three differ

ent rectangles whose consistencies could be measured by the percentage of

shared pixels. For a given image, if its three rectangles were more consis-

tent than a chosen threshold (here, 80 percent of pixels in common), the

image was considered as containing a “highly consistent salient object”

(Liu et al. 2007, 2). After this first selection step, their dataset called α con-

tained around thirteen thousand images.

For the second step, Liu et al. randomly selected five thousand highly

consistent salient-object images from α to create a second dataset called β.

They then asked nine other human workers to label the salient object of

every image in β with a rectangle. This time, Liu et al. obtained for every

image nine different yet highly consistent rectangles whose average sur-

face was considered their “saliency probability map” (Liu et al. 2007, 3).

Thanks to this constructed social agreement, the five thousand saliency

probability maps—in a computer science perspective, tangible matrices con-

stituted of specific numerical values—could then be considered the best

solutions to the saliency problem as they framed it. The whole ground

truth—the database gathering the natural images and their corresponding

Figure 2.3
Samples from Liu et al.’s dataset. Pictures contain one centered and contrastive ele

ment. Source: Microsoft Research Asia (MSRA) public dataset, Liu et al. (2007).

The MIT Press January 2021

A First Case Study	 59

saliency probability maps—became the material base on which the desired

algorithm could be developed. By constructing this ground truth, Liu et al.

defined the terms of a new problem whose solutions could be retrieved by

means of calculating methods.

The shift here was not trivial. Indeed, by organizing this survey, invit-

ing people into their laboratory, welcoming them, explaining the topic to

them, writing the appropriate computer programs to make them label the

images, and gathering the results in a proper database in order to statisti-

cally process them, Liu et al. transformed their initial reduced conception

of saliency detection into workable and unambiguous targets with specific

numerical values. At the end of this laborious process, Liu et al. could ran-

domly select two thousand images from set α and one thousand images

from set β to construct a training set (Liu et al. 2007, 5–6) to analyze the

shared features of their constructed-yet-sound-by-virtue-of-agreement tar-

gets. Once the adequate numerical features were extracted from the targets

of the training set and implemented in machine-readable language, they

used the four thousand remaining images from set β to statistically measure

the performances of their algorithm. Further, and for the very first time,

they also could compare the detection performances of their algorithm with

two competing algorithms that had already been proposed by other labora-

tories but that could not have been evaluated on natural images before due

to the lack of any “natural” targets related to saliency. Besides the actual

completion of their saliency-detection algorithm, the great innovation of

Liu et al. was then to redefine the saliency problem so that it could allow

performance evaluations (see figure 2.4).

By publishing their paper and also publicly providing their ground truth

online, it is not an exaggeration to say that Liu et al. established a newly

assessable research direction in image processing. A costly infrastructure

had been put together, ready to be reused to support other competing algo-

rithmic propositions with perhaps better performances according to Liu

et al’s ground truth and the definition of saliency it encapsulates. Their

publication was more than a paper: it was a paper that allowed other papers

to be published as they provided a ground truth that could be used by other

researchers as long as they properly quote the seminal paper and accept the

ground truth’s restricted—yet operational—definition of saliency.9

Another important paper for saliency detection—and therefore also for

the Group’s project that we shall soon continue to follow—was published

The MIT Press January 2021

Fi
g

u
re

 1
4.

 C
o

m
p

ar
is

o
n

 o
f

d
if

fe
re

n
t

al
g

o
ri

th
m

s.
 F

ro
m

 le
ft

to

 r
ig

h
t:

 F
G

, S
M

, o
u

r
ap

p
ro

ac
h

, a
n

d
 g

ro
u

n
d

-t
ru

th
.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

91

P
re

ci
si

o
n

R
ec

al
l

F-
m

ea
su

re

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

91

P
re

ci
si

o
n

R
ec

al
l

F-
m

ea
su

re

(a
)

p
re

ci
./r

ec
al

l,
im

ag
e

se
t

A
(b

)
p

re
ci

./r
ec

al
l,

im
ag

e
se

t
B

0510152025303540

0510152025303540

1
2

3
1

2
3

1
2

3
1

2
3

(c
)

B
D

E
, i

m
ag

e
se

t
A

(d
)

B
D

E
, i

m
ag

e
se

t
B

Fi
g

u
re

 1
2.

 C
o

m
p

ar
is

o
n

 o
f

d
if

fe
re

n
t

al
g

o
ri

th
m

s.
 (

a-
b

)
an

d
 (

c-
d

)
ar

e
re

g
io

n
-b

as
ed

 (
p

re
ci

si
o

n
, r

ec
al

l,
an

d
 F

-m
ea

su
re

)
an

d
 b

o
u

n
d

ar
y-

b
as

ed
 (

B
D

E
—

b
o

u
n

d
ar

y
d

is
p

la
ce

m
en

t
er

ro
r)

 e
va

lu
at

io
n

s.
 1

. F
G

. 2
.

S
M

. 3
. o

u
r

ap
p

ro
ac

h
.

Fi
g

ur
e

2.
4

Pe
rf

or
m

an
ce

 e
va

lu
at

io
n

s
on

 L
iu

 e
t

al
.’s

 g
ro

u
n

d
 t

ru
th

.
O

n
 t

h
e

le
ft

,
a

vi
su

al
 c

om
p

ar
is

on
 a

m
on

g
th

re
e

d
if

fe
re

n
t

sa
li

en
cy

-d
et

ec
ti

on
 a

lg
o-

ri
th

m
s

ac
co

rd
in

g
to

 t
h

e
gr

ou
n

d
 t

ru
th

.
O

n
 t

h
e

ri
gh

t,
 h

is
to

gr
am

s
th

at
 s

u
m

m
ar

iz
e

th
e

st
at

is
ti

ca
l

p
er

fo
rm

an
ce

s
of

 t
h

e
th

re
e

al
go

ri
th

m
s.

 I
n

th
es

e
h

is
to

gr
am

s,
 t

h
e

gr
ou

n
d

 t
ru

th
 c

or
re

sp
on

d
s

to
 t

h
e

y
ax

is
,

th
e

be
st

 p
os

si
bl

e
sa

li
en

cy
-d

et
ec

ti
on

 p
er

fo
rm

an
ce

 t
h

at
 e

n
ab

le
s

th
e

ev
al

u
a-

ti
on

. S
ou

rc
e:

 L
iu

 e
t

al
. (

20
07

, 7
).

 R
ep

ro
d

u
ce

d
 w

it
h

 p
er

m
is

si
on

 f
ro

m
 I

EE
E.

The MIT Press January 2021

A First Case Study	 61

in 2008 by Wang and Li. To them, even though Liu et al. (2007) were right

to frame the saliency problem as a binary problem, their bounding-box

ground truth remained unsatisfactory as it could well evaluate inaccurate

results (see figure 2.5). To refine the measures of Liu et al.’s very first ground

truth for saliency detection, Wang and Li randomly selected three hundred

images from β dataset and used a segmentation tool to manually label the

contours of each of the three hundred salient objects. What they proposed

and evaluated then was a saliency-detection algorithm that “not only cap-

tures the rough location and region of the salient objects, but also roughly

keeps the contours right” (Wang and Li 2008, 965).

From this point, saliency detection in image-processing was almost set:

even though many algorithms exploiting different low-level pixel informa-

tion were later proposed (Achanta et al. 2009; Chang et al. 2011; Cheng

et al. 2011; Goferman, Zelnik-Manor, and Tal 2012; Shen and Wu 2012;

Wang et al. 2010), they were all bound to the saliency problem as defined

by Liu et al. in 2007. And even though other ground truths have later been

proposed in published papers (Judd, Durand, and Torralba 2012; Movahedi

and Elder 2010) to widen the scope of saliency detection (notably by propos-

ing images with two objects that could be decentered), Liu et al.’s seminal

framing of saliency detection as a binary object-related problem remained

unchallenged. And when the Group started their project in November 2013,

(a) (b) (c) (d) (e)

Figure 2.5
Image (a) is an unlabeled image of Liu et al.’s ground truth; image (b) is the result of

Wang & Li’s saliency-detection algorithm; image (c) is the imaginary result of some

other saliency-detection algorithm on (a); and image (d) is the bounding-box target

as provided by Liu et al.’s ground truth. Even though (b) is more accurate than (c), it

will obtain a lower statistical evaluation if compared to (d). This is why Wang & Li

propose (e), a binary target that matches the contours of the already defined salient

object. Source: Wang and Li (2008, 968). Reproduced with permission from IEEE.

The MIT Press January 2021

62	 Chapter 2

Liu et al.’s problematization of the saliency problem was continuing to sup-

port a competition among algorithms that differentiated themselves by

speed and accuracy (see figure 2.6).

With this brief history of saliency in image processing, we are better

equipped to follow the Group as it tries to construct its own innovative

saliency-detection algorithm. Social surveys, salient objects whose contours

Image Ground
Truth

Ours CB LR SVO RC CA GB SER

Figure 9. Comparison of different methods on the ASD, SED and SOD datasets. The first three rows are from
the ASD dataset, the middle three rows are from the SED dataset, the last three rows are from the SOD dataset.

Table 1. Comparison of average execution time (seconds per image).

Method Ours CB SVO RC LR CA GB SER FT LC SR IT
Time(s) 0.105 1.179 40.33 0.106 11.92 36.05 0.418 25.19 0.016 0.002 0.002 0.165
Code Matlab Matlab Matlab C++ Matlab Matlab Matlab C++ C++ C++ C++ Matlab

Figure 2.6
2013 comparison table between different saliency-detection algorithms. The number of

competing algorithms has increased since 2007. Here, three ground truths are used for

performance evaluations: ASD (Achanta et al. 2009), SED (Alpert et al. 2007), and SOD

(Movahedi and Elder 2010). Below the figure, a table compares the execution time of

each implemented algorithm. Source: Jiang et al. (2013, 1672). Reproduced with permis-

sion from IEEE.

The MIT Press January 2021

A First Case Study	 63

define the targets of competing algorithms, ground truths bound to a binary

problematization of saliency, promising industrial applications: the stage we

are about to explore is supported by all of these elements, constraining the

members of the Group in the shaping of their project as well as providing

them opportunities for further reconfigurations.

Reframing Saliency

If, at the beginning of the chapter, the Group’s explanations appeared quite

cryptic, the previous introductory review should now enable us to under-

stand them critically. Let us thus look at the same excerpt once again:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “So, you heard about saliency, right?”

FJ:  “Well, I’ve read some stuff.”

CL:  “Huge topic, but basically, when you look at an image, not everything

is important usually, and you focus only on some elements.  … What we

try to do basically, it’s like a model that detects elements in an image that

should attract attention.  … GY’s worked on a model that uses contrasts

to segment objects and BJ has a model that detects faces. We’ll use them

as a base.  … For now, most saliency models only detect objects and don’t

pay attention to faces. There’s no ground truth for that. But what we say is

that faces are also important and usually attract directly the attention.  …

And that’s the point: we want to include faces to saliency, basically.”

GY:  “And segment faces. Because face detectors output only rectangles.  …

There can be many applications [for the model], like in display or com-

pression for example.”

According to the Group, saliency-detection models should also take human

faces into account as faces are important in human attention mechanisms.

Moreover, investing this interstice within saliency detection would be a

good opportunity to merge some of the Group’s recent researches on both

low-level segmentation and high-level face detection. The idea to combine

high-level face detection with low-level saliency detection derived from

previous image-processing papers (Borji 2012; Karthikeyan, Jagadeesh, and

Manjunath 2013) inspired themselves by studies in gaze prediction (Cerf,

Frady, and Koch 2009), cognitive psychology (Little, Jones, and DeBruine

2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski 2008). But the

The MIT Press January 2021

64	 Chapter 2

Group’s ambition here was to go further in the saliency direction as framed

by Wang and Li (2008), after Liu et al. (2007), by proposing an algorithm

capable of detecting and segmenting the contours of faces. In order to accom-

plish such subtle results, the previous work done by GY on segmentation and

BJ on face detection would constitute a precious resource to work on.

The Group also wanted to construct a saliency-detection model that

could effectively process a larger range of natural images:

Group meeting, the Lab’s cafeteria, November 7, 2013

GY:  “But you know [to FJ], we hope the algorithm could detect multiple

objects and faces. Because in saliency detection, models can only detect

like one or two objects on simple images. They don’t detect multiple

salient objects in complex images.  … But the problem is that there’s no

ground truth for that. There’s only ground truth with like one or two

objects, and not that many faces.”

In many cases, natural images not only capture one or two objects dis-

tinguished from a clear background; pictures produced by users of digital

cameras—according to the Group—are generally more cluttered than those

used to train and evaluate saliency-detection algorithms in the wake of Liu

et al. (2007). Indeed, at least in November 2013, saliency detection was

becoming a research area where algorithms were more and more efficient

only on those—rare—natural images with clear and untangled features. But

the Group also knew that this issue was intimately related to the then avail-

able ground truths for saliency detection that were all bound to Liu et al’s

restricted initial definition of saliency that only fit simple images. From this

point, as the Group wanted to propose a model that could detect a different

and more subtle saliency, it had to construct the targets of such saliency;

as it wanted to propose a model that could calculate and detect multiple

salient features (objects and faces) in more complex and realistic images,

it had to construct a new ground truth that would gather complex images

and their corresponding multiple salient features.

The Group’s desire to redefine the terms of the saliency problem did

not come ex nihilo. When Liu et al. did their research on saliency in 2007,

it was difficult for computer scientists to organize large social surveys on

complex images. But in November 2013, the growing availability of crowd-

sourcing services enabled new potentialities:

The MIT Press January 2021

A First Case Study	 65

Group meeting, the Lab’s cafeteria, November 7, 2013

GY:  “But we want to use crowdsourcing to do a new ground truth and

ask people to label features they think are salient.  … And then we could

use that for our model and compare the results, you see?”

In broad strokes, crowdsourcing—a contraction of “crowd” and “outsourc-

ing” initially coined by journalist Howe (2006)—is “a type of participative

online activity in which an individual, an institution, a non-profit organ

ization, or a company proposes to a group of individuals of varying knowl-

edge, heterogeneity, and number, via a flexible open call, the voluntary

undertaking of a task” (Estellés-Arolas and González-Ladrón-de-Guevara

2012, 195). In November 2013, this service was offered by several com-

panies such as Amazon (via Amazon Mechanical Turk), ClickWorker, or

Employment Crossing (via ShortTask), whose own application program-

ming interfaces (APIs)10 recommended surveys to registered online con-

tingent workers mainly located in the United States and India. Once a

worker submits their completed task—which can vary greatly in time and

complexity—the organization that designed the survey (e.g., a research

institution, a company, an individual) can decide on its validity. If the task

is considered valid, the worker receives from the crowdsourcing company

the amount of money initially indicated in the open call. If the task is con-

sidered not valid, the worker receives nothing and has, most of the time, no

possibility of appeal. As the moral economy of crowdsourcing has recently

been the object of critical sociological studies, it is necessary to devote a

short sidebar to it.

Contingent work has long supported industrial efforts. As, for example,

documented by Pennington and Westover (1989), the textile industry as it

developed in England in the 1850s relied heavily on off-site manufactur-

ing operations, often referred to as “industrial homework.” Women and

children living in the countryside, operating as proto-on-demand workers,

were asked to make crucial finishing touches too fine for the machines of

the time. Almost simultaneously, a similar phenomenon was taking place

in the United States, particularly in the Pittsburg, Pennsylvania, area: even

though it was often seen as a reminiscence of a preindustrial era that was

doomed to disappear, “piecework” organized on a commission basis in part-

nership with rural households was a necessary lever for the scaling up of

mass manufacturing (Albrecht 1982). And if trade unions did later manage,

The MIT Press January 2021

66	 Chapter 2

through painful struggles, to somewhat improve the working conditions

of employees (e.g., US Fair Labor Standards Act in 1938, French Accords de

Matignon in 1936), these improvements mostly concerned full-time work

carried out on designated production sites that was mostly reserved for

white male adults. The concessions made to salaried workers during the

first half of the twentieth century thus mostly concerned those who ben-

efited from visibility and proximity: contingent work, which was scattered,

not very visible, little valued, and considered unskilled, continued to pass

under the radar. To this—and to many other things that are beyond the

scope of this sidebar11—was later added a more or less explicit corporate

strategy of circumventing unionization and work regulations (which were

already reserved for specific trades) based notably on the growing avail-

ability of information and communication technologies. This strategy of

“fissuration of the workplace” (Weil 2014), well in line with the financial-

ization of Western economies,12 helped to further promote outsourcing:

instead of depending on employees benefiting from statutory logic, it has

become preferable and valued to depend on remote worldwide networks

of contingent staff. And crowdsourcing, as distributed computer-supported

on-demand low-valued work, can be seen as the continuation of contin-

gent work’s support to and modification of industrial capitalism. As Gray

and Suri (2019, 58) noted: “Those on-demand jobs today are the latest itera-

tion of expendable ghost work. They are, on the one hand, necessary in the

moment, but they are too easily devalued because the tasks that they do are

typically dismissed as mundane or rote and the people often employed to

do them carry no cultural clout.”13

Let us come back to the Lab. In November 2013, like most people, the

Group was not aware of the dynamics underlying generalized outsourcing

and devaluation of contingent labor as supported by contemporary crowd-

sourcing processes. An indication of this unawareness could be found in the

term “users” the Group often employed to refer to the anonymous workers

engaged in this new form of precariat.14 For the Group, at that moment,

the estimated benefits of crowdsourcing were huge: once the desired web

application was coded and set with an instruction, such as “please highlight

the features that directly attract your attention,” the Group would be able

to pay a crowdsourcing company whose API would take charge of linking

the survey to dozens of low paid “users” of the Group’s web application. In

turn, these “users”—that I will from now on call “workers”—would feed the

The MIT Press January 2021

A First Case Study	 67

Group’s server with labeling coordinates that could be processed on soft-

ware packages such as Matlab.15 For our story, crowdsourcing—as a rather

easily available paid service—created a difference: the gathering of many

manually labeled salient features became more manageable for the Group

than it had been for Liu et al. in 2007, and an extension of the notion of

saliency to multiple features became—at least in November 2013—doable.

Another difference effected by crowdsourcing was a potential redefinition

of the saliency problem as being continuous:

Group meeting, the Lab’s cafeteria, November 7, 2013

FJ:  “So, basically you want many labels?”

GY:  “Yes because you know, in the state-of-the-art face detection or

saliency models only detect things in a binary way, like face/no face,

salient/not salient. What we also try to do is a model that evaluates the

importance of faces and objects and segments them. Like ‘this face is

more important than this other face which is more important than that

object’ and so on.  … But anyways, to do that [a ground truth based on

the results of a crowdsourcing task], we first need a dataset with many

images with different contents.”

CL:  “Yes, we thought about something like 1,000 image at least, to train

and evaluate. But it has to be images with different objects and faces

with different sizes.”

GY:  “And we have to select the images; good images to run the sur-

vey.  … We’ll try to propose a paper in [the] spring so it would be good to

have finished crowdsourcing in January, I guess.”

If the images used to construct the ground truth contained only one or two

objects and were labeled only by several individuals, no relational values

among the labeled features could be calculated. From this point, defining

saliency as a binary problem in the manner of Liu et al. (2007) would make

complete sense. Yet as the Group could afford to launch a social survey that

asked for many labels on a dataset with complex images containing many

features, it would become methodologically possible to assign relative impor-

tance values to the different labeled features. This was a question of arithme-

tic values: if one feature were manually labeled as salient, the Group could

only obtain a binary value (foreground and background). But if several fea-

tures were labeled as more or less salient by many workers, the Group could

obtain a continuous subset of results. In short, for the Group, crowdsourcing

The MIT Press January 2021

68	 Chapter 2

once again created a difference by making it possible to create new types

of targets with relatively continuous values. It was difficult at this point to

predict if the Group’s algorithm would effectively be able to approach these

subtle results. Nevertheless, the ground truth the Group wanted to consti-

tute would enable the development of such an algorithm by providing the

targets that the model should try to retrieve in the best possible way.

Even though the Group had managed to build on previous works in

saliency detection and other related fields to reframe the problem of saliency,

it still lacked the ground truth that could numerically establish the terms

of this new problem: both the inputs the desired algorithm should work

on and the outputs (the “targets”) it should try to retrieve still needed to

be constructed. In that sense, the Group was only at the beginning of the

problematization process that may lead to a new computational model: its

new definition of the saliency problem still needed to be equipped (Vinck

2011) with tangible elements (a new set of complex images, a crowdsourcing

task, continuous values, segmented faces) to form a referential database that

would, in turn, constitute the material base of the new computerized method

of calculation. Borrowing from Michel Callon (1986), we might say that, for

the members of the Group, the new ground truth appeared as an obliga-

tory passage point that could make them become—perhaps—indispensable

for the research community in saliency detection. Without a new ground

truth, saliency-detection models would still operate on unrealistic images;

they would still be one-off object related; they would still ignore the detec-

tion and segmentation of faces; and they would still, therefore, be irrel-

evant for real-world applications. With the help of a new ground truth,

these shortcomings that the Group attributed to saliency detection may

be overcome. In a similar vein—this time borrowing from Joan Fujimura

(1987)—we might say that, at this point, the Group’s saliency problem was

doable only at the level of its laboratory. The Group had indeed been given

time and money to conduct the project and had insights on how to run

it. But without any ground truth, the Group had no tangible means to

articulate this “laboratory level” with both the research communities in

image processing and the specific tasks required to effectively define a work-

ing model of computation. It is only by constructing a database gathering

“input-data” and “output-targets” that the Group would be able to propose

and, eventually, publish an algorithm capable of solving the saliency prob

lem as the Group reframed it.

The MIT Press January 2021

A First Case Study	 69

Constructing a New Ground Truth

We have now a better sense of some of the pitfalls that sometimes get in

the way of computer scientists trying to shape a new algorithm. As we were

following the Group in the beginning of its saliency-detection project, we

realized that the constitution of an image-processing algorithm capable of

establishing a new research direction goes along with the shaping of a new

ground truth that should precisely support and equip the constitution of

the algorithm. Yet for now, we only considered the reasons why the Group

needed to design a new ground truth. But how did it actually make it?

In addition to working on the coding of the crowdsourcing web

application, the Group also dedicated November and December 2013 to

the selection of images that echo the algorithm’s three expected perfor

mances: (1) detecting and segmenting the contours of salient features,

including faces; (2) detecting and segmenting these salient features in com-

plex images; and (3) evaluating the relative importance of the detected and

segmented salient features. These specifications led to several Group meet-

ings specifically organized to discuss the content and distribution of the

selected images:

Group meeting, the Lab’s cafeteria, November 21, 2013

BJ:  “Well, we may avoid this kind of basketball photo because these

players may be famous-like. They are good because the ball contrasts

with faces, but at least I know some of the players. And if I know, we

include other features like ‘I know this face,’ so I label it.”

CL:  “I think maybe if you have somebody that is famous, the impor-

tance of the face increases and then we just want to avoid modeling that

in our method.”

…

CL:  “OK. And the distributions are looking better?”

FJ:  “Yes definitely. BJ just showed me what to improve.”

CL:  “OK. So what other variables do we consider?”

GY:  “Like frontal and so on. But equalizing them is real pain.”

CL:  “But we can cover some of them; maybe not equalize. So there

should be like the front face with images of just the front of the face and

then there is the side face, and a mixture in between.”

The MIT Press January 2021

70	 Chapter 2

The selection process took time because a wide variety of image contents

(e.g., sport, portraits, side faces) had to be gathered to cover more natural

situations than the other ground truths. Also, no famous features (e.g., build-

ings, comedians, athletes) that could influence attention processes should be

part of the content. As we can see, the Group’s anticipated capabilities for the

algorithm oriented this manual selection process: similarly to Liu et al. (2007)

but in a manner that made the Group include more complex “natural situa-

tions,” the assembling of a dataset was driven by the algorithm’s future tasks.16

By December 2013, eight hundred high-resolution images were gathered—

mostly from Flickr—and stored in the Lab’s server. Since the Group consid-

ered the inclusion of faces within saliency detection as the most significant

contribution of the project, 632 of the selected images included human faces.

In parallel to this problem-oriented selection of images, organizational

work on the selected images had to be defined in order not to be overloaded

by the increasing number of files and by the huge amount of labeled results to

be gathered throughout the crowdsourcing task. This kind of organizational

procedure was very close to data management and implied the realization of

a whole new database for which information could be easily retrieved and

anticipated. Moreover, the shaping of the crowdsourcing survey also required

coordination and adjustments: What question would be asked? How would

answers be collected and processed in order to fulfill the ambitions of the

project? Those were crucial issues as the “raw” labeled answers obtained via

crowdsourcing could only be rectangles and not precise contours:

Group meeting, the Lab’s cafeteria, December 12, 2013

CL:  “But for the database, do we rename the images so that we have a

consistency?”

BJ:  “Hum.  … I don’t think so because now we can track the files back to

the website with their ID. And with Matlab you can like store the jpg files

in one folder and retrieve all of them automatically”

…

CL:  “What do you think, GY? Can we ask people to select a region of the

image or to do something like segmenting directly on it?”

GY:  “I don’t think you can get pixel-precision answers with crowdsourc-

ing. We’ll need to do the pixel-precision [in the Lab] because if we ask

them, it’s gonna be a very sloppy job. Or too slow and expensive anyway.”

The MIT Press January 2021

A First Case Study	 71

CL:  “So what do you want? There is your Matlab code to segment fea-

tures, right?”

GY:  “Yes, but that’s low-level stuff, pixel-precision [segmentation]. It’s

gonna be for later, after we collect the coordinates, I guess. I still need to

finish the scripts [to collect the coordinates] anyway. Real pain. … But what

I thought was just like ask people to draw rectangles on the salient things,

then collect the coordinates with their ID and then use this information to

deduce which feature is more salient than the other on each image. Loca-

tion of the salient feature is a really fuzzy decision, but cutting up the edges

is not that dependent.  … You know where the tree ends, and that’s what

we want. Nobody will come and say ‘No! The tree ends here!’ There is not

so many variances between people I guess in most of the cases.”

CL:  “OK, let’s code for rectangles then. If that’s easy for the users, let’s

just do that.”

The IDs of the selected images allowed the Group to put the images in a

Matlab database rather easily. But within the images, the salient features

labeled by the crowdworkers were more difficult to handle since GY’s inter-

active tool to get the precise boundaries of image contents was based on

low-level information. As a consequence, segmenting the boundaries of

low-contrasted features such as faces could take several minutes, whereas

affordable crowdsourcing was about small and quick tasks. The Group could

not take the risk of either collecting “sloppy” tasks or spending an infea-

sible amount of money to do so.17 The labeled features would thus have to

be post-processed within the Lab to obtain precise contours.

Moreover, another potential point of failure of the project resided in the

development of the crowdsourcing web application. Indeed, asking people

to draw rectangles around features, translating these rectangles into coor-

dinates, and storing them into files to process them statistically required

nontrivial programming skills. By January 2014, when the crowdsourc-

ing web application was made fully operational, it comprised seven dif

ferent scripts (around seven hundred lines of code) written in html, PHP,

and JavaScript that responded to each other depending on the workers’

inputs (see figure 2.7). Yet, if the Lab’s computer scientists were at ease

with numerical computing and programming languages such as Matlab, C,

or C++, web designing and social pooling were not competencies for which

they were necessarily trained.

The MIT Press January 2021

Fi
g

ur
e

2.
7

Sc
re

en
 c

ap
tu

re
s

of
 t

h
e

w
eb

 a
p

p
li

ca
ti

on
 d

es
ig

n
ed

 b
y

th
e

G
ro

u
p

 f
or

 i
ts

 c
ro

w
d

so
u

rc
in

g
ta

sk
. O

n
 t

h
e

le
ft

, t
h

e
ap

p
li

ca
ti

on
 w

h
en

 r
an

 b
y

a
w

eb

br
ow

se
r.

 O
n

ce
 w

or
ke

rs
 c

re
at

ed
 a

 u
se

rn
am

e,
 t

h
ey

 c
ou

ld
 s

ta
rt

 t
h

e
ex

p
er

im
en

t
an

d
 d

ra
w

 r
ec

ta
n

gl
es

. W
h

en
 w

or
ke

rs
 c

li
ck

ed
 o

n
 “

N
ex

t
Im

ag
e”

bu
tt

on
, t

h
e

co
or

d
in

at
es

 o
f

th
e

re
ct

an
gl

es
 w

er
e

st
or

ed
 i

n
 .t

xt
 f

il
es

 o
n

 t
h

e
La

b’
s

se
rv

er
. O

n
 t

h
e

ri
gh

t,
 o

n
e

ex
ce

rp
t

of
 o

n
e

of
 t

h
e

se
ve

n
 s

cr
ip

ts

re
q

u
ir

ed
 t

o
re

al
iz

e
su

ch
 in

te
ra

ct
iv

e
la

be
ls

 a
n

d
 d

at
a

st
or

ag
e.

The MIT Press January 2021

A First Case Study	 73

Once coded and debugged—a delicate process in its own right (see chap-

ter 4)—the different scripts were stored in one section of the Lab’s server

whose address was made available in January 2014 to the now-defunct

company ShortTask whose API offered the best-rated contingent workers.

By February 2014, thirty workers’ tasks qua tens of thousands of rectangles’

coordinates were stored in the Group’s database as .txt files, ready to be pro

cessed thanks to the previous preparatory steps. At this point, each image of

the previously collected dataset was linked with many different rectangles

drawn by the workers. By superimposing all the coordinates of the different

rectangles on Matlab, the Group created for each image a “weight map”

with varying intensities that indicated the relative consensus on salient

regions (see figure 2.8). The Group then applied to each image a widely

used threshold taken from Otsu (1979)—part of Matlab’s internal library—

to keep only weighty regions that had been considered salient by the work-

ers. In a third step that took two entire weeks, the Group—in fact, BJ and

me—manually segmented the contours of the salient elements within the

salient regions to obtain “salient features.” Finally, the Group assigned the

mean value of the salient regions’ map to the corresponding salient features

to obtain the final targets capable of defining and evaluating new kinds of

saliency-detection algorithms. This laborious process took place between

February and March 2014; almost a month was dedicated to the processing

of the coordinates produced by the workers and then collected by the html-

JavaScript-PHP scripts and database.

By March 2014, the Group successfully managed to create targets with

relative saliency values. The selected images and their corresponding targets

could then be organized as a single database that finally constituted the

ground truth. From this point, one could consider that the Group effec-

tively managed to redefine the terms of the saliency problem: the transfor-

mations the desired algorithm should conduct were—finally—numerically

defined. Thanks to the definition of inputs (the selected images) and the

definition of outputs (the targets), the Group finally possessed a problem

that numerical computing could take care of.

Of course, establishing the terms of a problem by means of a new ground

truth was not enough: to propose an actual algorithm, the Group also had

to design and code lists of instructions that could effectively transform

input-data into output-targets according to the problem they had just estab-

lished. To design and code these lists of instructions, the Group randomly

The MIT Press January 2021

74	 Chapter 2

selected two hundred images out of the ground truth to form a training

set. After formal analysis of the relationships between the inputs and the

targets of this training set, the Group extracted several numerical features

that expressed—though not completely—these input-target relationships.18

The whole process of extracting and verifying numerical features and par

ameters from the training set and translating them sequentially into Matlab

programming language took almost a month. But at the end of this process,

the Group possessed a list of Matlab instructions that was able to transform

the input values of the training set into values relatively close to those

of the targets.

By the end of March 2014, the Group used the remainder of its ground-

truth database to evaluate the algorithm and compare it with already available

Figure 2.8
Matlab table summarizing the different steps required for the processing of the coor-

dinates produced by the workers who accomplished the crowdsourcing task. The first

row shows examples of images and rectangular labels collected from the crowdsourc-

ing task. The second row shows the weight maps obtained from the superposition of

the labels. The third row shows the salient regions produced by using Otsu’s (1979)

threshold. The last row presents the final targets with relative saliency values. The

first three steps could be automated, but the last segmentation step had to be done

manually. At the end of this process, the images (first row, without the labels) and

their corresponding targets (last row) were gathered in a single database that consti-

tuted the Group’s ground truth.

The MIT Press January 2021

A First Case Study	 75

saliency-detection algorithms in terms of precision and recall measures (see

figure 2.9). The results of this confrontation being satisfactory, the features

and performances of the Group’s algorithm were finally summarized in a

draft paper and submitted to an important European Conference on image

processing.

As these Group meetings and documents show, the Group’s algorithm

could only be made operational once the newly defined problem of saliency

had been solved by human workers and expressed in a ground-truth data-

base. In that sense, the finalization of Matlab lists of instructions capable

of solving the newly defined problem of saliency followed the problemati-

zation process in which the Group was engaged. The theoretical refram-

ing of saliency, the selection of specific images on Flickr, the coding of a

web application, the creation of a Matlab database, the processing of the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

PR curves

AMC CH GBMR
SMVJ LR Judd
Borji SC Ours

Borji
AM

C LR

SM
VJ CH

GBM
R SC

Ju
dd

Ours
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Methods

Precision Recall F−measure

Figure 2.9
Two Matlab-generated graphs comparing the performances of the Group’s algorithm

(“Ours”) with already published ones (“AMC,” “CH,” etc.). The new ground truth

enabled both graphs. In the graph on the left, the curves represented the variation of

precision (“y” axis) and recall (“x” axis) scores for all the images in the ground truth

when processed by each algorithm. In the graph on the right, histograms measured

the same data while also including F-Measure values, the weighted average of preci-

sion and recall values. Both graphs indicated that, according to the new ground truth,

the Group’s algorithm significantly outperformed all state-of-the-art algorithms.

The MIT Press January 2021

76	 Chapter 2

workers’ coordinates: all these practices were required to design the ground

truth that ended up allowing the extraction of the relevant numerical fea-

tures of the algorithm as well as its evaluation. Of course, the mundane

work required for the construction of the ground truth was not sufficient to

complete the complex lists of Matlab instructions that ended up effectively

processing the pixels of the images: critical certified mathematical claims

also needed to be articulated and expressed into machine-readable format.

Yet, by providing the training set to extract the numerical features of the

algorithm and by providing the evaluation set to measure the algorithm’s

performances, the ground truth greatly participated in the completion of

the algorithm.

The above elements are not so trivial, and some deeper reflections are

required before moving forward. In November 2013, the Group had only

few elements at its disposal. It had desires (e.g., contesting previous papers),

skills (e.g., mathematical and programming abilities), means (e.g., access to

academic journals, powerful computers), and hopes (e.g., make a difference

in the field of image processing). But these elements alone were not enough

to effectively shape its new intended algorithm. In November 2013, the

Group also needed an empirical basis that could serve as a fundamental

substratum; it needed to ground a material coherence that could establish

the veridiction of their future model. This was the whole benefit of the

new ground truth—which should rather be called grounded truth—as it was

now possible to found and bring into existence a set of phenomena (here,

saliency differentials) operating as an analytical referential. Once this scrip-

tural fixation was achieved in March 2014, the world the Group inhabited

was no longer the same: it was enriched and oriented by a set of relations

materialized in a database. And the algorithm that finally came out from

this database organized, reproduced, and in a sense, consecrated the rela-

tions embedded in it. From a static and particular ground truth emerged

an operative algorithm potentially capable of reproducing and promoting

the organizational rules of the ground truth in different configurations. By

rooting the yet-to-be-constructed algorithm, the ground truth as assembled

by the Group oriented the design of its algorithm in a particular direction.

In that sense, the new ground truth was the contingent yet necessary bias

of the group’s algorithm.19

This propensity of computational models to be bound to and fundamen-

tally biased by manually gathered and processed data is not limited to the

The MIT Press January 2021

A First Case Study	 77

field of digital image processing. For example, as Edwards (2013) showed for

the case of climatology, the tedious collection, standardization, and com-

pilation of weather data to produce accurate ground truths of the Earth’s

climate is crucial for both the parametrization and evaluation of General Cir-

culation Models (GCMs).20 Of course, just as in the field of image processing,

the construction of ground truths by climatologists does not guarantee the

definition of accurate and effective GCMs: crucial insights in fluid dynam-

ics, statistics, and (parallel) computer programming are also required. Yet,

without ground truths providing parameters and evaluations, no efficient

and trustworthy GCM could come into existence. For the case of machine

learning algorithms for handwriting recognition or spam filtering, Burrell

(2016, 5–6) noted the importance of “test data” in setting the learning par

ameters of these algorithms as well as in evaluating their performances. Here

as well, ground truths appear central, defining what is statistically learned

by algorithms and allowing the evaluation of their learning performances.21

The same seems also to be true of many algorithms for high-frequency trad-

ing: as MacKenzie (2014, 17–31) suggested, detailed analysis of former finan-

cial transactions as well as the authoritative literature of financial economics

work as empirical bases for the shaping and evaluation of “execution” and

“proprietary trading” algorithms.

Yet, despite growing empirical evidences, algorithms’ tendency to be exis-

tentially linked to ground-truth databases that cannot, obviously, be reduced

to mere sets of data remains little discussed in the abundant computer sci-

ence literature on algorithms. The issue is generally omitted: mathematical

analysis and programming techniques, sometimes highly complex, are dis-

cussed after, or as if, a ground truth has been constructed, accepted, distrib-

uted, and made accessible. The theoretical exploration of what I called in

chapter 1 the standard conception of algorithms tends to take for granted

the existence of stable and shared referential repositories. This omission

may even be what makes such a vision of algorithms possible: considering

algorithms as tools ensuring the computerized transition from problems

to solutions might imply to suppose already defined problems and already

assessable solutions.

Some sociologists—most of them STS-inspired—do consider the topic

head on, though. In their critique of predictive algorithmic systems, Baro-

cas and Selbst (2016) warned against the potentially harmful consequences

of problem definition and training sets’ collection. In a similar way, Lehr

The MIT Press January 2021

78	 Chapter 2

and Ohm (2017) emphasized on the handcrafted aspect of “playing with

the data” for the design of statistical learning algorithms. More recently,

Bechmann and Bowker (2019) built on these arguments to propose the

notion of value-accountability-by-design: a call for systemic efforts to make

arbitrary choices involved in algorithm-related data collection, prepara-

tion, and classification more explicit. In the wake of Ananny and Crawford

(2018), they thus suggest that, to better appreciate algorithmic behavior, ex

ante focus on ground-truthing processes might be more conclusive than ex

post audits or source code scrutinization (as it is, for example, proposed in

Bostrom [2017] and Sandvig et al. [2016]). In a similar way, Grosman and

Reigeluth (2019) investigated the design of an algorithmic security system

for the detection of threatening behaviors. They show that the definition

of the problem that the algorithm will have to solve—and, therefore, the

“true positives” it will have to detect—derive from collective problematiza-

tion processes that include discussions and compromises among sponsors,

competing interpretations of legal documents, and on-site simulations of

threatening and inoffensive behaviors conducted by the project’s engineers.

They conclude that the normativity proper to algorithmic systems must

also be considered in the light of the tensions that contributed to mak-

ing this normativity expressible. In sum, all the above-mentioned authors

have uncovered processes that resemble the one the Group had just gone

through. Their investigations also show that what is called an “algorithm”

often derives from collective processes expressed materially in contingent,

but necessary, referential repositories.

At this early stage of the present inquiry, it would be unwise to define a

general property common to all algorithms. Yet based on the preliminary

insights of this chapter and the growing body of studies that touched on

similar issues, one can make the reasonable hypothesis that behind many

of these entities we like to call “algorithms” lie ground-truth databases

that have made designers able to extract relevant numerical features and

evaluate the accuracy of the automated transformations of inputs-data into

output-targets. Consequently, as soon as such algorithms—once “in the

wild,” outside of their production sites—automatically process new data,

their respective initial ground truths—along with the habits, desires, and

values that participated in their shaping—are also invoked and, to a cer-

tain extent, promoted. As I will further develop at the end of this chapter,

studying the performative effects of such algorithms in the light of the

The MIT Press January 2021

A First Case Study	 79

collective processes that constituted the output-targets these algorithms

try to retrieve appears a stimulating, yet still underexplored, research topic

when compared with the growing influence algorithms have on our lives.

Almost Accepted (Yet Rejected)

June 19, 2014: The reviewers rejected the Group’s paper. The Group was

greatly disappointed to see several months of meticulous work unrewarded

by a publication that could have launched new research lines and gener-

ated many citations. But the feeling was also one of incomprehension and

surprise in view of the reasons provided by the three reviewers.

Along with doubts about the usefulness of incorporating face information

within saliency detection, the reviewers agreed on one seemingly key defi-

ciency of the Group’s paper: the performance comparisons of the computa-

tional model were only made with respect to the Group’s new ground truth:

Assigned Reviewer 1
The paper does not show that the proposed method also performs better than

other state-of-the-art methods on public benchmark ground truths.  … The exper-

iment evaluation in this paper is conducted only on the self-collected face images.

More evaluation datasets will be more convincing.  … More experiment needs to

be done to demonstrate the proposed method.

Assigned Reviewer 2
The experiments are tested only on the ground truth created by the authors.  … It

would be more insightful if experiments on other ground truths were carried out,

and results on face images and non-face images were reported, respectively. This

way one can more thoroughly evaluate the usefulness of a face-importance map.

Assigned Reviewer 3
The discussion is still too subjective and not sufficient to support its scientific

insights. Evaluation on existing datasets would be important in this sense.

The reviewers found the technical aspects of the paper to be sound. But they

questioned whether the new best saliency-detection model—as the Group

presented it in the paper—could be confronted only with the ground truth

used to create it. Indeed, why not confront this new model with the already

available ground truths for saliency detection? If the model were really “more

efficient” than the already published ones, it should also be more efficient

on the ground truths used to shape and evaluate the performances of the

previously published saliency-detection models. In other words, since the

The MIT Press January 2021

80	 Chapter 2

Group presented its model as commensurable with former models, the Group

should have—according to the reviewers—more thoroughly compared its

performances. But why did the Group stop halfway through its evaluation

efforts and compare its model only with respect to the new ground truth?

Discussion with BJ on the terrace of the CSF’s cafeteria, June 19, 2014

FJ:  The committee didn’t like that we created our own ground truth? 22

BJ:  No. I mean, it’s just that we tested on this one but we did not test on

the other ones.

FJ:  They wanted you to test on already existing ground truths?

BJ:  Yes.

FJ:  But why didn’t you do that?

BJ:  Well, that’s the problem: Why did we not test it on the others? We

have a reason. Our model is about face segmentation and multiple features.

But in the other datasets, most of them do not have more than ten face

images.  … In the saliency area, most people do not work on face detection

and multiple features. They work on images where there is a car or a bird in

the center. You always have a bird or something like this. So it just makes no

sense to test our model on these datasets. They just don’t cover what our

model does.  … That’s the thing: if you do classical improvement, you are

ensured that you will present something at big conferences. But if you pro-

pose new things, then somehow people just misunderstand the concept.

It would not have been technically difficult for the Group to confront its

model with the previous ground truths; they were freely available on the

web, and such performance evaluations required roughly the same Matlab

scripts as those used to produce the results shown in figure 2.9. The main

reason the Group did not do such comparisons was that the previous models

deriving from the previous ground truths would certainly have obtained bet-

ter performance results. Since the Group’s model was not designed to solve

the saliency problem as defined by the previous ground truths, it would

certainly have been outperformed by these ground truths’ “native” models.

Due to a lack of empirical elements, I will not try to interpret the reasons

why the Group felt obliged to frame the line of argument of its paper around

issues of quantifiable performances.23 Yet, in line with the argument of

this chapter, I assume that this rejection episode shows again how image-

processing algorithms can be bound to their ground truths. An algorithm

The MIT Press January 2021

A First Case Study	 81

deriving from a ground truth made of images whose targets are centered,

contrastive objects will somehow manage to retrieve these targets. But

when tested on a ground truth made of images whose targets are multiple

decentered objects and faces, the same algorithm may well produce statisti-

cally poor results. Similarly, another algorithm deriving from a ground truth

made of images whose targets are multiple decentered objects and faces will

somehow manage to retrieve these targets. But when tested on a ground

truth made of images whose targets are centered contrastive objects, it may

well produce statistically poor results. Both such algorithms operate in dif

ferent categories; their limits lie in the ground truths used to define their

range of actions. As BJ suggested in a dramatic way, to a certain extent, we

get the algorithms of our ground truths. Algorithms can be presented as statisti-

cally more efficient than others when they derive from the same—or very

similar—ground truths. As soon as two algorithms derive from two ground

truths with different targets, they can only be presented as different. Quali-

tative evaluations of the different ground truths in terms of methodology,

data selection, statistical rigor, or industrial potentials can be conducted,

but the two computational models themselves are irreducibly different and

not commensurable. From the point of view of this case study—which may

differ from the point of view of the reviewers—the Group’s fatal mistake

might have been to mix up quantitative improvement of performances with

qualitative refinement of ground truths.

Interestingly, one year after this rejection episode, the Group submitted

another paper, this time to a smaller conference in image processing. The

objects of this paper were rigorously the same as those of the paper that was

previously rejected: the same ground truth and the same computational

model. Yet instead of highlighting the statistical performances of its model,

the Group emphasized its ground truth and the fact that it allowed the inclu-

sion of face segmentation within saliency detection. In this second paper

that won the “Best Short Paper Award” of the conference, the computa-

tional model was presented as one example of the application potential of

the new ground truth.

Problem Oriented and/or Axiomatic

This first case study accounted for a small part of a four-month-long proj

ect in saliency detection run by a group of young computer scientists in

The MIT Press January 2021

82	 Chapter 2

the Lab. Is it possible to draw on the observations of this exploratory case

study? Could we use some of the accounted elements to make broader

propositions and sketch analytical directions for the present book as well

as for other potential future inquiries into the constitution of algorithms?

More than just concerning a group of young computer scientists and a

small prototype for saliency detection, I think indeed that this case study

fleshes out important insights that deserve to be explored more thoroughly.

For the remaining part of this chapter then, I will draw on this empirical

case to tentatively propose two complementary research directions for the

sociological study of algorithms.

I assume that this case study implicitly suggests a new way of seeing

algorithms that still accepts their standard definition while expanding it

dramatically. Indeed, we may now still consider an algorithm as being, at

some point, a set of instructions designed to computationally solve a given

problem. Though as explained at the end of chapter 1, I intentionally did

not take this standard definition of algorithms as a starting point; at the

end of the Group’s project, once the numerical features were extracted

from the training set and translated into machine-readable language, sev-

eral Matlab files with thousands of lines of instructions constituted just

such a set. From that point of view, the study of these sets of instructions

at a theoretical level—as proposed, for example, by Knuth (1997a, 1997b,

1998, 2011); Sedgewick and Wayne (2011); Dasgupta, Papadimitriou, and

Vazirani (2006); and many others—is wholly relevant to the problem at

hand. How to use mathematics and machine-readable languages in order to

propose a solution to a given problem in the most efficient way is indeed a

fascinating question and field of study.

At the same time, however, we saw that the problem an algorithm is

designed to solve does not preexist: it has to be produced during what one

may call a “problematization process”—a succession of collective practices

that aim to empirically define the terms of a problem to be solved. In our

case study, the Group first drew on recent claims published in authorita-

tive journals of cognitive biology to reframe the saliency problem as being

face-related and continuous. As we saw, this first step of the Group’s prob-

lematization process implied mundane and problematic practices such as

the critique of previous research results (what did our opponents miss?) and

the inclusion of some of the Lab’s recent projects (how to pursue our recent

developments?). The second step of the Group’s problematization process

The MIT Press January 2021

A First Case Study	 83

implied the constitution of a ground truth that could operationalize the

reframed problem of saliency. This second step also implied mundane and

problematic practices such as the collection of a dataset on Flickr (what

images do we choose?), the organization of a database (how do we organize

our data?), the design of a crowdsourcing task (what question do we ask to

the workers?), and the processing of the results (how do we get contours of

features from rectangles?). Only at the very end of this process—once the

laboriously constructed targets have been associated to the laboriously con-

structed dataset in order to form the final ground-truth database—was the

Group able to formulate, program, and evaluate the set of Matlab instruc-

tions capable of transforming inputs into outputs by means of numerical

computing techniques. In short, to design a computerized method of cal-

culation that could solve the new saliency problem, the Group first had to

define the boundaries of this new problem.

From these empirical elements, two complementary perspectives on

the Group’s algorithm seem to emerge. A first perspective might consider

the Group’s algorithm as a set of instructions designed to computationally

solve a new problem in the best possible way. This first traditional view on

the Group’s algorithm would, in turn, put the emphasis on the mathemati-

cal choices, formulating practices, and programming procedures the Group

used to transform the input-data of the new ground truth into their cor-

responding output-targets. How did the Group manipulate its training set

to extract relevant numerical features for such a task? How did the Group

translate mathematical operations into lines of code? And did it lead to

the most efficient result? In short, this take on the Group’s algorithm would

analyze it in the light of its computational properties. Yet symmetrically, a

second view on the Group’s algorithm might consider it as a set of instruc-

tions designed to computationally retrieve, in the best possible way, output-

targets that were designed during a specific problematization process. This

second take on the Group’s algorithm would, in turn, put the emphasis

on the specific situations and practices that led to the definition of the

terms of the problem the algorithm was designed to solve. How was the

problem defined? How was the dataset collected? How was the crowdsourc-

ing task conducted? In short, this second perspective—which this chapter

endorsed—would analyze the Group’s algorithm vis-à-vis the construction

process of the ground truth it originally derived from (and by which it was

biased).

The MIT Press January 2021

84	 Chapter 2

If we tentatively expand the above propositions, we end up with two

ways of considering algorithms that both pivot about these material objects

called ground truths. What we may call an axiomatic perspective on algo-

rithms would consider algorithms as sets of instructions designed to com-

putationally solve in the best possible way a problem defined by a given

ground truth. A second, and complementary, problem-oriented perspective

on algorithms would consider algorithms as sets of instructions designed

to computationally retrieve what has been defined as output-targets during

specific problematization processes.

While I do think that both axiomatic and problem-oriented perspectives on

algorithms are complementary and should thus be intimately articulated—

specific numerical features being suggested by ground truths (and vice

versa)—I also believe that they lead to different analytical efforts. By con-

sidering the terms of the problem at hand as given, the axiomatic way of

considering algorithms facilitates the study of the actual mathematical and

programming procedures that effectively end up transforming input sets of

values into output sets of values in the best possible ways. This may sound

like an obvious statement, but defining a calculating method requires mini-

mal agreement on the initial terms and prospected results of the method

(Ritter 1995). It is by assuming that the transformation of the input-data

into the output-targets is desirable, relevant, and attestable that a step-by-

step schema describing this transformation might be proposed. In the case

of computer science, different areas of mathematics with many different

certified rules and theorems can be explored, adapted, and enrolled to

automate at best the passage from selected input-data to specified output-

targets; linear algebra in the case of image processing (Klein 2013), proba-

bility theory in the case of data compression (Pu 2005), graph theory in the

case of data structure (Tarjan 1983), number theory in the case of cryptog-

raphy (Koblitz 2012), or statistics (and probabilities) in the case of the ever-

popular machine-learning procedures supposedly adaptable to all fields of

activity (Alpaydin 2016). As we will see in chapters 5 and 6, the exploration

and teaching of these different certified mathematical bodies of knowledge

must therefore be respected for what they are: powerful operators allowing

the reliable transformative computation of ground-truth’s input-data into

their corresponding output-targets.

If the problem-oriented perspective on algorithms may not directly focus

on the formation and computational effectiveness of algorithms, it may

The MIT Press January 2021

A First Case Study	 85

contribute to better documenting the processes that configure the terms

of the problems these algorithms try to solve. Considering algorithms as

retrieving entities may put the emphasis on the referential databases that

define what algorithms try to retrieve and reproduce; the biases they build

on in order to express their veracity. What ground truth defined the terms

of the problem this algorithm tries to solve? How was this ground-truth

database constituted? And when? And by whom? By pointing at moments

and locations where outputs to be retrieved were, or are, being constituted

within ground-truth databases, this analytical look at algorithms—that

Bechmann and Bowker (2019) and Grosman and Reigeluth (2019) contrib-

uted to igniting—may suggest new ways of interacting with algorithms and

those who design them. This avenue of research, which is still in its infancy,

could moreover link its results to those of the more explicitly critical posi-

tions I mentioned in the introduction. If the investigations by Noble

(2018) on the racist stereotypes promoted by the search engine Google or

by O’Neil (2016) on how proxies used by proprietary scoring algorithms

tend to punish the poorest have effectively acted as warning signs, practi-

cal ways to change the current situation still need to be elaborated. This is

where the notion of composition, the keystone of this inquiry, comes again

into play: at the time of (legitimate) indignation, the time of constructive

confrontation must follow, which itself implies being able to present one-

self realistically. As long as the practical work subtending the constitution

of algorithms remains abstract and indefinite, modifying the ecology of

this work will remain extremely difficult. Changing the biases that root

algorithms in order to make them promote different values may, in that

sense, be achieved by making the work practices that underlie algorithms’

veracities more visible. If more studies could inquire into the ground-truthing

practices algorithms derive from, then actual composition potentials may

slowly be suggested.

* * *

Part I is now coming to an end. Let me then quickly recap the elements pre-

sented so far. In chapter 1, I presented the main setting of this inquiry: an

academic laboratory I decided to call the “Lab” whose members spend a fair

amount of time and energy assembling and publishing new image-processing

algorithms, thus participating—at their own level—in the heterogeneous net-

work of computer science industry. I also considered methodological issues

The MIT Press January 2021

86	 Chapter 2

and critically discussed the notion of algorithm as it is generally presented in

the specialized literature.

In chapter 2, we dived into the daily work of the Lab and followed a

group of young computer scientists trying to design a new algorithm for

an important conference in image processing. Our initial encounter with

the Group at the Lab’s cafeteria was at first confusing, but after a quick

detour via the image-processing literature on saliency detection, we were

able to understand why the Group’s project implied the shaping of a new

referential database that could define the terms of the problem its desired

algorithm should later try to solve. As we were accounting for these mun-

dane yet crucial ground-truthing practices, we realized something very banal

for practitioners of computer science but surprising to many others: it turns

out that, to a certain extent, we get the algorithms of our ground truths. As

the construction of image-processing algorithms implies the formation of

training sets for formulating the relationships between input-images and

output-targets as well as the formation of evaluation sets for measuring and

comparing the performances of these formulated relationships, image-

processing algorithms—and potentially many others—must rely, in one

way or another, on manually constructed ground truths that precisely pro-

vide both sets. This half-discovery further suggested a research agenda that

two complementary analytical perspectives on algorithms could irrigate.

First, and in the wake of this chapter 2, a “problem-oriented perspective”

could explore the collective processes leading to the formation and circula-

tion of ground truths. This unconventional glance on algorithms may con-

tribute to equipping broader topics related to data justice and algorithmic

fairness. Yet to avoid reducing algorithms to the ground truths from which

they derive, such studies of algorithms should be intimately articulated

with an “axiomatic perspective” on algorithms that could further explore

the formulation and evaluation of computational models from already con-

stituted ground truths.

The MIT Press January 2021

II  Programming

The MIT Press January 2021

The MIT Press January 2021

It is sometimes difficult to say things that are quite simple.

—Hutchins (1995, 356)

If part I led, I hope, to interesting insights, it was nonetheless mundane-

biased. Although I kept on insisting on the ordinary aspect of ground-

truthing—criticizing previous papers, selecting data, defining targets, and

so on—I remained very vague about less common practices that those who

are not computer scientists generally expect to see in computer science lab-

oratories. For example, where is the mathematics? If the Group managed to

define relationships between input-data and output-targets, it certainly for-

mulated them with the help of mathematical knowledge and inscriptions.

And where are the cryptic lines of computer code? If the Group managed

to first design a web application and later test its computational model on

the evaluation set, it must have successfully written machine-readable lists

of instructions. If I really want to propose a partial yet realistic constitution

of algorithms, do I not need to account for these a priori exotic activities

as well? The practices leading to the definition of mathematical models

of computation will be the topic of part III. For now, I need to consider

computer programming, this crucial activity that never stops being part of

computer scientists’ daily work.

Let us warm up with some basic assertions. Is it not a platitude to say

that computer programming is a central activity? Every digital device that

takes part in our courses of action required indeed the expert hands of “pro-

grammers” or “developers” who translated desires, plans, and intuitions

into machine-readable lists of instructions. Banks, scientific laboratories,

The MIT Press January 2021

90	 Part II: Programming

high-tech companies, museums, spare part manufacturers, novelists, eth-

nographers: all indirectly rely on people capable of interacting with com-

puters to assemble files whose content can be executed by processors at

electronic speed. If by a mysterious black-magic blow all programmers who

make computers compute in desired ways were removed from the collec-

tive world, the remaining people would very soon end up yapping around

powerless relics like, as Malraux says, crowds of monkeys in Angkor temples.

The current importance of fast and reliable automated processing for most

sectors of activity positions computer programming as an obligatory pas-

sage point that cannot be underestimated.

Yet if the courses of action of computer programming are terribly impor

tant—without them, there would be no digital tools—their study does not

always appear relevant. Most of the individuals of the collective world

rightly have other things to do than spending time studying what animates

the digital devices with which they interact. Moreover, those who study

these individuals—for example, sociologists and social scientists—can also

take programming practices for granted as political, social, or economic

processes often appear after innumerable programming ventures have been

successfully conducted. For many interesting activities and research topics,

then, it makes perfectly sense not to look at how computer programs are

empirically assembled.

In other situations, though, the activity of computer programming is

more difficult to ignore. Computer scientists and engineers cannot, for

example, take this activity for granted as it would imply ignoring an impor

tant and often problematic aspect of their work.1 Unfortunately, as we shall

see later, the methods they use to better understand their own practices

tend to privilege the evaluation of the results of computer programming

tasks rather than the practices involved in the production of these results.

Programmers’ insights resulting from the analysis of programming tasks

thus remain distant from the actions of programming, for which they often

remain unaccountable.

But programming practices are also difficult to ignore for cognitive scien-

tists who work in artificial intelligence departments: as human cognition

is—according to many of them—a matter of computing, understanding

how computers become able to compute via the design of programs seems

indeed to be a fruitful topic. But just like computer scientists and engineers,

cognitive scientists have difficulties with properly accessing and inquiring

The MIT Press January 2021

Part II: Programming	 91

into computer programming courses of action. For entangled reasons

which I will cover in the following chapter, when cognitivists inquire into

what makes programs exist, they cannot go beyond the form “program”

that precisely needs to be accounted for. In a surprisingly vicious circle that

has to do with the so-called computational metaphor of the mind, cognitiv-

ists end up proposing numerous (mental) programs to explain the develop-

ment of (computer) programs.

Programming practices therefore appear quite tricky: terribly important

but at the same time very difficult to effectively study. What makes these

courses of action so elusive? Is it even possible to account for them? And

if it is, what are their associative properties? And what do these properties

suggest? The goal of this part II is to tackle some of these questions. The

journey will be long, never straightforward, and sometimes, not developed

enough. But let the reader forgive me: as you will hopefully realize, a full

historical and sociological understanding of computer programming is a

life project of its own. So many things have been said without much being

shown! The reasons for dizziness are legitimate, the chances of success

infinitesimal; yet, if we really care about these entities we tend to call algo-

rithms, an exploratory attempt to better understand the practices required

to make them effectively participate in our courses of action might not be,

I hope, completely senseless.

Part II is organized as follows. In chapter 3, I start by retracing how the

activity of programming was progressively made invisible before propos-

ing conceptual means to help restore its practicality. I first focus on an

important document written by John von Neumann in 1945 that presented

computers as input-output devices capable of operating without the help

of humans. This initial setting aside of programming practices from elec-

tronic computing systems further seemed to depict them as self-sufficient

“electronic brains.” In the second section of the chapter I present academic

attempts to make sense of the incapacity of “electronic brains” to operate

meaningfully. As we shall see, for intricate reasons related to the computa-

tional metaphor of the mind, I assume that researchers conducting these

studies did not manage to properly approach computer programming prac-

tices, thus further contributing to their invisibilization. In the last section

of the chapter where I progressively try to detach myself from almost every

thing that has been said about the practice of computer programming, I

draw on contemporary work in the philosophy of perception to propose

The MIT Press January 2021

92	 Part II: Programming

a definition of cognition as enacted. This enactive conception of cognition

will further help us fully consider actions instead of minds. In chapter 4, I

build on this unconventional conception of cognition as well as several

other concepts taken from Science and Technology Studies to closely analyze a

programming episode collected within the Lab. The study of these empiri-

cal materials makes me tentatively partition programming episodes into

three intimately related sets of practices: scientific with the alignment of

inscriptions, technical with the work-arounds of impasses, and affective with

the shaping of scenarios. The need for constant shifting among these three

modes of practices might be a reason why computer programming is a dif-

ficult yet fascinating experience. The last section of chapter 4 will be a brief

summary.

The MIT Press January 2021

Many things have been written regarding computer programming—often,

I believe, in problematic ways. To avoid getting lost in this abundant lit

erature, it is important to start this chapter with an operational definition

of computer programming on which I could work and eventually refine

later. I shall then temporally define computer programming as the situated

activity of inscribing numbered lists of instructions that can be executed by

computer processors to organize the movement of bits and to modify given

data in desired ways. This operational definition of computer programming

puts aside other practices one may sometimes describe as “programming,”

such as “programming one’s wedding” or “programming the clock of one’s

microwave.”

If I place emphasis on the practical and situated aspect of computer pro-

gramming in my operational definition, it is because important historical

events have progressively set it aside. In this first section that draws on

historical works on early electronic computing projects, we will see that

once computer systems started to be presented as input-output instruments

controlled by a central unit—following the successful dissemination of the

so-called von Neumann architecture—the entangled sociotechnical rela-

tionships required to make these objects operate in meaningful ways had

begun to be placed in the background. If electronic computing systems

were, in practice, intricate and highly problematic sociotechnical processes,

von Neumann’s modelization made them appear as functional devices

transforming inputs into outputs. The noninclusion of practices—hence

their invisibilization—in the accounts of electronic computers further led

to serious issues that suggested the first academic studies of computer pro-

gramming in the 1950s.

3  Von Neumann’s Draft, Electronic Brains, and Cognition

The MIT Press January 2021

94	 Chapter 3

A Report and Its Consequences

One cornerstone of what will progressively be called “von Neumann architec-

ture” is the First Draft of a Report on the EDVAC that John von Neumann wrote

in a hurry in 1945 to summarize the advancement of an audacious electronic

computing system initiated during World War II at the Moore School of Elec-

trical Engineering at the University of Pennsylvania. As I believe this report

has had an important influence on the setting aside of the practical instantia-

tions of computer systems, we first need to look at the history and dissemina-

tion of this document as well as the world it participated in enacting.

World War II: An Increasing Need for the Resolution

of Differential Equations

An arbitrary point of departure could be President Franklin D. Roosevelt’s

radio broadcast on December 29, 1940, that publicly presented the United

States as the main military supplier to the Allied war effort, therefore imply-

ing a significant increase in US military production spending.1 Under the

jurisdiction of the Army Ordnance Department (AOD), the design and indus-

trial production of long-distance weapons were obvious topics for this war-

oriented endeavor. Yet for every newly developed long-distance weapon, a

complete and reliable firing table listing the appropriate elevations and azi-

muths for the reaching of any distant targets had to be calculated, printed,

and distributed. Indeed, to have a chance to effectively reach targets with a

minimum of rounds, every long-distance weapon had to be equipped with

a booklet containing data for several thousand kinds of curved trajectories.2

More battles, more weapons, and more distant shots: along with the mass

production of weapons and the enrollment of soldiers capable of handling

them, the US’s entry into another world war in 1942 further implied an

increasing need for the resolution of differential equations.

These practical mathematical operations—which can take the form of

long iterative equations that require only addition, subtraction, multiplica-

tion, and division—were mainly conducted in the premises of the Ballistic

Research Laboratory (BRL) at Aberdeen, Maryland, and at the Moore School

of Electrical Engineering in Philadelphia. Hundreds of “human comput-

ers” (Grier 2005), mainly women (Light 1999), along with mechanical desk

calculators and two costly refined versions of Vannevar Buch’s differential

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 95

analyzer (Owens 1986)—an analogue machine that could compute math-

ematical equations3—worked intensely to print out ballistic missile firing

tables. Assembling all of the assignable factors that affect the trajectories

of a projectile shot from the barrel of a gun (gravity; the elevations of the

gun; the shell’s weight, diameter, and shape; the densities and temperatures

of the air; the wind velocities, etc.)4 and aligning them to define and solve

messy differential equations5 was a tedious process that involved intense

training and military chains of command (Polachek 1997). But even this

unprecedented ballistic calculating endeavor could not satisfy the comput-

ing needs of this wartime. Too much time was required to produce a com-

plete table, and the backlog of work rapidly grew as the war intensified. As

Campbell-Kelly et al. (2013, 68) put it:

The lack of an effective calculating technology was thus a major bottleneck to the

effective deployment of the multitude of newly developed weapons.

In 1942, drawing on the differential analyzer and on the pioneering work of

John Vincent Atanasoff and Clifford Berry on electronic computing (Akera

2008, 82–102; Burks and Burks 1989) as well as on his own research on

delay-line storage systems,6 John Mauchly—an assistant professor at the

Moore School—submitted a memorandum to the AOD that presented the

construction of an electronic computer as a potential resource for faster and

more reliable computation of ballistic equations (Mauchly [1942] 1982).7

The memorandum first went unnoticed. But one year later, thanks to the

lobbying of Herman Goldstine—a mathematician and influential member

of the BRL—a meeting regarding the potential funding of an eighteen-

thousand-vacuum-tube electronic computer was organized with the BRL’s

director. And despite the skepticism of influent members of the National

Defense Research Committee (NDRC),8 a $400,000 research contract was

signed on April 9, 1943.9 At this point, the construction of a computing

system that could potentially solve large iterative equations at electronic

speed and therefore accelerate the printing out of the firing tables required

for long-distance weapons could begin. This project, initially called “Project

PX,” took the name of ENIAC for Electronic Numerical Integrator and Computer.

The need to quickly demonstrate technical feasibility forced Mauchly

and John Presper Eckert—the chief engineer of the project—to make irre-

versible design decisions that soon appeared problematic (Campbell-Kelly

The MIT Press January 2021

96	 Chapter 3

et al. 2013, 65–87). The biggest shortcoming was related to the new com-

puting capabilities of the system: If delay-line storage could potentially

make the system add, subtract, multiply, and divide electric translations

of numbers at electronic speed, such storage prevented the system from

being instructed via punched cards or paper tape. This common way of

both temporally storing data and describing the logico-arithmetic opera-

tions that would compute them was well adapted for electromechanical

devices, such as the Harvard Mark I that proceeded at three operations per

second.10 But an electronic machine such as the ENIAC that was supposed

to perform five thousand operations per second could not possibly handle

this kind of paper material. The solution that Eckert and Mauchly proposed

was then to set up both data and instructions manually on the device by

means of wires, mechanical switches, and dials. This choice led to two

related impasses. First, it constrained the writable electronic storage of the

device; more storage would have indeed required even bigger machinery,

entangled wires, and unreliable vacuum tubes. Second, the work required

to set up all the circuitry and controllers and start an iterative ballistic equa-

tion was extremely tedious; once the data and the instructions were labori-

ously defined and checked, the whole operating team needed to be briefed

and synchronized to set up the messy circuitry (Campbell-Kelly et al. 2013,

73). Moreover, the passage from diagrams provided by the top engineers

to the actual setup of the system by lower-ranked employees was by no

means a smooth process—the diagrams were tedious to produce, hard to

read, and error-prone, and the number of switches, wires, and resistors was

quite confusing.11

Two important events made an alternative appear. The first is Eckert’s

work on mercury delay-line storage, which built upon his previous work on

radar technology. By 1944, he became convinced that these items could be

adapted to provide more compact, faster, and cheaper computing storage

(Haigh, Priestley, and Rope 2016, 130–132). The second event is one of the

most popular anecdotes of the history of computing: the visit of John von

Neumann at the BRL in the summer of 1944. Contrary to Eckert, Mauchly,

and even Goldstine, von Neumann was already an important scientific fig-

ure in 1944. Since the 1930s, he was at the forefront of mathematical logic,

the branch of mathematics that focuses on formal systems and their abili-

ties to evaluate the consistencies of statements. He was well aware of the

works on computability by Alonzo Church and Alan Turing, with whom

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 97

he collaborated at Princeton.12 As such, he was one of the few mathema-

ticians who had a formal understanding of computation. Moreover, by

1944, he had already established the foundations of quantum mechanics

as well as game theory. Compared with him and despite their breathtaking

insights on electronic computing, Eckert and Mauchly were still provincial

engineers. Von Neumann was part of another category: he was a scientific

superstar of physics, logics, and mathematics, and he worked as a consul-

tant on many classified scientific projects, with the more notable one cer-

tainly being the Manhattan Project.

Von Neumann’s visit was part of a routine consulting trip to the BRL and

therefore was not specifically related to the ENIAC project. In fact, as many

members of the NDRC expressed defiance toward the ENIAC, von Neu-

mann was not even aware of its existence. But when Goldstine mentioned

the ENIAC project, von Neumann quickly showed interest:

It is the summer of 1944. Herman Goldstine, standing on the platform of the rail-

road station at Aberdeen, recognizes John von Neumann. Goldstine approaches

the great man and soon mentions the computer project that is underway in Phila-

delphia. Von Neumann, who is at this point deeply immersed in the Manhattan

Project and is only too well aware of the urgent need of many wartime projects

of rapid computations, makes a quick transition from polite chat to intense inter-

est. Goldstine soon brings his new friend to see the project. (Haigh, Priestley, and

Rope 2016, 132)

By the summer of 1944, it was accepted among Manhattan Project’s scien-

tific managers that a uniform contraction of two plutonium hemispheres

could make the material volume reach critical mass and create, in turn, a

nuclear explosion. Yet if von Neumann and his colleagues knew that the

mathematics of this implosion would involve huge systems of partial differ-

ential equations, they were still struggling to find a way of defining them.

And for several months, von Neumann had been seriously considering elec-

tronic computing for this specific prospect (Aspray 1990, 28–34; Goldstine

[1972] 1980, 170–182).

After his first visit to the ENIAC, von Neumann quickly realized that

even though the ENIAC was by far the most promising computing system

he had seen so far, its limited storage capacity could by no means help

define and solve the very complex partial differential equations related to

the Manhattan Project.13 Convinced that a new machine could overcome

this impasse—notably by using Eckert’s insights about mercury delay-line

The MIT Press January 2021

98	 Chapter 3

storage—von Neumann helped design a new proposal for the construction

of a post-ENIAC system. He moreover attended a crucial BRL board meeting

where the new project was evaluated. His presence definitely helped with

attaining the final approval of the project and its new funding of $105,000

by August 1944. The new hypothetical machine—whose design and con-

struction would fall under the management of Eckert and Mauchly—was

initially called “Project PY” before being renamed EDVAC for Electronic Dis-

crete Variable Automatic Computer.

Different Layers of Involvement

The period between September 1944 and June 1945 is crucial for my adven-

turous story of the setting aside of computer programming practices. It

was indeed during this short period of time that von Neumann proposed

considering computer programs as input lists of instructions, hence sur-

reptitiously invisibilizing the practices required to shape these lists. As this

formal conception of electronic computing systems was not unanimously

shared among the participants of both ENIAC and EDVAC projects, it is

important at this point to understand the different layers of involvements

in these two projects that were intimately overlapping. One could sche-

matically divide them into three layers: the engineering staff, the operating

team, and von Neumann himself.

The first layer of involvement included the engineering staff—headed

by Mauchly, Eckert, Goldstine, and Arthur W. Burks—that was responsible

for the logical, electronic, and electromechanical architectures and imple-

mentations of both the ENIAC and the EDVAC. The split of the ENIAC

into different units, the functioning of its accumulators—crucial parts for

making the system compute electric pulses—and the development and test-

ing of mercury delay-line storage for the future EDVAC were part of the

prerogatives of the engineering staff. It is difficult to see now the blurriness

of this endeavor that was swimming in the unprecedented. But besides the

systems’ abilities to compute more or less complex differential equations,

one crucial element the engineering staff had to conceive and make happen

was a way to instruct these messy systems. In parallel to the enormous sci-

entific and engineering problems of the different parts of the systems, the

shaping of readable documents that could describe the operations required

to make these systems do something was a real challenge: How, in the end,

could an equation be put into an incredibly messy electronic system? In

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 99

the case of the ENIAC, the engineering staff—in fact, mostly Burks (Haigh,

Priestley, and Rope 2016, 35–83)—progressively designed a workflow that

could be summarized as such: assuming ballistic data and assignable factors

had been adequately gathered and translated into a differential equation—

which was already a problematic endeavor—the ENIAC’s engineering staff

would first have to transform this equation into a logical diagram; then into

an electronic diagram that took into account the different unit as blocks;

and then into another, bigger, diagram that took into account the inner

constituents of each block. The end result of this tedious process—the final

“panel diagram” drawn on large sheets of paper (Haigh, Priestley, and Rope

2016, 42)—was an incredible, yet necessary, mess.

This leads us to another layer that included the so-called operators—

mainly women computers—who tried to make sense, correct, and even-

tually implement these diagrams into workable arrangements of switches,

wires, and dials. Contrary to what the top engineers had initially thought,

translating large panel diagrams into a workable configuration of switches

and wires was not a trivial task. Errors in both the diagrams and the con-

figurations of switches were frequent—without mentioning the fragility of

the resistors—and this empirical “programming” process implied constant

exchanges between high-level design in the office and low-level implemen-

tations in the hangar (Light 1999, 472; Haigh, Priestley, and Rope 2016,

74–83). Both engineers and operators were engaged in a laborious process

to have ENIAC and, to a lesser extent, EDVAC produce meaningful results,

and these computing systems were considered heterogeneous processes that

indistinctly mixed problematic technical components, interpersonal rela-

tionships, mathematical modeling, and transformative practices.

Next to these two layers of involvement was von Neumann who cer-

tainly constituted a layer on his own. First, contrary to Mauchly, Eckert,

Burks, and even Goldstine, he was well aware of recent works in math-

ematical logic and, in that sense, was prone to formalizing models of

computation. Second, von Neumann was very interested in mathematical

neurology and was well aware of the analogy between logical calculus and

the brain as proposed by McCulloch and Pitts in 1943 (more on this later).

This further made him consider computing systems as electronic brains

that could more or less intelligently transform inputs into outputs (Haigh,

Priestley, and Rope 2016, 141–142; von Neumann 2012). Third, if he was

truly involved in the early design of the EDVAC, his point of view was that

The MIT Press January 2021

100	 Chapter 3

of a consultant, constantly on the move from one laboratory to another.

He attended meetings—the famous “Meetings with von Neumann” (Stern

1981, 74)—and read reports and letters from the top managers of the ENIAC

and EDVAC but was not part of the mundane tedious practices at the Moore

School (Stern 1981, 70–80; Haigh, Priestley, and Rope 2016, 132–140). He

was thus parallel to, but not wholly a part of, the everyday practices in the

hangars of the Moore School. Finally, being deemed one of the greatest sci-

entific figures of the time—which he certainly was—his visits were real trials

that required preparation and cleaning efforts. If he visited the hangars of

the Moore School several times, he mainly saw the results of messy setup

processes, not the processes themselves. A lot was indeed at stake: at that

time, the electronic computing projects of the Moore School were not con-

sidered serious endeavors among many important applied mathematicians

at MIT, Harvard, or Bell Labs—notably Vannevar Buch, Howard Aiken, and

George Stibitz (Stern 1981). Taking care of von Neumann’s support was

crucial as he gave legitimacy to the EDVAC project and even to the whole

school.

All of these elements certainly contributed to shaping von Neumann’s

particular view on the EDVAC. In the spring of 1945, while the engineering

and operating layers had to consider this post-ENIAC computing system

as a set of problematic relations encompassing the definition of equations,

the adequate design of fragile electromechanical units, and back-and-forth

movements between hangars and offices, von Neumann could consider

it as a more or less functional object whose inner relationships could be

modeled.

Despite many feuds over the paternity of what has later been fallaciously

called “the notion of stored program,”14 it is clear now for historians of tech-

nology that the intricate relationships among these three layers of involve-

ment in the EDVAC project collectively led to the design decision of storing

both data and instructions as pulses in mercury delay lines (Campbell-Kelly

et al. 2013, 72–87; Haigh, Priestley, and Rope 2016, 129–152). After several

board meetings between September 1944 and March 1945, the top engi-

neers and von Neumann agreed that, if organized correctly, the new storage

capabilities of mercury delay lines could be used to temporally conserve not

only numerical data but also the description of in-built arithmetical and

logical operations that will later compute them. This initial characteristic

of the future EDVAC further suggested, to varying degrees, the possibility

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 101

of paper or magnetic-tape documents whose contents could be loaded, read,

and processed at electronic speed by the device, without the intervention

of a human being.

For the engineers and operators deeply involved in the ENIAC-EDVAC

projects, the notion of lists of instructions that could automatically instruct

the system was rather disconnected from their daily experiences of unread-

able panel diagrams, electronic circuitry, and messy setup processes of

switches and wires. To them, the differentiation between the computing

system and its instructions hardly made sense: in practice, an electronic

computing system was part of a broader sociotechnical process encompass-

ing the definition of equations, the writing of diagrams, the adequate design

of fragile electromechanical units, back-and-forth movements between

hangars and offices, etc. To paraphrase Michel Callon (1999) when he talked

about Air France, for these two layers of involvement, it was not an elec-

tronic calculator that could eventually compute an equation but a whole

arrangement of engineers, operators, and artifacts in constant relationship.

The vision von Neumann had for both the ENIAC and EDVAC projects

was very different: as he was constantly on the move, attending meetings

and reading reports, he had a rather disembodied view of these systems.

This process of disembodiment that often affects top managers was well

described by Katherine Hayles (1999) when she compared the points of

view of Warren McCulloch—the famous neurologist—and Miss Freed—his

secretary—on the notion of “information”:

Thinking of her [Miss Freed], I am reminded of Dorothy Smith’s suggestion that

men of a certain class are prone to decontextualization and reification because

they are in a position to command the labors of others. “Take a letter, Miss Freed,”

the man says. Miss Freed comes in. She gets a lovely smile. The man speaks, and

she writes on her stenography pad (or perhaps on her stenography typewriter).

The man leaves. He has a plane to catch, a meeting to attend. When he returns,

the letter is on his desk, awaiting his signature. From his point of view, what has

happened? He speaks, giving commands or dictating words, and things happen.

A woman comes in, marks are inscribed onto paper, letters appear, conferences

are arranged, books are published. Taken out of context, his words fly, by them-

selves, into books. The full burden of the labor that makes these things happen is

for him only an abstraction, a resource diverted from other possible uses, because

he is not the one performing the labor. (Hayles 1999, 82–83)

Hayles’s powerful proposition is extendable to the case that interests us here:

contrary to Eckert, Mauchly, Burks, and the operating team, von Neumann

The MIT Press January 2021

102	 Chapter 3

was not the one performing the labor. Whereas the engineering and operat-

ing teams were entangled in the headache of making the ENIAC and EDVAC

do meaningful things, von Neumann was entangled in the different head-

ache of providing relevant insights—notably in terms of formalization—to

military projects located all around the United States. To a certain extent, this

position, alongside his interest in contemporary neurology and his excep-

tional logical and mathematical insights, certainly helped von Neumann

write a document about the implications of storing both data and instruc-

tions as pulses in mercury delay lines. Provided as a summary of the discus-

sions among the EDVAC team between the summer of 1944 and the spring

of 1945, he wrote the First Draft of a Report on the EDVAC ([1945] 1993) that,

for the first time, modeled the logical architecture of a hypothetical machine

that would store both the data and the instructions required to compute

them. Unaware of, and not concerned with, its laborious instantiations

within the Moore School, von Neumann presented the EDVAC as a system

of interacting “organs” whose relationships could by themselves transform

inputs into outputs. And despite the skepticism of Eckert and Mauchly about

presenting their project with floating terms, such as “neurons,” “memory,”

“inputs,” and “outputs”—and eventually their fierce resentment to see that

their names were never mentioned in the document15—thirty-one copies of

the report were printed and distributed among the US computing-related

war projects in June 1945.

Proofs of Concept and the Circulation of the Input-Output Model

The many lawsuits and patent-related issues around the First Draft are not

important for my story. What matters at this point is the surreptitious shift

that occurred and persistently stayed within the computing community:

Whereas computing systems were, in practice, sociotechnical processes that

could ultimately—perhaps—produce meaningful results, the formalism of

the First Draft surreptitiously presented them as brain-like objects that could

automatically transform inputs into outputs. And if these high-level insights

were surely important to sum up the confidential work that had been under-

taken at the Moore School during the war and share it with other laboratories,

they also contributed to separating computing systems from the practices

required to make them operate. The First Draft presented the architecture of

a functioning computing machine and thus put aside the actions required

to make this machine function. The translation operations from equations

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 103

to logical diagrams, the specific configurations of electric circuitry and logic

gates, the corrections of the diagrams from inaccurate electronic circulation

of pulses; all of these sociotechnical operations were taken for granted in

the First Draft to formalize the EDVAC at the logical level. Layers of involve-

ment were relative layers of silence (Star and Strauss 1999); by expressing the

point of view of the consultant who built on the results of intricate endeav-

ors, the “list of the orders” (the programs) and the “device” (the computer)

started to be considered two different entities instead of one entangled

process.

