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Algorithms pervade our lives. They are political, cultural, and social facts 

that have become central to all parts of our existence over the past fifty 

years. Certainly, we had their forerunners before: endless checklists, safety 

protocols, and rules of conduct—each designed to take us out of ourselves 

and align our bodies, our selves with a bureaucratic or technical machine 

(in Foucault’s better term, a set “dispositifs techniques”). Bureaucracy makes 

us act like machines, algorithms seek to make us into machines.

A corollary is that if we want to do fundamental social science and envi-

sion new forms of political life we need to go where the action is. We need 

to get to know algorithms from the inside. They did not parachute down 

from another planet to invade us (much as it may feel like this): they are 

human, fallible creations. The difficulties here are that social scientists and 

political actors often don’t really understand the technical stakes, and sym-

metrically the computer scientists don’t really get the social stakes.

This is precisely why this book is so important. It is a foundational text 

for exploring algorithms as a new form of social actor. How do algorithms 

get constructed to be effective actors; how do humans get constructed so 

that they create algorithms which surpass human understanding? Jaton’s 

quest here has been fearless: go where the questions are, and locate the 

technical, social, and political issues on their home ground. As I read this 

book, I was constantly delighted as when reading a fine novel by not know-

ing what was going to come next (von Neumann architecture, tests for 

nascent computer engineers)—but by immediately feeling a sense of inevi-

tability once the steps were taken.

I’ve been playing with a vision latterly of humans becoming progres-

sively more irrelevant to the operation of our political economy: we do 

what we can but are increasingly interstitial. There is little doubt that we 
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x	 Foreword

are creating machines that are more intelligent than we are and algorithms 

that know us better than we do ourselves. That’s just fine. But how much 

richer and more beautiful a world we will create if we suffuse our algorithms 

with our own deeply held values created over thousands of years?

This book is not just for computer scientists or for social studies of sci-

ence scholars: it speaks to some of the fundamental questions of human 

existence in this epoch. It provides tools and concepts for us to co-engineer 

our world (our planetary system, our species, our computers).

Chapeau! Florian. Happy reading all.
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For critics and advocates alike, if we want to know algorithms, we may need to 

live with them.

—Seaver (2013, 11)

Let us start this introduction in medias res, in the middle of things:

Rearrangement 1

The election of Donald Trump in November 2016 was quite surprising: 

how could such a controversial figure reach the White House? The rea-

sons, of course, are innumerous. But what if one of them was Facebook 

(Lapowsky 2016)? After all, Trump supporters never stopped using this 

platform to spread out disputed contents. What if voters were brain-

washed by the “fake news” Facebook contributed to diffusing? What if 

this extensive interlinking participated in Trump’s advertisement and 

fundraising? However harsh this claim might be, it seriously harms the 

image of the web application that would rather help to “connect people” 

than to build border walls (Isaac 2016). It seems then that monitoring 

needs to be increased, even though it may contradict some assumptions 

Mark Zuckerberg elevates as precepts (Zuckerberg 2016). The main tar-

get is the “News Feed,” the spine of the application that displays stories 

posted by Facebook users. What about slightly modifying how News Feed 

automatically selects new stories to make it ignore “low quality posts”? 

This may help restore Facebook’s public image, at least for a little bit, at 

least for a little while. And after several months of in-house research and 

testing, a new algorithm is made operational that—based on frequen-

cies of posts and URLs of links—identifies spam users and automatically 

Introduction
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2	 Introduction

deprioritize the links they share (Isaac and Ember 2016). According to one 

of Facebook’s vice presidents, this new method of computation should 

significantly reduce the diffusion of “low quality content such as clickbait, 

sensationalism, and misinformation” (Mosseri 2017).

Rearrangement 2

Planet Mars is a distant location. But hundreds of millions of kilometers 

did not dishearten the US National Aeronautics and Space Administra-

tion (NASA) from sending the robotic rover Curiosity to explore its sur-

face. On May 6, 2012, the costly vehicle safely lands on Gale Crater. 

Quite a feat! Amazing high-resolution pictures are soon available on 

NASA’s website, showing the world the jagged surface of this cold and 

arid planet. Of course, Curiosity is far more than a remote-controlled car 

taking exotic pictures. It is a genuine laboratory on wheels with many 

high-tech instruments: two cameras for true-color and multispectral imag-

ing, two pairs of monochrome cameras for navigation, a robotic arm 

with an ultrahigh-definition camera, a laser-induced spectrometer, solar 

panels, two lithium-ion batteries, and so on (Jet Propulsion Laboratory 

2015). Yet there is an obvious cost to this amazing remote-controlled 

laboratory: it needs to move its 350 kilograms (low gravity considered). 

The sharp, rocky surface of Mars does not alleviate the constant efforts 

of Curiosity’s wheels, irremediably wearing down. And in January 2014, 

the situation becomes alarming (Webster 2015): Is there a way to extend 

the lifetime of Curiosity’s wheels? After much research, a new driving 

algorithm becomes operational in June  2017 that uses real-time data 

from the navigation cameras to adjust Curiosity’s speed when it comes 

to sharp Martian pebbles (Good 2017). By reducing the load of Curios-

ity’s leading and middle wheels up to 20 percent, this new method of 

computation for navigation is considered a serious boost for the mission 

(Sharkey 2017).

Rearrangement 3

Israeli secret services in the West Bank are used to dismantling organ

izations they define as terrorist by means of preventive actions and intim-

idation. But what about individuals who commit attacks on a whim? Just 

like several police departments in the United States (Berg 2014), Israeli 

The MIT Press January 2021



Introduction	 3

secret services are now supported by a security software whose algorithm 

generates profiles of potential attackers based on aggregated data posted 

on social media. Yet while several US civil courts are seriously consid-

ering the harmful bias of these new methods of computation (Angwin 

et al. 2016; Liptak 2017), Israeli military justice as applied to suspected 

Palestinian “attackers” prevents them from having any sort of legal pro-

tection. Thanks to the ability of the West Bank military commander to 

stamp administrative detentions, these “dangerous profiles” can be sen-

tenced to a renewable six-month incarceration without any possibility of 

appeal. Many Palestinians targeted by this state-secret technology “have 

served long years without ever seeing a court” (Gurvitz 2017).

Rearrangement 4

How can people be made to eat more Nutella? It has not been easy these 

recent years for the Italian brand of chocolate spread. When palm oil 

production threatened remote orangutans, only a small fraction of citi-

zens was eager to criticize its use in Nutella’s recipe. But in May 2016, 

as soon as palm oil is suspected of speeding up the spread of cancer 

among Nutella consumers, there starts to be a worrying drop in sales 

(Landini and Navach 2017). For Nutella, something needs to be done to 

reconnect with the stomachs of its customers. What about a fresh new 

marketing campaign? In collaboration with advertising agency Ogilvy & 

Mather Italia, seven million uniquely designed Nutella jars are soon pro-

duced and sold in record time (Nudd 2017). At the heart of this success-

ful marketing move lies an algorithm that computes a carefully selected 

set of colors and figures to generate unique pop patterns (Leadem 2017).

States of affairs change. In November 2016, News Feeds of Facebook users 

were subjected to spammers diffusing hoaxes and “fake news” that are pre-

sumed to have played a role in the election of Donald Trump. One month 

later, these News Feeds temporarily became monitored lists of stories worth 

being read. Similarly, Curiosity’s weight together with sharp Martian peb-

bles first seriously affected the robot’s wheels, thus compromising the initial 

duration of the mission. Yet a few years later, several changes in the loco-

motion system slowed down this unexpected wear. In another case, Israeli 

secret services were at first powerless against attacks that were not prepared 
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within dismantable cell organizations. Yet these services soon were able 

to identify suspects and put them in jail without any kind of legal proce-

dure. Finally, Nutella was first an old-fashioned chocolate spread whose 

recipe included orangutan-endangering and cancer-related palm oil. It then 

became, temporarily, a trendy pop product. For better or worse, collective 

configurations are rearranged, thus forming new states of affairs; relation-

ships between humans and nonhumans are reconstituted, thus temporarily 

establishing new networks. According to this ontological position that is 

often called “process thought,”1 the collective world is constantly reshaped 

in this way.2

That being said, we may wish to comprehend some of the dynamics 

of these messy rearrangements (RTs). After all, as we all have to coexist on 

the same planet, getting a clearer view of what is going on could not hurt; 

documenting a tiny set of the innumerous relationships that shape the 

world we inhabit may equip us with some kind of navigational instrument. 

Together, where do we go? What are we doing? What is going on? These are 

important, legitimate questions.

To address these questions, two approaches are generally used. Broadly 

speaking, the first approach consists in postulating the existence of aggre-

gates capable of inducing states of affairs. Depending on academic tradi-

tions, such aggregates take different names: they are sometimes called 

“social forces,” “fields and habitus,” “economic rationality,” or “social struc-

tures,” among many other variations. These differently named yet a priori 

postulated aggregates are all pretenders to the definition of the social (or 

society), an influential yet evanescent matter that supposedly surrounds 

individuals and orientates their actions. The scientific study of this matter 

and the states of affairs it engenders is what I call the science of the social or, 

more succinctly, social science.

The second approach—the one this book embraces—consists in consider-

ing the social not as an evanescent matter surrounding individuals but as the 

small difference produced when two entities come into contact and tempo-

rarily associate with each other (Latour 2005).3 This approach assumes that 

every new connection between two actants—humans (Bob, the president, 

Mark Zuckerberg) or nonhuman entities (a wheel, a virus, a document)—

makes a small difference that can, sometimes, be accounted for. If we accept 

calling “social” the small difference produced when two actants temporally 
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associate with each other, we may call “socio-logy” the activity that consists 

in producing specialized texts (logos) about these associations (socius).4 Our 

initial four RTs are small examples of such an activity: Facebook, Curiosity, 

Israeli secret services, and Nutella temporarily associate themselves with new 

actants, and the blending of these new connections contributes to the for-

mation of new configurations summarized within a text. Had I added several 

rearrangements and accounted for their constitutive associations a bit more 

thoroughly, I would have produced a genuine sociological work. On the con-

trary, had I invoked some hidden force to explain these reconfigurations; 

had I attributed the modifications of each state of affairs to some a priori pos-

tulated aggregate (e.g., economic rationality, society, culture), I would have 

produced a small work of social science. This distinction between sociology 

and social science will accompany us throughout this book. It is thus impor

tant to keep in mind that the present volume is—or, at least, is intended to 

be—a sociological work.

With these clarifications in mind, let us have a closer look on our four 

small sociological RTs. What do we see? We quickly notice that each RT 

is affected by an “algorithm,” for now loosely defined as a computerized 

method of calculation. These four algorithms can be considered entities—or 

actants—as they all produce differences within specific configurations. In 

that sense, these algorithms are fundamentally not dissimilar to the other 

actants they, at some point, associate with. In RT1, there is Facebook, Don-

ald Trump, spams, supporters, News Feed, a new algorithm, a Facebook 

vice president, and many other actants that, together, rearrange some state 

of affairs. In RT2, there is Mars, NASA, sharp pebbles, a navigational algo-

rithm, lithium-ion batteries, and many other actants that, together, rear-

range some state of affairs. The same is true of RT3 and RT4: algorithms are 

actants among many other actants.

Yet a closer look nonetheless suggests that the algorithms of our RTs pos-

sess characteristics that make them not completely akin to, say, sharp Mar-

tian pebbles or lithium-ions batteries. Contrary to such “firm” actants, the 

algorithms of our RTs appear more fluid; they seem to be able to move very 

quickly and make connections with other actants that were at first remote 

from each other. In RT1, Facebook’s new algorithm can, in the end (and yet 

temporarily), associate itself with News Feeds of millions of users located 

all around the world almost instantaneously. In RT2, NASA’s algorithm can 

The MIT Press January 2021



6	 Introduction

reach Mars to make Curiosity’s wheels cope with, potentially, all sharp Mar-

tian pebbles. In RT3, the algorithm used by Israeli secret services can clas-

sify thousands of social media texts sent by hundreds of thousand people 

located throughout a two-thousand square-mile territory. In RT4, Ogilvy & 

Mather Italia’s algorithm can create millions of uniquely designed patterns 

instructing Nutella’s packaging factories in Italy and France. It seems then 

that these algorithms can circulate and link up initially sparse actants in a 

very short amount of time. This is a nontrivial characteristic. To underline 

these algorithms’ fluidity (they circulate), swiftness (they are fast), and dis-

tributivity (they are simultaneously scattered and united), let us temporar-

ily categorize them as devices, a special category of actant that, according to 

philosopher Gilles Deleuze, is “tangled, multi-linear ensembles [that] trace 

processes that are always at disequilibrium, sometimes coming close to each 

other, sometimes getting distant from each other” (Deleuze 1989, 185).

If we continue considering our four RTs, we also quickly notice that each 

of these fluid, swift, and distributed devices called algorithms contributes 

to modifying a network of relationships. In every RT, one algorithm—

well supported by many other entities (researchers, data, tests, computers, 

etc.)—participates in making Facebook less subject to the spread of hoaxes 

(RT1), Curiosity’s wheels a bit more durable (RT2), Palestinians definitely 

more “jailable” (RT3), and Nutella temporarily more salable (RT4). Along 

with all the entities they are associated with, these methods of calculation 

seem then to participate in changing power dynamics: Facebook, Curios-

ity’s wheels, Israeli security services, and Nutella become temporarily stron-

ger than Trump-spamming supporters, sharp Martian pebbles, West Bank 

potential “terrorists,” and palm oil scandals, respectively.

Scholars of Science and Technology Studies (STS)—a subfield of sociology 

and social science that aims to document the co-constitution of science, 

technology, and the collective world5—are nowadays prone to analyze 

algorithms’ propensity to modify power dynamics in, for example, labor 

markets (Kushner 2013; Steiner 2012), surveillance strategies (Introna 2016; 

Introna and Wood 2002; Kraemer, van Overveld, and Peterson 2010), cor-

porate finance (Lenglet 2011; MacKenzie 2014; Muniesa 2011a), cultural 

habits (Anderson 2011; Hallinan and Striphas 2014), or interpersonal rela-

tionships (Beer 2009; Bucher 2012). These scholars’ works are of the most 

importance as they raise and maintain wakefulness with regard to what 
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computerized methods of calculation do. Yet I must warn the reader right 

from the start: what algorithms do is not the main topic of this book.