But were the instructions really absent from the computing system as

presented in the First Draft? Yes and no. The story is more intricate than

that. In fact, the First Draft defined for the first time a quite complete set of

instructions that, according to the formal definition of the system, could

make the hypothetical machine compute every problem expressible in its

formalism (von Neumann [1943] 1993, 39–43). But similarly to Turing’s

seminal paper on computable numbers (Turing 1937), von Neumann’s set

of instructions was integrally part of his formal system: the system consti-

tuted the set of all sets of instructions it could potentially compute. The

benefits of this formalization were huge as it allowed the existence of all the

infinite combinations of instructions. Yet, the surreptitious drawback was

to consider these combinations as nonproblematic realizations of potenti-

alities instead of costly actualizations of collective heterogeneous processes.

While making a universal machine do something in particular was, and is,

very different from formalizing such a universal machine, both practices

were progressively considered equivalent.16

The diffusion of von Neumann’s architecture as presented in the First

Draft was not immediate. At the end of the war, several computing systems

coexisted in an environment of mutual ignorance—most projects were clas-

sified during the war—and persistent suspicion—the Nazi threat was soon

replaced with the communist (or capitalist) threat. During the conferences

and workshops of the Moore School Series that took place in summer 1946,

the logical design of the EDVAC was, for example, very little discussed as

it was still classified. Nonetheless, several copies of the First Draft progres-

sively started to circulate outside of the US defense services and laborato-

ries, notably in Britain, where a small postwar research community could

build on massive, yet extremely secret, code-breaking computing projects

(Abbate 2012, 34–35; Campbell-Kelly et al. 2013, 83–84).

The MIT Press January 2021

104	 Chapter 3

Contrary to Cold War–oriented American research projects, postwar Brit-

ish projects had no important funding as most of the UK government’s

money was being invested in the reconstruction of the devastated infra-

structures. This forced British scientific managers to design rather small

prototypes that could quickly show promising results. In June 1948, inspired

by von Neumann’s architecture as presented in the First Draft, Max New-

man and Frederic Williams from the University of Manchester provided a

first minimal proof of concept that the cathode-ray tube storage system

could indeed be used to store instructions and data for computation at elec-

tronic speed in a desired, yet fastidious, way. One year later, Maurice Wil-

kes from the University of Cambridge—who also obtained a version of the

First Draft and participated in the Moore School Series in 1946—successfully

led the construction of an electronic digital computer with a mercury delay-

line storage that he called the EDSAC for Electronic Delay Storage Automatic

Calculator. Largely due to the programming efforts of Wilkes’s PhD student

David Wheeler (Richards 2005), the EDSAC could load data and instructions

punched on a ribbon of paper and print the squares of the first one hundred

positive integers. These two successful experiences participated in rendering

electromechanical relays and differential analyzers obsolete in the emerg-

ing field of computer science research. But more importantly for the pre

sent story, these two successful experiments also participated in the diffusion

of von Neumann’s functional definition of electronic computing systems as

input-output devices controlled by a central organ. As it ended up working,

the model, and its encapsulated metaphors, were considered accurate.

At the beginning of 1950s, when IBM started to redefine computers as

data-processing systems for businesses and administrations, von Neumann’s

definition of computing system further expanded. As cited in Haigh, Priest-

ley, and Rope (2016, 240), an IBM paper written by Walker Thomas asserts,

for example, that “all stored-program digital computers have four basic ele

ments: the memory or storage element, the arithmetic element, the control

element, and the terminal equipment or input-output element” (Thomas

1953, 1245). More generally, the broader inclusion of computing systems

within commercial arrangements (Callon 2017) participated in the dissemi-

nation of their functional definition. It seems indeed that, to create new

markets, intricate and very costly computing systems had better be pre-

sented as devices that automatically transform inputs into outputs rather

than artefacts requiring a whole infrastructure to operate adequately. The

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 105

noninclusion of the sociotechnical interactions and practices required to

make computers compute seems, then, to have participated in their expan-

sions in commercial, scientific, and military spheres (Campbell-Kelly et al.

2013, 97–117). But the putting aside of programming practices from the

definition of computers further led to numerous issues related to the ad hoc

labor required to make them function.

The Psychology of Programming (And Its Limits)

The problem with practice is that it is necessary to do things: essence is

existence and existence is action (Deleuze 1995). And as soon as electronic

computing systems started to be presented as input-output functional devices

controlled by a central organ, the efforts required to make them function in

desired ways quickly stood out: it was extremely tedious to make the devices

do meaningful things. These intelligent electronic brains were, in practice,

dull as dishwater. But rather than casting doubts on the input-output frame-

work of the First Draft and considering it formally brilliant but empirically

inaccurate, the blame was soon casted on the individuals responsible for

the design of computer’s inputs. In short, if one could not make electronic

brains operate, it was because one did not manage to give them the inputs

they deserved. What was soon called the “psychology of programming”

tried, and tries, to understand why individuals interact so laboriously with

electronic computers.

This emphasis on the individual first led to aptitude tests in the 1950s that

aimed at selecting the appropriate candidates for programming jobs in a

time of workforce scarcity. By the late 1970s, entangled dynamics that made

Western software industry shift from scientific craft to gender-connoted

engineering supported the launching of behavioral studies that typically

consisted of programming tests whose relative results were attributed to

controlled parameters. A decade later, the contested results of these behav-

ioral tests as well as theoretical debates within the discipline of psychology

led to cognitive studies of programming. Cognitive scientists put aside the

notion of parameters as proposed by behaviorists to focus on the mental

models that programmers should develop to construct efficient programs.

As we shall see, these research endeavors framed programming in ways that

prevented them from inquiring into what programmers do, thus perpetuat-

ing the invisibilization of their day-to-day work.

The MIT Press January 2021

106	 Chapter 3

Personnel Selection and Aptitude Tests

By the end of the 1940s, simultaneous to the completion of the first elec-

tronic computing systems that the von Neumann architecture inspired, the

problem of the actual handling of these systems arose: these automatons

appeared to be highly heteronomous. This practical issue quickly arose in

the universities hosting the first electronic computers. As Maurice Wilkes

wrote in his memoirs about the EDSAC:

By June 1949 people had begun to realize that it was not so easy to get programs

right as at one time appeared. I well remember when this realization first came on

me with full force. The EDSAC was on the top floor of the building and the tape-

punching and editing equipment one floor below on a gallery that ran round the

room in which the differential analyzer was installed. I was trying to get work-

ing my first non-trivial program, which was one for the numerical integration

of Airy’s differential equation. It was on one of my journeys between the EDSAC

room and the punching equipment that “hesitating at the angles of stairs” the

realization came over me with full force that a good part of the remainder of my

life was going to be spent in finding errors in my own programs. (Wilkes 1985, 145)

Although the EDSAC theoretically included all possible programs, the actu-

alization of these programs within specific situations was the main practical

issue. And this became obvious to Wilke once he was directly involved in

trying to make the functional device function.

In the industry, the heteronomous aspect of electronic computing sys-

tems also quickly stood up. A first example is the controversies surrounding

the UNIVAC—an abbreviation for Universal Automatic Computer—an elec-

tronic computing system that Eckert and Mauchly developed after they left

the Moore School in 1946 to launch their own company (which Remington

Rand soon acquired). The potential of the UNIVAC gained a general audi-

ence when a whole programming team—which John Mauchly headed—

made it run a statistical program that accurately predicted the results of

1952 American presidential election. This marketing move, whose costs

were carefully unmentioned, further expanded the image of a functional

electronic brain receiving inputs and producing clever outputs. But when

General Electric acquired a UNIVAC computer in 1954, it quickly realized

the gap between the presentation of the system and its actual enactment: it

was simply impossible to make this functional system function. And it was

only after two years and the hiring of a whole new programming team that

a basic set of accounting applications could start producing some meaningful

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 107

results (Campbell-Kelly 2003, 25–30). IBM faced similar problems with its

computing system 701. The promises of smooth automation quickly faced

the down-to-earth reality of practice: the first users of IBM 701—notably

Boeing, General Motors, and the National Security Agency (Smith 1983)—

had to hire whole teams specifically dedicated to making the system do

useful things.17

US defense agencies were confronted with the same issue. After the

explosion of the first Soviet atomic bomb in August 1949, the United States

appeared dangerously vulnerable; the existing air defense system and its

slow manual gathering and processing of radar data could by no means

detect nuclear bombers early enough to organize counter operations of

interceptor aircrafts. This threat—and many other entangled elements

that are far beyond the scope of this chapter—led to the development of a

prototype computer-based system capable of processing radar data in real

time.18 The promising results of the prototype further suggested in 1954 the

realization of a nationwide defense system of high-speed data-processing

systems—called Semi-Automatic Ground Environment (SAGE).19 The US Air

Force contacted many contractors to industrially develop this system of sys-

tems, with IBM being awarded the development of the 250 tons AN/FSQ-7

electronic computers.20 But none of these renowned institutions—among

them IBM, General Electric, Bell Labs, and MIT—accepted the develop-

ment of the lists of instructions that would make such powerful computers

usable. Almost by default, the $20 million contract was awarded to the

RAND Corporation, a nonprofit (but nonphilanthropic) governmental

organization created in 1948 that operated as a research division for the US

Air Force. RAND had already been involved in the previous development of

the SAGE project, but its team of twenty-five programmers was obviously

far too small for the new programming task. So by 1956, RAND started an

important recruiting campaign all around the country to find individuals

who could successfully pursue the task of programming.

In this early Cold War period, the challenge for RAND was then to recruit

a lot of programming staff in a short period of time. And to equip this

massive personnel selection imperative, psychologists from RAND’s Sys-

tem Development Division started to develop tests whose quantitative results

could positively correlate with future programming aptitudes. Largely

inspired by the Thurstone Primary Mental Abilities Test,21 these aptitude

tests—although criticized within RAND itself (Rowan 1956)—soon became

The MIT Press January 2021

108	 Chapter 3

the main basis for the selection of new programmers as they allowed cru-

cial time savings while being based on the statistically driven discipline of

psychometrics. The intensive use of aptitude tests helped RAND to rapidly

increase its pool of programmers, so much so that its System Development

Division was soon incorporated into a separate organization, the System

Development Corporation (SDC). As early as 1959, the SDC had “more than

700 programmers working on SAGE, and more than 1,400 people support-

ing them.  … This was reckoned to be half of the entire programming man-

power of the United States” (Campbell-Kelly 2003, 39). But besides enabling

RAND/SDC to engage more confidently in the SAGE project, aptitude tests

also had an important effect on the very conception of programming work.

Although the main goal of these tests was to support a quick and nation-

wide personnel selection, they also contributed to framing programming as

a set of abstract intellectual operations that can be measured using proxies.

The regime of aptitude testing as initiated by the SDC quickly spread

throughout the industry, notably prompting IBM to develop its own ques-

tionnaire in 1959 to support its similarly important recruitment needs. Well

in line with the computer-brain parallel inherited from the seminal period

of electronic computing, the IBM Programming Aptitude Test (PAT) typi-

cally asked job candidates to figure out analogies between forms, continue

lists of numbers, and solve arithmetic problems (see figure 3.1). Though

the correlation between candidates’ scores to aptitude tests and their future

work performances was a matter of debate, aptitude tests quickly became

mainstream recruiting tools for companies and administrations that pur-

chased electronic computers during the 1960s. As Ensmenger (2012, 64)

noted: “By 1962, an estimated 80 percent of all businesses used some form

of aptitude test when hiring programmers, and half of these used IBM PAT.”

The massive distribution and use of these tests among the emerging com-

puting industry further constricted the framing of programming practices

as measurable innate intellectual abilities.

Supposed Crisis and Behavioral Studies

By framing programming as an activity requiring personal intuitive quali-

ties, aptitude tests have somewhat worked against gendered discrimina-

tions related to unequal access to university degrees. As Abbate (2012, 52)

noted: “A woman who had never had the chance to earn a college degree—

or who had been steered into a nontechnical major—could walk into a job

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 109

PART III (Cont’d)

13. During his first three years, a salesman sold 90%, 105%, and 120%, respectively,
of his yearly sales quota which remained the same each year. If his sales totaled
$252,000 for the three years, how much were his sales below quota during his first
year?

(a) $800 (b) $2,400 (c) $8,000
(d) $12,000 (e) $16,000

14. In a large office, 2/3 of the staff can neither type nor take shorthand. However, 1/4
of the staff can type and 1/6 can take shorthand. What proportion of people in the
office can do both?

(a) 1/12 (b) 5/36 (c) 1/4
(d) 5/12 (e) 7/12

15. A company invests $80,000 of its employee pension fund in 4% and 5% bonds and
receives $3,360 in interest for the first year. What amount did the company have
invested in 5% bonds?

(a) $12,800 (b) $16,000 (c) $32,000
(d) $64,000 (e) $67,200

16. A company made a net profit of 15% of sales. Total operating expense were
$488,000. What was the total amount of sales?

(a) $361,250 (b) $440,000 (c) $450,000
(d) $488,750 (e) $500,000

17. An IBM Sorting Machine processes 1,000 cards per minute. However, 20% is
deducted to allow for card handling time by the operator. A given job requires
5,000 cards to be put through the machine 5 times and 9,000 cards to be put
through 7 times. How long will it take?

(a) 1 hr. 10 min. (b) 1 hr. 28 min. (c) 1 hr. 45 min.
(d) 1 hr. 50 min. (e) 2 hrs. 10 min.

Figure 3.1
Sample of the 1959 IBM Programmer Aptitude Test. In this part of the test, the par-

ticipant is asked to answer problems in arithmetic reasoning. Source: Reproduced by

the author from a scanned 1959 IBM Programmer Aptitude Test by J. L. Hughes and

W. J. McNamara. Courtesy of IBM.

The MIT Press January 2021

110	 Chapter 3

interview, take a test, and instantly acquire credibility as a future program-

mer.” From its inception, computer programming, unlike the vast majority

of skilled technical professions in the United States, has involved women

workers, some of whom had already taken part to computing projects dur-

ing the war.

However, like most Western professional environments in the late 1950s,

the nascent computing industry was fueled by pervasive stereotypes, often

preventing women programmers from occupying upper managerial posi-

tions and encouraging them to do relational customer care work. These

gender dynamics should not be overlooked as they help to understand

the rapid, and often underappreciated, development of ingenious software

equipment. Due to their unique position within the computer-related profes-

sional worlds—both expert practitioners and, often, representatives toward

clients—women, given their rather small percentage within the industry,

actively contributed to innovations aimed at making programming eas-

ier for experts and novices alike. The most notorious example is certainly

Grace Murray Hopper, head of programming for UNIVAC, who developed

the first compiler—a program that translates other programs into machine

code22—in 1951 before designing the business programming language B-0

(renamed FLOW-MATIC) in 1955. But many other women actively took

part to software innovations throughout the 1950s and 1960s, though often

in the shadow of more visible male managers. Among these important fig-

ures are Adele Mildred Koss and Nora Moser who developed widely used

code for data editing in the mid-1950s; Lois Haibt who was responsible for

flow analysis of the FORTRAN high-level programming language; and Mary

Hawes, Jean Sammet, and Gertrude Tierney who were at the forefront of

the common business-oriented language (COBOL) project in the late 1950s

(Abbate 2012, 79–81).

From the mid-1960s onward, refinements over compilers and high-level

programming languages, which had often come from women, were added

to the impressive tenfold increase in computing power (Mody 2017, 47–77).

This combination of new promising software and hardware infrastructures

prompted large iconic computer manufacturers to start building increas-

ingly complex programs, such as operating systems and massive business

applications. The resounding failures of some of these highly visible proj

ects, like the IBM project System 360,23 soon gave rise to a sense of uncer-

tainty among commentators at the time, some of whom used the evocative

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 111

expression of “software crisis” (Naur and Randell 1969, 70–73). Historians

of computing have expressed doubts about the reality of this software crisis

as precise inquiries have shown that, apart from some highly visible and

nonstandard projects, software production in the late 1960s was generally

on time and on budget (Campbell-Kelly 2003, 94). But the crisis rhetoric,

which also fed on an exaggerated but popular discourse on software produc-

tion costs,24 nonetheless had tangible effects on the industry to the point of

changing its overall direction and identity.

When compared with the related discipline of microelectronics, pro-

gramming has long suffered from a lack of credibility and prestige. Despite

significant advances throughout the 1950s and the 1960s, actors taking

part to software production were often accorded a lower status within West-

ern computing research and industry. This was true for women program-

mers since they were working in a technical environment. But it was also

true for men programmers since they were working in a field that included

women. Under this lens, the crisis rhetoric that took hold at the end of the

1960s—feeding on iconic failures that were not representative of the state of

the industry—provided an opportunity to reinvent programming as some-

thing more valuable according to the criteria of the time (Ensmenger 2010,

195–222). This may be one of the reasons why the positively connoted term

“engineering” started to spread and operate as a line of sight, notably via

the efforts of the 1968 North Atlantic Treaty Organization (NATO) confer-

ences entitled “Software Engineering” and the setting up of professional

organizations and academic journals such as the Institute of Electrical and

Electronics Engineers’ IEEE Transactions on Software Engineering (1975) and

the Association for Computing Machinery’s ACM Software Engineering Notes

(1976). Though contested by eminent figures who considered that software

production was already rigorous and systematic, this complex process of

disciplinary relabeling was supported by many programmers—women and

men—who saw the title of engineer as an opportunity to improve their work

conditions. However, as Abbate (2012, 104) pointed out: “An unintended

consequence of this move may have been to make programming and com-

puter science less inviting to women, helping to explain the historical puzzle

of why women took a leading role in the first wave of software improve-

ments but become much less visible in the software engineering era.”

This stated desire to make software production take the path of

engineering—considered the solution to a supposed crisis that itself built on

The MIT Press January 2021

112	 Chapter 3

a gendered undervaluation of programming work—has rubbed off on the aca-

demic analysis of programming. Parallel to this disciplinary reorientation,

a line of positivist research claiming behaviorist tradition began to take

an interest in programming work in the early 1970s. For these research-

ers, the analytical focus should shift: instead of defining the inherent skills

required for programming and design aptitude tests, scholars should rather

try to extract the parameters that induce the best programming performances

and propose ways to improve software production. The introduction and

dissemination of high-level programming languages as well as the multi-

plication of academic curricula in computer science highly participated in

establishing this new line of inquiry. With programming languages such as

FORTRAN or COBOL that did not depend on the specificities and brands of

computers, behavioral psychologists along with computer scientists became

able to design programming tests in controlled environments. Moreover,

the multiplication of academic curricula in computer science provided rel-

atively diverse populations (e.g., undergrads, graduates, faculty members)

that could pass these programming tests. These two elements made possi

ble the design of experiments that ranked different sets of parameters (age,

experience, design aids) according to the results they assumedly produced

(see figure 3.2).

This framework led to numerous tests on debugging performances (e.g.,

Bloom 1980; Denelesky and McKee 1974; Sackman, Erikson, and Grant

1968; Weinberg 1971, 122–189; Wolfe 1971), design aid performances (e.g.,

Blaiwes 1974; Brooke and Duncan, 1980a, 1980b; Kammann 1975; Mayer

1976; Shneiderman et al. 1977; Weinberg 1971, 205–281; Wright and Reid

1973), and logical statement performances25 (e.g., Dunsmore and Gannon

1979; Gannon 1976; Green 1977; Lucas and Kaplan 1976; Sime, Green,

and Guest 1973; Sime, Arblaster, and Green 1977; Sime, Green, and Guest

1977; Sheppard et al. 1979; Weissman 1974). But despite their systematic

aspect, these studies suffered from the obviousness of their results, for as

explained by Curtis (1988), without formally being engaged in behavioral

experiments, software contractors were already aware that, for example,

experienced programmers produced better results than inexperienced ones

did, or that design aids such as flowcharts or documentation were help-

ful tools for the practice of programming. These general and redundant

facts did not help programmers to better design lists of instructions. By

the 1980s, the increasingly powerful computing systems remained terribly

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 113

difficult to operate, be they instructed by software engineers working in

more and more malely connoted environments.

The Cognitive Turn

By the end of the 1970s, the behavioral standpoint began to be criticized

from inside the psychological field. To more and more cognitive psychologists,

sometimes working in artificial intelligence departments, it seemed that the

obviousness of behavioral studies’ results was function of a methodologi-

cal flaw, with many of the ranked sets of parameters gathering important

individual variations of results. According to several cognitive researchers,

the unit of analysis of behavioral studies was erroneous; since many results’

disparities existed within the same sets of parameters, the ranking of these

sets was simply senseless (Brooks 1977, 1980; Curtis 1981; Curtis et al. 1989;

Moher and Schneider 1981). The solution that these cognitivists proposed

to account for what they called “individual differences” was then to dive

T

SP1

SP2

SP3

SP4

SP5

R3

R1

R5

R2

R4

SP3

SP1

SP5

SP2

SP4

best

worst

A

Figure 3.2
Schematic of behavioral studies of computer programming. Let us assume a program-

ming test T, the test’s best answers A, and five sets of parameters SP1,…,5. SP1 could,

for example, gather the parameters “unexperimented, male, with flowcharts”; SP2

could, for example, gather the parameters “experienced, female, without flowcharts,”

and so on. Once all SPs have passed T, the results Rs of each SP allow the ranking of

all SPs from best to worst. In this example, R3 (the results of SP3) made SP3 be considered

the best set of parameters. Inversely, R4 (the results of SP4) made SP4 be considered the

worst set of parameters.

The MIT Press January 2021

114	 Chapter 3

inside the individuals’ head to better understand the cognitive processes and

mental models underlying the formation of computer programs.

The strong relationships between the notions of “program” and “cog-

nition” also participated in making the study of computer programming

attractive to cognitive scientists. As Ormerod (1990, 63–64) put it:

The fields of cognition and programming are related in three main ways. First, cog-

nitive psychology is based on a “computational metaphor,” in which the human

mind is seen as a kind of information processor similar to a computer. Secondly,

cognitive psychology offers methods for examining the processes underlying per

formance in computing tasks. Thirdly, programming is a well-defined task, and

there are an increasing number of programmers, which makes it an ideal task in

which to study cognitive process in a real-world domain.

These three elements—the assumed-fundamental similarity between cog-

nition and computer programs, the growing population of programmers,

and the available methods that could be used to study this population—

greatly contributed to making cognitive scientists consider computer pro-

gramming as a fruitful topic of inquiry. Moreover, investing in a topic that

behaviorists failed to understand was also seen as an opportunity to dem-

onstrate the superiority of cognitivist approaches. To a certain extent, the

aim was also to show that behaviors were a function of mental processes:

[Behaviorists] attempt to establish the validity of various parameters for describ-

ing programming behavior, rather than attempting to specify underlining pro

cesses which determine these parameters. (Brooks 1977, 740)

The ambition was then to describe the mental processes that lead to good

programming performances and eventually use these mental processes to

train or select better programmers. The methodology of cognitive studies

was, most of the time, not radically different from that of behavioral stud-

ies on programming, though. Specific programming tests were proposed to

different individuals, often computer science students or faculty members.

The responses, comments (oral or written), and metadata (number of key

strokes, time spent on the problem, etc.) of the individuals were then ana-

lyzed according to the rights answers of the test as well as based on general

cognitive models of human understanding that the computational meta

phor of the mind has inspired (especially the models of Newell and Simon

[1972] and, later, Anderson [1983]). From this confrontation among results,

comments, and general models of cognition, different mental models specific

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 115

to the task of computer programming were inferred, classified, and ranked

according to their performances (see figure 3.3).

This research pattern on computer programming led to numerous stud-

ies proposing mental models for solving abstract problems (e.g., Adelson

1981; Brooks 1977; Carroll, Thomas, and Malhotra 1980; Jeffries et al. 1981;

Pennington 1987; Shneiderman and Mayer 1979) and developing program-

ming competencies (e.g., Barfield 1986; Coombs, Gibson, and Alty 1982;

McKeithen et al. 1981; Soloway 1986; Vessey 1989; Wiedenbeck 1985). Due,

in part, to their mitigated results—as admitted by Draper (1992), the numer-

ous mental models proposed by cognitivists did not significantly contribute

to better programming performances—cognitive studies have later rein-

tegrated behaviorist considerations (e.g., controlled sets of parameters) to

acquire the hybrid and management-centered form they have today (Cap-

retz 2014; Ahmed, Capretz, and Campbell 2012; Ahmed et al. 2012; Cruz, da

Silva, and Capretz 2015).

Limits

From the 1950s up to today, computer scientists, engineers, and psycholo-

gists have deployed important efforts in the study of computer program-

ming. From aptitude tests to cognitive studies, these scholars have spent

T

I1

I2

I3

I4

I5

R&MD1

R&MD2

R&MD3

R&MD4

R&MD5

GM
+
A

SMM1

SMM2

SMM3

best

worst

Figure 3.3
Schematic of cognitive studies of computer programming. Let us assume a program-

ming test T, the test’s best answers A, five individuals I1,….,5, and a general model of

cognition GM. Once all Is have passed T, the corresponding results Rs and metadata

MD (for example, comments from I on T) are gathered together to form five R&MDs.

All R&MDs are then evaluated and compared according to A and GM. At the end of

this confrontation, specific mental models (SMMs) are proposed and ranked from best

to worst according to their assumed ability to produce the best programming results.

The MIT Press January 2021

116	 Chapter 3

a fair amount of time and energy trying to understand what is going on

when someone is programming. They certainly did their best, as we all do.

Yet I think one can nonetheless express some critiques of, or at least reser-

vations about, some of their methods and conceptual habits regarding the

study of programming activity.

Aptitude tests certainly constituted useful recruiting tools in the confus-

ing days of early electronic computing. In this sense, they surely helped

counterbalance the unkeepable promises of electronic brains, themselves

deriving—I suggest—from the dissemination of von Neumann’s functional

depiction of electronic computers and its setting aside of programming

practices. Moreover, the weight of aptitude tests’ results has also constituted

resources for women wishing to pursue careers in programming, and some

of these women have devised crucial software innovations. Yet as central as

they might have been for the development of computing, aptitude tests suf-

fer from a flaw that prevents them from properly analyzing the actions tak-

ing part in computer programming: they test candidates on what electronic

computers should supposedly do (e.g., sorting numbers, solving equations)

but not on the skills required to make computers do these things. They mix

up premises and consequences: if the results of computer programming can

potentially be evaluated in terms of computing and sorting capabilities, the

way in which these results are achieved may require other units of analysis.

Behavioral studies suffer from a similar flaw that keeps them away from

computer programming actions. By analyzing the relationships between

sets of parameters and programming performances, behaviorist studies put

the practices of programming into a black box. In these studies, the prac-

tices of programmers do not matter: only the practices’ conditions (reduced

to contextual parameters) and consequences (reduced to quantities of errors)

are considered. One may object that this nonconsideration of practices is

precisely what defines behaviorism as a scientific paradigm, its goal being

to predict consequences (behaviors) from initial conditions (Watson 1930),

an aim that well echoed the engineerization of software production in the

1970s. It is true that this way of looking at things can be very powerful, espe-

cially for the study of complex processes that include many entities, such as

traffic flows (Daganzo 1995, 2002), migrations (Jennions and Møller 2003),

or cells’ behaviors (Collins et al. 2005). But inscribing numbered lists of sym-

bols is a process that does not need any drastic reduction: a programming

situation involves only one, two, perhaps three individuals whose actions

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 117

can be accounted for without any insurmountable difficulties. For the study

of such a process that engages few entities whose actions are slow enough

to be accounted for, no need a priori exists to ignore what is happening in

situation.

For cognitive studies, the story is more intricate. They are certainly right

to criticize behavioral studies for putting into black boxes what precisely

needs to be accounted for. Yet the solution cognitivists propose to better

understand computer programming leads to an impasse we now need to

consider.

As Ormerod (1990, 63) put it, “cognitive psychology is based on a ‘com-

putational metaphor’ in which the human mind is seen as a kind of infor-

mation processor similar to a computer.” From this theoretical standpoint,

cognition refers to the reasoning and planning models the mind uses to

transform emotional and perceptual input information into outputs that

take the form of thoughts or bodily movements. Similarly to a computer—

or rather, similarly to one specific and problematic image of computers—the

human mind “runs” mental models on inputs to produce outputs. The sys-

tematic study of the complex mental models that the mind uses to trans-

form inputs into outputs is the very purpose of cognitive studies. Scientific

methods of investigation, such as the one presented in figure 3.3, can be

used for this specific prospect.

When cognitive science deals with topics such as literature (Zunshine

2015), religion (Barrett 2007), or even chimpanzees’ preferences for cooked

foods (Warneken and Rosati 2015), its foundations usually hold on: com-

plex mental models describing how the mind processes input information

in terms of logical and arithmetic statements to produce physical or mental

behaviors can be proposed and compared without obvious contradictions.

But as soon as cognitive science deals with computer programming, a short

circuit appears that challenges the whole edifice: the cognitive explanation

of the constitution of computer programs is tautological as the very notion

of cognition already requires constituted computer programs.

To better understand this tricky problem, let us consider once again the

computational metaphor of the mind. According to this metaphor, the

mind “runs” models—or programs—on inputs to produce outputs. In that

sense, the mind looks like a computer as described by von Neumann in

the First Draft: input data are stored in memory where lists of logical and

arithmetic instructions transform them into output. But as we saw in the

The MIT Press January 2021

118	 Chapter 3

previous sections, von Neumann’s presentation of computers was functional

in the sense that it did not take into consideration the elements required

to make a computer function. In this image of the computer that reflects

von Neumann’s very specific position and status, the elements required

to assemble the actual transformative lists of instructions—or programs—

that command the functioning of an electronic computer’s circuitry have

already been gathered.

From here, an important flaw of cognitive studies on computer program-

ming starts to appear: as the studies rely on an image of the computer that

already includes constituted computer programs, these cognitive studies are

not in a position to inquire into what constitutes computer programs. In

fact, the cognitive studies are in a situation where they can mainly propose

circular explanations of programming: if there are (computer) programs,

it is because there are (mental) programs. Programs explain programs: a

perfect tautology.

As long as cognitive science stays away from the study of computer pro-

gramming, its foundations hold on: mental programs can serve as explica-

tive tools for observed behaviors. But as soon as cognitive science considers

computer programming, its limits appear: cognition and programs are of

the same kind. Thunder in the night! Cognition, as inspired by the compu-

tational metaphor of the mind, works as a stumbling stone to the analysis

of computer programming practices as its fundamental units of analysis

are assembled programs. In such a constricted epistemic culture (Knorr-

Cetina 1999), the in situ analysis of courses of action cannot but be omit-

ted, despite their active participation in the constitution of the collective

computerized world. This is an unfortunate situation that even the bravest

propositions in human-computer interaction (HCI) have not been able to

modify substantially (e.g., Flor and Hutchins 1991; Hollan, Hutchins, and

Kirsh 2000). Is there a way to conceptually dis-constrict the empirical study

of computer programming?

Putting Cognition Back to Its Place

Most academic attempts to better understand computer programming seem

to have annoying flaws: aptitude tests mix up premises and consequences,

behavioral studies put actions into black boxes, and cognitive studies are stuck

in tautological explanations. If we want to consider computer programming

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 119

as accountable practices, it seems that we need to distance ourselves from

these brave but problematic endeavors.

Yet, provided that our critics are relevant, we are at this point still unable

to propose any alternative. Do the actions of programmers not have a cogni-

tive aspect? Do programmers not use their minds to computationally solve

complex problems? The confusion between cognition and computer pro-

grams may well derive from a misleading history of computers—as I tried

to suggest—its capacity to establish itself as a generalized habit commands

respect. How can we not present empirical studies of computer programming

practices as silly reductions? How can we justify the desire to account for,

and thus make visible, the courses of action of computer programming, these

practices that are obligatory passage points of any computerization project?

Fortunately, contemporary work in philosophy has managed to fill in the

gap that has separated cognition from practices, intelligent minds from dull

actions. It is thanks to these inspiring studies that we will become able to

consider programming as a practice without totally turning our back on the

notion of cognition. To do so, I will first need to quickly reconsider the idea

that computers were designed in the image of the human brain and mind.

As we already saw—though partially—this idea is relevant only in retrospect:

what has concretely happened is far more intricate. I will then reconsider

the philosophical frame that encloses cognition as a computational process.

Finally, following contemporary works in the philosophy of perception, I will

examine a definition of cognition that preserves important aspects of how

we make sense of the things that surround us while reconnecting it to prac-

tices and actions. By positing the centrality of agency in cognitive processes,

this enactive conception of cognition will further help us empirically consider

what is happening during computer programming episodes.

A Reduction Process

The computational metaphor of the mind forces cognitivists to use pro-

grams to explain the formation of programs. The results of programming

processes—programs—are thus used to explain programming processes. It

is not easy to find another example of such an explicative error: it is like

explaining rain with water, chicken poultry with the chicken dance … But

how did things end up this way? How did programs end up constituting the

fundamental base of cognition, thus participating in the invisibilization of

computer programming practices?

The MIT Press January 2021

120	 Chapter 3

The main argument that justifies the computational metaphor of the

mind is that “computers were designed in the image of the human” (Simon

and Kaplan 1989, quoted in Hutchins 1995, 356). According to this view

that spread in the 1960s in reaction to the behavioral paradigm (Fodor

1975, 1987; Putnam [1961] 1980), how the human brain works inspired

the design of computers, and this can, in turn, provide a clearer view on

how we think. Turing is generally considered the father of this argument,

with the Universal Machine he imagined in his 1937 paper “On Comput-

able Numbers” being able to simulate any mechanism describable in its

formalism. According to this line of thought, it was Turing’s self-conscious

introspection that allowed him to define a device capable of any compu-

tation as he was looking “at what a mathematician does in the course of

solving mathematical problems and distilling this process to its essentials”

(Pylyshyn 1989, 54). Turing’s demonstration would then lead to the first

electronic computers, such as the ENIAC and the EDVAC, whose depiction

as giant brains appears legitimate as how we think inspired these computers

in the first place.

In line with the recent work of Simon Penny (2017), I assume that this

conception of the origins of computers is incorrect. As soon as one consid-

ers simultaneously the process by which Turing’s thought experiment was

reduced to an image of the brain and the process by which the EDVAC was

reduced to an input/output device controlled by a central organ, one real-

izes that the relationship between computers and the human brain points

to the other direction: the human brain was designed in a very specific

image of the computer that already included all possible programs.

Let us start with Turing as he is often considered the father of the com-

putational metaphor of the mind. It is true that Turing compared “a man

in the process of computing a real number” with a “machine which is only

capable of a finite number of conditions” (Turing 1937, 231). Yet his image

of human computation was not limited to what is happening inside the

head: it also included hands, eyes, paper, notes, and sets of rules defined

by others in different times and locations. As Hutchins put it: “The math-

ematician or logician was [for Turing] materially interacting with a material

world” (Hutchins 1995, 361). By modeling the properties of this socio-

material arrangement into an abstract machine, Turing could distinguish

between computable and noncomputable numbers, hence showing that

Hilbert’s Entscheidungsproblem was not solvable. His results had an immense

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 121

impact on the mathematics of his time as they suggested a class of num-

bers calculable by finite means. But the theoretical machine he invented to

define this class of numbers was by no means designed only in the image of

the human brain; it was a theoretical device that expressed the sociomate-

rial process enabling the computation of real numbers.

What participated in reducing Turing’s theoretical device to an expres-

sion of a mental process was the work of McCulloch and Pitts on neurons.

In their 1943 paper entitled “A logical Calculus of the Ideas Immanent in

Nervous Activity,” McCulloch and Pitts built upon Carnap’s (1937) prop-

ositional logic and a simplified conception of neurons as all-or-none fir-

ing entities to propose a formal model of mind and brain. In their paper,

neurons are considered units that process input signals sent from sensory

organs or from other neurons. In turn, the outputs of this neural processing

feed other neurons or are sent back to sensory organs. The novelty of

McCulloch and Pitts’s approach is that, thanks to their simplified concep-

tion of neurons, the input signals that are processed by neurons can be re-

presented as propositions or, as Gödel (1931) previously demonstrated, as

numbers.26 From that point, their model could consider configurations of

neural networks as logical operators processing input signals from sensory

organs and outputting different signals back to sensory organs. This way to

consider the brain as a huge network of neural networks able to express the

laws of propositional calculus on binary signals allowed McCulloch and

Pitts to hypothetically consider the brain as a Turing machine capable of

computing numerical propositions (McCulloch and Pitts [1943] 1990, 113).

Even though they did not mathematically prove their claim and recognized

that their model was computationally less powerful than Turing’s model,

they nonetheless infused the conception of mind as the result of the brain’s

computational processes (Piccinini 2004).

At first, McCulloch and Pitts’s paper remained unnoticed (Lettvin

1989, 17). It was only when von Neumann used some of their proposi-

tions in his 1945 First Draft (von Neumann [1945] 1993, 5–11) that the

equivalence between computers and the human mind started to take off.

As we saw earlier, von Neumann had a very specific view on the EDVAC:

his position as a famous consultant who mainly sees the clean results of

laborious material processes allowed him to reduce the EDVAC as an input-

output device. Once separated from its instantiation within the hangars of

the Moore School of Electric Engineering, the EDVAC, and especially the

The MIT Press January 2021

122	 Chapter 3

ENIAC, effectively looked like a brain as conceived by McCulloch and Pitts.

From that point, the reduction process could go on: von Neumann could

use McCulloch and Pitts’ reductions of neurons and of the Turing machine

to present his own reductive view on the EDVAC. However, it is important

to remember that von Neumann’s goal was by no means to present the

EDVAC in a realistic way: the main goal of the First Draft was to formalize

a model for an electronic computing system that could inspire other labo-

ratories without revealing too many classified elements about the EDVAC

project. All of these intricate reasons (von Neumann’s position, wartime,

von Neumann’s interest in mathematical biology) made the EDVAC appear

in the First Draft as an input-output device controlled by a central organ

whose configuration of networks of neurons could express the laws of prop-

ositional calculus.

As we saw earlier, after World War II, the First Draft and the modeliza-

tion of electronic computers it encapsulates began to circulate in academic

spheres. In parallel, this conception of computers as giant electronic brains

fitted well with their broader inclusion in commercial arrangements: these

very costly systems had better be presented as functional brains automati-

cally transforming inputs into outputs rather than intricate artifacts requir-

ing great care, maintenance, and an entire dedicated infrastructure. Hence

there were issues related to their operationalization as the buyers of the

first electronic computers—the Air Force, Boeing, General Motors (Smith

1983)—had to select, hire, and train and eventually fire, reselect, rehire,

and retrain whole operating teams. But despite these initial failures, the

conception of computers as electronic brains held on, well supported, to

be fair, by Turing’s (1950) paper “Computing Machinery and Intelligence,”

the 1953 inaugural conferences on artificial intelligence at Dartmouth Col-

lege (Crevier 1993), Ashby’s book on the neural origin of behavior (Ashby

1952), and von Neumann’s posthumous book The Computer and the Brain

([1958] 2012). Instead of crumbling, the conception of computers as elec-

tronic brains started to concretize to the point that it even supported a

radical critique of behaviorism in the field of psychology. Progressively, the

mind became the product of the brain’s computation of nervous inputs.

The argument appeared indeed indubitable: as human behaviors are the

results of (computational) cognitive processes, psychology should rather

describe the composition of these cognitive processes—a real tour de force

whose consequences we still experience today.

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 123

But this colossus of the computational metaphor of the mind has feet

of clay. As soon as one inquires sociohistorically into the process by which

brains and computers have been put into equivalence, one sees that the

foundations of the argument are shaky; a cascade of reductions, as well

as their distribution, surreptitiously ended up presenting the computer as

an image of the brain. Historically, it was first the reduction of the Turing

machine as an expression of mental processes, then the reduction of neu-

rons as on/off entities, then the reduction of the EDVAC as an input-output

device controlled by a central organ, then the distribution of this view

through academic networks and commercial arrangements that allowed

computers to be considered as deriving from the brain. It is the collusion of

all of these translations (Latour 2005), along with many others, that made

computers appear as the consequences of the brain’s structure.

Important authors have finely documented how computer-brain equiva-

lences contributed, for better or worse, to structuring Western subjectivi-

ties throughout the Cold War period (e.g., Dupuy 1994; Edwards 1996;

Mirowski 2002). For what interests me here, the main problem of the con-

ception of computers as an image of the brain is that its correlated concep-

tion of cognition as computation contributed to further invisibilizing the

courses of actions taking part in computer programming. According to the

computational metaphor of the mind, the brain is the set of all the com-

binations of neural networks—or logic circuits27—that allow the computa-

tion of signals. The brain may choose one specific combination of neural

networks for the computation of each signal, but the combination itself is

already assembled. As a consequence, the study of how combinations of

neural networks are assembled and put together to compute specific sig-

nals—as it is the case when someone is programming—cannot occur as it

would imply to go beyond what constitutes the brain. Cognitive studies

may involve inquiring about which program the brain uses for the compu-

tation of a specific input, but the way this program was assembled remains

out of reach: it was already there, ready to be applied to the task at hand.

In short, similarly to von Neumann’s view on the EDVAC but with far less

engineering applications, the brain as conceived by the computational

metaphor of the mind selects the appropriate mental program from the infinite

library of all possible programs. But as this library is precisely what constitutes

the brain, it soon becomes senseless to inquire into how each program was

concretely assembled.

The MIT Press January 2021

124	 Chapter 3

The cognitivist view on computers as designed in the image of the brain

seems then to be the product of at least three reductions: (1) neurons as on/

off firing entities, (2) the Turing machine as an expression of mental events,

and (3) the EDVAC as an input/output device controlled by a central organ.

The further distribution of this view on computers through academic, com-

mercial, and cultural networks further legitimatized the conception of cog-

nition as computation. But this cognitive computation was a holistic one

that implied the possibility of all specific computations: the brain progres-

sively appeared as the set of all potential instruction sets, hence preventing

inquiries into the constitution of actual instruction sets. The tautological

impasse of cognitive science when it deals with computer programming

seems, then, to be deriving from a delusive history of the computer. The

ones who inherit from a nonempirical history of electronic computers

might consider cognition as computation and programming as a mental

process. Yet the ones who inherit from an empirical history of the constitu-

tion of electronic computing systems and who pay attention to translation

processes and distributive networks have no other choice but to consider

cognition differently. But how?

The Classical Sandwich and Its Consequences

We now have a clearer—yet still sketchy—idea of the formation of the

computational metaphor of the mind. An oriented “double-click” history

(Latour 2013, 93) of electronic computers that did not pay attention to the

small translations that occurred at the beginning of the electronic com-

puting area enabled cognitive scientists—among others—to retroactively

consider computers as deriving from the very structure of the brain. But

historically, what has happened is far more intricate: McCulloch and Pitts’s

work on neurons and von Neumann’s view on the EDVAC echoed each

other to progressively form a powerful yet problematic depiction of com-

puters as giant electronic brains. This depiction further legitimized the

computational metaphor of the mind—also coined computationalism—that

yet paralyzed the analysis of the constitution of actual computer programs

since the set of all potential programs constituted the brain’s fundamental

structure. At this point of the chapter, then, to definitively turn our back

on computationalism and propose an alternative definition of cognition

that could enable us to consider the task of computer programming as a

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 125

practical activity, we need to look more precisely at the metaphysics of this

computational standpoint.

If computationalism in cognitive science derives from a quite recent

nonempirical history of computers, its metaphysics surely belongs to a

philosophical lineage that goes back at least to Aristotle (Dreyfus 1992).

Susan Hurley (2002) usefully coined the term “classical sandwich” to sum-

marize the metaphysics of this lineage—also referred to as “cognitivism”—

that considers perception, cognition, and agency as distinct capacities. For

the supporters of the classical sandwich, human perception first grasps an

input from the “real” world and translates it to the mind (or brain). In the

case of computationalism, this perceptual input takes the shape of nervous

pulses that can be expressed as numerical values. Cognition, then, “works

with this perceptual input, uses it to form a representation of how things

are in the subject’s environment and, through reasoning and planning that

is appropriately informed by the subject’s projects and desires, arrives at a

specification of what the subject should do with or in her current environ-

ment” (Ward and Stapleton 2012, 94). In the case of computationalism, the

cognitive step implies the selection and application of a mental model—or

mental program—that outputs a different numerical value to the nervous

system. Finally, agency is considered the output of both perception and

cognition processes and takes the form of bodily movements instructed by

nervous pulses.

This conception of cognition as “stuck” in between perception and action

as meat in a sandwich has many consequences. It first establishes a sharp

distinction between the mind and the world. Two realms are then created:

the realm of “extended things” that are said to be material and the realm

of “thinking things” that are said to be abstract and immaterial.28 If matter

thrones in the realm of “extended things” by allowing substance and quan-

tities, mind thrones in the realm of “thinking things” by allowing thoughts

and knowledge.

Despite the ontological abyss between them, the realms of “thinking

things” and “extended things” need to interact: after all, we, as individuals,

are part of the world and need to deal with it. But a sheet of paper cannot go

through the mind, a mountain is too big to be thought, a spoken sentence

has no matter: some transformation has to occur to make these things pos

sible for the mind to process. How, then, can we connect both “extended”

The MIT Press January 2021

126	 Chapter 3

and “thinking” realms? The notions of representation (without hyphen) and

symbols have progressively been introduced to keep the model viable. For

the mind to keep in touch with the world of “real things,” it needs to work

with representations of real things. Because these representations happen in

the head and refer to extended things, they are usually called mental repre

sentations of things.

Mental representations of things need to have at least two properties.

They first need a form on which the mind could operate. This form may

vary according to different theories among cognitivism. For the computa-

tional metaphor of the mind, this form takes, for example, the shape of elec-

tric nervous pulses that the senses acquire and that are then routed to the

brain. The second property that mental representations of things require is

meaning; that is, the distinctive trace of what representations refer to in the

real world. Both properties depend on each other: a form has a meaning,

and a meaning needs a form. The notion of symbol is often used to gather

both the half-material and semantic aspects of the mental representations

of things. In this respect, cognition, as considered by the proponents of

the classical sandwich, processes symbolic representations of things that

the senses offer in their interactions with the real world. The result of this

processing is, then, another representation of things—a statement about

things—that further instructs bodily movements and behaviors.

The processing of symbolic representations of things does not always

lead to accurate statements about things. Some malfunctions can happen

either at the level of the senses that badly translate real things or at the level

of the mind that fails to interpret the symbols. In both cases, the whole pro

cess would lead to an inaccurate, or wrong, statement about things. These

errors are not desirable as they would instruct inadequate behaviors at the

end of the cognitive process. It is therefore extremely important for cogni-

tion to make true statements. If cognition does not manage to establish

adequate correspondences between our minds and the world, our behaviors

will be badly instructed. Conversely, by properly acquiring knowledge about

the real world, cognition can make us behave adequately.

I assume that the symbolic representational thesis that derives from cog-

nition as considered by the classical sandwich leads to two related issues.

The first issue deals with the amalgam between knowledge and reality it cre-

ates, hence refusing giving any ontological weight to entities whose tra-

jectories are different from scientific facts. The second issue deals with the

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 127

thesis’s incapacity to consider practices in the wild, with most of the models

that take symbolic representational thesis to the letter failing the test of

ecological validation.

Let us start with the first issue, certainly the most difficult. We saw that,

according to cognitivism, the adaequatio rei et intellectus serves as the mea

sure of valid statements and behaviors. For example, if I say “the sun is ris-

ing,” I make an invalid statement and thus behave wrongly because what

I say does not refer adequately to the real event. Within my cognitive pro

cess, something went wrong: in this case, my senses that made me believe

that the sun was moving in the sky probably deceived me. In reality, thanks

to other mental processes that are better than mine, we know as a matter of

fact that it is the earth that rotates around the sun; some “scientific minds”—

in this case, Copernicus and Galileo, among others—managed indeed to

adequately process symbolic representations to provide a true statement

about the relations between the sun and the earth, a relation that the laws

of Reason can demonstrate. My statement and behavior can still be con-

sidered a joke or some form of sloppy habit: what I say/do is not true and

therefore does not really count.

The problem of this line of thought that only gives credit to scientific

facts is that it is grounded on a very unempirical conception of science.

Indeed, as STS authors have demonstrated for almost fifty years, many mate-

rial networks are required to construct scientific facts (Knorr-Cetina 1981;

Lynch 1985; Latour and Woolgar 1986; Collins 1992). Laboratories, experi-

ments, equipment, colleagues, funding, skills, academic papers: all of these

elements are necessary to laboriously construct the “chains of reference”

that give access to remote entities (Latour 1999b). In order to know, we

need equipment and collaboration. Moreover, as soon as one inquires into

science in the making instead of ready-made science, one sees that both the

knowing mind and the known thing start to exist only at the very end of

practical scientific processes. When everything is in place, when the chains

of reference are strong enough, when there are no more controversies, I

am becoming able to look at the majestic Californian sunrise and meditate

about the power of habits that makes me go against the most rigorous fact:

the earth is rotating. Thanks to numerous scientific networks that were

put in place during the sixteenth and seventeenth centuries, I gain access

to such—poor—meditation. Symmetrically, when everything is in place,

when the chains of reference are strong enough, the sun gains its status of

The MIT Press January 2021

128	 Chapter 3

known thing as one part of its existence—its relative immobility—is indeed

being captured through scientific work and the maintenance of chains

of reference. In short, what others have done and made durable enables

me to think directly about the objective qualities of the sun. As soon as I

can follow solidified scientific networks that gather observations, instru-

ments, experiments, academic papers, conferences, and educational books,

I become a knowing mind, and the sun becomes a known object. Cognitiv-

ism started at the wrong end: the possibility of scientific knowledge starts

with practices and ends with known objects and knowing minds. As Latour

(2013, 80) summarized it:

A knowing mind and a known thing are not at all what would be linked through

a mysterious viaduct by the activity of knowledge; they are the progressive result

of the extension of chains of reference.

One result of this relocalization of scientific truth within the networks

allowing its production, diffusion, and maintenance is that reality is not

the sole province of scientific knowledge anymore: other entities that go

through different paths to come into existence can also be considered real.

Legal decisions (McGee 2015), technical artifacts (Simondon 2017), fictional

characters (Greimas 1983), emotions (Nathan and Zajde 2012), or religious

icons (Cobb 2006): even though these entities do not require the same type

of networks as scientific facts in order to emerge, they can also be consid-

ered real since the world is no longer reduced to sole facts. As soon as the

dichotomy between knowledge and mind is considered one consequence of

chains of reference, as soon as what is happening is distinguished from what

is known, there is space for many varieties of existents. By disamalgamating

reality and knowledge, the universe of the real world can be replaced with

the multiverse of performative beings (James 1909)—an ontological feast, a

breath of fresh air.

Besides its problematic propensity to posit correspondence between

things and minds as the supreme judge of what counts as real, another

problem of cognitivism—or computationalism, or computational metaphor

of the mind; at this point, all of these terms are equivalent—is its mitigated

results when it comes to support so-called expert systems (Star 1989; For-

sythe 2002).

A first example concerns what Haugeland (1989) called “Good Old Fash-

ioned Artificial Intelligence” (GOFAI), an important research paradigm in

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 129

artificial intelligence that endeavored to design intelligent digital systems

from the mid-1950s to the late 1980s. Although the complex algorithms

implied in GOFAI’s computational conception of the mind soon appeared

very effective for the design of computer programs capable of complex tasks,

such as playing chess or checkers, these algorithms symmetrically appeared

very problematic for tasks as simple as finding a way outside a room without

running into its wall (Malafouris 2004). The extreme difficulty for expert sys-

tems to reproduce very basic human tasks started to cast doubts on computa-

tionalism, especially since cybernetics—an cousin view on intelligence that

emphasizes “negative feedback” (Bowker 1993; Pickering 2011)—effectively

managed to reproduce such tasks without any reference to symbolic repre

sentation. As Malafouris (2004, 54–55) put it:

When the first such autonomous devices (machina speculatrix) were constructed

by Grey Walter, they had nothing to do with complex algorithms and represen

tational inputs. Their kinship was with W. Ross Ashby’ Homeostat and Norbert

Wiener’s cybernetic feedback … On the basis of a very simple electromechanical

circuitry, the so-called ‘turtles’ were capable of producing emergent properties

and behavior patterns that could not be determined by any of their system com-

ponents, effecting in practice a cybernetic transgression of the mind-body divide.

Another practical limit of computationalism when applied to computer

systems is the so-called frame problem (Dennet 1984; Pylyshyn 1987). The

frame problem is “the problem of generating behaviour that is appropri-

ately and selectively geared to the most contextually relevant aspects of

their situation, and ignoring the multitude of irrelevant information that

might be counterproductively transduced, processed and factored into the

planning and guidance of behaviour” (Ward and Stapleton 2012, 95). How

could a brain—or a computer—adequately select the inputs relevant for

the situation at hand, process them, and then instruct adequate behaviors?

Sports is, in this respect, an illuminating example: within the mess of a

cricket stadium, how could a batter process the right input in a very short

amount of time and behave adequately (Sutton 2007)? By what magic is a

tennis player’s brain capable of selecting the conspicuous input, processing

it, and—eventually—instructing adequate behaviors on the fly (Iacoboni

2001)? To date, the only satisfactory computational answer to the frame

problem, at least with regard to perceptual search tasks, is to consider it NP-

complete, thus recognizing it should be addressed by using heuristics and

approximations (Tsotsos 1988, 1990).29

The MIT Press January 2021

130	 Chapter 3

Finally, the entire field of HCI can be considered an expression of the

limits of computationalism as it is precisely because human cognition is

not equivalent to computers’ cognition that innovative interfaces need to

be imagined and designed (Card, Moran, and Newell 1986). One famous

example came from Suchman (1987) when she inquired into how users

interacted with Xerox 8200 copier: as the design of Xerox’s artifact included

an equivalence between computers’ cognition and human cognition, inter-

acting with the artifact was a highly counterintuitive experience, even for

those who designed it. Computationalism made Xerox designers forget about

important features of human cognition, such as the importance of action

and “situatedness” for many sense-making endeavors (Suchman 2006, 15).

Besides refusing giving any ontological weight to nonscientific entities, com-

putationalism thus also appears to restrain the development of intelligent

computational systems intended to interact with humans.

Enactive Cognition

Despite its impressive stranglehold on Western thought, cognitivism has

been fiercely criticized for quite a long time.30 For the sake of this part II—

whose main goal is, remember, to document the practices of computer

programming because they are nowadays central to the constitution of

algorithms—I will deal only with one line of criticisms recently labeled

“enactive conception of cognition” (Ward and Stapleton 2012). This refram-

ing of human cognition as a local attempt to engage with the world is here

crucial as it will—finally!—enable us to consider programming in the light

of situated experiences.

Broadly speaking, proponents of enactive cognition consider that agency

drives cognition (Varela, Thompson, and Rosch 1991). Whereas cognitiv-

ism considers action as the output of the internal processing of symbolic

representations about the “real world,” enactivism considers action as a

relational co-constituent of the world (Thompson 2005). The shift in per-

spective is thus total: it is as if one were speaking two different languages.

Whereas cognitivism deals with an ideal world that is being accessed indi-

rectly via representations that, in turn, instruct agency, enactivism deals

with a becoming environment of transformative actions (Di Paolo 2005).

Whereas cognitivism considers cognition as computation, enactivism con-

siders cognition as adaptive interactions with the environment whose prop-

erties are offered to and modified through the actions of the cognizer. For

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 131

enactivism, the features of the environment with which we try to couple

are then not fixed nor independent: they are continuously provided as well

as specified based on our ability to attune with the environment.

With enactivism, the cognitivist separations among perception, cogni-

tion, and agency are blurred. Perception is no longer separated from cog-

nition because cognizing is precisely about perceiving the takes that the

environment provides: “The affordances of the environment are what it

offers the animal, what it provides or furnishes, for either good or ill” (Gibson

1986, cited in Ward and Stapleton 2012, 93). Moreover, cognition does not

need to be stuck in between perception and agency, processing inputs on

representations to instructively define actions: for enactivism, the cognizer’s

effective actions both participate in, and are functions of, the takes that the

sensible situation provides (Noë 2004; Ward, Roberts, and Clark 2011). Finally,

agency cannot be considered the final product of a well or badly informed

cognition process because direct perception itself is also part of agency: the

way we perceive grips also depends on our capacities to grasp them. But the

environment does not structure our capacity to perceive either; actions also

modify the environment’s properties and affordances, thus allowing a new

and always surprising “dance of agency” (Pickering 1995). Perceptions sug-

gest actions that, in turn, suggest new perceptions. From take to take, as far

as we can perceive: this is what enactive cognition is all about.

This very minimal view on cognition that considers it “simply” as our

capability to grasp the affordances of local environments has many conse-

quences. First, enactivism implies that cognition (and therefore, to a certain

extent, perception) is embodied in the sense that “the categories about the

kind and structure of perception and cognition are constrained and shaped

by facts about the kind of bodily agents we are” (Ward and Stapleton 2012,

98). Notions such as “up,” “down,” “left,” and “right” are not anymore nec-

essarily features of a “real” extended world: they are contingent effects of

our bodily features that suggest a spatially arrayed environment. We experi-

ence the world through a body system that supports our perceptual appa-

ratus (Clark 1998; Gallagher 2005; Haugeland 2000). Cognition is therefore

multiple: to a certain extent, each body cognizes in its own way by engag-

ing itself differently with its environment.

Second, enactivism implies that cognition is affective in the sense that

“the form of openness to the world characteristic of cognition essentially

depends on a grasp of the affordances and impediments the environment

The MIT Press January 2021

132	 Chapter 3

offers to the cognizer with respect to the cognizer’s goal, interest and proj

ects” (Ward and Stapleton 2012, 99). Evaluation and desires thus appear

crucial for a cognitive process to occur: no affects, no intelligence (Ratcliffe

2009, 2010). “Care” is something we take; what “shows up” concerns us.

Again, it does not mean that our inner desires structure what we may per-

ceive and grasp; our cognitive efforts also suggest desires to grasp the takes

our environment suggests.

Third, enactivism considers that cognition can sometimes be extended:

nonbiological elements, if properly embodied, can surely modify the bound

aries of affective perceptions (Clark and Chalmers 1998). It does not mean

that every nonbiological item would increase our capability to grasp affor-

dances: some artifacts are, of course, constraining ongoing desires (hence

suggesting new ones). But at any rate, the combinations of human and non-

human apparatus, the association of biological and nonbiological substrates

fully participate in the cognitive process and should therefore also be taken

into account.

The fourth consequence of enactivism is the sudden disappearance of the

frame problem. Indeed, although this problem constitutes a serious draw-

back for cognitivism by preventing it from understanding—and thus from

implementing—the initial selection of the relevant input for the task at

hand, enactive cognition avoids it by positing framing as part of cognition.

Inputs are not thrown at cognizers anymore; their embodied, affective, and,

eventually, extended perception tries to grasp the takes that the situations

at hand propose. Cricket batters are trained, equipped, and concerned with

the ball they want to hit; tennis players inhabit the ball they are about to

smash. In short, whereas cognitivism deals with procedural classifications,

enactivism deals with bodily and affective intuitions (Dreyfus 1998).

The fifth consequence is the capacity to consider a wide variety of exis-

tents. This consequence is as subtle as it is important. We saw that one del-

eterious propensity of cognitivism was to amalgamate truth (or knowledge)

and reality: what counts as real for cognitivism is a behavior that derives

from a true statement about the real world. Cognition is, then, considered

the process by which we know the world and—hopefully—act accord-

ingly. The picture is very different for enactivism. As enactive cognition is

about interacting with the surrounding environment, grasping the takes it

offers and therefore participating in its reconfiguration, knowledge can be

considered as an eventual, very specific, and very delightful by-product of

The MIT Press January 2021

Von Neumann’s Draft, Electronic Brains, and Cognition	 133

cognitive processes. Cognition surely helps scientists to align inscriptions

and construct chains of reference according to the veridiction mode of the

scientific institution; however, cognition also helps writers to create fictional

characters, lawyers to define legal means, or devout followers to be altered

via renewed yet faithful messages. In short, by distinguishing knowledge

and cognition—cognizers do not know the world but interact with it, hence

participating in its reconfiguration—enactivism places the emphasis on our

local attempts to couple with what surrounds us and reconfigure it, hence

sometimes creating new existing entities.

Finally, enactivism makes the notions of symbols and representations

useless for cognitive activities. Indeed, since the world is now a local envi-

ronment whose properties are constantly modified by our attempts to

couple with it, no need exists to posit an extra step of mental represen

tations supported by symbols. For enactivism, there may be symbols—in

the sense that a take offered by the environment may create a connection

with many takes situated elsewhere or co-constructed at another time—but

agency is always first. When I see the hammer and sickle on a red flag on a

street of Vientiane, Laos, I surely grasp a symbol but only by virtue of the

connections this take is making with many other takes I was able to grasp

in past situations: TV documentaries about the Soviet revolution, school

manuals, movies, and so on. In that sense, a symbol becomes a network

of many solidified takes. Similarly, some takes may re-present other takes,

but these re-presentations are always takes in the first place. For example,

I may grasp a romantic re-presentation of a landscape at the second floor

of Zürich’s Kunsthaus, but this re-presentation is a take that the museum

environment has suggested in the first place. This take may derive from

another take—a pastoral view from some country hill in the late eighteenth

century—but, at least at the cognitive level, it is a take I am grasping at the

museum in the first place.

To sum up, enactive cognition starts with agency; affective and embod-

ied actions are considered our way of engaging with the surrounding envi-

ronment. This environment is not considered a preexisting realm; it is a

collection of situations offering takes we may grasp to configure other take-

offering situations. From this minimal standpoint, cognition infiltrates

every situation without constituting the only ingredient of what exists.

Scientists surely need to cognize to conduct experiments in their laborato-

ries; lawyers for sure need to cognize to define legal means in their offices;

The MIT Press January 2021

134	 Chapter 3

programmers surely need to cognize to produce numbered lists of instruc-

tions capable of making computers compute in desired ways; yet facts, legal

decision, or programs cannot be reduced to cognitive activities as they end

up constituting existents that populate the world. With enactive cognition,

the emphasis is made on the interactions among local situations, bodies,

and capabilities that, in turn, participate in the formation of what is exist-

ing, computer programs included. Cognition, then, appears crucial as it

provides grips but also remains very limited as it is constantly overflowed:

there is always something more than cognition. May computer program-

ming be considered as part of this more. This could make it finally appear

in all its subtleties.

The MIT Press January 2021

The journey was convoluted, but we are now finally in a position to consider

computer programming as a practical, situated activity. In chapter 3, I first

questioned von Neumann’s architecture; for fundamental yet contingent

reasons, its definition of computers as functional devices took for granted the

situated practices required to make them function. If this unempirical pre

sentation of electronic systems was certainly useful at the beginning of the

computer area by sharing classified work and proposing a research agenda,

it nonetheless misled the understanding of what makes computers actually

compute. I then distanced myself from the different academic answers to

the nonfunctional aspects of electronic computers as functionally defined by

von Neumann. Aptitude tests for the selection of programmers started at the

wrong end as they tried to select people without inquiring into the require-

ments for such tasks. Behavioral studies aiming to isolate the right parameters

for efficient programming implied looking at the results of actions and not at

the actions themselves. Finally, I tried to show how the cognitivist response

to behavioral studies had, and has, problematic limitations: as mainstream

cognitivism relies on the computational metaphor of the mind that itself

needs already assembled programs, many cognitivists cannot go beyond the

form “program” that ends up explaining itself. A process is being explained

by its own result; programs need programs, a perfect tautology. Yet in the

last section of chapter 3, I suggested that the very notion of cognition, once

freed from the throes of computationalism, could still be a useful concept for

rediscovering experience. Once cognition is considered an enactive process of

grasping the affordances of local environments, the emphasis is placed on

specific situations, places, bodies, desires, and capabilities.

From this point, we are ready to grasp programming in all of its materi-

ality without being obtruded by the notions of “representations” (without

4  A Second Case Study

The MIT Press January 2021

136	 Chapter 4

hyphen), “mental models,” or “computation.” All of these things—and

more generally von Neumann’s functional presentation of computers—are

the results of the situations we want to account for. To a certain extent,

we are back in 1943 at the Moore School of Electrical Engineering: no

mental models, no internal cognition, no von Neumann architecture, no

programs; only actions, desires, and artifacts that interactively try to make

meaningful electronic computations occur. Even though the following case

study is based on data collected in the Lab between 2015 and 2016, I will

try to study them as if the unempirical conceptions of electronic comput-

ing did not occur.

Presentation of the Empirical Materials

The development of an image-processing algorithm intended for academic

publication is a process that involves many different activities and situa-

tions. But along the gathering of relevant data; the construction of ground

truths; the formulation of transformative relationships between input-data

and output-targets; and the numerous Group meetings, informal discus-

sions, seminars, and coffee breaks that help all these things to happen,

there are more or less long computer programming episodes when numbered

lists of instructions have to be written in order to make an electronic device

adequately compute digital data. It is these courses of action that have a

beginning and an end that I will try to account for in this case study.

The problem that quickly stood out during my ethnographic endeavor

within the Lab was how to document these courses of action. First, as the

code being written during programming episodes was very cryptic, it was

in the beginning difficult to have a grip on what was going on. Second, the

configurations of these cryptic signs on the screens were constantly chang-

ing; new characters were added, other erased, other corrected, and so on.

Third, these situations appeared quite engaging for the people involved,

which prevented me from asking them questions about what they were

doing. During these moments that looked particularly intense, I was clearly

out of place.

To palliate these methodological issues, I designed my own image-

processing project with the help of the Lab’s members. After several Lab

meetings, we collectively decided that I should try to design a preprocessing

model that could sort images whose pixel configurations would fit further

The MIT Press January 2021

A Second Case Study	 137

specific segmentation processes that were under development within the

Lab. This modest project was explicitly designed to force me learn the basics

of several computer programming languages and become more familiar

with image processing in general. Importantly, the project also included a

“helping clause” that allowed me to ask members of the Lab for help when

I was stuck in a programming impasse. This somewhat unusual method

turned out immensely fruitful. It first made me become more comfort-

able with several programming languages;1 little by little, all these cryptic

signs started to make more sense. It also made the members of the Lab

more comfortable during the programming episodes I tried to document

and account for. As the project had been designed collectively and could

potentially be used for future projects, the members of the Lab found it

somewhat relevant. And as the so-called helping sessions did not directly

concern their own projects, they also felt more at ease with me taking notes

and asking questions while they were programming. Finally—and perhaps

more importantly—this method allowed me to better equip and document

programming episodes: along with notes describing the movements and

gestures of the one who was programming next to me, I could video rec

ord my monitors and audio record the discussions. For the eight helping

sessions I needed for this project, I then ended up with descriptions, screen

recordings, and audio recordings I could thoroughly analyze.

Though insightful in many respects, the materials collected during these

helping sessions nonetheless had limitations. As the small programs result-

ing from these sessions were primarily intended for my own specific use,

they were not directly designed to circulate within a professional commu-

nity of programmers as it is typically the case in corporate software settings.

In this sense, important topics such as program reading for the in situ shap-

ing of intelligibility, as considered by Button and Sharrock (1995) in their

paper on computer programming practices, could not be specifically inves-

tigated. Nevertheless, as we will see later in the chapter, some of my analyti-

cal propositions may well be related to Button and Sharrock’s conclusions.

The following materials are taken from one helping session during

which DF—a PhD student of the Lab—wrote a small program that I will

from now on call PROG that dealt with data I had previously collected via

a crowdsourcing task. The crowdsourcing task was divided into ten rounds.

For each round, twenty to thirty unknown workers were shown fifty “natu

ral pictures” of landscapes, faces, birds, buildings, and so on. The content

The MIT Press January 2021

138	 Chapter 4

of these pictures was extremely varied. For each image, each worker was

asked to draw one or several rectangles around the parts of the image that

first attracted their attention. Before switching to the next image, each

worker also had to grade from one to seven how straightforward it had been

for them to choose what specific parts of the image to label. After the ten

rounds of this crowdsourcing task, 254 different workers each labeled fifty

images for a total of five hundred images. The data collected from the activity

of the workers (the IDs of the images they processed, the coordinates of the

rectangles they drew, and the grades they gave for each labeling task) via a

web application were gathered in .txt files organized as in figure 4.1. The

content of these .txt files along with the natural images used for the crowd-

sourcing task were the data on which PROG had to work.

If this small project was explicitly designed to better document program-

ming practices, it also had an image-processing goal. This secondary goal

was to find correspondences between the contents of the natural images—

in terms of arrangement of numerical pixel-values—and both the rectangles

and grades provided by the workers. In short, the assumption was that for

16714267603_cd60601b7f_b.jpg 1 startX: 25px startY: 32px width: 450px height: 361px
16705290404_d8de298f0e_b.jpg 5 startX: 430px startY: 76px width: 260px height: 414px
 startX: 234px startY: 227px width: 189px height: 216px

Figure 4.1
Excerpt of a .txt file named “worker_05Waldave56jm9815.txt” as provided by the

web application at the end of each session of the crowdsourcing task. The name

of the file (“worker_05Waldave56jm9815.txt”) corresponds to the ID given to the

worker by the web application. Only two rows of the file are presented here. The first

element of each row is a string of text that ends with “.jpg”; it corresponds to the

ID of the image that had been processed by the worker. The second element of each

row corresponds to the numeral grade given to the labeling task by the worker. The

subsequent elements of each row correspond to the coordinates of the rectangle(s)

drawn by the worker. Every rectangle is defined by four values part of the coordi-

nate space of the image that was being processed. The first value of each rectangle

(“startX: npx”) corresponds to the horizontal coordinate of the picture. The second

value (“startY: npx”) corresponds to the vertical coordinate of the picture. The third

value (“width: npx”) corresponds to the pixel width of the drawn rectangle. The

fourth value (“height: npx”) corresponds to the pixel height of the drawn rectangle.

Altogether, these four values allow to reconstruct—later—the rectangle(s) drawn by

the user. Moreover, as indicated by the second row of the excerpt, the workers could

draw several rectangles.

The MIT Press January 2021

A Second Case Study	 139

images with high grades and very dispersed rectangles, it may not make sense

to divide their content into smaller parts. Symmetrically, for images with low

grades and very compact rectangles, it may eventually make sense to divide

their content into smaller parts (see figure 4.2). Being able to automatically

sort pictures whose contents may or may not be divided into smaller parts

could be useful for further lossy compression schema based on segmentation

processes. In that sense, the computational method I tried to define could

eventually serve as a preprocessing step for further, more complex, segmenta-

tion/compression methods that members of the Lab were developing at that

time. But at any rate, to propose such a preprocessing method, many inter-

mediary programs—including PROG—had to be assembled.

The design of the web application that enabled the crowdsourcing task

and the gathering of data as shown in figure 4.2 required the completion of

many different programs. First, a Python web-scrapping program had to be

designed in order to browse and download heterogeneous, high-definition,

and Creative-Commons-licenced images made available by the API of the

Flickr website. The design of this small yet not-so-trivial program first

required a “helping session” with a member of the Lab. Second, several pro-

grams using html, JavaScript, and PHP computer programming languages

Figure 4.2
Two views on the data collected during the crowdsourcing task. Both views were

made possible by a Matlab program that parsed the data of the .txt files and related

them to the corresponding .jpg images. On the left, workers roughly labeled the same

part of the image and gave a very low grade to this labeling task (average of 1.16).

One may then assume that it would make sense to divide the content of this image

into smaller parts (in this case, the bird and the rest). On the right, the opposite situ-

ation: the workers labeled the image almost randomly and gave a high grade to this

labeling task (average 5.25). One may them assume that it would make little sense to

divide the content of this image into smaller parts.

The MIT Press January 2021

140	 Chapter 4

had to be designed to allow workers to interact with a specific number of

images and store their IDs, labels, and grades within .txt files. The design of

this web application required two “helping sessions” with members of the

Lab. Third, a first Matlab program was required in order to read the tex-

tual and numerical contents of all the .txt files and reorganize them within

Matlab software environment. Because of its agility to design problems of

linear algebra—all integers being considered scalars—Matlab is widely used

for research and industrial purposes in computer science, electrical engi-

neering, and economics. Yet if Matlab programming language is known

for being well adapted for the computation of matrices and arrays, it is

also known for being badly adapted for the reorganization of .txt data into

matrices and arrays. This reorganization of data into matrices and arrays

was generally called “parsing” by the members of the Lab. Again, a fourth

helping session was required to help me assemble parsing programs that

further enabled views such as those presented in figure 4.2.

The program whose formation we are about to follow—PROG—dealt

with the analysis of the data as reorganized by previous parsing programs.

The shaping of PROG required a fifth “helping session” with DF. The speci-

fications of PROG can be summarized as such: for reasons we will cover

at length in the next sections, PROG should be able to transform each

labeled digital image as presented in figure 4.2 into another less complex

digital image as presented in figure 4.3. The value of the pixels of each

Figure 4.3
Two views on the results of PROG. Both simplified matrices are translations of the

labeled images of figure 4.2. PROG was intended to select one part of the parsed data

in order to transform the labeled images of figure 4.2 into much less complex matrices.

These matrices allowed further analysis, notably in terms of histograms and frequencies.

The MIT Press January 2021

A Second Case Study	 141

less complex image should correspond to the number of rectangles each

pixel is part of. For example, if a given pixel is part of zero rectangle, PROG

should attribute the value zero to this pixel. But if another given pixel

is part of, say, six rectangles, PROG should attribute the value six to this

pixel. PROG was thus intended to gather together different values (dimen-

sions of the natural image, dimensions of each rectangle drawn by the

participants of the crowdsourcing task, incrementing values of each pixel)

in order to create new images or, as usually coined in image processing,

new matrices.

At this point, it is not necessary to fully understand the goals and specifi-

cations of PROG as we will closely consider them in the next sections. What

is more important for now is to understand that PROG was designed in the

Matlab software environment. Like other popular high-level programming

languages, such as Python or C, Matlab is generally used in conjunction

with an integrated development environment (IDE) that includes visualization

and file organization functionalities (see figure 4.4). But unlike Python, C,

and some of their compatible IDEs (e.g., PyCharm, Eclipse), Matlab—as

a programming language in its own right and as an IDE—is owned and

maintained by MathWorks Inc. and is distributed on a license basis. At the

time of this inquiry, Matlab’s proprietary feature was criticized by a grow-

ing number of Lab members who tended to prefer Python, which is open-

source and supported by an active community of developers. However,

notably because of its internal organization natively designed for matrix

processing, Matlab was and still is frequently used. For reasons of readabil-

ity, my follow-up of the practical formation of PROG will only focus on the

Editor and the Command Window of the Matlab IDE. In the next sections,

the content of figure 4.4 will then be presented as in figure 4.5.

Even if PROG was by far the smallest program of the project, I will not

be able to account for its entire formation process. Instead of accounting for

the whole programming episode that established PROG, I will only focus

on specific sequences that are particularly instructive. My follow-up of the

programming sequences is chronological, starting at Time 0 (T0) and end-

ing at Time n. Yet the sampling of each T does not follow a fixed period of

time but rather the modifications of both the Editor and the Command

Window. Let us assume, for example, that figure 4.5 is the first expression of

PROG during the programming sequence we are following (T0). As soon as

The MIT Press January 2021

142	 Chapter 4

Figure 4.4
Screenshot of the Matlab IDE. The far-right window is called the Workspace. It gath-

ers all the variables the programmer creates during their session. To the left of the

Workspace, the Variables Window allows the programmer to visualize in spread-

sheets the variables she created. In this screenshot, the variable “images[1,1]” is being

visualized. Below it, to the left of the Workspace, there is the Command Window

that shows the results of the operations conducted by the programmer. In this

screenshot, the Command Window shows the answer “[]”. The long window in the

middle of the screenshot is the Current Folder Window that shows the content of

the folder currently accessed by the software. On the left, the Editor is the window

that allows the programmer to write Matlab programs—also called scripts—that is,

numbered lists of instructions written in the Matlab programming language. When

the programmer clicks on the Run icon (on the top middle of the Editor) or uses an

equivalent personalizable shortcut key, the results of the script are printed in the

Command Window. In this screenshot, the running of the script made “[]” appear in

the Command Window. The spatial arrangements of these different windows can be

modified according to the programmer’s preferences.

The MIT Press January 2021

A Second Case Study	 143

the programmer makes changes in both the Editor and the Command Win

dow, these changes will be documented and highlighted as in figure 4.6.

In between the different Ts, the sayings and actions of the programmer

(DF) and me (FJ) will be transcribed. To keep things readable, I may omit

some small actions, such as quick mistypes or hesitation disfluencies. Fol-

lowing T1 (figure 4.6), the programming sequence would, for example, go

on like this:

DF:  “Hum, it doesn’t work anymore.”

FJ:  “Apparently.  …”

DF:  “Tssssss.”

[at line 14, DF deletes “{1}”]

[DF runs the script]

[figure 4.7—T2]

DF:  “OK. But why are there only two of them? I don’t get it. Difficult

today!”

[laughs]

1. f = fopen(‘user_05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. %coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end
20. %
21. %images{1}{3}

ans =

[]

Figure 4.5
Simplified Matlab IDE as it will be presented for the remainder of the analysis. To

make the follow-up of programming sequences more readable, only the content of

the Editor and the Command Window will be displayed. Here, the figure expresses

(part of) the content of figure 4.4.

The MIT Press January 2021

144	 Chapter 4

1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. coords = [cords sscanf(c. ., ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end
20. %
21. %images{1}{3}

ans =

83 74

14. {1}

Figure 4.7
Editor and Command Window at T2.

1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. .coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end
20. %
21. %images{1}{3}

>> parse

Cell contents

reference from a non-

cell array object

Error in parse(line

14)

coords = [coords

sscanf(c{1}, ‘%ipx’)]

14. %

Figure 4.6
The Editor and the Command Window at T1, when modified by the programmer. In

the caption’s title, the term “T1” indicates that it is the first change of the program-

ming sequence being followed. The instructions that have been removed or added in

the Editor are highlighted in gray. The content of the Command Window is updated.

Finally, the instructions that have been deleted are indicated as strikeout text in the

bottom cell. The line numbers of the deleted instructions are those of Tn-1 (here T0).

The MIT Press January 2021

A Second Case Study	 145

Here and then, I will also intervene to clarify things and analyze what is

happening. Before we start with the first sequence, it is important to keep

in mind that one does not need to understand everything that is said in the

transcriptions nor all the elements within each T. What is important in this

close analysis of computer programming practices is what is happening in

between each T. It is by focusing on the relative differences between each T

that we will manage to understand some of the issues at stake during these

unconventional courses of actions.

I need to mention one last thing before we dive into the practices of com-

puter programming. One may easily object that the following case study and

its subsequent tentative propositions are not representative of programming

practices in general. To this, I answer that representativeness is simply not at

stake here. Representativeness is indeed a powerful and important concept

but only when the boundaries of a population are clearly defined. Inhabit-

ants of a town, cells of a tissue, words of a book: all can be related to a very

costly and equipped set—the administrative and geographical limits of a

towns, the physical limits of a sample, the hardcover of a book—that sub-

sequently defines a territory and a population. In these specific—but very

rare and often controversial—cases, the concept of representativeness can

be used to extract statistically meaningful results. But when there is no ter-

ritory, no set, the very notion of representativeness loses its raison d’être.

What is programming? Who are programmers when they program? We do

not know as there were very few studies of computer programming prac-

tices. This is typically where ethnography can be useful: the exploration of

nondefined—or problematically defined—territories may provide takes for

the design of subsequent boundaries to be explored statistically. And while

I do think that the young street artist in Leipzig who is writing a small Java

Script program to animate the menus of her personal website, the engineer

of Boeing who is working on the last Ada’s update for cabin pressurization

modules, or the computer scientist who tries to parse .txt files with the Mat-

lab IDE differ in many ways—they have different problems, affects, environ-

ments, equipment—I also think that (almost) none of these situations have

yet been accounted for ethnographically. We still have to start somewhere.

The following case study is then one of the very first steps into, I hope, more

systematic studies of programming courses of action; hence the exploratory

aspect of its propositions.

The MIT Press January 2021

146	 Chapter 4

Aligning Inscriptions

Let us focus on PROG. Building on what I presented in the last section,

I will document a very short programming sequence that took less than

five minutes in real time. I will stay as close as possible to the formatted-

yet-empirical material, using the presentation method I introduced above

as well as several concepts developed in STS in the course of the analysis.

My hope is to show that one set of practices that are terribly important for

programmers deal with the proliferation and alignment of inscriptions in

order to pave out an access to a remote entity and, simultaneously, identify a

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1;
15. end
16. end

>>

Figure 4.8
Editor and Command Window at T0.

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1;
15. end
16. end

Index exceeds matrix
dimensions

Figure 4.9
Editor and Command Window at T1.

The MIT Press January 2021

A Second Case Study	 147

location. Hopefully, this odd proposition will become clearer as the chapter

goes on. For the moment, let us start in medias res with figures 4.8 and 4.9:

[figure 4.8—T0]

[DF runs the script]

[figure 4.9—T1]

DF:  “OK. So it tells me it doesn’t work.”

FJ:  “Apparently.”

What is happening between T0 and T1? After DF runs the script, a red

(here, gray) inscription appears in the Command Window, indicating that

“Index exceeds matrix dimensions.” Where does this text come from?

Who wrote it? To better understand the origin of this cryptic notification, I

have to introduce an important participant to the sequence: the interpreter

(INT). For the sixteen lines of code in the Editor to generate electric pulses

that would further allow the hardware of the computer to effectively com-

pute the data of the .txt files, many steps have to be taken. Fortunately, for

the case that interests us here, only the very first step is important. This first

step consists in translating every line of code into something else—in this

case, subroutines compiled into machine code—that would, in turn, gen-

erate electric pulses and the effective computation of the data. One of the

entities responsible for this complex translation is INT. Every time DF runs

the script, INT is surreptitiously triggered to translate the content of the

Editor, byte by byte. We do not need to know exactly what INT does during

its translating processes: even for DF, the very functioning of INT remains

obscure. In fact, we just need to understand four characteristics of INT:

1.	 INT has its own trajectory that is fully understood by almost nobody:

highly specialized teams employed by the company MathWorks, editors

of Matlab, were required to shape it and are still currently maintaining

it. In that sense—at least from the point of view of DF—INT can be con-

sidered a being that takes the risk of existence (James [1912] 2003; Latour

2013), just as a cat or an elephant seal.

2.	 INT translates one line of the Editor after the other.2

3.	 As soon as INT successfully translates a line, if this line instructs the print-

ing of an inscription, INT prints this inscription in the Command Window.

4.	 As soon as INT cannot translate one line, it stops and prints a red (here,

gray) inscription in the Command Window.

The MIT Press January 2021

148	 Chapter 4

This leads us to the important notion of inscription that we have already

encountered in the introduction where I emphasized the world-generative

capabilities of these durable, mobile, and re-presentable entities. There are,

of course, many different types of inscriptions: books, WhatsApp messages,

shopping lists, or even tattooed bodies can be considered inscriptions,

some being more durable, mobile, and re-presentable than others (Gitel-

man 2014). But in any case, inscriptions are translated manifestations of

more or less attributable events and thus constitute, at least potentially,

takes offered by the environment in specific situations. These inscriptions

are not representations (without hyphen) of “real things” that feed mental

computations. They are formatted re-presentations of events that may be

grasped and, in turn, configure other world-generative takes. This is why I

needed to tediously introduce enactive cognition at the end of chapter 3: as

we are now aware that agency precedes cognition, documents and inscrip-

tions can be considered no more but also no less than takes that may sug-

gest other actions—from take to take, as far as we can perceive and make

sense (Penny 2017).

Inscriptions-takes are sometimes grasped by cognizing individuals; other

times, they are not. In our case, the inscription “Index exceeds matrix
dimensions” is indeed grasped by DF. In fact, as DF ran the script, he

expected an inscription to appear in the Command Window. Moreover, as

DF is well aware—just as we are now—that any red inscription in the Com-

mand Window manifests that INT could not translate all the lines of the

script, DF knows that the inscription “Index exceeds matrix dimensions”

is the trace of an event related to INT.

From this point, we are able to better understand what the first inscription

does to DF. At T1, the inscription “Index exceeds matrix dimensions” is a

take grasped by DF that manifests that something—but what?—is affecting

the trajectory of INT: it tells me it doesn’t work.

Let us continue:

DF:  “It doesn’t go through. I’ll just check the size of the image.”

[DF creates a new line at 2 in the Editor; types “size(I)”]

INT has a problem: it doesn’t go through the script. But what part of PROG

is affecting INT? At this point, it is difficult to know exactly. In fact, under-

standing what is happening to INT is, from now on, necessary to the real-

ization of PROG.

The MIT Press January 2021

A Second Case Study	 149

For DF, the initial red inscription indicates—though quite vaguely—that

INT is affected by the size of something. The terms “exceeds” and “dimen-
sions” of the red inscription attest for such a size-related problem. In order

to have a better grip on what size-related problem is affecting the trajectory

of INT, DF starts by examining the size of the image. To do this, DF adds the

small line of code “size(I)” at the second line of the script and then runs

it, thus triggering INT (figure 4.10—T2).

By adding the line of code “size(I)” at line 2 and then triggering INT,

DF makes a new inscription appear in the Command Window:

ans =

Columns I through 2

1024 712

Column 3

3

This new inscription printed by INT in the Command Window is not red

and can therefore be considered an actual translation of the code. This is

taken for granted: decades of engineering developments allow DF to be

certain that this new inscription is an unproblematic expression of INT. But

still, is this inscription expressing the dimension of the right image? If not,

the whole script should be reconsidered. To verify that INT is indeed failing

to process the right image, DF uses the second non-red inscription to create

a third one, this time emanating from me:

1. I = imread(images{1});
2. size(I)
3. R = zeros(size(I));
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1;
16. end
17. end

ans =
Columns 1 through 2
1024 712

Column 3
3

Index exceeds matrix
dimensions

Figure 4.10
Editor and Command Window at T2.

The MIT Press January 2021

150	 Chapter 4

DF:  “OK, so the size is 1024 × 712. Does that sound right to you?”

FJ:  “Yes, it is correct for this image.”

DF:  “Ok. So it’s happening after.”

The oral statement “Yes, it is correct for this image”—itself deriving from

inscriptions I had previously produced and encountered during a former

unsuccessful programming attempt—allows DF to consider that the non-

red inscription refers adequately to the image INT is failing to process.

The certitude emanating from the articulation of the non-red inscription

and the inscription-derived oral statement further allows DF to infer that

“it’s happening after.” The “after” is here crucial. Indeed, since the second

inscription is not red and appears above the red inscription in the Com-

mand Window, DF can conclude that whatever is affecting the trajectory

of INT, it lies somewhere after the instruction “size(I)” he has just added

at line 2. By adding and articulating two new inscriptions—the non-red

inscription and the inscription relayed by my confirmatory oral state-

ment—DF already gets a clearer view on INT: what is affecting its trajectory

lies after the second line of the script.

Let us continue:

[DF examines the Command Window of figure 4.10—T2]

DF:  “Ah, but it indicates also the colors! Typical Matlab.”

[DF puts the cursor on “Column 3” in T2 Command Window]

DF:  “See? [to FJ] We should take only the first two values for “R.” Other

wise, it blocks.”

FJ:  “Because now ‘R’ has three values?”

DF:  “I guess so.”

[DF deletes line 2; at the end of “new” line 2, he types “.1), size(I,2”]

By pursuing his inspection of the non-red inscription in the Command

Window at T2, DF notices that the size of the image INT fails to process is

expressed by three values: “1024,” “712,” and “3.” Where does this “3” come

from? Difficult to say. It may come from Matlab systematic consideration of

the data that structure a digital color image. Indeed, these specific matrices are

bound to a width, a height, and three layers of RGB values. Most high-level

programming languages do not take into consideration this third value as it

generally does not express useful information about the actual dimensions

The MIT Press January 2021

A Second Case Study	 151

of an image. But Matlab—in its fussy fashion—apparently expresses it, and

this may be, according to DF, the source of the problem affecting INT.

At this point, DF believes that the documentation he gathered about

INT’s trajectory through the piling up and alignment of three inscriptions—

the red inscription, the non-red inscription, and the auditory statement

(itself being a translation of written inscriptions considered in the past)—is

accurate enough to complete the script; according to DF, based on the evi-

dences he produced, collected, and aligned, INT does not support the third

value of “size(I).” This information about INT that points toward line 3

may, in turn, allow the modification of the script and smooth the trajectory

of INT. DF also deletes “size(I)” at line 2 that mainly served for him as an

instrument for the probing of INT. Then, in line with his insight about the

provenance of the problematic phenomenon that affects the trajectory of

INT, he types “,1),size(I,2” in the Editor in order to define “R” according

to only two values: “1024” and “712,” for the case of the first image of the

ground truth. He then runs the script:

[DF runs the script]

[figure 4.11—T3]

DF:  “Ah no. It’s not here, apparently.”

Unfortunately for DF, these modifications do not change the state of INT.

As we can see in the Command Window at T3 (figure 4.11), DF’s new

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1;
15. end
16. end

Index exceeds matrix
dimensions

2. size(I)

Figure 4.11
Editor and Command Window at T3.

The MIT Press January 2021

152	 Chapter 4

triggering of INT does not lead to the disappearance of the red inscription:

something is still affecting INT, and it was not the image size defined by

three values instead of only two.3 Using a scientific expression, we can say

that “INT-being-affected-by-the-third-value-of-size(I)” was an artifact: it

does not participate in the phenomenon that affects INT’s trajectory. In

turn, the problematic location is not line 2; it is somewhere else. More experi-

ments are therefore needed; more inscriptions have to be produced, com-

pared, and aligned.

The artifact “INT-being-affected-by-the-third-value-of-size(I)” was

not totally worthless for DF, though. Thanks to it, DF is now certain that

INT is being affected by a size-related problem that occurs after line 2. But

this certainty about INT is for the moment too thin; it does not allow DF

to precisely identify what is affecting INT and therefore modify the code

accordingly.

Let us continue:

DF:  “OK. Well, we’ll print the rectangle then. And just compare.”

�[DF deletes “;” at the end of line 8; he creates a new line at 3 in the Edi-

tor; he types “size(R)” at line 3]

PROG deals with natural images on which rectangles have been previously

drawn by workers during a crowdsourcing task. As we saw in the previous

section that presented the empirical materials of this chapter, the drawn rect-

angles are not strictly speaking on the images: they are stored as coordinates

within .txt files. The script we are now examining is intended to use the

width and height values of each natural image as well as its rectangles in

order to create a new image that is less complex and easier to analyse. These

new simplified images—that I will from now on call matrices—should only

express the number and the position of the rectangles that the workers drew

on the initial color images. In this respect, the workflow of the script is quite

straightforward: first, an empty matrix is created using the width and height

values of the initial natural image, then a rectangle is created using the work-

ers’ data in the .txt file related to this image, then the rectangle is added

to the empty matrix. Progressively, as more and more rectangles are added to

the matrix, the matrix acquires more values. In the field of image processing,

we say that the matrix is incremented. Figure 4.3 provides two examples of

PROG’s final outputs; that is, matrices that have been incremented according

to the coordinates of the rectangles related to their IDs in .txt files. But we

are not there yet; at this point of the programming episode, INT—this lively

The MIT Press January 2021

A Second Case Study	 153

entity on which it is difficult to have a grip, at least for biped mammals—is

affected by something that prevents it from translating the code adequately.

What is affecting INT is not clear. But the previous inscriptions DF man-

aged to handle and align have made him see that INT’s problem has to do

with some size and dimension. Moreover, DF is also aware of the general

workflow of the script since he mostly designed it (more on this later). In this

respect, what if the first rectangle that is added to the first matrix exceeds

the boundaries of the matrix? It would be very problematic as it would sig-

nify that some .txt data are corrupted. But as the rectangle is indexed to .txt

data, this would satisfy the red inscription “Index exceeds matrix dimen-
sion.” But how could DF be certain of that? Just as before, by producing

more inscriptions and compare them.

To print the size of the first rectangle, DF deletes “;” at the end of line 8.4

In order to print the dimension of the first image of the dataset, he writes

“size(R)” on line 3. He then runs the script:

[DF runs the script]

[figure 4.12—T4]

[DF examines the Command Window of figure 4.12—T4]

DF:  “So, 197 and 323. Makes less than 1024, obviously. And same for

height. Alright. It’s strange because it doesn’t exceed.”

Two new non-red, and thus a priori nonproblematic, inscriptions appear in

the Command Window at T4 (figure 4.12). The first one “ans = 1024 712”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}.
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1;
16. end
17. end

ans =
1024 712

rect=
197 91 323 371

Index exceeds matrix
dimensions

8. ;

Figure 4.12
Editor and Command Window at T4.

The MIT Press January 2021

154	 Chapter 4

describes the dimension of the first image of the collection. The second one

“rect = 197 91 323 371” describes the dimensions of the first rectangle

drawn by the first worker as well as the location of this rectangle within the

first image. The first value of rect, “197,” refers to its horizontal coordinate

within the image, and the second value, “91,” refers to its vertical coordi-

nate. These two numbers therefore indicate that the rectangle starts at pixel

[197:91] of the image. The third value of rect, “323,” expresses the width of

the rectangle and the fourth value, “371,” expresses its height. These two

last numbers therefore indicate that the width of the rectangle is 323 pixels

and that its height is 371 pixels.

At T4, DF is already aware of what all these values refer to; before

this programming episode, I explained to him the conventions I used to

structure the data of the .txt files. But once these values are printed and

compared with the width and height of the image, basic yet terribly impor

tant arithmetic evaluations can be undertaken: “197 + 323 < 1024” and

“91 + 371 < 712.” These are crucial clues as they do not corroborate the red

inscription of the Command Window; the rectangle doesn’t exceed the

dimensions of the image. The size and position of the rectangle is not what

is affecting INT. Something else is disrupting INT in its relation with PROG.

But what? And where is it? More inscriptions are required to better docu-

ment what affects INT and modify the script accordingly.

What we see at T4 is a perfect example of the process I’m here trying to

highlight: by printing the size of the image and the coordinates of the rect-

angle, DF acquires a better grip on the process at hand. He can articulate these

two new inscriptions and align them to the previous ones. In that sense, he is

enactively paving out some access to INT and its red inscription. Even though

this production and alignment of inscriptions do not work as DF hoped—the

dimensions of the rectangle do not exceed the dimensions of the image—this

gives him another clue about the phenomenon under scrutiny: what is affect-

ing INT lies somewhere else. This practice of grasping, producing, and aligning

inscriptions in order to identify the origin of a problematic phenomenon is,

I believe, central to programming. As we will see, it is not the only type of

practices that are deployed during computer programming sequences. But in

some specific situations, when an important entity is blocked in its trajec-

tory, thus preventing the computation of data by means of electric pulses,

the handling and aligning of inscriptions remains crucial. In these situations

when a problematic location has to be found, the design of experiments and

the articulation of their results appear necessary to pave a very specific path,
The MIT Press January 2021

A Second Case Study	 155

itself providing very specific information about some small, scattered, and very

swift entities we may call “interpreters,” “compilers,” or even “processors” in

the case of microcode. I will come back to this proposition at the end of this

programming sequence. But already at this point, it is important to note that

the mundane addition and alignment of inscriptions DF is currently making

might be central to the very activity of computer programming.

With these preliminary elements in mind, let us continue:

DF:  “I’ll just try something else. We’ll see if the rectangle corresponds.”

�[DF creates a new line at 13 in the Editor; on this new line, he types

“imshow(I(y,x,:))”]

DF needs a new inscription: if the relationship between the rectangle and

the image is not problematic for INT, something else must be. But what?

As is often during programming episodes, the situation starts to be con-

fusing. To be sure that the rectangle expressed in the Command Window

at T4 is the right one and not some sort of not-yet-identified artifact, DF

needs to see this first rectangle when superimposed over the first image. To

do so, he creates a new line in the Editor and types the small instruction

“imshow(I(y,x,:)).” He then runs the script:

[DF runs the script]

[figure 4.13—T5]

[figure 4.14]

[DF examines figure 4.14]

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. imshow(I(y,x,:))
14. x = rect(1):rect(1)+rect(3);
15. y = rect(2):rect(2)+rect(4);
16. R(y,x) = R(y,x) + 1;
17. end
18. end

ans =
1024 712

rect=
197 91 323 371

Index exceeds matrix
dimensions

Figure 4.13
Editor and Command Window at T5.

The MIT Press January 2021

156	 Chapter 4

DF:  “OK. So theoretically, this should be the first rectangle labeled by

the first worker.”

The new inscription triggered by DF at T5 (figure 4.14) is this time a little

different. Instead of text, it is a part of an image. More precisely, it is the

expression of the first rectangle the first worker drew on the first image.

And just like between T2 and T3, this new inscription allows DF to create

another inscription, this is time emanating from me:

DF:  “Does it correspond?”

FJ:  “Yes, yes, it does.”

DF:  “OK good. So it definitely blocks somewhere else. Maybe it can’t

define the second rectangle.”

Having worked on the data of the ground truth for a couple days, I am a

trustworthy reference: at least for the first image, I know quite well the

position of the different rectangles. Once again, the articulation and align-

ment of two inscriptions—the first rectangle over the first image and my

own verification (informed by inscriptions I had previously encountered)—

allow DF to pursue his inquiry into the problematic phenomenon engaging

INT. If the first rectangle and the part of the code responsible for defining

it are not what is affecting INT, the problem should lie somewhere else.

Perhaps in the second rectangle and, more generally, the part of the code

responsible for defining it? Once again, new inscriptions are required:

Figure 4.14
Output of PROG at T5.

The MIT Press January 2021

A Second Case Study	 157

DF:  “It might be when we define the empty matrix.”

[DF deletes “imshow(I(y,x,:))” on line 13; on line 2, he selects the

function “zeros,” right clicks on it, and selects “help on selection”]

[figure 4.15]

The new inscription (figure 4.15) is again a little different from those

appearing in the Command Window. It turns out indeed that the Matlab

IDE provides access to a “Help on Selection” database that, if connected

to the internet, displays the correct syntax for each selected function. This

pop-up window being aligned with the suspect function at line 2, DF can

use the mouse cursor to compare the correct syntax of the help menu with

what is written in the Editor:

DF:  “No, no, we did it right. It is somewhere else.”

[DF closes the “help on selection” window]

The comparison between the help menu and the script allows DF to be cer-

tain that INT is not affected by this line of code; the syntax is right, so INT

is able to understand it. The problem lies somewhere else:

[DF runs the script]

[figure 4.16—T6]

Figure 4.15
Screenshot of “help on selection” as triggered by DF at T5.

The MIT Press January 2021

158	 Chapter 4

DF:  “Huh, I don’t get it  … There’s only the empty matrix.”

At T6 (figure 4.16), DF is getting a little lost. The new inscription he has just

produced is difficult to grasp; how does it relate to the previous ones? The

zeros only refer to the empty matrix “R” that, by definition, cannot become

too big. This inscription is “not eligible” as one says in law; no relationship

between this inscription and the previous ones can be established. Some-

thing else has to be tried:

DF:  “It’s so stupid. Sorry, I’m a bit rusty  … I’ll just try another way.”

[at the end of line 15, DF types “= R(y,x) + ones(numel(y), numel(x));”]

DF:  “So basically [to FJ], I do a 1 × 1 matrix that contains one and then I

repeat it according to the size of the region. It’s very stupid, but at least

I’m sure it will work. We’ll see if it changes anything.”

[DF runs the script]

[figure 4.17—T7]

DF:  “Well, at least it doesn’t change anything. It doesn’t block here either.”

The experiment of DF is conclusive. At T6 (figure 4.16), he was not totally

convinced by the instruction at line 15. At T7 (figure 4.17), he tries another

equivalent “stupid” way to express it. We do not need to dig too far into this

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;

. .

13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) . .
16. end
17. end

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Index exceeds matrix
dimensions

13. imshow(I(x,y,:))
16. =R(y,x) + 1;

Figure 4.16
Editor and Command Window at T6.

The MIT Press January 2021

A Second Case Study	 159

affective aspect of code since we are going to consider it later on in the chap-

ter. At this point, what is more important is that DF used an instruction he

was certain INT could translate. The solidity of this fact, certainly consolidated

during his previous experiences with Matlab programming language, allows

him to equip a new experiment. Once again, when articulated with the previ-

ous inscriptions, the two new inscriptions “ans = 1024 712” and “rect = 197
91 323 371” are instructive; as they are similar to the ones that appeared at

T4, DF can conclude that the problematic phenomenon engaging INT does

not derive from the line 15 of the script. It has to be somewhere else, again:

DF:  “OK, I’ll do something very, very stupid but I just want to see if it’s

here.”

[DF creates a new line at 7; types “1”; creates a new line at 10; types “2”]

[DF runs the script]

[figure 4.18—T8]

[DF examines the Command Window of figure 4.18—T8]

DF:  “OK. It’s here [at line 9 of figure 4.18—T8]. See? [DF puts the cur-

sor on line 9] It gives ‘1,’ then ‘rect,’ then ‘2,’ then ‘1,’ then stops. It’s

this ‘j+3’ that becomes too big after the first rectangle. It takes the first

rectangle, and if the second rectangle is bigger, it just can’t increment.”

At T8 (figure 4.18), the stupid thing pays off: the new inscription successfully

identifies the source of the problematic phenomenon engaging INT. At

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
16. end
17. end

ans =
1024 712

rect=
197 91 323 371

Index exceeds matrix
dimensions

Figure 4.17
Editor and Command Window at T7.

The MIT Press January 2021

160	 Chapter 4

line 9, “j+3” becomes too big after the first rectangle, thus disrupting INT in its

translation efforts. But how does DF make this inference? How does he con-

fidently attribute to line 9 the responsibility of disrupting INT? If we look

attentively at the Command Window of T8, just as DF does, we see that its

first series of numbers—“1024” and “712”—expresses the size of “R” as line

3 of the script in the Editor instructs it. If we continue our examination,

we see that the subsequent number “1” expresses the instruction “1” as line

8 instructs it. Then we see that the third series of numbers—“197,” “91,”

“323,” and “371”—expresses the size of the first rectangle as line 9 instructs

it. Then the fourth number in the Command Window—“2”—expresses the

instruction “2” as instructed at line 10. The fifth number—“1”—expresses,

again, the instruction “1” on line 8. This element is crucial because it shows

that, at this specific moment, INT is about to deal with the second rectangle.

And as the last element of the Command Window indicates, as soon as INT

tries to translate line 9 for the second time, it blocks and prints a red error.

By sequentially examining the Command Window, what is affecting INT

becomes for us—as for DF—identifiable: at the second round of the script,

INT is not able to translate line 9. This last inscription allows DF to attribute

the origin of the INT-related phenomenon to one specific location.

At this point, it is important to remember that this last inscription—even

though crucial—did not allow by itself the constitution of a connection

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. 1;
9. rect = users{i,j+3};
10. 2
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
18. end
19. end

ans =
1024 712

ans =
1

rect =
197 91 323 371

ans =
2

ans =
1

Index exceeds matrix
dimensions

Figure 4.18
Editor and Command Window at T8.

The MIT Press January 2021

A Second Case Study	 161

between INT’s red inscription and line 9. It is the addition and the align-

ment of all the previous inscriptions that progressively led to the definition

of this last inscription. The whole aligning process allowed DF to pinpoint

the provenance of the phenomenon affecting INT: it cannot translate “j+3”

at line 9 for the second time.

As some readers may have noticed, in order to account for this small

programming sequence I used several notions that have been developed in

the STS literature to describe an a priori very different process: experimental

practices in scientific laboratories. I now need to discuss this connection

between laboratory practices and computer programming practices I have

surreptitiously drawn.

For the last fifty years, many studies of scientific work have underlined

the centrality of textual documents (Latour and Woolgar 1986), diagrams

(Netz 2003), graphs (Dennis 1989; Gooday 1990), and notes (Lynch 1985;

Garfinkel 1981) that I gather here—following Latour (2013)—under the

umbrella term “inscriptions.” Other important studies also showed the cen-

trality of the instruments and experiments required to produce, confront,

and articulate these inscriptions (Hacking 1983; Knorr-Cetina and Mulkay

1983; Collins 1975; Dear 1987; Gooding, Pinch, and Schaffer 1989). And

still other studies further emphasized the importance of the manipulation

and circulation of these inscriptions (Latour 1987; Knorr-Cetina 1999) that,

through comparison, confrontation, alignment—in short, articulation—

sometimes end up forming what Latour (1999a) calls “chains of reference”:

more or less solidified paths that document, when everything is in place,

the behavior of some remote entity (e.g., a planet, a virus, a particle). These

important studies present certified knowledge as being produced and objec-

tive at the same time: thanks to scientific practices—and scientific institu-

tions that support the expression of these practices—knowledge is objective.5

As this short programming sequence seems to indicate, programming

practices may sometimes—not always—resemble some of the practices

required for the construction of certified knowledge. Indeed, the production

of inscriptions—via experiments and instruments—and their comparison

and alignment in order to produce even more inscriptions echo well with

what has been observed in scientific laboratories. Little by little, through the

manipulations, comparisons, and alignments of inscriptions, some access is

paved out that may allow the characterization of a phenomenon engaging

a remote entity. In the case of computer programming, this remote entity

The MIT Press January 2021

162	 Chapter 4

may vary: it can be, for example, a Matlab interpreter, a C compiler, or an

Intel microprocessor. At any rate, the common characteristic of these dif

ferent entities is the incredible swiftness of their constitutive relationships.

Indeed, how is it possible to have a grip on an interpreter, a compiler or—

worst—a processor that executes billions of operations per second? Once

assembled, these entities are very difficult to grasp; hence the relevance

of the scientific mode of veridiction to better understand what is affecting

them. Moreover, I assume that the adoption of laboratory practices during

computer programming episodes is not a result of the miniaturization of

electronic components that followed the development of planar process at

the end of the 1950s (Lécuyer, Brock, and Last 2010). As shown by historical

studies of early electronic computers made of two-meter-high accumulators

and multipliers—themselves made of hundreds of resistors connected with

wires and soldered joints—every short circuit, carry errors, or divider fault

that occurred during computation episodes had to be identified and located

through the tedious formation of error reports, inscriptions, and experi-

ments (Haigh, Priestley, and Rope 2014; 2016, 60–83). In these early days of

electronic computing, programmers also had to align inscriptions to pave

out an access to the affected component of the system.

Another similarity between scientific practices and the practices of com-

puter programming is a common tendency to forget about the instruments

that enabled the characterization of the phenomenon under scrutiny. In both

cases, when the source of a phenomenon has been identified thanks to a

specific laboratory setting, the practices, instruments, and experiments that

allowed the formation of the chain of reference are generally put aside (Latour

and Woolgar 1986, 105–155). This characteristic of science can make its his-

tory difficult to conduct. As established facts are purified from the scaffoldings

that allowed them to be assembled and solidified in the first place, great may

be the temptation to start from established facts and extrapolate backward

(Collins 1975). To empirically grasp the practice of science, it is therefore cru-

cial to consider facts as consequences of specific processes rather than causes

of prior events (Bloor 1981). To a lesser extent, the same is true for computer

programming. When the phenomenon engaging the remote entity is charac-

terized; when the problematic location in the script is identified, most of the

instruments (small bits of code, questions to FJ, “stupid things”) are put aside

and soon forgotten. At the end of the programming episode, when the script

is functional and performs as desired, most of these intermediary objects (Vinck

The MIT Press January 2021

A Second Case Study	 163

2011) are generally left behind. Consequently, if one takes completed scripts

or programs as starting points for the study of programming, the greater is the

risk to miss what has been necessary to complete these scripts or programs.6

For the case of computer programming, one may imagine different expres-

sions of the alignment practices I have documented above. Even though I

conjecture that these expressions still consist in forming chains of reference

in order to access remote entities and point at specific locations within num-

bered lists of inscriptions, they may not necessary deploy themselves in a

spatio-temporal landmark that is similar to the one of DF. If we consider for

example “program testing”—an important industrial process that consists

in detecting and documenting errors in order to modify lines of code—this

work can be highly distributed in space and time (Parrington and Roper 1989;

Myers, Sandler, and Badgett 2011).7 The “bug reports” we often encounter

when one of our software programs crash for mysterious reasons are other

expressions of this necessity to align inscriptions because they consist pre-

cisely in documenting at what time and following what actions the program

fatally affected the interpreter, compiler, or processor. These reports serve as

first inscriptions that will, in turn, be articulated with another one, and then

another one, until eventually it indicates one origin of the phenomenon

within the source code of the program. Moreover, alignment practices can

also be automated and integrated within the programming languages them-

selves. This is typically the case when an interpreter or compiler indicates

by itself its breakpoint, the line of the script that negatively affects its tra-

jectory. But if these error reports appear automatic to the programmer, it

should not be forgotten that they are the product of heteromatic processes

as the programming teams involved in the maintenance and enhancement

of programming languages have to cope with alignment of inscriptions in

order to establish what type of errors should be indexed in the first place.8

While different in terms of extension and labor involved, these processes of

program testing, bug reporting, and programming language design are also,

possibly, about aligning inscriptions and producing chains of reference.

The practice of aligning inscriptions to identify locations within num-

bered lists of written symbols may also explain, at least in part, the obses-

sion of professional programmers with program intelligibility.9 This topic

has been well documented by Button and Sharrock (1995) in their admira-

ble, yet solitary, study of computer programming practices. As they showed,

making a program intelligible to other programmers involves conventional

The MIT Press January 2021

164	 Chapter 4

naming of variables and functions to make its structure readable as an orga

nized and referenced document. It also involves formatting and laying out

the different functions and parameters of the code to make it easily brows-

able from its visual organization. This also typically includes commenting on

the program by means of small explicative sentences whose initial symbols

(“%” for the case of Matlab) allow them to be ignored by interpreters or

compilers. If the programming sequence we have just been following does

not directly deal with formatting, laying out, and commenting, it none-

theless specifies what these practices are striving toward. In view of the

elements presented above, naming, formatting, and commenting all point

to future moments when they can operate as landmarks directly enrollable

in the constitution of chains of reference. These marks may thus form an

additional referential infrastructure capable of accelerating alignment work

in the event of a future negative affection of an interpreter or a compiler

(which is likely to happen in corporate settings where complex programs

have to be maintained and enhanced).

But are the alignment practices of computer programming equivalent to

the laboratory practices in the sciences? Of course not, and it is now time

to present an important difference between them. Whereas the alignment

practices of programming lead to the identification of a location within a

script, scientific laboratory practices generally lead to the definition of new

objects whose properties and contours are later presented in academic papers

and discussed among peers. We will come back to this crucial aspect of the

formation of scientific knowledge when we will consider mathematics in

chapters 5 and 6. For now, suffice it to say that whereas both impetuses

and outcomes of alignment practices in computer programming mainly

concern programmers who try to complete adequate scripts, alignment

practices in scientific laboratories are turned toward the completion of per-

suasive written claims. Scientific laboratories are always counter-laboratories

(Latour 1987, 79–100): they are also to be understood as a means to publish

stronger claims than their competitors. The agonistic aspect of laboratory

practices in the sciences that constantly try to establish what should count

as natural must then be demarcated from the self-referential aspect of labo-

ratory practices in computer programming: While scientists try to make

a case for the objective reality of the phenomena they practically make

appear, programmers try to follow a scenario they are attached to (more

on this later). In short, the networks in which scientists and programmers

The MIT Press January 2021

A Second Case Study	 165

participate are, I believe, quite dissimilar. Whereas alignment of inscrip-

tions in the sciences support the publication of claims, alignment practices

in computer programming support the completion of a technical artifact

that yet needs to be intelligible in corporate settings.

The analogy between scientific and programming practices therefore has

its limits. Yet I also believe that both practices share some crucial—and

quite surprising—similarities, both allowing the formation of chains of ref-

erence and access to remote beings. And just like scientific work, computer

programming cannot be reduced to this specific type of practice. Indeed,

once the remote entity has been reached, once the problematic location has

been localized, many operations still need to be conducted. In this respect,

aligning inscriptions is only a small part of the activity of programming.

Technical Detours

We saw in the previous section that sometimes, during programming epi-

sodes, when a small, swift, and difficult-to-grasp entity (e.g., an interpreter,

a compiler, a microprocessor) is affected in its trajectory to the point of not

being able to trigger electric pulses for the computation of data anymore,

programmers need to multiply inscriptions, align them, and pile them up

until the inscriptions constitute some access to the entity—access that, in

turn, indicates a location within the script. But what happens next?

In this section, we will focus on another set of practices deployed dur-

ing programming episodes. While this set of practices surely goes along

the alignment of inscriptions, it has different implications. Whereas the

scientific aspect of programming involves the addition and alignment of

inscriptions (experiments, confirmations, “stupid things”) in order to reach

a remote entity, what I shall call the technical aspect of programming involves

the inclusion and substitution of entities to get around impasses. Once

again, this odd sentence will hopefully become clearer as the chapter goes

on. For now, we shall continue to follow PROG, starting exactly when the

previous sequence ended:

[DF examines the Command Window of figure 4.18—T8]

DF:  “It is this ‘j+3’ that becomes too big after the first rectangle. It takes

the first rectangle and if the second rectangle is bigger, it just can’t incre-

ment. So I’ll just put in some order.”

The MIT Press January 2021

166	 Chapter 4

[DF deletes lines 3, 8 and 10; deletes “;” at the end of line 9]

[DF runs the script]

[figure 4.19—T9]

DF:  “OK, we just need to change a few things.”

As we saw in the previous section, DF managed to localize the line of the

script that is badly affecting INT. Several inscriptions had to be produced

and aligned in order to establish this certified knowledge. But these inscrip-

tions are now useless; they were only relevant as part of DF’s quasi-scientific

inquiry into INT. It is now time for DF to really change a few things in the

script. To do so, he starts by putting in some order and deleting the instruc-

tions that were used to him as experimental instruments (figure 4.19).

At this point of the chapter, to account for what happens next, I need

to introduce a complementary notation that will allow us to have a better

grip on the technical innovations DF is about to conduct. Following results

of historical and sociological studies of technical projects, the notation I

will draw on has been proposed during the 1990s as an attempt to illustrate

the evolution of technical projects without using the traditional and prob-

lematic distinction between nature and society (Latour, Mauguin, and Teil

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));

.

3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1

..

7. rect = users{i,j+3}..
.

8. if size(rect,2) == 0
9.

10.

11.

12.

13.

14.

break
end
j = j+1;
x = rect(1):rect(1)+rect(3);
y = rect(2):rect(2)+rect(4);
R(y,x) = R(y,x) + ones(numel(y),
numel(x));

15. end
16. end

Index exceeds matrix
dimensions

3. size(R)
8. 1
10. 2

Figure 4.19
Editor and Command Window at T9.

The MIT Press January 2021

A Second Case Study	 167

1992). We do not need to understand all the subtleties of this mapping that,

by the way, never really took off.10 For what interests us here, we shall only

cover the basic principles of these so-called sociotechnical graphs (STGs).

One of the results of the studies of sociotechnical projects was to show

that the trajectories of such projects are a function of their capacity to enroll

new actants—human or nonhuman entities—in order to overcome critical

impasses (Akrich 1989; Callon 1986; Latour 1993a). Historical examples of

such enrollments are legion: in order for American Bell to prevail over West-

ern Union in the development of the telephone network in the United States,

it had to enroll—after many lawsuits—crucial telephone patents within its

sociotechnical network (Brooks 1976). By enabling the production of highly

reliable and flexible switching transistors, the planar process allowed Fair-

child Semiconductor to become a commercial partner of the US Air Force

(Lécuyer, Brock, and Last 2010). By enrolling the time-sharing technology as

developed at MIT at the beginning of the 1960s, John Kemeny and his team

were able to pursue the development of the BASIC programming language

at Dartmouth College (Montfort et al. 2013, 158–194). For each example,

a specific actant—a set of telephone patents, the planar process, the time-

sharing technology—is enrolled, and this, in turn, makes the project slightly

shift. One important credit to the history and sociology of technologies is

to have successively demonstrated how crucial the inclusion of new actants

for the development of technical projects is—may they be huge as the elec-

trification of the United States at the end of the nineteenth century (Hughes

1983; Nye 1992) or small as the installation of a road bump (Latour 2006).

Yet, this “latitudinal” dimension of technical projects enrolling new

actants in order to develop and expand would be incomplete without an

orthogonal “longitudinal” dimension expressing the transformations sug-

gested by the newly enrolled actants. Another crucial result of the history

and sociology of technical projects is indeed that the inclusion of new actants

simultaneously modifies the relationships among the previous actants of the

project, thus potentially creating new impasses. Using the examples of the

previous paragraph, Bell’s technical system was transformed by the inclusion

of telephone patents: the previously tiny network became a potential mono

poly over telephone communications in the United States, hence necessitat-

ing further reconfigurations so as not to be the target of antitrust lawsuits by

the US Department of Justice (Gertner 2013). Fairchild Semiconductor was

fundamentally transformed by the inclusion of the planar process: it became

The MIT Press January 2021

168	 Chapter 4

a powerful entity soon capable of industrial production of integrated cir

cuits. These production capacities participated, in turn, in the development

of intercontinental ballistic missiles, and this further created an explosion of

the demand for integrated circuits and the progressive formation of serious

competitors (most notably, Texas Instruments and Motorola; see Campbell-

Kelly et al. 2013, 210–225). Similarly, the inclusion of time-sharing technol-

ogy within Dartmouth’s computer system greatly participated in the design of

the BASIC programming language by considerably increasing its beta testing.

But the inclusion of the actant “time sharing” also transformed Dartmouth’s

computing infrastructure, which, by allowing its extensive utilization by

students, soon started to be used for original computer-game experiments

(Montfort et al. 2013, 165–194). More than just enrolling (or losing) actants,

technical projects are also modified by them. And just like the latitude—

inclusive—axis of technical projects, this longitude—transformative—axis

does not only concern large and highly complex technological systems: small

mundane projects are also affected by it (Latour 1992).

Building on this dual aspect of technical projects as well as concepts bor-

rowed from linguistics, the proponents of STGs proposed a way to map the

development of technical projects according to two dimensions: a syntagmatic

dimension and a paradigmatic dimension. The first dimension (syntagmatic)

of STG is defined by specific assemblages of actants at a certain time T.

This configuration of actants at a time T is specific to each technical proj

ect and should therefore be supported by a narrative that exposes the whys

and wherefores of the project being considered. As this dimension expresses

association among variables, it can be called the AND dimension. The con-

figuration of actants in the AND dimension is separated into two branches:

the “allies” whose configuration participates in the development of the proj

ect and the “opponents” whose configuration constitutes an obstacle to the

completion of the project. Again, which actant counts as an ally or as an

opponent to the development of the project depends on the narrative the

STG is only summarizing (Latour, Mauguin, and Teil 1992, 39). The bound-

ary that separates allies’ configuration of actants and opponents’ configura-

tion of actants constitutes the “frontline” of the technical project at time T.

The second (paradigmatic; nothing to do with Thomas Kuhn’s notion)

dimension is defined by the substitutions that have occurred in both allies’

and opponents’ configurations at time T + 1. Since this dimension expresses

substitution of variables, it can be called the OR dimension. Depending on

The MIT Press January 2021

A Second Case Study	 169

the fluctuation of allies’ and opponents’ configurations at T + 1, the front-

line of the technical project may also fluctuate. Once again, which actant

is substituted by another, thus potentially making the frontline fluctuate,

depends on the narrative of the technical project.

Two other elements are necessary to translate the narrative of a technical

project into an STG: a specified point of view and what I call a “scenario.”

First, the point of view of the actant whose view on the project is being

summarized by the STG has to be specified. In that sense, for any given

narrative about a technical project, if this narrative takes the point of view

of many different actants, each point of view can (potentially) be mapped

by one specific STG. Second, the desire of the actant whose point of view is

being mapped also has to be specified. This topic is a tricky one and will be

further developed in the next section of this chapter. For now, suffice it to

say that what the actant wants to achieve, the future it wants to live in, the

scenario to which it is attached should be specified in each STG.

Let us now try to adapt these theoretical elements to the project that

interests us here: DF’s project to complete PROG. If we consider T8 and

the whole narrative that precedes it, we might be able to translate it into

an STG summarizing DF’s allies and opponents. The first element of the

graph should indicate the point of view that it re-presents. Contrary to

most narratives about large technical systems where many points of view

are considered and confronted, our small narrative only accounts for the

point of view of DF. The second element of the graph should be the scenario

to which DF is attached. As already touched upon in the previous section,

we know that DF’s scenario for PROG can be summarized as such: “Creating

a matrix whose pixel-values correspond to the numbers of rectangles drawn

by workers on each pixel.” Concerning the actants: every instruction of the

script can be considered an actant as they all make INT do things. But other

actants might also be included in the graph as long as they impact on the

project as framed by its scenario. In that sense, the red inscriptions printed

in the Command line and what these inscriptions refer to according to DF

as well as the final actions the script is intended to accomplish on the data

of the .txt file can also be included in the STG. Moreover, as the narrative of

the script-project indicates that several instructions are now stabilized, we

may consider these “stable packages” of instructions as one single actant.

If we consider these elements altogether and adapt them for T8, we end up

with a diagram that looks like figure 4.20.

The MIT Press January 2021

170	 Chapter 4

It is important to remember that the STG mapping of T8 is a simplifica-

tion of T8 as initially presented in its Matlab view and enriched by DF’s

sayings. As any simplification, it omits many elements. But as many sim-

plifications, it may also work as an instrument to identify key features of

messy processes (Star 1983).

From this point, based on the narrative presented above, we can include

T9 in the STG graph, thus slightly modifying the configurations of allies

and opponents (see figure 4.21).

For each remaining T of this programming sequence, I will first present

its complete narrative (simplified Matlab IDE and transcriptions of DF’s

sayings), discuss it shortly, and then present its STG translation. As both

“point of view” and “scenario” will not change throughout the program-

ming sequence, I will ignore them from now on. Moreover, in every new

STG, I shall highlight the newly enrolled actant in bold. At the very end

of the programming sequence, when DF will have completed PROG, the

succession of all the STGs should allow us to detect another set of practices

deployed by programmers that goes along with the alignment of inscrip-

tions while being, I believe, fundamentally different.

Create a matrix whose pixel-values correspond to the numbers of rectangles
drawn by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

Figure 4.20
STG of T8. “A” refers to PROG lines 1, 2, and 4 (stabilized since T0); “B” refers to

line 3; “C” refers to lines 5, 6, and 7 (stabilized since T0); “D” refers to line 8; “E”

refers to line 9; “F” refers to line 10; “G” refers to lines 11, 12, 13 (stabilized since

T0); “H” refers to lines 14, 15, 16, 17, 18, 19 (stabilized since T6); “W” refers to the

inscription “Index exceeds matrix dimensions”; “X” refers to DF’s assertions “the

second rectangle is too big for INT”; “Y” refers to DF’s assertion “rectangles cannot

increment the values of the matrix”; and “Z” refers to the script’s incapacity to follow

the desired scenario.

The MIT Press January 2021

A Second Case Study	 171

Let us continue to follow DF as he tries to shape PROG:

DF:  “We’re gonna do it like this.”

[DF creates a new line at 7]

DF:  “If ‘j+3’ is larger”

[at line 7, types “if j+3 >”]

DF:  “than the size of the cell of the user”

[at line 7, types “size(users{j})”]

DF:  “then it goes over it”

[DF creates a new line at 8; types “break”]

[DF runs the script]

[figure 4.22—T10]

[DF examines Command Window of figure 4.22—T10]

DF:  “Argh, of course. I shouldn’t take ‘j.’ Can’t define anything that way.”

At T10 (figure 4.22), DF enrolls a new actant: the “if” statement that starts

at line 7 and ends at line 9. Since, at this point, he knows for a fact that INT is

blocked if the second rectangle is bigger than the first one, the addition of a

conditional statement that could ask INT to go over this dimension problem

makes complete sense. The addition of an “if” statement would thus allow

INT to continue its interpretation of the script even though it encounters a

rectangle bigger than the previous one. But as the red inscription and DF’s

Create a matrix whose pixel-values correspond to the numbers of rectangles drawn
by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

Figure 4.21
STG of T8 and T9.

The MIT Press January 2021

172	 Chapter 4

saying indicate, the statement was inappropriately expressed: DF should

not have taken “j” as the size variable of “users” since it already equals to

zero at line 5. The consequence of this attribution mistake is that INT can-

not define anything. No rectangle can be defined, and the matrix cannot, in

turn, be incremented.

If we map T10 as an STG in line with T8 and T9, we obtain figure 4.23.

Looking at it, we can see that new actants have appeared and created differ-

ences in the project, slightly altering its frontline. In the allies’ configuration,

“I” has been added by DF in order to get around the configuration of “W,”

“X,” “Y,” and “Z.” But if this new actant made “W” and “X” disappear—that

is, the index does not exceed the matrix dimension anymore, and the second

rectangle is not too big anymore—it is only by making two new opponents

appear: “V” and “U.” “Y” and “Z” are then still solidly opposing resistance to

DF’s project since, at this point, no rectangle can be defined.

Let us continue:

[at line 7, DF deletes “users, {j})”]

DF: “Actually, the size of the cell should just be ‘users, 2’ ”

[at line 7, types “users,2)”]

[runs the script],

[figure 4.24—T11]

DF:  “OK, it may work.”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, {j})
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

. numel(x));
18. end
19. end

Cell contents indices
must be greater than
0

Figure 4.22
Editor and Command Window at T10.

The MIT Press January 2021

A Second Case Study	 173

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

Figure 4.23
STG of T8, T9, and T10. At T10, “I” refers to lines 7 to 9; “V” refers to the inscription

“cell contents indices must be greater than 0”; and “U” refers to DF’s asser-

tion “nothing can be defined.”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
18. end
19. end

>>

7. size(users, {j})

Figure 4.24
Editor and Command Window at T11.

The MIT Press January 2021

174	 Chapter 4

At T11 (figure 4.24), DF modifies the conditional instruction: instead of

referring to “j,” the size of the new rectangle now refers to the second value

of the cell, “users.” We do not need to understand precisely what this value

and cell refer to. The important thing at T11 is that the inclusion of a new

actant—the modified “if” statement—creates an important difference: INT

does not print a red inscription anymore. This indicates that INT has man-

aged to translate every line, thus triggering electronic computation on the

data of the .txt files. At this point, then, it may work: the rectangles may

increment the empty matrix. But it is not over yet since, symmetrically, it

may also not work. Since the Command Window does not provide any indi-

cation about the incrementation of the empty matrix, something else may

also have happened.

If we continue our STG re-presentation of this programming sequence

by including T11, we obtain figure 4.25. Several changes affected the allies’

configuration at T11. “I” disappeared: DF deleted it because it made oppo-

nents disappear only by making new ones appear. But two new actants

are included: “J” that corresponds to the new conditional statement and

“K” that corresponds to the absence of any error inscription within the

Command Window (and, corollary, to DF’s assertion that “it may work”).

Did this new configuration of allies managed to get around the configura-

tion of opponents? Only partially since the incertitude suggested by “K”

has its corollary: as there is no indication in the Command Window, the

script may also not work (“T”), that is, it may not increment the empty

matrix properly. As a consequence, “Z”—“the script does not follow the

scenario”—holds on. At this point, DF still needs to include something else;

he still needs to pursue his project by other means in order to get around the

impasse constituted by “T” and “Z.”

Let us continue to follow DF:

DF:  “But I just need to be sure.”

[creates a line 20; types “imshow(R)”]

[runs the script]

[figure 4.26—T12 and figure 4.27]

FJ:  “This is close!”

DF:  “Yep. But it clips after the value 1.”

FJ:  “Clips?”

The MIT Press January 2021

A Second Case Study	 175

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

Figure 4.25
STG of T8, T9, T10, and T11. At T11, “J” refers to the new “if” statement at lines 7

to 9; “K” refers to DF’s assertion that “it may work”; and “T” refers to DF’s implicit

assertion that, symmetrically, “it may not work.”

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

. numel(x));
18. end
19. end
20. imshow(R)

>>

Figure 4.26
Editor and Command Window at T12.

The MIT Press January 2021

176	 Chapter 4

DF:  “Yes, it often does that. Basically, it doesn’t consider anything above

1. I mean, the matrix may have values more than one, but it does not

show it on the image.”

At T12 (figure 4.26), DF adds a new instruction—“imshow(R)”—that asks INT

to print an image of the incremented matrix (figure 4.27). The results are

convincing as well as disappointing. The positive thing is that a matrix has

effectively been incremented. The image printed by INT attests to this: it has

differentiated values that together form a white shape. But the negative thing

is that this image has only binary values: ones forming the white shape and

zeros forming the black background. According to DF, INT is once again the

cause of this problem: by clipping after the value 1 the printed image can only

be binary. In these conditions, it is difficult to know what values constitute

the incremented matrix. At this point, again, DF needs to include something

else in the script in order to make it follow the desired scenario.

Let us have a look on the STG to get a condensed look on what has just

happened (figure 4.28). The configuration of allies has again expanded: “L”

and “M” allowed DF to be sure that the rectangles increment the matrix.

Figure 4.27
Screenshot of the output of PROG at T12.

The MIT Press January 2021

A Second Case Study	 177

This, in turn, made “T” disappear so that no incertitude remains concern-

ing this aspect of the project. But the binary characteristic of “M” made “R”

appear in the configuration of opponents: for unknown reasons, INT clips

after one. This, in turn, creates “S,” the incertitude about the incrementing

capability of the script that may stop after “1.” In these conditions, Z remains,

and the script is still not following the desired scenario. Once again, DF has no

choice: he has to enroll something else to the configuration of allies; he has to

delegate the work-around of “R,” “S,” and “Z” to a new actant.

With these elements in mind, let us continue:

DF:  “So I’ll just try to divide the value of ‘R’ by the maximal value of the

matrix. If it has other values than one, it should show it.”

[at line 20, types “/max(R(:))”]

[runs the script]

[figure 4.29—T13 and figure 4.30]

DF:  “All right, this is the right image of the matrix. This is it.”

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

Figure 4.28
STG of T8, T9, T10, T11, and T12. At T12, “L” refers to the instruction “imshow(R)” at

line 20; “M” refers to the binary image of the matrix output by PROG; “N” refers to

DF’s conclusion that rectangles do increment the matrix; “R” refers to DF’s assertion

that INT “clipps” after 1; and “S” refers to the DF’s saying that the matrix should not

have only binary values.

The MIT Press January 2021

178	 Chapter 4

1. I = imread(images{1});
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),

. numel(x));
18. end
19. end
20. imshow(R / max(R(:)))

>>

Figure 4.29
Editor and Command Window at T13.

Figure 4.30
Screenshot of the output of PROG at T13.

The MIT Press January 2021

A Second Case Study	 179

By including this last small bit of code—“/max(R(:))”—DF manages to

complete the script (figure 4.29). No incertitude remains: the matrix is cor-

rectly incremented as the new output image shows (figure 4.30). DF thus

successfully managed to make INT design an empty matrix according to

width and height values; define rectangles from width, height, and position

values; and use these rectangles to successively increment the pixel-values

of the matrix. Several technical operations had to be conducted but, in the

end, the project fulfilled its initial ambitions. At this point, the script can be

considered a technical artifact that does something definable.

If we take a look at the STG (figure 4.31), we see that the inclusion of

“/max(R(:))” managed to get around the impasse previously formed by “R,”

“S,” and “Z.” At T13, the inclusion of “O” and its corollary “P” made “R,”

“S,” and “Z” disappear. The addition of the instruction “/max(R(:))” made

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

T13 A C E G H J L M N O P Q

Figure 4.31
STG of T8, T9, T10, T11, T12, and T13. At T13, “O” refers to the instruction “/max(R(:))”;

“P” refers the output image generated by PROG; and “Q” refers to the fulfillment of

PROG’s scenario: now, the pixel-values of the new matrix correspond to the number

of rectangles drawn by workers on each pixel.

The MIT Press January 2021

180	 Chapter 4

INT print a gray-scale image of the matrix, hence showing DF that its values

do indeed variate between zero and the total number of rectangles drawn

by the crowdworkers. All the opponents to the project have been replaced

by allies; all dead-ends have been bypassed. The scenario is followed. As DF

puts it, “this is it.” The programming sequence is over.

What do these STGs add to our analysis of this programming sequence?

What does this simplification allow us to see? While the previous section

put the emphasis on the scientific moment of programming practices, I

assume that the present section puts the emphasis on the technical moment

of programming practices. Are scientific and technical practices different? In

the middle of the action, they surely overlap to the point of appearing simi-

lar. But, following Latour (2013), I nonetheless assume that both express

themselves quite differently.

We saw that the surprising similitude between the laboratory practices

of science and the practices of programming lies in that they both multi-

ply and align inscriptions in order to shape chains of reference, thereby

allowing the assemblage of information about remote entities. Even though

both activities cannot be considered equivalent, I believe they echo well

with each other: both sometimes produce and align inscriptions in order to

access remote beings.

Although the sequence we have just documented required the formation

of a (small) chain of reference in order to be initiated, I assume the sequence

also expressed something radically different. At T9, DF needed to change

things in the script. What did he do? At each T, he included new actants and

delegated actions to them in order to get around impasses that were obstruct-

ing the following of the scenario. The practices involved in this sequence

did not tend toward gaining knowledge about these impasses; they tended

toward finding ways to get around them. This is precisely why STGs were,

in the end, instructive tools: by simplifying the narrative, they allowed to

follow these successive shifts, this constant zigzag that expressed the enroll-

ment of new entities, the delegation they implied, and the work-arounds

they triggered. The script, once completed at T13, became a technical arti-

fact. But it was only through technical practices, ingenious inclusions, del

egations, and work-arounds that such an artifact could come to existence.

Along with the finished script, thanks to the simplification provided by the

STGs, we can glance at the lightning strike drawn by DF and its technical

actions (figure 4.32).

The MIT Press January 2021

A Second Case Study	 181

The sequence was not linear; it was rhythmed by breaks of continuity

that vanished at soon as the script was completed. Just as chains of refer-

ence are ignored as soon as they allowed the constitution of an informa-

tion about a remote being, the constant shifts, inclusions, delegations, and

work-arounds of technical practices are made invisible once they allowed

the completion of the artifact. Here lies, I believe, a serious limitation of

the studies of programming that only consider the results of programming

tests (see chapter 3). By only considering the final technical object (the

finished script), they cannot grasp the practices that were necessary to the

technicality of this object. It is only by going backward from the artifact to

the detours that have constantly modified its form, thus making it singular,

that we may capture the technical aspect of computer programming. Any

working script holds thanks to all the now-invisible allies that were added

to each configuration in order to get around—one may even say, in order

to hack (Nissenbaum 2004)—now also-invisible opponents. Just as the pro-

liferation and alignment of inscriptions made DF become knowledge-able,

T 8

T 9

T 10

T 11

T 12

T 13

Figure 4.32
Technical zigzag of DF while assembling PROG.

The MIT Press January 2021

182	 Chapter 4

the technical detours made him in-genious: by catching entities—jinns—

and enrolling them in work-arounds, he was able to include allies and get

around opponents, thus drawing a dazzling zigzag.

It is interesting to note that these types of technical moments, when pro-

gramming is about the drawing of a zigzag, are often the most appreciated ones.

While the construction of chains of reference can be very frustrating—the

inscriptions keep piling up without forming any reliable chain of reference—

the practices involved in the drawing of zigzags often appears more playful.

Unfortunately, I cannot support this claim by any empirical materials; this

would imply the presentation of many other programming figures that are

already too numerous at this point in the chapter. But in one of her literary

accounts of programming affects, Ellen Ullman nicely expressed this feeling

programmers often experience when they are engaged into technical detours

that are very difficult to catch once the artifact is completed:

“Damn! The NULL case!”

“And if not we’re out of the text field and they hit space—”

“—yeah, like for—”

“—no parameter—”

“Hell!”

“So what if we space-pad?”

“I don’t know. … Wait a minute!”

“Yeah, we could space-pad—”

“—and do space as numeric.”

“Yes! We’ll call SendKey(space) to—”

“—the numeric object.”

…

“No, no, no, no. What if the members of the set start with spaces. Oh, God.”

He is as near to naked despair as has ever been shown to me by anyone not

in a film. Here, in that place, we have no shame. He has seen me sleeping on the

floor, drooling. We have both seen Danny’s puffy, white midsection—young as

he is, it’s a pity—when he stripped to his underwear in the heat of the machine

room. I have seen Joel’s dandruff, light coating of cat fur on his clothes, noticed

things about his body I should not. And I’m sure he’s seen my sticky hair, noticed

how dull I look without make-up, caught sight of other details too intimate to

mention. Still, none of this matters anymore. Our bodies were abandoned long

ago, reduced to hunger and sleeplessness and the ravages of sitting for hours at

a keyboard and a mouse. Our physical selves have been battered away. Now we

know each other in one way and one way only: the code.

Besides, I know I can now give him pleasure of an order which is rare in any

life: I am about to save him from despair.

The MIT Press January 2021

A Second Case Study	 183

“No problem,” I say evenly. I put my hand on his shoulder, intending a ges-

ture of reassurance. “The parameters never start with a space.”

It is just as I hoped. His despair vanishes. He becomes electric, turns to the key-

board and begins to type at a rapid speed. Now he is gone from me. He is disap-

pearing into the code. (Ullman 2012, 8–9; italics added)

In this literary excerpt, an information is progressively being assembled—

the narrator provides the very last inscription (“The parameters never start

with a space”)—and a location is, in turn, defined: let entities be enrolled,

actions be delegated, and opponents be gotten around. And the joyful tech-

nical lightning strike soon unfolds.

Let the reader forgive me if I rave a little at this point of the chapter, but

both technical and scientific practices as documented in these two sections

provide such a refreshing perspective on computer programming that it is

difficult for me to remain placid. We see indeed how the standard cognitive-

behavioral framing of computer programming as a problem-solving process

(cf. chapter 3) can be misleading. Programmers may never solve any prob

lem; when confronted to a remote entity that refuses to generate electric

pulses on data, they more or less collectively constitute a chain of refer-

ence that, if equipped enough, may indicate a problematic location, a loca-

tion that, in turn, may trigger the enrollment of new actants and technical

work-arounds of impasses. Nothing is solved; something is located, thus

eventually triggering the drawing of a zigzag that will soon be forgotten.

“Problem solving” and even the likable expression “debugging” may both

miss the point: by amalgamating two different and equally important sets

of practices, they may not adequately catch the subtle practical tempos a

programmer goes through when defining appropriate lists of instructions.

Yet, despite my enthusiasm, this tentative model still lacks something

crucial. Indeed, where does this “appropriateness” come from? Is it not

something I surreptitiously invoke from outside, without defining its attri-

butes? At this point, it surely is. Fortunately, this is precisely the topic of the

next section of this chapter.

Attached to a Scenario

We have seen so far that programming can be viewed as the expression of

two sets of intimately related practices. The first set implies the multiplica-

tion and alignment of inscriptions in order to assemble chains of reference

The MIT Press January 2021

184	 Chapter 4

that can provide information about remote entities whose trajectories are

affected in undesirable ways. These practices echo well, to some degree,

with some of the laboratory practices required for the construction of sci-

entific facts. The second set of practices—much more difficult to capture—

implies the inclusion of new actants in order to get around impasses. These

practices of inclusion, delegation, and bypassing echo well, to some degree,

with practices required for the running of technical projects. From this

point, we may conjecture that during a computer programming episode,

scientific and technical practices are intimately articulated, the program-

mer constantly shifting from one mode to the other. This tentative but

empirical look at computer programming unfolds many crucial elements—

inscriptions, chains of reference, impasses, detours—that most standard

takes on computer programming do not stress.

At this point of the chapter though, something essential to computer

programming is still taken for granted. While I keep on talking about “pro-

gramming episodes,” what defines the limits and the scope of such epi-

sodes? Where do these “meta-instructions” that establish the boundaries

of the programming episodes come from? What is this wind that pushes

programmers in the back, making them inquire into remote entities, enroll

actants, and get around impasses? In the previous section of the chapter,

readers may have noticed that I surreptitiously used the term “program-

ming project” to speak about the technical skills DF was deploying for the

composition of PROG. But where does this projection come from? At this

point, this aspiration, this desire shall not be ignored anymore. It is time

now to address the issues of projection and attachment without which there

would simply be no programming practices.

Lucy Suchman thoroughly explored this relationship between projects

and situated actions or, as she put it, “the utility of projecting future actions

and the reliance of those projections on a further horizon of activity they do

not exhaustively specify” (Suchman 2007, 19; emphasis in the original). Ini-

tially struggling against mid-1980s artificial intelligence experts who tended

to consider the relationship between plans and actions as deterministic—

the former rigorously defining the latter—she proposed an alternative view

of plans as resources that set up horizons without specifying the actions

required to reach them. To clarify her proposition, she used the example

of canoe:

The MIT Press January 2021

A Second Case Study	 185

In planning to run a series of rapids in a canoe, one is very likely to sit for a while

above the falls and plan one’s descent. The plan might go something like “I get

as far over to the left as possible, try to make it around that next bunch.” A great

deal of deliberation, discussion, simulation, and reconstruction may go into such

a plan. But however detailed, the plan stops short of the actual business of get-

ting your canoe through the falls. When it really comes down to the details of

responding to currents and handling a canoe, you effectively abandon the plan

and fall back on whatever embodied skills are available to you. The purpose of the

plan in this case is not to get your canoe through the rapids, but rather to orient

you in such a way that you can obtain the best possible position from which to

use those embodied skills on which, in the final analysis, your success depends.

(Suchman 2007, 72)

Plans do not determine actions. Rather, by suggesting future orientations,

plans help express skills in appreciable conditions. Moreover, building on

Suchman’s example, we can also assume that plans create something like

another world, another layer of existence: by telling stories, plans express

figures that could not exist without them. Before running the rapids, when

I am expressing my plan above the fall, I am projected into another space

(“into the rapids,” “as far over to the left as possible”), another time (“later”),

and toward other human and nonhuman actants (“me, alive, at the end of

the rapids,” “the canoe, struggling to get around the next bunch,” “the

powerful rapids I—hopefully—managed to run”). In this respect, by estab-

lishing a triple shifting out (Latour 2013, 234–257) into other space and

time, and toward other actants, plans are also narratives that help us engage

into desirable processes.

Yet this definition of plans as narratives establishing desirable hori-

zons without specifying how to reach them is still quite loose. In what

sense are these narratives different from, say, bedtime stories for children

or Hollywood mega-productions? What specific transformations do plans-

narratives institute? How do we address the modifications they suggest?

To better understand the specificity of these narratives—or, as I will soon

call them, these scenarios—we shall consider the narrative DF constructed

for the completion of PROG. One point of departure could be two days

before the programming episode we have followed in the last sections. At

that time, I was struggling with the data I had previously collected from a

crowdsourcing task. Unable to make sense of these data, I asked the director

of the Lab (DIR) for some advice:

The MIT Press January 2021

186	 Chapter 4

Thursday February 4, 2016, at the office of DIR

FJ:  The thing is that I am still struggling to find measures that could

make sense of the variations of the rectangles drawn by the workers [and]

depending on the images.11 Because at this point, I have this kind of result:

[FJ shows images on his laptop to DIR, see figure 4.33]

FJ:  But the rectangles vary both in terms of size and alignment. That

is, some rectangles are well aligned and small compared to the image;

others are aligned but vary in terms of dimensions; others are aligned but

in groups of different sizes; and others are just spread out everywhere.

DIR:  Well, there’s surely a way to measure how much overlap there is. But

in any case, you should get other views than these. You can’t see anything

here.

…

�There are many ways; but for example, you could go through each pixel

and see how often they are in a rectangle. And once you get these graphs,

we can help you find a measure that explains the variations.

FJ:  You mean, something like getting for each pixel, the relative differ-

ence of the number of rectangles they are part of?

DIR:  Yes. Or rather, I guess in your case, for each image, the proportion

of pixels that are part of one rectangle, two rectangles, and so on.  …

And then you can get gray-scale images, or graphs like histograms. For

example, assume you’re giving zero to every pixel that is labeled by no

one, one for every pixel that is labeled by only one worker, etc. You add

this up and you’ll get a maximum or, like twenty. Then you can normal-

ize between zero and one or do other things. But for now at least, you

should get better matrices from these images.

DIR’s advice was clear: if I wanted to find correlations between the pixel-

values of the images and the rectangles drawn by the workers, the very first

step was to simplify the collected results through the design of better matri-

ces. But how should these matrices be designed? This issue was the raison

d’être of PROG: in order to define simpler/better matrices whose values can

be expressed by graphs, PROG should instruct my computer to transform

the values of each image and its associated rectangles. In short, the graphs

that could help me explain the dispersion/alignment of rectangles required

matrices that still needed to be designed computationally by an instructed

The MIT Press January 2021

A Second Case Study	 187

Figure 4.33
Sample of labeled images shown to DIR.

The MIT Press January 2021

188	 Chapter 4

computer. The first narrative—or plan—that further supported the formula-

tion of PROG can thus be summarized as such: “FJ shall make a computer

assemble matrices whose pixel-values correspond to the number of rect-

angles each pixel is part of.”

I soon tried to write this program that could help me have a better grip

on the data I had collected but was soon confronted to my incapacity to

specify the problem with Matlab. What should be the first step? And the

second step? Using the project’s helping clause that allowed me to ask for

help whenever I needed to (cf. above), I sent an email to DF:

Monday, January 15, 2016. Email from FJ to DF, header “Struggling with

Matlab.  …”

Hi DF,

For my project I need to process each pixel of each image individually in

order to count how many rectangles belong to each pixel. I got the idea,

I think, but am still struggling with Matlab to write the script. Would

you have some time to help me do it? That’d be great!

Have a great day,

FJ

Monday, January 15, 2016. Email from DF to FJ, header “Struggling with

Matlab.  …”

Hi Florian,

No problem. What about this afternoon then? It should be quite easy.

We’ll check this together.

DF

Monday, January, 15, 2016. Email from DF to FJ, header “Struggling

with Matlab.  …”

This afternoon is great. I’ll be in my office. Come whenever you want.

See you then!

FJ

A couple of hours later, DF arrived at my office. Before starting to program,

he told me what he intended to do:

DF:  “Well, I think I know how to compute this. It shouldn’t be difficult.

So for each rectangle, we have the x and y coordinates right?”

The MIT Press January 2021

A Second Case Study	 189

FJ:  “Well, a rectangle is defined by four values”

DF:  “Yes so x and y [coordinates] and then the size, right?”

FJ:  “Yes.”

DF:  “So basically we have this.”

[DF starts to write in FJ’s logbook]

DF:  “And this, and then size. And all this defines the rectangle.”

[DF draws figure 4.34 (A)]

DF:  “Here [pointing at figure 4.34 (A)], you initialize all pixels of the

matrix with the value 0. Then you iterate on all rectangles. So for the first

rectangle of the image [starts to draw in FJ’s logbook], you have the coor-

dinates and you check what pixels of the matrix are in the rectangle.”

[DF draws figure 4.34 (B1)]

DF:  “And you add one for these pixels in the matrix. And then you do

the same for the second rectangle [starts to draw in FJ’s logbook] that

might be here.”

[DF draws figure 4.34 (B2)]

DF:  “And you also add one for all these pixels. So here [pointing at fig-

ure 4.34 (B2)], some pixels in the matrix will have the value 0, some will

have the value 1, and some others will have the value 2.”

FJ:  “OK, I see.”

DF:  “And you do this for all the rectangles. And once you have a script

that works for one image, it’s easy to adapt it [the script] to go through

all the images.”

FJ:  “Sure.”

DF:  “And well, when you have these matrices with values 0, 1, 2, etc.,

you can make all the graphs you want like gray-scale images or histo-

grams [draws in FJ’s logbook] like this.”

[DF draws figure 4.34 (C)]

DF:  “Where x is the number of rectangles and y the number of pixels.”

At this point, the narrative of PROG has thickened. From “FJ shall make a

computer create matrices whose pixel values correspond to the number of

rectangles they are part of,” it has become “for every image, DF shall first

make a computer use the dimension of the image to create an empty matrix,

The MIT Press January 2021

190	 Chapter 4

then define the first rectangle of this image according to its coordinates as

defined in its correlated .txt file, then add this rectangle to the matrix, then

define the second rectangle, then add it to the matrix, and so on for every

rectangle of the image.” Even though the topic is slightly different from Such-

man’s (2007, 72) example of canoe, DF’s narrative also works as a resource that

sets up a horizon without specifying the actions required to reach it. Nothing

is said about how to define the empty matrix, how to define a rectangle, and

how to increment the matrix with these rectangles. Yet, altogether, the pileup

of these steps institutes a desired future that the following actions should try

to reach. Moreover, similar to Suchman’s example, DF’s narrative also creates

(A)

(B1) (B2)

(C)

Figure 4.34
Drawings of DF in FJ’s logbook.

The MIT Press January 2021

A Second Case Study	 191

another layer of existence. His story projects us into another time (“in a

couple of minutes”), another space (“in front of the Matlab IDE”), and toward

other actants (“incremented matrices,” “gray-scale images,” “histograms,” “FJ

being able to produce meaningful graphs thanks to the new program”).

But DF’s narrative—when considered in the light of the last two sections

of this chapter—also suggests an important difference between narratives

that institute desired futures and, say, bedtime stories for children or Holly

wood mega-productions. When after the narrative has been expressed—

that is, after having been projected into other times, other locations, and

toward other actants—hopefully children fall into sleep and spectators

leave the movie theater to carry on their occupations, DF’s narrative still

has a hold on him. More than just establishing a triple shifting out into

other space and time and toward other actants, DF’s narrative engages DF;

it asks DF to do things. In this sense, as soon as DF expresses the narrative,

he finds himself simultaneously in two positions: he is the writer of the

narrative who can modify it any time he wants but also the actor who has

to follow the narrative he has just expressed (Latour 2013, 391). Following

Austin (1975) and recent works in STS (Barad 2007), we can consider these

narratives as performative in the sense that they engage those who articulate

them. In our case, DF holds the narrative but is also held by it.

To underline the literary and performative dimensions of these par

ticular narratives that are crucial for computer programming—since they

institute a desired horizon to be achieved, hence supporting both align-

ments of inscriptions and technical detours—I shall call them scenarios.12

The cinematographic connotation is voluntary. Indeed, a scenario—in the

case of cinema or computer programming—is a narrative: it tells a story and

therefore instantiates a beginning, an end, a plot, and characters that all

possess ontological weights. Second, in both cases, a scenario is performa-

tive: it has a hold on both the movie director who is asked to transform it

into a movie as well as on the programmer who tries to make it become an

actual computer program. Third, if a scenario roughly describes the succes-

sive scenes of a movie or the successive steps of a computer program, it says

almost nothing about how to shoot these scenes or implement these steps.

While in both cases, the scenario draws desirable horizons, almost every

thing still needs to be done in order to reach them. Fourth, if the plot, steps,

characters, or variables are described by the scenario, nothing prevents the

movie director, the programmer, movie stars, or recalcitrant instructions

The MIT Press January 2021

192	 Chapter 4

to modify some of its constitutive elements. In both computer program-

ming and movie production, a scenario can be revisited to better take into

account unpredictable contingencies.

While they are not sufficient to assemble computer programs, scenarios

are nonetheless crucial for computer programming. These flexible yet per-

formative narrative resources institute horizons on which programmers can

hold—while being held by them—thus establishing the boundaries of com-

puter programming episodes. Scenarios both trigger and are blended with

alignments of inscriptions and technical detours; altogether, they form pro-

gramming courses of action we can now consider in all their sinuosity.

But again, at this point, something is still missing. We are very close but

are not there yet. If the notion of “scenario” is useful to better understand

what helped DF shift between scientific and technical modes of practice,

thus framing the programming sequences we have previously followed, it

does not make us understand why DF wanted to engage himself in it. If sce-

narios provide the frame and the energy of programming episodes, where

does this energy initially come from?

Something is definitely overflowing scenarios, making them “put into gear”

more or less delightful affects: how do we consider them as well? If scenarios

give horizons, they do not by themselves allow to grab what arises from pro-

gramming episodes. INT’s stubbornness, the multiple inclusions of actants,

and the numerous work-arounds of impasses; all of this—in the middle of the

action—is terribly uncertain. But when the program accomplishes what was

hoped for at the beginning of the episode—or modified during the episode—

something is happening that cannot be reduced to the consequence of what

allowed it to happen. This is the important contribution of the sociology of

attachments against the social science of taste: reducing beloved objects to the

conditions—social or material—of their appreciations tells us nothing about

the objects themselves (Hennion 2015, 2017). While an object—a painting, a

piece of music, a computer program—is constructed, it also exists in its own

right. Or perhaps even more; as it is constructed, it exists more intensely. But

how do we grab this appreciation of the constituted object? In our case, how

do we consider the upsurging of PROG? We may perhaps refer to what DF

tells me at the end of the programming episode:

FJ:  “Well, thanks. I’m always impressed by your patience.”

DF:  “You’re welcome. It was quick. And you know, I love it so it’s not a

problem.”

The MIT Press January 2021

A Second Case Study	 193

FJ:  “You love spending time on these lines of code?”

DF:  “Sure. It’s fun. What I really like is that you should never lose the

thread. And when the script does the thing, it means you didn’t lose it.”

What may this excerpt tell us about the affects of computer programming?

The notion of scenario seems, by itself, unable to provide a clearer under-

standing of what PROG, once assembled, does to DF. But, following DF

and using the scenario as stepping stone, it helps to make appear some-

thing lovable: being able to constantly evaluate what has been done against

what still needs to be done. This is what DF steadily needs to grab, the

thread he tries never to lose: this scenario suggests a path, a plot, but also

says nothing about how to follow it. Following a story by tracing his own

path: a curious experience of establishing something by reaching it. But

this reach, this access to the horizon—one should not simply consider it

as the satisfaction of realizing something that was previously projected.

Taking DF seriously—but also other Lab collaborators who participated in

other “helping sessions”—we may consider it as the asymptote of a con-

stant evaluation. “This” had to be done, then “this,” then “this,” and now,

there is nothing else to do until the next affect-bearing scenario, of course.

The specificity of the affects of computer programming may lie in the recur-

rent upsurging of this temporary “nothing else.”

This is only an adventurous proposition about the attachments that

bind programmers to the scripts they may instaure (Latour 2013, 151–178;

Souriau [1943] 2015). More systematic studies are obviously necessary to

enrich the above speculations. But let the reader not forget, once again, that

one goal of this chapter, besides its analytical ambitions, is also to point to

innovative avenues of research on computer programming situated prac-

tices. In that sense, looking at the formation of scenarios and their com-

plex relationships with the attachments they may suggest—but not strictly

produce—could be a relevant way to inquire into what moves programmers,

sometimes to the point of spending huge amount of unpaid (or detoured)

hours on uncertain free and open-source software projects. In the light of

programmers’ attachments to scenarios, what Demazière, Horn, and Zune

(2007, 35) called the “enigma of free software development”—the ability

to produce coherent programming results from evanescent involvement—

could, for example, be tackled in an alternative way. While entangled modes

of regulations among these voluntary collectives are certainly important for

the actual production of free and open-source software, these arrangements

The MIT Press January 2021

194	 Chapter 4

may also benefit from being considered in the light of the passions they

make exist. What is indeed happening when a scenario is realized through

a computer script? Can such an affective event only be reduced to the orga

nizational processes (Demazière, Horn, and Zune 2007), individual incen-

tives (Lerner and Tirole 2002), or ideologies (Elliott and Scacchi 2008) that

made it possible? Is there not something in DF’s emotive spark that may

also contribute to the formation and maintenance of programmers’ com-

munities? It is the whole ecology of programming work—be it free, open-

source, or corporate—that may deserve to be considered also in the light

of what programmers are after when they are writing numbered lists of

instructions.

* * *

Despite its lengthy and tortuous aspect, the point I wanted to make in

this part II is quite simple. Once we inquire into computer programming

courses of action, we see that they engage the alignment of inscriptions,

the work-around of impasses, and the definition of scenarios. These three

modes of practices are intimately related: Working around impasses implies

the localization of a problematic phenomenon that itself requires a scenario

to be considered problematic. DF and more generally, perhaps, programmers

constantly shift from one mode to the other until temporally realizing their

desired narratives.

The main difficulty lay in the preparatory work required to distinguish

the process of programming from its result. For complicated reasons we

covered in chapter 3, a confusing mix has progressively been established

between human cognition and programmed computers. This confusion

led, in turn, to important misunderstandings such as cognitive studies of

programming that ended up being tautological as they supposed the exis-

tence of what they tried to account for. As I wanted to analyze the situated

practice of programming, I had to distance myself from cognitivism and

embrace very minimal, yet powerful, enactivism that considers cognition

as the process by which we grasp affordances of local environments.

Unfortunately, I could play only at the edge of computer programming

practices, and many questions were left unanswered. Regarding the align-

ment of inscriptions, it would be insightful to learn more about the differ

ent modalities, organizations, and even institutions that participate in a

programmer’s multiplications and articulations of inscriptions. Regarding

The MIT Press January 2021

A Second Case Study	 195

the working around of impasses, what about exploring more thoroughly

the equipment that supports the identification and enrollment of new

actants? This may even lead to innovative programming devices and equip-

ment. Concerning scenarios, I will soon document the formation of some

specific, easily transposable ones. But in light of the fascination exerted by

computer programming as well as its importance for contemporary socie

ties, I wish there were more studies documenting the actions that some-

times make the joy of programming emerge. In these times of controversies

over algorithms—entities that seem to rely on ground-truthing and pro-

gramming activities—these are, I believe, crucial research directions.

The MIT Press January 2021

The MIT Press January 2021

III  Formulating

The MIT Press January 2021

The MIT Press January 2021

It is easy to study laboratory practices because they are so heavily equipped, so

evidently collective, so obviously material, so clearly situated in specific times

and spaces, so hesitant and costly. But the same is not true of mathematical prac-

tices: notions like … “calculating,” “formalism,” “abstraction” resist being shifted

from the role of indisputable resources to that of inspectable and accountable

topics. … We seem to be inevitably contaminated by [these notions], as if abstrac-

tion has rendered us abstract as well!

—Latour (2008, 444)

We are not out of the woods yet. We may have a clearer idea about the whys

and wherefores of ground-truthing (part I) and programming (part II), yet we

still lack, at this point of the inquiry, one activity that is sometimes crucial

to the formation of algorithms in computer science laboratories. Without

accounting for these practices, I could only propose an extremely partial con-

stitution of algorithms.

One way to become sensitive to the “missing mass” of our inquiry could

be to look at a recent academic paper in computer science. And why not

choose the subfield of image processing since it is the empirical ground of

this ethnographic venture? While browsing, for example, through a paper

entitled “Learning Deep Features for Discriminative Localization” (Zhou

et al. 2016), we would encounter many things we are now familiar with.

We would read about a specific problem (localizing class-specific image

regions) that, according to the paper’s authors, is solved satisfactorily by

means of a computer program they call CAM, which stands for “class acti-

vation mapping.” We would see that the problem, CAM, and what this

program should retrieve all derive from an already-assembled ground truth

The MIT Press January 2021

200	 Part III: Formulating

(in this case, ImageNet Large Scale Visual Recognition Challenge [ILSVRC]

2014) that has been split into two parts: a training set and an evaluation

set. We would also feel, behind the printed words and numbers, the long

and fastidious computer programming episodes that were necessary to pro-

vide and discuss the paper’s results. After all, if the authors did not write

lists of instructions capable of triggering electric pulses in meaningful ways,

they could not have provided any statistical evaluations of their algorithm’s

performances.

However, while browsing through this academic paper that presents

and tries to convince us about the relevance of a new image-processing

algorithm, we would very quickly bump into cryptic passages such as this

one:

By plugging Fk = ∑x,y fk (x, y) into the class score, Sc, we obtain

Sc = wk
c f k x,y() =
x,y
∑

k
∑ wk

cf k x,y()
k
∑

x,y
∑ 	 (1)

We define Mc as the class activation map for class c, where each spatial ele

ment is given by

Mc x,y() = wk
cf k x,y()

k
∑ 	 (2)

Thus, Sc = ∑x,y Mc (x,y), and hence Mc (x,y) directly indicates the importance of

the activation at spatial grid (x,y) leading to the classification of an image to class c.

(Zhou et al. 2016, 2923)

Such sentences that mix English words with combinations of Greek and

Latin letters divided by equals signs are indeed widely used by computer sci-

entists when they communicate about their algorithms in academic jour-

nals. Of course, as grown-up readers, we immediately understand that such

an excerpt deals with mathematics and that (1) and (2) are proper formulas

(or equations once their variables are replaced by numerical values). But if

we only consider the descriptive system developed so far in this inquiry,

we have no grip on these mathematical inscriptions. The conceptual appa-

ratus of the inquiry enables us to deal with graphs and numeric values as

they refer somehow to both data and targets as defined by ground truths.

The inquiry’s apparatus also enables us to deal with lines of code as they

refer to numbered lists of instructions that trigger electric pulses in desired

ways. But what about mathematical formulas? Where do they come from?

Why do computer scientists need them, and how are they assembled?

At this point, I do not have any other choice. In this last and important

The MIT Press January 2021

Part III: Formulating	 201

part III, I will have to consider the role of mathematics in the formation of

algorithms.

The road I am about to take is dangerous; one second of inattention and

my action-oriented method will be lost. For intricate reasons that I will

cover, mathematical entities such as “theorems,” “proofs,” or “formulas” are

indeed extremely resistant to empirical considerations; even though they

certainly are the products of situated activities, they are often considered

fundamental ingredients of thoughts. This tenacious habit is frequently the

starting point of a downward spiral, itself leading to grand questions such

as: “Are mathematics the expressions of abstract structures or individual

consciousness?” So many innocent souls have been consumed by such float-

ing interrogations! To avoid digging my own grave in this cemetery of prac-

tice, I will have to be extremely cautious and process one small step at a

time. But with some patience, the construction of mathematical knowledge

as well as its further enrollment in the formation of algorithms may be par-

tially accounted for. Altogether, these efforts to define formulating practices

will allow me to link both ground-truthing practices (necessary to establish

the terms of solvable problems) and programming practices (necessary to

make computers compute in desired ways). Within the present constituent

effort, what we tend to call “algorithms” may then be described as uncer-

tain products of (at least) these three interrelated activities.

As in part II—and largely for similar reasons—I will require operation-

alization efforts before diving into ethnographic materials. I will first have

to put aside the vast majority of studies on mathematics. Too many top-

ics, too many studies, too many methods; without preliminary cleaning

efforts, dealing with mathematics in an action-oriented way is doomed

to fail. As we shall see in chapter 5, the only way not to duck will be to

start (almost) afresh, from very basic observations and hypotheses. Progres-

sively, these hypotheses—well inspired by several STS on mathematics—will

make us realize that mathematical entities such as “theorems,” “proofs,” or

“formulas” are quite akin to more familiar scientific facts. If mathematical

knowledge is often considered the expression of some superior reality, it

might only be due to its extreme combinability. Once the vascularization

of mathematics is put forward, we will realize that its indubitable power

also comes from the humble instruments and actions that make nonmath-

ematical topics mathematicable. This important point will, in turn, allow me

to define formulating practices as the empirical process of merging networks

The MIT Press January 2021

202	 Part III: Formulating

that sustain given domains of activity with networks that sustain certified

mathematical knowledge. In chapter 6, I will account for a small yet suc-

cessful formulating effort that took place within the Lab. This third and last

case study will underline the centrality of certified mathematical knowledge

for the progressive formation of algorithms as it both forces the refinement

of ground truths and unfolds scenarios for further programming episodes. It

will also allow me to consider recent issues related to machine learning and

artificial intelligence in an unconventional way. The last section of chap-

ter 6 will be a brief summary.