However, as soon as one takes seriously into consideration the banal 

fact that objects and devices wear down and change, that “they break, mal-

function and have to be constantly mended, retrofitted and repurposed” 

(Domínguez Rubio 2016, 60), thorough sociological studies of what algo-

rithms do should be coupled with the studies of the maintenance and 

repair work required to keep them doing what they do. Whereas mainte-

nance and repair work is currently receiving the attention of an increas-

ing number of studies (e.g., de la Bellacasa 2011; Domínguez Rubio 2014, 

2016; Denis and Pontille 2015; Lea and Pholeros 2010; Strebel, Bovet, and 

Sormani 2018), very few have specifically explored the work required to 

keep algorithms doing what they do (but see Crooks 2019). It is a shame 

since the differences algorithms produce should be, at least in principle, 

proportional to the work required to make them continue to produce such 

differences in constantly evolving situations. If we continue to draw upon 

our four initial RTs, we can for example imagine that to keep on protecting 

users from spammers, Facebook’s new monitoring algorithm may need to 

be actualized to detect unexpected forms of trolling (RT1). Similarly, if Curi-

osity’s balance of weight happens to change—such as if it loses a piece of 

equipment—the parameters of its driving algorithm will have to be modi-

fied (RT2). In a similar vein, due to the progressive accumulation of small 

differences in the computer equipment of Israeli secret services, the soft-

ware package allowing the new security algorithm to effectively compute 

social media data and generate profiles will have to be slightly updated 

(RT3). Finally, for its algorithm to keep on supporting effective marketing 

coups, Ogilvy & Mather Italia will need to keep on convincing its clients 

that consumers are attached to singular products (RT4). In short, we can 

make the fair assumption that without constant efforts to make algorithms 

keep on fitting with constantly changing situations (and vice versa), these 

devices will not produce differences for very long. Although the work nec-

essary to preserve the agency of algorithms (Introna 2016) is surely more 

and more common in contemporary economies, it remains poorly docu-

mented. Unfortunately, I will not contribute to filling in this gap; despite 

the need for such studies to better understand the collective world we live 

in, this book does not deal with the maintenance of algorithms.
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What is this book’s topic, then? We have quickly seen that, from a socio

logical standpoint, algorithms can be considered two kinds of entities: 

devices that do things and devices that need things in order to keep on 

doing what they do. Both views are, I believe, of great significance. Yet my 

work follows a different path. Instead of starting from algorithms as devices 

and studying their agency or need for maintenance, this book starts from 

unrelated entities (e.g., documents, people, desires) and tries to account 

for how they come into contact to form, in the end, devices we may call 

“algorithms.” In short, I am studying what is happening before algorithms 

become fluid, swift, and distributed devices. Of course, things are not so 

clear-cut; as we will see, projections on both agency and maintenance 

requirements of future algorithms may impact on their constructions. 

Moreover, already constructed algorithms participate in the formation of 

new algorithms. But still, it is important for the reader to understand that 

I will mainly inquire into the practical activities by which algorithms are 

progressively assembled in assignable locations rather than what they may 

suggest or require once they are assembled.

Negative Invisibilities

Already at this point, a question may arise: Why is it important to account 

for the formation processes of algorithms? Why spending time and energy 

writing—and reading—about their constitution? Are there not other things 

to do than making the activities by which algorithms come into existence 

visible?

Certainly. As Star and Strauss (1999) have suggested, some activities need 

to remain provisionally invisible—that is, not accounted for—otherwise the 

results of these activities may lose some of their capacities. The circus is one 

example: making publicly visible the infrastructure and training practices 

required to design and master, say, a Cirque du Soleil trapeze act may nega-

tively affect the act itself. Wonder, surprise, or enchantment would poten-

tially be counteracted by the down-to-earth and uncertain operations that 

enabled the act. Here, a sociological account would take the risk of spoiling 

the act; it may lower the act’s capacity to act.6 Following the distinction 

made by Star and Strauss (1999, 23), the relative invisibility of the trapeze 

act is, in that sense, positive: it helps the product of these circus practices 

to be, by lack of a better term, adequate. The lack of any publicly available 
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account and the presence of secrecy help the act become an act, just as they 

help the public become the public of the act. In such a very specific situa-

tion, one may assume there is a mutual desire to believe in mastery.

But as soon as there are controversies about the products of some prac-

tices, the terms of their adequacy are disputed; when some capacity to act 

is put into question, disagreements about its formation need to be con-

fronted. Let us, for example, imagine that the same Cirque du Soleil trapeze 

act leads to an accident. If disputes arise about this accident, there will 

be requests to make visible the practices that contributed to producing it. 

From being positively invisible, the practices required to do this trapeze act 

would become negatively invisible: for the different parties of the dispute 

to become able to negotiate, empirical accounts of how this act comes into 

existence will become necessary. What does the Cirque du Soleil need to 

perform this controversial act? Which elements could be changed to readjust 

this fragile assemblage? In short, in order to propose compromises, in order 

to better compose, disputants will benefit from empirical accounts of the 

practices of trapeze;7 documenting what performers and entertainers cher-

ish and fear and what they are attached to might allow constructive dissen-

sions about the agency of what they produce to unfold.

Despite its obvious limits, this small imaginary example indicates that the 

request for visibility is somewhat correlated with the rise of controversies. 

When there are controversies over the products of practices, these products 

cannot be considered adequate anymore: positive invisibilities may thus 

switch to negative invisibilities that themselves call for empirical accounts—

which can take the form of sociological investigations—on which disputes 

may arise and negotiations unfold. Of course, these accounts are very risky 

as they inherently speak in the name of individuals (Latour 2005, 121–140). 

To make visible what communities of practice need and cherish, and what 

they are attached to, the sociological account that may establish common 

grounds for further contentious negotiations would need to overcome many 

trials: Does the account make visible the actants that are crucial to the work 

of the practitioners? Do surprising but empirically supported connections 

unfold? Does the account propose new grips for collective composition? 

A single “no” to any one of these questions would make the sociological 

account fail to fulfill its initial commitment.

What about algorithms? Not so long ago, these devices attracted little 

attention. They were certainly involved in changing power relations, but 
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these processes were not, or only to a limited extent, public issues. Things 

began to change in the late 1990s when sociologists started to question the 

discourse on empowerment and information accessibility put forward by 

the promoters of web technologies.8 Hoffman and Novak (1998) showed, 

for example, that the accessibility and use of web technologies in the United 

States were largely function of racial differences. Lawrence and Giles (1999) 

stressed that, contrary to the promotional rhetoric of almost unlimited 

access, the search engines available in the late 1990s were only able to index 

a small and oriented fraction of the web. In the same vein, Introna and Nis-

senbaum (2000) underlined the underground—and potentially harmful—

influence of the heuristics used for the classification of URLs by these same 

late-1990s search engines. The post-9/11 period that followed focused on 

criticisms of biases in programs and algorithms—the term appeared at that 

time in the critical literature9—for surveillance and preventive detection. 

In his study of the social implications of data mining technologies, Gandy 

(2002) warned, for example, that they are the gateway to rational discrimi-

nation, potentially strengthening correlative habits between social status 

and group membership. From a political economy perspective, Zureik and 

Hindle (2004) discussed biometric algorithms’ propensity to trivialize social 

profiling, categorization, and exclusion of national groups. Another exam-

ple is the work of Introna and Wood (2004): their analysis of facial recog-

nition algorithms highlighted the potential biases of these devices, which 

were often, at that time, presented as impartial. This line of sociological 

research led, at the beginning of the 2010s, to numerous investigations 

on discriminations (e.g., Kraemer, van Overveld, and Peterson 2010; Gil-

lepsie 2014 Steiner 2012) and invisibilizations (Bucher 2012; Bozdag 2013) 

induced by the use of algorithms.

This research direction has continued in recent years, with increasingly 

comprehensive works revealing the contrasting, and often questionable, 

effects of algorithms on contemporary societies (e.g., Crawford and Calo 

2016; Noble 2018; O’Neil 2016; Pasquale 2015). These awareness-raising 

efforts were also reported in the press, further making algorithms matters of 

public concern (e.g., Mazzotti 2017; Risen and Poitras 2017; Smith 2018). This 

dynamic—too complex to be thoroughly dealt with in this introduction10—

has led to the current situation where the collective world is steadily affected 

by controversies over algorithms. A quick look at the news, at the time of 

writing, suffices to remind us of it. UK police is about to use a new algorithm 
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to identify online hate crime on social media (Roberts 2017)? This soon trig-

gers hostile reactions from the nonprofit organization “Big Brother Watch,” 

ready to “fight any attempt to curb free speech online” (Parker 2018). A new 

algorithm is published in an academic journal that can presumably deduce 

people’s sexuality from photographs of faces (Levin 2017)? The Gay & Lesbian 

Alliance Against Defamation soon condemns such a “dangerous and flawed 

research that could cause harm to LGBTQ people around the world” (Ander-

son 2017).11 Facebook’s algorithm continues to bombard a grieved woman 

by parenting ads after the stillbirth of her son (Brockell 2018)? Thousands 

of tweets soon denounce gender bias from tech companies (Mahdawi 2018). 

Every week, a new dispute arises regarding the consequences—actual or 

potential—of new algorithms, often preceded by changing attributive nouns 

such as big data, machine learning, or more recently, artificial intelligence.

The intended relevance of this book should be considered in the light of 

the current controversies over the agency of algorithms. Following in the 

footsteps of authors such as Bechman and Bowker (2019), Barocas and Selbst 

(2016), and Grosman and Reigeluth (2019)—to whom I shall return later in 

the book—my aim here is to propose intellectual tools to prepare the elabora-

tion of compromises. The invisibility of the practices underlying the devel-

opment of algorithms can indeed no longer be considered positive: as they 

are the object of repeated disputes, it is now certainly important, or at least 

interesting, to document the practical processes that enable them to come 

into existence. Roughly put, if sociology has looked, with a certain success, 

at the effects of algorithms, it is now time for it to inquire into the causes of 

these effects, however distributed and multiple they may be. A gap needs to 

be filled in; by means of empirical accounts of how computer scientists and 

engineers nurture algorithms, some risky yet refreshing grounds for con-

structive disputes may be provided.12 The needs, attachments, and values 

of those who design algorithms—as documented by my limited sociolog

ical account—may contradict other needs, attachments, and values. But 

at least, in these days of controversies, parties in dispute may slowly start 

to negotiate, as Walter Lippmann says, “under their own colors” (1982, 

91). Yet before considering how I intend to effectively run this inquiry into 

the practical formation of algorithms, I quickly need to further specify its 

political dimension. To do so, I shall now make a quick detour by discussing 

the unconventional term “constitution” I use here to qualify my venture.
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Why “Constitution” (And Not Simply “Construction”)?

At the beginning of this introduction, I asserted that the collective world is 

constantly rearranged: heterogeneous entities never stop associating with 

each other, the blending of these associations temporarily establishing new 

states of affairs. From this (debatable) ontological position, it follows that 

the world is not “out there,” ready to be grasped from some outside stand-

point. Instead, according to this processual ontology, the world is always 

becoming; it is the active product of associations between human and non-

human actants.

Yet one may rightly argue that everything is not always reinvented. While 

some associations bring about ephemeral actants (e.g., a cry of joy, tears of 

sadness, laughs at some joke), some other associations bring about actants 

that are more enduring. Many entities that populate/generate the collective 

world are of this sort: Mark Zuckerberg, the planet Mars, West Bank jails, 

Nutella jars—just to mention some entities we encountered in our small ini-

tial RTs—are quite enduring entities. Such actants, thanks to their ability to 

live on beyond the here and now of their instantiation, may in turn associate 

themselves with other actants, thus contributing to the continuous genera-

tion of the collective world. Such relatively stable actants possess some dura-

bility that allows them to bring about and orient what is becoming.

If we continue considering differences among actants, we quickly notice 

that some durable actants can move from one place to another more or less 

easily. Let us keep on using familiar entities to illustrate this point. If we 

consider the planet Mars and West Bank jails, these entities appear rather 

static. It is difficult for them to associate with actants capable of making 

them deviate from their initial trajectories: without important mobilization 

efforts, the planet Mars and West Bank jails will just stay where they are. 

This is not quite the case for Mark Zuckerberg who, once associated with 

actants such as “shoes,” “cars,” or “roads,” can markedly change his initial 

trajectory and, in turn, associate himself with other actants that were at 

first distant from him. Yet, largely due to his body envelope, Mark Zucker-

berg’s relative mobility is rather costly: in order for him to somehow keep 

on being Mark Zuckerberg, in order for him to maintain most of his dura-

bility while he is moving, he would need to associate with many other 

actants (e.g., oxygen, food, space for his legs, coffee breaks) protecting him 

from being too much altered. In the case of Nutella jars, the story is a bit 
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different. They too need to associate with other actants to deviate from 

their initial trajectories (e.g., supply chain managers, railway lines, sale con-

tracts, delivery people). But contrary to Mark Zuckerberg, one can make the 

fair assumption that Nutella jars’ alteration is slower: due to their proper 

materiality, due to their own medium, they can, for example, be stored, 

piled up, and handled without being significantly transformed. Among our 

exemplary durable entities, Nutella jars seem then the most durable and 

mobile: when compared to the planet Mars, West Bank jails, or even Mark 

Zuckerberg—and when provided adequate associations—these jars can 

move from one place to another without being too much altered.

When cumulated, durability and mobility are nontrivial characteris-

tics: entities that combine both abilities are more likely to associate with 

other entities, thus actively contributing to the generation of the collective 

world. But a very special category of entities cumulates another ability that 

makes them certainly the most world-generative of all. These entities go by 

different names: Jack Goody calls them “graphical objects” (1977); Bruno 

Latour and Steve Woolgar call them “inscriptions” (1986, 43–91); Dorothy 

Smith calls them “accounts” or “documents” (1974). But no matter how 

these are labeled, sociologists have long emphasized on these actants’ fasci-

nating capacity to be durable and mobile and to carry with them some char-

acteristics of other actants—or of other associations between actants. This 

is essentially what texts, tables, graphs, or drawings do: thanks to the pres-

ence and constant maintenance of specific habits, rules, and technologies—

what Jérôme Denis (2018) calls scriptural infrastructures—these often durable 

and mobile inscriptions can host some aspects of actants and associations 

and present them again (re-present) somewhere else. This scriptural trans-

port of (part of) actants—that itself necessitates many other actants to 

unfold—may in turn create a link between what has happened and what 

is to become. This sounds like an odd statement, but such a phenomenon 

is in fact very common: Every time I read a New York Times article, a con-

nection is made between what has happened in the past (some events) 

and what is happening now (me, considering this event and, eventually, 

reacting to it). Of course, this connection, this link has been formatted in 

order to be hosted in the specific materiality of the inscription I am con-

sidering (here, the newspaper article). Such a link is thus always a partial, 

but potentially faithful, in-formed version of what has happened. When 

I’m reading the New York Times, I don’t see migrants struggling to reach 
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Europe in horrendous conditions; I see a flat surface with words that re-

present me those migrants; this re-presentation triggering in me feelings of 

helplessness, shame, and despair, evanescent actants that will, in turn, con-

tribute to the continuous generation of the collective world (though quite 

insignificantly). To qualify inscriptions’ capacity to carry some properties 

of actants-associations and establish formatted yet generative connections 

between times and locations, I shall use the term “re-presentability.” More 

than just being durable and mobile actants, inscriptions are thus also re-

presentable: they can—together with suitable infrastructures—carry, trans-

port, and display properties that are not only theirs.