The MIT Press January 2021

This chapter aims to consider mathematical knowledge not as the expres-

sion of some superior reality but as a huge collection of scientific facts whose

shaping necessitated a fair amount of practical work. As we will see, by con-

sidering mathematical knowledge to be one specific product (among many

others) of scientific activity, we may provide a reasonable explanation of its

capacity to make important differences in other scientific domains (neurol-

ogy, geography, gambling, computer science, etc.). Once this operational-

ization exercise is over, I will come back to the main goal of this part III:

understanding when, how, and why mathematical knowledge takes active

part in the constitution of algorithms (chapter 6).

Where Is the Math?

If we want to better understand how mathematical entities (formulas, theo-

rems, conjectures, equations) are manipulated and related to ground truths

and programming languages, we first need to better understand where they

come from. Such entities surely do not exist by themselves; they need to be

assembled by people in specific designated places. Where are these places?

Who are these people, and what do they do?

Such trivial questions lead to many, many heterogeneous answers. This

is one reason why dealing with mathematics can be dangerous: Where shall

we start? From the mathematics of ancient Greece (Heath 1981a, 1981b;

Netz 2003)? From mathematics of medieval Islam (Berggren 1986; Netz

2004)? From baroque mathematics of continuous change (Bardi 2007;

Boyer 1959)? But if we use the adjective “baroque,” we already define the

seventeenth century in quite an orientated way (Deleuze 1992). Shall we

5  Mathematics as a Science

The MIT Press January 2021

204	 Chapter 5

then focus on more contemporary mathematics such as set theory (Ferreirós

2007; Tiles 2004), Weierstrass functions (Bottazzini 1986), and the subse-

quent “crisis of foundations” that shook up mathematics at the beginning

of the twentieth century (Ewald 2007; Ferreirós 2008; Hesseling 2004; Man-

cosu 1997)? But what do we mean by “mathematics” anyway? Do we mean

mathematical texts (Rotman 1995, 2006; Sha 2005)? Do we mean famous

mathematicians such as Leibniz (Antognazza 2011), Gauss (Tent 2006), or

Cantor (Dauben 1990)? Do we mean philosophies of mathematics that try to

define what mathematics is (Aspray and Kitcher 1988; Corfield 2006; Hack-

ing 2014)? Our head is spinning and we start to feel dizzy. But it is not over

yet! Indeed, are we talking about arithmetic (Husserl 2012), algebra (Everest

2007), geometry (Netz 2003; Serres 1995, 2002), or logic (Fisher 2007; Rosental

2003)? Maybe are we talking about the evolution from numbers to logic (Kline

1990a), from logic to geometry (Kline 1990b; Netz 2003), from geometry to

algebra (Kline 1990c; Netz 2004)? And even within arithmetic, geometry,

algebra, or logic, are we talking about theorems (Villani 2016), proofs (Lakatos

1976; MacKenzie 1999, 2004, 2006) or conjectures (O’Shea 2008)? We do not

know. We are lost in questions whose only enunciation makes us want to

do something else. But we cannot; we must find a way to address mathe

matics as it seems important for the constitution of algorithms. How can

we do so?

One way to avoid this spiral of confusion could be to start from some

very basic hypotheses. We would, of course, have to develop these hypoth-

eses and justify them by using concrete examples. To do this, we may need

to mobilize a tiny part of the gigantic mathematics literature that scares

us. One step after the other, one hypothesis after the other—coupled with

some STS assumptions—we may end up with an operative definition of

mathematical knowledge that could suffice to achieve our specific task:

accounting for the way that computer scientists, when they try to assem

ble new algorithms, are sometimes able to mobilize certified propositions

previously shaped by their mathematician colleagues. We surely do not

need to revolutionize our understanding of these powerful statements we

sometimes call “theorems,” “conjectures,” or “formulas.” If we just manage

to shape one simple version of what mathematicians do (instead of what

mathematics is), our last duty—accounting for formulating practices—will

be greatly facilitated.

The MIT Press January 2021

Mathematics as a Science	 205

Written Claims of Relative Conviction Strengths

To initiate our operationalization exercise and shape our first hypotheses, let

us start with three scenes that all gravitate around mathematical notions:1

Scene 1

January 1994. Charles Elkan is in turmoil: his theorem demonstrating

that only two truth values can be expressed by a system of fuzzy logic is

highly contested.2 What went wrong? The initial presentation of his the-

orem at the Eleventh National Conference on Artificial Intelligence went

very well. The paper that further appeared in the conference proceed-

ings was even selected for the “Best Written Paper Award” (Elkan 1993).

The program committee saluted the elegance of the proof as well as its

significance for further developments in expert systems. Everything was

in place for his theorem to be accepted. But many logician colleagues—

who did not attend the conference but did read some of its proceedings

published by MIT Press—are quite upset. Elkan can even follow their

dissatisfaction on the newly established internet forum “comp.ai.fuzzy”

that is dedicated to advanced discussions in fuzzy logic theories and sys-

tems. The critiques are harsh. Some say—and try to demonstrate—that

Elkan’s basic hypotheses are flawed. Others accuse him of deliberately

weakening fuzzy logic as it is a threat to old, “dusty” classical logic. Some

colleagues even suspect him to be a thick-headed Aristotelian! As one

of his friends advises him, Elkan should now “cool things down” and

publish a “smoother” version of his theorem that could include some of

its soundest critiques.

Scene 2

Summer of 1890. Alfred Kempe is puzzled;3 although not really because

Percy Heawood recently managed to find a flaw in the proof of the four

colors conjecture Kempe previously published in the American Journal of

Mathematics (Heawood 1890; Kempe 1879). Heawood did a great job, and

being refuted is part of the game anyway. No, it is more that even though

his proof was shown to be erroneous, Kempe does not think that Fran-

cis Guthrie’s 1852 candid proposition—that says that four colors suffice

to color any map drawn on a plane in such a way that no neighboring

The MIT Press January 2021

206	 Chapter 5

countries have the same color—is wrong. But how could such a basic

intuition lead to such great difficulties? Do mathematicians not have the

tools to prove this conjecture and make it a theorem once and for all?

“Poor Heawood,” thinks Kempe. “He is now hooked on it, as I was fifteen

years ago. He’d better drop it; this four colors thing is old hat.”

Scene 3

November 8, 2013, 3 p.m. I sit at the back of the lecture hall.4 Around

three hundred undergraduate students are also attending this Friday after

noon “Information, Computing and Communication” class that aims to

inculcate (communicate?) the foundational concepts of computer science

to future civil and mechanical engineers. I see my younger brother and

his friends—good students—in the second row. They’ve just started their

academic curriculum; I’ve almost finished mine. But here we are in the

same classroom, waiting for the same information (orders?). The professor

adjusts his microphone: “All right. Hi, everyone. So, last week we talked

about the Nyquist-Shannon sampling theorem. Today, we’ll start with

another contribution of Claude Shannon to the mathematical under-

standing of digital signals, which is the Shannon-Hartley theorem. It is

quite a powerful theorem that can be summarized with this formula here:

C = B log2(1+
S
N
).

Of course, we’ll go through it together.”

At this point, we do not need to make any a priori distinction between “the-

orems” (scenes 1 and 3), “conjectures” (scene 2), “proofs” (scene 1 and 2),

and “formulas” (scene 3). We just need to notice that all three scenes, while

presumably concerning mathematics, deal with claims that attract more or

less adherence. In scene 1, Elkan’s claim about fuzzy logic first attracts the

adherence of the Eleventh National Conference on Artificial Intelligence’s

program committee. But then, in January 1994, his claim repulses many

logician colleagues who do not hesitate to publish “counterclaims” on the

web forum “comp.ai.fuzzy.” In scene 2, Kempe’s claim about the veracity of

Francis Guthrie’s claim (the “four colors conjecture”) also first attracts the

adherence of the editorial board of the American Journal of Mathematics. But

then, in the summer of 1890, Kempe dissociates himself from his own claim

The MIT Press January 2021

Mathematics as a Science	 207

and adheres to that of Heawood. However, Guthrie’s 1852 “candid” claim

has not lost all of its conviction strength yet, which makes Kempe puzzled

about the fate of Heawood. Scene 3 is quite straightforward: Shannon and

Hartley’s claim—and its correlated formula projected on the lecture hall’s

whiteboard—is about to be taught to a crowd of undergraduate students in

engineering. There is little room for doubt here: in November 2013, Shan-

non and Hartley’s claim attracts the adherence of quite a lot of people. In

fact, their claim is so strong that a well-known pedagogical device—the

exam—will soon verify that all students properly adhere to it.

These basic but fair observations are all we need to start our operation-

alization exercise. Mathematicians certainly do a lot of things, but among

these things, they make claims that attract the adherence of more or fewer

individuals. Let us assume then that the grand notions of “theorems,”

“conjectures,” “formulas,” or “proofs” can all be grasped in a down-to-earth

manner; let us assume that, to a certain extent, they are claims that con-

vince more or fewer individuals.

This way to consider mathematical knowledge—theorems, conjectures,

proofs, formulas—as the product of some rhetoric may sound odd at first.

Many grand narratives have indeed chanted the abstract power of mathemati-

cal truths that, by themselves, supposedly describe some superior reality.5 But

this is precisely the road we do not want to take, at least not yet. If we do not

want to crash on the sharp rocks of epistemological accounts of mathematics,

we need to plug our ears and, for the moment, ignore the sirens of necessity.

Fortunately for us, our first operational hypothesis—mathematicians make

claims that convince more or fewer individuals—echoes well the central the-

sis of Lakatos’s (1976) important book on mathematics. As he showed, instead

of an accumulation of self-evident discoveries, mathematics should be con-

sidered a creative process during which concurrent claims are subjected to

criticism and improvement. But how are such claims criticized or improved?

How do they gain or lose their relative conviction strength? Shannon and

Hartley’s claim in scene 3 seems much stronger than Elkan’s claim in scene 1.

Similarly, in 1890, the claim Kempe made in 1879 is now powerless in front

of Heawood’s claim (scene 2). How do such differences come about?

To better understand how (mathematical) claims gain or lose conviction

strength, we need to make another basic observation about scenes 1, 2, and

3. If more or fewer individuals could adhere to the scenes’ claims, it means

The MIT Press January 2021

208	 Chapter 5

that they could access these claims. What medium allowed such access?

Some claims are oral, but we are obviously not dealing with them here.

The claims in scenes 1, 2, and 3 are all written. This important characteris-

tic allows individuals to read them and eventually—very rarely—adhere to

them. In scene 1, it is Elkan’s written claim as it appears in the conference’s

proceedings that makes the program committee adhere to it. But in Janu-

ary 1994, it is the multiplication of written counterclaims on the web forum

“comp.ai.fuzzy” that begins tormenting Elkan. In scene 2, both Kempe and

Heawood access their respective claims by reading mathematical journals.

Finally, the engineering students in scene 3 are asked to adhere to Shannon

and Hartley’s claim projected on the classroom’s whiteboard. Of course,

Shannon and Hartley did not write their claim on the projected document;

many individuals intervened to carry their claim further through time and

space until reaching this specific lecture hall. But this translation process

does not change the overall shape of the claim; it is still something that

is written down on a flat surface. At this point, we can therefore slightly

refresh our first hypothesis: mathematicians surely do a lot of things, but

among these things, they write claims that attract the adherence of more or

fewer individuals.

It is also fair to assume that the written claims in the above scenes did

not appear ex nihilo. In order to be published in proceedings, specialized

web forums, mathematical journals, or the slides of a computer science

professor, they all had to overcome a series of tests, trials upon which their

existence as written claims depended. I agree that this hypothesis flirts

with the metaphysics of subsistence—close to “process thought” (cf. intro-

duction)—as proposed by influential, yet contested, thinkers. Let us then

consider it an assumption we need for our operationalization exercise.

“Whatever resists trials is real” (Latour 1993a). The above (mathematical)

written claims are real; they thus resisted trials. But what trials?

Resisting Trials, Becoming Facts

The first kind of trial we can consider regarding the conviction strengths

of (mathematical) written claims such as those in scenes 1, 2, and 3 are the

trials they must endure before their actual publication. Examining what we

often call the “sources” of claims is indeed a common way to evaluate their

seriousness.

The MIT Press January 2021

Mathematics as a Science	 209

For example, we can make the fair assumption that, all things being

equal, a claim published in the journal Nature will generally have more con-

viction strength than a claim posted on some social media platform with

very little monitoring. Without even considering their respective content,

both claims will have different capabilities. Why is that? We must immedi-

ately put aside the question of prestige or symbolic power; these are short-

cuts our sociological method of inquiry forbids us to manipulate. A more

empirical grip on this topic would quickly point to the number of indi-

viduals who could prevent the publication of a claim. Very few people—or

bots—can prevent me from publishing a claim on, say, Facebook. Con-

versely, many individuals can prevent me from publishing a claim in the

journal Nature. Taking into account those who have to be convinced by

claims in order for them to circulate and reach a broader audience is crucial

as it somewhat calibrates the cost of disagreement. If someone disagrees

with a claim I publish on Facebook, they can just shrug their shoulders and

move on to something else.6 But if the same person disagrees with a claim

I publish in Nature, they will have to disagree with me, my institution,

the funding agencies that supported my research, Nature’s editorial board,

those responsible for the nomination of this board, and so on. Compared

with a claim I publish on Facebook, a claim I publish in Nature is initially

supported by a far bigger team of external allies (Latour 1987, 31–33).

But if we consider our three scenes, we quickly realize that surviving

publication trials—and thus enrolling external allies—is not enough to

assure any durable conviction strength of (mathematical) claims. Although

this lecture, in terms of convinced gatekeepers, may be enough to quickly

account for the conviction strength of Shannon and Hartley’s claim within

the lecture hall—the students being literally crushed by all its external allies

(their professor, their manuals, all those responsible for the engineering

curriculum of their university, the exam they will soon have to pass)—it

does not help us understand the relative strengths of Kempe’s, Heawood’s,

and Elkan’s claims (scene 1 and scene 2). In scene 2, both Kempe’s and

Heawood’s claims survived similar publication trials; both propositions

were initially supported by roughly the same number of individuals.7 Yet

Kempe’s claim became distrusted as Heawood’s appeared certified. The situ-

ation is even more confusing in scene 1: even though Elkan’s claim suc-

cessively resisted the scrutiny of the sixty-eight individuals responsible for

the publication of the proceedings and the selection of the “Best Written

The MIT Press January 2021

210	 Chapter 5

Paper,”8 his claim is seriously shaken up by posts on a web forum with

almost no monitoring (Rosental 2003, 81–86). Again, these counterclaims

must have survived other kinds of trials in order to gain such strength.

Another kind of trial that may provide strength to written claims is one

that consists in successively enrolling internal allies by means of citations

and references (Latour 1987, 33–45). Equipping one’s claim with previously

published claims is indeed an important conviction strategy that has even

become a whole field of study.9 In addition to allies outside of the writ-

ten document, a claim with references and citations is now supported by

allies inside of it. Or is it? While often necessary, augmenting the convic-

tion strength of a claim by means of references and citations can be a risky

endeavor. What if the references do not match the claim, or worse, what if

some unmentioned references contradict the presented claim? In some cases,

this citation trial is overcome. One example is Shannon’s initial paper that

presented the basic elements of what would later be called the “Shannon-

Hartley theorem” (Shannon 1948). In this paper, Shannon enrolls previ-

ously “solidified” claims made by Ralph Hartley (hence his later inclusion in

the theorem’s name) and thirteen other important mathematicians. As far as

I know, no serious disagreements about the use of these references emerged

after Shannon’s initial publication. But the same was not true of Elkan’s

publication. Although he mobilized thirty-nine internal allies to strengthen

his claim about the limitations of fuzzy logic, his contradictors managed to

find and publish many strong “counter references” on the specialized web

forum. Elkan soon appeared as someone unaware of many recent uses of

fuzzy logic in advanced expert systems (Rosental 2003, 157–168). Although

they were at first certainly useful to convince the program committee of the

Eleventh National Conference on Artificial Intelligence, the internal allies

of Elkan’s paper ended up working as stepping stones for his contradictors.

However, surviving or not surviving citation trials is, again, not enough

to account for the relative conviction strengths of the claims in all of our

scenes. Indeed, in scene 2, Kempe’s 1879 paper makes only three references

to former mathematical propositions, the first two being loose statements

made by Augustus De Morgan and Arthur Cayley to the London Mathemat-

ical Society (Kempe 1879, 193–194) and the third one being a more impor

tant claim made by Augustin-Louis Cauchy about polyhedrons (Kempe

1879, 198). Yet this scarcity of references did not prevent his claim—the

proof that Guthrie’s 1852 proposition was correct—from convincing his

The MIT Press January 2021

Mathematics as a Science	 211

mathematician colleagues for eleven years. The same is even truer of

Heawood’s claim, for his 1890 paper includes no references other than

Kempe’s 1879 paper. Again, this scarcity did not prevent his claim from

attracting the adherence of the chief person concerned: Kempe himself

(MacKenzie 1999, 22). There must be something else in published (math-

ematical) claims that makes them gain, sometimes, in persuasion strength.

Some potential objectors of published (mathematical) claims will not be

impressed by lists of convinced gatekeepers nor by the references invoked

by the author. To be convinced by a claim, these skeptical readers want to

see the thing the author asks them to believe in. This strategy that consists

of presenting the thing in question to the reader was precisely the one used

by Heawood in his paper against Kempe. He did not only rely on external

allies; he also showed a figure (see figure 5.1) that, according to Kempe’s

1871 claim, was impossible to draw:

Mr. Kempe says—the transmission of colours throughout E’s red-green and B’s

red-yellow regions will each remove a red, and what is required is done. If this

were so, it would at once lead to a proof of the proposition in question [the four-

colours conjecture].  … But, unfortunately, it is conceivable that though either

transposition would remove a red, both may not remove both reds. Fig [below] is

an actual exemplification of this possibility. (Heawood 1890, 337–338)

We do not need to spend too much time on the specificities of Heawood’s

figure10 nor on the role of drawings in published mathematical claims.11

Here, the important thing to notice is the conviction strategy; just as scien-

tists engaged in many other fields—biology (Rheinberger 1997), chemistry

(Bensaude-Vincent 1995), climatology (Edwards 2013)—mathematicians

try to gain in persuasion strength by adding the referent of what they write

about. At this point, then, “this is not a question any more of belief: this is

seeing” (Latour 1987, 48). If, until now, I put the adjective “mathematical”

in parenthesis, it was not to grant too much specificity to mathematical

claims; they too are part of the scientific genre that tries to silence poten-

tial objectors by gathering more and more supporters. Scientific as well as

mathematical texts can indeed be compared with bobsled tracks allowing

very little room for maneuver while implying high level of skills. In both

cases, readers must start at point A, pass through checkpoints B1,2,…,n, and

finally finish at point C, the claim that tries to be established as a fact.

If scientific literature can be described as texts gathering many external

and internal allies in order to isolate their readers and force them to take

The MIT Press January 2021

212	 Chapter 5

Figure 5.1
Reproduction of Heawood’s figure showing that Kempe’s proof does not hold. Source:

MacKenzie (1999). Reproduced with permission from Sage Publications.

The MIT Press January 2021

Mathematics as a Science	 213

only one path, different scientific domains progressively shaped their own

specific rhetorical habits.12 In the case of mathematics, this whole captation

trial (Latour 1987, 56–61) that consists in subtly controlling the movements

of potential objectors has been finely analyzed by Rotman (1995, 2006). As

he showed, mathematical publications are full of verbs in the imperative

form, such as “construct,” “define,” “connect,” or “compute.” But a close

analysis of these imperative forms reveals that they are in fact split into two

distinctive types: inclusive imperative to establish premises—often equipped

with references—and exclusive imperative to present lists of actions an imagi-

nary reader should perform to reach the claimed result:

Inclusive command marked by the verbs “consider,” “define,” “prove” and their

synonyms—demand that speaker and hearer institute and inhabit a common

world or that they share some specific argued conviction about an item in such a

world; and exclusive commands—essentially the mathematical actions denoted

by all other verbs—dictate that certain operations meaningful in an already

shared world be executed. (Rotman 2006, 104)

These elements are crucial for our operationalization exercise as they indi-

cate the felicity conditions of captation trials within mathematical texts.

If skeptical readers, thanks to all the allies mobilized by the writer, have

no other choice than to accept the premises and follow one specific path

in order to reach one necessary conclusion, a mathematical text and its

concomitant claim have, at least temporally, overcome their captation trial.

In this respect, Kempe’s 1879 paper on the four colors conjecture is quite

illustrative. Remember that Kempe wanted to prove that four colors suf-

fice to color any map drawn on a plane in such a way that no neighboring

countries have the same color. How did he enjoin his readers to reach this

conclusion? With a succession of inclusive commands, both Kempe and his

imaginary skeptical reader start by defining a perfectly four-colored “singly

connected surface” divided into many “districts” (Kempe 1879, 193). Once

this basic common world has been instituted, they then consider two sets

of “detached regions” either colored in red and green or in yellow and blue

(Kempe 1879, 194). These premises allow Kempe and his reader to further

define the properties of “points of concourse” (points where boundaries

and districts meet) that themselves permit the definition of six classes of

districts with different characteristics: “island districts,” “island regions,”

“peninsula districts,” “peninsula regions,” “complex districts,” and “simple

districts” (Kempe 1879, 195–196). Once this quite complex common world

The MIT Press January 2021

214	 Chapter 5

has been instituted, Kempe then switches to exclusive commands and asks

his reader to execute a series of operations:

Now, take a piece of paper and cut it out to the same shape as any simple-island

or peninsula-district, but larger, so as just to overlap the boundaries when laid on

the district. Fasten this patch (as I shall term it) to the surface and produce all the

boundaries which meet the patch … to meet at a point, (a point of concourse)

within the patch. If only two boundaries meet the patch, which will happen if

the district be a peninsula, join them across the patch, no point of concourse being

necessary. The map will then have one district less, and the number of boundaries

will also be reduced. (Kempe 1879, 196–197; italics added)

By asking the reader to reiterate this patching process, the whole imagined

map is progressively reduced to one single district with no boundaries or

points of concourse. Kempe then asks the reader to reverse the process; that

is, to “strip off the patches in reverse order, taking off first that which was put

on last. As each patch is stripped off it discloses a new district and the map

is developed by degrees” (Kempe 1879, 197). At this precise point, Kempe

switches to inclusive command again, thus instituting a second common world

based on the first one that has just been modified. The author and the reader,

together again, define the progressive reconstitution of all districts, bound

aries, and points of concourse. Little by little, they soon realize that their

recombination of districts, boundaries, and points of concourse is equivalent

to, respectively, faces, edges, and points of polyhedrons as already defined by

Augustin-Louis Cauchy in 1813 (Kempe 1879, 198). Once this polyhedron

world has been instituted, Kempe switches one last time to exclusive com-

mand and makes the reader reach the claimed result: obviously—look, we

have just done it together!—four colors suffice to color any map drawn on a

plane in such a way that no neighboring countries have the same color.

We do not need to understand every little step of Kempe’s paper. We just

need to appreciate how Kempe manages to control the movements of his

reader; from the initial premises to the conclusion, the reader is literally car-

ried through Kempe’s line of argument. His allies are quite numerous—“single

connected surface,” “districts,” “detached regions,” Cauchy’s “polyhedrons”—

and his transitions are smooth enough to transport the reader through the

flow of necessity. But as we saw, Kempe’s captatio was only temporary, for as

eleven years later, Heawood managed to escape from Kempe’s line of argu-

ment and propose a figure that dismantled the whole rhetorical edifice (see

figure 5.1).

The MIT Press January 2021

Mathematics as a Science	 215

Publication, citation, and captation trials—just as any other claim trying

to gain conviction strength and become a fact, mathematical claims must

survive many jeopardies. Yet this is still not enough. A claim published in

an important journal, with well-arrayed references and a smooth line of

argument, may still vanish if it is not carried further by later claims. This is a

sine qua non condition as there is no such thing as a solitary scientific fact:

“Fact construction is so much a collective process that an isolated person

builds only dreams, claims and feelings, not facts” (Latour 1987, 41). The

fate of a claim, its progressive transformation into a solidified fact, depends

ultimately on how it is used by later claims. We saw that Kempe’s claim,

despite its captation strength, ended up being refuted by Heawood. From

the status of mathematical fact, it turned into mere fiction. What about

Heawood’s claim? It is difficult to call it a fact as it only concerned Kempe’s

fiction; it successively refuted Kempe’s claim but did not provide any con-

firmable, or refutable, proposition. What about Elkan’s claim, then? Despite

Elkan’s efforts to make it stronger—especially via the inclusion of many

coauthors, better arrayed references, and smoother transitions (Elkan et al.

1994; Rosental 2003, 282–331)—it ended up being known for the doubt-

ful reactions it gave rise to; that is, precisely, for not being a fact. Among

our arbitrary mathematical examples, only Shannon’s claim survived this

important posterity trial, as scene 3 already suggested it. In fact, Shannon’s

claim survived the posterity trial so well that it progressively became part

of a very small number of facts that are constantly used as resources in later

claims. As it became more and more enrolled without any skeptical modali-

ties, it became a black box with certified content presented in a clear-cut

form. This stylization process (Latour 1987, 42) is typical of scientific facts

that are much enrolled in later claims. Although Shannon went through

several demonstrations in his initial paper, only the results of these demon-

strations were progressively retained. These results were later concatenated,

polished, and linked with former results established by Hartley until reach-

ing a stylized form expressed by the formula presented in scene 3. Soon,

perhaps, this strong mathematical fact may even become a “single sentence

statement” (Latour 1987, 43): a scientific fact that is so accepted that it no

longer needs any reference. If this happens, Shannon and Hartley’s theo-

rem will be part of tacit, undisputable, and necessary knowledge.

These last elements about blackboxed polished facts that may become

part of tacit knowledge allow us to respond to an important objection:

The MIT Press January 2021

216	 Chapter 5

Objection of a skeptical reader

But is not mathematics different from all the other scientific disciplines

in that it deals with fundamental truths? We could feel it when you

presented Kempe’s paper: in order to overcome the captation trial, he

followed the timeless laws of deduction, did he not?

Not so long ago, it would have been very difficult to respond to this classi-

cal objection.13 But thanks to the philological efforts made by Reviel Netz

(2003, 2004), we now know that what we call “deduction” and “logical

relations” are themselves blackboxed polished facts that were initially pub-

lished around the middle of the fifth century BCE in Greece and southern

Italy.14 At that time, several self-educated amateurs who, presumably, tried

to distance themselves from ancient Greece’s highly polemical culture,15

were surprised to discover that when they wrote only about the properties

of lettered diagrams drawn on wax tablets, they could, step by step, express

indisputable propositions. More precisely, by starting with some lettered

parts of a diagram—say, two segments—they could, in turn, compare them

with another lettered part of the same diagram. This very basic operation,

made possible by the combination of drawings and letters on a flat surface,

can be reconstituted as such: “This segment A here is equal to that segment

B there. And that segment B there is equal to that segment C over there.” In

turn, thanks to the lettered diagram, Greek geometers could surreptitiously

use conjunctive adverbs in a necessary way: “Therefore this segment A here is

equal to that segment C over there.” The shift seems trivial but is in fact cru-

cial. Indeed, this first necessary result could be used to compare other parts

of the diagram: “And that segment D over there is two times segment C.

Therefore, segment A is half segment D.” Progressively, by comparing more

and more parts of the diagram, using more and more conjunctive adverbs

and cumulating more and more intermediary results such as “A is half seg-

ment D,” the Greek geometer could end up with a complicated yet neces-

sary true proposition—the written list of indexical steps going from his first

basic assertion to his last complicated one being the proof of the veracity of

his claim.

For the sake of this section that only tries to present mathematical claims

as part of the broader family of scientific claims, we do not need to dig fur-

ther into the fascinating work done by Netz. Suffice it here to say that thanks

to his efforts, we can now assert with some confidence that even deduction

The MIT Press January 2021

Mathematics as a Science	 217

is the solidified product of past accepted claims. These constructed-yet-

fully-logical laws of necessity must certainly have been surprising in ancient

Greece.16 But after centuries of enrollments in further claims, this style of

reasoning—that obviously overcame its posterity trial—was progressively

blackboxed, polished, and stylized until acquiring the status of indisput-

able knowledge.17 Who would now quote Aristotle when using the infer-

ence rule of modus ponens? Yet even these principles of logic—dear to the

formalist school of mathematics18—went through a process similar to that of

Shannon and Hartley’s theorem that very few mathematicians in signal pro

cessing would now try to contest. Just as the theorem they helped to shape,

deductive laws were themselves shaped a long time ago by people equipped

with specific instruments (in this case, lettered diagrams drawn on wax tab-

lets and indexed to small Greek sentences).

Flat Laboratories

In the previous sections, we spent some time trying to stress the similarities

between mathematical and scientific claims. It appeared that both need to

survive similar trials to become, eventually, indisputable facts. No supe-

rior necessity helps mathematical claims to become certified facts; they too

need to convince their readers in order to be enrolled in later claims and

become, very rarely, polished black boxes.

However, so far, we have only considered one side of the coin. Although

looking at mathematical published claims helps us realize that successful

mathematical propositions could be considered genuine certified knowledge,

we can legitimately assume that mathematicians do not prepare, write, and

read papers all their working time. They must also spend time and energy on

the things they write about. All the claims we considered in the last sections

were indeed about things: limitations of fuzzy logic systems for Elkan, the

four colors conjecture for Kempe, Kempe’s claim about the four colors con-

jecture for Heawood, and maximum rate of information transmission over

noisy channels for Shannon (and later, Hartley). But how are these things

assembled? What practices lead to the presentation of these mathematical

things—or objects—in published materials? Are these practices different

from laboratory practices in other scientific communities?

As we prepare to look inside the locations in which mathematical objects

are shaped, we immediately face a difficulty: there are very few empirical

The MIT Press January 2021

218	 Chapter 5

studies of such locations. Although there are robust studies about contro-

versies within mathematical domains (Warwick 1992, 1993; MacKenzie

1999, 2000, 2004, 2006; Rosental 2003, 2004) and historical reconstruc-

tions of the shaping of mathematical objects from famous mathematicians’

logbooks (Lakatos 1976; Pickering and Stephanides 1992), there are very

few laboratory studies of mathematics.19 It is thus with limited means that

I will now try to stress the scientific aspect of mathematics a little bit more:

Scene 4

Salk Institute for Biological Studies at La Jolla (California), winter of 1972.20

Paul Brazeau is on edge. His boss, Professor Roger Guillemin, is after him,

casting doubts on his ability to handle the lab’s brand new—and very

expansive—radioimmunoassay. It is true that the graphs recently printed

by the massive bioelectronic instrument are surprising; instead of show-

ing that Guillemin’s newly purified peptide triggers the growth hormone,

it shows that it decreases it. This drives Guillemin crazy. But Brazeau

and his technicians retro-inspected the whole experimental procedure a

dozen times: there were no mistakes. The right amount of purified pep-

tide was injected in the carefully assembled rat pituitary cell culture, and

no mishandling occurred during the operationalization of the radioim-

munoassay. “It’s terribly simple,” thinks Brazeau. “Either I am no consci-

entious professional or, for the last three years, we were all wrong about

this peptide.”

Scene 5

Dublin, fall of 1843. William Rowan Hamilton is in a challenging mood:

even though he bumps into another impasse in his attempt to extend

complex number theory to a three-dimensional space, he is obviously

making important progress.21 He is particularly proud of his new start-

ing point; what a mistake it was to start his previous experiments from

tiring algebraic models! As he now starts geometrically by moving from

x + iy to x + iy + jz, he possesses a three-dimensional line segment that is

far easier to test (even though it adds a second imaginary number j right

from the start). His first experiment was, in that sense, very conclusive.

Thanks to the advice of his German colleague Gotthold Eisenstein, he

could reach an equivalence between algebraic and geometrical defini-

tions of the square of his three-dimensional segment by abandoning the

The MIT Press January 2021

Mathematics as a Science	 219

assumption of commutation between i and j. He could then further test

his model by multiplying two arbitrary coplanar triplets according to his

new noncommutative rule for ij. Although he struggled at first to define

the orientation of his new product, he realized—after several attempts—

that Pythagoras’s theorem could nicely do the trick. Here again, an

encouraging achievement. Yet this last move led him to another prob

lem: the algebraic and geometrical representations of this coplanar mul-

tiplication differ by a factor of (bz—cy)2. “I must find a way to remove

this superfluous term,” he thinks. “I don’t want to start the whole thing

over again!”

Despite their cryptic aspects, what do these two scenes tell us about labora-

tory practices? Can we draw similarities between what takes place within

Guillemin’s laboratory of endocrinology (scene 4) and what takes place

within Hamilton’s laboratory of mathematics (scene 5)?

We can first notice that both scenes deal with experiments; they both put

something to the test in order to evaluate its reactions. The peptide in scene

4 is, in 1973, still undefined. Guillemin—in line with recent claims about

this class of amino acid polymer—is convinced that it should trigger the

rat’s growth hormone.22 But how much is such growth hormone triggered?

And under what circumstances? To have a clearer view on the capacities of

this peptide, he puts Brazeau in charge of implementing an experiment he

recently designed. In scene 5, a complex three-dimensional line segment

x + iy + jz is, in 1843, still undefined.23 Hamilton hopes that this “triplet”—

as he calls it—will allow him to extend the geometrical representation of

complex number theory.24 But at this point, nothing is certain. To better

understand the capacities of his complex three-dimensional line segment,

he puts it through two successive experiments: he first squares it and then

multiplies it with another arbitrary coplanar triplet.

In both scenes then, experiments are run to test undefined entities. Yet

experiments do not happen by themselves; in both scenes, instruments are

used by scientists in order to help them probe their undefined entities.

In scene 4, the delicately assembled rat pituitary cell culture and the very

expansive radioimmunoassay are the two principal tools used to test the

peptide. It is worth noting that both instruments are highly visible and take

up a lot of space. The instruments in scene 5 are a priori less impressive but

equally important. The first instrument is, obviously, the algebraic apparatus

The MIT Press January 2021

220	 Chapter 5

as progressively defined by medieval Islamic mathematicians; without any

means to express relationships among variables in a condensed and succinct

manner, Hamilton could not juggle his triplet.25 But he also needs a coor-

dinate space to express his triplet geometrically. In that sense, without the

efforts of seventeenth-century mathematicians such as Descartes, de Fermat,

Newton, and Leibniz, Hamilton would have no means to consider the trans-

formations of his triplet. He further requires some insight from noncommu-

tative algebra, as then recently proposed by Gotthold Eisenstein, to handle

the complex product ij (Hankins 1980). Finally, he needs good old Pythago-

ras’s theorem to multiply his initial triplet with another arbitrary coplanar

triplet.26

At this point, we need to make another down-to-earth observation:

although both laboratories have instruments to conduct experiments on

undefined entities, the shapes of these instruments differ from each other.

On the one hand, there is a bioelectronic assemblage that gathers peptides,

Brazeau, rat cells, laboratory technicians, and an imposing metal box full of

electronic parts; on the other hand, there are books, paper, Hamilton, and

a pencil. There is little room for doubt here: the instruments do not take up

the same amount of space. Hamilton’s instruments appear dryer and thinner

whereas Guillemin’s instruments appear wetter and thicker. One could say—

and that is the terminology I will use for the remainder of this section—that

Hamilton’s laboratory is flat whereas Guillemin’s laboratory is bulky. Both

laboratories are engaged in the same process—testing the reactions of an

undefined entity—but they use instruments that are different in terms of

occupied space.27

Can we in turn say that Guillemin’s laboratory is more expansive than

Hamilton’s laboratory? If we only consider the relative price of their instru-

ments, it seems indeed to be the case: paper is cheaper than laboratory

technicians, most books (even in nineteenth-century Ireland) are cheaper

than a radioimmunoassay from the 1970s, and pencils are cheaper than a

rat pituitary cell culture. Yet if one considers the relative networks of both

laboratory apparatuses, the question appears trickier. Indeed, how many

efforts were needed to cultivate and sell standardized rat cells? Many, indu-

bitably. But how many efforts were required to establish coordinate spaces?

Many, indubitably. And what about algebra? As Netz (1998, 2004) showed,

without centuries of commentaries on Greek geometrical writings, without

The MIT Press January 2021

Mathematics as a Science	 221

Byzantine libraries, and without the classification efforts of Bagdad mathe-

maticians, no algebraic system of notation could have come into existence.

The same is true of Pythagoras’s theorem; many long-standing efforts were

required to gather, compile, and preserve Pythagorean propositions from

early antiquity to nineteenth-century Ireland. Let us then stick to the topo-

logical difference between our two laboratories: Hamilton’s laboratory is

flatter than Guillemin’s.

If we continue to analyze both scenes, we can see that despite their

topological differences, both bulky and flat instruments end up producing

comparable inscriptions; that is, readable traces on documents. Indeed, the

bulky bioelectronic experimental assemblage of scene 4 ends up produc-

ing graphs whose curves indicate that the rat’s hormone decreases. The

results of the experiment on the undefined peptide conducted by Brazeau

are pieces of paper anxiously examined by Guillemin.28 Similarly, the flat

experimental assemblage of scene 5 ends up producing a series of coupled

algebraic and geometrical equations; at first, both equations appeared

equivalent (which was good news for Hamilton), but in the second step of

the experiment, both appeared dissimilar (which was bad news for Ham-

ilton). Yet, just as for Brazeau and Guillemin, the results of Hamilton’s

flat experiments are readable traces on documents he examines with his

eyes.29

At this point then, we can tentatively say that both scenes deal with

experiments, instruments (of different topologies), and series of inscrip-

tions. But where does all this work lead to? At this stage, it certainly cannot

lead to any published claim that may later become a scientific fact. Within

these two laboratories, scientists impose tests on undefined entities, but

how can these practices lead to the formation of objects capable of being

described in academic papers?

Scene 6

Salk Institute for Biological Studies at La Jolla (California), January 1973.30

There is nothing to do about it; even after two other meticulous experi-

ments, the graphs printed by the radioimmunoassay still show that the

rat’s hormone decreases when put in contact with Guillemin’s peptide.

The rat pituitary cell culture is indisputable as are the composition of Guil-

lemin’s peptide, the radioimmunoassay, and Brazeau’s professionalism

The MIT Press January 2021

222	 Chapter 5

(Guillemin quickly admits it). The only way to escape from this impasse is

to cast doubt on what the peptide does. Leading figures in endocrinology—

including Guillemin—thought that this class of peptide triggered the

growth hormone; obviously, it does the opposite. After being in contact

with rat pituitary cell culture for a certain amount of time and after having

gone through the radioimmunoassay with some consistent parameters,

this new thing significantly decreases the rat’s growth hormone. As it is cer-

tain that there have been no mistakes during the experimental procedures,

a paper is now being prepared to convince skeptical readers about the exis-

tence of this new scientific object Guillemin starts to call somatostatin (lit-

erally, “that which blocks the body”).

Scene 7

Dublin, fall of 1843.31 There is nothing to do about it: the superfluous

term (bz—cy)2 within the geometrical expression of the length of a com-

plex line segment cannot be removed without adding a new imaginary

quantity. The rules of algebra—including noncommutativity—are indis-

putable, as are Pythagoras’s theorem and Hamilton’s scriptural opera-

tions (he ran the whole experiment several times). The only way to

escape from this impasse is to cast doubt on the premises of the experi-

ment: What if the extension of the geometrical representation of com-

plex number theory required not three but four dimensions? Indeed,

only the inclusion of a third imaginary quantity k as the product of i

and j can make the superfluous term (bz—cy)2 disappear. It is true that

this new imaginary quantity needs in turn a fourth axis in order to be

geometrically represented, but who cares? After the introduction of k as

either an imaginary quantity (in the algebraic representation) or a fourth

dimensional axis (in the geometrical representation), this new thing can

be squared and multiplied while producing equivalent equations, hence

effectively extending the geometrical representation of complex number

theory. If Hamilton now manages to define the quantities k2, ik, kj, and

i2—almost a formality at this stage—he will be able to completely define

the behavior of this new mathematical object he starts to call quaternion

(literally, “that which is made of four”).

Again, beyond their cryptic aspects, what do these two scenes tell us about

the formation of new objects within scientific laboratories? Can we draw

The MIT Press January 2021

Mathematics as a Science	 223

some similarities between the progressive shaping of somatostatin (scene 6)

and quaternions (scene 7)?

We can first see that in both scenes, inscriptions printed out by instru-

ments begin by expressing singular phenomena. In scene 6, the graphs

printed by the radioimmunoassay indicate confidently that after the pep-

tide is injected in the rat pituitary cell culture over a specific period of time

and after it goes through the radioimmunoassay with specific parameters,

the growth hormone decreases significantly. This is what is inscribed within

the graphs Guillemin can read; the whole experimental process ends up

decreasing the rat’s growth hormone. Trustful graphs become flatter; there-

fore the growth hormone decreases.

Similarly, in scene 7, the inscriptions produced by the hands of Hamil-

ton indicate that after a fourth dimension is added to the triplet in order

to geometrically express the new imaginary quantity k—itself required to

make the superfluous term (bz—cy)2 disappear—both algebraic and geomet-

rical representations of complex number theory become equivalent. Again,

this is the phenomenon described by the inscriptions Hamilton can read

on a sheet of paper; the whole experimental process ends up expressing an

extension of the equivalence between geometrical and algebraic represen

tation of complex number theory. A trustful geometrical equation becomes

equivalent to another algebraic equation; therefore, the geometrical repre

sentation of complex number theory is extended.

However, and this is the crucial point, by virtue of the experimental set-

ting, the origins of these two phenomena—“quantifiable inhibition of the

growth hormone” and “extension of the equivalence between geometry

and complex number theory”—can be attributed to specific things. In scene

6, the only element whose actions were undefined at the beginning of the

experimental process was the peptide. The actions of rat pituitary cell cul-

tures, radioimmunoassay, Brazeau, and the technicians were all predictable;

the unpredictable phenomenon—the graphs becoming flatter—must thus

result from the action of this peptide-thing that “blocks the body.” Similarly,

in scene 7, the only element whose actions were undefined at this stage of

the experimental setting was the third imaginary quantity k geometrically

expressed by a fourth dimensional axis. The actions of noncommutative

algebra, Pythagoras’s theorem, and Hamilton’s pencil and paper operations

were all predictable; the unpredictable, yet anticipated, phenomenon—

geometrical and algebraic equations becoming equivalent—can only be

The MIT Press January 2021

224	 Chapter 5

attributed to this four-dimensional thing that “groups together four num-

bers.” In both scenes, new things emerge from the same attribution process;

scriptural traces of a new phenomenon are imputed to the behavior of a

previously undefined entity.

At the end of both scenes, this attribution process that imputes a behav

ior to a previously undefined entity by virtue of an experimental setting

ends up being summarized by a term that encapsulates what the now

defined thing does: “that which blocks the body” becomes somatostatin and

“that which groups four numbers” becomes quaternion. New objects come

into existence, but there has been no miracle; in both cases, the shape of

the new object was progressively defined as scientists made it “grow” from a

list of actions to the name of a thing. In scene 6, somatostatin was first “the

graphs become flatter,” then “under these experimental conditions, there

is a diminution of the growth hormone,” then “our new peptide decreases

rat’s growth hormone,” and finally “somatostatin decreases rat’s growth

hormone.” The same reification process (Latour 1987, 86–100) happened in

scene 7: quaternion was first “two equations become equivalent,” then “there

is an extension of geometrical representation of complex number theory,”

then “four-dimensional representation allows the extension of geometrical

representation of complex number theory,” and finally “quaternions express

geometrically complex number theory in a four-dimensional space.” In

both cases, experiments, instruments, and alignments of inscriptions—in

short, laboratory practices (Latour and Woolgar 1986)—progressively led to

the shaping of scientific objects whose properties and contours could, in

turn, become the topics of papers claiming their existence.32

However, as we saw in the previous section, both somatostatin and qua-

ternions as presented in papers that can be read by skeptical colleagues still

need to overcome many trials to become certified scientific facts capable

of being blackboxed, stylized, polished, and enrolled in further claims and

experimental settings. Although both objects came into existence within

their respective bulky and flat laboratories, they still need to attract the

adherence of a wider community. But when the doubts of skeptical read-

ers are removed, when the veracity of both claims are certified by the

scientific institution, we can in turn confidently say that Guillemin dis-

covered somatostatin and that Hamilton discovered quaternions. Or can we?

We saw indeed that both objects were the results of laboratory practices

that progressively shaped them. Can scientists discover objects they were

The MIT Press January 2021

Mathematics as a Science	 225

previously constructing? Were somatostatin and quaternions already part

of “nature” even though they had to be shaped in well-equipped (yet topo-

logically different) laboratories? This is where the story starts to become

tricky. If STS has long shown that scientific objects need to be manufac-

tured in laboratories, the heavy apparatus of these locations as well as the

practical work needed to make them operative tend to vanish as soon as

written claims about scientific objects become certified facts. Once there

are no more controversies or disagreements about a new scientific object,

nature tends to be invoked as the realm that always already contained this

constructed scientific object. Here, we encounter something we discussed

in chapter 4 where we were dealing with computer programming practices:

when facts are certified and enrolled in further studies, the experiments,

instruments, communities, and practices that allowed their progressive for-

mation are generally put aside (Latour and Woolgar 1986, 105–155). This is

what makes the history and sociology of sciences (including mathematics)

so difficult to conduct; as established facts are purified from the artificial

setting that supported their formation, the temptation is great to start from

these established facts and extrapolate backward (Collins 1975).33

However, if one is not interested in the history or sociology of sciences, if

one “just” wants to speak about objective facts and eventually enroll them in

further claims, the reference to nature appears completely justified. In that

sense, one may of course say—as a kind of convenient shortcut—that Ham-

ilton “discovered” quaternions or that Guillemin “discovered” somatostatin,

but only because these objects ended up being accepted as certified facts, put

in black boxes, translated, polished, and enrolled in later claims. As both ini-

tially manufactured objects presented in written claims successively resisted

trials, the conditions of their production within dedicated laboratories can

be, temporarily, neglected; nature can take over and support their raison

d’être. In this respect, Latour’s funny analogy is quite instructive:

Nature, in scientists’ hands, is a constitutional monarch, much like Queen Eliza-

beth the Second. From the throne she reads with the same tone, majesty and

conviction, a speech written by Conservative or Labour prime ministers depend-

ing on the election outcome. Indeed she adds something to the dispute, but only

after the dispute has ended; as long as the election is going on she does nothing

but wait. (Latour 1987, 98)

The notion of “nature” is thus convenient to speak about noncontrover-

sial scientific facts—why not?—but as soon as one speaks about scientific

The MIT Press January 2021

226	 Chapter 5

controversies or about scientific objects in the making, one needs to consider

nature as the uncertain result of scientific practices.34 This cautious posi-

tion toward nature applies to “conventional” bulky scientific objects such

as somatostatin as well as to “unconventional” flat scientific objects such as

quaternions. Again, no superior reality makes mathematical objects appear

to mathematicians. They too need to be shaped within (flat) laboratories

equipped with instruments that print inscriptions.

Mathematicable

A good thing has been taken care of: it seems indeed that the construc-

tion process of scientific facts is quite similar to the construction process of

mathematical facts. Theorems (cf. scenes 1 and 3), mathematical systems

(cf. scenes 5 and 7), conjectures (cf. scene 2), and even formulas (cf. scene

3) may all be considered genuine scientific claims that try to convince col-

leagues of the existence of objects previously shaped within (flat) laborato-

ries. If the vast majority of these claims do not overcome the trials that can

make them become certified facts, some of them (e.g., Shannon-Hartley’s the-

orem, Hamilton’s theory of quaternions) may become stylized and polished

black boxes that are used as instruments in further experimental settings. It is

this huge—and changing—repository of certified mathematical facts that we

may call “mathematical knowledge.” Moreover, several elements of this certi-

fied body of knowledge may, sometimes, become part of tacit, indisputable,

and necessary knowledge (e.g., the logical laws of deduction).

However, despite the striking similarities between their respective con-

struction processes, certified scientific and mathematical facts—and their

correlated objects—still seem to differ significantly:

Objection of a skeptical reader

All right, let’s assume that both facts—and correlated objects—go through

similar construction processes, as you obviously believe (while only rely-

ing on small, incomplete examples). An important difference subsists:

mathematical objects never stop being used for the constitution of non-

mathematical objects! We could even see it in the laboratory of endo-

crinology you used to illustrate your point. The graphs printed by the

radioimmunoassay, which quantify how much the growth hormone is

The MIT Press January 2021

Mathematics as a Science	 227

decreased by the peptide, are importations of solidified mathematical

facts (in this case, basic analytical geometry). The same is certainly true

of the inner mechanisms of the radioimmunoassay; complex mathemat-

ical theories must have been used to develop this costly instrument. Sim-

ilar processes happen all the time in demography, climatology, political

science, biology, and so on. Mathematical objects such as logarithms,

Gaussian functions, or probabilities infiltrate all domains of “hard” sci-

ence, helping scientists to shape new objects and facts. Yet the inverse

is not true: how could peptides or radioimmunoassay help mathemati-

cians shape new objects? Mathematicians have to do things by them-

selves, without the help of the other sciences. This is why mathematics

is the queen of all sciences: without the work of mathematicians in their

“flat laboratories”—we may keep that—there would simply be no exact

sciences. Mathematical objects are so powerful; they must be of some

superior nature. How could it be otherwise?

There are two glitches in this classical objection. First, it is not tenable to

say that the practice of mathematics is self-sufficient, for many disciplines

intervene in the construction process of mathematical objects and facts.

Netz (1998, 2004) showed, for example, how archiving and standardization

were central to overcome the stagnation of Greek geometry.35 Thanks to the

assembling of well-arrayed corpora of papyruses and parchments—especially

in Byzantium—late antiquity commentators such as Eutocius became able to

compare, annotate, and complete the entangled multiplicities of Greek geo-

metrical writings. Progressively, these systematic standardization efforts made

early antiquity’s geometrical propositions commensurable; unlike Greek

geometers,36 medieval mathematicians—especially in Bagdad’s House of Wis-

dom (Netz 2004, 131–186)—could see what Greek geometry was. Equipped

with “intellectual technologies” (Goody 1977)—here, collections of standard-

ized Greek geometrical treatises—mathematicians such as al-Khwarizmi and

Khayyam could systematize and classify the geometrical problems solved

by the Greeks. These systematic comparisons progressively led, according to

Netz, to the formation of the algebraic language: “Al-Khwarizmi’s algebra was,

ultimately, a fairly unambitious ambition, translated into major transforma-

tions. Without himself doing anything beyond classifying the results of the

past, Al-Khwarizmi, effectively, created the equation” (Netz 2004, 143).

The MIT Press January 2021

228	 Chapter 5

Since archiving and standardization were, and are,37 central to the for-

mation of mathematical objects, do we have to say that these two respect-

able disciplines are the queens of the queen of all sciences? To me, a more

reasonable position would be to accept that hierarchal classification of

disciplines is misleading. When something allows something else to come

into existence, it may not be a matter of vertical hierarchy but of horizontal

arrangement.

This leads us to the second objection regarding the usability of mathe-

matical objects for the assembling of nonmathematical objects. It is true that

the combinational capabilities of mathematical facts are surprising. In every

scientific discipline, recent or ancient mathematical discoveries are used to

conduct experiments, organize inscriptions, express new phenomena, and

eventually define new objects. I would go even further than our skepti-

cal reader and expand this extreme combinability of mathematical objects

to everyday life. For example, how many times a day do we use the basic

precepts of arithmetic? Obviously, mathematics is everywhere, from labo-

ratories of high energy physics to cashiers’ desks. This capacity to infiltrate

heterogeneous domains of activity is very impressive. But does it neces-

sarily mean that mathematical objects come from a different nature? Does

their plasticity necessarily manifest a supernatural essence?

Let us consider Guillemin’s laboratory of endocrinology since it is the

example used by our skeptical reader. It is true that the results printed by the

computer of the radioimmunoassay required the application of elementary

mathematical theories in order to indicate a diminution of the growth hor-

mone. Was there some magic? Not if we consider more precisely the process

by which the rat pituitary cell culture was “flattened” to become represent-

able as a graph with numerical values varying through time. What hap-

pened indeed within the radioimmunoassay? Schematically, the very small

radioactive waves emitted by the rat pituitary cell culture were captured

and, after a series of translations, counted by the costly equipment. Radio-

active waves became signals that, in turn, became discrete values varying

through time. This transubstantiation process—or, more succinctly, transla-

tion process—that made a cell culture go from the state of complex liquid

to the state of a writable list of (radioactive) values spread over time is pre-

cisely what allowed the enrollment of the elementary mathematical notion

of “ratio” and the further calculation of the growth hormone’s decreasing.

How did the ancestral theory of ratios as developed by the Pythagoreans

The MIT Press January 2021

Mathematics as a Science	 229

become applicable to the world of endocrinology? The concrete efforts to

form differently (trans-form) the cell culture into quantifiable inscriptions,

thus making it become a geometrical graph, allowed the connection between

ratios and Guillemin’s peptide. It was by flattening the cell culture and

adapting it to the flat ecology of ratios that these mathematical objects

became applicable to the cell culture. Nothing mysterious happened; by

progressively translating a complex entity into a scriptural form, it became

possible to link it with certified mathematical facts.

Another—better—example of such an empirical process that makes non-

mathematical entities become mathematicable is provided by Michal Lynch

(1985) in his book Art and Artifact in Laboratory Science. During the 1970s, an

important topic in neurology was the plasticity of the brain; that is—briefly

stated—its capacity to recover lost functions through the reorganization of

some of its tissues. How this reorganization occurs was a controversial topic

at the time of Lynch’s laboratory study. Two major conjectures were in com-

petition. The first one considered that the reorganization occurred through

the densification of the synapses—the structures that allow interneuro-

nal communication between axons and dendrites—within the damaged

brain territory.38 The second theory, labeled “axon sprouting,” considered

that the reorganization was due to the extension of axons adjacent to the

damaged territory. For many reasons encompassing results of then recent

laboratory experiments as well as promising industrial applications, the

director of the laboratory studied by Lynch believed that axon sprouting

was the main ingredient for the brain’s reorganizational capacity (Lynch

1985, 32–33). But how could he demonstrate it? Many pitfalls got in his

way. First, neurons are very small. Observing their (re)organization required

powerful zooms. Fortunately, the advent of electron microscopy—a tech-

nology recently purchased by the laboratory—allowed him to make ultra-

structural observations. But this led to another issue: at that time, these

observations could only be made on tiny slides whose flat topology was

different from the bulky topology of neurons. Fortunately, a “methodic

series of renderings of laboratory rats” (Lynch 1985, 37) could be orga

nized to properly slice brains and adapt them to ultrastructural visibility.

But this extraction of brain slides led to another issue as a reorganizational

brain process can only happen within a living brain. How could it then be

possible to observe brain plasticity on dead sliced samples? Fortunately,

the availability of many standardized laboratory rats with almost identical

The MIT Press January 2021

230	 Chapter 5

brains allowed the organization of a “chain of sacrifices” (Lynch 1985, 38).

Although it was not possible to observe the reorganization of one living

damaged brain, it progressively became possible to observe the reorgani

zation of “same” damaged brains killed at different time intervals. A regu-

lar series of discrete—and meticulously referenced—dead slices permitted

the reconstitution of the evolution of one living brain trying to palliate its

damages. Yet the scientists followed by Lynch still needed to discern spe-

cific events within the mess of every single slide. They were indeed trying

to account for axon fibers that were expanding their territories to damage

zones. But how could they define territories of axons as well as their poten-

tial expansions? Fortunately—and this greatly contributed to designing

the whole project—one interesting characteristic of the “dorsal hippocam-

pus” helped them to establish points of reference common to all electron

microscopic observable sections. It had indeed been demonstrated—and

accepted—that the structure of the dorsal hippocampus looks like a grid,

the dendrites of its cell bodies regularly intersecting axons indexed to differ

ent brain regions (Ramón y Cajal 1968). Therefore, if the brain researchers

managed to produce electron microscopic observable slices of dorsal hip-

pocampus extracted from similarly damaged rats’ brains (killed at different

time intervals), the “natural” grid structure produced by the intersections

of the dendrites of dorsal hippocampus’s body cells with axons indexed to

different brain regions could constitute an initial empirical base for further

measurements (Lynch 1985, 35–39). In other words, as it was certified that

one specific part of the dorsal hippocampus contained cell bodies whose

dendrites always intersected regularly with axons indexed to two different

brain regions, which I call here α and β, it became possible to damage the β

brain regions of all rats and then check if the axons indexed to α “sprouted”

to infiltrate the territory of the axons previously indexed to β. But again,

a new problem arose: how to go from specific electron microscopic views

on slices to a panorama of many slices distributed over time? At the time

of Lynch’s study, the easiest way to operate this translation was first to

take analogical photographs of electron microscopic dorsal hippocampus

displays. Brain scientists then had to develop these photographs in high

definition and equip them with a coordinate system scaled according to

the ultrastructural levels of observation (between 2,160 and 24,000 times,

depending on the photographs). How did Lynch’s scientists concretely

manage to equip these high-definition photographs? They pinned down

The MIT Press January 2021

Mathematics as a Science	 231

the photographs on a cardboard sheet, hence creating a chronological

montage of the microscopic displays. As Lynch put it, “these successions of

photographs provided the visible configuration of brain ultrastructure that

was addressed in the analytical phase of the study” (Lynch 1985, 38). But

here again, it was not enough to measure an extension of axons indexed to

α. Even though the dendrites of dorsal hippocampus’s cell bodies regularly

intersected axons indexed to α and β, it remained necessary to affix a refer-

ential common to all photographs. How did the brain scientists do this? It

is difficult here not to quote Lynch’s account:

As each montage was constructed, it was analytically addressed in the follow-

ing manner: a clear plastic sheet was laid over the surface of the photographs,

and a linear scale was drawn over the surface of the sheet running in a vertical

direction which paralleled the edge of the columnar montage of photographs.  …

A scale of “microns” (computed with reference to the magnificational power of

the photographs) was plotted for the drawn-line, where the “zero” point was set

at a horizontal line that approximated the alignment of the granule cell body

layer.  … Measurement along this scale was used to estimate linear distance along the

“vertical” alignment of granule cell dendrites as they arose from the cell bodies and

coursed “upward.” (Lynch 1985, 38; italics added)

Flat linear distances are a priori far removed from neurons and the poten-

tial sprouting of their axons. Yet, once enlarged photographs of tiny little

slices of standardized rats’ dorsal hippocampus are mounted on cardboard

and equipped with a linear scale drawn on clear plastic sheets whose “zero”

point corresponds to the cell body of each slice, this venerable mathe-

matical theory and its correlated objects become very, very close (Latour

1987, 244). The experimental setting of the laboratory and all of its instru-

ments producing “alignable” inscriptions—standardized rats; tiny, care-

fully washed (and stained) slices of rats’ dorsal hippocampus; montages of

enlarged photographs; linear scales drawn on clear plastic sheets—end up

conferring to rats’ dorsal hippocampus the same form as graphs on which

linear distances can be estimated. At the end of this measurement process,

ratios of intact/dead terminals—junctions between axons and dendrites—

plotted in terms of days post the lesion could even be computed by the

scientists, thus demonstrating statistically the phenomenon of axon sprout-

ing: “Measurement of this expansion showed a consistent reoccupancy of

the lower 25 per cent of the region of the granule cell dendrites formerly

occupied by the [damaged] layer of axons” (Lynch 1985, 35).

The MIT Press January 2021

232	 Chapter 5

Again, as Lynch demonstrated, no magic intervened; laboratory prac-

tices made the relationships between axons and dendrites become mathe-

maticable. Standardized rats became dorsal hippocampus, tiny slices became

enlarged photographs, and a montage of cardboard became one regular

geometrical space whose occupancy evolved through time. If some pol-

ished mathematical facts—computation of surfaces progressively occupied

by intact terminals—did help demonstrate the existence of a nonmathe-

matical phenomenon (axon sprouting), this event necessitated a succession

of translations in order to connect the wet and bulky ecology of the brain

with the dry and flat ecology of mathematics.

Formulating: A Definition

Mathematics does not apply to the world. A cascade of translations is required

to connect nonmathematical entities with certified mathematical facts. But

at this point of our operationalization exercise, one question remains: if

the rats’ dorsal hippocampus of the brain research laboratory we have just

considered and the rat pituitary cell culture of Guillemin’s laboratory both

end up being trans-formed in order to fit with the networks sustaining

solidified mathematical objects (themselves formerly described by claims

that progressively became certified facts and even, sometimes, single sen-

tence statements part of tacit undisputable knowledge), do they not lose

many properties on the road? After all, from a rich and complex region of

the brain, the dorsal hippocampus becomes a tinkered montage of gridded

photographs; from a rich and complex soup of cells, the rat pituitary cell

culture becomes a simple graph. To make both entities mathematicable,

they must endure important reductions. But is it worth it? What justifies

such flattening and drying?

In these specific situations, the gains of these reductions are important

because the properties of the mathematical objects as formerly defined

by mathematicians within their flat laboratories are progressively “lent”

to the pituitary cell culture and the dorsal hippocampus. First, both enti-

ties become easier to handle. After the translation process from a cell soup

to a graph, Guillemin does not need the cell soup anymore. He certainly

conserves it for potential verifications, but whenever he needs to see or

show the rat pituitary cell culture, he can now use the graph printed by the

radioimmunoassay that expresses only the tiny important part of the soup’s

The MIT Press January 2021

Mathematics as a Science	 233

properties. The same is true of the brain research laboratory studied by

Lynch: instead of handling tiny slices of hippocampus, brain scientists can

now consider gridded photographs. One direct consequence of this ergo-

nomic gain is that the reduced entities become also more sharable. Although

it is impossible to e-mail—or, in these cases, fax—wet and bulky dorsal hip-

pocampus, after their translation into a succession of photographs, trustful

brain scientist colleagues based on the other side of the world are also able to

scrutinize them. Transforming the hippocampus into gridded pieces of paper

allows it to invest extended—yet expansive and fragile—communication

networks. Such a reduced and flattened hippocampus therefore also becomes

more comparable; if the brain scientists based on the other side of the world

also manage to operate similar reductions on the dorsal hippocampus, they

may be able to compare both successions of gridded photographs. The same

is also true of Guillemin’s graphs: instead of comparing cell soups, endocri-

nologists can compare graphs, a far easier endeavor.

Another gain of reducing entities and making them fit with the flat net-

work of certified mathematical knowledge is that reduced entities become

much more malleable; new takes appear that, in turn, suggest new instru-

ments, tests, and inscriptions. For example, when active junctions between

axons and dendrites become points within a uniform geometrical space, the

instruments already defined by mathematicians for this geometrical space

can be used to further probe the still undefined phenomenon of axon sprout-

ing, thus producing new inscriptions that will precisely help to define it.

Within this geometrical space, new tests can be made, such as measuring sur-

faces, counting terminals, and calculating ratios of occupancy. These tests and

their correlated instruments will, in turn, produce readable inscriptions—

here, lists of numbers—that will help further characterize the phenomenon

under scrutiny. The same is true of Guillemin’s rat pituitary cell culture: once

complex biochemical reactions become discrete values varying through

time, all the instruments that become available through this graphic form

can be used to further probe the cell soup. What is the slope of the graph?

What is the speed of the growth hormone’s decreasing? Again, a flat reduced

form enables the use of new instruments and the production of new readable

inscriptions that help with the characterization of a new phenomenon.

This leads us to one last gain of these crucial reduction processes, perhaps

the consequence of all the other gains:39 when an entity is made compatible

with mathematical facts, it also becomes enrollable within the written claim

The MIT Press January 2021

234	 Chapter 5

that will try to attest to its reified existence. This element is crucial if we

want to understand the full additional strength these reduction processes

may give to undefined entities. How indeed to include axons within a text

claiming their ability to sprout? How to include Guillemin’s new peptide

within a paper attesting to its decreasing effect on the growth hormone?

Reducing them until they reach the same form as certified “flat” mathe-

matical facts allows them to become the referents of the prose that presents

them to their respective scientific communities. In addition to making both

axons and peptide easier to handle, more shareable, more comparable, and

more malleable, reducing them to make them compatible with the flat ecol

ogy of mathematical facts allows them to be included inside the texts that

talk about them. The reified object “axon sprouting,” more than just being

described in a paper, is also present within the paper in the flat and dry

form that precisely allowed its mathematization (in this case, according to

Lynch [1985, 40–49], as a succession of gridded photographs whose points

move “upward”). Similarly, the reified object “somatostatin,” more than

just being described in a paper, is also within the paper in the form of a

graph summarizing its behavior (Brazeau et al. 1973). The attentive reader

may have noticed that we have now come full circle from the beginning of

this operationalization exercise where we were talking about written claims

of relative conviction strengths. The end results of laboratories, experi-

ments, instruments, and inscriptions are indeed the formulation of claims

that try to attract the adherence of individuals. In this respect, we should

now be in a position to better understand the fascinating power of math-

ematical objects and facts; they may go through construction processes that

are similar to other scientific facts, but their particular flat and dry ecology

makes them relevant for the formation of nonmathematical objects and

facts. They make undefined entities easier to handle, more shareable, more

comparable, more malleable, and more enrollable within claims they pre-

cisely help to formulate.

It is not mathematical facts and their correlated objects that give, by

themselves, some additional strength to the transformed entities they some-

times encounter. Rather, it is the flat ecology within which mathematical

knowledge deploys itself that, sometimes, provides advantages to the entities

that acquire the same form. This last element allows me to finally define the

activity of formulating more technically; for the remainder of this part III, I

shall call formulating the empirical process of translating an undefined entity

The MIT Press January 2021

Mathematics as a Science	 235

until it acquires the same form as already defined mathematical object. The

encounter between a “made-flat” entity and a mathematical object—that

previously had to be constructed in a laboratory and presented in a claim

whose conviction strength made it a polished fact—will, in turn, help scien-

tists to further characterize the behavior of the entity and present its reified

version in a written claim. Just as any scientific claim (including those for-

mulated by mathematicians), this written claim will still have to overcome

publication, citation, captation, and posterity trials to become, eventually, a

certified fact. A circle has been drawn; we are now back to where we started.

With all these elements in mind, it is high time to return to computer science

in the making and engage with ethnographic materials.

The MIT Press January 2021

The MIT Press January 2021

As in part II when we were dealing with computer programming, the journey

was long and full of zigzags. But we did not have any other choice: in order not

to get lost in our further explorations of the role of mathematics in the forma-

tion of algorithms, we needed to understand where certified mathematical facts

come from; how they solidify; and how, sometimes—very rarely—they become

part of tacit necessary knowledge. Thanks to STS works on mathematics as well

as heterogeneous examples taken from nineteenth-century protograph theory,

contemporary controversies in fuzzy logic, a well-accepted theorem in theoreti-

cal signal processing, and the laboratory practices that led to the shaping/discov-

ery of quaternions, we progressively realized that mathematical objects—and

the certified facts that describe them—need academic papers, trials, labora-

tories, instruments, and inscriptions to come into existence. Moreover, when

nonmathematical disciplines, such as endocrinology or brain research, need

to borrow the heuristic and ergonomic strength of certified mathematical

objects and facts to qualify bulky and wet entities (e.g., a new peptide, axons

of dorsal hippocampus), a cascade of translations is required in order to make

these entities compatible with the flat ecology of certified mathematical facts.

Consequently, we saw that the indubitable power of mathematics should be

understood in the light of the mundane practices that allow nonmathemati-

cal entities to become “mathematicable.” These mundane yet often ignored

practices aiming to connect undefined entities to certified mathematical

knowledge are what I call “formulating.”

But how do formulating practices express themselves within computer

science laboratories? What is their role in the construction of algorithms?

In light of the previous parts of this book, how does formulating articulate

with ground-truthing and programming activities? This is what we are going

to consider in this third case study.

6  A Third Case Study

The MIT Press January 2021

238	 Chapter 6

Presentation of the Empirical Materials

This case study is taken from the saliency-detection project we already

encountered in chapter 2. Just to refresh the memory of the reader, this

saliency-detection project included two PhD students and a postdoc—BJ,

GY, and CL—that I shall keep on referring to as a single entity: “the Group.”

In a nutshell, the Group’s argument that framed the project was that

saliency detection in image processing may become industrially more inter

esting if saliency-detection algorithms could detect, segment, and evaluate

the varying importance of salient objects and human faces within complex

digital photographs. This new problematization of the saliency problem

called for the construction of a new ground-truth database gathering unla-

beled complex digital images and their manually labeled counterparts, the

“targets.” The new ground truth was central to the formation of the Group’s

algorithm as this database materially established the terms of the problem

to be solved computationally. To effectively shape its algorithm, the Group

divided its new ground-truth database into two sets: a training set and an

evaluation set. The training set was used to study the relationships between

input-data and their targets. Once these relationships were defined and

expressed in a computational model, the Group translated this model into

numbered lists of machine-readable instructions, thus assembling a genu-

ine computer program. The performances of this program could then be

evaluated on the evaluation set of the ground truth by means of standard

statistical measures. The new ground-truth database, the principles of the

computational model, and the processing performances of the correlated

computer program were later presented in an academic paper that was

rejected by the committee of an important conference in image processing.

Yet one year later, a revised version of the article won the “Best Short Paper

Award” at a smaller conference.

In the following sections, I will mainly focus on the training set and

the practices that led to the formulation of the relationships between input-

images and their targets that was then translated into lines of code. As the

targets of the Group’s new ground truth were quite complex, I will focus

exclusively on one of the targets’ component: the relative importance values

of the detected and segmented faces (see figure 6.1). My goal is to account

for the formulating practices that led to the characterization of a way to

automatically calculate the relative importance values of detected faces,

thus retrieving one—small—part of the ground truth’s targets. Accounting
The MIT Press January 2021

A Third Case Study	 239

Figure 6.1
Montage assembled from the data of Group’s ground truth. On the left, an “input-

image” of the Group’s new ground-truth database. In the middle, the same image

as labeled by the workers of the crowdsourcing task. The crowdworkers did not all

agree on the salient features of the image. If all of them labeled the whole body of the

woman, then some others also labeled her face, the face in the middle of the image,

and the face on the right-hand side of the image. The gray-scale image on the right

is based on the labeled image in the middle. It was post-processed within the Lab

after the crowdsourcing experiment. Each gray-scale zone corresponds to one target

of the unlabeled image on the left. These zones are what the computer program,

as defined by the computational model, should retrieve in the best possible way.

The relative saliency values of the targets—expressed by different gray-scale values—

were defined as the ratios of the number of rectangles that surround them over the

number of workers who performed the labeling task on the image. In this case, four-

teen workers performed the labeling task. Fourteen rectangles surrounded the whole

woman, which makes the shape of her body have the maximum value 1. But thirteen

rectangles also specifically surrounded the face of the woman, making it have the

value 0.93. Twelve rectangles surrounded the face in the middle (value 0.85), and

ten rectangles surrounded the face on the right (value 0.71). The background of the

gray-scale image—everything that is not labeled—has the value zero. All these values

and zones have been defined with the help of the labels drawn by the workers. At this

point, the goal of the Group’s project was to find a way to automatically transform

the image on the left into the image on the right without the help of the labels. In

this case study, we will only examine how the Group found a way to automatically

retrieve the relative saliency values of faces. We will not deal with nonface elements

nor with any sort of segmentation. Following the Group, the question we will have

to answer is thus the following: How do we retrieve face importance values (e.g.,

0.93, 0.85, 0.71) from input-images such as the one on the left?

for these practices will allow me to link this part III with part I (ground-

truthing) and part II (programming). This case study will also serve as step-

ping stone to touch on the now widely discussed topics of machine learning

and artificial intelligence.

To better understand the practices that lead to the definition of a computa-

tional model for face importance, we will have to closely examine the Group’s

training set and the progressive reorganization of its data. Yet, as a Matlab

The MIT Press January 2021

240	 Chapter 6

Figure 6.2
Screenshot of the Group’s training set used for the modeling of face importance val-

ues as it appeared in the Matlab software environment. On the right, the Workspace

of Matlab IDE indicates all the variables used to create the database. In the center of

the screenshot, a spreadsheet that summarizes the organization of the database. The

first column of the spreadsheet gathers the IDs of the input-images of the training

set. The second column indicates the number of crowdworkers who performed the

labeling task on the input-image of the same row. The third column gathers the coor-

dinates of the face-detection rectangles as provided by BJ’s algorithm when run on

the input-image of the same row (more on this below, in the main text). Each group

of four coordinates refers to (a) the point on the x axis of the input-image where the

rectangle starts; (b) the point on the y axis where the rectangle starts; (c) the point

on the x axis where the rectangle ends; and (d) the point on the y axis where the

rectangle ends. The fourth column indicates the number of salient feature within

the input-image according to the crowdworkers. This value can be different from the

number of groups of four coordinates in column 3. The fifth column refers to the

importance values of the faces as the Group computed them based on the labels of

the crowdworkers. On the left of the spreadsheet, the window Current Folder indi-

cates the folder currently accessed by Matlab IDE. On the far left, the Editor shows a

small part of the Matlab script that was required to parse the data of the crowdsourc-

ing task and organize it as a Matlab database. The computer programming practices

that were needed for the completion of this Matlab script were similar to those I

described in chapter 4.

The MIT Press January 2021

A Third Case Study	 241

training set is quite confusing (see figure 6.2), I will not be able to base my

analysis on “real” screenshots. Just like in chapter 4 when I was accounting

for programming practices, I will have to simplify the Group’s training set

and retain only the elements that are relevant for the present analysis. The

simplified version of the Group’s training set will thus be presented as in

table 6.1. As we are going to follow a succession of translations, the first trans-

lation of the Group’s training set will be counted as one, the second transla-

tion as two, and so on. The initial form of the training set will be counted as

translation 0.

This case study is organized as follows. I will first start by illustrating

how the anticipation of formulating practices may sometimes impact on

the design of ground truths. It seems indeed that translating undefined

Table 6.1
Translation 0: Simplified Matlab IDE as it will be presented for the remainder of

the analysis

Input-images ID
Coordinates of labeled faces
(BJ’s model)

Face importance
values of labeled faces

image1.jpg [52; 131; 211; 295] [479; 99;
565; 166] [763; 114; 826; 168]

[0.928] [0.857]
[0.714]

image2.jpg [102; 181; 276; 306] [501;
224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379] [367;
142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]

Note: The term “Translation 0” indicates that it is the “initial” state of the train-

ing set. This “Translation 0” is of course relative to the sequence we will follow:

many other translations were necessary to give this dataset its “initial” form. The

first column refers to the input-images’ IDs. For this case study, we will only need

to consider the first three and the very last input-images. For the sake of clarity,

I simplified their IDs. All the rows between image3 and image152 are summarized by

the ellipsis “…”. The second column indicates the coordinates of the labeled faces in

the input-images. These coordinates were provided by BJ’s face-detection algorithm

(more on this in the main text). The last column gathers the importance values of

these faces as provided by the crowdworkers. These are the only data we need in

order to follow the group as it tried to define the relationship between input-images

and the varying importance values of their faces.

The MIT Press January 2021

242	 Chapter 6

data-target relationships to make them fit with certified mathematical

knowledge requires, sometimes, preparatory efforts. In the subsequent sec-

tion, I will account for the formulating practices that led to the charac-

terization of a computational model that could satisfactorily retrieve face

importance values from input-images. As we shall see, many parallels can

be drawn between what the Group did to its data-target relationships and

what other scientists do to the undefined entities they try to characterize.

In that sense, apart from the fact that they often rely on ground-truth data-

bases, the formulating practices that sometimes take place within computer

science laboratories may not be very different from formulating practices that

take place within laboratories of biology, anthropology, or physics. In the

next section of the chapter, I will link formulating practices with program-

ming practices as defined in chapter 4. As we shall see, formulating data-target

relationships can make appear polished mathematical facts that operate as

scenarios for further programming episodes. Finally, I will consider machine-

learning techniques as audacious attempts at automating formulating prac-

tices at the cost of more ground-truthing and programming efforts. This last

element will make me tentatively deal with what is nowadays called (often

indiscriminately) “artificial intelligence.”

But first things first; for the moment, let us go back to November 2013

at the Lab’s cafeteria.

Ground-Truthing—Formulating

November 2013, at the Lab’s cafeteria: I meet the Group for the very first

time. As I know almost nothing about image processing, ground truths, and

saliency detection, this first Group meeting is for me difficult to follow. But

during the presentation of the project, the Group soon shares with me one

important assumption:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “Experiments have shown that saliency of faces varies according

to their size and number. Basically, one large face is considered more

important than many small faces.”

GY:  “And when there are many faces, each face ‘loses’ some saliency, so

to speak.”

FJ:  “But when there are many faces, they are also smaller, no?”

The MIT Press January 2021

A Third Case Study	 243

GY:  “Well, not necessary. You can have one large face on the foreground

and many faces in the background.”

FJ:  “I see. And the other algorithms don’t do that?”

SL:  “No, they don’t pay attention to faces. At least in saliency. And that’s

precisely the point of including faces to saliency.”

As I will find out a few days later, the experiments CL mentions at the

beginning of the above transcription come from papers in gaze predic-

tion (Cerf, Frady, and Koch 2009), cognitive psychology (Little, Jones, and

DeBruine 2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski

2008) published in peer-reviewed journals. These papers claim that the rela-

tive size and number of faces within a given scene tend to affect their attrac-

tion strength. Roughly stated, in a given scene, one large face will generally

attract more attention than one small face that itself will attract more atten-

tion than many small faces but less attention than, for example, two larger

faces. That the importance of faces is somehow related to their size and

number within a given image is an important assumption for the Group as

it further contributes to defining the selection criteria of the images of the

new ground truth:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “So if it’s OK for you, you can start downloading images. Mean-

while, we’ll keep working on the code [of the experiment].”

FJ:  “Sure.”

CL:  “But again, it has to be complex images. And most of them must

also contain faces.”

BJ:  “And faces of different sizes and number.”

FJ:  “You mean, images with many faces as well?”

BJ:  “Yes because it impacts on their importance. Otherwise everybody

will agree and we won’t have continuous values.”

How could crowdworkers disagree if the dataset only includes simple images

with one centered face or object? As one goal of the Group’s project is to

refine saliency and make it become more flexible, the images the workers

will be asked to label should also give interpretative opportunities. In that

sense, the recent findings in gaze prediction and neurology are decisive:

gathering images with more or less faces of different sizes may guarantee

some healthy disagreement among workers.

The MIT Press January 2021

244	 Chapter 6

Still dazed by all these new stories about ground truths and models, I

soon started downloading images on the Lab’s server. At the second Group

meeting, on November 14, 2013, I showed the Group sample images just to

be sure I understood the instructions correctly. As the feedback was positive

I continued to download photos. On November 16, 2013, nine hundred

carefully selected complex images were available on the Lab’s server. But

the day after, I received an email from BJ:

Friday, November 17, 2013. Email from BJ to FJ, header “About the

distribution of faces”

Hey FJ,

I’ve quickly processed the faces in the images you selected and binned

the x axis. Here is the distribution of our database over number of faces

and face size so far.

[see figure 6.3]

We’ll try to model things later so we need to equalize a little with more

images with two or more large faces. So if you can keep on digging for

such images (say two hundred), that’d be great.

Best,

BJ

Many questions immediately arose. First, how did BJ manage to count the

number of faces and calculate their respective sizes for every image I put on

the server? It turned out that BJ had previously worked on a face-detection

algorithm that does precisely this: detecting, counting, and measuring the

size of faces within images.1 Capitalizing on BJ’s previous work on face

detection was even a reason why this saliency project was launched in the

first place (see chapter 2). But why would the current distribution impact

the model the Group will have to shape after the crowdsourcing task that

was not even submitted? This is precisely the question I asked BJ:

Friday, November 17, 2013. Email from FJ to BJ, header “About the

distribution of faces”

Sure, no problem. But, if I may, why is it so important to equalize at this

stage of the project?

Best,

FJ

The MIT Press January 2021

450

400

350

300

250

200

150

100

50

0
0 1 2–3 4–7 8–14 15–24 25–50 0

450

400

350

300

250

200

150

100

50

0

0–
0.0

1

0.0
1–

0.0
5

0.0
5–

0.1

0.1
–0

.12

0.1
2–

0.1
5

0.1
5–

0.1
8

0.1
8–

0.2

0.2
–0

.25

A

B

N
u

m
b

er
 o

f
im

ag
es

Number of faces

N
u

m
b

er
 o

f
im

ag
es

Size of faces

0.2
5–

0.3

Figure 6.3
Two graphs sent by BJ illustrating the distribution of the database on November 17,

2013.

The MIT Press January 2021

246	 Chapter 6

Saturday, November 18, 2013. Email from BJ to FJ, header “About the

distribution of faces”

Great if you can do it.

It’s just that if face importance really varies with size and number, we’ll

surely need a bigger range of cases to fit the data.