Durability, mobility, re-presentability: these are capacities not to be under-

estimated. Inscriptions, despite their often-modest appearances (lists of num-

bers, drawings, articles, tables, graphs), greatly participate in the shaping of 

our world. A new molecule appears that revolutionizes our understanding 

of the human hypothalamus? As well documented by Latour and Woolgar 

(1986), such an association-prone actant derives, to a large extent, from 

inscriptions assembled, accumulated, compiled, and compared within and 

between laboratories. A new management technique starts to align corpo-

rate activities to a single arbitrary standard? As proposed by Thévenot (1984) 

and Yates (1989), such Taylorist normalization—and its consequences—

heavily relies on measures, coding, and equity methods whose scriptural 

circulation allows the centralization of control over the workers. A new 

algorithm is published that may ignite original avenues of research in digi-

tal image processing? As I will try to show throughout this book, the for-

mation of such an actant owes a great deal to the production, circulation, 

transformation, and compilation of many different types of inscriptions. 

We will more thoroughly examine the world-generative capacity of inscrip-

tions in due time (especially in chapters 4, 5, and 6). For now, suffice it to 

say that these durable, mobile, and re-presentable actants contribute a lot 

to what is constantly happening.

But whatever their generative power, “inscriptions” do not exist by 

themselves: they obviously need to be produced before they start to circu-

late. In that sense, every inscription needs to be inscribed. Extracting some 

aspects of associations (or “events”; at this point, both terms are equivalent) 

and re-presenting them on flat, durable media is not at all evident: What 

part of the event shall be kept and written down? What language shall be 

used? What protocol shall be followed to later compare this inscription 
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with some others and produce, in turn, new compiled inscriptions? Consid-

ering the world-generative potential of inscriptions, these are major issues, 

most of time supported by organizational and professional practices with 

their own goals, rules, and principles that every day engage hundreds of 

millions of people and instruments. This oriented work consisting in pro-

ducing inscriptions and, eventually, capitalizing on their world-generative 

potential is what Dorothy Smith (1974) calls “the fabric of documentary 

reality.”13 And this fabric is highly political.

To illustrate her point, Smith takes the a priori mundane example of 

birth certificates. Inscribing a birth on a report is, in fact, not evident nor 

neutral. It is the product of an organizational and professional practice that 

shapes births and their accounts in very peculiar terms, very different from, 

say, how mothers and fathers may want to remember it. As she put it:

“Jessie Franck was born on July 9th, 1963” appears maximally unequivocal in this 

respect. But as we examine how it has been fabricated it becomes apparent that its 

character as merely a record is part of how it has been contrived. Everything that 

a mother and a father might want to have remembered as how the birth of Jessie 

Franck was for them is stored elsewhere and is specifically discarded as irrelevant 

in the practices of the recording agency. The latter is concerned only to set up 

a certified and permanent link between the birth of a particular individual—an 

actual event, and a name and certain social coordinates essential to locating that 

individual—the names of her parents, where she was born, etc. (Smith 1974, 264)

Birth certificates are very selective—they only keep a very small part of 

birth events—and this selection is oriented toward the potential of such 

concise inscriptions—their features can, in turn, be used for identification 

purposes or government statistics. Moreover, as being inscriptions that can 

be remobilized in other spaces, birth certificates and their desired purposes 

make a specific version of births that will, in many cases, impose on other 

concurrent versions. Despite their very partial and partisan origins, these 

circulating inscriptions will form a fulcrum for other inscriptions, progres-

sively establishing formal, factual, and so-called “neutral” versions of births.

This political aspect of inscription practices which aim to make partial 

partisan versions of events does not only concern administration. The 

power of Smith’s argument lies in that it is also applicable to any inscription 

as it is materially impossible to fully inscribe an event in all its subtleties: 

choices need to be made regarding what will be kept (and formatted) and 

what will be ignored. What inscriptions gain as world-generators also lose 

as world-betrayers, the latter being even a condition to the former.14
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With these elements in mind, let us now come back to this present book. 

Have I not said it intends to be a sociological work? Have I not said it 

intends to account for associations that progressively form devices we call 

algorithms? At this point, these assertions can be further specified. Sociol-

ogy, as a professional activity that consists in producing specialized texts 

(logos) about associations (socius), does not escape what I shall now call 

“Dorothy Smith’s law”: however descriptive it is, sociology brings into 

being—by means of inscriptions—partial realities to the detriment of other 

realities. What is true for administrators (Desrosières 2010), economists 

(MacKenzie, Muniesa, and Siu 2007), or scientists (Latour 1987) is also true 

for sociologists: while describing realities by means of texts, they also enact 

these realities.

As Law and Urry (2004, 396) well summarized it, there is no innocence:15 

a text, however faithful—and some texts are definitely more faithful than 

others—is also a wishful accomplishment. I must then admit that what I 

intend to do in this book is not only describing what happens in particular, 

algorithm-related, situations: due to this book’s very existence as a textual 

inscription, it is also an attempt at enacting a world to the detriment of 

other enacted worlds. My gesture is thus analytical and political: it aims to 

produce a descriptive account of how algorithms come into existence—we 

can keep that—but also, and in the same movement, to propose a new ver-

sion of their realities. The motivation behind this analytico-political move 

were presented in the previous section: in these days of controversies over 

the agency of algorithms, a refined—yet formatted and thus intrinsically 

limited—account of their inner components may establish grounds for 

constructive disputes about and with algorithms.

To come back to the title of this section, I assume the classical notion of 

“construction” does not well express such a venture. Construction has been 

for sure a useful term for sociology as it has equipped many valuable cri-

tiques of naturalized matters: studies on the construction of gender (Lorber 

and Farrell 1991), patriarchy (Lerner 1986), or maternity (Badinter 1981), 

just to mention some classics, have all been wonderfully liberating. But 

considering recent developments in STS and sociology in general, it appears 

that construction suffers from being two-faced: while it well expresses its 

descriptive aspirations—showing how results have been produced—it also 

tends to hide its political claims—generating realities to the detriment of 

others.16 Due to its propensity to hide “Dorothy Smith’s law” under the 
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cover of analytical ambitions, I consider it wiser to renounce using the term 

“construction” to qualify my overall gesture.

I am not the first sociologist to dismiss construction. It is in fact quite 

a popular move, motivated by more or less the same arguments as pre-

sented above. Law and Urry (2004) prefer to use “enactment” as it better 

expresses the performativity of descriptive ventures. Latour (2013), inspired 

by Souriau ([1943] 2015), has recourse to “instauration” as it underlines the 

fragility of practical, succeeding assemblages. Ingold (2014), in the wake 

of Rorty (1980), gives priority to “edification” as it stresses the continu-

ous and never fully achieved aspect of what is about to happen. All these 

notions are surely interesting alternatives to construction. But at the risk of 

feeding in a sociological jargon already well supplied, I choose here to use 

the notion of “constitution” as it has the significant advantage of contain-

ing natively a double signification: a process by which something occurs 

as well as a document advocating for rights and prerogatives. Here lies an 

interesting tension that may recall the assumed ambivalence of my gesture: 

describing and contesting. Moreover, as a constitution is never fixed once 

and for all (it can be amended, completed, abolished), the notion forces us 

to recognize the necessary incompleteness of my venture, the three activi-

ties that I try to put into existence here—ground-truthing, programming, 

and formulating (more on this later, obviously)—must be considered partial 

and temporary. Many more gerund articles, as long as they are supported 

by empirical materials, can be potentially added to the present constituent 

act of algorithms.

For all these reasons, this book’s title The Constitution of Algorithms should 

be understood as the putting into text and existence—simultaneously 

empirical and activist—of what algorithms shall be. At the very end of the 

inquiry, in light of the accounted elements, I will come back to the implica-

tions of this analytical/insurrectional gesture in a section borrowing from 

Antonio Negri’s (1999) work on “constituent power.” For now, let us just 

note and accept this ambivalence by using the term constitution, a con-

stant reminder of this inquiry’s bipolarity.

A Laboratory Study

At this point, I have no other choice than to ask the reader to follow me—at 

least temporarily—in assuming that in these days of controversies over the 
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agency of algorithms, the invisibility of the work required to design, shape, 

and diffuse them is negative as it prevents disputing parties from having 

common grounds for negotiations. Let us also assume that one way to pro-

pose such grounds, and thus to suggest constructive disputes and composi-

tion attempts, could be to conduct sociological inquiries in order to make 

visible the work practices required to make algorithms come into existence. 

Let us finally assume that this volume is an attempt at such an inquiry that, 

in its capacity as a world-generative inscription, cannot but be a partial, 

partisan, and open-ended (while also faithful and empirical) constitution 

of algorithms. If we accept these debatable assumptions, the next question 

could be: How can I effectively run such a partial, empirical, and activist 

inquiry? On what materials can I ground it?

It would be tempting to use readily available sources, such as the many 

academic papers and manuals describing the internal workings of algo-

rithms. This is in fact what several STS scholars have done in some very 

interesting works.17 However, I have reasons to believe that the sole use of 

these sources surreptitiously contributes to the perpetuation of the negative 

invisibility of algorithms’ components. Regarding computer science papers 

published in academic journals, it would, of course, be incorrect to say that 

this literature is erroneous: on the contrary, it attests to what is about to, 

perhaps, become scientifically true.18 But as many important science stud-

ies have shown, these scientific publications tend to report the results of 

processes, not the practical activities that led to those results. Under these 

conditions, it is problematic to solely use academic publications to make 

the formation of algorithms visible since these documents are themselves 

supported and framed by unstated elements. Michael Lynch (1985) well 

summarized this problem inherent in the analysis of scientific publications:

[Methods sections of scientific research papers] supply step-by-step maxims of 

conduct for the already competent practitioner to assimilate within an indefinite 

mix of common sense and unformulated, but specifically scientific, practices of 

inquiry. These unformulated practices are necessarily omitted from the domain of 

study when science studies rely upon the literary residues of laboratory inquiry as 

the observable and analyzable presence of scientific work. (Lynch 1985, 3)

Moreover, for entangled reasons we will cover throughout this book, authors 

of academic papers tend also to defend their algorithms against concur-

rent algorithms. A claim published in a scientific journal is indeed directed 

against other claims and is intended to obtain the reader’s support. Hence 
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the importance of captation techniques that aim “to lay out the text so 

that wherever the reader is there is only one way to go” (Latour 1987, 57). 

These conviction habits and the additional necessity they provide—essential 

elements to establish objective constructions—tend to purify the scientific 

accounts of algorithms of the many disparate elements that have contrib-

uted to their textual existence. When relying on these documents to analyze 

computerized methods of calculation, it is therefore the hesitations, doubts, 

and “infra-ordinary” equipment and writings that tend to escape the ana-

lyst’s gaze.19

But what about the numerous manuals that teach us how to design 

algorithms?20 Do they not provide descriptions of how to assemble com-

puterized methods of calculation? Are they not, in that sense, connectors 

between algorithms and the collective world they contribute to shaping? 

These pedagogical resources are certainly crucial to inculcate students and 

newcomers with the basic components of computerized methods of cal-

culation, which are essential to their sociological analysis. Yet, as Lucy 

Suchman (1995) reminded us, these resources are, by definition, normative 

accounts of how work should be done, not of how work is effectively done. 

This is a crucial but often forgotten precision: “[These] normative accounts 

represent idealization and typifications. As such, they depend for their 

writing on the deletion of contingencies and differences” (Suchman 1995, 

61). Instead of accounting for what it is being done during mundane situ-

ations, manuals account for what ought to be done. They are (important) 

peremptory recipes, not empirically grounded accounts of practices.21 This 

is, I believe, the main limitation of contemporary studies that rely mainly 

upon textbooks and classes on algorithmic design: they inform about how 

contemporary pedagogues want algorithms to be constructed, not on how 

these algorithms are constructed on a day-to-day basis. Instead of getting 

closer to computer scientists by accounting for their work, these studies, 

otherwise very interesting, tend to move them further away.22

Academic papers and manuals are therefore sources that should be han-

dled with precautions. But how to reach what these sources, which remain 

useful and important, contribute to keeping out of sight? How to get a 

higher definition, yet still intrinsically limited, picture of the work required 

to assemble algorithms? Fortunately, for this very specific purpose, I can 

rely on a proven STS analytical genre often labeled “laboratory study.” The 

first such studies appeared in the 1970s, mostly in the United States. In a 
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sense, the collective (Western) world was at that time not so dissimilar to 

the one we are experiencing today: controversies about types of agencies 

were arising continuously. But instead of algorithms, these controversies 

mostly concerned scientific facts often developed in life science, physics, 

and neurology. For many reasons that are too entangled to be discussed 

in this introduction,23 several scholars felt the need to deflate the delusive 

aspect of scientific facts by sociologically accounting for mundane prac-

tices of natural scientists trying to manufacture certified knowledge (Col-

lins 1975; Knorr-Cetina 1981; Lynch 1985; Latour and Woolgar 1986). The 

method of these scholars was quite radical: in reaction to the authoritative 

precepts of epistemology, these authors borrowed from ethnography its 

in situ analytical perspective to document “the soft underbelly of science” 

(Edge 1976). As Latour and Woolgar put it:

We envisaged a research procedure analogous with that of an intrepid explorer 

of the Ivory Coast, who, having studied the belief system or material production 

of “savage minds” by living with tribesmen, sharing their hardship and almost 

becoming one of them, eventually returns with a body of observations which he 

can present as a preliminary research report.  … We attach particular importance 

to the collection and description of observations of scientific activity obtained in 

a particular setting. (1986, 28; emphasis in the original)

Instead of starting from scientific theories, minds, or “laws of Reason,” 

these laboratory ethnographers—who actively participated in the launch-

ing of Science and Technology Studies—decided to start from mundane 

actions and work practices to document and make visible how scientific 

facts were progressively assembled. Several other monographs accounting 

for the practices of physicists (Traweek 1992; Sormani 2014) and design 

engineers (Vinck 2003) followed the seminal 1980s laboratory studies, each 

time providing insightful new results. We will cover some of these results in 

due time. For now, suffice it to say that the present sociological inquiry is 

based almost entirely on these works. But what does that concretely imply?

It first implies locating places where individuals work daily to assemble 

algorithms. For my case, this localization exercise was not very difficult 

as I was institutionally close to a European technical institute with about 

twenty computer science laboratories working every day to propose new 

algorithms and to make them circulate in broader academic and indus-

trial networks. A more arduous task was to convince the director of one 

these laboratories to let me describe the practical shaping of algorithms as 
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an “intrepid explorer.” Fortunately, institutional movements related to the 

establishment of a new institute of digital humanities enabled me to share 

my research ambitions with a computer science professor open to inter-

disciplinarity.24 And after several trials, I could be part of her laboratory of 

digital image processing for two and half years, from November 2013 to 

March 2016. These were no passive moments: as required by the analytical 

genre of laboratory studies and also by the rules of the laboratory to which 

I was affiliated as full member, I had to participate in the life of the labora-

tory and thus become somewhat competent. Although the skills I progres-

sively acquired certainly did not make me become a computer scientist, 

they were nonetheless crucial for speaking adequately about issues that 

mattered to my new colleagues. But participating and discussing were not 

enough: I also had to write down, collect, and compile what I did, saw, and 

discussed. Very concretely, this implied taking a lot of notes. Discussions, 

meetings, presentations, actions: everything I experienced had, ideally, to 

be written down, referenced in notebooks and computer documents to be 

later retrieved, compared, sampled, and analyzed. This full-time data com-

pilation work implied one last move: after my stay within the computer sci-

ence laboratory—during which I participated in projects, held discussions 

with colleagues, observed what they did, wrote down as much as I could, 

and made presentations about my preliminary results (processes that have 

deeply transformed me and the sociology I now do)—I had to return to 

my own community of research to more thoroughly work on the collected 

materials and write an investigation report that, progressively, has become 

the present book.

But these all-too-basic elements—that will be more thoroughly presented 

in chapter 1—elude one important question: How to effectively account 

for, and thus write down and analyze, what computer scientists do as they 

try to shape new algorithms within their laboratory? How to experience, 

capture, and analyze their actions?

Courses of Action

As soon as one is convinced of, and enabled to, undertake a laboratory 

study to document—in a partial yet faithful way—the constitution of algo-

rithms, one quickly lands in uncharted territory. If there are laboratory 

studies of life sciences, physics, medicine, or brain sciences, very little has 
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been published on computer science work.25 The cost of entry and the time 

required to carry out this type of investigation certainly contributed to this 

situation. But it is also possible that a peculiar habit of thought partici-

pated in this disinterest. Indeed, for entangled reasons I will try to tackle in 

chapters 3 and 5, the fair assumption that computer code and mathematics 

actively contribute to the shaping of computerized methods of calculation 

is often doubled with the not-so-fair assumption that both code and mathe

matics have no, or little, empirical thickness. This assumed evanescence of 

the ingredients of algorithms contributes, in turn, to making them appear 

inscrutable. This common habit—that Ziewitz (2016) associated with an 

“algorithmic drama”26—may have discouraged sociologists from entering 

sites where algorithms are shaped, diffused, and maintained: Why bother 

trying to inquire into these places since everything happens in the heads of 

those who work there?

But like any ethnographer involved in the daily work of a scientific 

laboratory—trying to participate, talk adequately, and compile empirical 

materials—I quickly realized that very few things could be attributed to the 

brains of my colleagues, however clever they were. Of course, they never 

stopped doing things—writing on scratch paper, comparing graphs, typing 

on keyboards, inspecting databases, moving their mouse cursors, taking cof-

fee breaks—that at first appeared unrelated. But as I stubbornly accounted 

for these things in my logbooks, I soon realized that the succession of these 

small elementary “blocks” of action sometimes ended up forming bigger 

accomplishments: a database, a script, a complete program, an algorithm. 

By remaining continuously with my new colleagues in their laboratory, 

conscientiously writing down observations and even recording some work 

sequences (with their prior authorization), I was soon forced to admit 

that what we call “practice” is in fact a term without opposite (Latour 1996). 

In the artificial setting of my laboratory study, accounting for as many 

associations as possible, I soon realized that the much-debated distinction 

between “theory” and “practice” was an artifact. In the laboratory, there 

were only practices whose successions ended up sometimes forming “data-

bases,” “computer programs,” “mathematical models,” or “algorithms.” A 

little-equipped retrospective look on these trajectories could easily ignore 

their importance. But once I managed to slow these trajectories down 

and patiently account for them—sometimes with the help of those who 
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were realizing them—I realized that I could almost do without any internal 

“abstract” cognitive mechanisms.

Following the seminal work of Jacques Theureau (2003), I shall use the 

term courses of action for these accountable chronological sequences of ges-

tures, looks, speeches, movements, and interactions between humans and 

nonhumans whose articulations may end up producing something (a piece of 

steel, a plank, a court decision, an algorithm, etc.).27 Sticking to this generic 

definition is crucial as it will help us resist the supposed abstraction of com-

puter science work: what ends up being called a “mathematical model,” 

“code,” or even “algorithm” must be, one way or another, the product of 

accountable courses of action unfolding within specific situations and car-

ried out by assignable actants. Moreover, I shall include under the generic 

term “activity” courses of action unfolding in different times and locations 

that yet lead to related achievements. In this volume, an activity will then 

be understood as a set of intertwining courses of actions sharing common finali-

ties. The three parts of this volume are all adventurous attempts to present 

activities taking part to the formation of algorithms; hence their respective 

titles ending with ing: ground-truthing, programming, formulating.

This leads to one potential limitation of courses of action as laboratory 

studies allow them to be accounted for. I mentioned earlier that trajectories 

must often be slowed down to identify the courses of action whose articula-

tion may lead to the formation of something. This slowing down is salutary 

as it allows many crucial shaping actions to unfold. But it also has one flaw: 

it forces one to proceed very slowly. As a consequence, any small a priori 

mundane course of action may unfold on a dozen pages, thus limiting the 

number of cases.28

Three Gerund Parts (But Potentially More)

I hope the reader has gotten a sense of why I decided to make this inquiry, 

how I tried to conduct it, and where it may eventually lead. But before 

diving in this exploratory study, I shall briefly present the three parts of 

this book that, following my action-oriented methodology, are all gerunds: 

ground-truthing, programming, formulating.

Part I mainly deals with the work required to define problems capable 

of being solved computationally. In chapter 1, I present the overall setting 
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of the inquiry and introduce basic notions in digital image processing and 

standard algorithmic study. In chapter 2, I go directly to the heart of the 

matter and follow a group of young computer scientists trying to publish one 

of their algorithms. During this first case study of image processing in the 

making, we will encounter what computer scientists call “ground truths”: ref-

erential repositories that work as material bases for algorithms. The centrality 

of ground truths and of the work required to build them make me assert that, 

to a certain extent, we get the algorithms of our ground truths.

Part II tries something that has rarely been attempted: considering com-

puter programming as a practical, situated activity. In chapter 3, I propose 

historical and conceptual reasons why programming has resisted—and 

still resists—ethnographic scrutiny. At the end of the chapter, I focus on 

the computational metaphor of the mind, the main conceptual stumbling 

stone preventing any close analysis of computer programming practices. 

In chapter 4, building on notions and concepts introduced in the previ-

ous chapters, I carefully describe computer programming courses of action 

I attended during my laboratory study. Besides opening new avenues of 

research, this second case study leads, inter alia, to the following proposi-

tion: a programmer may never solve any problem.

In part III, I consider the role of mathematics in the formation of algo-

rithms. In chapter 5, I first build on STS-inspired inquiries into mathematics 

to present mathematical practices as stakeholders of scientific activity. I 

then use this unconventional view on mathematics to define formulat-

ing as the activity of translating entities until they acquire the same form 

as previously-defined mathematical objects. In chapter 6, I build on these 

theoretical arguments to account for courses of action that successfully 

formulated some of the relationships among the data of a ground-truth 

database. This third and last case study will also make us appreciate some 

of the numerous links between ground-truthing, programming, and formu-

lating activities, entangled processes that, sometimes, leads to the shaping 

of algorithms. These elements will finally allow me to touch on the topic 

of machine learning and artificial intelligence, here considered audacious 

yet costly attempts at automating formulating practices. In the conclusion, 

I develop some corollaries of the empirical and theoretical elements this 

inquiry unfolded.

Although ground-truthing, programming, and formulating activities fol-

low each other in the present volume, they do not necessarily do so in the 
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“real” life of action. In places such as the computer science laboratory we 

will soon get to know, these activities form a whirlwind process whose ele

ments influence each other in a dance of agency (Pickering 1995). Moreover, 

even though this book’s narrative thread is sequential—with subsequent 

chapters sometimes referring to previous ones—one may browse through 

it in different ways. Readers interested in ethnographic accounts may, for 

example, jump from one case study to another before eventually coming 

back to more theoretical pieces such as chapters 3 and 5. Readers who favor 

conceptual ventures may wish to go the other way round, starting with intel-

lectual matters before coming back to down-to-earth accounts of practices. 

Of course, curious readers without specific expectations may also follow the 

book’s thread, starting from chapter 1 and ending with the conclusion.

As mentioned earlier, it is important to keep in mind—almost like a 

mantra—that these three activities forming an empirical and partisan ver-

sion of what algorithms shall be are not fixed nor exclusive. Even though 

they form, I believe, a refreshing and faithful conception of how algorithms 

come into existence, the precise ecology of algorithms would clearly benefit 

from further investigations. There are surely many more activities contrib-

uting to the formation of algorithms that future ethnographies and case 

studies will, hopefully, unfold. In that sense, although this volume does 

intend to bring about an alternative action-oriented constitution of algo-

rithms, my arguments should also be considered preliminary propositions 

asking for further considerations.

At any rate, inscriptions make worlds only when read: at this point, my 

main concern is that readers—sociologists interested in the constitutive 

relationships of algorithms; computer scientists curious about an alterna-

tive action-oriented account of their work; or in fact, anyone concerned 

about the power, and beauty, of algorithms—are intrigued enough to come 

with me to explore some of the things that are happening in a computer 

science laboratory.
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The fact that techniques mediate advances suggests a way in which mathemati-

cal problems that arise in society are ultimately in some relationships with the 

techniques which that society has forged. This, in turn, suggests that mathemati-

cians, like societies, can only pose those questions to which a potentiality of a 

response exists.

—Ritter (1995, 72)

The introduction presented the rationale of this inquiry. Now, obviously, 

the hard work begins: effectively doing it! We will start smoothly though, 

with two straightforward chapters. Chapter 1 specifies the overall setting of 

the inquiry: a well-respected computer science laboratory that specializes 

in digital image processing; I shall call it “the Lab.” I start by presenting 

its environment and some aspects of its organization as well as its place, 

modest but substantive, in the heterogeneous ecosystem of computer sci-

ence industry. I will also consider methodological matters and discuss the 

notion of algorithm as it is generally presented in the specialized literature. 

Chapter 2 starts in the middle of things at the Lab’s cafeteria during a work-

ing session where the Group—three young computer scientists—tries to 

coordinate the development of a new algorithm. After a quick parenthesis 

where I present the basic issues at stake, we will closely follow this project, 

meeting along the way entities called “ground truths” whose importance in 

the constitution of algorithms we will learn to appreciate. The last section 

of chapter 2 will be a brief summary.
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This inquiry took place in a European technical institute (ETI) between 

November 2013 and February 2016. This public school was integral part of 

the global academic landscape and hosted more than five thousand under-

graduate and twenty-five hundred graduate students in five faculties: basic 

sciences, engineering, life sciences, architecture, and computer science. 

In this investigation, I will mainly focus on the computer science faculty 

(CSF), one of the most renowned within the ETI for its ability to attract 

foreign students and professors, to raise important research funds, and to 

engage in numerous partnerships with the industry.

Over the time of this inquiry, the CSF employed nearly forty professors 

supervising the training of more than 780 undergraduate and 550 graduate 

students. The CSF professors were supported in their teaching activities by 

around 250 doctoral students who were also working on the completion of 

their PhD theses, generally over four years. Research among CSF members 

was extremely varied, ranging from theoretical computer science and hard-

ware architecture to machine learning and signal processing. Significant 

human and material resources were invested to gird the whole domain of 

computer science and take active part to its development.

Teaching, research, and administrative activities of the CSF were mainly 

located in six buildings linked to each other by a system of paths, foot-

bridges, and underground passages. Within this complex, the most recent 

building (inaugurated in 2004) served as a nerve center, housing most of the 

laboratories, the best equipped conference rooms, and the faculty’s cafete-

ria, highly prized for its breathtaking view of the surroundings (figure 1.1). 

Opposite the CSF’s main building, on the other side of a small road, was 

another complex of buildings housing around one hundred start-ups and 

1  Studying Computer Scientists
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spin-offs as well as several offices of large companies and service provid-

ers. Created in the 1990s, this innovation area had the explicit purpose 

of bringing fundamental research outputs closer to the industry, accord-

ing to dynamics of scientific valorization close to those analyzed by Lili-

ana Doganova (2012). Members of this innovation area often interacted 

with members of the CSF during both formal and informal events, many of 

which took place in the CSF main building.

However, the vast majority of CSF students did not launch start-ups at 

the end of their training programs. Rather, they tended to be hired by large 

national and international technology companies. This was particularly true 

for doctoral students whose research funds were frequently supported by large 

companies such as Google, IBM, NEC, or Facebook following calls for proj

ects, thus creating multiple and regular professional connections. Visiting 

trips and internships were also routinely organized within technology com-

panies as part of master’s and doctoral programs. This was another distinctive 

feature of CSF: within the ETI, CSF students had the greatest employability.

But public money nonetheless constituted the main financial resource 

for ongoing research projects. Here, too, the CSF seemed to have a strategic 

Figure 1.1
The CSF main building. On the left and right sides of the central patio, lines of offices 

and seminar rooms. In the center of the image, in air-conditioned rooms with 

glazed windows, three server farms store local programs, experiments, and databases. 