Best,

BJ

At this stage of the chapter, we do not need to understand what “fit the

data” means (we will cover this in the next section). Suffice here to notice

the projection BJ makes toward the Group’s forthcoming analysis of the rela-

tionship between input-images and the importance values of faces, the one

small aspect of the output-targets I decided to cover in this case study. In

November 2013, the Group does not possess any ground-truth database yet:

the web application is not finished; the crowdworkers have not labeled any

images; no coordinates of rectangles have been stored in the Lab’s server; no

multilevel targets have been post-processed. At this stage, there is nothing. Or

is there? We saw indeed that the Group has an assumption based on papers

it considered trustworthy: the perceived importance of faces is somehow cor-

related to their size and number. This assumption suffices to make BJ foresee

a convenient way to connect the output-target relationship of face values

with—hopefully—some certified mathematical claim that will, in turn, help

to qualify it. It is indeed not the first time that BJ and the other members

of the Group have embarked on the construction of a new algorithm. They

have done it before—especially the postdoc CL—and know what to expect.

It is perhaps this habit that pushes them to be on the safe side. If equalizing

face data can facilitate the future work that will consist in automating the

passage from input-images to output-targets that still need to be constructed,

it is indeed important to do it.

At the end of chapter 1, I suggested two complementary analytical per-

spectives on algorithms: a “problem-oriented perspective” that should

inquire into the problematization processes leading to the formation of

ground truths and an “axiomatic perspective” that should inquire into the

numerical procedures extracted from already constituted ground truths. The

distinction between these two perspectives was motivated by the need to

better understand the formation of the ground truths from which algorithms

ultimately derive—hence the “problem-oriented” perspective—while not

The MIT Press January 2021

A Third Case Study	 247

completely reducing algorithms to these ground truths—hence the “axi-

omatic” perspective. But I also stipulated, though quite loosely, that both

perspectives should be intimately articulated as ground-truthing and what I

now call formulating activities may sometimes overlap, specific numerical

features being suggested by ground truths (and vice versa). We see here

concretely how these two processes can overlap; the uncertainty related

to the construction of a ground truth relying on anonymous and scattered

crowdworkers certainly encourages the development of equalizing habits

that can further help connect with certified mathematical facts capable of

specifying a new phenomenon.

Reaching a Gaussian Function

March 2014: the post-processing of the crowdworkers’ rectangular labels is

now over. The Group finally possesses a new ground-truth database gather-

ing input-images and their corresponding multilevel targets (see chapter 2,

figure 2.8). At this stage, one can say that the Group effectively managed

to redefine the terms of the saliency problem, at least at the “laboratory

level” (Fujimura 1987). The task of the not yet fully designed algorithm

is now clear: from the input-images of the ground truth, it will have to

retrieve their corresponding targets in the best possible way. The ground-

truth database is thus the material base that will allow both the shaping

of the algorithm as well as its evaluation in terms of precision and recall

statistical measures.

The next move of the Group is to split the ground truth into two subsets:

a training set and an evaluation set. Only the training set containing two

hundred images and targets is used to design the computational model. The

remaining six hundred images and targets are stored in the Lab’s server and

will only be used to test the accuracy of the model’s program and compare

it with other models’ programs already proposed by concurrent laboratories

(cf. figure 2.9).2 Within the training set, 152 images contain faces. It is thus

this subset of the training set that is used to define a way to automatically

retrieve face importance values from input-images without the help of the

workers’ labels.

Let us have a closer look on this subset of the training set. What does it

look like? For the case that interests us here—the definition of the relation-

ship between input-images and face importance values—the training set

The MIT Press January 2021

248	 Chapter 6

concretely looks like a spreadsheet of 152 rows and five columns (only the

first three columns are represented in the simplified table 6.2).3

The first column of table 6.2 refers to the IDs of the input-images, the

second column refers to groups of four coordinates—each group providing

information about one face of the input-image (more on this below)—and

the third column refers to the importance values attributed by the crowd-

workers to each labeled face of the input-images. The data of this Matlab

spreadsheet—actually, a genuine database—is crucial as it is the material

base of the still to be defined model that will have to retrieve face impor-

tance values as provided by the labels of the crowdworkers without the help

of these labels. But arranged in such a spreadsheet, these data remain quite

confusing. How indeed to discern the relationship between the faces of

input-images and their correlated face importance values in such an austere

classification? Something needs to be done to better appreciate what this

relationship looks like.

A convenient way to get a better grip on this relationship between faces

of input-images and their importance values—the still-undefined entity

the Group tries, precisely, to define—is to make it seeable all at once. But

how to see faces and their importance values within one legible document?

Importance values are numbers so they can be represented as dots within

a readable drawing—for example, a graph—rather easily. But what about

faces? What are they? Technically, within the training database—thanks to

BJ’s face-detection algorithm—the faces of input-images are groups of four

coordinates linked to one image ID. But how then do we make these groups

Table 6.2
Translation 0 of the Group’s training set

Input-images ID
Coordinates of labeled faces
(BJ’s model)

Face importance values
of labeled faces

image1.jpg [52; 131; 211; 295] [479; 99;
565; 166] [763; 114; 826; 168]

[0.928] [0.857]
[0.714]

image2.jpg [102; 181; 276; 306]
[501; 224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379]
[367; 142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]

The MIT Press January 2021

A Third Case Study	 249

commensurable with face importance values? One necessary operation is

to reduce these groups and translate them into something else, hopefully

comparable to the face importance numerical values. In line with its doc-

umented initial assumption regarding the size and number of faces—an

assumption that participated in the collection of the data in the first place

(cf. above)—the Group decided to summarize every group of coordinates

with only two numerical values: a “number-value” and a “size-value.” The

number-value is provided by BJ’s face-detection algorithm. It refers to the

absolute number of faces within each input-image. This value can some-

times be superior to the number of labeled faces as crowdworkers have not

always labeled as salient all the faces within the input-images. The “size-

value” refers to the size of the faces labeled as salient by the crowdwork-

ers. Again, BJ’s face-detection algorithm helped to produce these values as

it computed the faces’ sizes as the ratio of the area of the face-detection

rectangle over the size of the image. After the Group wrote the appropriate

scripts in the Matlab Editor to compute these values with the help of BJ’s

face-detection algorithm, the spreadsheet of its training set is reorganized

as in table 6.3.

If this first translation successively reduces each labeled face of input-

images to two numerical values—a “number-value” (column 2) and a

“size-value” (column 3)—it remains difficult to compare them with their

importance values deriving from the workers’ labels. Indeed, how would

it be possible to represent such different orders of magnitude on the same

scale? We saw that face importance values can vary between zero and one.

But what about “number-values” and “size-values”? Number-values can be

problematic as they can vary from one to ninety-eight. But the real issue

comes from the size-values that can vary from 0.0003 (smallest labeled face

of the training set) to 0.7500 (the biggest labeled face of the training set):

four orders of magnitude separate the smallest size-value from the high-

est. And six orders of magnitude separate the smallest size-value (0.0003)

from the highest number-value (98). With such differences of scale, it is

extremely difficult to gather all these values in one readable document.

Yet all these numerical values possess an important property: they are

numerical values and can thus be written down, studied, and tested in flat

laboratories by researchers called mathematicians (as we saw in chapter 5).

In fact, a whole subfield of mathematics—number theory—daily dedicates

itself to the study of these flat and dry entities. An important proto number

The MIT Press January 2021

250	 Chapter 6

theorist, John Napier, even shaped/discovered what he called, in 1614,

“logarithm”: the inverse of exponentiation.4 Thanks to this mathematical

fact that is now a “single sentence statement” (Latour 1987, 21–62), it is

nowadays easy to translate values of different orders of magnitude and re-

present them on one same readable drawing. Thanks to the instrument

of logarithm, both number-values and size-values referring to the faces of

input-images can be further translated by the Group into logarithmic values.

Thanks to this basic operation—imbedded in Matlab—the initial problem

of scale vanishes, and a whole set of comparable integers now appears in

the Group’s dataset (see table 6.4). And the undefined entity “relationship

between faces of input images and their importance values” the Group tries

to describe becomes a little bit more characterizable.

But still, at this stage, the training set remains hard to read. Whereas the

Group is mainly interested in the faces of its training set, the database keeps

being organized around the IDs of the input-images. This organization of

the data was important at the beginning of the translation process as it

helped to indicate what BJ’s face-detection algorithm was to look at. But at

this stage, this image-centered organization is cumbersome. It is then time

for the Group, once again, to reorganize its spreadsheet to center it around

its face-related data: log(number-values), log(size-values), and face impor-

tance values. When put together, these “triplets” of values give a unique

“signature” to each of the 266 labeled faces of the training set (see table 6.5).

After this third translation, the training set has become a list of signa-

tures gathering triplets of relatively close values. Though quite common

and mundane, the efforts undertook by the Group from Translation 0

Table 6.3
Translation 1 of the Group’s training set

Input-images ID
number-
values

size-values of labeled
faces

Face importance values
of labeled faces

image1.jpg 3 [0.065] [0.014]
[0.008]

[0.928] [0.857]
[0.714]

image2.jpg 2 [0.042] [0.012] [0.916] [0.818]

image3.jpg 3 [0.030] [0.0054] [0.916] [0.636]

… … … …

image152.jpg 1 [0.053] [0.928]

The MIT Press January 2021

A Third Case Study	 251

start to pay off: every labeled face is now described by a unique combina-

tion of numbers. But still, in this list form, it remains hard for the Group

to discern a relationship among the values of these triplets: how do face

importance values interact with both number-values and size-values? Even

though this list well simplifies the initial spreadsheet, it still has an impor

tant inconvenience: it looks like any other list—from shopping lists to

lists of bond prices. The values within these lists may differ, but the lists

themselves have always roughly the same shape: they remain successions

of lines (Goody 1977, 78–108). How then to grasp the particularity of the

undefined entity the Group tries to characterize? How to define its shape,

its unique behavior?

Table 6.4
Translation 2 of the Group’s training set

Input-images ID
log(number-
values) log(size-values)

Face importance
values

image1.jpg 0.477 [-1.187] [-1.853]
[-2.096]

[0.928] [0.857]
[0.714]

Image2.jpg 0.301 [-1.376] [-1.920] [0.916] [0.818]

Image3.jpg 0.477 [-1.522] [-2.267] [0.916] [0.636]

… … … …

image152.jpg 0 [-1.275] [0.928]

Table 6.5
Translation 3 of the Group’s training set

Face signatures

1 [0.477; -1.187; 0.928]

2 [0.477; -1.853; 0.857]

3 [0.477; -2.096; 0.714]

4 [0.301; -1.376; 0.916]

5 [0.301; -1.920; 0.818]

6 [0.301; -1.522; 0.916]

7 [0.301; -2.267; 0.636]

…

266 [0; -1.275; 0.928]

The MIT Press January 2021

252	 Chapter 6

If the forms of lists of numbers are difficult to differentiate, these lists

have nonetheless a crucial quality: they can—at least since the second half

of the seventeenth century—give form to the values they contain. Indeed,

when coupled with an appropriate coordinate space, the numbers contained

by lists can be transformed into points that draw distinguishable shapes.

As the transformation of lists of values into graphs is nowadays a “single

sentence statement” part of tacit and necessary knowledge, the Group just

needs to write the Matlab instruction “scatter(data(:,1), data(:,2),
data(:,3))” to create the scatterplot of figure 6.4.

Every labeled face of the training set is re-presented in this Matlab scatter-

plot of log(number-values)—x axis—and log(size-values)—y axis—against

importance values—z axis, ψ in the plot. At this point, the undefined entity

the Group tries to characterize starts to get a shape. Its behavior begins to

appear; a genuine phenomenon is being drawn that has specific characteris-

tics. It starts “slowly” with low ψ values before drawing a steep slope. This

slope then stops to form a kind of ridge before abruptly dropping again.

The bell shape of this phenomenon might not talk to everyone. Yet to the

Group’s members, who are used to encountering mathematical objects, it

soon reminds them of a Gaussian function:

Friday April 14, 2014. The terrace of CSF’s cafeteria, discussion with BJ

FJ:  But how did you know that face importance was a Gaussian?5

BJ:  Well, once we got the plot, it was sure that it was a Gaussian.

FJ:  I mean, it could have been something else?

BJ:  Sure, but here, the data drew a Gaussian.

FJ:  But you juggled the data in the first place!

BJ:  Yes, but it’s just to make something appear. You have to do these

things; otherwise you have nothing to model.

Thanks to this fourth translation of the training set, the Group has a strong

intuition: the relationship between faces of input images and their impor-

tance values is surely close to some kind of Gaussian function, a polished

certified mathematical object whose behavior is now decently understood

and documented. But how could the Group be certain that the phenom-

enon its experiment created really behaves like a Gaussian function? After

all, a Gaussian function is something smooth while the scatterplot the Group

asked Matlab to draw is quite discontinuous. From a distance, this heap of

The MIT Press January 2021

A Third Case Study	 253

points may look like a Gaussian function but when one looks closer, its shape

appears rough and uneven.

This is where Matlab, as a huge repository of certified mathemati-

cal knowledge, is again crucial as the simple instruction “fit(x.’, y.’,
‘gauss2’)” allows the Group to verify its intuition by producing other

graphs and captions (see figure 6.5).

Once again, the training set is translated, trans-formed. Its shape is now

smooth and homogeneous; it becomes an actual function. This new transla-

tion of the training set also produces a series of new inscriptions describing

the junction between the previous rough heap of points and its smooth

counterpart. Let us have a look at these inscriptions: What do they refer

to? The last piece of inscription—“R2 = 0.8567”—indicates that more than

85 percent of the variability in the z data points that constitute the phe-

nomenon the Group tries to qualify can be described by this mathemati-

cal function. The inscriptions “μ1 = -1.172” and “μ2 = 0.4308” refer to

the peak of the function. They assert that the xy point [−1.72; 0.4308] cor-

responds to the function’s highest z value. Finally, the inscriptions “σ1 =

0.9701” and “σ2 = 0.7799” indicate the standard deviation of the function

−4
−2

0

0

1

2
0

0.2

0.4

0.6

0.8

1

log(facesize)
log(#face)

im
p

o
rt

an
ce

 ψ

Figure 6.4
Translation 4 of the Group’s training set.

The MIT Press January 2021

254	 Chapter 6

along the x axis and y axis, respectively. Altogether, “μ1,” “μ2,” “σ1,” and

“σ2” form the parameters of the Gaussian function.

In this chapter, I try to account for the formulating practices required

for the shaping of an image-processing algorithm (and potentially many

others). As a consequence, we do not need to understand every subtlety

of these mathematical objects called Gaussian functions. All we need to

understand is, first, that Gaussian functions do not come from some

superior reality: just as any other mathematical object, Gaussian func-

tions had to be shaped within flat laboratories and described in written

claims that had to overcome many trials to become polished certified facts

(see chapter 5). Second, we need to understand that thanks to the par

ameters provided by Matlab—themselves relying on the training set as

transformed into a list of coordinates (see table 6.5)—the Group becomes

able to deduce face importance values as provided by crowdworkers from

log(number-values) and log(size-values) as provided by the input-images

–3 –2
–1

0
0.51

1.5
0

0.2

0.4

0.6

0.8

1

log(facesize)
log(#face)

im
p

o
rt

an
ce

 ψ

Figure 6.5
Translation 5 of the Group’s training set: Gaussian function fitted on the distribution

and normalized between 0 and 1. Function’s information: General model Gauss2:
f(x,y) = exp(-((x-­μ1)^2/2σ1^2)-((y-­μ2)^2/ 2σ2^2)). Coefficients: μ1 =

-1.172 ; μ2 = 0.4308 ; σ1 = 0.9701 ; σ2 = 0.7799 ; R2 = 0.8567.

The MIT Press January 2021

A Third Case Study	 255

after being processed by BJ’s algorithm. In other words, the Group can

now decently retrieve face importance values without any labels. This is

the consequence of a certified mathematical fact about Gaussian func-

tions. As Matlab reminds the Group after the fifth translation, any z value

of this Gaussian function at any point (x,y) can be expressed by the follow-

ing formula:

z = f(x,y) = exp(-((x-μ1)^2/2σ1^2)-­ ((y-μ2)^2/2σ2^2)).

When reorganized more elegantly, this formula provided by the certified

mathematical knowledge embedded in Matlab gives us:

z = f xi ,yi() = exp(−
xi − µ1()
2σ1

2

2

−
yi − µ2()
2σ 2

2

2

).

A connection has been made with the flat ecology of mathematics; thanks

to this fifth translation and its correlated inscriptions, the Group now pos-

sesses all the elements it needs to compute face importance values. With the

fourth translation, the undefined entity “relationship between face impor-

tance values and faces” became an observable phenomenon. With this fifth

translation and the connection it creates with a certified mathematical

fact, the behavior of this phenomenon is describable: for any duets (x, y)

with coordinates (log[number-value],log[size-value]), there is a z coordinate

described by the following equation:

z = f xi ,yi() = exp(−
xi − (−1.172)()
2 0.9701()2

2

−
yi − 0.4308()
2 0.7799()2

2

).

But how does the parametrized equation of the formula that describes the

Gaussian function work concretely? How does this equation effectively

output face importance values close to those provided by the crowdwork-

ers? Let us consider the first input-image of the training set—the one we

used to introduce the topic of the case study in figure 6.1. We saw that,

thanks to BJ’s face-detection algorithms, the faces of this input-image can

be described as [0.065; 3], [0.014; 3], and [0.008; 3], the first values of

these duets representing the size-value of the face, the second value repre-

senting its number-value. Now, by plugging the log values of these three

duets (x1, y1), (x2, y2), and (x3, y3) into the formula provided by the certified

mathematical knowledge embedded in Matlab (itself deriving from the

Group’s translations of the training set), one obtains the three following

equations:

The MIT Press January 2021

256	 Chapter 6

f x1,y1() = exp(− (log 0.065()− (−1.172))
2(0.9701)2

2

−
(log 3()− 0.4308)

2 0.7799()2
2

) = 0.998

f x2 ,y2() = exp(− (log(0.014)− (−1.172))
2(0.9701)2

2

−
(log(3)− 0.4308)

2(0.7799)2

2

) = 0.779

f x3,y3() = exp(− (log(0.008)− (−1.172))
2(0.9701)2

2

−
(log(3)− 0.4308)

2 0.7799()2
2

) = 0.633

The values [0.998], [0.779], and [0.633] are the three face-importance val-

ues of the three faces of input-image1 as computed by the Group’s com-

putational model. We can see that these values are close but not similar to

the “original” values [0.928], [0.857], and [0.714] as computed from the

crowdworkers coordinates. This is the cost but also the benefit of the whole

formulation as the Group now possesses a face importance model that can

retrieve different, yet close, face importance values without the help of the

crowdworkers’ labels.

But the translation process is not over yet. After the statistical evalua-

tion of the whole algorithm on the evaluation set (see chapter 2), one last

operation needs to be done; the Group still has to present its reified object

within the claim that attests for its existence. This is another advantage of

formulating practices—more than connecting undefined entities with cer-

tified mathematical facts that help to characterize them, it also allows the

inclusion of the characterized object inside the text that presents it to the

peers. At this point, I must then quote the passage of the Group’s initially

rejected manuscript where the computational model for face importance is

presented:

We use the following function, denoted as G in Eqn. 2, as a model for varying

importance of faces in our saliency algorithm.

ψ i
f ≈G si

f ,ni() = exp(−
(log si

f()− µ1)

2σ 1
2

2

−
(log ni()− µ2)

2σ 2
2

2

)	 (2)

Here, ψ i
f is the importance values of f  th face in ith image. si

f and ni are the

size of the f  th face in ith image and the number of faces in ith image, respectively.

Note that si
f is the relative size compared to the size of the image, therefore it is

between 0 and 1. The parameters of the Gaussian fit are μ1 = −1.172, μ2 = 0.4308,

σ1 = 0.9701. σ2 = 0.7799, and the base of the logarithm is equal to 10.

Our efforts paid off: we finally managed to account for these sentences

that mix English words with combinations of Greek and Latin letters

divided by equal signs that are widely used by computer scientists when

The MIT Press January 2021

A Third Case Study	 257

they communicate about their algorithms in academic journals. We first

had to better understand how mathematical facts and objects come into

existence. We then had to accept that the power of these facts and objects

does not come from a superior reality but from the mundane formulat-

ing practices that progressively translate and reduce undefined nonmath-

ematical entities—peptides, axons, relationships between values of Matlab

databases—in order to, eventually, connect them to the flat ecology of math-

ematical knowledge. We also had to better appreciate the extra strength

these connections provide to undefined entities: formulating practices—

and the reductions that go with them—make undefined entities easier to

handle, more sharable, comparable, malleable, and enrollable within texts

claiming for their existence and behavior. With all these elements of chap-

ter 5 in mind, we further had to account for how formulating practices

are expressed in the construction of new image-processing algorithms (and

potentially many others). We first saw that the anticipation of these prac-

tices may sometimes impact on the shaping of ground truths. We then saw

how these practices—and all the translations they call for—progressively

make an undefined entity become a mathematical object capable of being

described by a formula. These connections with the flat ecology of mathe

matics—in fact, genuine transformations into well-documented mathemati-

cal objects—participate in the assemblage of computational models that

further appear in academic publications. To paraphrase Latour (1999a, 55),

we saw in this section that mathematics has never crossed the great abyss

between ideas and things. Yet it often crosses the tiny gap between the

already geometrical graph of Translation 4 (figure 6.4) and the solid formula

as provided by Translation 5 (figure 6.5). Once this tiny gap is crossed—and

this requires many preparatory small gaps—mathematics provides full addi-

tional strength to the object under scrutiny.

Yet despite this small victory, something remains mysterious. Indeed, a

mathematical formula such as the one summarizing the (very small part of)

the Group’s model within its academic paper is surely powerful as it allows

us to retrieve face importance values without the data provided by the

crowdworkers. In that sense, this formula decently describes the behavior

of the phenomenon “relationship between faces of input images and their

importance values” that was still an undefined entity at the beginning of

the formulating process. But in this “formula state,” such a computational

model cannot make any computer compute anything. In this written form,

The MIT Press January 2021

258	 Chapter 6

within the Group’s manuscript, the model might be understandable to

human beings, but it is not able to trigger electric pulses capable of making

computers compute. Yet it somehow needs to; as the performances of the

Group’s model will also be evaluated on the evaluation set of the ground

truth, the model must also take the shape of an actual program. What is

then the relationship between the mathematical inscriptions that describe

computational models and the actual computer programs that effectively

compute data by means of electric pulses?

Formulating—Programming

The point I want to make in this section is quite simple: if mathemati-

cal inscriptions that describe computational models in academic papers

cannot, of course, trigger electrical pulses capable of making computers

compute actual data, they nonetheless work, sometimes, as transposable sce-

narios for computer programming episodes.

In chapter 4, we saw that computer programming practices imply the

alignment of inscriptions to produce knowledge about a remote entity (e.g.,

a compiler, an interpreter, a microprocessor) that is negatively affected in

its trajectory. We also saw that programmers constantly need to enroll new

actants to get around impasses. More importantly for the case that interests

us here, we also found that both aligning and contouring actions needed to

be “triggered” by special narratives that engage those who enunciate them.

Building on Lucy Suchman and Bruno Latour, I decided to call these perfor-

mative narratives “scenarios.”

Scenarios are crucial as they provide the boundaries of programming

episodes while enabling them to unfold. But their irritating drawback is

that while they constitute indispensable resources that set up desirable

programming horizons, they often tell little about the actions required to

reach these horizons. We experienced this when we were following DF in

his small computer programming venture. Even though his scenario stipu-

lated the need for the incrementation of an empty matrix with rectangles

defined by coordinates stored in .txt files, the scenario said almost nothing

about how to do this incrementation. The lines of code had to be progres-

sively assembled as this process was required to align inscriptions and to get

around impasses.

The MIT Press January 2021

A Third Case Study	 259

Yet some scenarios might be more transposable than others. Let us

imagine the following programming scenario: “FJ shall make a computer

compute the square root of 485,692.” Though quite short, this imaginary

example can be considered a genuine scenario as it operates a triple shifting

out into other space (at my desk) and time (later) and toward other actants

(the Matlab Editor, my having completed the script, etc.) while also engag-

ing me, the one who enunciated it. How could I reach the horizon I am

projecting? If I am using Matlab or many other high-level programming

languages, the program would be the single instruction “sqrt(485692).”

The passage from the scenario to its completion would thus seem quite

direct. Let us imagine a trickier scenario: “FJ shall make a computer com-

pute k-means of five clusters over dataset δ.” How could I reach this horizon?

For the case of Matlab and several other high-level programming languages,

the program will, once again, be the single instruction “kmeans(δ,5)”—

another straightforward accomplishment.6 Both imaginary scenarios thus

appear quickly transposable into lines of code; the horizon they establish

can be reached without many tedious alignments of inscriptions and work-

arounds of impasses.

Are both imaginary scenarios simpler that the scenario defined by DF in

chapter 4? It is difficult to say as both square roots of large numbers and

k-means of five clusters are not so trivial operations.7 Rather, it seems that

there is a difference of density: while our imaginary scenarios can be trans-

lated into code almost as they stand, DF’s scenario needs to be completed,

patched, and refreshed. If nothing seems to stand in between the terms

of the statements “square root of 485,692” and “k-means of five clusters,”

many gaps surely separate each term of the statement “empty matrix incre-

mented with coordinates of rectangles.”

The issue is trickier that it seems. One may indeed think that these differ-

ences of density within programming scenarios come from scenarios them-

selves. One may, for example, think that if DF’s scenario is less transposable

than our two examples, it is because it is less precise. But it is actually the

opposite: whereas “square root of 485,692” and “k-means of five clusters”

tell us almost nothing about how to perform such tasks, DF’s scenario takes

the trouble to specify a succession of actions. Yes, there are differences of

density, but no, they are not necessarily related to what is inside scenarios.

So where do these differences come from? I believe these differences of

The MIT Press January 2021

260	 Chapter 6

density might be linked to the diffusion of the operations necessary to real-

ize a scenario. My hypothesis, which still needs to be further verified, is that

the more an operation is common to the community of users and designers

of programming languages, the less it will need to be decomposed, trans-

lated, and completed. The most striking example of such diffusion-related

difference of density within a programming scenario is certainly arithmetic

operations. What can be more common to users and designers of program-

ming languages than adding, subtracting, dividing, and multiplying ele

ments? Electronic computers themselves have been progressively designed

around these widely distributed operations (Lévy 1995). The terms “add,”

“subtract,” “multiply,” or “divide”—when part of a scenario—will thus be

immediately translated into their well-known mathematical symbols “+,”

“/,” “–,” and “*.” The same is true of many other widely diffused calculat-

ing operations. “Sine,” “cosine,” “greatest common divisor,” “logarithms,”

and even sometimes “k-means clustering” are all operations that can be

straightly transposed from scenarios to programs.

Though quite wild, these propositions will allow us to better understand

how the Group’s computational model can be almost directly transposed

into an actual computer program. Let us first consider once again the for-

mula describing the model shaped by the Group. We saw that the phenom-

enon observed by the Group was a particular Gaussian function that could

be described as

zi = f xi ,yi() = exp(−
log(xi)− µ1()

2σ 1
2

2

−
log(yi)− µ2()

2σ 2
2

2

),

where xi is the size-value of the ith face, yi is the number-value of the ith face,

and μ1, μ2, σ1, σ2 are the parameters of the Gaussian fit. When all the par

ameters of this formula are replaced by the numerical values provided by

Matlab, the model becomes the following equation:

zi = f xi ,yi() = exp(−
log(xi)+1.172()
1.88218802

2

−
log(yi)− 0.4308()
1.21648802

2

).

From that point, the Group just needs to transpose this mathematical sce-

nario almost as it is within Matlab Editor. This translation gives us the fol-

lowing line of code:

z = exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308)
  ^2/1.21648802));

The MIT Press January 2021

A Third Case Study	 261

As we can see, there is an almost one-to-one correspondence among the

mathematical operations as expressed within the equation and the mathe-

matical operations as expressed within the program of this equation: “exp,”

“–,” “log,” and “+” all keep the same shape. Only the squaring and dividing

operations had to be slightly modified.

Yet in this state, the Group’s program of the model will not do anything; it

still needs to become iterative to process the changing values of x1,2,…,266 and

y1,2,…,266. Here again, the scenario as defined by the computational model is

quickly transposable. We saw in the last section that the training set could

be reorganized as needed, as long as the Group manages to write the appro-

priate Matlab scripts to instruct the training set’s reorganization. To opera-

tionalize its computational model, the Group just needs to organize the

faces of its training set according to their size-values and number-values.

Expressed within the Matlab software environment, this reorganization

takes the (simplified) form of table 6.6.

This reorganized Matlab spreadsheet will allow the program to know

what data it should process. With Matlab programming language, the data

of every cell of such spreadsheets can be accessed by inscribing a duet of

values in between curly brackets. For our case, the instruction “cell{1,1}”

will ask INT to consider the value [0.065]; the instruction “cell{1,2}” will

ask INT to consider the value [3]; and so on.8 Thanks to this referential

system, it is possible to ask INT to go through all the cells of the spread-

sheet and iteratively plug their values inside the equation. Moreover, the

Table 6.6
Simplified view on the Group’s reorganization of the training set

1 2

1 [0.065] [3]

2 [0.0143] [3]

3 [0.008] [3]

4 [0.042] [2]

5 [0.012] [2]

6 [0.030] [3]

7 [0.0054] [3]

… … …

266 [0.053] [1]

The MIT Press January 2021

262	 Chapter 6

spreadsheet has a finite length of [266]. This easily accessible information—

it is the number of rows of the spreadsheet—can be used to instruct INT

to start at line 1 of the spreadsheet and stop at its end. When all the size-

values and number-values are processed, they will finally be integrated in

the spreadsheet for their further use in the definition of the remainder of

the Group’s algorithm (remember that we only considered one tiny part

of the Group’s whole algorithm). The small yet crucial script that permits to

operationalize the Group’s computational model for face importance takes

the form of figure 6.6. When run, this small script outputs something close

to table 6.7.

At this point, we can say that the Group managed to assemble a model

that effectively computes data. The deal is now changed: every digital

image can now—potentially—be processed by the Group’s model program

for face importance evaluation. Of course, it only forms one small aspect

of the Group’s saliency-detection project that ended up being rejected by

Table 6.7
Simplified view on the results of the Matlab script as instructed by the Group’s

mathematical model

1 2 3

1 [0.065] [3] [0.998]

2 [0.0143] [3] [0.779]

3 [0.008] [3] [0.633]

4 [0.042] [2] [0.964]

5 [0.012] [2] [0.732]

6 [0.030] [3] [0.935]

7 [0.0054] [3] [0.527]

… … … …

266 [0.053] [1] [0.853]

1. for i = 1:length(cell)
2. x = cell{i,1};
3. y = cell{i,2};
4. z = exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308)^2/1.21648802));
5. cell{i,3} = z;
6. end

Figure 6.6
Operational script for the computation of face importance values.

The MIT Press January 2021

A Third Case Study	 263

the reviewers of the conference (before being awarded the “Best Short Paper

Award” at a smaller conference one year later). But still, some existence

must be granted to this tiny entity we carefully followed. For three tortur-

ous parts divided into six chapters, we have looked for these things we like

to call “algorithms”; now we finally glimpse one. And in such a prototypi-

cal state, this small piece of algorithm is the uncertain product of account-

able courses of action.

The (Varying) Reality of Machine Learning

So far in this case study, we saw that although ground-truthing activities—in

their capacity as producers of training and evaluation sets and enablers of per

formance measures—influence formulating activities, expectations regarding

future formulating requirements may also influence the initial generation of

ground truths. We then saw how formulating courses of action unfold in situ.

As we continued to follow the Group in its algorithm project, we saw that

many practical translations were necessary to make a training set acquire the

same form as a mathematical object. Moreover, we saw how the results of

formulating activities—in this case, a mathematical formula—relate to pro-

gramming activities, the former providing transposable scenarios to the latter.

When we combine these empirical elements with those of part I and part

II, we get a quite unusual action-oriented conception of algorithms (see

figure 6.7). Indeed, it seems that sometimes what we tend to call an algo-

rithm may be the result of three interrelated activities that I call ground-

truthing, programming, and formulating. Of course, these activities may not

be the only ones partaking in the constitution of algorithms (hence the inter-

est in launching other ethnographic inquiries). At least, however, in these

days of controversies, we can now realistically account for some of the con-

stitutive associations of algorithms.

Yet this action-oriented conception of algorithms remains unduly nar-

row. Nowadays, is there such a thing as a solitary algorithm? As we have seen

throughout the chapters of this book, the constitution of one algorithm under-

takes the enrollment of many other algorithms. This was noticeable when we

were dealing with ground-truthing practices; whether the selection of images

on the Flickr website, their uploading onto the Lab’s server, the administration

of the crowdsourcing task, or the subsequent pixel-level segmentation of mul-

tilayered salient elements, these moments were all supported by additional

The MIT Press January 2021

264	 Chapter 6

algorithms, among many other things. The same is true of computer pro-

gramming. Even though this specialized activity currently contributes signifi-

cantly to the constitution of new algorithms, it goes itself through numerous

algorithms, many of which operate close to the computer’s hardware to help

interpreters, compilers, or processors compute digital data in appreciable

ways. Moreover, as we just saw in this chapter, formulating practices are also

irrigated by algorithms, an especially visible example being BJ’s algorithm that

reliably counted the number of faces in an image and calculated their respec-

tive sizes. During the constitution of algorithms, algorithms are everywhere,

actively contributing to the expression of ground-truthing, programming,

and formulating activities. Yet we may reasonably assume that, one way or

another, these other algorithms also had to be constituted in specific times

and places, being themselves—if my proposition is right—the products of, at

least, the same three activities (see figure 6.8).

This conception of algorithms as the joint product of ground-truthing,

programming, and formulating activities—themselves often supported

by other algorithms that may have undergone analogue constituting

??
G-T

F P

Figure 6.7
Schematic of the interpolation of ground-truthing (G-T), programming (P), and for-

mulating (F) activities. The gray area in the middle of the figure is where algorithms

sometimes come into existence. The fourth ellipse tagged “??” stands for other

potential activities my inquiry has not managed to account for.

The MIT Press January 2021

A Third Case Study	 265

processes—complicates the overall picture while making it more intelli-

gible. Indeed, whenever controversies arise over the effect of an algorithm,

disputants may now refer to this basic mapping and collectively consider

questions such as: How was the algorithm’s ground truth produced? Which

formulas operated the transformation of the input-data into output-targets?

What programming efforts did all this necessitate? And, if deeper reflections

are required, disputants may excavate another layer: Which algorithms

contributed to these ground-truthing, programming, and formulating pro

cesses? And how were these second-order algorithms constituted in the first

place? These are the kinds of empowering questions the present book aims

to suggest to fuel constructive disputes about algorithms—a political argu-

ment I will develop further in the next, and concluding, chapter.

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

Figure 6.8
Complementary schematic of constituted algorithms partaking in the constitutive

activities of other algorithms.

The MIT Press January 2021

266	 Chapter 6

Again, however, something is still missing. Although the inquiry may

sharpen the overall picture, it still fails to address a massive issue—an issue

that may even be the most discussed algorithm-related topic at present

among the press and academia: machine learning. Machine learning is an

extremely sensitive topic, sometimes considered in itself (Alpaydin 2010),

other times in relation to closely related, yet evolving, terms such as “big

data” (Bhattacharyya et al. 2018) or “artificial intelligence” (Michalski, Car-

bonell, and Mitchell 2014); it is sometimes presented as industrially well

established (Finlay 2017) and at others, as still in its infancy (Domingos

2015); it is sometimes praised for its performance (Jordan and Mitchell

2015), and other times criticized for the danger it (but what is it?) seems

likely to represent to the collective world (Müller 2015). As soon as it is

articulated, the term “machine learning” triggers warring feelings of famil-

iarity and ignorance, hopes and fears, utopia and dystopia; a strange mad-

ness that seems very incompatible with the down-to-earth vision I am

trying to constitute here. In these difficult conditions, how do we address,

even superficially, iterations of machine learning as expressions of lived

courses of action?

One way to scratch the very surface of machine learning, in the light

of our empirical and theoretical equipment, may be to make the follow-

ing observation: during the formulating process accounted for in the sec-

tion entitled “Reaching a Gaussian Function,” something crucial happened

just after the Group wrote and ran the Matlab instruction “fit (x’, y’,
‘gauss2’).” Before this quick Matlab computation—which took only a few

seconds—face values (x), size-values (y), and importance values (z) were sim-

ply put in the same three-dimensional coordinate space. As we saw, putting

this together required several translations of the training set, but at a cer-

tain point, it was possible to arrange variables x, y, and z together within the

same vector space (figure 6.4). At this point, these values were attached to

different desires (themselves progressively shaped during ground-truthing

processes); x and y values were the Group’s desired inputs, and z values were

its desired outputs. But their respective antecedence and posteriority—there are

first inputs that should then become outputs—were not operationalized;

x, y, and z values coexisted simultaneously in one mathematical world.

But after INT had computed the translated training set by means of the

instruction “fit (x’, y’, ‘gauss2’)” and printed the correlated graph,

formula, and parameters (figure 6.5), number-values and size-values became

The MIT Press January 2021

A Third Case Study	 267

mathematical inputs, and face importance values became mathematical out-

puts. The Gaussian fit, as the Group happened to call it, made x and y values

become operands, just as it made z values become the results of an operation.

From the Group’s perspective, temporality shifted, it was now possible to

start with input values and end with output values. An operation has been

implemented to allow sequential transformations; dimensionality has been

reduced by extracting a before and an after.

This turning point, a shift in temporality, was enabled by the enrollment

of and delegation to another algorithm. Indeed, when the Group wrote

the Matlab instruction “fit,” it asked INT to estimate the parameters of a

function—in this case, a Gaussian one—from a series of coordinate points.

At this precise point for the Group, this was a routine intuitive action that

required only a handful of characters in the Editor of the Matlab IDE. For

INT, however, which effectively computed this estimation of parameters,

this was a not so trivial endeavor. How did INT do it?

If we refer to MathWorks’ official 2017 documentation, the instruction

“fit (… ‘gauss2’)” uses a nonlinear least square computerized method

of calculation to estimate the optimal parameters of a Gaussian function

from coordinate points.9 It can thus be inferred that INT does something

not so dissimilar to, first, defining the error associated with each point and

then defining a function that is the sum of the squares of these errors before

taking the partial derivative of the function’s equation—with respect to the

four parameters—thereby establishing four nonlinear equations that can in

turn be solved by using, for example, the Newton-Gauss method. Though

contested by several researchers in the field of statistical signal processing

(e.g., Hagen and Dereniak 2008; Guo 2011)—thereby making it a genuine

research topic—the nonlinear least square algorithm is currently a standard

way of estimating parameters of Gaussian functions. Further, by writing

this Matlab-imbedded instruction, the Group deployed another computer-

ized method of calculation—one with its own shaping history—to take an

important step toward formulating the relationships between the data and

the targets of its training set.

That the Group used another algorithm to formulate its new algorithm

should not surprise us; ground-truthing, programming, and formulating

activities are full of moments where past algorithms contribute to the con-

stitution of a new algorithm (see figure 6.8). What should beg our atten-

tion, however, is the decisive temporal shift provoked by the nonlinear

The MIT Press January 2021

268	 Chapter 6

least square algorithm subtending the Matlab “fit” instruction during the

formulating process. Before the appearance of the Gaussian fit’s parameters

in the Command Window, the Group had no means to effectively com-

pute the face importance values without the labels of the crowdworkers; its

appearance, however, furnished the Group with such an operative ability.

Can this specific algorithmically based predictive capacity for the constitu-

tion of the Group’s algorithm be our entry point to the topic of machine

learning?

It is tempting to assert that the algorithm invoked by the Group to

help formulate its model found the Gaussian function. In fact, it would

be more appropriate to say that the algorithm found an approximation of

the initial function that already underlined the reorganized training set.

In other words, given the ground-truth function f(x,y) that, presumably,

structured the relationship among size-values, number-values, and face

importance values within the translated training set, the algorithm found

a useful estimate f′(x,y) that further allowed the production of prediction

with an admittedly low probability of errors (hence its usefulness). Accord-

ing to Adrian Mackenzie (2017, 75–102), it is this very specific action that

fundamentally consists of processing—some authors even say “torturing”

(Domingos 2015, 73)—data to generate an approximation of an initially

assumed function that is the main goal of machine learning algorithms,

whether they are simple linear regressions or complex deep convolutional

neural networks. As Mackenzie, building on the authoritative literature on

this now widely discussed topic, astutely summarized it:

Whether they are seen as forms of artificial intelligence or statistical models,

machine learners are directed to build “a good and useful approximation to the

desired output” (Alpaydin 2010, 41) or, put more statistically, “to use the sample

to find the function from the set of admissible functions that minimizes the prob-

ability of errors (Vapnik 1999, 31).” (Mackenzie 2017, 82)

It seems, then, that machine learning algorithms—or “machine learners,” as

Mackenzie calls them—may be regarded as computerized methods of calcu-

lation that aspire to find approximations of functions that presumably orga

nize training and evaluation sets’ desired inputs and outputs, themselves

deriving from ground-truthing practices (that are still sometimes oriented

toward future-formulating practices, as we saw in a previous section of this

chapter). This general argument allows us to better grasp the role played by

The MIT Press January 2021

A Third Case Study	 269

the Gaussian fit during the Group’s formulating process. By virtue of Mack-

enzie’s proposition, the Matlab-embedded algorithm enrolled by the Group

during its formulating process worked as a machine learner, building the

mathematical approximation of the ground-truth function and its related

formula (itself working as an easily transposable programming scenario).

Yet if the Matlab least square algorithm can be considered a machine

learner, is it reasonable to say that there was machine learning during the

Group’s formulating episode? From Mackenzie’s point of view as well as

the perspective of the specialized literature, it may appear so; as soon as the

Group ran the “fit” instruction, the project became a machine-learning

project as its model relied on a statistical learning method that found a

useful approximation of the desired output. However, from the Group’s

perspective, the story is more intricate than that as GY and BJ suggested to

me after I shared some of my thoughts:

Wednesday, April 12, 2014. Terrace of the CSF’s cafeteria. Discussion

with GY

FJ:  I’m still holding on to the Gaussian fit moment.  … To find the par

ameters, there was some kind of machine learning underneath in Mat-

lab, was there not?10

GY:  Huh, yes perhaps. Some kind of regression, I guess.

FJ:  Which is a kind of machine-learning technique, no?

GY:  Maybe, technically. But I wouldn’t say that. You know, we saw it was

a Gaussian anyway, so it was no real machine learning.

FJ:  Real machine learning?

GY:  Yes. For example, like when you do deep-learning things, you first

have no idea about the function. You just have many data, and you let

the machine do its things. And there, the machine really learns.

Friday, April 14, 2014. Terrace of the CSF’s cafeteria. Discussion with BJ

FJ:  So, machine learning is not what you’ve done with the Gaussian fit?11

BJ:  No, no. I mean, there was a fit, yes. But it was so obvious, and Matlab

does that very quickly, right? It’s nothing compared to machine learn-

ing. If you look at what people do now with convolutional neural net-

works, it’s very very different! Or with what NK is doing here with deep

learning [for handwritten recognition]. There you need GPUs [graphical

The MIT Press January 2021

270	 Chapter 6

processing units], parallelization, etc. And you process again and again

a lot of raw data.

There seems to be some uncertainty surrounding the status of the Gaussian

fit. If it “technically” can be qualified as machine learning, it is also opposed

to “real” machine learning, such as “deep learning” or “convolutional neu-

ral networks,” where the machine “really learns.” It seems that, for GY

and BJ—and also for CL, as I learned later on—regarding the Gaussian fit

moment as machine learning would misunderstand something constitutive

of it. How should we qualify this uncertainty? How should we seek to grasp

what, at least for the Group, gives machine learning its specific expression?

An element that, for the Group, seems to subtend the distinction between

real and less real machine learning is the visual component that puts the

instruction “fit” into gear: “We saw it was a Gaussian anyway, so it was

no real machine learning.” The visual component was indeed decisive in

qualifying the phenomenon the Group tried to formulate; after several trans-

lations/reductions of the training set, the scatterplot of figure 6.4 literally

looked like a Gaussian, and this similarity, in turn, suggested the use of the

“fit” instruction to the Group. The dependent variables—size-values and

number-values—were hypothesized before the formulating episode (they

even contributed to the construction of the ground truth), and these were

parsimonious enough to be visualized in an understandable graph. The

group may well have used a machine learner made by others, in other places

and at other times; this delegation was minimal, in the sense that most of

the work involved in approximating the function had already been under-

taken. This is evidenced by the instruction “gauss2” within the instruction

“fit,” which oriented INT’s work toward a 2D Gaussian function with four

parameters.

What about deep learning? Why do GY and BJ use it to distinguish

between real and less real machine learning? It is important to note that in

the spring of 2014—at the time of our discussions at the CSF’s cafeteria—

deep learning was becoming a popular trend among image-processing

communities that specialized in classification and recognition tasks. This

popularity was closely related to an important event that occurred during

a workshop at the 2012 European Conference on Computer Vision, where

Alex Krizhevsky presented a model he had developed with Ilya Sutskever

and Geoffrey Hinton—one of the founding fathers of the revival of neural

The MIT Press January 2021

A Third Case Study	 271

networks (more on this later)—for classifying objects in natural images.

This model had partaken in the 2012 ImageNet challenge (more on this

later) and won by a large margin, surpassing the error rate of competing

algorithms by more than 10 percent (Krizhevsky, Sutskever, and Hinton

2012). The method Krizhevsky, Sutskever, and Hinton used to design their

algorithm was initially called “deep convolutional neural networks” before

receiving the more generic label of “deep learning” (LeCun, Bengio, and

Hinton 2015; Schmidhuber 2015), pursuant to the terminology proposed by

Bengio (2009). While this statistical learning method had already been used

for handwritten digit recognition (LeCun et al. 1989), natural language pro

cessing (Bengio et al. 2003), and traffic sign classification (Nagi et al. 2011),

this was its first time being used for “natural” object classification and

localization. And in view of its impressive results, a new momentum began

to flow through the image-processing community as deep learning started

to become more and more discussed in the academic literature, modular-

ized within high-level computer programming languages, and adapted for

industrial applications.

In the Lab, NK was the member most familiar with the then latest advances

in deep learning as suggested in the above excerpts. He was indeed conduct-

ing his PhD research on the application of deep learning for handwritten

recognition of fiction writers, and it was through his work—and through

communications during Lab meetings—that the topic progressively infil-

trated the Lab. As a sign of the growing popularity of these formulating

techniques, five doctoral students were moving toward deep learning when

I left the field in February 2016, compared with only one—NK—when I

arrived. Unfortunately, despite the growing interest in these techniques

within the Lab, I did not have the opportunity to explore in detail a deep

learning formulating episode. However, based on Krizhevsky’s paper, which

marked the rise of deep learning within digital image processing, it may

be possible to dig further into—or rather, speculate on—the difference

suggested by the Group between “real” and “less real” machine learning

(despite the dangers that such an approach, based on a “purified account,”

represents; On this topic, see this book’s introduction).

Let us start with the ground truth Krizhevsky, Sutskever, and Hinton

used to develop their algorithm. If, to a certain extent, we get the algorithms

of our ground truths (see chapter 2), then what was theirs? Krizhevsky,

The MIT Press January 2021

272	 Chapter 6

Sutskever, and Hinton used a ground truth called ImageNet to train and

evaluate their deep-learning algorithm. ImageNet was an ambitious project,

initially conceived in 2006 by Fei-Fei Li, who was at that time a professor of

computer science at the University of Illinois Urbana-Champaign.12 Even

though the detailed history of ImageNet—an endeavor that would repre-

sent an important step toward problem-oriented studies of algorithms (see

chapter 2)—has yet to be undertaken, several academic papers (Deng et al.

2009, 2014; Russakovsky et al. 2015), journalist reports (Gershgorn 2017;

Markoff 2012), and a section of Gray and Suri’s (2019, 6–8) book Ghost Work

nonetheless allow us to make informed assumptions about its genealogy.

It seems then that Fei-Fei Li, at least since 2006, was fully aware of some-

thing that we realized in chapter 2: better ground truths may lead to better

algorithms. Just like the Group, who was not satisfied with ground truths

for saliency detection, Li regarded the use of ground truths for the classifica-

tion of natural images as too simplistic.13 Through exchanges with Christine

Fellbaum, who, since the 1990s, has been building WordNet—a lexical data-

base of English adjectives, verbs, nouns, and adverbs, organized according

to sets of synonyms called synsets (Fellbaum 1998)—the idea of associating

digital images with each word of this gigantic database for computational

linguistics progressively emerged. In 2007, when Fei-Fei Li joined the fac-

ulty of Princeton University, she officially started the ImageNet project by

recruiting a professor, Kai Li, and a PhD student, Jia Deng. After several

unsuccessful attempts,14 Fei-Fei Li, Kai Li, and Jia Deng turned to the new

possibilities offered by the crowdsourcing platform Amazon Mechanical

Turk (MTurk). Indeed, while images could be quickly scrapped via a keyword

search engine such as Google or, at that time, Yahoo, reliably annotating the

objects in these images required time-consuming human work. And Ama-

zon MTurk, as a provider of large-scale on-demand microlabor, effectively

provided such valuable operations at an unbeatable price. Using ingenious

quality control mechanisms, Li’s team managed to construct, in two and a

half years, a ground-truth database that gathered 3.2 million labeled images,

organized into twelve subtrees (e.g., mammal, vehicle, reptile), with 5,247

synsets (e.g., carnivore, trimaran, snake).15 Despite difficult beginnings,16

ImageNet has made its way into computer vision research not only through

the publicization efforts of Fei-Fei Li, Jia Deng, Kai Li, and Alexander Berg

(Deng et al. 2010, 2011b; Deng, Berg, and Li 2011a) but also through its asso-

ciation with a well-respected European image-recognition competition called

The MIT Press January 2021

A Third Case Study	 273

PASCAL VOC that has now been followed by ILSVRC.17 And it was in the

context of the 2012 ILSVRC competition that Alex Krizhevsky, Ilya Sutskever,

and Geoffrey Hinton developed their deep-learning method that surpassed,

by far, all their competitors, initiating a wave of enthusiasm that we are still

experiencing today.18

But what about the machinery implemented by Krizhevsky, Sutskever,

and Hinton to develop their deep convolutional neural network algorithm?

How did they formulate the relationship between the input-data (here, raw

RGB pixel-values) and the output-targets (here, words referring to objects

present in natural images) of the ImageNet ground truth? Let us start with

the term “neural networks.” We have already encountered it in chapter 3

when we were inquiring into the progressive invisibilization of computer

programming practices. As we saw, the term neural network came from

McCulloch and Pitts’s 1943 paper, which was itself made visible by its

instrumental role in von Neumann’s First Draft of a Report on the EDVAC

(von Neumann 1945). McCulluch and Pitts’s main argument was that a sim-

plified conception of “all-or-non” neurons could act, depending on their

inputs, as logical operators OR, AND, and NOT and thus, when organized

into interrelated networks, could be compared to a Turing machine. This

analogy between logic gates and the inner constituent of the human brain

was then used by von Neumann in his Draft, in which he was prompted to

use unusual terms such as “organs” instead of “modules” and “memory”

instead of “storage” (surprising analogies that must, crucially, be put into

the 1945 context when military projects such as the ENIAC and the EDVAC

were still classified). Yet, as intriguing as they were, McCulloch and Pitts’s

neural networks, in their role as logic gates, could not learn; that is, they

could not adjust the weight of their “synaptic” interconnections according

to measurable errors. It is a merit of Frank Rosenblatt’s perceptron to have

integrated a potential for repetition and modification of logic gates based

on algorithmic comparisons between actual and desired outputs (Domingos

2015, 97; Rosenblatt 1958, 1962). But the perceptron algorithm that allows

neural networks to modify their synaptic weight according error signals

could only learn to draw linear boundaries among vectorized data, mak-

ing it vulnerable to much criticism.19 Nearly twenty years later, physicist

John Hopfield, as part of his work on spin glasses, proposed an information

storage algorithm that allowed neural networks to effectively perform pat-

tern recognition, an achievement that finally brought to light this so-called

The MIT Press January 2021

274	 Chapter 6

connectionist approach to learning (Domingos 2015, 102–104; Hopfield

1982). Shortly thereafter, David Ackley, Geoffrey Hinton, and Terrence Sej-

nokwski built on Hopfield’s insights and adapted his deterministic neurons

into probabilistic ones, by proposing a learning algorithm for Boltzmann’s

machines (Ackley, Hinton, and Sejnowski 1985; Hinton, Sejnowski, and

Ackley 1984).20 Then came the real tipping point of this neural network

revival, with the design of a stochastic gradient retropropagation algorithm

(called “backprop”) that could calculate the derivative of the network loss

function and back-propagate the error to correct the coefficients in the lower

layers, ultimately allowing it to learn nonlinear functions (Rumelhart, Hin-

ton, and Williams 1986).21 This was followed by a difficult period for this

inventive and cohesive research community, who was once again gradually

marginalized.22 But this did not include the increasing computerization of

the collective world from the 2000s and the development of web services,

both of which led to an explosion of neural networkable data (yet often at

the expense of invisibilized on-demand microlabor). Krizhevsky, Sutskever,

and Hinton’s (2012) paper is one expression, among many others, of this

renewed interest in neural networks, which goes hand in hand with the

provision of large ground truths such as ImageNet. Yet besides big data-

based labeled data, Krizhevsky, Sutskever, and Hinton could also rely on a

stack of well-discussed algorithms (e.g., perceptron, learning for Boltzmann

machines, backprop) to build their model; they were able to delegate a

significant part of their formulating work to other neural network-related

algorithms considered standard by the connectionist community in 2012.

What about the term “convolutional”? In this specific context, it is

largely derived from a successful application of the backpropagation algo-

rithm for optimizing neural networks to address an industrial issue: the

recognition of handwritten postal codes. It was developed by LeCun et al.

(1989) and aimed to exploit the potential of data expressed as multiple

arrays—such as RGB digital images “composed of three colour 2D arrays

containing pixel intensities in the three colour channels” (LeCun, Bengio,

and Hinton 2015)—to minimize the number of neural network parameters

as well as the time and cost of learning. In a nutshell, the operation consists

of reducing the matrix image into a matrix of lower dimension using a con-

volution product—a classical operator in functional analysis dating back,

at least, to the work of Laplace, Fourier, and Poisson. These convolutional

layers are then followed by pooling layers, aimed to “merge semantically

The MIT Press January 2021

A Third Case Study	 275

similar features into one” (LeCun, Bengio, and Hinton 2015, 439)—a typi-

cal way of doing this operation being, at the time of Krizhevsky, Sutskever,

and Hinton’s study, to use an algorithm called “max-pooling” (Nagi et al.

2011). And when Krizhevsky, Sutskever, and Hinton used convolutional

neural networks, they effectively mobilized these convolution and pooling

methods—integral parts of the standard algorithm “library”—to be used at

their disposal.

Finally, what about the term “deep”? When convolutional layers, activa-

tion functions, and max-pooling layers are repeated several times to form

a network of networks, this qualifies as “deep.” In this case, AlexNet—as

the algorithm presented in Krizhevsky, Sutskever, and Hinton ended up

being called—was the very first neural network to integrate five convolu-

tional layers in conjunction with three fully connected layers (Krizhevsky,

Sutskever, and Hinton 2012, 2).

Though important, the technical features of the algorithm developed by

Krizhevsky, Sutskever, and Hinton are not central to the proposition I wish

to make here. It is more important to grasp the overall algorithmic machin-

ery that they mobilized to formulate the relationships between their input-

data and output-targets. Consider Boltzmann machines, backpropagation,

convolutional networks, and max-pooling: although these algorithms were

not mainstream in the image-processing and recognition community—as

they came from an often marginalized connectionist tradition—they none-

theless constituted a relatively stable infrastructure that could be mobilized

to find approximations of functions within large, yet reliable, training sets.

The work of Krizhevsky, Sutskever, and Hinton was undoubtedly impressive

in many respects. Nonetheless, they were able to capitalize on a modular

algorithmic infrastructure capable of operating, at least theoretically, as a for-

mulating machine (see figure 6.9).

Yet one important question remains: How did Krizhevsky, Sutskever, and

Hinton actually get their input-data processed by their audacious yet stan-

dard algorithmic machinery? How did they effectively produce a function

approximation? This is where another crucial ingredient emerges (in addi-

tion to the ImageNet ground truth and the more or less ready-to-use pack-

age of connectionist algorithms): Graphics Processing Units (GPUs). Indeed,

the machinery of deep convolutional neural networks requires a lot of

computing power. However, as Krizhevsky, Sutskever, and Hinton were pro

cessing images—that is, arrays containing pixel intensities—they were able

The MIT Press January 2021

Fi
g

u
re

 2
: A

n
 il

lu
st

ra
tio

n
 o

f t
h

e
ar

ch
ite

ct
u

re
 o

f o
u

r
C

N
N

, e
xp

lic
itl

y
sh

o
w

in
g

 th
e

d
el

in
ea

tio
n

 o
f r

es
p

o
n

si
b

ili
tie

s
b

et
w

ee
n

th

e
tw

o
 G

P
U

s.
 O

n
e

G
P

U
 r

u
n

s
th

e
la

ye
r-

p
ar

ts
 a

t t
h

e
to

p
 o

f t
h

e
fi

g
u

re
 w

h
ile

 th
e

o
th

er
 r

u
n

s
th

e
la

ye
r-

p
ar

ts
 a

t t
h

e
b

o
tt

o
m

.
T

h
e

G
P

U
s

co
m

m
u

n
ic

at
e

o
n

ly
 a

t c
er

ta
in

 la
ye

rs
. T

h
e

n
et

w
o

rk
’s

 in
p

u
t i

s
15

0,
52

8-
d

im
en

si
o

n
al

, a
n

d
 th

e
n

u
m

b
er

 o
f

n
eu

ro
n

s
in

 th
e

n
et

w
o

rk
’s

 r
em

ai
n

in
g

 la
ye

rs
 is

 g
iv

en
 b

y
25

3,
44

0–
18

6,
62

4–
64

,8
96

–6
4,

89
6–

43
,2

64
–4

09
6–

40
96

–1
00

0.

3
48

12
8

33

33

33

3
3 3 3

33

33
3

19
2

19
2

12
8

1313
13 13

1313

19
2

19
2

12
8

20
48

de
ns

e
de

ns
e

de
ns

e

20
48

20
48

20
48

10
00

22
41111

11 22
4

11
55

55

55

5548
27

27

12
8

St
rid

e
of

 4

M
ax

po
ol

in
g

M
ax

po
ol

in
g

M
ax

po
ol

in
g

Fi
g

ur
e

6.
9

Sc
h

em
at

ic
s

of
 t

h
e

al
go

ri
th

m
ic

 m
ac

h
in

er
y

th
at

 a
u

to
m

at
ic

al
ly

 f
or

m
u

la
te

d
 t

h
e

re
la

ti
on

sh
ip

 b
et

w
ee

n
 t

h
e

in
p

u
t-

d
at

a
an

d

th
e

ou
tp

u
t-

ta
rg

et
s

of
 t

h
e

Im
ag

eN
et

 g
ro

u
n

d
 t

ru
th

. S
ou

rc
e:

 K
ri

zh
ev

sk
y,

 S
u

ts
ke

ve
r,

 a
n

d
 H

in
to

n
 (

20
12

, 5
).

 C
ou

rt
es

y
of

 I
ly

a

Su
ts

ke
ve

r.

The MIT Press January 2021

A Third Case Study	 277

to get some help from specially designed integrated circuits called GPUs

(in this case, two NVIDIA GTX 580 3GB GPUs). It was necessary, however,

to interact with these computing systems in such a way that allowed them

to adequately express convolutional neural networks (and their whole

algorithmic apparatus). This may be Krizhevsky, Sutskever, and Hinton’s

most impressive achievement, and it should not be underestimated. They

may have had a large and trustworthy ground truth made by others, and

they may also have had a rich and modulatory algorithmic infrastructure

progressively designed by a vivid and supportive community of connec-

tionists; all of these elements had yet to be rendered compatible with the

ascetic environment of computers. And, if we refer to Cardon, Cointet, and

Mazières’s interview of a well-respected researcher in computer vision:

[Alex Krizhevsky] ran huge machines, which had GPUs that at the time were

not great, but that he made communicate with each other to boost them. It was

a completely crazy machinery thing. Otherwise, it would never have worked, a

geek’s skill, a programming skill that is amazing (Cardon, Cointet, and Mazières

2018; my translation).

Besides the ground-truthing efforts made by Fei-Fei Li’s team and the algo-

rithmic infrastructure implemented by previous connectionist researchers,

Krizhevsky, Sutskever, and Hinton also had to engage themselves in tre-

mendous programming efforts to propose their deep learning algorithm:

an “amazing” venture. Yet, after these efforts, and probably many retrofit-

ting operations, they did manage to formulate a monster function with

sixty million parameters (Krizhevsky, Sutskever, and Hinton 2012, 5).

When we compare the not quite machine learning of the Group’s Gauss-

ian fit with the real machine learning of Krizhevsky, Sutskever, and Hinton’s

deep convolutional neural networks, what do we see? Beyond the obvious

differences, notably in terms of algorithmic complexity, an important simi-

larity stands out: both lead to a roughly similar result; that is, an approxi-

mation of their respective assumed ground-truth functions. The function

produced by the machine learner invoked by the Group may only have

four small parameters, but it ends up transforming inputs into operands

and outputs into results of an operation, just like Krizhevsky, Sutskever,

and Hinton’s sixty-million-parameter function does. Both machine learners

approximate the assumed function organizing the data of their respective

ground truths, thus remaining subordinate to them.

The MIT Press January 2021

278	 Chapter 6

However, despite this important similarity, the two machine learners dif-

fer in that they emanate from differentiated processes; while the Gaussian

fit takes over for only a brief moment, following manual translations that

can be followed and accounted for, the machinery of Krizhevsky, Sutskever,

and Hinton takes over much of the formulation of the training set. Whereas

the Group must assume dependent variables, then translate/reduce its train-

ing sets according to these assumptions to progressively access a certified

mathematical statement—here, a 2D Gaussian—Krizhevsky, Sutskever, and

Hinton can delegate this formulating work to an algorithmic infrastructure.

Yet again, if there has been automation of a significant part of the formulating

activities, it is crucial to remember that this was at the cost of a symmetrical

heteromation of the ground-truthing and programming activities. More than

five years of ground-truthing ventures by Fei-Fei Li and her team as well

as countless hours of programming work undertaken by Alex Krizhevsky

(according to Cardon, Cointet, and Mazières 2018) have made it possible

to automate the formulation of the relationship between input-data and

output-targets, thereby rendering the former operands and the latter the

results of an operation.

Speculating on these elements, we might be tempted to address machine

learning—despite its great diversity—as unfolding along a continuum (figure

6.10). Machine learners make approximations of functions, but perhaps, the

more their invocation relies on the stacking of other algorithms—operating

as an infrastructure that automates the formulating activities—the more

they constitute machine learning. According to this perspective, the term

“machine learning” no longer refers only to a class of statistical techniques

but now also includes a practice (and perhaps, sometimes, a habit) of delega

tion, requiring an appropriate infrastructure that itself touches on ground-

truthing and programming issues.

This tentative requalification of machine learning, as a particular instance

of formulating activities, may allow us to appreciate the issue of inscruta-

bility in an innovative way. Instead of regarding the growing difficulty in

accounting for the processes that have led to the formation of a machine-

learned approximation of a ground-truth function as a limit, this conception

of machine learning may see it as consubstantial with real machine learn-

ing: the more machine learning, the more delegation, and the more difficult

it becomes to inspect what has led to the formation of the mathematical

operation allowing the transformation of inputs into outputs. Yet—and this

The MIT Press January 2021

A Third Case Study	 279

is the real promise of my speculative proposition—real machine learning’s

native inscrutability may have to be paid for by more ground-truthing and

programming efforts, both of which are scrutable activities (as we saw in

part I and part II).

I certainly do not here aspire to enunciate general facts; these tentative

propositions are mainly intended to suggest further inquiries. This is even

truer given that machine learning is both much discussed and very little

studied, at least historically and sociologically. Yet as suggested by Jones

(2018) and Plasek (2018), given machine learning’s growing importance in

the formation of algorithms, it is more crucial than ever to investigate the

historical and contemporary drivers of this latest expression of formulating

activities.

* * *

Here in part III, I tried to document the progressive shaping of a compu-

tational model in the light of the elements presented in part I and part II.

Given that what I ended up calling “formulating practices” dealt with the

manipulation of mathematical propositions, we first had to better under-

stand mathematical facts and their correlated objects. Where do they come

from? How are they assembled, and why do computer scientists need them?

To answer these preliminary questions, we had to temporarily distance our-

selves from many accounts of mathematics: our tribulations in chapters 3

and 4 taught us indeed to be suspicious of terms such as “thoughts,” “mind,”

or “abstraction.” In chapter 5, inspired by several STS on mathematics, we

privileged a down-to-earth starting point: at some point in their existence,

mathematical propositions can be regarded as written claims that try to

convince readers. This initial assumption allowed us to consider the striking

Group’s Gaussian fit Krizhevsky et al.’s deep ConvNets

Reality of machine learning

Inscrutability of the operative function

Required ground-truthing efforts

Required programming efforts

Automation of the formulating activities

Delegation to an algorithmic infrastructure– +

Figure 6.10
Schematic of machine learning considered a continuous phenomenon.

The MIT Press January 2021

280	 Chapter 6

similarity between mathematics and the other sciences; the written claims

made by both mathematicians and scientists must overcome many trials to

become, eventually, accepted facts. Instead of existing as some fundamen-

tal ingredient of thought, mathematical knowledge progressively emerged

as a huge, honorable, and evolving body of certified propositions.

We then had to consider the objects that these certified mathematical

propositions deal with: Are they similar to scientific objects? By fictitiously

comparing the work carried out in a laboratory for biomedicine with the work

carried out in a laboratory for algebraic geometry, we realized that, yes, scien-

tific and mathematical objects can be considered quite similar. In both cases,

despite topological differences (the mathematical laboratory being often

“flatter” and “dryer” than the biomedical one), experiments, instruments,

and alignments of inscriptions—in short, laboratory practices—progressively

led to the shaping of scientific objects, the properties and contours of which

became, in turn, topics of papers aimed to convince skeptical readers.

The striking similitude between scientific and mathematical objects

prompted us, in turn, to consider why mathematical objects often partici-

pate in the shaping of nonmathematical scientific objects. Still supported

by STS works on mathematics, we realized that the combinatorial strength

of mathematics derives largely from mundane translation practices that

progressively reduce entities to make them fit with the flat and dry ecology

of mathematical knowledge. By means of such reductions, scientists render

the entities they try to characterize as easier to handle, more sharable, more

comparable, more malleable, and more enrollable within written claims try-

ing to convince colleagues of their reified existence. These elements finally

allowed us to define formulating practices as the empirical process of trans-

lating undefined entities to assign them the same form as already defined

mathematical objects.

We then tried to use these introductory elements to analyze a formulat-

ing episode that took place within the Lab. We started by considering how

ground-truthing practices—especially the initial collection of the dataset—

may sometimes function as a preparatory step for forthcoming formulat-

ing practices. This first element made us appreciate the need for a close

articulation between the “problem-oriented perspective on algorithms” we

initiated in chapter 2 and the “axiomatic perspective on algorithms” we

expanded on in chapter 6.

The MIT Press January 2021

A Third Case Study	 281

We then inquired into the formation of one of the Group’s computa-

tional models. We first documented the many translations and reductions

of the Group’s training set; from a messy Matlab database, the training set

progressively evolved into a list of single values that the Group could trans-

late into a scatterplot whose shape expressed a singular phenomenon. The

Group’s strong intuition that this phenomenon looked like a Gaussian func-

tion supported the further translation of the scatterplot into a graph that

could, in turn, be expressed as a parametrized formula, thanks to centuries

of certified mathematical propositions, among many other things.

We then saw that, although mathematical inscriptions describing com-

putational models in academic papers cannot, of course, trigger electric

pulses capable of making computers compute actual data, these mathemati-

cal inscriptions can nonetheless institute transposable scenarios for computer

programming episodes. This element was crucial as it completed the con-

nections among the three gerund-parts of this inquiry. Indeed, it seems that

formulating practices rely on, and sometimes influence, ground-truthing

practices that themselves are supported by programming practices that are

themselves, sometimes, irrigated by the results of formulating practices. A

whole action-oriented conception of algorithms started to unfold; what we

like to call an algorithm may sometimes be the result of these three inter-

related activities I here call ground-truthing, programming, and formulating.

Speculating on this, we finally addressed the widely discussed yet socio-

logically little-investigated topic of machine learning. Based on some (few)

empirical clues regarding the varying reality of machine learning, I made

the following, tentative, proposition: it may be that machine learning, once

considered a lived experience, consists of the audacious capacity to automate

formulating processes. However, this recently acquired habit may rely on

increasing ground-truthing and programming efforts, the springs of which

would benefit from further sociological studies.

The MIT Press January 2021

The MIT Press January 2021

If you want to understand the big issues, you need to understand the everyday

practices that constitute them.

—Suchman, Gerst, and Krämer (2019, 32)

Constituent power thus requires understanding constitution not as a noun but a

verb, not an immutable structure but an open procedure that is never brought to

an end.

—Hardt (1999, xii)

There was a follow-up of the work required to ground the veracity of a

computational model for digital image processing whose academic article

was provisionally rejected (chapter 2), a description of the actions deployed

to write a short Matlab program (chapter 4), and an analysis of the shaping

of a four-parameter formula abstracted from a small training dataset (chap-

ter 6). These empirical elements might seem quite tenuous when compared

with the ogre to whom this book is explicitly addressed: algorithms and

their growing contribution to the shaping of the collective world.

And yet, this book is nonetheless driven by a certain confidence. If I

did not believe in its convenience, I simply would not have written (or at

least published) it. What justifies such confidence? Which way of thinking

supports such a presumption of relevance? In this conclusion, it is time to

consider this inquiry’s half-hidden assumptions regarding the political sig-

nificance of its results, however provisional they may be.

Catching a Glimpse, Inflating the Unknown

In the introduction, I mentioned some of the many contemporary sociologi

cal works on the effects of algorithms, and I assumed these works progressively

Conclusion

The MIT Press January 2021

284	 Conclusion

contributed to making algorithms become matters of public concern. I then

suggested that the current controversies over algorithms call for composition

attempts. As algorithms are now central to our computerized societies while

engaging in moral and ethical issues, their very existence entails constructive

negotiations. I then suggested that the ground for these contentious com-

promises needs to be somewhat prepared or, at least, equipped. As it stands,

the negative invisibility (Star and Strauss 1999) of the practices underlying the

constitution of algorithms prevents from grasping these entities in a compre-

hensive way; it is difficult, indeed, to make changes on processes that have

no material thickness. I then suggested that one way—among other possible

ones—to propose refreshing theoretical equipment was to conduct sociologi

cal inquiries in collaboration with computer scientists and engineers in order

to document their work activities. This may lead to a better understanding

of their needs, attachments, issues, and values that could help disputing par-

ties to start negotiate, as Walter Lippmann (1982, 91) said, “under their own

colors.”

This was an unprecedented effort. While I could build on several STS

authors dealing, among other things, with scientific and mathematical

practices, I have most often, to be fair, been left to my own devices. How-

ever, it was a formative exercise that forced me, beyond the general frame-

work proposed by the “laboratory study” genre, to propose methodologies

and concepts—especially in chapters 1, 3, and 5—that I believe are well

adapted to the analysis of computer science work. The careful and fastidi-

ous unfolding of courses of action allowed me to document the progressive

formation of entities—ground truths, programs, and formulas—aggregating

choices, habits, objects, and desires. Moreover, it seemed that the congru-

ence of these entities and the practices involved in their shaping form, at

least sometimes and partially, other entities we tend to call algorithms.

Nevertheless, this analytical gesture suffers from a certain asymmetry: on

the one hand, a small ethnographic report resulting from a PhD thesis, and

on the other hand, a whole industry that is constantly growing and innovat-

ing. With such limited means, the present investigation could only glimpse

the irrigation system of algorithms in their incredible diversity. Worse, by

shedding new light on a very limited part of the constituent relationships of

algorithms, this inquiry suggested a continent without saying much about it.

What about the courses of action involved in getting algorithms out of the

laboratories, incorporating them into commercial arrangements, integrating

The MIT Press January 2021

Conclusion	 285

them into software infrastructures, modifying their inner components, main-

taining them, improving them, or cursing or loving them? By the very fact

of showing that it was possible to bring algorithms back to the ground and

consider them products of mundane amendable processes, this investigation

probably promised more than it delivered. What value can be attributed to

an inquiry that suggests more than asserts?

An Insurgent Document

One can start by stressing the protesting subtext of this investigation. Even

if it did not wish to criticize contemporary social studies on algorithms—

because they help us to be concerned by our “algorithmic lives” (Mazzotti

2017)—the present inquiry’s approach and results nonetheless take a stand

against a habit of thought these studies sometimes tend to instill.

This habit, briefly mentioned in the introduction, consists in consider-

ing algorithms from an external position and in the light of their effects.

I have said it over and over again, this posture is important as it creates

political affections. However, by becoming generalized, it also comes up

against a limit that takes the form of a looping drama. The argument, ini-

tially developed by Ziewitz (2016), is the following: while salutary in many

ways, the recent proliferation of studies of the effects of algorithms insidi-

ously tends to make them appear autonomous. Increasingly considered

from afar and in terms of the differences they produce, algorithms slowly

start to become stand-alone influential entities. This is the first act of the

algorithmic drama, as Ziewitz calls it: algorithms progressively become, at

least within the social science literature, powerful floating entities.

Moreover, once the networks allowing them to deploy and persevere are

overlooked, algorithms also become more and more mysterious. Indeed,

according to this risky standpoint, what can these powerful entities be made

of? As the study of the effects of algorithms tends to be privileged to the

study of what supports and makes them happen, these entities appear to be

made of theoretical, immaterial, and abstract ingredients, loosely referred

to as mathematics, code, or a combination of both. Having no grip on what

these packages contain, complexity is easily called for help: Whatever the

mathematics or the code that form algorithms may refer to, algorithms

have to be highly complex entities since they are abstract and powerful.

How can something be distributed, evanescent, and influential at the same

The MIT Press January 2021

286	 Conclusion

time? This is the kind of question induced—in hollow—by the multiplica-

tion of studies on the effects of algorithms, surreptitiously introducing the

second act of the algorithmic drama: algorithms become inscrutable. The end

result is a disempowering loop, for as Ziewitz (2016, 8) wrote, “the opacity

of operations tends to be seen as a new sign of their influence and power.”

The algorithmic drama surreptitiously unfolding within the social science

landscape is thus circular: algorithms are powerful because they are inscru-

table, because they are powerful, because they are inscrutable  …

The present investigation goes against this trend (which yet remains

important and valuable). Instead of considering algorithms from a distance

and in light of their effects, this book’s three case studies—with their theo-

retical and methodological complements—show that it is in fact possible

to consider algorithms from within the places in which they are concretely

shaped. It is therefore a fundamental, yet fragile, act of resistance and organ

ization. It challenges the setup of an algorithmic drama while proposing

ways to renew and sustain this challenge. As it aims to depict algorithms

according to the collective processes that make them happen, this inquiry

is also a constituent impetus that challenges a constituted setup. Again,

there is no innocence.

All the credit, in my opinion, goes to philosopher Antonio Negri for

having detected the double aspect of insurgent acts. In his book Insurgen-

cies: Constituent Power and the Modern State, Negri (1999) nicely identifies

a fundamental characteristic of critical gestures: they are always, in fact,

the bearers of articulated visions. It is only from the point of view of the

constituted setup and by virtue of the constitutionalization processes that

were put it in place that insurgent impulses seem disjointed, incomplete,

and utopian. Historically, and philosophically, the opposite is true: beyond

the appearances, the constituted power is quite empty as it mainly falls

back on and recovers the steady innovations of the constituent forces that

are opposed to it. This argument allows Negri to affirm, in turn, that far

from representing marginal and disordered forces to which it is necessary,

at some point, to put an end—in the manner of a Thermidor—constituent

impetuses are topical and coherent and represent the permanent bedrock

of democratic political activities.

Though this book does not endorse all of Negri’s claims regarding the

concept of constituent power,1 it is well in line with Negri’s strong proposi-

tion that the political, in the sense of politicization processes, cannot avoid

The MIT Press January 2021

Conclusion	 287

insurgent moves. By suggesting interesting, and surprising, bridges with the

pragmatist tradition,2 Negri (1999, 335) indeed affirms that “the political

without constituent power is like an old property, not only languishing but

also ruinous, for the workers as well as for its owner.” And that is where the

political argument of this book lies; it offers an alternative insurgent view

on the formation of algorithms in order to feed arguments and suggest

renovative modes of organization.

But if this book can be seen as an act of resistance and organization that

intends to fuel and lubricate public issues related to algorithms by propos-

ing an alternative account of how they come into existence, why not call

it “the constituent of algorithms”? Why did I deliberately choose the term

“constitution,” seemingly antithetical to the insurgent acts that feed politi-

cization processes? This is where we must also consider this investigation as

what it is materially: an inscription that circulates more or less. We find here

a notion that has accompanied us throughout the book. Thanks to their

often durable, mobile, and re-presentable characteristics, inscriptions con-

tribute greatly to the continuous shaping of the collective world. And like

any inscription, due to what I have called “Dorothy Smith’s law” (cf. intro-

duction), this inscribed volume seeks to establish one reality at the expense

of others. Once again, as always, there is no innocence: by expressing realities

by means of texts, inscriptions also enact these realities. A text, however

faithful—and some texts are definitely more faithful than others—is also a

wishful accomplishment.

The fixative aspect of this investigation, which comes from its very

scriptural form, should not be underestimated. This is even a limit, in my

opinion, to Negri’s work on constituent power, however interesting and

thorough it may be. Although insurrectional impetuses form the driving

force of political history—we can keep that—they are nonetheless, very

often, scriptural acts that contain a foundational character.3 The term “con-

stitution” thus appears the most appropriate; if this inquiry participates in

the questioning of a constituted setup, it remains constitutive, in its capac-

ity as an inscription, of an affirmation power.

An Impetus to Be Pursued

However, nothing prevents this insurgent document from also being com-

plemented and challenged by other insurgent documents. It is even one of

The MIT Press January 2021

288	 Conclusion

its main ambitions: to inspire a critical dynamic capable of making algo-

rithms ever more graspable. This was the starting point of this investiga-

tion, and it is also its end point: to learn more about algorithms by living

with them more intimately. And there are certainly many other ways to do

just that.

Such alternative paths have been suggested throughout the book in both

its theoretical and empirical chapters. Chapter 1, in introducing the meth-

odology of the inquiry, also indicated ways of organizing other inquiries

that are grounded in other places and situations. For example, it would be

immensely interesting if an ethnographer integrated the team of a start-

up trying to design and sell algorithm-related products.4 With regard to

chapter 2, systematic investigations on the work required for the concep-

tion, compilation, and aggregation of academic and industrial ground

truths would certainly help to link algorithms with more general dynamics

related, for example, to the emergence of new forms of on-demand labor.

Such an investigative effort could also build analytical bridges between cur-

rent network technologies that support the commodification of personal

data and, for example, blockchain technology which is precisely based

on a harsh criticism of this very possibility.5 In chapter 3, when it came

to the progressive setting aside of programming practices from the 1950s

onward, more systematic sociohistorical investigations of early electronic

computing projects could ignite a fresh new look at “artificial intelligence,”

a term that, perhaps, has built on other similar invisibilizations of work

practices.6 With regard to chapter 4 and the situated practices of computer

programming, conducting further sociological investigations on the orga

nizational and material devices mobilized by programmers in their daily

work could contribute to better appreciating this specialized activity that is

central to our contemporary societies. Programming practitioners may, in

turn, no longer be considered an esoteric community with its own codes

but also, and perhaps above all, differentiated groups constantly exploring

alternative ways to interact with computers by means of numbered lists of

instructions. In chapter 5, although it was about operationalizing a spe-

cific understanding of mathematical knowledge, the reader will certainly

have noticed the few sources on which my propositions were based. It

goes without saying that more sociological analyses of the theoretical work

underlying the formation of mathematical statements is, in our increas-

ingly computerized world, more important than ever. Finally, concerning

The MIT Press January 2021

Conclusion	 289

formulating practices, as outlined at the end of chapter 6, analyzing the

recent dynamics related to machine learning in light of the practical pro

cesses that make them exist could lead to considering the resurrected prom-

ises of artificial intelligence through a new lens: What are the costs of this

intelligence? How is it artificial? What are its inherent limits? These are

urgent topics to be considered at the ground level, not only to fuel contro-

versies but also, perhaps (and always temporarily), to close them.

For now, we are still far from such a generalized sociology of algorithms

this book hopes to suggest. We are only at the very beginning of a road that,

if we want to democratically integrate the ecology of algorithms into the

collective world, is a very long one. With this book, beyond the presented

elements that, I hope, have some value in themselves, one can also see an

invitation to pursue the investigation of the mundane work underlying the

formation and circulation of algorithms—an open-ended and amendable

constitution, in short.