On the top floor, illuminated, one can discern the entrance to the faculty cafeteria.
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advantage within the ETI, heavily capitalizing on and participating in pub-

lic speeches reporting the advent of a new industrial revolution around 

big data, machine learning, and artificial intelligence. In addition, thanks 

to the CSF’s reputation as a potential trainer of a new generation of digital 

entrepreneurs (with several iconic precedents participating in this reputa-

tion), its financing requests could play the renewal of industry card, a goal 

explicitly put forward by national research funding agencies. Relative to its 

size within the ETI, the CSF was thus one of the faculties to which the most 

public research funds were allocated.

Although the CSF hosted cutting-edge computer equipment, its premises 

remained open most of the time. From 7 a.m. to 7 p.m., apart from incon-

spicuous surveillance cameras placed in sensitive areas such as server farms, 

no special security procedures were in place. Unlike, for example, Vincent-

Antonin Lépinay’s (2011) analysis of General Bank’s trading rooms, my 

ethnographic inquiry was largely conducted in an open environment with 

no explicit surveillance mechanisms. For example, it was common to meet 

tourists who came to visit and photograph the high-tech architecture of 

the CSF premises. From 7 p.m. to 7 a.m., the security system was comple-

mented by two night watchmen and locked entrance doors (with alarms) 

for those without an access card.

Nevertheless, while the CSF premises remained open most of the time, I 

of course needed institutional support to collaborate with computer scien-

tists and document their courses of action. Without an e-mail address and 

an account within the administrative system, it was, for example, impos-

sible to connect to the CSF servers or use advanced software, both constitut-

ing the basic infrastructure of most ongoing projects. Moreover, given the 

deliberately small size of most of the CSF laboratories (around twenty col-

laborators under the supervision of a professor), it was impossible to blend 

into the mass and investigate in a hidden way.

As a Science and Technology Studies (STS) sociologist without any for-

mal training in computer science, I first had difficulty raising the interest of 

the CSF professors as my research questions appeared too abstract and their 

impact too uncertain. Fortunately, at some point I had the opportunity to 

surf on a broader institutional movement seeking to bring the CSF closer to 

the faculty of human sciences (FHS) of a neighboring university to which I 

was then affiliated. In early 2013, with the stated desire to penetrate cultural 

spheres, the ETI’s management started to invest in the establishment of a 
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center for digital humanities. As this movement involved the recruitment 

of new teaching and research staff, it quickly created links between human-

ity scholars of FHS—some of them STS-inspired—and computer scientists of 

ETI, and it was in this context of disciplinary rapprochement that I met the 

director of a laboratory that specialized in digital image processing. After 

several furtive yet decisive exchanges, I obtained her support to apply for a 

national fellowship promoting interdisciplinary research. Following several 

selection rounds, my application was finally retained in September 2013, 

therefore committing me to run a four-year FHS-CSF doctoral project with 

the stated ambition of carrying out an ethnographic inquiry into the for-

mation of algorithms.1 This dual institutional affiliation allowed me to be 

officially accredited as full member of CSF’s image-processing laboratory 

for a period of two-and-a-half years. From November 2013 to March 2016, I 

had not only the same rights as any laboratory member, notably in terms of 

research infrastructure, but also the same prerogatives, notably in terms 

of presentation of results. While these conditions of investigation were at first 

quite tough—after all, I had initially no experience in computer science—

they gave me the unique opportunity to stay, observe, and work for what I 

will from now on call “the Lab.”

The Lab

The Lab was located on the third floor of the CSF main building. Typical of 

the organization of the CSF, it was centered upon the tutelary figure of a full 

professor, the director of the Lab. The director was assisted by a secretary 

dealing with administrative issues that were often complex due to the high 

proportion of collaborators who came from abroad (especially from Persia, 

India, and China).2 Among these collaborators, one postdoc student stayed 

at the Lab for one-and-a-half years. An invited scholar also had a desk and 

took active part in teaching and research activities. Members of spin-offs, 

sometimes related to the innovation area mentioned earlier, also stayed 

within the Lab for the duration of their fund raising, ranging from one to 

two years. It was not uncommon for these spin-off collaborators to make 

presentations at Lab seminars (more on this later), though in these situa-

tions the other collaborators were required to respect an unofficial “nondis-

closure arrangement.” Some collaborators in between two research contracts 

were also sometimes hired as “scientists,” a temporary position allowing 
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them to pursue their ongoing work in decent conditions. However, most 

of the Lab’s members were PhD students aged from twenty-three to thirty 

years old and generally holders of four-year employment contracts, at the 

end of which they were asked to submit doctoral theses allowing them 

to become doctors of computer science. During my time in the Lab, the 

number of PhD students varied from six to ten and depended on the num-

ber of submitted theses and awarded research contracts. In parallel to their 

research activities, these students also had to work as teaching assistants for 

bachelor’s and master’s classes, including those given by the Lab’s director. 

All in all, for the two-and-a-half years of my collaboration, the Lab hosted 

between ten and sixteen people, including myself.

Like many CSF professors, the director continuously tried to establish 

community dynamics within her Lab. This involved, for example, bringing 

cakes and biscuits to encourage informal chatting at the end of the weekly 

Lab meetings, during which one or two collaborators presented their work 

in progress. Two Lab dinners at nearby restaurants were also organized each 

year; one around Christmas, the other at the end of June. Echoing a cor-

porate outing, a two-day excursion was organized during the summer as 

well. The Lab’s PhD students also contributed to this dynamic by frequently 

organizing “after-work” outings to the school pub on their own initiative. 

All these facilitation efforts effectively created and maintained relation-

ships among collaborators, many of whom had initially arrived in the Lab 

without knowing anyone in the area.

To some extent, the architectural organization of the Lab also partici-

pated in these community dynamics as the seven offices, generally occu-

pied by two researchers facing each other, were each aligned along the same 

hall (see figures 1.2 and 1.3). The Lab also had a private cafeteria that pro-

vided tables, chairs, fridges, and coffee machines. As we will see later, this 

cafeteria was often used as a meeting point, even though the Lab had its own 

seminar room.

If these community dynamics, greatly encouraged by the Lab’s direc-

tor, did contribute to creating an enriching work environment, then they 

also went along with managerial aspects. For example, attendance and con-

tribution to Lab meetings were mandatory, with each collaborator being 

required to make at least one presentation per semester. In addition, similar 

to corporate settings, collaborators were required to inform the secretary in 

the event of illness or incapacity, thus suggesting they should be at the Lab 
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Figure 1.2
The Lab’s hall. On the left, behind closed doors, the Lab’s cafeteria and seminar room. 

On the right, seven offices most of the time occupied by two researchers.

Figure 1.3
Inside one of the Lab’s offices. Two researchers were generally facing each other, though 

they were behind one to three large monitors.
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every working day unless otherwise specified. Moreover, scientific collabo-

rators were asked to meet with the director at least once every two weeks to 

inform her of their research progress. This allowed the director to have an 

actualized view on the ongoing projects while committing collaborators to 

sharing results, questions, problems, or doubts with her.

This leads us to one central element penetrating many aspects of the 

Lab: researchers were asked to produce outputs. This incentive to produce 

tangible results derived from a broader dynamic, now common to research 

institutions desiring to achieve, and maintain, the heights of the academic 

rankings of world universities (Espeland and Sauder 2016). Although most 

of the CSF laboratory directors held stable academic positions, they none-

theless had to be accountable for the performance of their research teams as 

the category of output having the greatest impact on these evaluations were 

articles published in peer-reviewed journals and conferences. Most of the 

research efforts I attended and participated in were then directed toward 

this very specific goal: publishing peer-reviewed articles. Despite its close 

relations with the tech industry and its effective support for the launch of 

spin-offs, the Lab was, in that sense, mainly academic-paper oriented.

But what was the content of the peer-reviewed articles that members of 

the Lab sought to publish in academic journals and conference proceed-

ings? What was the Lab working on? The research field of the Lab was 

existentially linked to the advent of a piece of equipment called the charge-

coupled device (CCD). The history of the CCD’s development, from its 

patented concept at Bell Labs in the late 1960s to the many norms and stan-

dards that supported its industrialization during the 1990s, is a long and 

tortuous story.3 In addition, a precise understanding of its now-stabilized 

internal functioning would require foundations in solid-state physics.4 For 

what interests us here—superficially understanding the main topic of the 

Lab’s academic papers—we can just focus on what CCDs and their different 

variations such as complementary metal-oxide semiconductors (CMOSs)5 

allowed the Lab to do (i.e., the potentialities these devices suggest).

In a nutshell, through the translation of electromagnetic photons into 

electron charges as well as their amplification and digitalization, CCDs and 

CMOSs—as industrially produced devices supported by many standards—

enable the production of digital images constituted of discrete square ele

ments called pixels.6 Organized according to a coordinate system allowing the 

identification of their locations within a grid, these discrete pixels—assigned 
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eight-bit red, green, and blue values in the case of color images (see figure 1.4)—

have the ability to be processed by computer programs that are themselves, 

most of time, inspired by certified mathematical statements. Many terms of 

the former sentence will be discussed at length in the following chapters. 

For now, it is enough to comprehend that in each of the seven offices of the 

Lab as well as in many other scientific and industrial locations, pictures of 

buildings, shadows, mountains, smiles, or elephants—as produced by stan-

dardized CCDs and CMOSs—were also considered two-dimensional signals 

that could be processed by means of computerized methods of calculation.7 

The design and shaping of these methods, their presentation within aca-

demic papers, and their expression as computer programs able to automati-

cally compute the constitutive elements of digital photographs (often called 

“natural images”) was the main research focus of the Lab.8 This specific area 

of practice was and is generally called “two-dimensional digital signal pro

cessing” or, more succinctly, “image processing” or “image recognition” (when 

it deals with recognition tasks).

Even though spending time and energy assembling computerized meth-

ods of calculation capable of processing CDD- and CMOS-derived pixels in 
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Figure 1.4
Schematic of the pixel organization of a digital photograph as enabled by industri-

ally produced and standardized CCDs and CMOSs. The schematic on the right is an 

imaginary zoom of the digital photograph on the left. Every pixel is identified by its 

location within a coordinate system (x/y). Moreover, assuming the image on the left 

is a color image, each pixel is described by three complementary values, commonly 

referred to as a red, green, and blue (RGB) color scheme. As most standard computers 

now express RGB values as eight-bit memory addresses (e.g., one byte), these triplets 

can vary from zero to 255 or, in hexadecimal writing, from 00 to FF.
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meaningful ways might at first sound esoteric, such an activity plays an impor

tant role in contemporary economies.9 This is to be related with the unpre

cedented production, circulation, and accessibility of digital photographs:10 

thanks to image-processing algorithms, these numerous two-dimensional 

signals have become traces potentially indicating habits, attributes, prefer-

ences, and desires. Instead of a noisy, expansive stream of inscrutable data, 

the many digital photographs produced and shared every day have turned 

into valuable assets (Birch and Muniesa 2020) with the advent of image pro

cessing and recognition. This is a phenomenon whose magnitude must be 

grasped. Giant technology services companies such as Facebook, Google, 

Amazon, Apple, IBM, or Microsoft all have laboratories whose members work 

every day to manufacture new algorithms to commercially exploit the infi-

nite potential of digital photographs, tangible expressions of what users, 

clients, and partners are assumedly attached to.11 Nation-states are not to 

be left out either; powerful public agencies also massively invest in image 

processing to make use of the capabilities of digital photographs for security, 

control, and disciplinary purposes.12 In recent years, similar to what Hine 

(2008) described for the case of biological systematics, image processing has 

been seen as a resource in control and planning and, to this end, has increas-

ingly become the object of strategic policy concern and support.

All this may sound gloomy. However, image processing is inextricably 

a fascinating research area with many dedicated academic journals13 and 

conferences.14 The research issue is indeed appealing: how to make box-like 

computing machines see and possibly use their formalist ecology to make 

them detect, recognize, and reveal things that we, as bipedal mammals, 

cannot grasp with our organic senses? Huge academic efforts are invested 

every day in the development of algorithms capable of manipulating CCD- 

and CMOS-enabled pixels to make computers become genuine visual equip-

ment. It is important to note, however, that a clear-cut boundary among 

image-processing groups cannot be easily drawn: academic researchers are 

funded by public agencies but also by private companies that themselves 

are sometimes solicited by public agencies that then take part in the devel-

opment of industrial products. For better or worse, these heterogeneous 

actants associate with each other and cooperatively participate in the devel-

opment and worldwide diffusion of image-processing algorithms through 

computing devices. And at its own level, the Lab was participating in this 

highly collective endeavor.
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Yet one may rightly object that a sixteen-person academic laboratory 

for image processing such as the Lab is not akin to, say, a giant technology 

services company such as Google or a powerful state agency such as the 

National Security Agency. How dare I treat on the same level a small yet 

respected academic institution welcoming an ethnographer interested in 

the manufacture of algorithms and gigantic actors attached to secrecy and 

daily contributing to the progressive establishment of a “black box society” 

(Pasquale 2015)? It is true that important differences exist between an algo-

rithm as an academic proposition and an algorithm as a commercial product 

or an actual control device (notably in terms of optimization and software 

implementation). Nevertheless, it is crucial to specify that academic contri-

butions such as those of the Lab do irrigate the work of large industrial and 

state actors. These connections are often made visible during in-house talks 

where alumni working in the industry are invited to discuss their ongoing 

projects in academic settings. During my stay at the Lab, I attended many 

such talks and was at first surprised to find that behind a priori impressive 

affiliations such as Google Brain or IBM Watson lay a computer scientist not 

so dissimilar to the ones I daily interacted with, saying more or less the same 

things, and working in teams of similar proportions (though for a signifi-

cantly different salary). For example, in November 2015, the director of the 

Lab invited an Instagram employee—an alumnus of the Lab—to talk about 

their new browsing system whose main components derived from a paper 

published in the Proceedings of the 2014 IEEE Conference on Computer Vision 

and Pattern Recognition. In June 2014, a former Lab member working for 

NEC in a five-person team also presented her ongoing algorithmic project 

as deriving from a series of papers presented at the 2013 European Confer-

ence on Computer Vision in which she participated. Other people—mostly 

from IBM and Google—also took part in these “invited talks” organized by 

the Lab and neighboring CSF signal-processing laboratories, most of the 

time mentioning and using state-of-the-art publications.15 Actors who were 

officially part of the industry appeared then closely connected to the aca-

demic community, working in teams of similar size, participating in the 

same events, and sharing the same references. Better still, this continuous 

interaction between academic laboratories such as the Lab and the gigantic 

tech industry was a two-way street: companies like Google, Facebook, and 

Microsoft also organized academic events, sponsored international confer-

ences, and published papers in the best-ranked journals (see figure 1.5).16
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Nonetheless it remains true that academic publications are not commer-

cial products; if university and industrial laboratories both publish papers 

presenting new image-processing algorithms, then these methods are rarely 

workable as they are. To become genuine goods capable of making impor

tant differences in the collective world, they must take part in wider pas-

sivation and valuation processes that will significantly modify their initial 

properties (Callon 2017; Muniesa 2011b). Depending on their circulation 

within differentiated networks, some computerized methods of calcula-

tion initially designed by industrial or academic image-processing laborato-

ries can thus remain very specialized and intended for ad hoc purposes (e.g., 

superpixel segmentation algorithms), whereas others can become widespread 

and industrially implemented in broader assemblages such as digital cameras 

(e.g., red-eye-removal algorithms), expensive software, and large informa-

tion systems (e.g., text-recognition algorithms, compression schemes, or fea-

ture clustering). However, before they may circulate in broader networks and 

hybridize to the point of becoming parts of larger systems, image-processing 

algorithms first need to be designed, discussed, and shared among a heteroge-

neous research community in which the Lab played an active role. Whether 

widespread or specialized, image-processing algorithms—also sometimes just 

called “models” within the computer science community—first need to be 

nurtured, trained, evaluated, and compared in places like the Lab.