The MIT Press January 2021

The MIT Press January 2021

actant  designates any particular human or nonhuman entity. The notion was devel-

oped by semiotician Algirdas Julien Greimas before being taken up by Bruno Latour

(2005) to expand agency to nonhuman actors and ground his sociological theory,

often labeled “actor-network theory.”

algorithm  is what this book tries to define in an action-oriented way. In view of the

inquiry’s empirical results, algorithms may be considered, but certainly not reduced

to, uncertain products of ground-truthing, programming, and formulating activities.

algorithmic drama  refers to the impasse threatening critical studies of algorithms.

By mainly considering algorithms from a distance and in terms of their effects, these

studies take the risk of being stuck in a dramatic loop: Algorithms are powerful because

they are inscrutable, because they are powerful, because they inscrutable, and so on.

The term “algorithmic drama” was initially proposed by Malte Ziewitz (2016).

association  refers to a connection, or a link, made between at least two actants. An

association is an event from which emanates a difference that a text can, sometimes,

partially account for.

BRL  is the acronym of Ballistic Research Laboratory, a now-dismantled center dedi-

cated to ballistics research for the US Army that was located at Aberdeen Proving

Ground, Maryland. The BRL played an important role in the history of electronic

computing because the ENIAC project was initially launched to accelerate the analy

sis of ballistic trajectories carried out within the BRL’s premises—in collaboration

with the Moore School of Electrical Engineering at the University of Pennsylvania.

CCD and CMOS  are acronyms for charge-coupled device and complementary metal-oxide

semiconductor, respectively. Through the translation of electromagnetic photons into

electron charges as well as their amplification and digitalization, these devices enable

the production of digital images constituted of discrete square elements called pixels.

Organized according to a coordinate system allowing the identification of their loca-

tions within a grid, these discrete pixels—to which are typically assigned eight-bit

red, green, and blue values in the case of color images—allow computers equipped

Glossary

The MIT Press January 2021

292	 Glossary

with dedicated programs to process them. Both CCD and CMOS are central parts of

digital cameras. Although they are still the subject of many research efforts, they are

now industrially produced and supported by many norms and standards.

chain of reference  is a notion initially developed by Bruno Latour and Steve Wool-

gar (1986) to address the construction of scientific facts. Closely linked with the

notion of inscription, a chain of reference allows the maintenance of constants,

thus sometimes providing access to that which is distant. Making chains of refer-

ence visible, for example, by describing scientific instrumentations in laboratories

allows appreciation of the materiality required to produce certified information

about remote entities.

cognition  is an equivocal term, etymologically linked with the notion of knowledge

as it derives from the Latin verb cognōscere (get to know). To deflate this notion,

which has become hegemonic largely for political reasons, this inquiry—in the wake

of the work of Simon Penny (2017)—prefers to attribute to it the more general pro

cess of making sense.

cognitivism  is a specific way to consider cognition. For contingent historical rea-

sons, the general process of making sense has progressively been affiliated with the

process of gaining knowledge about remote entities without taking into account the

instrumentation enabling this gain. The metaphysical division between a knowing

subject and a known object is a direct consequence of this nonconsideration of the

material infrastructure involved in the production of knowledge. This, in turn, has

forced cognitivism to amalgamate knowledge and reality, thus making the adaequa-

tio rei et intellectus the unique, though nonrealistic, yardstick of valid statements and

behaviors.

collective world  is the immanent process of what is happening. It is close to Wittgen-

stein’s definition of the world as “everything that is the case” (Wittgenstein 1922).

The adjective “collective” seeks to underlie the multiplicity of entities involved in

this generative process.

Command Window  is a space within the Matlab integrated development environment

(IDE) that allows programmers to see the results of their programming actions on

their computer terminal.

composition  is the focus of this inquiry; that in which it is trying, at its own level,

to participate. Close to compromise, composition expresses a desire for commonal-

ity without ignoring the creative readjustments such a desire constantly requires.

Composition is an alternative to modernity in that its desire for universality is based

on comparative anthropology, thus avoiding—at least potentially—the traps of

ethnocentrism.

computationalism  is a type of cognitivist metaphysics for which perceptual inputs

take the shape of nervous pulses processed by mental models that, in turn, output

The MIT Press January 2021

Glossary	 293

a different numerical value to the nervous system. According to computationalism,

agency is considered the output of both perception and cognition processes and

takes the form of bodily movements instructed by nervous pulses. This conception of

cognition is closely related to the computational metaphor of the mind that establishes

an identity relationship between the human mind and (programmed) computers.

constitution  refers to both a process and a document. The notion is here preferred to

the more traditional one of construction because it preserves a fundamental tension

of sociological ventures: to describe and contest. The term “constitution” reminds us

that a reality comes into being to the detriment of another.

course of action  is an accountable sequence of gestures, looks, speeches, move-

ments, and interactions between human and nonhuman actants whose articulations

sometimes end up producing something (a piece of steel, a plank, a court decision, an

algorithm, etc.). Following the seminal work of Jacques Theureau, courses of action

are the building blocks of this inquiry. The notion is closely linked to that of activity

that, in this book, is understood as a set of intertwining courses of actions shar-

ing common finalities. The three parts of this book are all adventurous attempts to

present activities taking part in the formation of algorithms; hence their respective

gerund titles: ground-truthing, programming, formulating.

CSF  is the acronym of Computer Science Faculty. It is the department to which the

Lab belongs. The CSF is part of what I call, for reasons of anonymity, the European

technical institute (ETI).

digital signal  is, in its technical understanding, represented by n number of dimen-

sions depending on the independent variables used to describe the signal. A sampled

digital sound is, for example, typically described as a one-dimensional signal whose

dependent variables—amplitudes—vary according to time (t); a digital image is typi-

cally described as a two-dimensional signal whose dependent variables—intensities—

vary according to two axes (x, y) while audiovisual content will be described as a

three-dimensional signal with independent variables (x, y, t).

Editor  is a space within the Matlab integrated development environment (IDE) allow-

ing a programmer to inscribe characters capable of triggering—with the help of an

interpreter—electric pulses to compute digital data in desired ways. It is part of the

large family of source-code editors that can be stand-alone applications or functional-

ities built into larger software environments.

EDVAC  is the acronym of Electronic Discrete Variable Automatic Computer. This clas-

sified project was launched in August 1944 as the direct continuation of the ENIAC

project at the Moore School of Electrical Engineering. The EDVAC played an impor

tant role in the history of electronic computing because it was the subject of an

influential report written by John von Neumann in 1945. This unfinished report,

entitled First Draft of a Report on the EDVAC, laid the foundations for what would

later be called the von Neumann architecture.

The MIT Press January 2021

294	 Glossary

ENIAC  is the acronym of Electronic Numerical Integrator and Computer. This classi-

fied project was launched in April 1943 under the direction of John Mauchly and

John Presper Eckert at the Moore School of Electrical Engineering. It initially aimed

to accelerate the production of firing tables required for long-distance weapons by

solving large iterative equations at electronic speed. Although innovative in many

ways, the limitations of ENIAC prompted Mauchly, Eckert, and later von Neumann

to launch another electronic computing project: the EDVAC.

flat laboratory  is a figure of style aiming to address the physical locations in which

mathematicians work to produce certified statements. Compared with, for example,

laboratories of molecular biology or high-energy physics, the instrumentation of

mathematical laboratories tends to take up less space. It is important here not to con-

fuse flatness with the mathematical concept of dimensionality often used to capture

and qualify the experience of flatness (or bulkiness). According to the point of view

adopted in this book, dimensionality should be considered a product of the relative

flatness of mathematical laboratories’ equipment.

formula  is a mathematical operation expressed in a generic scriptural form. The prac-

tical process of enrolling a formula to establish antecedence and posteriority among

sets of data is here called formulating.

ground truth  is an artifact that typically takes the shape of a digital database. Its

main function is to relate sets of input-data—images, text, audio—to sets of output-

targets—labeled images, labeled text, labeled audio. As ground truths institute prob

lems that not-yet-designed algorithms will have to solve, they also establish their

veracity. As this book indicates, many ground truths do not preexist and thus need to

be constructed. The collective processes leading to the design and shaping of ground

truths heavily impact the nature of the algorithms they help constitute, evaluate,

and compare.

image processing  is a subfield of computer science that aims to develop and pub-

lish computerized methods of calculation capable of processing CDD- and CMOS-

derived pixels in meaningful ways. Because digital images can be described as

two-dimensional signals whose dependent variables—intensities—vary according

to two axes (x, y), image processing is also sometimes called “two-dimensional sig-

nal processing.” When it focuses on recognition tasks, it is generally called “image

recognition.”

inscription  is a special category of actant that is durable (it lives on beyond the here and

now of its instantiation), mobile (it can move from one place to another without being

too much altered), and re-presentable (it can—together with suitable infrastructures—

carry, transport, and display properties that are not only its own). Due to these capaci-

ties, inscriptions greatly participate in shaping the collective world.

INT  is the abbreviation for interpreter, a complex computer program that translates

inscriptions written in high-level programming language into an abstract syntax tree

The MIT Press January 2021

Glossary	 295

before establishing communication with the computer’s hardware. Whenever an

interpreter cannot complete its translation, the high-level program cannot perform

fully.

Lab  stands for the computer science academic laboratory that is the field site of the

present ethnographic inquiry. The Lab specializes in digital image processing, and

its members—PhD students, postdocs, invited researchers, professors—spend a sig-

nificant amount of their time trying to shape new algorithms and publish them in

peer-reviewed journals and conferences.

laboratory study  is an STS-inspired genre of ethnographic work that consists in

accounting for the mundane work of scientists and technologists. Borrowing from

anthropology, it implies staying within an academic or industrial laboratory for a

relatively long period of time, collaborating with its members, becoming somewhat

competent, and taking a lot of notes on what is going on. At some point, eventu-

ally, it also implies leaving the laboratory—at least temporarily—to further compile

and analyze the data before submitting, finally, a research report on the scrutinized

activity.

machine learning  is not only a class of statistical methods but also, and perhaps

above all, a lived experience consisting of automating parts of formulating activities.

However, this algorithmic delegation for algorithmic design relies on increasing, and

often invisibilized, ground-truthing and programming efforts.

mathematics  is, in this book, considered integral part of scientific activity. It thus

typically consists of producing certified facts about objects shaped or discovered

with the help of instruments and devices within (flat) laboratories.

Matlab  is a privately held mathematical software for numerical computing built

around its own interpreted high-level programming language. Because of its agil-

ity in designing problems of linear algebra, Matlab is widely used for research and

industrial purposes in computer science, electrical engineering, and economics. Yet

as Matlab works mainly with an interpreted programming language, its programs

have to be translated by an interpreter (INT) before interacting with the hardware.

This interpretative step makes it less efficient for processing heavy matrices than, for

example, programs directly written in compiled languages such as C or C++.

model  is a term that is close to an algorithm. In this book, the distinction between

an algorithm and a model can only be retrospective: If what is called a “model”

derives from, at least, ground-truthing, programming, and formulating activities, it

is considered an algorithm.

problematization  is, in this book, the collective process of establishing the terms of

a problem. Building on Science and Technology Studies, analyzing problematization

implies describing the way questions are framed, organized, and progressively trans-

formed into issues for which solutions can be proposed.

The MIT Press January 2021

296	 Glossary

process thought  is an ontological position supported by a wide and heterogeneous

body of philosophical works that share similar sensibilities toward associations—

sometimes also called relations. For process thinkers, what things are is what they

become in association to other entities, the association itself being part of the pro

cess. The emphasis is put on the “how” rather than the “what”: instead of asking

what is something, process thinkers would rather ask how something becomes. This

ontology is about continuous performances instead of binary states.

PROG  specifically refers, in this book, to a Matlab computer program aiming to cre-

ate matrices whose pixel-values correspond to the number of rectangles drawn by

human crowdworkers on pixels of digital images.

program  is a document whose structure and content, when adequately articulated,

makes computers compute data. The practical process of writing a computer program

is called programming.

re-presentation  is the presentation of something again. Inscriptions are common re-

presentations in that they display properties of other entities over. Re-presentations,

in this book, should not be confused with representations (without the hyphen), a

term that refers to the solution found by cognitivist authors to overcome the distinc-

tion between extended things (res extensa) and thinking things (res cogitans).

saliency detection  is a subfield of image processing that aims to detect what attracts

people’s attention within digital images. Because the topic of these detection efforts

is extremely equivocal, saliency detection is a field of research that shows dynam-

ics that may go unnoticed in more traditional subfields such as facial or object

recognition.

scenario  refers to a narrative operating a triple shifting out toward another place,

another time, and other actants while having a hold on its enunciator. As performa-

tive narrative resources, scenarios are of crucial importance for programming activities

because they institute horizons on which programmers can hold—while being held

by them—and establish, in turn, the boundaries of computer programming episodes.

Science and Technology Studies (STS)  are a subfield of social science and sociology

that aims to document the co-construction of science, technology, and the collec-

tive world. What loosely connects the practitioners of this heterogeneous research

community is the conviction that science is not just the expression of a logical

empiricism, that knowledge of the world does not preexist, and that scientific and

technological truths are dependent on collective arrangements, instrumentations,

and dynamics.

script  commonly refers to a small computer program. Many interlinking scripts and

programs calling on each other typically form a software. The notion should not be

confused with Madeleine Akrich’s (1989) “scripts” that, in this book, are close to the

notion of scenario.

The MIT Press January 2021

Glossary	 297

sociology  is, in this book, the activity of describing associations (socius) by means of

specialized texts (logos). It aims to help understand what is going on in the collective

world and better compose with the heterogeneous entities that populate/shape it. In

this book, sociology is differentiated from social science that is considered the scien-

tific study of an a priori postulated aggregate, generally called the social (or society).

technical detour  is a furtive and difficult-to-record experience that takes the form

of a zigzag: Thanks to unpredictable detours, a priori distant entities become the

missing pieces in the realization of a project. Technical detours—as conceptualized

by Bruno Latour (2013)—involve a form of delegation to newly enrolled entities.

They also imply forgetting their brief passages once the new composition has been

established.

translation  is a work by which actants modify, move, reduce, transform, and articu-

late other actants to align them with their concerns. This is a specific type of asso-

ciation that produces differences that can, with an appropriate methodology, be

reflected in a text. The notion was initially developed by Michel Serres (1974) before

being taken up by Madeleine Akrich, Michel Callon, and Bruno Latour to ground

their sociologie de la traduction, which I call sociology here.

trial  is a testing event whose outcome has a strong impact on the becoming of an

actant. If the trial is overcome, the actant may manage to associate with other actants,

with this new association becoming, in turn, more resistant. If the trial is not over-

come, the actant will lose some of its properties, sometimes to point of disappearing.

visibility/invisibility  are relative states of work practices. These variable states are

products of visibilization, or invisibilization, processes. If complete invisibility of

work practices is not desirable, complete visibility is not either. In this book, I have

chosen public controversies as indicators of negative invisibilities, suggesting in

turn the launching of visibilization processes by means of, for example, sociological

inquiries.

The MIT Press January 2021

The MIT Press January 2021

Introduction

1. ​ Process thought refers to a wide and heterogeneous body of philosophical works

that share similar sensibilities toward associations, sometimes also called relations

(Barad 2007; Butler 2006; Dewey [1927] 2016; James [1912] 2003; Latour 1993b, 2013;

Mol 2002; Pickering 1995; Serres 1983; Whitehead [1929] 1978). For process thinkers,

as Introna put it (2016, 23), “relations do not connect (causally or otherwise) pre-

existing entities (or actors), rather, relations enact entities in the flow of becoming.”

What things are is what they become in association to other entities, the association

itself being part of the process. The emphasis is then put on the “how” rather than the

“what”: instead of asking what is something, process thinkers would rather ask how

something becomes. This ontology is then about continuous performances instead of

binary states. The present volume embraces this ontology of becoming.

2. ​ At the end of the book, a glossary briefly defines technical terms used for this

investigation (e.g., actant, collective world, constitution, course of action).

3. ​ This unconventional conception of the social has been initially developed and

popularized by Madeleine Akrich, Michel Callon, and Bruno Latour at the Centre

de Sociologie de l’Innovation (Akrich, Callon, and Latour 2006; Callon 1986). It is

important to note that even though this theoretical standpoint has somewhat made

its way through academic research, it remains shared among a minority of scholars.

4. ​ As pointed out by Latour (2005, 5–6), the Latin root socius that denotes a com-

panion—an associate—fits well with the conception of the social as what emanates

from the association among heterogeneous entities.

5. ​ What connects the practitioners of the heterogeneous research community of

Science and Technology Studies is the conviction that science is not just the expres-

sion of a logical empiricism; that knowledge of the world does not preexist; and

that scientific and technological truths are dependent on collective arrangements,

instrumentations, and dynamics (Dear and Jasanoff 2010; Jasanoff 2012). For a com-

prehensive introduction to STS, see Felt et al. (2016).

Notes

The MIT Press January 2021

300	 Notes

6. ​ It is important to note that this lowering of capacity to act does not concern

the sociology of attachments that precisely tries to document the appearance of

delighted objects, as developed by Antoine Hennion (2015, 2017). At the end of

chapter 5, I will discuss the important notion of attachment.

7. ​ The notion of “composition”—at least as proposed by Latour (2010a)—is, in

my view, an elegant alternative to the widely used notion of “governance.” Both

nonetheless share some characteristics. First, both notions suppose heterogeneous

elements put together—collectives of humans, machines, objects, companies, and

institutions trying to collaborate and persevere on the same boat. Second, they

share the desire of a common world while accepting the irreducibility of its parts:

for both notions, the irreducible entities that constitute the world would rather live

in a quite informed community aware of different and competitive interests than

in a distrustful and whimsical wasteland. Both composition and governance thus

share the same basic topic of inquiry: how to step-by-step transform heterogeneous

collectives into heterogeneous common worlds? Third, they both agree that traditional

centralized decisional powers can no longer achieve the constitution of common

worlds; to the verticality of orders and injunctions, composition and governance

prefer the horizontality of compromises and negotiations. Yet they nonetheless

differ on one crucial point: if governance still carries the hope of a smooth—yet

heterogeneous—cosmos, composition promotes the need of a laborious and con-

stantly readjusted kakosmos (Latour 2010a, 487). In other words, if control is still an

option for governance, composition is committed to the always surprising “made to

do” (Latour 1999b). It is this emphasis on the constant need for creative readjust-

ments that makes me prefer the notion of “composition” over “governance.”

8. ​ The next two paragraphs derive from Jaton (2019, 319–320).

9. ​ The single term “algorithm” became increasingly common in the Anglo-American

critical literature from the 2000s onward. It would be interesting to learn more about

the ways by which the term “algorithm” has come to take over other alternative terms

(such as “software,” “code,” or “software-algorithm”) that were also synonymously

used in the past, especially in the 1990s.

10. ​ In Jaton and Vinck (submitted), we closely consider the specific dynamic of the

recent politicization of algorithms.

11. ​ This controversy has been thoroughly analyzed in Baya-Laffite, Beaude, and

Garrigues (2018).

12. ​ As we will see in the empirical chapters of this book, it is not clear whether we

should talk about computer scientists or engineers. But as the academic field of com-

puter science is now well established, I choose to use the generic term “computer

scientist” to refer to those who work every day to design surprising new algorithms.

13. ​ For thorough discussions on this topic, see Denis (2018, 83–95).

The MIT Press January 2021

Notes	 301

14. ​ Does it mean that “objective knowledge” is impossible? As we will see in chap-

ters 4, 5, and 6, drawing such a conclusion is untenable: despite the irremediable

limits of the inscriptions on which scientific practices heavily rely, these practices

nonetheless manage to produce certified objective knowledge.

15. ​ In their 2004 paper, Law and Urry build upon an argument initially developed

by Haraway (1992, 1997).

16. ​ This partly explains some hostile reactions of scientists regarding STS works on

the “construction of scientific facts.” On this topic, see Latour (2013, 151–178).

17. ​ For recent examples, see Cardon (2015) and Mackenzie (2017).

18. ​ In chapter 5, I will discuss at greater length the crucial importance of scientific

literature for the formation of certified knowledge.

19. ​ The term “infra-ordinary,” as opposed to “extra-ordinary,” was originally pro-

posed by Pérec (1989). The term was later taken up in Francophone sociology, nota-

bly by Lefebvre (2013).

20. ​ See, for example, Bishop (2007), Cormen et al. (2009), Sedgewick and Wayne

(2011), Skiena (2008), and Wirth (1976). I will discuss some of these manuals in

chapter 1.

21. ​ However, it is crucial to remain alert to the performative aspects of manuals

and classes. This topic is well studied in the sociology of finance; see, for example,

MacKenzie, Muniesa, and Siu (2007) and Muniesa (2015).

22. ​ This also often concerns social scientists interviewing renowned computer scien-

tists (e.g., Seibel 2009; Biancuzzi and Warden 2009). As these investigations mainly

focus on well-respected figures of computer science whose projects have largely

succeeded, their results tend to be retrospective, summarized narratives occluding

uncertainties and fragilities. On some limitations of biographic interviews, see Bour-

dieu (1986). On the problematic habit of reducing ethnography to interviews, see

Ingold (2014).

23. ​ For a presentation of some of the reasons why scholars started to inquire within

scientific laboratory, see Doing (2008), Lynch (2014), and Pestre (2004).

24. ​ On some of the problematic, yet fascinating, dynamics of this rapprochement

between computer science and the humanities (literature, history, linguistics, etc.)

that gave rise to digital humanities, see Gold (2012), Jaton and Vinck (2016), and

Vinck (2016).

25. ​ Among the rare attempts to document computer science work are Bechmann

and Bowker (2019), Button and Sharrock (1995), Grosman and Reigeluth (2019),

Henriksen and Bechmann (2020), and Mackenzie and Monk (2004). I will come

back to some of these studies in the empirical chapters of the book.

The MIT Press January 2021

302	 Notes

26. ​ After a thorough review of the contemporary critical studies of algorithms,

Ziewitz (2016) warned that they could be about to reach a problematic impasse.

Roughly put, the argument goes as follows: by mainly considering algorithms from

a distance and in terms of their effects, critical studies are taking the risk of being

stuck in a dramatic loop, constantly rehashing that algorithms are powerful because

they are inscrutable, because they are powerful, because they inscrutable, and so on.

The present volume can be considered an attempt at somewhat preventing such a

drama from taking hold. In the conclusion, when I clarify the political aspect of this

inquiry, I come back to this notion of algorithmic drama.

27. ​ Theureau’s work is unique in many ways. Building on the French ergonomics

tradition (Ombredane and Faverge 1955) and critical readings of Newell and Simon’s

(1972) cognitive behaviorism as well as Varela’s notion of “enactive cognition”

(discussed in chapter 3), he has gradually proposed a simple yet effective defini-

tion of a course of action as an “observable activity of an agent in a defined state,

actively engaged in a physically and socially defined environment and belonging to

a defined culture” (Theureau 2003, 59). His analyses of courses of action involved in

traffic management (Theureau and Filippi 2000), nuclear reactor control (Theureau

et al. 2001), and musical composition (Donin and Theureau 2007) has led him to

propose the notion of “courses-of-action centered design” for ergonomic studies.

28. ​ At the beginning of chapter 4, I will briefly consider the problem of “representa-

tiveness.”

Chapter 1

1. ​ The general issue subtending my research has not fundamentally changed since

the date at which I was awarded the research grant.

2. ​ One of the particularities of the CSF was its international focus. During the official

events I attended, deans regularly put forward the CSF’s capacity to attract foreign

students and researchers. This was especially true in the case of the Lab where I was

the only “indigenous” scientific collaborator for nearly a year. The lingua franca was

in line with this international environment; even though the Lab was located in

a French-speaking region, most interactions, presentations, and documents were in

English.

3. ​ The history of the development of the charge-coupled device has been docu-

mented, though quite partially, in Seitz and Einspruch (1998, 212–228) and Gertner

(2013, 250–265).

4. ​ For an accessible introduction to CCDs and image sensors, see Allen and Trian-

taphillidou (2011, 155–173).

5. ​ CMOS is a more recent variant of CCD where each pixel contains a photodetector

and an amplifier. This feature currently allows significant size and power reduction

The MIT Press January 2021

Notes	 303

of image sensors. This is one of the reasons why CMOSs now equip most portable

devices such as smartphones and compact cameras.

6. ​ It is commonly assumed that the term pixel, as a contraction of “picture ele

ment,” first appeared in a 1969 paper from Caltech’s Jet Propulsion Lab (Leighton

et al. 1969). The story is more intricate than that as the term was regularly used in

emergent image-processing communities thoughout the 1960s. For a brief history of

the term pixel, see Lyon (2006).

7. ​ A digital signal is represented by n number of dimensions depending on the

independent variables used to describe the signal. A sampled digital sound is, for

example, typically described as a one-dimensional signal whose dependent variables—

amplitudes—vary according to time (t); a digital image is typically described as a two-

dimensional signal whose dependent variables—intensities—vary according to two

axes (x, y), whereas audio-visual content will be described as a three-dimensional signal

with independent variables (x, y, t). For an accessible introduction to digital signal

processing, see Vetterli, Kovacevic, and Goyal (2014).

8. ​ It was not the only research focus of the Lab. Several researchers also worked on

CCD/CMOS architectures and sensors.

9. ​ It is important to note that for digital image processing and recognition to become

a major subfield of computer science, digital images first had to become stable enti-

ties capable of being processed by computer programs—a long-standing research

and development endeavor. Along with the development, standardization, and

industrial production of image sensors such as CCDs and, later, CMOSs, theoretical

works on data compression—such as those of O’Neal Jr. (1966) on differential pulse

code modulation; Ahmed, Natarajan, and Rao (1974) on cosine transform; or Gray

(1984) on vector quantization—have first been necessary. The later enrollment of

these works for the definition of the now-widespread International Organization for

Standardization norm JPEG, approved in 1993, was another decisive step: from that

moment, telecommunication providers, software developers, and hardware manu-

facturers could rely on and coordinate around one single photographic coding tech-

nique for digitally compressed representations of still images (Hudson et al. 2017).

During the late 1990s, the growing distribution of microcomputers, their gradual

increase in terms of processing power, and the development and maintenance of

web technologies and standards have also greatly contributed to establishing digital

image processing as a mainstream field of study. The current popularity of image

processing for research, industry, and defense is thus to be linked with the progres-

sive advent of multimedia communication devices and the blackboxing of their fun-

damental components operating now as standard technological infrastructure.

10. ​ According to Japan-based industry association Camera & Imaging Products

Association (to which, among others, Canon, Nikon, Sony, and Olympus belong),

sales of digital cameras have dropped from 62.9 million in 2010 to fewer than

The MIT Press January 2021

304	 Notes

24.25 million in 2017 (Statista 2019). However, according to estimates generated by

InfoTrends and Bitkom, the number of pictures taken worldwide increased from 660

billion to 1,200 billion over the same period (Richter 2017). This discrepancy is due,

among other things, to the increasing sophistication of smartphone cameras as well

as the popularity and sharing functionalities of social-media sites such as Instagram

and Facebook (Cakebread 2017).

11. ​ For example, Google, Amazon, Apple, Microsoft, and IBM all propose applica-

tion programming interface products for image recognition (respectively, Cloud

Vision, Amazon Rekognition, Apple Vision, Microsoft Computer Vision, and Watson

Visual Recognition).

12. ​ According to 2011 documents obtained by Edward Snowden, the National

Security Agency intercepted millions of images per day throughout the year 2010 to

develop computerized tracking methods for suspected terrorists (Risen and Poitras

2014). Chinese authorities also heavily invest in facial recognition for security and

control purposes (Mozur 2018).

13. ​ See, for example, International Journal of Computer Vision, IEEE Transactions on

Pattern Analysis and Machine Intelligence, IEEE Transactions on Image Processing, or Pat-

tern Recognition.

14. ​ See, for example, IEEE Conference on Computer Vision and Pattern Recogni-

tion, European Conference on Computer Vision, IEEE International Conference on

Computer Vision, or IEEE International Conference on Image Processing.

15. ​ Giving an example of the close relationships between academic and industrial

worlds regarding image-processing algorithms, Jordan Fisher—chief executive officer

of Standard Cognition, a start-up that specializes in image recognition for autono-

mous checkout—says in a recent TechCrunch article (Constine 2019): “It’s the wild

west—applying cutting-edge, state-of-the-art machine learning research that’s hot

off the press. We read papers then implement it weeks after it’s published, putting

the ideas out into the wild and making them production-worthy.”

16. ​ In 2016 and 2017, papers from Apple and Microsoft research teams won the

best-paper award of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, the most prestigious conference in image processing and recognition. More-

over, in 2018, Google launched Distill Research Journal, its own academic journal

aiming at promoting machine learning in the field of image and video recognition.

17. ​ This is for example the case in Knuth (1997a) where the author starts by recall-

ing that “algorithm” is a late transformation of the term “algorism” that itself

derives from the name of famous Persian mathematician Abū ‘Abd Allāh Muham-

mad ibn Mūsa al-Khwārizmi—literally, “Father of Abdullah, Mohammed, son of

Moses, native of Khwārizm,” Khwārizm referring in this case to a region south of

the Aral Sea (Zemanek 1981). Knuth then specifies that from its initial acceptation

The MIT Press January 2021

Notes	 305

as the process of doing arithmetic with Arabic numerals, the term algorism gradually

became corrupted: “as explained by the Oxford English Dictionary, the word ‘passed

through many pseudo-etymological perversions, including a recent algorithm, in

which it is learnedly confused’ with the Greek root of the word arithmetic” (Knuth

1997a, 2).

18. ​ See, for example, the (very) temporary definition of algorithms by Knuth (1997,

4): “The modern meaning for algorithm is quite similar to that of recipe, process,

method, technique, procedure, routine, rigmarole.”

19. ​ See, for example, Sedgewick and Wade’s (2011, 3) definition of algorithms as

“methods for solving problems that are suited for computer implementation.”

20. ​ See also Cormen et al.’s (2009, 5) definition: “A well-defined computational pro-

cedure that takes some value, or set of values, as input and produces some value, or

set of values, as output [being] thus a sequence of computational steps that transform

the input into the output.”

21. ​ See also Dasgupta, Papadimitriou, and Vazirani’s (2006, 12) phrasing: “When-

ever we have an algorithm, there are three questions we always ask about it: 1. Is it

correct? 2. How much time does it take, as a function of n? 3. And can we do better?”

And also Skiena (2008, 4): “There are three desirable properties for a good algorithm.

We seek algorithms that are correct and efficient, while being easy to implement.”

Chapter 2

1. ​ This chapter expands Jaton (2017). I thank Geoffrey Bowker, Roderic Crooks, and

John Seberger for fruitful discussions about some of its topics.

2. ​ Excerpts in quotes are literal transcriptions from audio recordings, slightly reworked

for reading comfort. Excerpts not in quotes are retranscriptions from written notes

taken on the fly.

3. ​ In chapter 3, I critically discuss the computational metaphor of the mind on

which many cognitive studies rely.

4. ​ Studies on attention had already been engaged before the 1970s, notably through

the seminal work of Neisser (1967) who suggested the existence of a pre-attentive

stage in the human visual processing system.

5. ​ Another important neurobiological model of selective attention method was pro-

posed by Wolfe, Cave, and Franzel (1989). This model of selective attention method

later inspired competing low-level feature computational models (e.g., Tsotsos 1989;

Tsotsos et al. 1995).

6. ​ The class of algorithms that calculates on low-level features quickly became

interesting for the development of autonomous vehicles for which real-time image

The MIT Press January 2021

306	 Notes

processing was sought (Baluja and Pomerleau 1997; Grimson 1986; Mackworth and

Freuder 1985).

7. ​ Different high-level detection algorithms can nonetheless be assembled as mod-

ules in one same program that could, for example, detect faces and cars and dogs,

and so on.

8. ​ At that time, only two saliency-detection algorithms were published, in Itti, Koch,

and Niebur (1998) and Ma and Zhang (2003). But the ground truths used for the

design and evaluation of these algorithms were similar to those used in laboratory

cognitive science. The images of these ground truths were, for example, sets of dots

disrupted by a vertical dash. As a consequence, if these first two saliency-detection

algorithms could, of course, process natural images, no evaluations of their perfor

mances on such images could be conducted.

9. ​ Ground truths assembled by computer science laboratories are generally made

available online in the name of reproducible research (Vandewalle, Kovacevic, and

Vetterli 2009). The counterpart to this free access is the proper citation of the papers

in which these ground truths were first presented.

10. ​ An API, in its broadest sense, is a set of communication protocols that act as an

interface among several computer programs. If APIs can take many different forms

(e.g., hardware devices, web applications, operating systems), their main function

is to stabilize and blackbox elements so that other elements can be built on top of

them.

11. ​ For a condensed history of contingent work, see Gray and Suri (2019, 48–63).

On what crowdsourcing does to contemporary capitalism, see also Casilli (2019).

12. ​ As Gray and Suri (2019, 55–56) put it: “Following a largely untested manage-

ment theory, a wave of corporations in the 1980s cut anything that could be defined

as ‘non-essential business operations’—from cleaning offices to debugging software

programs—in order to impress stockholders with their true value, defined in terms

of ‘return on investment’ (in industry lingo, ROI) and ‘core competencies.’ … Stock-

holders rewarded those corporations that were willing to use outsourcing to slash

costs and reduce full-time-employee ranks.”

13. ​ It is important to note, however, that on-demand work is not necessarily alien-

ating. As Gray and Suri (2019, 117) noted: “[on-demand work] can be transformed

into something more substantive and fulfilling, when the right mixture of work-

ers’ needs and market demands are properly aligned and matched. It can rapidly

transmogrify into ghost work when left unchecked or hidden behind software

rather than recognized as a rapidly growing world of global employment.” Concrete

ways to make crowdsourcing more sustainable have been proposed by the National

Domestic Workers Alliance and their “Good Work Code” quality label. On this

topic, see Scheiber (2016).

The MIT Press January 2021

Notes	 307

14. ​ However, this shared unawareness toward the underlying processes of crowd-

sourcing may be valued and maintained for identity reasons, for as Irani (2015, 58)

noted: “The transformation of workers into a computational service … serves not

only employers’ labor needs and financial interests but also their desire to maintain

preferred identities; that is, rather than understanding themselves as managers of

information factories, employers can continue to see themselves as much-celebrated

programmers, entrepreneurs, and innovators.”

15. ​ Matlab is a privately held mathematical software for numerical computing built

around its own interpreted high-level programming language. Because of its agility

to design problems of linear algebra—all integers being considered scalars—Matlab

is widely used for research and industrial purposes in computer science, electri-

cal engineering, and economics. Yet, as Matlab works mainly with an interpreted

programming language—just like the language Python that is now Matlab’s main

competitor for applied research purposes—its programs have to be translated into

machine-readable binary code by an interpreter in order to make the hardware effec-

tively compute data. This complex interpretative step makes it less efficient for pro

cessing heavy matrices than, for example, programs directly written in compiled

languages such as C or C++. For a brief history of Matlab, see Haigh (2008).

16. ​ In chapter 6, we will more thoroughly consider the relationship between ground-

truthing and formulating activities.

17. ​ The services of the crowdsourcing company costed the Lab around US$950.

18. ​ The numerical features extracted from the training set were related, among

others, to “2D Gaussian function,” “spatial compactness,” “contrast-based filtering,”

“high-dimensional Gaussian filters,” and “element uniqueness.” In chapter 6, using

the case of the “2D Gaussian function,” I will deal with these formulating practices.

19. ​ This can be read as a mild critique of the recent, growing, and important liter

ature on algorithm biases. Authors such as Obermeyer et al. (2019), Srivastava and

Rossi (2018), and Yapo and Weiss (2018), among others, show that the results of

many algorithms are indeed biased by the preconceptions of those who built them.

Though this statement is, I believe, completely correct—algorithms derive from

problematization practices influenced by habits of thought and action—it also runs

the risk of confusing premises with consequences: biases are not the consequences

of algorithms but, perhaps, are one of the things that make them come into exis-

tence. Certain biases expressed and materialized by ground truths can and, in my

opinion, should be considered harmful, unjust, and wrong; racial and gender biases

have, for example, to be challenged and disputed. However, the outcome of these

disputes may well be other biases expressed in other potentially less harmful, unjust,

and incorrect ground truths. As far as algorithms are concerned, one bias calls for

another; hence the importance of asserting their existence and making them visible

in order to, eventually, align them with values one wishes algorithms to promote.

The MIT Press January 2021

308	 Notes

20. ​ Edwards (2013) uses the term “data image” instead of “ground truth.” But I

assume that both are somewhat equivalent and refer to digital repositories organized

around data whose values vary according to independent variables (that yet need to

be defined).

21. ​ At the end of chapter 6, I will come back to the topic of machine learning and

its contemporary labeling as “artificial intelligence.”

22. ​ This discussion has been reconstructed from notes in Logbook 3, May–October 2014.

23. ​ However, it is interesting to note that BJ blames the reviewers of important

conferences in image processing. According to him, the reviewers tend to privilege

papers that make “classical improvement” over those that solve—and thus define—

new problems. At any rate, there was obviously a problem in the framing of the

Group’s paper as the reviewers were not convinced by its line of argument. As a con-

sequence, the algorithm could not circulate within academic and industrial com-

munities and its existence remained, for a while, circumscribed to the Lab’s servers.

II

1. ​ In computer science and engineering, it is indeed well admitted that computer

programming practices are difficult to conduct and their results very uncertain. On

this well-documented topic, see Knuth (2002), Rosenberg (2008), and in a more lit-

erary way, Ullman (2012a, 2012b).

Chapter 3

1. ​ My point of departure is arbitrary in the sense that I could have started some-

where else, at a different time. Indeed, as Lévy (1995) showed, the premises of what

will be called “von Neumann architecture of electronic computers” can be found

not only in Alan Turing’s 1937 paper but also in the development of the office-

machine industry during the 1920s, but also in the mechanic-mathematical works

of Charles Babbage during the second half of the nineteenth century, but also in

eighteenth century’s looms programmed with punched cards, and so on, at least

until Leibniz’s work on binary arithmetic and Pascal’s calculating machine. The

history of the computer is fuzzy. As it only appears “after a cascade of diversions

and reinterpretations of heterogeneous materials and devices” (Lévy 1995, 636), it

is extremely difficult—in fact, almost impossible—to propose any unentangled filia-

tion. Fortunately, this section does not aim to provide any history of the computer:

It “just” tries to provide elements that, in my view, participated in the formation of

one specific and influential document: von Neumann’s report on the EDVAC.

2. ​ For a more precise account of the design of firing tables in the United States during

World War II, see Haigh, Priestley, and Rope (2016, 20–23) and Polachek (1997).

The MIT Press January 2021

Notes	 309

3. ​ More than their effective computing capabilities—they required up to several

days to be set up (Haigh, Priestley, and Rope 2016, 26) and their results were often

less accurate than those provided by hand calculations (Polachek 1997, 25–27)—an

important characteristic of differential analyzers was their capacities to attract com-

puting experts around them. For example, by 1940, MIT, the University of Penn-

sylvania, and the University of Manchester, England—three important institutions

for the future development of electronic computing—all possessed a differential

analyzer (Campbell-Kelly et al. 2013, 45–50; Owens 1986). On the role of differential

analyzers in early US-based computing research, see also Akera (2008, 38–45).

4. ​ The assembling of the numerous factors affecting the projectiles started at the test

range in Aberdeen where the velocities of the newly designed shells were measured

(Haigh, Priestley, and Rope 2016, 20).

5. ​ Although the differential equations defining the calculation of shells’ trajectories

are mathematically quite simple, solving them can be very complicated as one needs

to model air resistance varying in a nonlinear manner. As Haigh, Priestley, and

Rope (2016, 23) put it: “Unlike a calculus teacher, who selects only equations that

respond to elegant methods, the mathematicians at the BRL couldn’t ignore wind

resistance or assign a different problem. Like most differential equations formulated

by scientists and engineers, ballistic equations require messier techniques of numeri-

cal approximation.”

6. ​ Interesting to note that delay-line storage is originally linked to radar technology.

More precisely, one problem of the radar technology in 1942 was that cathode-ray

tube displays showed moving and stationary objects. Consequently, radar screens

translated the positions of planes, buildings, or forests in one same messy picture

extremely difficult to read. MIT’s radiation laboratory subcontracted the develop-

ment of a moving target indicator (MTI) to the Moore School in order to develop

a system that could filter radar signals according to their changing positions. This

was the beginning of delay-line storage technology at the Moore School, that at

first had nothing to do with computing (Akera 2008, 84–86; Campbell-Kelly et al.

2013, 69–74). Radar technology also significantly helped the design of British highly

confidential Colossus computer in 1943–1944 (Lévy 1995, 646).

7. ​ By 1942, in order to speed up the resolution of ballistic differential equations,

only a limited range of factors tended to be considered by human computers at the

BRL. By simplifying the equations, more firing tables could be produced and distrib-

uted, but the drawback was that their precision tended to decrease (Polachek 1997).

Of course, on the war front, once soldiers realized that the first volley was not ade-

quately defined, they could still slightly modify the parameters of the long-distance

weapon to increase its precision. Yet—and this is the crucial point—in between the

first volley and the subsequent ones, the opposite side had enough time to take

cover, hence making the overall long-distance shooting enterprise less effective. The

The MIT Press January 2021

310	 Notes

nerve of war was precisely the first long-distance volleys that, when accurate, could

lead to many casualties. By extension, then, the nerve of war was also, to a certain

extent, the ability to include more factors in the differential equations whose solu-

tions were printed out in firing table booklets (Haigh, Priestley, and Rope 2016, 25).

8. ​ Created in 1940, the National Defense Research Committee (NDRC) united the

research laboratories of the US Navy and the Department of War with hundreds of

US universities’ laboratory. The NDRC initially had an important budget to fund

applied research projects that could provide significant advantages on future battle-

fields. It also operated as an advisory organization as in the case of the ENIAC that

was considered nearly infeasible due to the important amount of unreliable vacuum

tubes it would require. On this topic, see Campbell-Kelly et al. (2013, 70–72).

9. ​ The history of this contract could be the topic of a whole book. For a nice presen

tation of its most important moments, see Haigh, Priestley, and Rope (2016, 17–33).

10. ​ Based on a proposal by Howard Aiken, the Harvard Mark 1 was developed by

IBM for Harvard University between 1937 and late 1943. Though computationally

slow, even for the standards of the time, it was an important computing system as

it expressed an early convergence of scientific calculation and office-machine tech-

nologies. For a more in-depth history of the Harvard Mark 1, see Cohen (1999).

11. ​ Though its shape varied significantly throughout its existence, the ENIAC was

fundamentally a network of different units (accumulators, multipliers, and function

tables). Each unit had built-in dials and switches. If adequately configured, these dials

and switches could define one single operation; for example, “clear the values of the

accumulator,” “transmit a number to multiplier number 3,” “receive a number,” and

so on. To start processing an operation, each configuration of dials and switches had to

be triggered by a “program line” wired directly to the specific unit. All these “program

lines” formed a network of wires connecting all the units for one specific series of oper-

ations. But as soon as another series of operations was required, the network of wires

had to be rearranged in order to fit the new configurations of dials and switches. For

more elements about the setup of ENIAC, see Haigh, Priestley, and Rope 2016 (35–57).

12. ​ Von Neumann tried to hire Alan Turing as a postdoctoral assistant at Princeton.

Turing refused as he wanted to return to England (MacRae 1999, 187–202).

13. ​ The Manhattan Project was, of course, highly confidential and this prevented

von Neumann from specifying his computational needs with the ENIAC team.

14. ​ As suggested by Akera (2008, 119–120) and Swade (2011), and further demon-

strated by Haigh, Priestley, and Rope (2014; 2016, 231–257), the notion of “stored

program” is a historical artifact: “the ‘stored program concept’ was never proposed

as a specific feature in the agreed source, the First Draft, and was only retroactively

adopted to pick out certain features of the EDVAC design” (Haigh, Priestley, and

Rope 2016, 256).

The MIT Press January 2021

Notes	 311

15. ​ Shortly after the distribution of von Neumann’s First Draft, Eckert and Mauchly

distributed a much longer—and far less famous—counter-report entitled Automatic

High-Speed Computing: A Progress Report on the EDVAC (Eckert and Mauchly 1945)

in which they put the emphasis on the idealized aspect the First Draft. The stakes

were indeed high for Eckert and Mauchly: if the idealized depiction of the EDVAC

by von Neumann was considered a realistic description of the engineering project,

no patent could ever be extracted from it. And this is exactly what happened. In

1947, the Ordnance Department’s lawyers decided that the First Draft was the first

publication on the project EDVAC, hence canceling the patents submitted by Eckert

and Mauchly in early 1946 (Haigh, Priestley, and Rope 2016, 136–152).

16. ​ This consideration of programming as an applicative and routine activity can

also be found in the more comprehensive reports von Neumann coauthored in 1946

and 1947 with Arthur W. Burks and Herman H. Goldstine at Princeton Institute

for Advanced Study (Burks, Goldstine, and von Neumann 1946; Goldstine and von

Neumann 1947). In these reports, and especially in the 1947 report entitled Planning

and Coding of Problems for an Electronic Computing Instrument, the implementation of

instruction sequences for scientific electronic calculations is carefully considered.

But while the logico-mathematical planning of problems to be solved is presented

as complex and “dynamic,” the further translation of this planning is mainly con-

sidered trivial and “static” (Goldstine and von Neumann 1947, 20). Programming

is presented, in great detail, as a linear process that is problematic during its initial

planning phase but casual during its implementation phase. What the report does

not specify—but this was not its purpose—is that errors in the modeling and plan-

ning phases become manifest in the implementation phase (as it was often the case

when the ENIAC was put in action), making empirical programming processes more

whirlwind than linear.

17. ​ In 1955, to alleviate the operating costs of the IBM 701 and the soon-to-be-

released IBM 704, several of IBM’s customers—among them Paul Armer of the RAND

Corporation, Lee Amaya of Lockheed Aircraft, and Frank Wagner of North American

Aviation—launched a cooperative association they named “Share.” This customer

association, and the many others that followed, greatly participated in the early cir-

culation of basic suites of programs. On this topic, see Akera (2001; 2008, 249–274).

18. ​ For a fine-grained historical account of this real-time computing project named

“Whirlwind” that was initially designed as a universal aircraft simulator, see Akera

(2008, 184–220).

19. ​ For more thorough accounts of the SAGE project, see Redmond and Smith

(1980, 2000), Jacobs (1986), Edwards (1996, 75–112), and Campbell-Kelly et al.

(2013, 143–166).

20. ​ According to Pugh (1995), this contract gave IBM a significant advantage on the

early computer market.

The MIT Press January 2021

312	 Notes

21. ​ In a nutshell, Thurstone Primary Mental Abilities (PMA) test was proposed

in 1936 by Louis Leon Thurstone, by then the first president of the Psychometric

Society. Originally intended for children, the test sought to measure intelligence

differentials using seven factors: word fluency, verbal comprehension, spatial visual-

ization, number facility, associative memory, reasoning, and perceptual speed. For a

brief history of the PMA test and psychometrics, see Jones and Thissen (2007).

22. ​ One important insight of the EDSAC project was to use the new concept of

program to initialize the system and make it translate further programs from non-

binary instructions into binary strings of zeros and ones. David Wheeler, one of

Maurice Wilkes’ PhD students, wrote in 1949 such very first program he called

“Initial Orders” (Richards 2005). This type of program whose function was to

transform other programs into binary (the only code cathode-ray tubes, magnetic

core, or microprocessors can interact with) were soon called “assemblers” and

cast to linguistic terms such as “translation” and “language” (Nofre, Priestley, and

Alberts 2014). During the 1950s, as multiple manufacturers invested in the elec-

tronic computer market, many different assemblers were designed, thereby creating

important problems of compatibility: as (almost) every new computer organized the

accumulator and multiplier registers slightly differently, a new assembler was gener-

ally required. The problem lay in the one-to-one relationship between an assembler

and its hardware. Since an assembler had one instruction for one hardware opera-

tion, every modification in the operational organization of the hardware required

a new assembler. Yet—and this was the crucial insight of Grace Hopper and then

John Backus from IBM (Campbell-Kelly et al. 2014, 167–188)—if, instead of a pro-

gram with a one-to-one relationship with the hardware, one could provide a more

complex program that would transform lines of code into another program with

somehow equivalent machine-instructions, one may be able to stabilize computer

programming languages since any substantial modification of the hardware could

be integrated within the “transformer” program that lay in between the program-

mer’s code and the hardware. This is the fundamental idea of compilers, programs

that take as input a program written in so-called high-level computer language

and outputs another program—often called “executable”—whose content can

interact with specific hardware. In the late 1950s, besides their greater readability,

a tremendous advantage of the first high-level computer programming languages

such as FORTRAN or COBOL over assembly language lay in their compilers whose

constant maintenance could compensate and “absorb” the frequent modifications

of the hardware. For example, if two different computers both had a FORTRAN

compiler—a crucial and costly condition—the same FORTRAN program could be

run on both computers despite their different internal organizations.

23. ​ Between 1964 and 1967, IBM invested heavily in the development of an operating

system for its computer System 360. The impressive backlogs, bugs, and overheads

of this colossal software project made Frederick Brooks—its former manager—call it

“a multi-million-dollar mistake” (Brooks 1975).

The MIT Press January 2021

Notes	 313

24. ​ In 1968, an article by cofounder of Informatics General Corporation Werner

Frank popularized the idea that the cost of software production will outpace the cost

of computer hardware in the near future (Frank 1968). Though speculative in many

respects, this claim was fairly reused and embellished by commentators until the

1980s. Though Frank himself later acknowledged that he unintentionally generated

a myth (Frank 1983), this story “reinforced a popular perception that programmer

productivity was lagging, especially compared to the phenomenal advances in com-

puter hardware” (Abbate 2012, 93).

25. ​ The topic of “logical statement performances” is recurrent in behavioral studies

of computer programming, especially during the 1970s. This has to do with a con-

troversy initiated by Edsger Dijkstra over the GOTO statement as allowed by high-

level computer programming languages such as BASIC or early versions of FORTRAN

(Dijkstra 1968). According to Dijkstra, these branch statements that create “jumps”

inside a program make the localization of errors extremely tedious and should thus

be avoided. He then proposed “structured programming,” a methodology that con-

sists in subdividing programs in shorter “modules” for more efficient maintenance

(Dijkstra 1972). Behavioral studies of computer programming in the 1970s typically

tried to evaluate the asserted benefits of this methodology.

26. ​ To prove his second incompleteness theorem, Gödel first had to show that any

syntaxic proposition could be expressed as a number. Turing’s 1937 demonstration

highly relied on this seminal insight. On the links between Gödel’s incompleteness

theorem and Turing’s propositions regarding the Entscheidungsproblem, see Dupuy

(1994, 22–30).

27. ​ Neural networks, particularly those defined as “deep” and “convolutional,”

have recently been the focus of much attention. However, it is important to note

that the notion of neural networks as initially proposed by McCulloch and Pitts

(who preferred to use the notion of “networks of neurons”) in their 1943 paper, and

later taken up by von Neumann in his 1945 report, is very different from its current

acceptance. As Cardon, Cointet, and Mazières (2018) have shown, McCulloch and

Pitts’s neural networks that were initially logical activation functions were worked

on by Donald O. Hebb (1949) who associated them with the idea of learning, which

was itself reworked by, among others, Frank Rosenblatt (1958, 1962) and his notion

of Perceptron. The progressive probabilization of the inference rules suggested by

Marvin Minsky (Minsky and Papert 1970), the works on the back-propagation algo-

rithm (Werbos 1974; LeCun 1985; Rumelhart, Hinton, and Williams 1986) and on

Boltzmann machines (Hinton, Sejnowski, and Ackley 1984) then actively partici-

pated in the association of the notions of “convolution” (LeCun et al. 1989) and,

more recently, “depth” (Krizhevsky, Sutskever, and Hinton 2012). The term “neural

network” may have survived this translation process but it now refers to very dif

ferent world-enacting procedures. At the end of chapter 6, I will consider this topic

related to machine learning and artificial intelligence.

The MIT Press January 2021

314	 Notes

28. ​ The division between “extended things” and “thinking things” derives, to a

large extent, from Cartesian dualism. For thorough discussions of Descartes’s aporia,

see the work of Damasio (2005).

29. ​ As we saw in chapter 2, saliency detection in image processing is directly con-

fronted with this issue. Hence the need to carefully frame and constrict the saliency

problem with appropriate ground truths.

30. ​ One may trace these critics back to the Greek Sophists (Cassin 2014). James

(1909) and Merleau-Ponty (2013) are also important opposition figures. In develop-

mental psychology, the “social development theory” proposed by Vygotsky (1978)

is also a fierce critic of cognitivism.

Chapter 4

1. ​ To conduct this project, I had to become competent in Python, PHP, JavaScript,

and Matlab programming languages.

2. ​ It is important to note that this line-by-line translation is what is experienced by

the programmer. In the trajectory of INT and most other interpreters, the numbered

list of written symbols is translated into an abstract syntax tree that does not always

conserve the line-by-line representation of the Editor.

3. ​ It is difficult to know exactly how INT managed to deal with these three values

at T1. It may by default consider that only the first two values of image-size—width

and height—generally matter.

4. ​ In the Matlab programming language, every statement that is not conditional

and that does not end with an semicolon is, by default, printed by the interpreter in

the Command Window. This is different from many other high-level programming

languages for which printing operations should be specified by an instruction (typi-

cally, the instruction “print”).

5. ​ In chapter 5, where I will consider the formation of mathematical knowledge,

I will more thoroughly examine the shaping of scientific facts as proposed by STS.

6. ​ This may be a limitation of Software Studies, as for example presented in Fuller

(2008) and in the journal Computational Culture. By considering completed code,

these studies tend to overlook the practical operations that led to the completion

of the code. Of course, this glance remains important as it allows us to consider

the performative effects of software-related cultural products, something my action-

oriented method is not quite able to do.

7. ​ The successive operations required to assemble chains of reference in the case of

program-testing are well documented, though in a literary way, by Ullman (2012b).

8. ​ It is interesting to note that DF’s alignment practices would have been greatly

facilitated by the next version of Matlab. Indeed, the 2017 version of Matlab’s

The MIT Press January 2021

Notes	 315

interpreter automatically recognizes this type of dimension error during matrix

incrementation processes and directly indicates the related breakpoint, the line at

which the problem occurred (in our case, at line 9).

9. ​ Donald Knuth, one of the most prominent programming theorists, stressed the

importance of program intelligibility by proposing the notion of literate programming:

a computer programming method that primarily focuses on the task of explaining

programs to fellow programmers rather than “just” instructing computers.

10. ​ To my knowledge, there are only three exceptions: Vinck (1991), Latour (2006),

and Latour (2010b).

11. ​ This discussion has been reconstructed from notes in Logbook 8, November 2015–

March 2016.

12. ​ Some STS authors use the term “script” to define these particular narratives that

engage those who enunciate them (Akrich 1989; Latour 2013). If I use the term “sce-

nario,” it is mainly for sake of clarity as “script” is often used by computer scientists

and programmers—and myself in this book—to describe small programs such as

PROG.

Chapter 5

1. ​ Here, my style of presentation and use of scenes are greatly inspired by Latour

(1987).

2. ​ I am following here Rosental’s (2003) book.

3. ​ I am following here the work of MacKenzie (1999).

4. ​ This is taken from Logbook 1, October 2013–February 2014.

5. ​ With their distinction between apodeixis (rigorous demonstration) and epideixis

(rhetorical maneuvering), Platonists philosophers may have initiated such grand

narratives (Cassin 2014; Latour 1999). According to Leo Corry (1997), this way of

presenting mathematics culminated with Bourbaki’s structuralist conception of

mathematical truth. On this topic, see also Lefebvre (2001, 56–68). For a philosophi-

cal exploration of grand narratives, see the classic book by Lyotard (1984).

6. ​ Yet “likes” and “retweets” that support claims published on Facebook or Twitter

may, sometimes, work as significant external allies. On this topic, see Ringelhan,

Wollersheim, and Welpe (2015).

7. ​ Before the 1878 foundation of the American Journal of Mathematics (AJM), there

was no stable academic facility for the publication of mathematical research in the

United States (Kent 2008). The situation in England was a bit different: built on the

ashes of the Cambridge and Dublin Mathematical Journal, the Quarterly Journal of Pure

and Applied Mathematics (QJPAM) published its first issue in 1855 (Crilly 2004). Yet

for both Kempe’s and Heawood’s papers, the editorial boards of their journals—as

The MIT Press January 2021

316	 Notes

indicated on their front matters—were rather small compared with today’s stan-

dards: five members for AJM in 1879 (J. J. Sylvester, W. E. Story, S. Newcomb, H. A.

Newton, H. A. Rowland) and four members for QJPAM in 1890 (N. M. Ferrers, A.

Cayley, J. W. L. Glaisher, A. R. Forsyth).

8. ​ According to the document in American Association for Artificial Intelligence

(1993).

9. ​ See, for example, the Journal of Informetrics.

10. ​ In a nutshell, Kempe circumscribed the problem to maps drawn on a plane that

contain at least one region called “country” with fewer than six neighbors. He could

then limit himself to five cases, countries from one to up to five neighbors. Proving

that “four colorability” is preserved for countries with three neighbors was, obviously,

not a problem. Yet in order to prove it for countries with four neighbors, Kempe used

an argument known as the “Kempe chains” (MacKenzie 1999, 19–20). This argument

stipulates that for a country X with four neighbor countries A, B, C, D, two opposite

neighbor countries, say A and C, are either joined by a continuous chain of, say, red

and green countries, or they are not. If they are joined by such a red-green chain, A can

be colored red and C can be colored green. But as we are dealing with a map drawn on

a plane, the two other opposite neighbor countries of X—B and C—cannot be joined

by a continuous chain of blue and yellow countries (one way or another, this chain is

indeed interrupted by a green or red country). As a consequence, these two opposite

neighbor countries can be colored blue and X can be colored yellow. Four colorability

is thus preserved for countries with four neighbors. Kempe thought that this method

also worked for countries with five neighbors. But Heawood’s figure shows a case of

failure of this method where E’s red-green region (vertically cross-hatched in figure 5.1)

intersects B’s yellow-red region (horizontally cross-hatched), thus forcing both coun-

tries to be colored red. Consequently, X has to be colored differently than red, blue,

yellow, and green. In such a case, four colorability is not preserved.

11. ​ On this topic, see the work of Lefebvre (2001).

12. ​ For rhetorical habits in the life sciences, see Latour and Woolgar (1986, 119–

148) and Knorr-Cetina (1981, 94–130). For a thorough comparison among scientific

disciplines—excluding mathematics—see Penrose and Katz (2010).

13. ​ Despite the efforts made by Serres (1995, 2002).

14. ​ There was, of course, no scientific institution at that time; experimental proto-

cols, peer witnessing, and, later, academic papers are products of the seventeenth

century (Shapin and Shaffer 1989). Yet, as Netz (2003, 271–312) showed, theorems

written on wax tablets and parchments did circulate among a restricted audience of

(very!) skeptical readers.

15. ​ This is at least Netz’s (2003, 271–304) hypothesis, supported by the work of

Lloyd (1990, 2005). As Latour summarized it: “It is precisely because the public life in

The MIT Press January 2021

Notes	 317

Greece was so invasive, so polemical, so inconclusive, that the invention, by ‘highly

specialized networks of autodidacts’, of another way to bring an endless discussion to

a close took such a tantalizing aspect” (Latour 2008, 449).

16. ​ So surprising that this careful and highly specialized method of conviction

mastered by a peripheral community of autodidacts who took great care to stick to

forms was soon “borrowed” by Plato and extended to content in order to, among

other things, silence the Sophists. This is at least the argument made by Cassin

(2014), Latour (1999b, 216–235), and Netz (2004, 275–282).

17. ​ Aristotle seems to be one of the first to compile geometrical texts and systematize

their logical arguments (Bobzien 2002). During late antiquity, commentators such

as Eutocius annotated many geometrical works and compiled their main results to

facilitate their systematic comparisons (Netz 1998). According to Netz (2004), these

collections of standardized geometrical compilations further helped Islamic math-

ematicians such as al-Kwarizmi and Khayyam to constitute the algebraic language.

18. ​ During the late nineteenth century’s so-called crisis of foundations in mathe

matics, the formalist school—headed by David Hibert—tried to establish the

foundations of mathematics on logical principles (Corry 1997). This led to famous

failures such as Russell and Whitehead’s three volumes of Principia Mathematica

(Whitehead and Russell 1910, 1911, 1913). Thanks to the philological work of Netz,

we now better understand why such an endeavor has failed: it was the very practice

of mathematics—lettered diagrams carefully indexed to small Greek sentences—that

led to the formulation of the rules of logic and not the other way round.

19. ​ Except, to a certain extent, Lefebvre (2001) and Mialet (2012). It seems then

that Latour’s remark remains true: few scholars have had the courage to do a careful

anthropological study of mathematics (Latour 1987, 246).

20. ​ This is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

21. ​ This is taken from Pickering and Stephanides (1992) and Hankins (1980, 280–312).

22. ​ Very schematically, peptides are chemical elements made of chains of amino

acids. They are known for interacting intimately with hormones. As there are many

different amino acids (twenty for the case of humans), there exists—potentially—

billions of different peptides made of combinations of two to fifty amino-acids. It

is important to note that in 1972, at the time of Guillemin’s experiment, peptides

could already be assembled—and probed—within well-equipped laboratories.

23. ​ At the time of Hamilton, the standard algebraic notation for a complex number—

so-called absurd quantities such as square roots of negative numbers—was x + iy, where

i2 = –1 and x and y are real numbers. These advances in early complex algebra were

problematic to geometers: if positive real numbers could be considered measurable

quantities, negative real numbers and their square roots were difficult to represent

as shapes on a plane. A way to overcome this impasse was to consider x and y as

The MIT Press January 2021

318	 Notes

coordinates of the end point of a segment terminating at the origin. Therefore, “the

x-axis of the plane measured the real component of a given complex number repre-

sented as such a line segment, and the y axis the imaginary part, the part multiplied

by i in the algebraic expression” (Pickering and Stephanides 1992, 145). With this

visualization of complex numbers, algebraic geometers such as Hamilton could relate

complex geometrical operations on segments and complex algebraic operations on

equations. A bridge between geometry and complex algebra was thus built. Yet geom-

etry is not confined to planes: if a two-dimensional segment [0, x + iy] can represent

a complex number, there is a priori no reason why a three-dimensional segment

[0, x + iy + jz] could not represent another complex number. Characterizing the behav

ior of such a segment was the stated goal of Hamilton’s experiment.

24. ​ Hamilton’s inquiry into the relationships between complex number theory

and geometry was not a purely exploratory endeavor. As Pickering and Stephanides

noted, “the hope was to construct an algebraic replica of transformations of line

segments in three-dimensional space and this to develop a new and possibly useful

algebraic system appropriate to calculations in three-dimensional geometry” (Picker-

ing and Stephanides 1992, 146).

25. ​ Contrary to Hamilton, ancient Greek geometers could only refer to their let-

tered diagrams with short but still cumbersome Greek sentences (Netz 2003, 127–

167). Along with Greek geometers’ emphasis on differentiation, the absence of a

condensed language such as algebra—that precisely required compiled collections

of geometrical works in order to be constituted (Netz 1998)—may have participated

in limiting the scope of ancient Greek geometrical propositions (Netz 2004, 11–54).

26. ​ Regarding these instruments, it is worth mentioning that here we retrieve what

we were discussing about in the last section: all of them—except, perhaps, noncom-

mutative algebra—are blackboxed polished facts that were, initially, written claims.

Rat pituitary cell cultures, algebraic notations, radioimmunoassays, coordinate

spaces and even Pythagoras’s theorem all had to overcome trials in order to gain

conviction strength and become established, certified facts.

27. ​ This topological characteristic of mathematical laboratories may be a reason

why they have rarely been sites for ethnographic inquiries (Latour 2008, 444).

28. ​ Of course, as we saw in chapter 4, such inscriptions are meaningless without

the whole series of inscriptions previously required to produce them. It is only by

aligning the “final” inscriptions to former ones, thus creating a chain of reference,

that Guillemin can produce information about his peptide (Latour 2013, chapter 3).

29. ​ Here we retrieve something we already encountered in chapters 3 and 4: the “cog-

nitive” practice of aligning inscriptions. Just as DF in front of his computer terminal,

Brazeau, Guillemin, and Hamilton never stop grasping inscriptions they acquire from

experiments. These inscriptions can, in turn, be considered takes suggesting further

actions.

The MIT Press January 2021

Notes	 319

30. ​ Again, this is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

31. ​ Again, this is taken from Pickering and Stephanides (1992) and Hankins (1980,

280–312).

32. ​ Brazeau and Guillemin published their results in Science (Brazeau et al. 1973).

After having presented his results at the Royal Irish Academy in November 1843,

Hamilton published a paper on quaternions in The London, Edinburg and Dublin

Philosophical Magazine and Journal of Science (Hamilton 1844). An important thing

to note about quaternions is that after Hamilton named them that way, he still had

to define the complex quantities k2, ik, kj, and i2 in order to complete his system.

According to a letter Hamilton wrote in 1865, the solution to this problem—the

well-known i2 = j2 = k2 = ijk = −1—appeared to him as he was walking along the Royal

Canal in Dublin. If this moment was indubitably important, it would be erroneous

to call it “the discovery of quaternions” (Buchman 2009). As shown by Pickering

and Stephanides (1992), quaternions were already defined as objects before the attri-

bution of values to the imaginary quantities’ products. In fact, when compared with

the experimental work required to define the problem of these products’ values,

what happened on Dublin’s Royal Canal appears relatively minor.

33. ​ This is the recurrent problem of biographies of important mathematicians; as

they tend to use nature to explain great achievements, they often ignore the many

instruments and inscriptions that were needed to shape the “discovered” objects.

Biographies of great mathematicians are thus often—yet not always (see the amazing

comic strip Logicomix [Doxiàdis et al. 2010])—unrealistic stories of solitary geniuses

chosen by nature.

34. ​ Accepting the dual aspect of nature—the consequence of settled controversies as

well as the retrospective cause of noncontroversial facts—provides a fresh new look at

the classical opposition between Platonism and Intuitionism in the philosophy of

mathematics. It seems indeed that the oddity of both Platonism—for which math-

ematical objects come from the outer world of ideas—and Intuitionism—for which

mathematical objects come from the inner world of human consciousness—comes

from their shared starting point: they both consider certified noncontroversial

mathematical facts. Yet as soon as one accounts for controversies in mathematics—

that is, mathematics in the making—nature from above (the outer-world of ideas) or

nature from below (the inner-world of human consciousness) cannot be considered

resources anymore as both are precisely what is at stake during the controversies.

It is interesting to note, however, that both antagonist unempirical conceptions of

the origin of mathematics led to important performative disagreements about the

practice of mathematics, notably through the acceptance, or refusal, of the law of

excluded middle. On this fascinating topic, see Rotman (2006) and Corry (1997).

35. ​ According to Netz (2004, 181–186), the constant search for differentiation and

originality in ancient mathematical texts had the effect of multiplying individual

The MIT Press January 2021

320	 Notes

proofs of similar problems stated differently. In short, Greek geometers were not

interested in systems; they were interested in authentic proofs with a specific “aura”

(Netz 2004, 58–63).

36. ​ Netz suggests that the polemical dynamics of ancient mathematical texts pre-

vented Greek mathematicians from normalizing their works, demonstrations, and

problems. As he noted: “The strategy we have seen so far—of the Greek mathemati-

cian trying to isolate his work from its context—is seen now as both prudent and

effective. It is prudent because it is a way of protecting the work, in advance, from

being dragged into inter-textual polemics over which you do not have control. And

it is effective because it makes your work shine, as if beyond polemic. When Greek

mathematicians set out the ground for their text, by an explicit introduction or,

implicitly, by the mathematical statement of the problem, what they aim to do is to

wipe the slate clean: to make the new proposition appear, as far as possible, as a sui

generis event—the first genuine solution of the problem at hand” (Netz 2004, 62–63).

37. ​ To a certain extent, as we will shall see in chapter 6, mathematical software such

as Wolfram Mathematica and Matlab can be considered repositories of polished,

compiled, and standardized mathematical certified knowledge.

38. ​ Very schematically, a neuron cell is made of three parts. There is first the “den-

drite”: the structure that allows a neuron to receive an electro-chemical signal. There

is then the “cell body”: the spherical part of the neuron that contains the nucleus

of the cell and reacts to the signal. There is finally the “axon”: the extended cell

membrane that sends information to other dendrites.

39. ​ It is important to note that the inevitable losses that go along with reduction

processes can be used to criticize the products of these reductions. This is exactly

what I did in chapter 3 when I was dealing with the computational metaphor of the

mind. I used what some reductions did not take into account in order to criticize the

product of these reductions.

Chapter 6

1. ​ BJ’s face-detection algorithm computes the size of a face as the ratio of the area of

the face-detection rectangle to the size of the image; hence the very small size-values

of faces in figure 6.3.

2. ​ Remember that this comparison exercise was the main reason why the Group’s

paper on the algorithm was initially rejected by the committee of the image-

processing conference (see chapter 2).

3. ​ It is important to note that this spreadsheet form required not so trivial Matlab

parsing scripts written by the Group. The construction of a ground-truth database thus

also sometimes requires computer programming practices as described in chapter 4.

The MIT Press January 2021

Notes	 321

4. ​ Napier initiated the theory of logarithms mainly to facilitate manual numerical

calculations, notably in astronomy. On this topic, see the old but enjoyable work by

Cajori (1913).

5. ​ This discussion was reconstructed from notes in Logbook 2, February 2014–

May 2014.

6. ​ With lower-level programming languages such as C or C++, it might be trickier to

transform this scenario into a completed program.

7. ​ If it is not time consuming to approximate square roots of positive real numbers,

it is more complicated to get precise results. Nowadays, computers start by express-

ing the positive real number in floating point notation m * 2e where m is a number

between 1 and 2 and e is its exponent (MacKenzie 1993). Thanks to this initial trans-

lation, computer languages can then use the Newton-Raphson iteration method to

calculate the reciprocal of square root before finally multiplying this result with the

initial real number to get the final answer. Calculating k-means of five clusters is also

not that trivial. It can be summarized by a list of six operations: (1) place five arbitrary

random centroids within the given dataset; (2) compute the distances of every point

of the dataset from all centroids; (3) assign every point of the dataset to its nearest

centroid; (4) compute the center of gravity of every centroid-assigned group of points;

(5) assign each centroid to the position of the center of gravity of its group; and

(6) reiterate the operation until no centroid changes its assignment anymore.

8. ​ Remember that INT stands for the Matlab interpreter that translates instructions

written in the Editor into machine code, the only language that can make processors

trigger electric pulses.

9. ​ Information retrieved from Matlab Central Community Forum (MATLAB Answers

2017)

10. ​ This discussion has been reconstructed from notes in Logbook 3, February–

May 2014.

11. ​ This discussion has been reconstructed from notes in Logbook 3, February–

May 2014.

12. ​ Fei-Fei Li is now a professor at Stanford University. Between 2017 and 2018, she

was chief scientist at Google Cloud.

13. ​ Image classification in digital image processing consists of categorizing the

content of images into predefined labels. For an accessible introduction to image

classification, see Kamavisdar, Saluja, and Agrawal (2013).

14. ​ The beginnings of the ImageNet ground truth project were difficult. As Gersh-

gorn noted it: “Li’s first idea was to hire undergraduate students for $10 an hour to

manually find images and add them to the dataset. But back-of-the-napkin math

The MIT Press January 2021

322	 Notes

quickly made Li realize that at the undergrads’ rate of collecting images it would take

90 years to complete. After the undergrad task force was disbanded, Li and the team

went back to the drawing board. What if computer-vision algorithms could pick the

photos from the internet, and humans would then just curate the images? But after

a few months of tinkering with algorithms, the team came to the conclusion that

this technique wasn’t sustainable either—future algorithms would be constricted to

only judging what algorithms were capable of recognizing at the time the dataset

was compiled. Undergrads were time-consuming, algorithms were flawed, and the

team didn’t have money—Li said the project failed to win any of the federal grants

she applied for, receiving comments on proposals that it was shameful Princeton

would research this topic, and that the only strength of proposal was that Li was a

woman” (Gershgorn 2017).

15. ​ To minimize crowdworkers’ labeling errors, Fei-Fei Li and her team asked differ

ent workers to label the same image—one label being considered a vote, the majority

of votes “winning” the labeling task. However, depending on the complexity of the

labeling task—categories such as “Burmese cat” being difficult to accurately identify—

Fei-Fei Li and her team have varied the levels of consensus required. To determine

these content-related required levels of consensus, they have developed an algorithm

whose functioning is, however, not detailed in the paper (Deng et al. 2009, 252).

16. ​ Once assembled, the ImageNet dataset and ground truth did not generate

immediate interest among the image recognition community. Far from it: the first

publication of the project in the 2009 Computer Vision and Pattern Recognition

(Deng et al. 2009) was taken from a poster stuck in a corner of the Fontainebleau

Resort at Miami Beach (Gershgorn 2017).

17. ​ In a nutshell, ILSVRC challenges, in the wake of PASCAL VOC challenges,

consist of two related components: (1) a publicly available ground truth and (2)

an annual competition whose results are discussed during dedicated workshops. As

Russakovsky et al. summarized it: “The publically released dataset contains a set of

manually annotated training images. A set of test images is also released, with the

manual annotations withheld. Participants train their algorithms using the training

images and then automatically annotate the test images. These predicted annota-

tions are submitted to the evaluation server. Results of the evaluation are revealed

at the end of the competition period and authors are invited to share insights at

the workshop held at the International Conference on Computer Vision (ICCV) or

European Conference on Computer Vision (ECCV) in alternate years” (Russakovsky

et al. 2015, 211).

18. ​ AlexNet, as the algorithm presented in Krizhevsky, Sutskever, and Hinton

(2012) ended up being called, has brought back to the forefront of image processing

the convolutional neural network learning techniques developed by Joshua Bengio,

Geoffrey Hinton, and Yann LeCun since the 1980s. Today, convolutional neural

networks for text, image, and video processing are ubiquitous, empowering products

The MIT Press January 2021

Notes	 323

distributed by large tech companies such as Google, Facebook, or Microsoft. More-

over, Bengio, Hinton, and LeCun received the Turing Prize Award in 2018, generally

considered the highest distinction in computer science.

19. ​ These criticisms were summarized by Marvin Minsky, the head of the MIT Arti-

ficial Intelligence Research Group, and Seymour Papert in their book Perceptrons: An

Introduction to Computational Geometry (1969).

20. ​ Boltzmann machines are expansions of spin glass-inspired neural networks. By

including a stochastic decision rule, Ackley, Hinton, and Sejnokwski (1985) could

make a neural network reach an appreciable learning equilibrium. As Domingos

explained, “the probability of finding the network in a particular state was given by

the well-known Boltzmann distribution from thermodynamics, so they called their

network a Boltzmann machine” (Domingos 2015, 103).

21. ​ As noted in Cardon, Cointet, and Mazières (2018), there is a debate regarding

the anteriority of backprop algorithm: “This method has been formulated and used

many times before the publication of [Rumelhart Hinton, and Williams 1986]’s arti-

cle, notably by Linnainmaa in 1970, Werbos in 1974 and LeCun in 1985” (Cardon,

Cointet, and Mazières 2018, 198; my translation).

22. ​ This second marginalization of connectionists during the 1990s can be related

to the spread of Support Vector Machines (SVMs), audacious learning techniques

that are very effective on small ground truths. Moreover, while SVMs manage to

find, during the learning of the loss function, the global error minimum, convo-

lutional neural networks can only find local minimums (a limit that will prove to

be less problematic with the advent of large ground truths, such as ImageNet, and

the increase in the computing power of computers). On this specialized topic, see

Domingos (2015, 107–111) and Cardon, Cointet, and Mazières (2018, 200–202).

Conclusion

1.  Though, like Negri, this book is drawn to the idea of contributing to founding a

philosophy capable of going beyond modernity understood as “the definition and

development of a totalizing thought that assumes human and collective creativity

in order to insert them into the instrumental rationality of the capitalist mode of

production” (Negri 1999, 323).

2. ​ Curiously, even though Negri explicitly positions himself as an opponent of

the Anglo-American liberal tradition, his conclusions regarding the dual aspect of

insurrectional acts are quite aligned with propositions made by American pragmatist

writers such as Walter Lippmann and John Dewey. Indeed, whereas for these two

authors, the political can only be expressed by means of issues that redefine our

whole living together (Dewey [1927] 2016; Lippmann [1925] 1993; Marres 2005), for

Negri, the political, as Michael Hardt notes, “is defined by the forces that challenge

The MIT Press January 2021

324	 Notes

the stability of the constituted order … and the constituent processes that invent

alternative forms of social organization.  … The political exists only where innova-

tion and constituent processes are at play” (Hardt 1999, ix).

3. ​ This, I believe, is a potential way of somewhat reconciling Negri—at least, his

writings—with the great German legal tradition that he is also explicitly opposed

to. If Negri is certainly right to refuse the exteriority of constituent power vis-à-vis

constituted power, thus emptying legal constitutions of any power of political inno-

vation, he is probably wrong to dismiss Georg Jellinek’s and Hans Kelsen’s proposi-

tions as to the scriptural, and therefore ontological, weight of constituent texts. On

this tension between Sollen (what ought to be) and Sein (what is) within constitutive

processes, see Negri (1999, 5–35) as well as Jellinek ([1914] 2016) and Kelsen (1991).

4. ​ This is the topic of Anne Henriksen’s and Cornelius Heimstädt’s PhD theses (cur-

rently being conducted at Aarhus University and Mines ParisTech, respectively), as

well as Nick Seaver’s forthcoming book (Seaver forthcoming).

5. ​ The moral economy of blockchain technology is the topic of Clément Gasull’s

PhD thesis, currently being conducted at Mines ParisTech.

6. ​ This is part of Vassileios Gallanos’s PhD thesis, currently being conducted at the

University of Edinburgh.

The MIT Press January 2021

Abbate, Janet. 2012. Recoding Gender: Women’s Changing Participation in Computing.

Cambridge, MA: MIT Press.

Achanta, Radhakrishna, Sheila Hemami, Francisco Estrada, and Sabine Susstrunk.

2009. “Frequency-Tuned Salient Region Detection.” In IEEE Conference on Computer

Vision and Pattern Recognition, Miami, FL, June, 1597–1604. New York: IEEE.

Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. 1985. “A Learning

Algorithm for Boltzmann Machines.” Cognitive Science 9, no. 1: 147–169.

Adelson, Beth. 1981. “Problem Solving and the Development of Abstract Categories

in Programming Languages.” Memory & Cognition 9, no. 4: 422–433.

Ahmed, Faheem, Luiz F. Capretz, Salah Bouktif, and Piers Campbell. 2012. “Soft

Skills Requirements in Software Development Jobs: A Cross-Cultural Empirical Study.”

Journal of Systems and Information Technology 14: 58–81.

Ahmed, Faheem, Luiz F. Capretz, and Piers Campbell. 2012. “Evaluating the Demand

for Soft Skills in Software Development.” IT Professional 14, no. 1: 44–49.

Ahmed, Nassir U., T. Natarajan, and K.R. Rao. 1974. “Discrete Cosine Transform.”

IEEE Transactions on Computers 23, no. 1: 90–93.

Akera, Atsushi. 2001. “Voluntarism and the Fruits of Collaboration: The IBM User

Group, Share.” Technology and Culture 42, no. 4: 710–736.

Akera, Atsushi. 2008. Calculating a Natural World: Scientists, Engineers, and Computers

during the Rise of U.S. Cold War Research. Cambridge, MA: MIT Press.

Akrich, Madeleine. 1989. “La construction d’un système socio-technique: Esquisse

pour une anthropologie des techniques.” Anthropologie et Sociétés 13, no. 2:

31–54.

Akrich, Madeleine, Michel Callon, and Bruno Latour. 2006. Sociologie de la traduc-

tion: Textes fondateurs. Paris: Presses de l’École des Mines.

References

The MIT Press January 2021

326	 References

Albrecht, Sandra L. 1982. “Industrial Home Work in the United States: Historical

Dimensions and Contemporary Perspective.” Economic and Industrial Democracy 3,

no. 4: 413–430.

Allen, Elizabeth, and Sophie Triantaphillidou, eds. 2011. The Manual of Photography.

10th ed. Burlington, MA: Focal Press.

Alpaydin, Ethem. 2010. Introduction to Machine Learning. 2nd ed. Cambridge, MA:

MIT Press.

Alpaydin, Ethem. 2016. Machine Learning: The New AI. Cambridge, MA: MIT Press.

Alpert, Sharon, Meirav Galun, Achi Brandt, and Ronen Basri R. 2007. “Image Seg-

mentation by Probabilistic Bottom-Up Aggregation and Cue Integration.” In 2007

IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE.2007.

DOI: https//:10​.1109​/CVPR​.2007​.383017.

American Association for Artificial Intelligence. 1993. “Organization of the Ameri-

can Association for Artificial Intelligence.” The Eleventh National Conference on

Artificial Intelligence (AAAI-93), July 11–15, Washington, DC. http://www​.aaai​.org​

/Conferences​/AAAI​/1993​/aaai93committee​.pdf (last accessed March 2017).

Ananny, Mike, and Kate Crawford. 2018. “Seeing without Knowing: Limitations

of the Transparency Ideal and Its Application to Algorithmic Accountability.” New

Media & Society 20, no.3: 973–989.

Anderson, Christopher W. 2011. “Deliberative, Agonistic, and Algorithmic Audi-

ences: Journalism’s Vision of Its Public in an Age of Audience Transparency.” Inter-

national Journal of Communication 5: 550–566.