Developing image-processing algorithms and publishing them in peer-

reviewed academic journals and conferences was thus a central activity within 

the Lab, and it was this activity that I intended to account for. Yet I still had to 

find a way to document the courses of action that took place there.

Collecting Materials

Thanks to my interdisciplinary research contract, I was part of the Lab for 

two-and-a-half years. Just as any other collaborator, I had a desk, an e-mail 

address, and an account within the administrative system. Yet despite these 

optimal conditions for ethnographic investigation, it would be an under-

statement to claim that the first days were difficult: everything happening 

around me seemed at first out of reach. Fortunately, the rules of the Lab that 

I had to observe quickly allowed me to experience assignable situations. I 

divided these situations progressively into seven different yet interrelated 
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types whose systematic account and referencing ended up constituting my 

corpus of field data.

The first type of situation I experienced was the Lab meetings I mentioned 

earlier. During these weekly meetings, the Lab’s members gathered in a small 

conference room to attend and react to presentations of works in progress. 

Every PhD student (me included), postdoc, spin-off member, or invited 

scholar were asked to make at least one presentation each semester. These 

meetings turned out to be crucial to my inquiry for at least three reasons. 

First, they helped me identify the research topics of my new colleagues. I 

could then use this information to initiate discussions with them in more 

informal settings. Second, Lab meetings allowed me to present my research 

project as well as some of its preliminary propositions in front of the whole 

Lab. These mandatory exercises thus forced me to put my exploratory intu-

itions to the test and, often, retrofit them. Third, these situations gave me 

opportunities to share doubts and needs as in September 2015 when I used 

this tribune to publicly ask for help in my attempts to better document com-

puter programming practices (more on this in chapter 4). Yet although these 

Lab meetings were essential to the advancement of my inquiry, most of the 

data I will use in the following chapters were not collected during these situa-

tions. Indeed, as these meetings mostly dealt with results of ongoing research 

projects within the Lab, the empirical processes and courses of action that led 

to these results were generally not at the center of the discussions.

The second type of situation was conferences organized by the Lab and 

neighbored signal-processing laboratories. As mentioned earlier, some of 

these conferences were invited talks where alumni working in the industry 

came to discuss ongoing projects. Other conferences were closer to tradi-

tional keynotes and gave the floor to prominent researchers, mainly from 

academic institutions. Though, again, I do not directly use data collected 

from these conferences in the empirical chapters, these events were none-

theless crucial situations to experience and account for as they allowed me 

to identify current debates in computer science and better appreciate some 

of the relationships between research and industry.

A third type of situation I experienced was the so-called Group meet-

ings in which I participated between November 2013 and June 2014. These 

Group meetings were part of an image-processing project to which the Lab’s 

director had assigned me, and they were precious for my ethnographic 
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inquiry as they made me encounter what computer scientists call ground 

truths—inconspicuous entities that are yet central to the formation of algo-

rithms. These entities will be introduced in chapter 2 and will accompany 

us throughout the rest of the book.

A fourth type of situation took place at the office desks of the Lab. Finding 

appropriate ways to account for these “desk situations” was an important 

felicity condition of this inquiry as it was at these precise moments and loca-

tions that courses of action crucial to the actual construction of algorithms 

often took place. I had the chance to follow and account for such desk situ-

ations during a small part of the image-processing project to which I was 

assigned between November 2013 and June 2014 (more on this in chapter 6) 

as well as during several computer programming episodes that took place 

between September 2015 and February 2016 (more on this in chapter 4).

A fifth type of situation was the numerous classes and tutorials in which 

I participated throughout my time at the Lab. From basic signal-processing 

classes to advanced Python programming tutorials, a significant part of 

my time and energy was dedicated to learning the language of computer 

science. Even if I do not directly use elements I saw in classes or during 

tutorials in the following case studies, these situations nonetheless greatly 

helped me speak with my computer scientist colleagues. Though quite time 

consuming—again, I had initially no experience in computer science—

these learning activities were crucial prerequisites to interact adequately 

with my fellow workers about issues that mattered to them.

A sixth type of situation was the semi-structured interviews I conducted 

throughout my stay at the Lab. These interviews were initially exploratory 

in nature and aimed to give me a better understanding of how my col-

leagues saw their work. However, as the investigation progressed, I instead 

used interviews as retroactive tools to revisit with Lab members the events 

for which I could only partially account. This helped me fill in some of the 

many gaps in my data.

Finally, a seventh generic type of situation was the informal discussions I 

had daily with the Lab’s members. Although I conducted twenty-five semi-

structured interviews, these were clearly not as valuable as the numerous con-

versations I had during coffee breaks, lunches, Christmas parties, corporate 

outings, or after-work sessions at the pub. Besides facilitating my integration 

within the Lab, these situations helped me share what I was experiencing and 

documenting. During these informal moments, I could, for example, discuss 
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past presentations, recently published papers, ongoing projects, forthcoming 

programming operations, or unclear elements I had seen in class.

From November 2013 to April 2016, I spent most of my working time in 

and around the Lab, switching among these seven types of situations and 

trying to account for them in my logbooks the best I could. At the end of 

the day, sometimes until late in the evening, I used a text editor to clean 

up these notes, classify them according to an increasingly consistent taxon-

omy, and reference them to the paper pages from which they derived (see 

figure 1.6). This collecting and referencing system was at first very messy 

as the number of situational categories increased to the point of no lon-

ger being relevant and my single initial Word document became increas-

ingly cumbersome. However, after a couple of months, I could identify the 

seven different yet interrelated situational categories I have just presented, 

and thanks to the computer programming skills I progressively acquired 

through classes and tutorials, I decided to stick to individual .txt files whose 

content could be browsed by simple yet powerful Python programs I started 

to draft (see figure 1.7). Once systematized, this ad hoc data management 

plan more or less nimbly allowed me to juggle my digitized data while main-

taining access to the original paper notes.

In April 2016, after a small farewell party, I left the Lab with around one 

thousand pages of handwritten notes; two thousand .txt files; a dozen mod-

ulable Python scripts; and hundreds of audio, image, and movie record-

ings as well as numerous half-finished analytical propositions. And with all 

these empirical materials literally under my arm, I (temporarily) exited my 

field site, asking myself serious questions about the significance of all this.

A Torturous Interlude

Ethnography is a transformative experience. Encountering worlds and writ-

ing about them—what is the point of even trying such an odd exercise? 

Computer science now gives me comfort. And as for my former sociolo-

gist peers, what will they think of this new me? I cannot talk anymore. 

Hell of a journey, significant metamorphosis: “I understand, and since I 

cannot express myself except in pagan terms, I would rather keep quiet,” 

someone said a long time ago. Yet words shall be written, promises kept, 

and something not forgotten: my new “new” colleagues (the former ones) 

have all gone through similar journeys. After all, we are in the same shaky 
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boat, trying to write faithful sociological documents from scattered empiri-

cal data. But how can I do justice to my limited yet empirical materials, 

distorted voices of those for whom I proposed to become the spokesperson 

(without any mandate)? I lack everything: a history, a medium, a language. 

Where do I start? Maybe in the middle of things, as always. Back to fun-

damentals, to practices, to courses of action. Read and reread classics; dive 

again and again into my materials while sharing them with my colleagues 

who are gradually becoming pairs again (how could I have forgotten that?). 

Half-relevant things start to emerge—almost-analytical propositions. What 

data can make them bloom in a written document? Not even a fraction, an 

infinitesimal quantity: tiny snapshot of an enlightened world. Accountable 

activities start taking shape on text pages. But are they still readable? Inscrip-

tions only make worlds when read. Conceptual shortage: both computer 

science and sociology may not have the means to confront the manufac-

ture of algorithms. The slightest little programming sequence soon sug-

gests the rewriting of computers’ history; any small formula demands an 

alternative philosophy of mathematics (what a cluttered topic!). We walk 

around with eyes wide shut. Gradually, though, patterns emerge: courses of 

action become vectors tracing genuine, accountable activities; an impres-

sionist draft from which adversarial lines appear: they may be powerful 

but not inscrutable. How could we start composing with algorithms? The 

hope is so dim, and the means so limited. “A voice cries out in the desert,” 

and so on and so on. Enough laments: the whole thing is driven by issues 

1. import OS
2. import mmap
3.
4. for i in os.listdir(“/Users/florianjaton/logbook"):
5. if i.endswith(“txt”):
6. f = open(i)
7. s = mmap.(f.fileno(), 0, access=mmap.ACCESS_READ)
8. if s.find(“ground truth” and “NK”) != -1:
9. file = open(“0_list-entries”, “a”)
10. file.write(i)
11. file.write(“\n”)

Figure 1.7
Example of a small Python script used to browse the content of the .txt files. This 

script, working as a small computer program, makes the computer list the names of 

the .txt files whose content include the keywords “ground truth” and “NK” in a new 

document named “0_list-entries.”

The MIT Press January 2021



48	 Chapter 1

more important than my small personal troubles. And I guess I must now 

validate my return ticket to propose a partial-yet-empirical constitution of 

algorithms, somehow.

Algorithm, You Say?

Going through the previous, unusual section, I hope the reader could 

appreciate that writing an ethnographic document about the shaping of 

algorithms can somewhat be tortuous—even more so when one realizes 

that in computer science the notion of algorithm is rarely problematic! As a 

sociologist and ethnographer interested in the manufacture of algorithms, 

I indeed landed in an academic field whose most illustrious figures have 

dedicated—and still dedicate—their lives to the study of algorithms. To 

many computer science professionals then, the fuss about “what an algo-

rithm is” is overhyped; as one colleague suggested me on my first week 

in the Lab, taking the local undergraduate course in “algorithmic study” 

may allow me to complete my research in record time… In order to specify 

my analytical gesture, it is thus important to look at this well-established 

computer-science-oriented take on algorithms to consider the present work 

as an original complement to it.

When browsing through the numerous—yet not infinite—computer sci-

ence manuals on algorithmic study, one notices algorithms are defined in 

quite a homogeneous way. Authors typically start with a short history of 

the term17 before quickly shifting to its general contemporary acceptation 

as a systematic method composed of different steps.18 Authors then specify that 

the rules of an algorithm’s steps should be univocal enough to be imple-

mented in computing devices, thus differentiating algorithms from other a 

priori systematic methods such as cooking recipes or installation guides. In 

the same movement, it is also specified that these step-by-step computer-

implementable methods always refer to a problem they are designed to 

solve.19 This second definitional element assigns algorithms a function, allow-

ing computers to provide answers that are correct relative to specific prob

lems at hand.

Right after these opening statements, computer science manuals tend to 

organize these functional step-by-step computer-implementable problem-

solving methods around “inputs” and “outputs.” The functional activity 

of algorithms is thus further specified: the way algorithms may provide 
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right answers to defined problems is by transforming inputs into outputs. 

This third definitional movement leads to the standard well-accepted con-

ception of algorithm as “a procedure that takes any of the possible input 

instances and transforms it to the desired output” (Skiena 2008, 3).20

These a priori all-too-basic elements are, in fact, not trivial as they push 

ahead with an evaluation stance and frame algorithms in a very oriented 

way. Indeed, by endowing itself with problems-inputs and solutions-outputs, 

this take on algorithms can emphasize on the adequacy relation between these 

two poles. The study of algorithms becomes then the study of their effective-

ness. This overlooking position is fundamental and penetrates the entire field 

of algorithmic study whose scientific agenda is well summarized by Knuth: 

“We often are faced with several algorithms for the same problem and we 

must decide which is best” (1997a, 7; italics added).21 From this point, algo-

rithmic analyses can focus on the elaboration of meta-methods that allow 

the systematization of the formal evaluation of algorithms.

Borrowing from a wide variety of mathematical branches (e.g., set the-

ory, complexity theory), methods for analyzing algorithms as proposed by 

algorithmic students can be extremely elegant and powerful. Moreover, in 

the light of the significant advances in terms of implementation, data struc-

turation, optimization, and theoretical understanding, this standard concep-

tion of algorithms as more or less functional interfaces between inputs and 

outputs—themselves defined by specific problems—certainly deserves its 

high respectability. However, I believe this standard conception has some lim-

its that, in these days of controversies over algorithms, are important enough 

to suggest complementary alternatives that yet still need to be submitted.

First, the standard conception of algorithms overlooks the definition of 

the problems that algorithms are intended to solve. According to this view, 

problems and their potential solutions are already made, and the role of 

algorithmic studies is to evaluate the effectiveness of the steps leading to 

the transformation of inputs into outputs. Yet it is fair to assume that prob

lems and the terms that define them do not exist by themselves. As it is 

shown in chapter 2 of this book, for example, problems are delicately irri-

gated products of problematization processes engaging habits, desires, skills, 

and values. And these collective processes greatly participate in the way 

algorithms—as problem-solving devices—will further be designed.

The second limit is linked to the first one: if one considers problemati-

zation as part of algorithmic design, the nature of the competition among 
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algorithms changes. The best algorithms are not only the ones whose for-

mal characteristics certify their superiority but also the ones that managed 

to associate with their problems’ definitions the procedures capable of eval-

uating their results. By concentrating on formal criterions—without taking 

into account how these formalisms participated in the initial shaping of the 

problems at hand—the standard conception of algorithms tends to cover 

up the evaluation infrastructure and politics of algorithms. As shown in 

chapter 2, for example, evaluative procedures do not necessarily follow the 

design of algorithms; they also, sometimes, precede and influence it.

Third, the actual computerization of the iterative methods is not consid-

ered. Even though the standard conception of algorithms rightly insists on 

the centrality of computer code for the optimal execution of algorithms, 

this insistence takes the shape of programming methodologies that do not 

consider the experience of programming as it is lived at computer termi-

nals. According to this standard conception of algorithms, writing num-

bered lists of instructions capable of triggering electric pulses in desired 

ways is mainly considered a means to an end. But as it is shown in chap-

ters 4 and 6 of this book, programming practices—by virtue of the collec-

tive processes they require in order to unfold—also sometimes influence 

the way algorithms come into existence.

Fourth, little is said about how mathematical statements end up being 

enrolled for the transformation of inputs into outputs and how this enroll-

ment affects the considered algorithms. To the standard conception of 

algorithms, mathematical statements appear out of the blue, ready to be 

scrutinized by means of other mathematical statements capable of evaluat-

ing their effectiveness. Yet as the chapter 6 of this book indicates, enroll-

ing mathematical statements in order to operate the transformation of 

inputs into outputs is a problematic process in its own right, and again, 

this impacts the nature of algorithms. The initial conception of the dataset 

and its progressive problematization, reorganization, and reduction engage 

expectations and anticipations that fully participate in the ecology of algo-

rithms in the wild.

The present work therefore intends to open up algorithms and extend 

them to processes that they are attached to but whose standard conception 

prevents from appreciating. If this venture does not, of course, aim to con-

test the results of algorithmic studies, it intends to enrich it with grounded 

sociological considerations.
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Let us start this ethnographic inquiry into the constitution of algorithms 

with a first dive into the life of the Lab. More precisely, let us start on Novem-

ber 7, 2013, at the Lab’s cafeteria. At that time, I had only been at the Lab 

for a few days. During my first Lab meeting, I introduced myself as an eth-

nographer who had four years to submit a PhD thesis on the practical shap-

ing of algorithms. Reactions had been courteous, although tinged with some 

indifference. Attention went up a notch when the director told the invited 

postdoc CL, the third-year PhD student GY, and the first-year PhD student BJ 

that I would take part to their ongoing project. It is this project we will follow 

in this first case study centered around several Group meetings, collective 

working sessions where CL, GY, and BJ (and myself) tried to coordinate the 

submission of a paper on a new algorithm.1

Entering the Lab’s Cafeteria

Around 3 p.m. on November 7, 2013, I (FJ) entered the Lab’s cafeteria for 

the first Group meeting. By that time, the Group and the topic of the proj

ect had already been defined: previous discussions among the Lab asso-

ciates agreed that a new collective publication in saliency detection was 

relevant regarding the state of the art as well as the expertise of CL, GY, 

and BJ. Naturally, as any ethnographer freshly landed on his field site, I 

was terribly anxious: Would I live up to the expectations? Would they help 

me understand what they do? My participation in the project was clearly a 

top-down decision as the Lab’s director had assigned me to the project to 

help me properly start my inquiry. Would the Group welcome me? I tried 

to read some papers on saliency detection that CL previously sent me but 

2  A First Case Study
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I was confused by their tacit postulates. How would it be possible to detect 

this strange thing called “saliency” since what is important in a digital 

image certainly varies from person to person? And what is this odd notion 

of “ground truth” that the papers’ algorithms seem to rely on? “Ground” 

and “truth”: for an STS scholar, such a conjunction sounded highly prob-

lematic. As soon as I entered the Lab’s cafeteria though, the members of 

the Group presented me with the ambitions of the project and how they 

intended to run it:2

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “So you heard about saliency, right?”

FJ:  “Well, I’ve read some stuff.”

CL:  “Huge topic, but basically, when you look at an image, not everything 

is important usually, and you focus only on some elements.  … What we 

try to do basically, it’s like a model that detects elements in an image that 

should attract attention.  … GY’s worked on a model that uses contrasts to 

segment objects and BJ has a model that detects faces. We’ll use them as a 

base.  … For now, most saliency models only detect objects and don’t pay 

attention to faces. There’s no ground truth for that. But what we say is 

that faces are also important and usually attract directly the attention.  … 

And that’s the point: we want to include faces to saliency, basically.”

GY:  “And segment faces. Because face detectors output only rectangles.  … 

There can be many applications [for the model], like in display or com-

pression for example.”

Many questions immediately arose. How and why is it important to focus 

on “elements that should attract attention”? Why is it problematic not to 

have a “ground truth” to detect “multiple objects and faces”? And what is 

a ground truth anyway? Why is it related to “saliency” and its potential 

industrial applications? Already at this early stage of the inquiry, the mean-

dering flows of ethnography somewhat deprive us from our landmarks. To 

follow the Group and become able to fully explore these materials, some 

more equipment is obviously needed. I will thus temporally “pause” the 

account of the Group’s project and consider for a while the sociohistorical 

background of saliency detection that underlies the Group’s framing of its 

project. Once these introductory elements are acquired, I will be come back 

to this first Group meeting.
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Backstage Elements: Saliency Detection and Digital Image Processing

“Saliency” for computer scientists in image processing is a blurry term with 

a history that is difficult to track. The term “saliency” was gradually created 

by straddling different—yet closely related—research areas. One point of 

departure could be the 1970s when explicative models developed in cogni-

tive psychology and neurobiology3 started to schematize how the human 

brain could quickly handle an amount of visual data that is far larger than 

its estimated processing capabilities (Eason, Harter, and White 1969; Lappin 

and Uttal 1976; Shiffrin and Gardner 1972).4 After many disputes and con-

troversies, a rough agreement about the overall process of humans’ “selec-

tive visual attention method” had progressively emerged that distinguishes 

between two neuronal processes of selecting and gating visual information 

(Itti and Koch 2001; Heinke and Humphreys 2004).5 On the one hand, 

there is a task-independent and rapid “bottom-up visual attention process” 

that selects conspicuous stimuli such as color contrasts, feature orienta-

tions, or spatial frequency. On the other hand, there is a slower “top-down 

visual attention process” that operates selectively based on tasks to accom-

plish. The term “saliency map” was proposed by Koch and Ullman (1985) 

to define the final result of the brain’s bottom-up visual attention process.

In the 1980s, the way that cognitive psychologists and neurobiologists 

theorized two different “paths” for the brain to process light signals—one 

fast and generic, the other slower and task-specific—inspired scientists whose 

machines face a similar problem in computer vision: the stream of sampled 

digital signals that emanated from CCDs were too large to be processed all 

at once. From this point, two different classes of image-processing detection 

algorithms have progressively been shaped. The first class was inspired by the 

assumed bottom-up schematic process of visual attention and tried to detect 

“low-level features” inscribed within the pixels of a given image, such as 

intensity, color, orientation, and texture.6 Through the academic efforts of 

Laurent Itti and Christof Koch in the 2000s (Itti, Koch, and Niebur 1998; 

Itti, Koch, and Braun 2000; Itti and Koch 2001; Elazary and Itti 2008; Zhao 

and Koch 2011), the term “saliency” was progressively assimilated into this 

first class of algorithms that became labeled saliency-detection algorithms. 

The second class of image-processing detection algorithms was inspired by 

the assumed top-down schematic process of visual attention and is based 

on “high-level features” that have to be learned by machines according to 
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specific metrics (e.g., face or car detection). This often involves automated 

learning procedures and the management of increasingly large databases 

(Grimson and Lozano-Perez 1983; Lowe 1999).

Despite differences in terms of substratum, both high-level and low-level 

detection algorithms were, and are, bound to the same construction work-

flow that consists of five interrelated and problematic steps:

1.	 The acquisition of a finite dataset.

2.	 On the data of this dataset, the manual labeling of clear targets, defined 

here as the elements (faces, cars, salient regions) the desired algorithm 

will be asked to detect.

3.	 The construction of a database gathering the unlabeled data and their 

manually labeled counterparts. This database is usually called “ground 

truth” by the research community.

4.	 The design of the algorithm’s calculating properties and parameters based 

on a representative part of the ground-truth database.

5.	 The evaluation of the algorithm’s performances based on the rest of the 

ground-truth database.

To illustrate this schematic workflow, let us hypothesize the existence of φ, 

a standard detection algorithm in image processing. The very existence of 

φ depends upon a finite set of digital images for which human workers have 

previously labeled targets (e.g., faces, cars, salient regions). The unlabeled 

images and their manually labeled counterparts are then gathered together 

within a database to form the ground truth of φ. To design and code φ, the 

ground truth is randomly split into two parts: the “training set” and the 

“evaluation set.” The designers of φ would use the training set to extract for-

mal information about the targets, often with help of mathematical expres-

sions. Once formulated and translated into machine-readable code, the 

algorithm φ is tested on the evaluation set to see how well it detects targets 

that were not used to design its properties. From its confrontation with the 

evaluation set, φ produces a precise number of outputs that can be qualified 

either as “true positives,” “false negatives,” or “false positives,” thanks to the 

previous human-labeling work. Out of this comparison between manually 

designed targets and automatically produced outputs, statistical measures 

such as precision (the fraction of detected items that were previously defined 

as targets) and recall (the fraction of targets among the detected items) can 

be obtained to compare and rank competing algorithms (see figure 2.1).
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One drawback of high-level detection algorithms is that they are task-

specific and cannot by themselves detect different types of targets: a face-

detection algorithm will detect faces, a car-detection algorithm will detect 

cars, a plane-detection algorithm will detect planes, and so on.7 Yet, one of 

the benefits of such high-level detection algorithms is that the definition of 

their targets (faces, cars, planes) often involves minor ambiguities for those 

who design them: cars, faces, or planes have rather unambiguous character-

istics that facilitate agreement. Targets and ground truths can then be man-

ually shaped by computer scientists in order to train high-level detection 

algorithms. Moreover, these ground truths can also serve as referees among 

competing high-level detection algorithms as they provide precision and 

recall metrics. The subfield of face detection with its numerous ground truths 

and algorithmic propositions provides a paradigmatic example of a highly 

Figure 2.1
Schematic of precision and recall measures on φ. In this hypothetical example, φ 

(grey background) detected thirty targets (true positives) but missed eighteen of them 

(false negatives). This performance means that φ has a recall score of 0.62. The algo-

rithm φ also detected twelve elements that are not targets (false positives), and this 

makes it have a precision score of 0.71. From this point, other algorithms intended to 

detect the same targets can be tested on the same ground truth and may have better 

or worse precision and recall scores than φ.

ELEMENTS DETECTED BY    = true positives

= false positives

= false negatives

Precision =

Recall =

+
= 

30 
42 

= 0.71 

+
= 

30 
48 

= 0.62 

TARGETS OF   
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developed and competitive topic in image processing since at least the 2000s 

(see figure 2.2).

In the 2000s, unlike research in high-level detection, low-level saliency 

detection had no “natural” ground truth allowing the design and evalua-

tion of computational models.8 At that time, if the task-independent and 

adaptive character of saliency detection was theoretically interesting for 

automatic image cropping (Santella et al. 2006), adaptive display on small 

devices (Chen et al. 2003), advertising design, and image compression (Itti 

2000), the absence of any ground truth that could allow the training and 

evaluation of computational models prevented saliency detection from 

being an active topic in digital image processing. As Itti, Koch, and Niebur 

(1998) confessed when they tested the very first saliency-detection algo-

rithm on natural images:

Results Reported in Terms of Percentage Correct Detection (CD) and Number
of False Positives (FP), CD/FP, on the CMU and MIT Datasets

Face detection system CMU-130 CMU-125 MIT-23 MIT-20

Schneiderman & Kanade—Ea [170] 94.4%/65
90.2%/110
92.3%/8
93.6%/7
94.8%/7

84.5%/8

89.4%/3
91.5%/1
94.1%/3

79.9%/5
94.1%/64
74.2%/20
72.3%/6
87.1%/0

Schneiderman & Kanade—Wb [170]
Yang et al.—FA [217]
Yang et al.—LDA [217]
Roth et al. [157]
Rowley et al. [158] 86.2%/23

86%/8Feraud et al. [42]
Colmenarez & Huang [22] 93.9%/8122
Sung & Poggio [182]
Lew & Huijsmans [107]
Osuna et al. [140]
Lin et al. [113]
Guand Li [54]

aEigenvector coefficients.
bWavelet coefficients.

Figure 2.2
An exemplary comparison table among high-level face-detection algorithms. Two 

ground truths are used for this comparison table from Carnegie Mellon University 

(CMU) and the Massachusetts Institute of Technology (MIT). On the left, a list of 

algorithms named according to the papers in which they were proposed. In this 

table, the ‘Percentage of Correct Detection’ (CD) indicates the recall values and the 

‘Number of False Positives’ (FP) suggests the precision values. Source: Hjelmås and 

Low (2001, 262). Reproduced with permission from Elsevier.
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With many such [natural] images, it is difficult to objectively evaluate the model, 

because no objective reference is available for comparison, and observers may disagree 

on which locations are the most salient. (Itti, Koch, and Niebur 1998, 1258; italics 

added)

Saliency detection in natural images is an equivocal topic not easily expressed 

in a ground truth. Whereas it is usually straightforward (and yet time con-

suming) to define univocal targets for training and evaluating high-level 

face-detection or car-detection algorithms, it is far more complex to do so 

for saliency-detection algorithms because what is considered as salient in a 

natural image tends to change from person to person. While in the 2000s 

saliency-detection algorithms might have been promising for many indus-

trial applications, no one in the field of image processing had found a way to 

design a ground truth for natural images.

In 2007, Liu et al. proposed an innovative solution to this issue and cre-

ated the very first ground truth for saliency detection in natural images. 

Their shift was smart, costly, and contributed greatly to framing and estab-

lishing the subfield of saliency detection in the image-processing literature. 