Anderson, Drew. 2017. “GLAAD and HRC Call on Stanford University & Responsible

Media to Debunk Dangerous & Flawed Report Claiming to Identify LGBTQ People

through Facial Recognition Technology.” GLAAD​.org, September 8. https://www​

.glaad​.org​/blog​/glaad​-and​-hrc​-call​-stanford​-university​-responsible​-media​-debunk​

-dangerous​-flawed​-report (last accessed February 2018).

Anderson, John R. 1983. The Architecture of Cognition. Cambridge, MA: Harvard Uni-

versity Press.

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. “Machine Bias:

There’s Software Used across the Counter to Predict Future Criminals. And It’s Biased

against Blacks.” ProPublica, May 23. https://www​.propublica​.org​/article​/machine​-bias​

-risk​-assessments​-in​-criminal​-sentencing.

Antognazza, Maria R. 2011. Leibniz: An Intellectual Biography. Reprint. Cambridge:

Cambridge University Press.

Ashby, Ross W. 1952. Design for a Brain. New York: Wiley.

Aspray, William. 1990. John von Neumann and the Origins of Modern Computing. Cam-

bridge, MA: MIT Press.The MIT Press January 2021

References	 327

Aspray, William, and Philip Kitcher, eds. 1988. History and Philosophy of Modern

Mathematics. Minneapolis: University of Minnesota Press.

Austin, John L. 1975. How to Do Things with Words. 2nd ed. Cambridge, MA: Harvard

University Press.

Badinter, Elisabeth. 1981. Mother Love: Myth and Reality. New York: Macmillan.

Baluja, Shumeet, and Dean A. Pomerleau. 1997. “Expectation-Based Selective Atten-

tion for Visual Monitoring and Control of a Robot Vehicle.” Robotics and Autono-

mous Systems 22: 329–344.

Barad, Karen. 2007. Meeting the Universe Halfway: Quantum Physics and the Entangle-

ment of Matter and Meaning. Durham, NC: Duke University Press.

Bardi, Jason S. 2007. The Calculus Wars: Newton, Leibniz, and the Greatest Mathemati-

cal Clash of All Time. New York: Basic Books.

Barfield, Woodrow. 1986. “Expert-Novice Differences for Software: Implications for

Problem-Solving and Knowledge Acquisition.” Behaviour & Information Technology 5,

no. 1: 15–29.

Barocas, Solon, and Andrew D. Selbst. 2016. “Big Data’s Disparate Impact.” Califor-

nia Law Review 104: 671–732.

Barrett, Justin L. 2007. “Cognitive Science of Religion: What Is It and Why Is It?”

Religion Compass 1, no. 6: 768–786.

Baya-Laffite, Nicolas, Boris Beaude, and Jérémie Garrigues. 2018. “Le Deep Learning

au service de la prédication de l’orientation sexuelle dans l’espace public: Décon-

struction d’une alerte ambigüe.” Réseaux 211, no. 211: 137–172.

Bechmann, Anja, and Geoffrey C. Bowker. 2019. “Unsupervised by Any Other

Name: Hidden Layers of Knowledge Production in Artificial Intelligence on Social

Media.” Big Data & Society 6, no. 1. https://doi​.org​/10​.1177​/2053951718819569.

Beer, David. 2009. “Power through the Algorithm? Participatory Web Cultures and

the Technological Unconscious.” New Media & Society 11, no. 6: 985–1002.

Bengio, Yoshua. 2009. “Learning Deep Architectures for AI.” Foundations and Trends

in Machine Learning 2, no. 1: 1–127.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003 “A Neural

Probabilistic Language Model.” Journal of Machine Learning Research 3: 1137–1155.

Bensaude-Vincent, Bernadette. 1995. “Mendeleyev: The Story of a Discovery.” In A

History of Scientific Thought: Elements of a History of Science, edited by Michel Serres,

556–582. Oxford: Blackwell.

Berg, Nate. 2014. “Predicting Crime, LAPD-Style.” Guardian, June 25. https://www​

.theguardian​.com​/cities​/2014​/jun​/25​/predicting​-crime​-lapd​-los​-angeles​-police​-data​

-analysis​-algorithm​-minority​-report.The MIT Press January 2021

328	 References

Berggren, John L. 1986. Episodes in the Mathematics of Medieval Islam. Berlin: Springer.

Bhattacharyya, Siddhartha, Hrishikesh Bhaumik, Anirban Mukherjee, and Sourav

De. 2018. Machine Learning for Big Data Analysis. Berlin: Walter de Gruyter.

Biancuzzi, Federico, and Shane Warden. 2009. Masterminds of Programming:

Conversations with the Creators of Major Programming Languages. Sebastopol, CA:

O’Reilly.

Birch, Kean, and Fabian Muniesa, eds. 2020. Assetization: Turning Things into Assets in

Technoscientific Capitalism. Cambridge, MA: MIT Press.

Bishop, Chistopher M. 2007. Pattern Recognition and Machine Learning. New York:

Springer.

Blaiwes, Arthur S. 1974. “Formats for Presenting Procedural Instructions.” Journal of

Applied Psychology 59, no. 6: 683–686.

Bloom, Alan M. 1980. “Advances in the Use of Programmer Aptitude Tests.” In

Advances in Computer Programming Management, edited by Thomas A. Rullo, Vol. 1:

31–60. Philadelphia: Hayden, 1980.

Bloor, David. 1981. “The Strengths of the Strong Programme.” Philosophy of the

Social Sciences 11, no. 2: 199–213.

Bobzien, Susanne. 2002. “The Development of Modus Ponens in Antiquity: From

Aristotle to the 2nd Century AD.” Phronesis 47, no. 4: 359–394.

Boltanski, Luc, and Laurent Thévenot. 2006. On Justification: Economies of Worth.

Princeton, NJ: Princeton University Press.

Bonaccorsi, Andrea, and Cristina Rossi. 2006. “Comparing Motivations of Individual

Programmers and Firms to Take Part in the Open Source Movement: From Com-

munity to Business.” Knowledge, Technology & Policy 18, no. 4: 40–64.

Borji, Ali. 2012. “Boosting Bottom-up and Top-down Visual Features for Saliency

Estimation.” In 2012 IEEE Conference on Computer Vision and Pattern Recognition,

Providence, RI, June, 438–445. New York: IEEE.

Bostrom, Nick. 2017. “Strategic Implications of Openness in AI Development.”

Global Policy 8, no. 2: 135–48.

Bottazzini, Umberto. 1986. The Higher Calculus: A History of Real and Complex Analy

sis from Euler to Weierstrass. Berlin: Springer.

Bourdieu, Pierre. 1986. “L’illusion biographique.” Actes de la recherche en sciences

sociales 62, no. 1: 69–72.

Bowker, Geoffrey C. 1993. “How to Be Universal: Some Cybernetic Strategies,

1943-–70.” Social Studies of Science 23, no. 1: 107–127.

The MIT Press January 2021

References	 329

Boyer, Carl B. 1959. The History of the Calculus and Its Conceptual Development. New

York: Dover Publications.

Bozdag, Engin. 2013. “Bias in Algorithmic Filtering and Personalization.” Ethics and

Information Technology 15, no. 3: 209–227.

Brazeau, Paul, Wylie Vale, Roger Burgus, Nicholas Ling, Madalyn Butcher, Jean

Rivier, and Roger Guillemin. 1973. “Hypothalamic Polypeptide That Inhibits the

Secretion of Immunoreactive Pituitary Growth Hormone.” Science 179, no. 4068:

77–79.

Brockell, Gillian. 2018. “Dear Tech Companies, I Don’t Want to See Pregnancy Ads

after My Child Was Stillborn.” Washington Post, December 12.

Brooke, J. B., and K. D. Duncan. 1980a. “An Experimental Study of Flowcharts as an

Aid to Identification of Procedural Faults.” Ergonomics 23, no. 4: 387–399.

Brooke, J. B., and K. D. Duncan. 1980b. “Experimental Studies of Flowchart Use at

Different Stages of Program Debugging.” Ergonomics 23, no. 11: 1057–1091.

Brooks, Frederick. 1975. The Mythical Man-Month: Essays on Software Engineering.

Reading, MA: Addison-Wesley Professional.

Brooks, John. 1976. Telephone: The First Hundred Years. New York: Harper & Row.

Brooks, Ruven. 1977. “Towards a Theory of the Cognitive Processes in Computer

Programming.” International Journal of Man-Machine Studies 9, no. 6: 737–751.

Brooks, Ruven. 1980. “Studying Programmer Behavior Experimentally: The Prob

lems of Proper Methodology.” Communications of the ACM 23, no. 4: 207–213.

Bucher, Taina. 2012. “Want to Be on the Top? Algorithmic Power and the Threat of

Invisibility on Facebook.” New Media & Society 14, no. 7: 1164–1180.

Buchman, Amy. 2009 “A Brief History of Quaternions and the Theory of Holo-

morphic Functions of Quaternionic Variables.” Paper, November. https://ui​.adsabs​

.harvard​.edu​/abs​/2011arXiv1111​.6088B.

Burks, Alice R., and Arthur W. Burks. 1989. The First Electronic Computer: The Atanasoff

Story. Ann Arbor, MI: University of Michigan Press.

Burks, Arthur W., Herman H. Goldstine, and John von Neumann. 1946. Preliminary

Discussion of the Logical Design of an Electronic Computer Instrument. Princeton, NJ:

Institute for Advanced Study.

Burrell, Jenna. 2016. “How the Machine ‘Thinks’: Understanding Opacity in Machine

Learning Algorithms.” Big Data & Society 3, no. 1: 1–12.

Butler, Judith. 2006. Gender Trouble: Feminism and the Subversion of Identity. New York

and London: Routledge.

The MIT Press January 2021

330	 References

Button, Graham, and Wes Sharrock. 1995. “The Mundane Work of Writing and Read-

ing Computer Programs.” In Situated Order: Studies in the Social Organization of Talk and

Embodied Activities, edited by Paul T. Have and George Psathas, 231–258. Washington,

DC: University Press of America.

Cajori, Florian. 1913. “History of the Exponential and Logarithmic Concepts.” The

American Mathematical Monthly 20, no. 1: 5–14.

Cakebread, Caroline. 2017. “People Will Take 1.2 Trillion Digital Photos This Year—

Thanks to Smartphones.” Business Insider, August 31. https://www​.businessinsider​

.fr​/us​/12​-trillion​-photos​-to​-be​-taken​-in​-2017​-thanks​-to​-smartphones​-chart​-2017​-8​/.

Callon, Michel. 1986. “Some Elements of a Sociology of Translation: Domestication

of the Scallops and the Fishermen of St Brieuc Bay.” In Power, Action and Belief: A

New Sociology of Knowledge? edited by John Law, 196–223. London: Routledge &

Kegan Paul.

Callon, Michel. 1999. “Le Réseau Comme Forme Émergente et Comme Modalité de

Coordination.” In Réseau et Coodination, edited by Michel Callon, Patrick Cohendet,

Nicolas Curlen, Jean-Michel Dalle, François Eymard-Duvernay, Dominique Foray

and Eric Schenk, 13–63. Paris: Economica.

Callon, Michel. 2017. L’emprise des marchés: Comprendre leur fonctionnement pour pou-

voir les changer. Paris: La Découverte.

Campbell-Kelly, Martin. 2003. From Airline Reservations to Sonic the Hedgehog: A His-

tory of the Software Industry. Cambridge, MA: MIT Press.

Campbell-Kelly, Martin, William Aspray, Nathan Ensmenger, and Jeffrey R. Yost. 2013.

Computer: A History of the Information Machine. 3rd ed. Boulder, CO: Westview Press.

Capretz, Fernando L. 2014. “Bringing the Human Factor to Software Engineering.”

IEEE Software 31, no. 2: 104–104.

Card, Stuart K., Thomas P. Moran, and Allen Newell. 1986. The Psychology of Human-

Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Cardon, Dominique. 2015. À quoi rêvent les algorithmes. Nos vies à l’heure du Big Data.

Paris: Le Seuil.

Cardon, Dominique, Jean-Philippe Cointet, and Antoine Mazières. 2018. “La

revanche des neurones. L’invention des machines inductives et la controverse de

l’intelligence artificielle.” Réseaux 211, no. 5: 173–220.

Carnap, Rudolf. 1937. The Logical Syntax of Language. Chicago: Open Court Publishing.

Carroll, John M., John C. Thomas, and Ashok Malhotra. 1980. “Presentation and

Representation in Design Problem-Solving.” British Journal of Psychology 71, no. 1:

143–153.

The MIT Press January 2021

References	 331

Casilli, Antonio. 2019. En attendant les robots: Enquête sur le travail du clic. Paris: Le

Seuil.

Cassin, Barbara. 2014. Sophistical Practice: Toward a Consistent Relativism. New York:

Fordham University Press.

Cerf, Moran, Paxon E. Frady, and Christof Koch. 2009. “Faces and Text Attract Gaze

Independent of the Task: Experimental Data and Computer Model.” Journal of Vision

9, no. 12: 101–115.

Chang, Kai-Yueh, Tyng-Luh Liu, Hwann-Tzong Chen, and Shang-Hong Lai. 2011.

“Fusing Generic Objectness and Visual Saliency for Salient Object Detection.” In 2011

IEEE International Conference on Computer Vision, Barcelona, November. New York:

IEEE, pp. 914–921.

Chen, Li-Qun, Xing Xie, Xin Fan, Wei-Ying Ma, Hong-Jiang Zhang, and He-Qin Zhou.

2003. “A Visual Attention Model for Adapting Images on Small Displays.” Multimedia

Systems 9, no. 4: 353–364.

Cheng, Ming-Ming, Guo-Xin Zhang, N. J. Mitra, Xiaolei Huang, and Shi-Min Hu.

2011. “Global Contrast Based Salient Region Detection.” In CVPR 2011: The 24th IEEE

Conference on Computer Vision and Pattern Recognition, 409–416. Washington, DC:

IEEE Computer Society.

Clark, Andy. 1998. Being There: Putting Brain, Body, and World Together Again. Cam-

bridge, MA: MIT Press.

Clark, Andy, and Chalmers David. 1998. “The Extended Mind.” Analysis 58, no. 1:

7–19.

Cobb, John B. 2006. Dieu et le monde. Paris: Van Dieren.

Cohen, Bernard I. 1999. Howard Aiken: Portrait of a Computer Pioneer. Cambridge,

MA: MIT Press.

Collins, Charlotte A., Irwin Olsen, Peter S. Zammit, Louise Heslop, Aviva Petrie, Ter-

ence A. Partridge, and Jennifer E. Morgan. 2005. “Stem Cell Function, Self-Renewal,

and Behavioral Heterogeneity of Cells from the Adult Muscle Satellite Cell Niche.”

Cell 122, no. 2: 289–301.

Collins, Harry M. 1975. “The Seven Sexes: A Study in the Sociology of a Phenom-

enon, or the Replication of Experiments in Physics.” Sociology 9, no. 2: 205–224.

Collins, Harry M. 1992. Changing Order: Replication and Induction in Scientific Practice.

Chicago: University of Chicago Press.

Constine, Josh. 2019. “To Automate Bigger Stores than Amazon, Standard Cognition

Buys Explorer.Ai.” TechCrunch (blog), January 7. https://techcrunch​.com​/2019​/01​

/07​/autonomous​-checkout​/.

The MIT Press January 2021

332	 References

Coombs, M. J., R. Gibson, and J. L. Alty. 1982. “Learning a First Computer Language:

Strategies for Making Sense.” International Journal of Man-Machine Studies 16, no. 4:

449–486.

Corfield, David. 2006. Towards a Philosophy of Real Mathematics. Rev. ed. Cambridge:

Cambridge University Press.

Cormen, Thomas H, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009.

Introduction to Algorithms. 3rd ed. Cambridge, MA: MIT Press.

Corry, Leo. 1997. “The Origins of Eternal Truth in Modern Mathematics: Hilbert to

Bourbaki and Beyond.” Science in Context 10, no. 2: 253–296.

Crawford, Kate, and Ryan Calo. 2016. “There Is a Blind Spot in AI Research.” Nature

538, no. 7625: 311–313.

Crevier, Daniel. 1993. AI: The Tumultuous History of the Search for Artificial Intelligence.

New York: Basic Books.

Crilly, Tony. 2004. “The Cambridge Mathematical Journal and Its Descendants: The

Linchpin of a Research Community in the Early and Mid-Victorian Age.” Historia

Mathematica 31, no. 4: 455–497.

Crooks, Roderic N. 2019. “Times Thirty: Access, Maintenance, and Justice.” Science,

Technology, & Human Values 44, no. 1: 118–142.

Cruz, Shirley, Fabio da Silva, and Luiz Capretz. 2015. “Forty Years of Research on

Personality in Software Engineering: A Mapping Study.” Computers in Human Behav

ior 46: 94–113.

Curtis, Bill. 1981. “Substantiating Programmer Variability.” Proceedings of the IEEE

69, no. 7: 846.

Curtis, Bill. 1988. “Five Paradigms in the Psychology of Programming.” In Handbook

of Human-Computer Interaction, edited by Martin Helander, 87–105. Amsterdam: Else-

vier North-Holland.

Curtis, Bill, Sylvia B. Sheppard, Elizabeth Kruesi-Bailey, John Bailey, and Deborah A.

Boehm-Davis. 1989. “Experimental Evaluation of Software Documentation For-

mats.” Journal of Systems and Software 9, no. 2: 167–207.

Daganzo, Carlos F. 1995. “The Cell Transmission Model, Part II: Network Traffic.”

Transportation Research Part B: Methodological 29, no. 2: 79–93.

Daganzo, Carlos F. 2002. “A Behavioral Theory of Multi-Lane Traffic Flow. Part I:

Long Homogeneous Freeway Sections.” Transportation Research Part B: Methodological

36, no. 2: 131–158.

Damasio, Anthony. 2005. Descartes’ Error: Emotion, Reason, and the Human Brain.

Reprint. London: Penguin Books.

The MIT Press January 2021

References	 333

Dasgupta, Sanjoy, Christos Papadimitriou, and Umesh Vazirani. 2006. Algorithms.

1st ed. Boston: McGraw-Hill Education.

Dauben, Joseph W. 1990. Georg Cantor: His Mathematics and Philosophy of the Infinite.

Reprint ed. Princeton, NJ: Princeton University Press.

Dear, Peter. 1987. “Jesuit Mathematical Science and the Reconstitution of Experi-

ence in the Early Seventeenth Century.” Studies in History and Philosophy of Science

Part A 18, no. 2: 133–175.

Dear, Peter, and Sheila Jasanoff. 2010. “Dismantling Boundaries in Science and

Technology Studies.” Isis 101, no. 4: 759–774.

Dekowska, Monika, Michał Kuniecki, and Piotr Jaśkowski. 2008. “Facing Facts: Neu-

ronal Mechanisms of Face Perception.” Acta Neurobiologiae Experimentalis 68, no. 2:

229–252.

de la Bellacasa, Maria P. 2011 “Matters of Care in Technoscience: Assembling

Neglected Things.” Social Studies of Science 41, no. 1: 85–106.

Deleuze, Gilles. 1989. “Qu’est-ce qu’un dispositif?” In Michel Foucault philosophe:

rencontre international Paris 9, 10, 11, janvier 1988. Paris: Seuil.

Deleuze, Gilles. 1992. Fold: Leibniz and the Baroque. Minneapolis: University of Min-

nesota Press.

Deleuze, Gilles. 1995. Difference and Repetition. New York: Columbia University Press.

Demazière, Didier, François Horn, and Marc Zune. 2007. “The Functioning of a Free

Software Community: Entanglement of Three Regulation Modes—Control, Autono-

mous and Ditributed.” Science Studies 20, no. 2: 34–54.

Denelesky, Garland Y., and Michael G. McKee. 1974. “Prediction of Computer Pro-

grammer Training and Job Performance Using the Aabp Test1.” Personnel Psychology

27, no. 1: 129–137.

Deng, Jia, Alexander C. Berg, Kai Li, and Li Fei-Fei. 2010. “What Does Classifying More

Than 10,000 Image Categories Tell Us?” In Computer Vision—ECCV 2010, edited by

Kostas Daniilidis, Petros Maragos, and Nikos Paragios, 71–84. Berlin: Springer.

Deng, Jia, Alexander C. Berg, and Li Fei-Fei. 2011a. “Hierarchical Semantic Indexing

for Large Scale Image Retrieval.” In CVPR 2011: The 24th IEEE Conference on Computer

Vision and Pattern Recognitio, 785–792. Washington, DC: IEEE Computer Society.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei Fei. 2009. “Ima-

geNet: A Large-Scale Hierarchical Image Database.” In 2009 IEEE Conference on Com-

puter Vision and Pattern Recognition, Miami, FL, June, 248–255. New York: IEEE.

Deng, Jia, Sanjeev Satheesh, Alexander C. Berg, and Li Fei-Fei. 2011b. “Fast and Bal-

anced: Efficient Label Tree Learning for Large Scale Object Recognition.” In Advances

The MIT Press January 2021

334	 References

in Neural Information Processing Systems 24, edited by J. Shawe-Taylor, R. S. Zemel,

P. L. Bartlett, F. Pereira, and K. Q. Weinberger, 567–575. Red Hook, NY: Curran

Associates.

Deng, Jia, Olga Russakovsky, Jonathan Krause, Michael S. Bernstein, Alex Berg, and

Li Fei-Fei. 2014. “Scalable Multi-Label Annotation.” In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, 3099–3102. New York: ACM.

Denis, Jérôme. 2018. Le travail invisible des données: Éléments pour une sociologie des

infrastructures scripturales. Paris: Presses de l’École des Mines.

Denis, Jérôme, and David Pontille. 2015. “Material Ordering and the Care of

Things.” Science, Technology, & Human Values 40, no. 3: 338–367.

Dennett, Daniel C. 1984. “Cognitive Wheels: The Frame Problem of AI.” In Minds,

Machines and Evolution, edited by Christopher Hookway, 129–150. Cambridge: Cam-

bridge University Press.

Dennis, Michael A. 1989. “Graphic Understanding: Instruments and Interpretation

in Robert Hooke’s Micrographia.” Science in Context 3, no. 2: 309–364.

Desrosières, Alain. 2010. The Politics of Large Numbers: A History of Statistical Reason-

ing. Translated by Camille Naish. New ed. Cambridge, MA: Harvard University Press.

Dewey, John. (1927) 2016. The Public and Its Problems. Athens, OH: Ohio University

Press.

Diakopoulos, Nicholas. 2014. “Algorithmic Accountability.” Digital Journalism 3,

no. 3: 398–415.

Dijkstra, Edsger W. 1968. “Letters to the Editor: Go to Statement Considered Harm-

ful.” Communications of the ACM 11, no. 3: 147–148.

Dijkstra, Edsger W. 1972. “Notes on Structured Programming.” In Structured Program-

ming, edited by Ole-Johan Dahl, Edsger W. Dijkstra, and Charles A. R. Hoare, 1–82.

London: Academic Press.

Di Paolo, Ezequiel A. 2005. “Autopoiesis, Adaptivity, Teleology, Agency.” Phenom-

enology and the Cognitive Sciences 4, no. 4: 429–452.

Doganova, Liliana. 2012 Valoriser la science. Les partenariats des start-up technologiques.

Paris: Presses de l’École des mines.

Doing, Park. 2008. “Give Me a Laboratory and I Will Raise a Discipline: The Past,

Present, and Future Politics of Laboratory Studies.” In The Handbook of Science and

Technology Studies. 3rd ed, edited by Edward J. Hackett, Olga Amsterdamska, Michael

Lynch, and Judy Wajcman, 279–295. Cambridge, MA: MIT Press.

Domingos, Pedro. 2015. The Master Algorithm: How the Quest for the Ultimate Learning

Machine Will Remake Our World. New York: Basic Books.

The MIT Press January 2021

References	 335

Domínguez Rubio, Fernando. 2014. “Preserving the Unpreservable: Docile and

Unruly Objects at MoMA.” Theory and Society 43, no. 6: 617–645.

Domínguez Rubio, Fernando. 2016. “On the Discrepancy between Objects and

Things: An Ecological Approach.” Journal of Material Culture 21, no. 1: 59–86.

Donin, Nicolas, and Jacques Theureau. 2007. “Theoretical and Methodological

Issues Related to Long Term Creative Cognition: The Case of Musical Composition.”

Cognition, Technology & Work 9: 233–251.

Doxiàdis, Apóstolos K., Christos Papadimitriou, Alecos Papadatos, and Annie Di

Donna. 2010. Logicomix. Paris: Vuibert.

Draper, Stephen W. 1992. “Critical Notice. Activity Theory: The New Direction for

HCI?” International Journal of Man-Machine Studies 37, no. 6: 812–821.

Dreyfus, Hubert L. 1992. What Computers Still Can’t Do: A Critique of Artificial Reason.

Rev. ed. Cambridge, MA: MIT Press.

Dreyfus, Hubert L. 1998. “The Current Relevance of Merleau-Ponty’s Phenomenol-

ogy of Embodiment.” Electronic Journal of Analytic Philosophy 4: 15–34.

Dunsmore, H. E., and J. D. Gannon. 1979. “Data Referencing: An Empirical Investi-

gation.” Computer 12, no. 12: 50–59.

Dupuy, Jean-Pierre. 1994. Aux origines des sciences cognitives. Paris: La Découverte.

Eason, Robert G., Russell M. Harter, and C. T. White. 1969. “Effects of Attention and

Arousal on Visually Evoked Cortical Potentials and Reaction Time in Man.” Physiol-

ogy & Behavior 4, no. 3: 283–289.

Eckert, John P., and John W. Mauchly. 1945. Automatic High Speed Computing: A Pro

gress Report on the EDVAC. Philadelphia: University of Pennsylvania, September 30.

Edge, David O. 1976 “Quantitative Measures of Communication in Sciences.” In

International Symposium on Quantitative Measures in the History of Science, Berkeley,

CA, September.

Edwards, Paul N. 1996. The Closed World: Computers and the Politics of Discourse in

Cold War America. Cambridge, MA: MIT Press.

Edwards, Paul N. 2013. A Vast Machine: Computer Models, Climate Data, and the Poli-

tics of Global Warming. Cambridge, MA: MIT Press.

Elazary, Lior, and Laurent Itti. 2008. “Interesting Objects Are Visually Salient.” Jour-

nal of Vision 8, no. 3: 1–15.

Elkan, Charles. 1993. “The Paradoxical Success of Fuzzy Logic.” In Proceedings of the

Eleventh National Conference on Artificial Intelligence, 698–703. Palo Alto, CA: Associa-

tion for the Advancement of Artificial Intelligence.

The MIT Press January 2021

336	 References

Elkan, Charles, H. R. Berenji, B. Chandrasekaran, C. J. S. de Silva, Y. Attikiouzel, D.

Dubois, H. Prade, P. Smets, C. Freksa, O. N. Garcia, G. J. Klir, Bo Yuan, E. H. Mam-

dani, F. J. Pelletier, E. H. Ruspini, B. Turksen, N. Vadlee, M. M. Jamshidi, Pel-Zhuang

Wang, Sie-Keng Tan, S. Tan, R. R. Yager, and L. A. Zadeh. 1994. “The Paradoxical

Success of Fuzzy Logic.” IEEE Expert 9, no. 4: 3–49.

Elliott, Margaret S., and Walt Scacchi. 2008. “Mobilization of Software Developers:

The Free Software Movement.” Information Technology & People 21, no. 1: 4–33.

Ensmenger, Nathan L. 2010. The Computer Boys Take Over: Computers, Programmers,

and the Politics of Technical Expertise. Cambridge, MA: MIT Press.

Espeland, Wendy Nelson, and Michael Sauder. 2016. Engines of Anxiety: Academic

Rankings, Reputation, and Accountability. New York: Russell Sage Foundation.

Estellés-Arolas, Enrique, and Fernando González-Ladrón-de-Guevara. 2012. “Towards

an Integrated Crowdsourcing Definition.” Journal of Information Science 38, no. 2:

189–200.

Everest, Mary B. 2007. Philosophy and Fun of Algebra. New York: Read Books.

Ewald, William. 2007. From Kant to Hilbert. Volume 1: A Source Book in the Founda-

tions of Mathematics. Reprint ed. Oxford: Oxford University Press.

Fellbaum, Christiane, ed. 1998. WordNet: An Electronic Lexical Database. Cambridge,

MA: A Bradford Book.

Felt, Ulrike, Raymond Fouché, Clark A. Miller, and Laurel Smith-Doerr. 2016. The

Handbook of Science and Technology Studies. 4th ed. Cambridge, MA: MIT Press.

Ferreirós, José. 2007. Labyrinth of Thought—A History of Set Theory and Its Role. Berlin:

Springer.

Ferreirós, José. 2008. “The Crisis in the Foundations of Mathematics.” In Princeton

Companion to Mathematical Proof, edited by Timothy Gowers, 142–156. Princeton,

NJ: Princeton University Press.

Finlay, Steven. 2017. Artificial Intelligence and Machine Learning for Business: A No-

Nonsense Guide to Data Driven Technologies. 2nd ed. London: Relativistic.

Fisher, Jennifer. 2007. On the Philosophy of Logic. Belmont, CA: Wadsworth.

Flor, Nick V., and Edwin L. Hutchins. 1991. “Analyzing Ditributed Cognition in

Software Teams: A Case Study of Team Programming During Perfective Software

Maintenance.” In Empirical Studies of Programmers: Fourth Workshop, edited by Jurgen

Koenemann-Belliveau, Thomas Moher, and Scott P. Robertson, 36–62. Norwood, NJ:

Ablex Publishing.

Fodor, Jerry A. 1975. The Language of Thought. Cambridge, MA: Harvard University

Press.

The MIT Press January 2021

References	 337

Fodor, Jerry A. 1987. Psychosemantics: The Problem of Meaning in the Philosophy of

Mind. Cambridge, MA: MIT Press.

Forsythe, Diana E. 2002. Studying Those Who Study Us: An Anthropologist in the World

of Artificial Intelligence. Stanford, CA: Stanford University Press.

Frank, Werner L. 1968. “Software for Terminal Oriented Systems.” Datamation 1968

(June): 30–36.

Frank, Werner L. 1983. “The History of Myth No. 1.” Datamation, May 1983: 252–263.

Fujimura, Joan H. 1987. “Constructing ‘Do-Able’ Problems in Cancer Research:

Articulating Alignment.” Social Studies of Science 17, no. 2: 257–293.

Fuller, Matthew, ed. 2008. Software Studies: A Lexicon. Cambridge, MA: MIT Press.

Gallagher, Shaun. 2005. How the Body Shapes the Mind. Oxford: Clarendon Press.

Gandy, Oscar H. 2002. “Data Mining and Surveillance in the Post-9.11 Environ-

ment.” In The Intensification of Surveillance Crime, Terrorism and Warfare in the Infor-

mation Age, edited by Kristie Ball and Frank Webster, 113–137. London: Pluto Press.

Gannon, John D. 1976. “An Experiment for the Evaluation of Language Features.”

International Journal of Man-Machine Studies 8: 61–73.

Garfinkel, Harold. 1981. “The Work of a Discovering Science Constructed with

Materials from the Optically Discovered Pulsar.” Philosophy of the Social Sciences 11,

no. 2: 131.

Gershgorn, Dave. 2017. “The Data That Transformed AI Research—and Possibly the

World.” Quartz, July 26. https://qz​.com​/1034972​/the​-data​-that​-changed​-the​-direction​

-of​-ai​-research​-and​-possibly​-the​-world​/.

Gertner, Jon. 2013. The Idea Factory: Bell Labs and the Great Age of American Innova-

tion. New York: Penguin.

Gibson, James J. 1986. The Ecological Approach to Visual Perception. London: Lawrence

Erlbaum Associates.

Gibson, James. 2014. The Ecological Approach to Visual Perception. Classic ed. London:

Psychology Press.

Gillepsie. Tarleton. 2014. “The Relevance of Algorithms.” In Media Technologies:

Essays on Communication, Materiality, and Society, edited by Tarleton Gillepsie, Pablo

Boczkowski, and Kirsten Foot, 167–194. Cambridge, MA: MIT Press.

Gitelman, Lisa. 2014. Paper Knowledge: Toward a Media History of Documents. Durham,

NC: Duke University Press Books.

Gödel, Kurt. 1931. “Über Formal Unentscheidbare Sätze der Principia Mathematica

und Verwandter Systeme I.” Monatshefte für Mathematik und Physik 38, no. 1: 173–198.

The MIT Press January 2021

338	 References

Goferman, Stas, Lihi Zelnik-Manor, and Ayellet Tal. 2012. “Context-Aware Saliency

Detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence 34, no. 10:

1915–1926.

Gold, Matthew K., ed. 2012. Debates in the Digital Humanities. Minneapolis: Univer-

sity of Minnesota Press.

Goldstine, Herman H. (1972) 1980. The Computer from Pascal to von Neumann.

Princeton, NJ: Princeton University Press.

Goldstine, Herman H., and John von Neumann. 1947. Planning and Coding of Problems

for an Electronic Computing Instrument: Report on the Mathematical and Logical Aspects of

an Electronic Computing Instrument. Princeton NJ: Institute for Advanced Study.

Good, Andrew. 2017. “An Algorithm Helps Protect Mars Curiosity’s Wheels.”

National Aeronautic and Space Administration, June 29. https://www​.nasa​.gov​/feature​

/jpl​/an​-algorithm​-helps​-protect​-mars​-curiositys​-wheels (last accessed October 2017).

Gooday, Graeme. 1990. “Precision Measurement and the Genesis of Physics Teach-

ing Laboratories in Victorian Britain.” The British Journal for the History of Science 23,

no. 1: 25–51.

Gooding, David, Trevor Pinch, and Simon Schaffer, eds. 1989. The Uses of Experi-

ment: Studies in the Natural Sciences. Cambridge: Cambridge University Press.

Goody, Jack. 1977. The Domestication of the Savage Mind. Cambridge: Cambridge

University Press.

Gray, Mary L., and Siddharth Suri. 2019. Ghost Work: How to Stop Silicon Valley from

Building a New Global Underclass. Boston: Houghton Mifflin Harcourt.

Gray, Robert. 1984. “Vector Quantization.” IEEE ASSP Magazine 1, no. 2: 4–29.

Green, Thomas R. G. 1977. “Conditional Program Statements and Their Compre-

hensibility to Professional Programmers.” Journal of Occupational Psychology 50,

no. 2: 93–109.

Green, Thomas R. G. 1980. “Programming as a Cognitive Activity.” In Human Inter-

action with Computers, edited by Harold T. Smith and Thomas R. G. Green, 277–320.

London: Academic Press.

Greimas, Algirdas J. 1983. Structural Semantics: An Attempt at a Method. Lincoln: Uni-

versity of Nebraska Press.

Grier, David A. 2005. When Computers Were Human. Princeton, NJ: Princeton Uni-

versity Press.

Grimson, W. L. Eric. 1986. “The Combinatorics of Local Constraints in Model-Based

Recognition and Localization from Sparse Data.” Journal of the ACM 33, no. 4:

658–686.

The MIT Press January 2021

References	 339

Grimson, Eric, and Tomas Lozano-Perez. 1983. “Model-Based Recognition and

Localization from Sparse Range or Tactile Data.” The International Journal of Robotics

Research 3, no. 3: 3–35.

Grosman, Jérémy, and Tyler Reigeluth. 2019. “Perspectives on Algorithmic Normativ-

ities: Engineers, Objects, Activities.” Big Data & Society 6, no. 2: 2053951719858742.

Guo, Hongwei. 2011. “A Simple Algorithm for Fitting a Gaussian Function.” IEEE

Signal Processing Magazine 28, no. 5: 134–137.

Gurvitz, Yossi. 2017. “When Kafka Met Orwell: Arrest by Algorithm.” Mondoweiss,

July 3. https://mondoweiss​.net​/2017​/07​/orwell​-arrest​-algorithm​/.

Hacking, Ian. 1983. Representing and Intervening: Introductory Topics in the Philosophy

of Natural Science. Cambridge: Cambridge University Press.

Hacking, Ian. 2014. Why Is There Philosophy of Mathematics at All? Cambridge: Cam-

bridge University Press.

Hagen, Nathan, and Eustace L. Dereniak. 2008. “Gaussian Profile Estimation in Two

Dimensions.” Applied Optics 47, no. 36: 6842–6851.

Haigh, Thomas. 2008. “Cleve Moler: Mathematical Software Pioneer and Creator of

Matlab.” IEEE Annals of the History of Computing 30, no. 1: 87–91.

Haigh, Thomas. 2011. “Charles W. Bachman: Database Software Pioneer.” IEEE Annals

of the History of Computing 33, no. 4: 70–80.

Haigh, Thomas, Mark Priestley, and Crispin Rope. 2014. “Los Alamos Bets on ENIAC:

Nuclear Monte Carlo Simulations, 1947–1948.” IEEE Annals of the History of Comput-

ing 36, no. 3: 42–63.

Haigh, Thomas, Mark Priestley, and Crispin Rope. 2016. ENIAC in Action: Making and

Remaking the Modern Computer. Cambridge, MA: MIT Press.

Hallinan, Blake, and Ted Striphas. 2014. “Recommended for You: The Netflix Prize

and the Production of Algorithmic Culture.” New Media & Society 18, no. 1: 117–137.

Hamilton, William R. 1844. “On Quaternions; Or on a New System of Imaginaries in

Algebra.” The London, Edinburg and Dublin Philosophical Magazine and Journal of Science

25: 1–13.

Hankins, Thomas L. 1980. Sir William Rowan Hamilton. Baltimore: Johns Hopkins

University Press.

Haraway, Donna. 1992. “The Promises of Monsters: A Regenerative Politics for

Inappropriate/d Others.” In Cultural Studies, edited by Lawrence Grossberg, Carry

Nelson, and Paula A. Treichler, 295–337. New York: Routledge.

Haraway, Donna. 1997. Modest_Witness@Second_Millenium: Female_Man©_Meets_

OncomouseTM: Feminism and Technoscience. New York: Routledge.

The MIT Press January 2021

340	 References

Hardt, Michael. 1999. “Foreword: Three Keys to Understanding Constituent Power.”

In Antonio Negri, Insurgencies. Constituent Power and the Modern State, vii–xiii. Min-

neapolis: University of Minnesota Press.

Hars, Alexander, and Shaosong Ou. 2001. “Working for Free? Motivations of Partici-

pating in Open Source Projects.” International Journal of Electric Commerce 6, no. 3:

25–39.

Haugeland, John. 1989. Artificial Intelligence: The Very Idea. Reprint ed. Cambridge,

MA: Bradford Book.

Haugeland John. 2000. Having Thought: Essays in the Metaphysics of Mind. New ed.

Cambridge, MA: Harvard University Press.

Hayles, Katherine N. 1999. How We Became Posthuman: Virtual Bodies in Cybernetics,

Literature, and Informatics. Chicago: University of Chicago Press.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual

Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision and

Pattern Recognition, Las Vegas, NV, June–July, 770–778. New York: IEEE.

Heath, Thomas. 1981a. A History of Greek Mathematics, Volume I: From Thales to

Euclid. Revised ed. New York: Dover Publications.

Heath, Thomas. 1981b. A History of Greek Mathematics, Volume II: From Aristarchus to

Diophantus. Revised ed. New York: Dover Publications.

Heawood, Percy J. 1890. “Map-Colour Theorem.” Quarterly Journal of Mathematics

24: 332–339.

Hebb, Donald O. 1949. The Organization of Behaviour: A Neuropsychological Theory.

New York: Wiley.

Heinke, Dietmar, and Glyn W. Humphreys. 2004. “Computational Models of Visual

Selective Attention: A Review.” In Connectionist Models in Cognitive Psychology, edited

by George Houghton, 273–312. London: Psychology Press.

Hennion, Antoine. 2015. The Passion for Music: A Sociology of Mediation. Farnham:

Ashgate Publishing.

Hennion, Antoine. 2017. “Attachments, You Say? How a Concept Collectively

Emerges in One Research Group.” Journal of Cultural Economy 10, no. 1: 112–121.

Henriksen, Anne, and Anja Bechmann. 2020. “Building Truths in AI: Making Pre-

dictive Algorithms Doable in Healthcare.” Information, Communication & Society 23,

no. 6: 802–816.

Hesseling, Dennis E. 2004. Gnomes in the Fog: The Reception of Brouwer’s Intuitionism

in the 1920s. Basel: Birkhäuser.

The MIT Press January 2021

References	 341

Hine, Christine. 2008. Systematics as Cyberscience: Computers, Change, and Continuity

in Science. Cambridge, MA: MIT Press.

Hinton, Geoffrey E., Terrence J. Sejnowski, and David H. Ackley. 1984. Boltzmann

Machines: Constraints Satisfaction Networks That Learn. Technical Report No. CMU-

CS-84-119. Pittsburgh, PA: Carnegie-Mellon University.

Hjelmås, Erik, and Boon K. Low. 2001. “Face Detection: A Survey.” Computer Vision

and Image Understanding 83, no. 3: 236–274.

Hoffman, Donna L., and Thomas P. Novak. 1998. “Bridging the Racial Divide on the

Internet.” Science 280, no. 5362: 390–391.

Hollan, James, Edwin Hutchins, and David Kirsh. 2000. “Distributed Cognition:

Toward a New Foundation for Human-Computer Interaction Research.” ACM Trans-

actions on Computer-Human Interaction 7, no. 2: 174–196.

Hopfield, John J. 1982. “Neural Networks and Physical Systems with Emergent Col-

lective Computational Abilities.” Proceedings of the National Academy of Sciences 79,

no. 8: 2554–2558.

Howe, Jeff. 2006. “The Rise of Crowdsourcing.” Wired, June 1. https://www​.wired​

.com​/2006​/06​/crowds​/.

Hudson, Graham, Alain Léger, Birger Niss, and István Sebestyén. 2017. “JPEG at 25:

Still Going Strong.” IEEE MultiMedia 24, no. 2: 96–103.

Hughes, Thomas Parke. 1983. Networks of Power: Electrification in Western Society,

1880–1930. Baltimore: Johns Hopkins University Press.

Hurley, Susan L. 2002. Consciousness in Action. Cambridge, MA: Harvard University

Press.

Husserl, Edmund. 2012. Philosophy of Arithmetic: Psychological and Logical Investigations

with Supplementary Texts from 1887–1901. Berlin: Springer Science & Business Media.

Hutchins, Edwin. 1995. Cognition in the Wild. Cambridge, MA: MIT Press.

Iacoboni, Marco. 2001. “Playing Tennis with the Cerebellum.” Nature Neuroscience

4, no. 6: 555–556.

Ingold, Tim. 2014. “That’s Enough about Ethnography!” HAU: Journal of Ethno-

graphic Theory 4, no. 1: 383–395.

Introna, Lucas D. 2016. “Algorithms, Governance, and Governmentality: On Gov-

erning Academic Writing.” Science Technology Human Values 41, no. 1: 17–49.

Introna, Lucas D., and Helen Nissenbaum. 2000. “Shaping the Web: Why the Poli-

tics of Search Engines Matters.” The Information Society 16, no. 3: 169–185.

The MIT Press January 2021

342	 References

Introna, Lucas D., and David Wood. 2002. “Picturing Algorithmic Surveillance: The

Politics of Facial Recognition Systems.” Surveillance & Society 2, no. 2–3: 177–198.

Irani, Lilly. 2015. “Difference and Dependence among Digital Workers: The Case of

Amazon Mechanical Turk.” South Atlantic Quaterly 114, no. 1: 225–234.

Isaac, Mike. 2016. “Facebook, in Cross Hairs after Election, Is Said to Question Its

Influence.” New York Times, November 12. https://www​.nytimes​.com​/2016​/11​/14​

/technology​/facebook​-is​-said​-to​-question​-its​-influence​-in​-election​.html.

Isaac, Mike, and Sydney Ember. 2016. “Shocker! Facebook Changes Its Algorithm to

Avoid ‘Clickbait.’ ” New York Times, August 4. https://www​.nytimes​.com​/2016​/08​/05​

/technology​/facebook​-moves​-to​-push​-clickbait​-lower​-in​-the​-news​-feed​.html.

Itti, Laurent. 2000. “Models of Bottom-Up and Top-Down Visual Attention.” PhD

diss., California Institute of Technology.

Itti, Laurent, and Christof Koch. 2001. “Computational Modelling of Visual Atten-

tion.” Nature Reviews Neuroscience 2, no. 3: 194–203.

Itti, Laurent, Christof Koch, and Jochen Braun. 2000. “Revisiting Spatial Vision:

Toward a Unifying Model.” Journal of the Optical Society of America: A, Optics, Image

Science, and Vision 17, no. 11: 1899–1917.

Itti, Laurent, Christof Koch, and Ernst Niebur. 1998. “A Model of Saliency-Based

Visual Attention for Rapid Scene Analysis.” IEEE Transactions on Pattern Analysis and

Machine Intelligence 20, no. 11: 1254–1259. https://doi​.org​/10​.1109​/34​.730558.

Jacobs, John F. 1986. The SAGE Air Defense Systems: A Personal History. Bedford, MA:

MITRE Corporation.

James, William. 1909. A Pluralistic Universe: Hibbert Lectures to Manchester College on

the Present Situation in Philosophy. London: Longmans, Green.

James, William. (1912) 2003. Essays in Radical Empiricism. Mineola, NY: Dover

Publications.

Jasanoff, Sheila. 2012. “Genealogies of STS.” Social Studies of Science 42, no. 3:

435–441.

Jaton, Florian. 2017. “We Get the Algorithms of Our Ground Truths: Designing

Referential Databases in Digital Image Processing.” Social Studies of Science 47, no. 6:

811–840.

Jaton, Florian. 2019. “Pardonnez cette platitude: de l’intérêt des ethnographies de

laboratoire pour l’étude des processus algorithmiques.” Zilsel 5: 315–339.

Jaton, Florian, and Dominique Vinck. 2016. “Unfolding Frictions in Database Proj

ects.” Revue d’anthropologie des connaissances 10, no. 4: a–m.

The MIT Press January 2021

References	 343

Jaton, Florian, and Dominique Vinck. Forthcoming. “Politicizing Algorithms by

Other Means: Toward Inquiries for Affective Dissension.” Perspectives on Science.

Jeffries, Robin, Althea A. Turner, Peter G. Polson, and Michael E. Atwood. 1981.

“The Processes Involved in Designing Software.” In Cognitive Skills and Their Acquisi-

tion, edited by John R. Anderson, 255–283. Hillsdale, NJ: Lawrence Erlbaum.

Jellinek, Georg. (1914) 2016. Allgemeine Staatslehre Und Politik: Vorlesungsmitschrift

Von Max Ernst Mayer Aus Dem Sommersemester, edited by Andreas Funke and Sascha

Ziemann. Tübingen: Mohr Siebrek Ek.

Jennions, Michael D., and Anders Pape Møller. 2003. “A Survey of the Statistical

Power of Research in Behavioral Ecology and Animal Behavior.” Behavioral Ecology

14, no. 3: 438–445.

Jet Propulsion Laboratory (JPL). 2015. “NASA Facts: Mars Exploration Rover.”

NASA Facts, JPL 400-1537. https://www​.jpl​.nasa​.gov​/news​/fact​_sheets​/mars​-science​

-laboratory​.pdf (last accessed October 2017).

Jiang, Bowen, Lihe Zhang, Huchuan Lu, Chuan Yang, and Ming-Hsuan Yang. 2013.

“Saliency Detection via Absorbing Markov Chain.” In 2013 IEEE International Confer-

ence on Computer Vision, Sydney, Australia, December, 1665–1672. New York: IEEE.

Jones, Lyle V., and David Thissen. 2006. “A History and Overview of Psychometrics.” In

Handbook of Statistics, edited by C. R. Rao and S. Sinharay, 1–27. Amsterdam: Elsevier.

Jones, Matthew L. 2018. “How We Became Instrumentalists (Again): Data Positivism

since World War II.” Historical Studies in the Natural Sciences 48, no. 5: 673–684.

Jordan, Michael I., and Tom M. Mitchell. 2015. “Machine Learning: Trends, Perspec-

tives, and Prospects.” Science 349, no. 6245 (July 17): 255–260. https://doi​.org​/10​

.1126​/science​.aaa8415.

Judd, Tilke, Frédo Durand, and Antonio Torralba. A Benchmark of Computational

Models of Saliency to Predict Human Fixations. Report No. MIT-CSAIL-TR-2012-001.

Cambridge, MA: MIT. http://dspace​.mit​.edu​/handle​/1721​.1​/68590 (last accessed Janu-

ary 2017).

Kamavisdar, Pooja, Sonam Saluja, and Sonu Agrawal. 2013. “A Survey on Image Clas-

sification Approaches and Techniques.” International Journal of Advanced Research in

Computer and Communication Engineering 2, no. 1: 1005–1009.

Kammann, Richard. 1975. “The Comprehensibility of Printed Instructions and the

Flowchart Alternative.” Human Factors: The Journal of the Human Factors and Ergonom-

ics Society 17, no. 2: 183–191.

Karthikeyan, Shanmugavadivel, Vignesh Jagadeesh, and B. S. Manjunath. 2013.

“Learning Top Down Scene Context for Visual Attention Modelling in Natural

The MIT Press January 2021

344	 References

Images.” In 2013 IEEEE International Conference on Image Processing, Melbourne, Vic-

toria, Australia, September, 211–215. New York: IEEE.

Kelsen, Hans. 1991. General Theory of Norms. Oxford: Clarendon Press.

Kempe, Alfred B. 1879. “On the Geographical Problem of the Four Colours.” Ameri-

can Journal of Mathematics 2, no. 3: 193–200.

Kent, Deborah. 2008. “The Mathematical Miscellany and The Cambridge Miscellany

of Mathematics: Closely Connected Attempts to Introduce Research-Level Mathe

matics in America, 1836–1843.” Historia Mathematica 35, no. 2: 102–122.

Klein, Philip N. 2013. Coding the Matrix: Linear Algebra through Applications to Com-

puter Science. 1st ed. London: Newtonian Press.

Kline, Morris. 1990a. Mathematical Thought from Ancient to Modern Times, Volume 1.

New ed. New York: Oxford University Press.

Kline, Morris. 1990b. Mathematical Thought from Ancient to Modern Times. Volume 2.

New ed. New York: Oxford University Press.

Kline, Morris. 1990c. Mathematical Thought from Ancient to Modern Times, Volume. 3.

New ed. New York: Oxford University Press.

Kling, Rob, ed. 1996. Computerization and Controversy: Value Conflicts and Social

Choices. 2nd ed. San Diego, CA: Morgan Kaufmann.

Knorr-Cetina, Karin D. 1981. The Manufacture of Knowledge: An Essay on the Construc-

tivist and Contextual Nature of Science. New York: Pergamon Press.

Knorr-Cetina, Karin D. 1999. Epistemic Cultures: How the Sciences Make Knowledge.

Cambridge, MA: Harvard University Press.

Knorr-Cetina, Karin D., and Michael J. Mulkay. 1983. Science Observed: Perspectives on

the Social Study of Science. London: Sage Publications.

Knuth, Donald E. 1992. Literate Programming. Stanford, CA: Center for the Study of

Language and Information.

Knuth, Donald E. 1997a. The Art of Computer Programming. Volume 1: Fundamental

Algorithms. 3rd ed. Reading, MA: Addison-Wesley Professional.

Knuth, Donald E. 1997b. The Art of Computer Programming. Volume 2: Seminumerical

Algorithms. 3rd ed. Reading, MA: Addison-Wesley Professional.

Knuth, Donald E. 1998. The Art of Computer Programming. Volume 3: Sorting and

Searching. 2nd ed. Reading, MA: Addison-Wesley Professional.

Knuth, Donald E. 2002. “All Questions Answered.” Notices of the AMS 49, no. 3: 318–324.

Knuth, Donald E. 2011. The Art of Computer Programming. Volume 4A: Combinatorial

Algorithms, Part 1. 1st ed. Upper Saddle River, NJ: Addison-Wesley Professional.

The MIT Press January 2021

References	 345

Koblitz, Neal. 2012. A Course in Number Theory and Cryptography. Berlin: Springer Sci-

ence & Business Media.

Koch, Christof, and Shimon Ullman. 1985. “Shifts in Selective Visual Attention:

Towards the Underlying Neural Circuitry.” Human Neurobiology 4, no. 4: 219–227.

Kraemer, Felicitas, Kees van Overveld, and Martin Peterson. 2010. “Is There an Ethics

of Algorithms?” Ethics and Information Technology 13, no. 3: 251–260.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. “ImageNet Classifi-

cation with Deep Convolutional Neural Networks.” In Proceedings of the 25th Interna-

tional Conference on Neural Information Processing Systems, Stateline, NV, September,

1097–1105. Red Hook, NY: Curran Associates.

Kushner, Scott. 2013. “The Freelance Translation Machine: Algorithmic Culture and

the Invisible Industry.” New Media & Society 15, no. 8: 1241–1258.

Lakatos, Imre. 1976. Proofs and Refutations: The Logic of Mathematical Discovery. Cam-

bridge: Cambridge University Press.

Landini, Francesca, and Giancarlo Navach. 2017. “Nutella Maker Fights Back on

Palm Oil after Cancer Risk Study.” Reuters, January 11. https://www​.reuters​.com​/article​

/us​-italy​-ferrero​-nutella​-insight​-idUSKBN14V0MK.

Lapowsky, Issie. 2016. “Here’s How Facebook Actually Won Trump the Presidency.”

Wired. November 15. https://www​.wired​.com​/2016​/11​/facebook​-won​-trump​-election​

-not​-just​-fake​-news​/.

Lappin, Joseph S., and William R. Uttal. 1976. “Does Prior Knowledge Facilitate the

Detection of Visual Targets in Random Noise?” Perception & Psychophysics 20, no. 5:

367–374.

Latour, Bruno. 1987. Science in Action: How to Follow Scientists and Engineers through

Society. Cambridge, MA: Harvard University Press.

Latour, Bruno. 1992 “Where Are the Missing Masses? The Sociology of a Few Mun-

dane Artifacts.” In Shaping Technology/Building Society: Studies in Sociotechnical Change,

edited by Wiebe E. Bijker and John Law, 225–258. Cambridge, MA: MIT Press.

Latour, Bruno. 1993a. The Pasteurization of France. Cambridge, MA: Harvard University

Press.

Latour, Bruno. 1993b. We Have Never Been Modern. Cambridge, MA: Harvard Univer-

sity Press.

Latour, Bruno. 1996. “Sur les pratiques des théoriciens.” In Savoirs théoriques et

savoirs pratiques, edited by Jean-Marie Barbier, 131–146. Paris: PUF.

Latour, Bruno. 1999a. Pandora’s Hope: Essays on the Reality of Science Studies. Cam-

bridge, MA: Harvard University Press.

The MIT Press January 2021

346	 References

Latour, Bruno. 1999b. “Factures/Fractures: From the Concept of Network to the

Concept of Attachment.” RES: Anthropology and Aesthetics 36: 20–31.

Latour, Bruno. 2005. Reassembling the Social: An Introduction to Actor-Network-Theory.

Oxford: Oxford University Press.

Latour, Bruno. 2006. Petites leçons de sociologie des sciences. Paris: La Découverte.

Latour, Bruno. 2008. “Review Essay: The Netz-Works of Greek Deductions.” Social

Studies of Science 38, no. 3: 441–459.

Latour, Bruno. 2010a. “An Attempt at a ‘Compositionist Manifesto.’ ” New Literary

History 41, no. 3: 471–490.

Latour, Bruno. 2010b. Cogitamus: Six lettres sur les humanités scientifiques. Paris: La

Découverte.

Latour, Bruno. 2013. An Inquiry into Modes of Existence: An Anthropology of the Mod-

erns. Translated by C. Porter. Cambridge, MA: Harvard University Press.

Latour, Bruno, Philippe Mauguin, and Geneviève Teil. 1992. “A Note on Socio-

Technical Graphs.” Social Studies of Science 22, no. 1: 33–57.

Latour, Bruno, and Steve Woolgar. 1986. Laboratory Life: The Construction of Scientific

Facts. 2nd ed. Princeton, NJ: Princeton University Press.

Law, John, and John Urry. 2004. “Enacting the social.” Economy and Society 33,

no. 3: 390–410.

Lawrence, Steve, and C. Lee Giles. 1999. “Accessibility of Information on the Web.”

Nature 400, no. 6740: 107.

Lea, Tess, and Paul Pholeros. 2010. “This Is Not a Pipe: The Treacheries of Indig-

enous Housing.” Public Culture 22, no. 1: 187–209.

Leadem, Rose. 2017. “Nutella’s New Jars Are Designed by an Algorithm.” Entrepre-

neur, June 5. https://www​.entrepreneur​.com​/article​/295350.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature

521: 436–444.

LeCun, Yves. 1985. “A Learning Scheme for Asymmetric Threshold Networks.” In

Proceedings of Cognitiva 85, 599–604. Paris, France.

LeCun, Yves, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. 1989. “Backpropagation Applied to Handwritten Zip Code Recogni-

tion.” Neural Computation 1, no. 4: 541–551.

Lécuyer, Christophe, David C. Brock, and Jay Last. 2010. Makers of the Microchip:

A Documentary History of Fairchild Semiconductor. Cambridge, MA: MIT Press.

The MIT Press January 2021

References	 347

Leese, Matthias. 2014 “The New Profiling: Algorithms, Black Boxes, and the Railure

of Anti-Discriminatory Safeguards in the European Union.” Security Dialogue 45,

no. 5: 494–511.

Lefebvre, Muriel. 2001. “Écritures et Espace de Médiation: Étude Anthropologique

Des Pratiques Graphiques Dans Une Communauté de Mathématiciens.” PhD diss.,

Université de Strasbourg, Strasbourg, France.

Lefebvre, Muriel. 2013. “L’infra-ordinaire de la recherche: Écritures scientifiques per-

sonnelles, archives et mémoire de la recherche.” Sciences de la société, no. 89: 3–17.

Lehr, David, and Paul Ohm. 2017. “Playing with the Data: What Legal Scholars

Should Learn about Machine Learning.” U.C. Davis Law Review 51: 653–717.

Leighton, Robert B., Norman H. Horowitz, Bruce C. Murray, Robert P. Sharp, Alan G.

Herriman, Andrew T. Young, Bradford A. Smith, Merton E. Davies, and Conway B.

Leovy. 1969. “Mariner 6 Television Pictures: First Report.” Science 165, no. 3894:

685–690.

Lenglet, Marc. 2011. “Conflicting Codes and Codings: How Algorithmic Trading Is

Reshaping Financial Regulation.” Theory, Culture & Society 28, no. 6: 44–66.

Lépinay, Vincent A. 2011. Codes of Finance: Engineering Derivatives in a Global Bank.

Princeton, NJ: Princeton University Press.

Lerner, Gerda. 1986. The Creation of Patriarchy. Oxford: Oxford University Press.

Lerner, Josh, and Jean Tirole. 2002. “Some Simple Economics of Open Source.” Jour-

nal of Industrial Economics 50, no. 2: 197–234.

Lettvin, Jerome L. 1989. “Introduction.” In Collected Works of Warren McCulloch,

edited by Rook McCulloch, 7–20. Salinas, CA: Intersystems.

Levin, Sam. 2017. “New AI can guess whether you’re gay or straight from a photo

graph.” Guardian, September 8. https://www​.theguardian​.com​/technology​/2017​/sep​/07​

/new​-artificial​-intelligence​-can​-tell​-whether​-youre​-gay​-or​-straight​-from​-a​-photograph.

Lévy, Pierre. 1995. “The Invention of the Computer.” In A History of Scientific

Thought. Elements of a History of Science, edited by Michel Serres, 636–663. Oxford:

Blackwell.

Lewis, Seth C, and Oscar Westlund. 2014. “Big Data and Journalism: Epistemology,

Expertise, Economics, and Ethics.” Digital Journalism 3, no. 3: 447–466.

Light, Jennifer S. 1999. “When Computers Were Women.” Technology and Culture

40, no. 3: 455–483.

Lippmann, Walter. (1925) 1993. The Phantom Public. Reprint ed. New Brunswick, NJ:

Transaction Publishers.

The MIT Press January 2021

348	 References

Lippmann, Walter. 1982. The Essential Lippmann: A Political Philosophy for Liberal

Democracy. Cambridge, MA: Harvard University Press.

Liptak, Adam. 2017. “Sent to Prison by a Software Program’s Secret Algorithms.” New

York Times, May 1. https://www​.nytimes​.com​/2017​/05​/01​/us​/politics​/sent​-to​-prison​

-by​-a​-software​-programs​-secret​-algorithms​.html.

Little, Anthony C., Benedict C. Jones, and Lisa M. DeBruine. 2011. “The Many Faces

of Research on Face Perception.” Philosophical Transactions of the Royal Society B: Bio-

logical Sciences 366, no. 1571: 1634–1637.

Liu, Tie, Jian Sun, Nan-Ning Zheng, Xiaoou Tang, and Heung-Yeung Shum. 2007.

“Learning to Detect a Salient Object.” In Proceedings of the 2007 IEEE Conference on

Computer Vision and Pattern Recognition, Minneapolis, MN, June, 1–8. New York:

IEEE.

Lloyd, Geoffrey E. R. 1990. Demystifying Mentalities. Cambridge: Cambridge Univer-

sity Press.

Lloyd, Geoffrey E. R. 2005. The Delusions of Invulnerability: Wisdom and Morality in

Ancient Greece, China and Today. London: Duckworth.

Lorber, Judith, and Susan A. Farrell, eds. 1991. The Social Construction of Gender. New-

bury Park, CA: Sage Publications.

Lowe, David G. 1987. “Three-Dimensional Object Recognition from Single Two-

Dimensional Images.” Artificial Intelligence. 31, no. 3: 355–395.

Lowe, David G. 1999. “Object Recognition from Local Scale-Invariant Features.” In

Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu, Greece,

September 20–25, 1999, 1150–1157. Washington, DC: IEEE Computer Society.

Lucas, H. C., and R. B. Kaplan. 1976. “A Structured Programming Experiment.” The

Computer Journal 19, no. 2: 136–138.

Lynch, Michael. 1985. Art and Artifact in Laboratory Science: A Study of Shop Work and

Shop Talk in a Research Laboratory. London: Routledge Kegan & Paul.

Lynch, Michael. 2014. “From Normative to Descriptive and Back: Science and Tech-

nology Studies and the Practice Turn.” In Science after the Practice Turn in the Philoso-

phy, History, and Social Studies of Science, edited by Léna Soler, Sjoerd Zwart, Michael

Lynch, and Vincent Israel-Jost, 93–113. London: Routledge.

Lyon, Richard F. 2006. “A Brief History of ‘Pixel.’ ” In Proceedings of SPIE Digital Pho-

tography II, edited by Nitin Sampat, Jeffrey M. Dicarlo and Russel A. Martin, 1–15.

Bellingham, WA: SPIE Press.

Lyotard, Jean-François. 1984. The Postmodern Condition: A Report on Knowledge. Min-

neapolis: University of Minnesota Press.

The MIT Press January 2021

References	 349

Ma, Yu-Fei, and Hong-Jiang Zhang. 2003. “Contrast-Based Image Attention Analysis

by Using Fuzzy Growing.” In Proceedings of the Eleventh ACM International Conference

on Multimedia, Berkeley, CA, November, 374–381. New York: ACM.

Mackenzie, Adrian. 2017. Machine Learners: Archaeology of a Data Practice. Cambridge,

MA: MIT Press.

Mackenzie, Adrian, and Simon Monk. 2004. “From Cards to Code: How Extreme

Programming Re-Embodies Programming as a Collective Practice.” Computer Sup-

ported Cooperative Work 13, no. 1: 91–117.

MacKenzie, Donald. 1993. “Negotiating Arithmetic, Constructing Proof: The Sociol-

ogy of Mathematics and Information Technology.” Social Studies of Science 23, no. 1:

37–65.

MacKenzie, Donald. 1999. “Slaying the Kraken: The Sociohistory of a Mathematical

Proof.” Social Studies of Science 29, no. 1: 7–60.

MacKenzie, Donald. 2000. “A Worm in the Bud? Computers, Systems, and the

Safety-Case Problem.” In Systems, Experts, and Computers: The Systems Approach in

Management and Engineering, World War II and After, edited by Agatha C. Hughes and

Thomas P. Hughes, 161–190. Cambridge, MA: MIT Press.

MacKenzie, Donald. 2004. Mechanizing Proof: Computing, Risk, and Trust. Cambridge,

MA: MIT Press.

MacKenzie, Donald. 2006. “Computers and the Sociology of Mathematical Proof.”

In 18 Unconventional Essays on the Nature of Mathematics, edited by Reuben Hersh,

128–146. New York: Springer Science & Business Media.

MacKenzie, Donald. 2014. “A Sociology of Algorithms: High-Frequency Trading

and the Shaping of Markets.” Working paper, University of Edinburgh. http://www​

.sps​.ed​.ac​.uk​/​_​_data​/assets​/pdf​_file​/0004​/156298​/Algorithms25​.pdf (last accessed

March 2017).

MacKenzie, Donald, Fabian Muniesa, and Lucia Siu, eds. 2007. Do Economists Make

Markets? On the Performativity of Economics. Princeton, NJ: Princeton University Press.

Mackworth, Alan K., and Eugene C. Freuder. 1985. “The Complexity of Some Poly-

nomial Network Consistency Algorithms for Constraint Satisfaction Problems.”

Artificial Intelligence. 25, no. 1: 65–74.

MacRae, Norman. 1999. John Von Neumann: The Scientific Genius Who Pioneered the

Modern Computer, Game Theory, Nuclear Deterrence, and Much More. 2nd ed. Provi-

dence, RI: American Mathematical Society.

Mahdawi, Arwa. 2018. “To a man with an algorithm all things look like an

advertising opportunity.” Guardian, December 15. https://www​.theguardian​.com​

/commentisfree​/2018​/dec​/15​/week​-in​-patriarchy​-facebook​-parenting​-advertising.

The MIT Press January 2021

350	 References

Malafouris, Lambros. 2004. “The Cognitive Basis of Material Engagement: Where

Brain, Body and Culture Conflate.” In Rethinking Materiality: The Engagement of Mind

with the Material World, edited by Elizabeth DeMarrais, Chris Gosden, and Colin

Renfrew, 53–62. Cambridge: McDonald Institute for Archeological Research.

Mancosu, Paolo, ed. 1997. From Brouwer to Hilbert: The Debate on the Foundations of

Mathematics in the 1920s. Oxford: Oxford University Press.

Markoff, John. 2012. “For Web Images, Creating New Technology to Seek and Find.”

New York Times, November 19. https://www​.nytimes​.com​/2012​/11​/20​/science​/for​

-web​-images​-creating​-new​-technology​-to​-seek​-and​-find​.html.

Marres, Noortje. 2005. “Issues Spark a Public into Being: A Key but Often Forgotten

Point of the Lippmann-Dewey Debate.” In Making Things Public, edited by Bruno

Latour and Peter Weibel, 208–217. Cambridge, MA: MIT Press.

MATLAB Answers. 2017. “How Does Matlab’s Gaussian Fit Function Select Peak Cen-

ters?” MathWorks​.com. https://www​.mathworks​.com​/matlabcentral​/answers​/342610​

-how​-does​-matlab​-s​-gaussian​-fit​-function​-select​-peak​-centers (last accessed March

2018).

Mauchly, John W. (1942) 1982. “The Use of High Speed Vacuum Tube Devices for

Calculating.” In The Origins of Digital Computers, edited by Brian Randell, 355–358.

Berlin: Springer.

Mayer, Richard E. 1976. “Comprehension as Affected by Structure of Problem Repre

sentation.” Memory & Cognition 4, no. 3: 249–255.

Mazzotti, Massimo. 2017. “Algorithmic Life.” Los Angeles Review of Books, January 20.

https://lareviewofbooks​.org​/article​/algorithmic​-life​/.

McCulloch, Warren S., and Walter Pitts. (1943) 1990. “A Logical Calculus of the

Ideas Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics 5,

no. 4: 115–133.

McGee, Kyle. 2015. Latour and the Passage of Law. Edinburgh: Edinburgh University

Press.

McKeithen, Katherine B., Judith S. Reitman, Henry H. Rueter, and Stephen C. Hirtle.

1981. “Knowledge Organization and Skill Differences in Computer Programmers.”

Cognitive Psychology 13, no. 3: 307–325.

Merleau-Ponty, Maurice. 2013. Phenomenology of Perception. Abingdon: Routledge, 2013.

Mialet, Hélène. 2012. Hawking Incorporated: Stephen Hawking and the Anthropology of

the Knowing Subject. Chicago: University of Chicago Press.

Michalski, Ryszard S., Jaime G. Carbonell, and Tom M. Mitchell. 2014. Machine

Learning: An Artificial Intelligence Approach. Amsterdam: Elsevier.

The MIT Press January 2021

References	 351

Minsky, Marvin, and Seymour A. Papert. 1969. Perceptrons: An Introduction to Compu-

tational Geometry. Cambridge, MA: MIT Press.

Minsky, Marvin, and Seymour A. Papert. 1970. “Proposal to ARPA for Research on

Artificial Intelligence at MIT, 1970–1971.” Artificial Intelligence Lab Publication,

memo no. 185, MIT.

Mirowski, Philip. 2002. Machine Dreams: Economics Becomes a Cyborg Science. Cam-

bridge: Cambridge University Press.

Mody, Cyrus C. 2017. The Long Arm of Moore’s Law: Microelectronics and American

Science. Cambridge, MA: MIT Press.

Moher, Thomas, and Michael G. Schneider. 1981. “Methods for Improving Controlled

Experimentation in Software Engineering.” In Proceedings of the 5th International Con-

ference on Software Engineering, San Diego, CA, March, 224–233. New York: IEEE.

Mol, Annemarie. 2002. The Body Multiple: Ontology in Medical Practice. Durham, NC:

Duke University Press.

Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark C.

Marino, Michael Mateas, Casey Reas, Mark Sample, and Noah Vawter. 2013. 10

PRINT CHR$(205.5+RND(1));: GOTO 10. Bellingham, WA: MIT Press.

Mosseri, Adam. 2017. “Showing More Informative Links in News Feed.” Facebook’s

Newsroom, June 30. https://about​.fb​.com​/news​/2017​/06​/news​-feed​-fyi​-showing​-more​

-informative​-links​-in​-news​-feed/ (last accessed October 2017).

Movahedi, Vida, and James H. Elder. 2010. “Design and Perceptual Validation of

Performance Measures for Salient Object Segmentation.” In 2010 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition Workshops, San Francisco,

CA, June, 49–56. New York: IEEE.

Mozur, Paul. 2018. “Inside China’s Dystopian Dreams: A.I., Shame and Lots of Cam-

eras.” New York Times, July 8. https://www​.nytimes​.com​/2018​/07​/08​/business​/china​

-surveillance​-technology​.html.

Müller, Vincent C, ed. 2015. Risks of Artificial Intelligence. Boca Raton, FL: Chapman

and Hall.

Muniesa, Fabian. 2011a. “Is a Stock Exchange a Computer Solution? Explicitness,

Algorithms and the Arizona Stock Exchange.” International Journal of Actor-Network

Theory and Technological Innovation 3, no. 1: 1–15.

Muniesa, Fabian. 2011b. “A Flank Movement in the Understanding of Valuation.”

Sociological Review 59, no. 2: 24–38.

Muniesa, Fabian. 2015. The Provoked Economy: Economic Reality and the Performative

Turn. London: Routledge.

The MIT Press January 2021

352	 References

Muniesa, Fabian, Yvan Millo, and Michel Callon. 2007. “An Introduction to Market

Devices.” In Market Devices, edited by Michel Callon, Yuval Millo, and Fabian Muni-

esa, 1–12. London: Blackwell.

Myers, Glenford J., Corey Sandler, and Tom Badgett. 2011. The Art of Software Test-

ing. 3rd ed. Hoboken, NJ: Wiley.

Nagi, J., F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi, J.

Schmidhuber, and L. M. Gambardella. 2011. “Max-Pooling Convolutional Neural

Networks for Vision-Based Hand Gesture Recognition.” In 2011 IEEE International

Conference on Signal and Image Processing Applications, Kuala Lumpur, November,

342–347. New York: IEEE.

Nathan, Tobie, and Nathalie Zajde. 2012. Psychothérapie démocratique. Paris: Odile

Jacob.

Naur, Peter, and Brian Randell. 1969. Software Engineering: Report on a Conference

Sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th October

1968. Brussels: NATO Scientific Affairs Division.

Negri, Antonio. 1999. Insurgencies: Constituent Power and the Modern State. Minneapo-

lis: University of Minnesota Press.

Neisser, Ulric. 1967. Cognitive Psychology. Upper Saddle River, NJ: Prentice Hall.

Netz, Reviel. 1998. “Deuteronomic Texts: Late Antiquity and the History of Mathe

matics.” Revue D’Histoire Des Mathématiques 4, no. 2: 261–288.

Netz, Reviel. 2003. The Shaping of Deduction in Greek Mathematics: A Study in Cognitive

History. Cambridge: Cambridge University Press.

Netz, Reviel. 2004. The Transformation of Mathematics in the Early Mediterranean

World: From Problems to Equations. Cambridge: Cambridge University Press.

Newell, Allen, and Herbert A. Simon. 1972. Human Problem Solving. Upper Saddle

River, NJ: Prentice-Hall, 1972.

Neyland, Daniel. 2016. “Bearing Account-able Witness to the Ethical Algorithmic

System.” Science Technology & Human Values 41, no. 1: 50–76.

Nissenbaum, Helen. 2004. “Hackers and the Contested Ontology of Cyberspace.”

New Media & Society 6, no. 2: 195–217.

Noble, Safiya Umoja. 2018. Algorithms of Oppression: How Search Engines Reinforce

Racism. New York: New York University Press.

Noë, Alva. 2004. Action in Perception. Cambridge, MA: MIT Press.

Nofre, David, Mark Priestley, and Gerard Alberts. 2014. “When Technology Became

Language: The Origins of the Linguistic Conception of Computer Programming,

1950–1960.” Technology and Culture 55, no. 1: 40–75.

The MIT Press January 2021

References	 353

Nudd, Tim. 2017. “Nutella’s Unique Product Now Comes in 7 Million Unique Jars.”

Adweek, June 6. https://www​.adweek​.com​/creativity​/nutellas​-unique​-product​-now​

-comes​-in​-7​-million​-unique​-jars​/.

Nye, David E. 1992. Electrifying America: Social Meanings of a New Technology, 1880–

1940. Cambridge, MA: MIT Press.

Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. 2019.

“Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations.”

Science 366, no. 6464: 447–453.

Ombredane, André, and Jean-Marie Faverge. 1955. L’analyse du travail. Paris: PUF.

O’Neal Jr., B. 1966. “Predictive Quantizing Systems (Differential Pulse Code Modula-

tion) for the Transmission of Television Signals.” Bell System Technical Journal 45,

no. 5: 689–721.

O’Neil, Cathy. 2016. Weapons of Math Destruction: How Big Data Increases Inequality

and Threatens Democracy. New York: Crown.

Ormerod, Tom. 1990. “Human Cognition and Programming.” In Psychology of Pro-

gramming, edited by J. M. Hoc, T. R. G. Green, R. Samurcay, and D.J. Gilmore, 63–82.

London: Academic Press.

O’Shea, Donal. 2008. The Poincaré Conjecture: In Search of the Shape of the Universe.

New York: Walker Books.

Otsu, Nobuyuki. 1979. “A Threshold Selection Method from Gray-Level Histo-

grams.” IEEE Transactions on Systems, Man and Cybernetics 9, no. 1: 62–66.

Owens, Larry. 1986. “Vannevar Bush and the Differential Analyzer: The Text and

Context of an Early Computer.” Technology and Culture 27, no. 1: 63–95.

Parker, Charlie. 2018. “It’s Watching You. Police Big Brother Surveillance Technol-

ogy to Spy on Your Social Media in Search for Hate Crime.” The Sun, December 14.

https://www​.thesun​.co​.uk​/news​/7968627​/big​-brother​-surveillance​-technology​-spy​

-social​-media​-police​-search​-hate​-crime​/.

Parrington, Norman, and Marc Roper. 1989. Understanding Software Testing. Chich-

ester: John Wiley.

Pasquale, Frank. 2015. The Black Box Society: The Secret Algorithms That Control Money

and Information. Cambridge, MA: Harvard University Press.

Pennington, Nancy. 1987. “Stimulus Structures and Mental Representations in Expert

Comprehension of Computer Programs.” Cognitive Psychology 19, no. 3: 295–341.

Pennington, Shelley, and Belinda Westover. 1989. “Types of Homework.” In A

Hidden Workforce: Homeworkers in England, 1850–1985, edited by Shelley Pennington

and Belinda Westover, 44–65. London: Palgrave Macmillan UK.

The MIT Press January 2021

354	 References

Penny, Simon. 2017. Making Sense: Cognition, Computing, Art, and Embodiment. Cam-

bridge, MA: MIT Press.

Penrose, Ann M., and Steven B. Katz. 2010. Writing in the Sciences: Exploring Conven-

tions of Scientific Discourse. 3rd ed. New York: Longman.

Pérec, Georges. 1989. L’Infra-ordinaire. Paris: Seuil.

Pestre, Dominique. 2004. “Thirty Years of Science Studies: Knowledge, Society and

the Political.” History and Technology: An International Journal 20, no. 4: 351–369.

Piccinini, Gualtiero. 2004. “The First Computational Theory of Mind and Brain: A

Close Look at McCulloch and Pitts’s ‘Logical Calculus of Ideas Immanent in Nervous

Activity.’ ” Synthese 141, no. 2: 175–215.

Pickering, Andrew. 1995. The Mangle of Practice: Time, Agency, and Science. Chicago:

University of Chicago Press.

Pickering, Andrew. 2011. The Cybernetic Brain: Sketches of Another Future. Chicago:

University of Chicago Press.

Pickering, Andrew, and Adam Stephanides. 1992. “Constructing Quaternions: On

the Analysis of Conceptual Practice.” In Science as Practice and Culture, edited by

Andrew Pickering, 139–167. Chicago: University of Chicago Press.

Plasek, Aaron. 2018. “On the Cruelty of Really Writing a History of Machine Learn-

ing.” IEEE Annals of the History of Computing 38, no. 4: 6–8.

Polachek, Harry. 1997. “Before the ENIAC.” IEEE Annals of the History of Computing

19, no. 2: 25–30.

Pu, Ida M. 2005. Fundamental Data Compression. Oxford: Butterworth-Heinemann.

Pugh, Emerson W. 1995. Building IBM: Shaping an Industry and Its Technology. Cam-

bridge, MA: MIT Press.

Putnam, Hilary. (1961) 1980. “Brains and Behavior.” In Readings in Philosophy of Psy

chology, edited by Ned Block, 24–36. Cambridge, MA: Harvard University Press.

Pylyshyn, Zenon W., ed. 1987. The Robots Dilemma: The Frame Problem in Artificial

Intelligence. Norwood, NJ: Praeger.

Pylyshyn, Zenon W. 1989. “Computing in Cognitive Science.” In Foundations of

Cognitive Science, edited by Michael N. Posner, 63–91. Cambridge, MA: MIT Press.

Ramón y Cajal, Santiago. 1968. The Structure of Ammon’s Horn. Springfield, IL: C. C.

Thomas.

Ratcliffe, Matthew. 2009. “Belonging to the World through the Feeling Body.” Phi-

losophy, Psychiatry, & Psychology 16, no. 2: 205–211.

The MIT Press January 2021

References	 355

Ratcliffe, Matthew. 2010. “The Phenomenology of Mood and the Meaning of Life.”

In The Oxford Handbook of Philosophy of Emotion, edited by Peter Goldie, 349–371.

Oxford: Oxford University Press.

Redmond, Kent C., and Thomas M. Smith. 1980. Project Whirlwind: History of a Pio-

neer Computer. 1st ed. Bedford, MA: Digital Press.

Redmond, Kent C., and Thomas M. Smith. 2000. From Whirlwind to MITRE: The R&D

Story of The SAGE Air Defense Computer. Cambridge, MA: MIT Press.

Rheinberger, Hans-Jörg. 1997. Toward a History of Epistemic Things: Synthesizing Pro-

teins in the Test Tube. Stanford, CA: Stanford University Press.

Richards, Martin. 2005. “EDSAC Initial Orders and Squares Program.” University of

Cambridge Computer Laboratory. http://www​.cl​.cam​.ac​.uk​/~mr10​/edsacposter​.pdf

(last accessed May 2016).

Richter, Felix. 2017. “Smartphones Cause Photography Boom.” Statista Infographics,

August 31. https://www​.statista​.com​/chart​/10913​/number​-of​-photos​-taken​-worldwide​

/ (last accessed January 2019).

Ringelhan, Stefanie, Jutta Wollersheim, and Isabell M. Welpe. 2015. “I Like, I Cite?

Do Facebook Likes Predict the Impact of Scientific Work?” PLOS ONE 10, no. 8:

e0134389.

Risen, James, and Laura Poitras. 2014. “N.S.A. Collecting Millions of Faces from Web

Images.” New York Times, May 31. https://www​.nytimes​.com​/2014​/06​/01​/us​/nsa​

-collecting​-millions​-of​-faces​-from​-web​-images​.html.

Ritter, James. 1995. “Measure for Measure: Mathematics in Egypt and Mesopota-

mia.” In History of Scientific Thought. Elements of a History of Science, edited by Michel

Serres, 44–72. Oxford: Blackwell.

Roberts, Rachel. 2017. “Online Hate Crime to Be Tackled by New National Police

Hub, Home Secretary Says.” Independent, October 8. https://www​.independent​.co​.uk​

/news​/uk​/politics​/online​-hate​-crime​-amber​-rudd​-home​-office​-national​-police​-hub​

-facebook​-twitter​-trolls​-a7988411​.html.

Rorty, Richard. 1980. Philosophy and the Mirror of Nature. Princeton, NJ: Princeton

University Press.

Rosenberg, Scott. 2008. Dreaming in Code: Two Dozen Programmers, Three Years, 4,732

Bugs, and One Quest for Transcendent Software. Reprint ed. New York: Three Rivers Press.

Rosenblatt, Frank. 1958. “The Perceptron: A Probabilistic Model for Information

Storage and Organization in the Brain.” Psychological Review 65, no. 6: 386–408.

Rosenblatt, Frank. 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. New York: Spartan Books.

The MIT Press January 2021

356	 References

Rosental, Claude. 2003. La trame de l’évidence: Sociologie de la demonstration en logique.

Paris: PUF.

Rosental, Claude. 2004. “Fuzzyfying the World: Social Practices of Showing the

Properties of Fuzzy Logic.” In Growing Explanations: Historical Perspectives on Recent

Science, edited by Norton M. Wise, 159–178. Durham, NC: Duke University Press.

Rotman, Brian. 1995. “Thinking Dia-Grams: Mathematics, Writing, and Virtual

Reality.” The South Atlantic Quarterly 94, no. 2: 389–415.

Rotman, Brian. 2006. “Towards a Semiotics of Mathematics.” In 18 Unconventional

Essays on the Nature of Mathematics, edited by Reuben Hersh, 97–127. New York:

Springer Science & Business Media.

Rowan, Thomas C. 1957. “Psychological Tests and Selection of Computer Program-

mers.” Journal of the ACM 4, no. 3: 348–353.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning

Representations by Back-Propagating Errors.” Nature 323, no. 6088: 533.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michel Bernstein, Alexander C.

Berg, and Li Fei-Fei. 2015. “ImageNet Large Scale Visual Recognition Challenge.”

International Journal of Computer Vision 115, no. 3: 211–252.

Sackman, Harold, W. J. Erikson, and E. E. Grant. 1968. “Exploratory Experimental

Studies Comparing Online and Offline Programming Performance.” Communications

of the ACM 11, no. 1: 3–11.

Sandvig, Christian, Hamilton Kevin, Karahalios Karrie, and Cedric Langbort. 2016.

“When the Algorithm Itself Is a Racist: Diagnosing Ethical Harm in the Basic Com-

ponents of Software.” International Journal of Communication 10: 4972–4990.

Santella, Anthony, Maneesh Agrawala, Doug DeCarlo, David Salesin, and Michael

Cohen. 2006. “Gaze-Based Interaction for Semi-Automatic Photo Cropping.” In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montreal,

QC, Canada, April, 771–780. New York: ACM.

Scheiber, Noam. 2016. “Uber Drivers and Others in the Gig Economy Take a Stand.”

New York Times, February 2. https://www​.nytimes​.com​/2016​/02​/03​/business​/uber​

-drivers​-and​-others​-in​-the​-gig​-economy​-take​-a​-stand​.html.

Schmidhuber, Jürgen. 2015. “Deep Learning in Neural Networks: An Overview.”

Neural Networks 61: 85–117.

Seaver, Nick. 2013. “Knowing Algorithms.” Paper presented at Media in Transition 8,

Cambridge, MA. https://static1​.squarespace​.com​/static​/55eb004ee4b0518639d59d9b​

/t​/55ece1bfe4b030b2e8302e1e​/1441587647177​/seaverMiT8​.pdf (last accessed April

2017).

The MIT Press January 2021

References	 357

Seaver, Nick. Forthcoming. Computing Taste: The Making of Algorithmic Music Recom-

mendation. Chicago: University of Chicago Press.

Sedgewick, Robert, and Kevin Wayne. 2011. Algorithms. 4th ed. Upper Saddle River,

NJ: Addison-Wesley Professional.

Seibel, Peter. 2009. Coders at Work: Reflections on the Craft of Programming. New York:

Apress.

Seitz, Frederick, and Norman G. Einspruch. 1998. Electronic Genie: The Tangled His-

tory of Silicon. Urbana: University of Illinois Press.

Serres, Michel. 1974. Hermès III: La traduction. Paris: Editions de Minuit.

Serres, Michel. 1983. Hermes: Literature, Science, Philosophy. Baltimore: The Johns Hop-

kins University Press.

Serres, Michel. 1995. “Gnomon: The Beginnings of Geometry in Greece.” In History

of Scientific Thought: Elements of a History of Science, edited by Michel Serres, 77–123.

Oxford: Blackwell.

Serres, Michel. 2002. Origins of Geometry. Manchester: Clinamen Press Limited.

Sha, Xin W. 2005. “Differential Geometrical Performance and Poiesis.” Configura-

tions 12, no. 1: 133–160.

Shannon, Claude E. 1948. “A Mathematical Theory of Communication.” Bell System

Technical Journal 27, no. 3: 379–423.

Shapin, Steven, and Simon Schaffer. 1989. Leviathan and the Air-Pump: Hobbes, Boyle,

and the Experimental Life. Princeton, NJ: Princeton University Press.

Sharkey, Jim. 2017. “New Driving Algorithm Helps Protect Curiosity Rover’s Wheels.”

Spaceflight Insider, July 4. https://www​.spaceflightinsider​.com​/space​-centers​/jet​-pro​

pulsion-laboratory/new-driving-algorithm-helps​-protect​-curiosity​-rovers​-wheels/

(last accessed October 2017).

Shen, Xiaohui, and Ying Wu. 2012. “A Unified Approach to Salient Object Detection

via Low Rank Matrix Recovery.” In Proceedings of the 2012 IEEE Conference on Com-

puter Vision and Pattern Recognition, Providence, RI, June, 853–860. New York: IEEE.

Sheppard, Sylvia B., Bill Curtis, Phil Milliman, and Tom Love. 1979. “Modern

Coding Practices and Programmer Performance.” Computer 12, no. 12: 41–49.

Shiffrin, Richard M., and Gerald T. Gardner. 1972. “Visual Processing Capacity and

Attentional Control.” Journal of Experimental Psychology 93, no. 1: 72–82.

Shneiderman, Ben, and Richard Mayer. 1979. “Syntactic/Semantic Interactions in

Programmer Behavior: A Model and Experimental Results.” International Journal of

Computer & Information Sciences 8, no. 3: 219–238.

The MIT Press January 2021

358	 References

Shneiderman, Ben, Richard Mayer, Don McKay, and Peter Heller. 1977. “Experimen-

tal Investigations of the Utility of Detailed Flowcharts in Programming.” Communi-

cations of the ACM 20, no. 6: 373–381.

Sime, Max E., Andrew T. Arblaster, and Thomas G. Green. 1977. “Reducing Program-

ming Errors in Nested Conditionals by Prescribing a Writing Procedure.” Interna-

tional Journal of Man-Machine Studies 9, no. 1: 119–126.

Sime, Max E., Thomas G. Green, and D. J. Guest. 1973. “Psychological Evaluation of

Two Conditional Constructions Used in Computer Languages.” International Journal

of Man-Machine Studies 5, no. 1: 105–113.

Sime, Max E., Thomas G. Green, and D. J. Guest. 1977. “Scope Marking in Computer

Conditionals—A Psychological Evaluation.” International Journal of Man-Machine

Studies 9, no. 1: 107–118.

Simon, Herbert A., and Craig A. Kaplan. 1989. “Foundations of Cognitive Science.”

In Foundations of Cognitive Science, edited by Michael I. Posner, 1–47. Cambridge,

MA: MIT Press.

Simondon, Gilbert. 2017. On the Mode of Existence of Technical Objects. Minneapolis,

MN: Univocal Publishing.

Skiena, Steven S. 2008. The Algorithm Design Manual. 2nd ed. London: Springer.

Smith, Andrew. 2018. “Franken-Algorithms: The Deadly Consequences of Unpre-

dictable Code.” Guardian, August 30. https://www​.theguardian​.com​/technology​/2018​

/aug​/29​/coding​-algorithms​-frankenalgos​-program​-danger.

Smith, Blair R. 1983. “The IBM 701—Marketing and Customer Relations.” IEEE

Annals of the History of Computing 5, no. 2: 170–172.

Smith, Dorothy E. 1974. “The Social Construction of Documentary Reality.” Socio

logical Inquiry 44, no. 4: 257–268.

Soloway, Elliot. 1986. “Learning to Program = Learning to Construct Mechanisms

and Explanations.” Communications of the ACM 29, no. 9: 850–858.

Sormani, Philippe. 2014. Respecifying Lab Ethnography: An Ethnomethodological Study

of Experimental Physics. 1st ed. Farnham, UK: Routledge.

Souriau, Étienne. (1943) 2015. The Different Modes of Existence. Translated by E.

Beranek and T. Howles. Minneapolis, MN: Univocal Publishing.

Srivastava, Biplav, and Francesca Rossi. 2018. “Towards Composable Bias Rating of

AI Services.” In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society,

New Orleans, LA, February, 284–289. New York: ACM.

Star, Susan L. 1983. “Simplification in Scientific Work: An Example from Neurosci-

ence Research.” Social Studies of Science 13, no. 2: 205–228.

The MIT Press January 2021

References	 359

Star, Susan L. 1989. Regions of the Mind: Brain Research and the Quest for Scientific

Certainty. Stanford, CA: Stanford University Press.

Star, Susan L., and Anselm Strauss. 1999. “Layers of Silence, Arenas of Voice: The Ecol

ogy of Visible and Invisible Work.” Computer Supported Cooperative Work 8, no. 1–2:

9–30.

Statista. 2019. “Digital Still Cameras CIPA Company Shipments 1999–2018.” Statista​

.com. https://www​.statista​.com​/statistics​/264337​/cipa​-companies​-shipments​-of​-digital​

-cameras​-since​-1999/ (last accessed January 2019).

Steiner, Christopher. 2012. Automate This: How Algorithms Came to Rule Our World.

New York: Penguin.

Stern, Nancy B. 1981. From ENIAC to UNIVAC: Appraisal of the Eckert-Mauchly Com-

puters. Bedford, MA: Digital Press.

Strebel, Ignaz, Alain Bovet, and Philippe Sormani, eds. 2018. Repair Work Ethnogra-

phies: Revisiting Breakdown, Relocating Materiality. Basingstoke: Palgrave Macmillan.

Suchman, Lucy. 1987. Plans and Situated Actions: The Problem of Human-Machine

Communication. Cambridge: Cambridge University Press.

Suchman, Lucy. 1995. “Making Work Visible.” Communications of the ACM 38, no. 9:

56–64.

Suchman, Lucy. 2007. Human-Machine Reconfigurations: Plans and Situated Actions.

2nd ed. Cambridge: Cambridge University Press.

Suchman, Lucy, Dominik Gerst, and Hannes Krämer. 2019. “ ‘If You Want to Under-

stand the Big Issues, You Need to Understand the Everyday Practices That Constitute

Them.’ Lucy Suchman in Conversation with Dominik Gerst & Hannes Krämer.”

Forum Qualitative Sozialforschung/Forum: Qualitative Social Research 20, no. 2: Art. 1.

Sutton, John. 2007. “Batting, Habit, and Memory: The Embodied Mind and the Nature

of Skill.” Sport in Society 10, no. 5: 763–786.

Swade, Doron. 2011. “Inventing the User: EDSAC in Context.” The Computer Journal

54, no. 1: 143–147.

Tarjan, Robert E. 1983. Data Structures and Network Algorithms. Philadelphia: SIAM.

Tent, M. B. W. 2006. The Prince of Mathematics: Carl Friedrich Gauss. Wellesley, MA:

A. K. Peters/CRC Press.

Theureau, Jacques. 2003. “Course-of-Action Analysis and Course-of-Action Centered

Design.” In Handbook of Cognitive Task Design, edited by Erik Hollnagel, 55–81. Hill-

sdale, NJ: Lawrence Erlbaum.

Theureau, Jacques, and Geneviève Filippi. 2000. “Analysing Cooperative Work in an

Urban Traffic Control Room for the Design of a Coordination Support System.” In

The MIT Press January 2021

360	 References

Workplace Studies, edited by Paul Luff, Jon Hindmarsh, and Christian Heath, 68–81.

Cambridge: Cambridge University Press.

Theureau, Jacques, Geneviève Filippi, Geneviève Saliou, and Pierre Vermersch. 2001.

“Development of a Methodology for Analysing the Dynamic Collective Organisation

of the Reactor Operator’s and Supervisor’s Courses of Experience While Controlling

a Nuclear Reactor in Accidental Situations in Full Scope Simulated Control Rooms.”

In CSAPC’01: Proceedings of the Eighth Conference on Cognitive Science Approaches to

Process Control, edited by R. Onken. Munich, September.

Thévenot, Laurent. 1984. “Rules and Implements: Investments in Forms.” Social Sci-

ence Information 23, no. 1: 1–45.

Thomas, Walker H. 1953. “Fundamentals of Digital Computer Programming.” Pro-

ceedings of the IRE 41, no. 10: 1245–1249.

Thompson, Evan. 2005. “Sensorimotor Subjectivity and the Enactive Approach to

Experience.” Phenomenology and the Cognitive Sciences 4, no. 4: 407–427.

Thompson, Evan. 2010. Mind in Life: Biology, Phenomenology, and the Sciences of Mind.

Cambridge, MA: Belknap Press.

Tiles, Mary. 2004. The Philosophy of Set Theory: An Historical Introduction to Cantor’s

Paradise. Mineola, NY: Dover Publications.

Traweek, Sharon. 1992. Beamtimes and Lifetimes: The World of High Energy Physicists.

Cambridge, MA: Harvard University Press.

Tsotsos, John K. 1988. “A ‘Complexity Level’ Analysis of Immediate Vision.” Interna-

tional Journal of Computer Vision 1, no. 4: 303–320.

Tsotsos, John K. 1989. “The Complexity of Perceptual Search Tasks.” In Proceed-

ings of the Eleventh International Joint Conference on Artificial Intelligence. Volume 2:

1571–1577. San Francisco, CA: Morgan Kaufmann.

Tsotsos, John K. 1990. “Analyzing Vision at the Complexity Level.” Behavioral and

Brain Sciences 13, no. 3: 423–445.

Tsotsos, John K., Scan M. Culhane, Winky Yan Kei Wai, Yuzhong Lai, Neal Davis,

and Fernando Nuflo. 1995. “Modeling Visual Attention via Selective Tuning.” Artifi-

cial Intelligence 78, no. 1–2: 507–545.

Turing, Alan M. 1937. “On Computable Numbers, with an Application to the Ents-

cheidungsproblem.” Proceedings of the London Mathematical Society 42, no. 1: 230–265.

Turing, Alan M. 1950. “Computing Machinery and Intelligence.” Mind 59, no. 236:

433–460.

Ullman, Ellen. 2012a. Close to the Machine: Technophilia and Its Discontents. Reprint

ed. New York: Picador.

The MIT Press January 2021

References	 361

Ullman, Ellen. 2012b. The Bug. New York: Picador.

Vandewalle Patrick, Jelena Kovacevic, and Martin Vetterli. 2009. “Reproducible

Research in Signal Processing.” IEEE Signal Processing Magazine 26, no. 3: 37–47.

Vapnik, Vladimir. 1999. The Nature of Statistical Learning Theory. 2nd ed. New York:

Springer.

Varela, Francisco J., Evan T. Thompson, and Eleanor Rosch. 1991. The Embodied

Mind: Cognitive Science and Human Experience. Revised ed. Cambridge, MA: MIT Press.

Vessey, Iris. 1989. “Toward a Theory of Computer Program Bugs: An Empirical Test.”

International Journal of Man-Machine Studies 30, no. 1: 23–46.

Vetterli, Martin, Jelena Kovacevic, and Vivek K. Goyal. 2014. Foundations of Signal

Processing. Cambridge: Cambridge University Press.

Villani, Cédric. 2016. Birth of a Theorem: A Mathematical Adventure. Reprint ed. New

York: Farrar, Straus and Giroux.

Vinck, Dominique. 1991. “La Coordination Du Travail Scientifique: Étude de Deux

Formes Specifiques: Le Laboratoire et Le Reseau.” PhD diss., École Nationale Supéri-

eure des Mines de Paris, Paris, France.

Vinck, Dominique, ed. 2003. Everyday Engineering: An Ethnography of Design and Inno-

vation. Cambridge, MA: MIT Press.

Vinck, Dominique. 2011. “Taking Intermediary Objects and Equipping Work into

Account in the Study of Engineering Practices.” Engineering Studies 3, no. 1: 25–44.

Vinck, Dominique. 2016. Humanités numériques: La culture face aux nouvelles technolo-

gies. Paris: Le Cavalier Bleu.

von Neumann, John. (1945) 1993. “First Draft of a Report on the EDVAC.” IEEE

Annals of the History of Computing 15, no. 4: 27–75.

von Neumann, John. (1958) 2012. The Computer and the Brain. 3rd ed. New Haven,

CT: Yale University Press.

Vygotsky, Lev S. 1978. Mind in Society: Development of Higher Psychological Processes.

Cambridge, MA: Harvard University Press.

Wade, Nicholas. 1981. The Nobel Duel. 1st ed. Garden City, NY: Doubleday.

Wang, Wei, Yizhou Wang, Qingming Huang, and Wen Gao. 2010. “Measuring

Visual Saliency by Site Entropy Rate.” In 2010 IEEE Conference on Computer Vision

and Pattern Recognition, San Francisco, CA, June, 2368–2375. New York: IEEE.

Wang, Zheshen, and Baoxin Li. 2008. “A Two-Stage Approach to Saliency Detection

in Images.” In Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing, Las Vegas, NV, March–April, 965–968. New York: IEEE.

The MIT Press January 2021

362	 References

Ward, Dave, Tom Roberts, and Andy Clark. 2011. “Knowing What We Can Do:

Actions, Intentions, and the Construction of Phenomenal Experience.” Synthese 181,

no. 3: 375–394.

Ward, Dave, and Mog Stapleton. 2012. “Es Are Good: Cognition as Enacted, Embod-

ied, Embedded, Affective and Extended.” In Consciousness in Interaction: The Role

of the Natural and Social Context in Shaping Consciousness, edited by Fabio Paglieri,

89–104. Amsterdam: John Benjamins.

Warneken, Felix, and Alexandra G. Rosati. 2015. “Cognitive Capacities for Cooking

in Chimpanzees.” Proceeding of the Royal Society. B: Biological Sciences 282, no. 1809:

20150229.

Warwick, Andrew. 1992. “Cambridge Mathematics and Cavendish Physics: Cun-

ningham, Campbell and Einstein’s Relativity 1905–1911 Part I: The Uses of Theory.”

Studies in History and Philosophy of Science Part A 23, no. 4: 625–656.

Warwick, Andrew. 1993. “Cambridge Mathematics and Cavendish Physics: Cun-

ningham, Campbell and Einstein’s Relativity 1905–1911 Part II: Comparing Tradi-

tions in Cambridge Physics.” Studies in History and Philosophy of Science Part A 24,

no. 1: 1–25.

Watson, John B. 1930. Behaviorism. London: Kegan Paul Trench Trubner.

Webster, Guy. 2015. “Curiosity Mars Rover Checking Possible Smoother Route.” Jet

Propulsion Laboratory News, January 2014. https://www​.jpl​.nasa​.gov​/news​/news​.php​

?release​=2014​-028 (last accessed October 2017).

Weil, David. 2014. The Fissured Workplace: Why Work Became So Bad for So Many and

What Can Be Done to Improve It. Cambridge, MA: Harvard University Press.

Weinberg, Gerald M. 1971. The Psychology of Computer Programming. Hoboken, NJ:

Van Nostrand Reinhold.

Weissman, Larry. 1974. “Psychological Complexity of Computer Programs: An

Experimental Methodology.” SIGPLAN Notices 9, no. 6: 25–36.

Werbos, Paul. 1974. “Beyond Regression: New Tools for Prediction and Analysis in

the Behavioral Sciences.” PhD diss., Harvard University.

Whitehead, Alfred N. (1929) 1978. Process and Reality. Edited by D. R. Griffin and

D. W. Sherburne. New York: Free Press.

Whitehead, Alfred N., and Bertrand Russell. 1910. Principia Mathematica. Cambridge:

Cambridge University Press.

Whitehead, Alfred N., and Bertrand Russell. 1911. Principia Mathematica. Volume II.

Cambridge: Cambridge University Press.

The MIT Press January 2021

References	 363

Whitehead, Alfred N., and Bertrand Russell. 1913. Principia Mathematica. Volume III.

Cambridge: Cambridge University Press.

Wiedenbeck, Susan. 1985. “Novice/Expert Differences in Programming Skills.” Inter-

national Journal of Man-Machine Studies 23, no. 4: 383–390.

Wilkes, Maurice. 1985. Memoirs of a Computer Pioneer. Cambridge, MA: MIT Press.

Wirth, Niklaus. 1976. Algorithms + Data Structures = Programs. Englewood Cliffs, NJ:

Prentice Hall.

Wittgenstein, Ludwig. 1922. Tractatus Logico-Philosophicus. London: Kegan Paul Trench

Trubner.

Wolfe, Jack M. 1971. “Perspectives on Testing for Programming Aptitude.”

In Proceedings of the 1971 Twenty-Sixth Annual Conference, 268–277. New York:

ACM.

Wolfe, Jeremy M., Kyle R. Cave, and Susan L. Franzel. 1989. “Guided Search: An

Alternative to the Feature Integration Model for Visual Search.” Journal of Experimen-

tal Psychology. Human Perception and Performance 15, no. 3: 419–433.

Wright, Patricia, and Fraser Reid. 1973. “Written Information: Some Alternatives to

Prose for Expressing the Outcomes of Complex Contingencies.” Journal of Applied

Psychology 57, no.2: 160–166.

Yapo, Adrienne, and Joseph Weiss. 2018. “Ethical Implications of Bias in Machine

Learning.” In Proceedings of the Fifty-First Hawaii International Conference on System Sci-

ences, Waikoloa Village, HI, January, 5365–5372. Atlanta, GA: Association for Informa-

tion Systems.

Yates, Joanne. 1989. Control through Communication: The Rise of System in American

Management. Baltimore: Johns Hopkings University Press.

Zemanek, H. 1981. “Dixit Algorizmi.” In Algorithms in Modern Mathematics and Com-

puter Science Proceedings: Urgench, Uzbek SSR, September 16–22, 1979, edited by A. P.

Ershov and D. E. Knuth. Berlin: Springer.

Zhao, Qi, and Christof Koch. 2011. “Learning a Saliency Map Using Fixated Loca-

tions in Natural Scenes.” Journal of Vision 11, no. 3: 9.

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

2016. “Learning Deep Features for Discriminative Localization.” In Proceedings of

the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,

June–July, 2921–2929. New York: IEEE.

Ziewitz, Malte. 2016. “Governing Algorithms Myth, Mess, and Methods.” Science

Technology & Human Values 41, no. 1: 3–16.

The MIT Press January 2021

364	 References

Zuckerberg, Mark. 2016. “I Want to Share Some Thoughts on Facebook and the Election.”

Facebook, November 12. https://www​.facebook​.com​/zuck​/posts​/10103253901916271

(last accessed October 2017).

Zunshine, Lisa, ed. 2015. The Oxford Handbook of Cognitive Literary Studies. Oxford:

Oxford University Press.

Zureik, Elia, and Karen Hindle. 2004. “Governance, Security and Technology: The

Case of Biometrics.” Studies in Political Economy 73, no. 1: 113–137.

The MIT Press January 2021

Abbate, Janet, 103, 108–112, 313n24

Abstraction, 23, 200, 279

Academic rankings, 37

Accounts, 94, 169, 182, 207. See also

Documents; Graphical objects;

Inscriptions

Accumulators, 98, 162, 310n11

ACM (Association for Computing

Machinery), 111

Actants, 4–6, 12–14, 23, 39, 167–169,

172–174, 180–185, 191–194. See also

Actors; Elements; Entities

allies’/opponents’ configuration of,

168–169

enduring/ephemeral, 12

human/nonhuman, 12, 185, 293

Action-oriented, 23–25, 201, 262, 281,

291, 314n6

Actions. See Courses of action

Activities, 17–18, 23–25, 44–47,

133–134, 195, 201, 263–265,

278–281. See also Courses of action;

Practices

visible/invisible, 8–9, 91

Actors, 40, 111, 291, 299n1. See also

Actants; Entities

Adaequatio rei et intellectus, 127, 292

Affordances, 131–132, 135, 194

Agency, 7–11, 15–18, 25, 40, 119, 125,

130–133, 148, 291, 293

Aggregates, 4–5. See also Society; States

of affairs

a priori postulated, 297 (see also Eco-

nomic rationality; Habitus; Social,

structures)

Algebra, 84, 140, 204, 220, 222–223,

295, 307n15, 317n23, 318n26

formation of, 227, 318n25 (see also

Netz, Reviel)

Algorithmic, 40, 55, 59, 77, 86, 273, 285

behavior, 77

design, 19

drama, 22, 285–286, 291

infrastructure, 275–279

machinery, 275–277

studies, 24, 48–50 (see also Knuth,

Donald)

Algorithms, 5–11, 16–25, 48–50, 53–63,

77–79, 81–86, 237–238, 246–247,

263–265, 283–291

agency of, 11, 16, 18

axiomatic perspective on, 81–86,

246–247

biometric, 10

beauty of, 25

car-detection, 55, 57

classes on, 19

as computerized methods of calcula-

tion, 5–6

constituent act of, 17

Index

The MIT Press January 2021

366	 Index

Algorithms (cont.)

constitution of, 12–18, 25, 82–85,

203–204, 263–264, 267–268

controversies over, 10–11, 16, 17, 49,

195, 265, 284, 289

ecology of, 25, 50, 289

face-detection, 55–57, 241, 244,

248–250, 255

facial recognition, 10, 304n12

formation of, 11, 18, 23–25, 34, 44,

199, 201–202, 237, 279, 287, 293

image-processing, 39, 42, 69,

80, 85–86, 136, 200, 254, 257,

304n15

inner components of, 285

as inscrutable entities, 22, 47, 286

maintenance of, 7

manuals on, 18–19, 48

manufacture of, 40, 47–48

material base of, 68, 248

optimal execution of, 50

papers on, 18–19, 37–42

as powerful floating entities, 285

problem-oriented perspective on,

81–86, 246–247

as problem-solving devices, 48–49

proprietary trading, 77

as retrieving entities, 85, 238

saliency-detection, 53, 56–64, 68–69,

73, 75, 79, 238, 262, 306n8

scoring, 85

shaping of, 20, 24, 48, 51

signal-processing, 40, 43, 44

standard conception of, 49–50, 77

use of, 10

Amalgam, 126, 132, 292. See also

Computationalism; Metaphysics

Amazon, 39, 65

Mechanical Turk (MTurk), 65, 272

(see also Contingent work)

American Bell, 167

American Journal of Mathematics, 205,

206, 315n7

ANT (Actor-Network Theory), 292.

See also Associations; Centre de

Sociologie de l’Innovation; Latour,

Bruno; Sociologie de la traduction;

Sociology; Trials

AOD (Army Ordnance Department),

94–95

APIs (Application Programming Inter-

faces), 65–66, 73, 139, 3016n10

Apple, 39, 304n11, 304n16

Aptitude tests, 105–109, 112, 115–116,

118, 136. See also Programming;

Psychology of programming;

Thurstone Primary Mental Abilities

Test

Artificial intelligence, 24, 202, 266, 268,

288, 289, 308n21, 313n27

Assemblages, 17, 42, 168, 180, 221,

257

Assets, 39

Associations, 5, 12–14, 16, 22, 263, 296,

297, 300n1. See also ANT; Centre de

Sociologie de l’Innovation; Net-

works; Sociology; Sociologie de la

traduction

Assumptions, 7, 13, 22, 138, 208, 209,

219, 242, 243, 246, 249, 279

Attachments, 11, 192–193, 294

sociology of, 192, 300n6

Axon sprouting, 229, 231–234

Backward extrapolation, 162, 225

BASIC (programming language),

167–168, 313n25

Behavioral studies, 105, 108, 113, 114,

116–118, 120, 135, 313n25

Bell Labs, 37, 100, 107

Biases, 10, 85, 307n19

gender, 11, 307n19

Big Brother Watch, 11

Big data, 11, 33, 266

Blockchain technology, 288, 324n5

Boeing, 107, 122, 145

The MIT Press January 2021

Index	 367

Boltzmann machines, 274–275, 313n27,

323n20

Bottom-up visual attention process, 53

Brains, 22, 91, 99, 105, 116, 120, 122,

123, 124, 229, 230

Brazeau, Paul, 218–220, 223, 234,

318n29, 319n32

BRL (Ballistic Research Laboratory),

94–98, 291, 309n5, 309n7

Bug reports. See Error reports

Bulky laboratories, 220–221, 224, 226,

229

Burks, Arthur, 98, 99, 101, 311n16

Byzantium, 221, 227

C (programming language), 71, 162,

295, 307n15, 321n6

C++ (programming language), 62, 71,

295, 307n15, 321n6

Callon, Michel, 42, 68, 101, 104, 167,

297, 300n3

CAM (Class Activation Mapping), 200

Captatio, 214. See also Trials, captation

Cathode-ray tube, 104, 309n6, 312n22

CCD (Charge-Coupled Device), 38, 294,

303n8. See also CMOS

Centre de sociologie de l’Innovation,

299n3. See also Sociologie de la

traduction

Certified facts, 217, 225–226, 232, 237,

254, 295, 318n26. See also External

allies; Internal allies

Chains of reference, 127–128, 133, 161,

163–165, 180–184. See also Knowl-

edge; Scientific facts; Scientific

laboratories

Church, Alonzo, 96

Classical sandwich, 124–126. See also

Cognitivism; Computationalism;

Metaphysics

Classifications, 132, 248, 270, 271, 272,

321n13

ClickWorker (company), 65

Clickworkers. See Crowdworkers

Climatology, 77, 211, 227

CMOS (Complementary Metal-Oxide

Semiconductor), 38–39, 291, 294,

302n5, 303n8

COBOL (Common Business-Oriented

Language), 110, 112, 312n22.

See also Compilers; High-level

programming languages

Code, 89, 146–164, 165–183, 184–194,

258–263, 300n9, 314n6, 321n8.

See also Programs; Scripts

lines of, 71, 83, 147, 193, 200, 238,

258–259, 312n22

machine-readable, 54, 89, 307n15

Cognition, 90, 92, 114–115, 117–118,

119–126, 130–134

affective, 131–132, 133

as a computational process, 24, 91, 117

embodied, 131–133, 185

extended, 132

Cognitive, 82, 105, 113, 117, 119, 124,

125, 133–134, 135, 318n29

mechanisms, 23

models, 114

processes, 114, 122, 126, 127, 132

psychology, 53, 63, 114, 243

sciences, 117–118, 125, 306n8

scientists, 90, 105, 124

Cognitivism, 125–128, 130–132, 194,

292. See also Classical sandwich;

Computationalism; Metaphysics

Cold War, 104, 107, 123

Collective world, 4–10, 12–14, 90, 283,

287, 289, 292, 294, 296, 297. See also

Associations; Process thought; Trials

Commercial arrangements, 104, 122,

123, 284

comp.ai.fuzzy (web forum), 205, 206,

208

Compilers, 110, 155, 162, 163–165,

208, 264, 312n22. See also Hopper,

Grace M.

The MIT Press January 2021

368	 Index

Complexity theory, 49

Complex number theory, 218–219, 222–

224, 317n23, 318n24

Composition, 9, 18, 85, 122, 184,

284, 292. See also Compromises;

Negotiations

Compromises, 9, 11, 78, 284, 300n7

Computable numbers, 103, 120. See also

Turing, Alan

Computationalism, 124–125, 128–130,

135, 292, 293. See also Cognitivism;

Adaequatio rei et intellectus

Computational metaphor of the mind,

24, 91, 114, 117–118, 119–120, 123,

124, 128, 135, 293. See also Classi-

cal sandwich; Computationalism;

Cognitivism

Computer, 48–49, 117–118, 129, 147,

257–263, 308n1, 309n6, 311n20,

312n22

engineers, 11, 90, 300n12

human, 94, 309n7

industry, 108, 110–111, 284

science, 18–21, 22–25, 48–50,

162–165, 227–232, 237, 242, 295,

301n14, 306n9

science industry, 29, 85

scientists, 24–25, 40, 44, 64, 71,

89–92, 145, 200, 279, 284

as a sociotechnical process, 98–102

as a system of interacting organs,

100–105, 115–117, 123

terminals, 50, 104, 292, 318n29

vision, 40, 41, 53, 270, 272, 277,

304n11, 304n14, 304n16

women, 94, 99

Computer programming. See

Programming

Computing system, 91, 93, 98–99,

102–106, 112, 124, 277

post-ENIAC, 98, 100 (see also ENIAC;

EDVAC)

Conditional instruction, 171, 174,

314n4

Constitution, 12–17, 18–25, 82–85, 89,

130, 199, 203, 263–264, 267–268,

287–293

Construction, 12–17, 76–77, 182–184,

226–227, 234, 237, 246–247, 270,

292, 293

Contingent work, 65–66, 306n11.

See also Industrial homework

Controversies, 9–11, 17, 20, 195, 218,

225, 263, 284, 297, 319n34

Conviction strength, 207, 209–210,

215, 235, 318n26. See also Rhetori-

cal habits

Coordinate space, 37–38, 138, 220, 252

Coordinate system. See Coordinate

space

Corporate finance. See Finance

Courses of action, 21–23, 42–44,

89–91, 118–119, 263, 266, 284, 293,

302n27. See also Activities; Practices

Crowdsourcing, 64–67, 70–71, 306n11,

306n13, 307n14. See also Ghost work

affordable, 71, 307n17

companies, 65–66

tasks, 67, 68, 70, 72, 74, 83, 137–139,

141, 152, 185, 239, 240, 244, 263

web application, 69, 71

Crowdworkers, 71, 180, 239, 240, 241,

243, 246–249, 254–256, 268, 296,

322n15

CSF (Computer Science Faculty), 31–34,

37, 40, 293, 302n2

Cultural habits, 6, 19, 49, 78

Curiosity (robotic rover), 2–3, 5. See also

Pebbles of Planet Mars

wheels of, 2, 6

Dance of agency, 25, 131. See also

Whirlwind process

Dartmouth College, 167, 122

The MIT Press January 2021

Index	 369

Data, 21, 42–45, 53–54, 76–78, 136–

140, 152–154, 239–254, 257–262,

264–275

ballistic, 95–96, 99, 292

compression, 42, 52, 56, 63, 84, 139

justice, 86

mining, 10

structuration, 49, 84, 150

unlabeled, 54, 61, 238, 239

Database, 22, 32, 68, 70, 73, 76, 83, 157,

240, 244, 248, 250, 272

ground-truth, 24, 54, 58–59, 73–75,

83, 85, 238–239, 246–247, 272, 294,

320n3

Matlab, 71, 75, 240, 281

referential, 68, 86

Dataset, 50–67, 70–73, 83, 153, 241–

243, 250, 259, 280, 283

Data-target relationships, 242

Deep convolutional neural net-

works, 268, 271, 273, 275, 277.

See also Deep learning; Formulating,

machine; Machine learning

Deep learning, 46, 269–273, 277.

See also Deep convolutional neural

networks; Formulating, machine;

Machine learning

Delay-line storage, 95–96, 97–98, 104,

309n6. See also Radar technology

Desires, 8, 39, 49, 76, 78, 89, 125, 132,

135–136, 266, 284

Developers, 89, 141, 303n9. See also

Programmers

Devices, 6, 7–8, 9–10, 16, 37, 39, 56,

96, 195, 284, 288, 291, 294, 303n5,

308n1

autonomous, 129

functional, 93, 105, 135

input-output, 91, 104

Dichotomy between knowledge and

mind, 128. See also Amalgam; Com-

putationalism; Metaphysics

Differential analyzer, 95, 104, 106,

309n3

Digital humanities, 21, 34, 301n24

Digital image processing. See Image

processing

Digital images, 37, 54, 57, 238, 272,

274, 291, 294, 296, 303n9. See also

Matrices

Dimensionality reduction, 267, 294.

See also Shift in temporality

DIR (Lab’s director), 185–187

Discriminations, 10, 108

Disembodiment, 101

Distributivity, 6. See also Actants;

Associations

Documents, 8, 13–17, 19, 21

Durability, 12–14. See also Actants; Asso-

ciations; Mobility; Re-presentability

Eckert, John P., 95–99, 101–102, 106,

294, 311n15. See also ENIAC;

EDVAC; Mauchly, John

Economic rationality, 4–5. See also

Aggregates; Habits; Social, structures

Edification, 17

EDSAC (Electronic Delay Storage Auto-

matic Calculator), 104, 106, 312n22

EDVAC (Electronic Discrete Variable

Automatic Computer), 94, 98–104,

120–124, 273, 293, 294, 310n14,

311n15. See also ENIAC; Eckert,

John P.; Mauchly, John; von Neu-

mann, John

Electromechanical computers, 96,

98, 100, 101, 129. See also Harvard

Mark I

Electromechanical relays, 104

Electronic brains, 91, 99, 105, 116,

122, 124. See also Computa-

tional metaphor of the mind;

Computationalism

computers as, 122–124

The MIT Press January 2021

370	 Index

Electronic computing systems, 91, 93,

98, 104–106

Electronic speed, 90, 95–96, 101, 104

Elkan, Charles, 205, 208, 210, 215, 217

Empowerment, 10, 265

Enactive cognition, 92, 119, 130–134.

See also Cognition

Enactivism. See Enactive cognition

Enactment, 17, 106

Endocrinology, 219, 222, 226, 228, 229,

237

ENIAC (Electronic Numerical Integrator

and Computer), 95–102, 120, 122,

273, 291, 293, 294, 310n8, 310n11,

310n13, 311n16. See also Eckert,

John P.; EDVAC; Mauchly, John W.

engineering staff, 98–99

operating team, 96, 98, 101

Entities, 4–13, 121–128, 162–167,

180–184, 232–234, 256–257,

284–285, 296–297. See also Actants;

Actors

Epistemology, 20, 207

Equations, 100–102, 116, 200, 203,

221–224, 255, 267, 294, 318n23

differential, 94, 97–98, 309n5,

309n7

iterative, 94–95

Error reports, 162–163

Ethnography, 20–25, 33–34, 43–45,

51–52, 136, 263, 284, 295, 301n22,

318n27

ETI (European Technical Institute),

31–34, 293

European Conference on Computer

Vision, 40, 270, 304n14, 322n17

Evaluation set, 54, 76, 86, 89, 200, 238,

247, 256, 258, 263, 268

Experimental instruments, 166,

219–221, 223–226

Experimental practices, 161

Experiments, 127–128, 161–162,

218–221, 224–225, 228–229,

242–243, 280, 318n29. See also Sci-

entific instrumentation

Expert systems, 128–129, 205, 210

Extended things, 125–126, 296, 314n28.

See also Adaequatio rei et intellectus;

Metaphysics; Thinking things

External allies, 209, 211, 315n6. See also

Internal allies; Certified facts

Facebook, 1, 3, 5–6, 32, 39, 40, 209,

304n10, 315n6, 323n18

news feed, 1, 5

platform, 1, 209

vice president, 2, 5

Face detection, 55–57, 63–64, 67, 80,

244

Fairchild Semiconductor, 167. See also

Planar process

Fake news, 1, 3

False negatives, 54–56. See also False

positives; Performance, evaluations;

Precision; Recall; True positives

False positives, 54–56. See also False

negatives; Performance, evaluations;

Precision; Recall; True positives

FHS (Faculty of Human Science),

33–34

Finance, 6, 301n21

Financialization, 66

Firing tables, 95, 294, 308n2, 309n7

First Draft of a Report on the EDVAC, 94,

102–105, 117, 121–122, 273, 293,

310n14, 311n15. See also EDVAC;

von Neumann, John

Fissuration of the workplace, 66. See also

Crowdsourcing; Ghost work

Flat laboratories, 217, 224, 226–227,

232, 249, 254, 295. See also Bulky

laboratories; Laboratory studies of

mathematics

Flickr, 70, 75, 83, 139

Fluid dynamics, 77

Fluidity, 6. See also Devices

The MIT Press January 2021

Index	 371

Formulas, 200–201, 203–204, 206–207,

226, 265, 284. See also Equations;

Mathematics

Formulating, 17, 23–24, 201–204,

232–238, 241–242, 254–258, 263–271,

274–281, 289–295, 307n18. See also

Ground-truthing; Formulating

machine, 275 (see also Deep convolu-

tional neural networks; Deep learn-

ing; Machine learning)

FORTRAN, 110, 112, 312n22, 313n25.

See also Compilers; High-level pro-

gramming languages

Four colors conjecture, 205–206,

213–214, 217. See also Kempe,

Alfred; Guthrie, Francis; Heawood,

Percy; Mathematical, conjecture

Frame problem, 129, 132. See also

Computationalism

Fuzzy logic, 205–206, 210, 217, 237.

See also Elkan, Charles

Game theory, 97

Gaussian function, 247, 252, 254–255,

266, 270, 274, 278, 281, 307n18.

See also Nonlinear least square algo-

rithm; Scatterplot

Gay & Lesbian Alliance Against Defama-

tion, 11

Gaze prediction, 63, 243

GCMs (General Circulation Models), 77.

See also Climatology

Gender, 11, 16, 105, 108, 307n18

dynamics, 110–112

Gendered discriminations, 108, 112

General Electric, 106, 107

General Motors, 107, 122

Ghost work, 66, 272, 306n13. See also

Crowdsourcing; Fissuration of the

workplace

Gödel, Kurt, 121, 313n26. See also

Propositional calculus; Turing,

Alan

GOFAI (Good Old Fashioned Artificial

Intelligence), 128–129

Goldstine, Herman, 95–99, 311n16

Google, 32, 39–40, 85, 272, 304n11,

304n16, 321n12, 323n18

Brain, 40

GPUs (Graphical Processing Units),

269–270, 275–277

Grand narratives, 207, 315n5

Graphical objects, 13. See also Accounts;

Documents; Inscriptions

Greek geometers, 216, 227, 318n25,

320n35. See also Netz, Reviel

Ground-truth functions, 268–269, 277

approximations of, 278 (see also Formu-

lating, machine; Machine learning)

Ground-truthing, 23–24, 78, 85–89,

195, 199, 201, 237, 263–268,

277–281, 292–295

Ground truths, 24, 55–56, 61–64,

77–86, 202–203, 241–247, 274, 288,

294, 306n9

as biases, 76, 307n19

bounding-box, 61

Guillemin, Roger, 218–219, 221–225,

232, 318nn28–29, 319n32. See also

Brazeau, Paul; Peptide; Somatostatin

Guthrie, Francis, 205–207, 210.

See also Four colors conjecture;

Kempe, Alfred; Heawood, Percy;

Mathematical, conjecture

Habits, 6, 10, 13, 19, 39, 49, 78, 116,

127, 247, 284, 307n19

rhetorical, 213, 316n12 (see also Con-

viction strength)

Habitus, 4. See also Aggregates; Economic

rationality; Social, structures; Society

Hamilton, William R., 218–221,

223–225, 317n23, 318n25, 318n29,

319n32. See also Quaternions

Handwriting recognition, 77. See also

Deep learning

The MIT Press January 2021

372	 Index

Hardware, 147, 264, 295, 306n10,

307n15, 312n22, 313n24. See also

Microprocessor

architecture, 31

infrastructures, 110

manufacturers, 303n9

Harvard Mark I, 96, 310n10. See also

Electromechanical computers

HCI (Human-Computer Interaction),

118, 130

Heawood, Percy, 205–208, 211,

214–215, 217. See also Four colors

conjecture; Guthrie, Francis; Kempe,

Alfred; Mathematical, conjecture

Helping clause (methodology), 137,

188. See also Programming, practices

Heuristics, 10, 129

High-frequency trading, 77. See also

Finance

High-level features, 53, 55. See also

Saliency, detection

High-level programming languages,

110, 112, 141, 150, 259, 294, 295,

307n15. See also COBOL; Compilers;

FORTRAN; Matlab; Python

Hilbert’s Entscheidung problem, 120.

See also Turing, Alan

Hinton, Geoffrey, 270–278, 313n27,

322n18, 323n20. See also Deep con-

volutional neural networks; Deep

learning; Krizhevsky, Alex; Sutskever,

Ilya

Hopper, Grace M., 110, 312n22. See also

Compilers

html, 71, 73, 139

Human attention mechanisms, 63

Human brain. See Brains

IBM, 32, 39–40, 104, 107–110, 304n11,

310n10, 311n17, 311n20, 312n22

PAT (Programming Aptitude Test), 108

System 360, 312n23

Watson, 40, 304n11

IDE (Integrated Development

Environment), 141–143, 145, 157,

170, 191, 240–241, 267, 292, 293.

See also Matlab, software

environment

IEEE (Institute of Electrical and

Electronics Engineers), 40–41,

111

Conference on Computer Vision

and Pattern Recognition, 304n14,

304n16

ILSVRC (ImageNet Large Scale Visual

Recognition Challenge), 200, 273,

322n17. See also Li, Fei-Fei

ImageNet, 41, 200, 272–276,

321n14, 322n16, 323n22. See also Li,

Fei-Fei

challenge, 200, 271 (see also ILSVRC)

Image processing, 38–40, 42–44, 53–63,

84–86, 136–138, 199–200, 270–271,

303n6, 303n9, 322n18

Image recognition, 38, 41, 272, 294,

304n11, 304n15, 322n16

Impasses, 96, 165, 167, 180, 184, 258

work-arounds of, 92, 183, 192,

194–195, 259 (see also Technical

detours)

Industrial homework, 65. See also

Contingent work

Information, 43, 53–54, 70–71, 79, 117,

129, 150–151, 183–184, 262, 273,

292

accessibility, 10

Infra-ordinary, 19, 301n19

Infrastructures, 14, 104, 110, 285

scriptural, 13, 294

In medias res, 1, 147

Input-data, 68, 73, 83–84, 136, 238,

265, 273, 275–276, 278, 294. See also

Output-targets

Inputs, 48–50, 73–74, 99, 102, 104–106,

122, 131–132, 266–268, 277–278,

292

The MIT Press January 2021

Index	 373

Input-target relationships, 74

Inscriptions, 13–16, 148–170,

180–184, 200, 221–234, 237,

253–259, 280–281, 287, 301n14,

318nn28–29, 319n33. See also

Accounts; Documents; Graphical

objects

alignment of, 92, 146, 154, 155, 163,

165, 170, 181, 183, 194, 258

articulation of, 150, 154, 156, 161

comparison of, 54, 157, 161

mathematical, 200, 258, 281

Inscrutability, 22, 39, 47, 278–279,

286, 291, 302n26. See also Machine

learning; Deep learning; Deep

convolutional neural networks

Instagram, 40, 304n10

Instauration, 17, 193

Insurgent acts, 285–287

INT (Matlab interpreter), 147–161,

166–171, 174, 176–180, 261–262,

266–267, 294–295, 314n2, 321n8.

See also Matlab, Command Window;

Matlab, Editor

Intermediary objects, 162

Internal allies, 210–211. See also

External allies

Interpersonal relationships, 6, 99

Intuitions, 43, 89, 132

Invisibilities, 11, 18, 297. See also

Visibility

negative/positive, 8–9, 18, 284

Invisibilization, 10, 288

Israeli secret services, 2, 3, 5–6

security software of, 7

James, William, 128, 147, 299n1,

314n30

JavaScript, 71, 73, 139, 145, 314n1

JPEG (Joint Photographic Experts

Group), 303n9

.jpg files, 138–139, 241, 248, 250–251.

See also Digital images

Kempe, Alfred, 205–208, 210–211,

213–215, 217, 316n10. See also Four

colors conjecture; Guthrie, Fran-

cis; Heawood, Percy; Mathematical,

conjecture

k-means clustering, 259–260, 321n7

Knowing mind, 127–128. See also Cog-

nitivism; Known thing; Metaphysics

Knowledge, 20, 125–128, 132–133, 166,

180–181, 203–204, 233–237, 255–

258, 288, 292

bodies of, 84, 226, 280

objective, 161, 301n14

about the real world, 126, 292 (see also

Cognitivism; Computationalism)

tacit, and necessary, 215, 217, 226,

232, 237, 252

Known thing, 127–128. See also Cogni-

tivism; Knowing mind; Metaphysics

Knuth, Donald, 49, 82, 304n17,

305n18, 308n1, 315n9. See also Algo-

rithmic, studies

Krizhevsky, Alex, 270–279, 313n27,

322n18. See also Deep convolutional

neural networks; Deep learning;

Hinton, Geoffrey; Sutskever, Ilya

Lab meetings, 35, 43, 136, 271

Laboratory of mathematics, 219. See also

Flat laboratories; Bulky laboratories

Laboratory study, 17, 22–24, 295

of computer science, 19–21, 284

of mathematics, 218

Labor markets, 6

Latour, Bruno, 4, 13–14, 127–128,

166–168, 185, 199, 208–215,

257–258, 297, 299n1. See also Asso-

ciations; Sociologie de la traduction;

Sociology; Trials

Law, John, 16–17, 301n15. See also Urry,

John

Li, Fei-Fei, 272, 277–278, 321n12,

322n15. See also ILSVRC; ImageNet

The MIT Press January 2021

374	 Index

Lippmann, Walter, 11, 284, 323n2

List of the orders, 103. See also Programs

Logarithm, 277, 250, 256, 260, 321n4

Logbook, 4, 45–47, 189–190, 218,

308n22, 315n11, 315n4, 321n5,

321nn10–11

Logical calculus, 99, 121

Logical operators, 121, 273

Logic gates, 103, 273

Logos, 5, 16, 297. See also Socius;

Sociology

Long-distance weapons, 94–95, 294,

309n7. See also Firing tables

Low-level features, 53, 305nn5–6.

See also Saliency, detection

Lynch, Michael, 18, 20, 127, 161,

229–234, 301n23

Machine code, 110, 147, 321n8

Machine learners, 268, 277–278

Machine learning, 11, 24, 77, 84, 202,

239, 242, 263, 268–271, 277

as unfolding along a continuum,

278–279

Maintenance, 13, 122, 128, 163, 194,

292, 303n9, 312n22, 313n25.

See also Repair work

studies of, 7–8

Manhattan Project, 97, 310n13

Maternity, 16. See also Gender

Mathematicable, 201, 226, 229, 232,

237. See also Formulating

Mathematical, 29, 49, 54, 77, 95, 102,

120, 201, 260, 295

biology, 122

claims, 76, 207–213, 246

conjecture, 205, 206, 211, 213, 217,

203–204, 206–207, 226, 229

fact, 215, 226, 229, 232–235, 236,

237–238, 247, 250–257, 279–280

formula, 200, 257, 263

inscriptions, 200, 204, 258, 281

journals, 208, 315n7

knowledge, 84, 89, 201–202, 204, 233–

235, 237, 238, 253–257, 284, 314n5,

320n36

logic, 96, 99

model, 23, 90, 262

neurology, 99

objects, 24, 217–218, 222, 226, 232–

235, 252–257, 263, 279–280, 319n34

operations, 83, 94, 261, 278, 280, 294

practices, 24, 50, 199, 237, 284

proof, 205, 210–212, 216

statements, 38, 278, 284

theories, 227–228, 231

truths, 207, 315n5

Mathematics, 22, 96–97, 164, 200, 203–

207, 228, 249, 279, 285, 295

combinability of, 201, 280

ecology of, 229, 232, 234, 237, 255,

257

as fundamental ingredient of thought,

216

as the queen of all sciences, 227

vascularization of, 201 (see also Labo-

ratory studies of mathematics)

MathWorks Inc., 141, 147, 267. See also

Matlab

Matlab, 139–143, 239–241, 249–255,

266–269, 292–293, 295, 307n15,

314n4, 314n8, 320n37. See also

MathWorks Inc

Command Window, 141–144, 147–

158, 268, 292

Editor, 141–144, 249, 259–260, 293

Help on Selection database, 15

software environment, 140–141, 240,

261

spreadsheet, 248, 261

Matlab fit, 246, 253, 260, 266–270.

See also Machine learning

Matrices, 58, 140–141, 150, 152, 186,

188–189, 191, 295, 296, 307n15.

See also Digital images

Matrix incrementation, 259, 315n8

The MIT Press January 2021

Index	 375

Mauchly, John, 95–99, 101–102, 106,

294, 311n15. See also Eckert, John P.;

EDVAC; ENIAC; von Neumann, John

Max-pooling algorithm, 275. See also

Deep convolutional neural networks;

Deep learning

McCulloch, Warren, 99, 101, 121–122,

124, 273, 313n27. See also Neural

networks; Pitts, Walter

Mechanical desk calculators, 94. See also

Firing tables; Human computers;

Women computers

Memory, 102, 104, 117, 273

Mental models, 105, 114–115, 117, 136,

292

Mental programs, 91, 118, 123, 125

Mental representations, 126, 133.

See also Representations

Mercury delay-line storage, 96–98,

104

data and instructions as pulses in,

100, 102 (see also EDVAC; Notion of

stored program)

Metaphysics, 125, 208, 292. See also

Amalgam; Computationalism

Microprocessor, 162, 165, 258, 312n22.

See also Hardware; Software

Microsoft, 39–41, 58, 304n11, 304n16

Mind, 24, 91, 114, 117–128, 135, 279,

293, 305n3, 320n39. See also Brains

as an information processor, 114, 117

(see also Computational metaphor of

the mind)

MIT, 56, 100, 107, 167, 309n3, 323n19

Press, 205

Mobility, 12–14

Model, 52, 57, 121–122, 125–126,

238–242, 244, 247–248, 254,

260–262, 268–271

computational, 68, 79, 81, 89,

238–239, 242, 247, 256–257,

260–262, 279, 283

mathematical, 22–23, 89, 262

Modes of practices, 92, 192, 194.

See also Computer programming

Modes of veridiction, 133, 162. See also

Amalgam; Metaphysics

Moore School of Electrical Engineer-

ing, 94–95, 100, 102–104, 106, 121,

136, 291, 293, 294, 309n6. See also

EDVAC; ENIAC

Moore School Series, 103–104. See also

ENIAC; EDVAC; EDSAC

Multiplier, 162, 310n11, 312n22

Multiverse, 128. See also James, William;

Metaphysics

NASA (US National Aeronautical and

Space Administration), 2, 5. See also

Planet Mars

National Security Agency, 40, 107, 304n12

NATO (North Atlantic Treaty Organiza-

tion), 111

Natural image, 38, 56–59, 64, 138, 141,

152, 271–273, 306n8. See also Digital

images

Nature (concept), 166, 225–226,

227–228, 319nn33–34. See also Sci-

entific practices

Nature (journal), 209

NDRC (National Defense Research

Committee), 95, 97, 310n8

NEC, 32, 40

Necessity, 19, 207, 214, 217. See also

Mathematical, claims; Mathematics

Negotiations, 9, 18, 284, 300n7. See also

Composition; Compromises

Negri, Antonio, 17, 286, 287, 323nn1–2,

324n3. See also Constituent power;

Constitution

Networks, 4, 20, 123–124, 127–128, 164,

201–202, 220, 232–233, 285, 317n15.

See also ANT; Associations; Centre de

Sociologie de l’Innovation; Latour,

Bruno; Sociologie de la traduction;

Sociology; Trials

The MIT Press January 2021

376	 Index

Netz, Reviel, 161, 203, 204, 216, 220,

227, 316n14, 317nn16–18, 318n25,

319n35, 320n36. See also Greek

geometers; Mathematical, proof

Neural networks, 41, 121, 123, 268–271,

273–275, 277, 313n27, 322n18,

323n20, 323n22. See also Deep

learning; Deep convolutional neural

networks; Neurons

Neurobiology, 63, 243

Neurons, 102, 121–122, 124, 229, 231,

313n27. See also McCulloch, War-

ren; Pitts, Walter as all-or-none firing

entities, 121, 123–124, 273, 274

New York Times, 13

Non-commutative, 219. See also Hamil-

ton, William R.; Quaternions

Nonlinear least square algorithm, 267.

See also Gaussian Function

Notion of stored program, 100, 104,

310n14. See also EDVAC

Number theory, 84, 218–219, 222–224,

249, 318n24

Numerical computing, 71, 73, 83, 295,

307n15

Nutella, 3–5

jars, 12–13

marketing campaign, 3, 6

Obligatory passage point, 68, 90, 119

Ogilvy & Mather Italia, 3, 6–7

Ontological weight, 126, 130, 191,

323n3. See also Metaphysics;

Multiverse

Ontology, 12, 296, 299n1

Operand, 267, 277–278

Operating system, 110, 306n10,

312n23. See also Hardware;

Software

Operators, 84, 99, 274. See also Math-

ematical, operations

logico-arithmetic, 121, 273

Optimization, 40, 49

Outputs, 49–50, 54, 68, 73, 83–85, 102,

121–122, 125, 262, 266–268

Output-targets, 68, 73, 78–79, 83–84,

89, 136, 246, 265, 273–278, 294

Outsourcing, 65–66, 306n12.

See also Contingent work; Industrial

homework

Palm oil, 3–4, 6

Panel diagrams, 99, 101. See also Burks,

Arthur; ENIAC

Parameters, 7, 112–116, 135, 222, 223,

254–256, 260, 266–270, 274, 277

learning, 77. See also Deep learning;

Machine learning

Patriarchy, 16

Peer-reviewed articles, 37, 42, 243, 295.

See also Scientific institution; Scien-

tific veridiction

Peptide, 218–219, 221–224, 227,

229, 234, 237, 318n28. See also

Brazeau, Paul; Guillemin, Roger;

Somatostatin

Perceptron algorithm, 273–274, 313n27.

See also Neural networks

Performance, 59, 69, 75–77, 79–81, 108,

112, 114–116, 238, 258, 296

evaluations, 59–60, 62, 80 (see also

Ground truths; Ground-truth

databases)

measures, 263

metrics, 54–55 (see also Precision;

Recall; Statistics)

Persuasion strength. See Conviction

strength

PhD students, 35, 238, 295, 312n22

Philosophy of perception, 91, 119.

See also Cognition; Enactive cognition

PHP, 71, 73, 139, 314n1

Piecework, 65. See also Contingent

work; Outsourcing

Pitts, Walter, 99, 121–122, 313n27.

See also McCulloch, Warren; Neurons

The MIT Press January 2021

Index	 377

Pixels, 37–39, 53, 58, 76, 140, 154, 186,

291, 294, 296, 189. See also Digital

images; .jpg files; Natural image

Planar process, 162, 167. See also Fair-

child Semiconductor

Planet Mars, 2, 5–6, 12–13. See also

NASA

pebbles of, 2–3, 5–6 (see also Curiosity

[robotic rover])

Plans, 89, 184, 185

as narratives, 185 (see also Scenarios)

as resources, 184 (see also Suchman,

Lucy)

Power, 14, 25, 110, 127, 201, 207, 209,

231, 234, 237, 257, 275, 286

constituent, 17, 283, 286–287, 324n3

(see also Negri, Antonio)

dynamics, 6

relations, 9

Practices, 8–10, 18–22, 24–25, 89–92,

102–105, 181–184, 193–194,

237–242, 279–281. See also Activities;

Courses of action

in the wild, 127

Precision, 54–56, 60, 75, 247. See also

Performance, metrics; Recall;

Statistics

Predictive algorithmic systems, 77

Preprocessing method, 136, 139

Problematization, 49–50, 62–63, 68, 75,

78, 82–84, 238, 246, 295, 307n19

Problem-solving, 48, 49, 119, 183

Processors, 90, 94, 155, 162, 163, 264,

321n8

Process thought, 4, 208, 296, 299n1.

See also Associations; Networks;

Trials

PROG, 137–141, 146, 148, 152, 156,

165, 169–171, 176–181, 184–186,

188–189, 192–193, 296, 315n12

Program intelligibility, 163, 315n9

Programmers, 90–91, 107–108,

110–112, 135–137, 145–146,

162–165, 192–194, 307n14, 315n9,

315n12. See also Developers

Programming, 17, 23–24, 89–92,

117–118, 122–123, 164–165, 199,

263–267, 277–279, 296

academic studies of, 93

activity, 89, 108, 116, 195, 237,

263–264, 278, 295

affects, 182, 192–193

behavioral studies of, 105, 183

cognitive studies of, 105, 114–115,

117–118, 123, 194

courses of action, 91, 192, 194, 293

episode, 92, 136–137, 154–155,

161–162, 165, 184–185, 200, 258,

281, 296

impasse, 124, 137

invisibilization of, 91, 93, 119, 181,

273

languages, 71–74, 110–112, 137,

139–142, 163, 167–168, 204,

260–261, 294, 295

methodologies, 50

practices, 43, 89–92, 116–119,

161–165, 194, 201, 225, 240–242,

273, 288

procedures, 83–84

sequences, 47, 141, 143–144, 146,

154–155, 161–164, 170, 174, 180

setting aside of, 91, 94, 98, 116, 288

team, 106

technical aspect of, 165, 180–182

(see also Technical detours;

Technicality)

tests, 105, 113–114

tutorials, 44

Programs, 22, 38, 59, 90–91, 98,

114–124, 258, 303n9, 306n10.

See also Code; Scripts

mental, 91, 123, 125 (see also

Cognitivism; Computationalism)

Program testing, 163

Project PX, 95. See also ENIAC

The MIT Press January 2021

378	 Index

Project PY, 98. See also EDVAC

Propositional calculus, 121, 122. See also

Gödel, Kurt; Turing, Alan

Protocols, 14, 306n10, 316n14

Psychology of programming,

105–118. See also Aptitude tests;

Behavioral studies of program-

ming; Cognitive studies of

programming

Psychometrics, 108, 312n21. See also

Thurstone Primary Mental Abilities

Test

Public, 9

concern, 10, 284

issues, 287 (see also Controversies)

Punched cards, 96, 308n1. See also

Hardware; Software; Programming

Python, 44–45, 47, 139, 141, 307n15,

314n1. See also High-level program-

ming languages

Quantum mechanics, 97. See also von

Neumann, John

Quaternions, 223–226, 237, 319n32.

See also Hamilton, William R.

Radar technology, 96, 107, 309n6.

See also Delay-line storage; Mauchly,

John

Radioimmunoassay, 218–223, 226–228,

232. See also Brazeau, Paul; Guille-

min, Roger; Peptide; Somatostatin

RAND Corporation, 106–108, 311n17.

See also SDC

System Development Division,

107–108

Rat pituitary cell cultures, 218–223,

228, 232–233, 318n26. See also

Brazeau, Paul; Guillemin, Roger;

Peptide; Radioimmunoassay;

Somatostatin

Ready-made science, 127. See also

Science in the making

Recall, 54–56, 60, 75, 247. See also Per-

formance, evaluations; Precision;

Statistics

Reduction, 50, 116, 119, 122–124,

232–234, 257, 270, 280–281,

320n39. See also Translations

Referential repositories, 24, 68, 76–78,

85–86, 164, 231, 261. See also Ground

truths; Ground-truth databases

Remote entities, 127, 163, 180, 184,

292. See also Scientific institution;

Scientific veridiction

Repair work, 7. See also Maintenance

Re-presentability, 14. See also Actants;

Associations; Durability; Mobility;

Re-presentations

Re-presentations, 133, 148, 296. See also

Accounts; Documents; Graphical

objects; Inscriptions

Representations, 126–127, 130–131,

133, 135, 148, 219, 223, 296, 303n9.

See also Mental representations

symbolic, 126, 130

Representativeness, 145, 302n28.

See also Statistics

Resistors, 96, 99, 162

RGB (Red Green Blue) color schema,

38, 150, 273–274. See also Digital

images; .jpg files; Natural image

Rhetoric, 207. See also Mathematical,

claims

crisis, 111 (see also Software, crisis;

Software, engineering)

promotional, 10

RTs (rearrangements), 4–7, 10. See also

Process thought; States of affairs

SAGE (Semi-Automatic Ground

Environment), 107–108, 311n19.

See also US Air Force

Saliency, 57, 59, 62–64, 67–68, 75, 83

binary problematization of, 61, 63–64,

67

The MIT Press January 2021

Index	 379

continuous, 67–68, 82, 243

detection, 51–53, 56–57, 59–64,

68–70, 73, 79, 81, 82, 238, 242, 272,

296, 314n29 (see also High-level fea-

tures; Low-level features)

map, 53

models, 52, 63, 67

probability map, 58–59

Salient, 57, 67, 249

features, 64, 67, 69, 71, 73, 239

object, 57–58, 61–62, 64, 238

Scatterplot, 252, 270, 281. See also

Gaussian Function

Scenarios, 92, 185, 191–195, 202, 242,

258–260, 263, 296. See also Plans, as

narratives; Programming, practices

Science (journal), 319n32

Science in the making, 127, 235. See also

Laboratory study

Scientific facts, 20, 126–128, 184,

201, 203, 215, 224–226, 234, 292,

301n16, 314n5. See also Certified

claims; Trials

Scientific institution, 133, 161, 224,

316n14. See also Peer-reviewed

articles; Scientific veridiction

Scientific instrumentation, 292. See also

Experiments

Scientific laboratories, 89, 161, 164,

222. See also Laboratory study

as counter-laboratories, 164

Scientific practices, 18, 161, 162, 183,

226, 301n14

Scientific truth, 128. See also Nature

Scientific valorization, 32

Scientific veridiction, 133, 162. See also

Amalgam; Metaphysics; Modes of

veridiction

Scripts, 45, 71–73, 80, 142, 163–164,

193, 249, 261, 296, 320n3. See also

Code; Programs

SDC (System Development Corporation),

108. See also RAND Corporation

Segmentation, 42, 61, 64, 68, 71, 74,

80–81, 137, 139, 239

low-level, 63

pixel-precision, 71, 263

Selective visual attention method, 53

Set theory, 49, 204

Shannon, Claude, 206–208, 210, 215,

217

Shannon-Hartley theorem, 206, 208,

210, 217. See also Scientific facts;

Scientific truth

Shift in temporality, 267. See also

Dimensionality reduction

ShortTask (web application), 65, 73.

See also Crowdsourcing

Signal processing, 31, 38, 40, 43–44,

217, 237, 267, 294, 303n7

Signals, 53, 121, 123, 206, 228, 273,

309n6

two-dimensional, 38–39, 292 (see also

Digital images)

Single sentence statements, 215, 232,

250, 252. See also Posterity trials;

Scientific truth

Skeptical readers, 211, 213, 216, 222,

224, 226, 228, 280, 316n14

Smith, Dorothy, 13, 15, 101

law of, 16, 287

Social, 4–7, 10–11, 15, 58, 62, 64, 67,

192, 297. See also Socius

forces, 4

media, 3, 6–7, 11, 209, 304n10

science, 4–6, 192, 285–286, 296, 297

structures, 4

Society, 4–5, 29, 166, 297. See also

Aggregates; Economic rationality;

Habitus; Social, structures

black box, 40

Sociologie de la traduction, 297

Sociology, 5–6, 11, 16, 21, 47, 167, 192,

225, 288–289, 296, 297, 300n6,

301n19, 301n21

Sociotechnical diagrams. See STG

The MIT Press January 2021

380	 Index

Sociotechnical process, 93, 101–103,

105, 167

Socius, 5, 16, 297, 299n4. See also Asso-

ciations; Logos; Social

Software, 33, 40–42, 110–116, 137,

140, 193, 293, 296, 300n9, 312n23.

See also Hardware; Programs

corporate, 137

crisis, 111

engineering, 111–112

industry, 105

infrastructures, 285

package, 7, 67

production costs, 111, 313n24

studies, 314n6

Solid-state physics, 37. See also CCD;

CMOS

Somatostatin, 222–226, 234. See also

Brazeau, Paul; Guillemin, Roger;

Peptide; Scientific facts

Spam filtering, 77

Spin-offs, 32, 34, 37, 43

Start-ups, 32, 304n15

States of affairs, 3–4, 12. See also

Aggregates; RTs

Statistics, 15, 77, 84. See also Perfor-

mance, evaluations; Precision;

Recall; Representativeness

STG (SocioTechnical Graph), 167–177,

179–180

syntagmatic dimension of, 168

paradigmatic dimension of, 168

Stochastic gradient retropropagation

algorithm (backprop), 274. See also

Deep convolutional neural networks;

Deep learning

Storage, 72, 96–98, 100, 104, 273.

See also Memory

computing, 96

writable electronic, 96

Stored-program digital computers,

104. See also Notion of stored

program

STS (Science and Technology Studies),

6, 18–19, 33–34, 127, 204, 225, 284,

295–296, 299n5, 315n12. See also

Social, science; Sociology

Stylization process, 215. See also Trials

Suchman, Lucy, 19, 130, 184–185, 258,

283

Sutskever, Ilya, 270–278, 313n27,

322n18

Switfness, 155, 162, 165. See also INT

Symbols, 116, 126, 133, 163–164, 260

Targets, 54–64, 81–86, 89, 200, 238–239,

246–247, 265, 267, 273, 294. See also

Output-targets

Tautology, 118, 135

Technical artifact, 165, 179–180

Technical detours, 165, 182, 191–192,

297. See also Impasses, work-arounds of

Technical innovations, 166

Technicality, 181. See also Technical

aspect of programming

Technical projects, 166–168, 184

frontline of, 168–169, 172 (see also

STG)

latitudinal dimension of, 167

longitudinal dimension of, 167

Technical zigzag. See Technical detours

Theoretical computer science, 31

Theureau, Jacques, 23, 293, 302n27.

See also Courses of action

Thinking things, 125, 296, 314n28.

See also Adaequatio rei et intellectus;

Extended things; Metaphysics

Thurstone Primary Mental Abilities

Test, 107, 312n21. See also Aptitude

tests; Programming; Psychology of

programming

Top-down visual attention process, 53

Training set, 54, 59, 74–86, 200, 238–

241, 247–255, 266–270, 275, 278–

281, 307n18. See also Evaluation set;

Ground truths

The MIT Press January 2021

Index	 381

Translations, 96, 123–124, 140, 228,

232, 263. See also Actants; ANT; Asso-

ciations; Sociologie de la traduction;

Trials

of training sets, 241–263, 266, 270,

278, 281 (see also Formulating;

Mathematicable)

Trials, 9, 208, 210, 217, 224–226, 235,

237, 254, 280, 318n26. See also ANT;

Associations; Latour, Bruno

captation, 213, 215–216 (see also

Captatio)

citation, 210

posterity, 215, 217, 235

publication, 209

True positives, 54–55, 78. See also

False negatives; False positives;

Performance, evaluations; Precision;

Recall

Trump, Donald, 1, 3, 5–6

Turing, Alan, 96, 103, 120, 310n12.

See also Hilbert’s Entscheidung

problem

Turing machines, 121–124, 273

Tweets. See Twitter

Twitter, 315n6

.txt files, 45, 47, 72–73, 138–140, 145,

147, 152, 154, 174, 258

Ullman, Ellen, 182–183, 308n1, 314n7.

See also Program testing; Program-

ming, affects

UNIVAC (Universal Automatic Com-

puter), 106, 110. See also Eckert,

John P.; Mauchly, John

Urry, John, 16–17, 301n15. See also Law,

John

US Air Force, 107, 167. See also SAGE

Vacuum tubes, 95–96, 310n8. See also

ENIAC

Value-accountability-by-design, 78

Values, 11, 49, 78, 85, 186, 189,

246–257, 260–262, 291, 296

face importance, 239–242, 247–251,

254–256, 262, 267–268

logarithmic, 250

relative saliency, 73–74, 239

Visibility, 9, 66, 229, 297. See also

Invisibilities

von Neumann, John, 96–103, 121–122,

135–136, 273, 293, 294,

310nn12–13, 311n16, 313n27

architecture, 93–94, 106, 136, 293,

308n1

Web, 66, 69, 71–72, 75, 80, 89, 138–140,

206, 208, 210, 246, 263, 274

search engines, 10, 57

technologies, 10, 303n9

Weight map, 73–74

West Bank, 2, 6

jails, 12–13

military commander of the, 3

Whirlwind process, 25, 311n16. See also

Dance of agency

Woolgar, Steve, 13–14, 20, 127,

161–162, 224–225, 292, 316n12

World War II, 94, 122, 308n2

Ziewitz, Malte, 22, 285–286, 291,

302n26. See also Algorithmic, drama

Zuckerberg, Mark, 1, 4, 12–13

The MIT Press January 2021

The MIT Press January 2021

Inside Technology Series

Edited by Wiebe E. Bijker, W. Bernard Carlson, and Trevor Pinch

Florian Jaton, The Constitution of Algorithms: Ground-Truthing, Programming, Formulating

Kean Birch and Fabian Muniesa, Assetization: Turning Things into Assets in Technosci-
entific Capitalism

David Demortain, The Science of Bureaucracy: Risk Decision-Making and the US Environ-
mental Protection Agency

Nancy Campbell, OD: Naloxone and the Politics of Overdose

Lukas Engelmann and Christos Lynteris, Sulphuric Utopias: The History of Maritime
Fumigation

Zara Mirmalek, Making Time on Mars

Joeri Bruynincx, Listening in the Field: Recording and the Science of Birdsong

Edward Jones-Imhotep, The Unreliable Nation: Hostile Nature and Technological Failure
in the Cold War

Jennifer L. Lieberman, Power Lines: Electricity in American Life and Letters, 1882–1952

Jess Bier, Mapping Israel, Mapping Palestine: Occupied Landscapes of International
Technoscience

Benoît Godin, Models of Innovation: The History of an Idea

Stephen Hilgartner, Reordering Life: Knowledge and Control in the Genomics Revolution

Brice Laurent, Democratic Experiments: Problematizing Nanotechnology and Democracy
in Europe and the United States

Cyrus C. M. Mody, The Long Arm of Moore’s Law: Microelectronics and American Science

Tiago Saraiva, Fascist Pigs: Technoscientific Organisms and the History of Fascism

Teun Zuiderent-Jerak, Situated Interventions: Sociological Experiments in Healthcare

Basile Zimmermann, Technology and Cultural Difference: Electronic Music Devices, Social
Networking Sites, and Computer Encodings in Contemporary China

Andrew J. Nelson, The Sound of Innovation: Stanford and the Computer Music Revolution

Sonja D. Schmid, Producing Power: The Pre-Chernobyl History of the Soviet Nuclear
Industry

Casey O’Donnell, Developer’s Dilemma: The Secret World of Videogame Creators

Christina Dunbar-Hester, Low Power to the People: Pirates, Protest, and Politics in FM
Radio Activism

Eden Medina, Ivan da Costa Marques, and Christina Holmes, editors, Beyond Imported
Magic: Essays on Science, Technology, and Society in Latin America

Anique Hommels, Jessica Mesman, and Wiebe E. Bijker, editors, Vulnerability in Tech-
nological Cultures: New Directions in Research and Governance

Amit Prasad, Imperial Technoscience: Transnational Histories of MRI in the United States,
Britain, and India

Charis Thompson, Good Science: The Ethical Choreography of Stem Cell Research

Tarleton Gillespie, Pablo J. Boczkowski, and Kirsten A. Foot, editors, Media Technolo-
gies: Essays on Communication, Materiality, and Society

Catelijne Coopmans, Janet Vertesi, Michael Lynch, and Steve Woolgar, editors,
Representation in Scientific Practice Revisited

The MIT Press January 2021

Rebecca Slayton, Arguments that Count: Physics, Computing, and Missile Defense,
1949–2012

Stathis Arapostathis and Graeme Gooday, Patently Contestable: Electrical Technologies
and Inventor Identities on Trial in Britain

Jens Lachmund, Greening Berlin: The Co-Production of Science, Politics, and Urban Nature

Chikako Takeshita, The Global Biopolitics of the IUD: How Science Constructs Contracep-
tive Users and Women’s Bodies

Cyrus C. M. Mody, Instrumental Community: Probe Microscopy and the Path to Nano-
technology

Morana Alač, Handling Digital Brains: A Laboratory Study of Multimodal Semiotic Interac-
tion in the Age of Computers

Gabrielle Hecht, editor, Entangled Geographies: Empire and Technopolitics in the Global
Cold War

Michael E. Gorman, editor, Trading Zones and Interactional Expertise: Creating New
Kinds of Collaboration

Matthias Gross, Ignorance and Surprise: Science, Society, and Ecological Design

Andrew Feenberg, Between Reason and Experience: Essays in Technology and Modernity

Wiebe E. Bijker, Roland Bal, and Ruud Hendricks, The Paradox of Scientific Authority:
The Role of Scientific Advice in Democracies

Park Doing, Velvet Revolution at the Synchrotron: Biology, Physics, and Change in Science

Gabrielle Hecht, The Radiance of France: Nuclear Power and National Identity after World
War II

Richard Rottenburg, Far-Fetched Facts: A Parable of Development Aid

Michel Callon, Pierre Lascoumes, and Yannick Barthe, Acting in an Uncertain World:
An Essay on Technical Democracy

Ruth Oldenziel and Karin Zachmann, editors, Cold War Kitchen: Americanization,
Technology, and European Users

Deborah G. Johnson and Jameson W. Wetmore, editors, Technology and Society: Build-
ing Our Sociotechnical Future

Trevor Pinch and Richard Swedberg, editors, Living in a Material World: Economic
Sociology Meets Science and Technology Studies

Christopher R. Henke, Cultivating Science, Harvesting Power: Science and Industrial Agri-
culture in California

Helga Nowotny, Insatiable Curiosity: Innovation in a Fragile Future

Karin Bijsterveld, Mechanical Sound: Technology, Culture, and Public Problems of Noise
in the Twentieth Century

Peter D. Norton, Fighting Traffic: The Dawn of the Motor Age in the American City

Joshua M. Greenberg, From Betamax to Blockbuster: Video Stores tand the Invention of
Movies on Video

Mikael Hård and Thomas J. Misa, editors, Urban Machinery: Inside Modern European
Cities

Christine Hine, Systematics as Cyberscience: Computers, Change, and Continuity in Science

Wesley Shrum, Joel Genuth, and Ivan Chompalov, Structures of Scientific Collaboration

The MIT Press January 2021

Shobita Parthasarathy, Building Genetic Medicine: Breast Cancer, Technology, and the
Comparative Politics of Health Care

Kristen Haring, Ham Radio’s Technical Culture

Atsushi Akera, Calculating a Natural World: Scientists, Engineers and Computers during
the Rise of U.S. Cold War Research

Donald MacKenzie, An Engine, Not a Camera: How Financial Models Shape Markets

Geoffrey C. Bowker, Memory Practices in the Sciences

Christophe Lécuyer, Making Silicon Valley: Innovation and the Growth of High Tech,
1930–1970

Anique Hommels, Unbuilding Cities: Obduracy in Urban Sociotechnical Change

David Kaiser, editor, Pedagogy and the Practice of Science: Historical and Contemporary
Perspectives

Charis Thompson, Making Parents: The Ontological Choreography of Reproductive
Technology

Pablo J. Boczkowski, Digitizing the News: Innovation in Online Newspapers

Dominique Vinck, editor, Everyday Engineering: An Ethnography of Design and Innovation

Nelly Oudshoorn and Trevor Pinch, editors, How Users Matter: The Co-Construction of
Users and Technology

Peter Keating and Alberto Cambrosio, Biomedical Platforms: Realigning the Normal and
the Pathological in Late-Twentieth-Century Medicine

Paul Rosen, Framing Production: Technology, Culture, and Change in the British Bicycle
Industry

Maggie Mort, Building the Trident Network: A Study of the Enrollment of People, Knowl-
edge, and Machines

Donald MacKenzie, Mechanizing Proof: Computing, Risk, and Trust

Geoffrey C. Bowker and Susan Leigh Star, Sorting Things Out: Classification and Its
Consequences

Charles Bazerman, The Languages of Edison’s Light

Janet Abbate, Inventing the Internet

Herbert Gottweis, Governing Molecules: The Discursive Politics of Genetic Engineering in
Europe and the United States

Kathryn Henderson, On Line and On Paper: Visual Representation, Visual Culture, and
Computer Graphics in Design Engineering

Susanne K. Schmidt and Raymund Werle, Coordinating Technology: Studies in the Inter-
national Standardization of Telecommunications

Marc Berg, Rationalizing Medical Work: Decision Support Techniques and Medical Practices

Eda Kranakis, Constructing a Bridge: An Exploration of Engineering Culture, Design, and
Research in Nineteenth-Century France and America

Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War
America

Donald MacKenzie, Knowing Machines: Essays on Technical Change

Wiebe E. Bijker, Of Bicycles, Bakelites, and Bulbs: Toward a Theory of Sociotechnical
Change

The MIT Press January 2021

Louis L. Bucciarelli, Designing Engineers

Geoffrey C. Bowker, Science on the Run: Information Management and Industrial Geo-
physics at Schlumberger, 1920–1940

Wiebe E. Bijker and John Law, editors, Shaping Technology / Building Society: Studies in
Sociotechnical Change

Stuart Blume, Insight and Industry: On the Dynamics of Technological Change in Medicine

Donald MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance

Pamela E. Mack, Viewing the Earth: The Social Construction of the Landsat Satellite System

H. M. Collins, Artificial Experts: Social Knowledge and Intelligent Machines

http://mitpress​.mit​.edu​/books​/series​/inside​-technology

The MIT Press January 2021