Liu et al.’s first move was to propose one possible scope of saliency detection 

by incorporating concepts from high-level detection. According to them, 

instead of trying to highlight salient areas within digital images, compu-

tational models for saliency should detect the most salient object within a 

given digital image. They thus framed the saliency problem as being binary 

and one-off object related. According to them, to get around the impasse 

of saliency detection, saliency-detection algorithms should distinguish one 

salient object from the rest of the image:

We incorporate the high-level concept of salient object into the process of visual 

attention in each respective image. We call them salient objects, or foreground 

objects that we are familiar with.  … We formulate salient object detection as a 

binary labelling problem that separates a salient object from the background. 

Like face detection, we detect a familiar object; unlike face detection, we detect a 

familiar yet unknown object in an image. (Liu et al. 2007, 1–2)

Thanks to this refinement of the concept of saliency (from “anything that 

first attracts attention” to “the one object in a picture that first attracts 

attention”), Liu et al. could organize an experiment in order to construct 

legitimate targets to be retrieved by computational models. They first ran-

domly collected 130,099 high-quality natural images from internet forums 

and search engines. Then they manually selected 20,840 images that fit 
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with their definition of the saliency problem: images that, according to 

them, contained only one salient object. This initial selection operation 

was crucial as it excluded images with several potential salient objects. The 

result was an initial dataset of no complex pictures with mixed features (see 

figure 2.3).

They then proceeded in two steps. First, they asked three human workers 

to manually draw a rectangle on what they thought was the most salient 

object in each image. For each image, Liu et al. then obtained three differ

ent rectangles whose consistencies could be measured by the percentage of 

shared pixels. For a given image, if its three rectangles were more consis-

tent than a chosen threshold (here, 80 percent of pixels in common), the 

image was considered as containing a “highly consistent salient object” 

(Liu et al. 2007, 2). After this first selection step, their dataset called α con-

tained around thirteen thousand images.

For the second step, Liu et al. randomly selected five thousand highly 

consistent salient-object images from α to create a second dataset called β. 

They then asked nine other human workers to label the salient object of 

every image in β with a rectangle. This time, Liu et al. obtained for every 

image nine different yet highly consistent rectangles whose average sur-

face was considered their “saliency probability map” (Liu et al. 2007, 3). 

Thanks to this constructed social agreement, the five thousand saliency 

probability maps—in a computer science perspective, tangible matrices con-

stituted of specific numerical values—could then be considered the best 

solutions to the saliency problem as they framed it. The whole ground 

truth—the database gathering the natural images and their corresponding 

Figure 2.3
Samples from Liu et al.’s dataset. Pictures contain one centered and contrastive ele

ment. Source: Microsoft Research Asia (MSRA) public dataset, Liu et al. (2007).
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saliency probability maps—became the material base on which the desired 

algorithm could be developed. By constructing this ground truth, Liu et al. 

defined the terms of a new problem whose solutions could be retrieved by 

means of calculating methods.

The shift here was not trivial. Indeed, by organizing this survey, invit-

ing people into their laboratory, welcoming them, explaining the topic to 

them, writing the appropriate computer programs to make them label the 

images, and gathering the results in a proper database in order to statisti-

cally process them, Liu et al. transformed their initial reduced conception 

of saliency detection into workable and unambiguous targets with specific 

numerical values. At the end of this laborious process, Liu et al. could ran-

domly select two thousand images from set α and one thousand images 

from set β to construct a training set (Liu et al. 2007, 5–6) to analyze the 

shared features of their constructed-yet-sound-by-virtue-of-agreement tar-

gets. Once the adequate numerical features were extracted from the targets 

of the training set and implemented in machine-readable language, they 

used the four thousand remaining images from set β to statistically measure 

the performances of their algorithm. Further, and for the very first time, 

they also could compare the detection performances of their algorithm with 

two competing algorithms that had already been proposed by other labora-

tories but that could not have been evaluated on natural images before due 

to the lack of any “natural” targets related to saliency. Besides the actual 

completion of their saliency-detection algorithm, the great innovation of 

Liu et al. was then to redefine the saliency problem so that it could allow 

performance evaluations (see figure 2.4).

By publishing their paper and also publicly providing their ground truth 

online, it is not an exaggeration to say that Liu et al. established a newly 

assessable research direction in image processing. A costly infrastructure 

had been put together, ready to be reused to support other competing algo-

rithmic propositions with perhaps better performances according to Liu 

et  al’s ground truth and the definition of saliency it encapsulates. Their 

publication was more than a paper: it was a paper that allowed other papers 

to be published as they provided a ground truth that could be used by other 

researchers as long as they properly quote the seminal paper and accept the 

ground truth’s restricted—yet operational—definition of saliency.9

Another important paper for saliency detection—and therefore also for 

the Group’s project that we shall soon continue to follow—was published 
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in 2008 by Wang and Li. To them, even though Liu et al. (2007) were right 

to frame the saliency problem as a binary problem, their bounding-box 

ground truth remained unsatisfactory as it could well evaluate inaccurate 

results (see figure 2.5). To refine the measures of Liu et al.’s very first ground 

truth for saliency detection, Wang and Li randomly selected three hundred 

images from β dataset and used a segmentation tool to manually label the 

contours of each of the three hundred salient objects. What they proposed 

and evaluated then was a saliency-detection algorithm that “not only cap-

tures the rough location and region of the salient objects, but also roughly 

keeps the contours right” (Wang and Li 2008, 965).

From this point, saliency detection in image-processing was almost set: 

even though many algorithms exploiting different low-level pixel informa-

tion were later proposed (Achanta et  al. 2009; Chang et  al. 2011; Cheng 

et  al. 2011; Goferman, Zelnik-Manor, and Tal 2012; Shen and Wu 2012; 

Wang et al. 2010), they were all bound to the saliency problem as defined 

by Liu et al. in 2007. And even though other ground truths have later been 

proposed in published papers (Judd, Durand, and Torralba 2012; Movahedi 

and Elder 2010) to widen the scope of saliency detection (notably by propos-

ing images with two objects that could be decentered), Liu et al.’s seminal 

framing of saliency detection as a binary object-related problem remained 

unchallenged. And when the Group started their project in November 2013, 

(a) (b) (c) (d) (e)

Figure 2.5
Image (a) is an unlabeled image of Liu et al.’s ground truth; image (b) is the result of 

Wang & Li’s saliency-detection algorithm; image (c) is the imaginary result of some 

other saliency-detection algorithm on (a); and image (d) is the bounding-box target 

as provided by Liu et al.’s ground truth. Even though (b) is more accurate than (c), it 

will obtain a lower statistical evaluation if compared to (d). This is why Wang & Li 

propose (e), a binary target that matches the contours of the already defined salient 

object. Source: Wang and Li (2008, 968). Reproduced with permission from IEEE.
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Liu et al.’s problematization of the saliency problem was continuing to sup-

port a competition among algorithms that differentiated themselves by 

speed and accuracy (see figure 2.6).

With this brief history of saliency in image processing, we are better 

equipped to follow the Group as it tries to construct its own innovative 

saliency-detection algorithm. Social surveys, salient objects whose contours 

Image Ground
Truth

Ours CB LR SVO RC CA  GB SER

Figure 9. Comparison of different methods on the ASD, SED and SOD datasets. The first three rows are from
the ASD dataset, the middle three rows are from the SED dataset, the last three rows are from the SOD dataset.

Table 1. Comparison of average execution time (seconds per image).

Method Ours CB SVO RC LR CA GB SER FT LC SR IT
Time(s) 0.105 1.179 40.33 0.106 11.92 36.05 0.418 25.19 0.016 0.002 0.002 0.165
Code Matlab Matlab Matlab C++ Matlab Matlab Matlab C++ C++ C++ C++ Matlab

Figure 2.6
2013 comparison table between different saliency-detection algorithms. The number of 

competing algorithms has increased since 2007. Here, three ground truths are used for 

performance evaluations: ASD (Achanta et al. 2009), SED (Alpert et al. 2007), and SOD 

(Movahedi and Elder 2010). Below the figure, a table compares the execution time of 

each implemented algorithm. Source: Jiang et al. (2013, 1672). Reproduced with permis-

sion from IEEE.
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define the targets of competing algorithms, ground truths bound to a binary 

problematization of saliency, promising industrial applications: the stage we 

are about to explore is supported by all of these elements, constraining the 

members of the Group in the shaping of their project as well as providing 

them opportunities for further reconfigurations.

Reframing Saliency

If, at the beginning of the chapter, the Group’s explanations appeared quite 

cryptic, the previous introductory review should now enable us to under-

stand them critically. Let us thus look at the same excerpt once again:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “So, you heard about saliency, right?”

FJ:  “Well, I’ve read some stuff.”

CL:  “Huge topic, but basically, when you look at an image, not everything 

is important usually, and you focus only on some elements.  … What we 

try to do basically, it’s like a model that detects elements in an image that 

should attract attention.  … GY’s worked on a model that uses contrasts 

to segment objects and BJ has a model that detects faces. We’ll use them 

as a base.  … For now, most saliency models only detect objects and don’t 

pay attention to faces. There’s no ground truth for that. But what we say is 

that faces are also important and usually attract directly the attention.  … 

And that’s the point: we want to include faces to saliency, basically.”

GY:  “And segment faces. Because face detectors output only rectangles.  … 

There can be many applications [for the model], like in display or com-

pression for example.”

According to the Group, saliency-detection models should also take human 

faces into account as faces are important in human attention mechanisms. 

Moreover, investing this interstice within saliency detection would be a 

good opportunity to merge some of the Group’s recent researches on both 

low-level segmentation and high-level face detection. The idea to combine 

high-level face detection with low-level saliency detection derived from 

previous image-processing papers (Borji 2012; Karthikeyan, Jagadeesh, and 

Manjunath 2013) inspired themselves by studies in gaze prediction (Cerf, 

Frady, and Koch 2009), cognitive psychology (Little, Jones, and DeBruine 

2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski 2008). But the 
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Group’s ambition here was to go further in the saliency direction as framed 

by Wang and Li (2008), after Liu et al. (2007), by proposing an algorithm 

capable of detecting and segmenting the contours of faces. In order to accom-

plish such subtle results, the previous work done by GY on segmentation and 

BJ on face detection would constitute a precious resource to work on.

The Group also wanted to construct a saliency-detection model that 

could effectively process a larger range of natural images:

Group meeting, the Lab’s cafeteria, November 7, 2013

GY:  “But you know [to FJ], we hope the algorithm could detect multiple 

objects and faces. Because in saliency detection, models can only detect 

like one or two objects on simple images. They don’t detect multiple 

salient objects in complex images.  … But the problem is that there’s no 

ground truth for that. There’s only ground truth with like one or two 

objects, and not that many faces.”

In many cases, natural images not only capture one or two objects dis-

tinguished from a clear background; pictures produced by users of digital 

cameras—according to the Group—are generally more cluttered than those 

used to train and evaluate saliency-detection algorithms in the wake of Liu 

et  al. (2007). Indeed, at least in November  2013, saliency detection was 

becoming a research area where algorithms were more and more efficient 

only on those—rare—natural images with clear and untangled features. But 

the Group also knew that this issue was intimately related to the then avail-

able ground truths for saliency detection that were all bound to Liu et al’s 

restricted initial definition of saliency that only fit simple images. From this 

point, as the Group wanted to propose a model that could detect a different 

and more subtle saliency, it had to construct the targets of such saliency; 

as it wanted to propose a model that could calculate and detect multiple 

salient features (objects and faces) in more complex and realistic images, 

it had to construct a new ground truth that would gather complex images 

and their corresponding multiple salient features.

The Group’s desire to redefine the terms of the saliency problem did 

not come ex nihilo. When Liu et al. did their research on saliency in 2007, 

it was difficult for computer scientists to organize large social surveys on 

complex images. But in November 2013, the growing availability of crowd-

sourcing services enabled new potentialities:
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Group meeting, the Lab’s cafeteria, November 7, 2013

GY:  “But we want to use crowdsourcing to do a new ground truth and 

ask people to label features they think are salient.  … And then we could 

use that for our model and compare the results, you see?”

In broad strokes, crowdsourcing—a contraction of “crowd” and “outsourc-

ing” initially coined by journalist Howe (2006)—is “a type of participative 

online activity in which an individual, an institution, a non-profit organ

ization, or a company proposes to a group of individuals of varying knowl-

edge, heterogeneity, and number, via a flexible open call, the voluntary 

undertaking of a task” (Estellés-Arolas and González-Ladrón-de-Guevara 

2012, 195). In November  2013, this service was offered by several com-

panies such as Amazon (via Amazon Mechanical Turk), ClickWorker, or 

Employment Crossing (via ShortTask), whose own application program-

ming interfaces (APIs)10 recommended surveys to registered online con-

tingent workers mainly located in the United States and India. Once a 

worker submits their completed task—which can vary greatly in time and 

complexity—the organization that designed the survey (e.g., a research 

institution, a company, an individual) can decide on its validity. If the task 

is considered valid, the worker receives from the crowdsourcing company 

the amount of money initially indicated in the open call. If the task is con-

sidered not valid, the worker receives nothing and has, most of the time, no 

possibility of appeal. As the moral economy of crowdsourcing has recently 

been the object of critical sociological studies, it is necessary to devote a 

short sidebar to it.

Contingent work has long supported industrial efforts. As, for example, 

documented by Pennington and Westover (1989), the textile industry as it 

developed in England in the 1850s relied heavily on off-site manufactur-

ing operations, often referred to as “industrial homework.” Women and 

children living in the countryside, operating as proto-on-demand workers, 

were asked to make crucial finishing touches too fine for the machines of 

the time. Almost simultaneously, a similar phenomenon was taking place 

in the United States, particularly in the Pittsburg, Pennsylvania, area: even 

though it was often seen as a reminiscence of a preindustrial era that was 

doomed to disappear, “piecework” organized on a commission basis in part-

nership with rural households was a necessary lever for the scaling up of 

mass manufacturing (Albrecht 1982). And if trade unions did later manage, 
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through painful struggles, to somewhat improve the working conditions 

of employees (e.g., US Fair Labor Standards Act in 1938, French Accords de 

Matignon in 1936), these improvements mostly concerned full-time work 

carried out on designated production sites that was mostly reserved for 

white male adults. The concessions made to salaried workers during the 

first half of the twentieth century thus mostly concerned those who ben-

efited from visibility and proximity: contingent work, which was scattered, 

not very visible, little valued, and considered unskilled, continued to pass 

under the radar. To this—and to many other things that are beyond the 

scope of this sidebar11—was later added a more or less explicit corporate 

strategy of circumventing unionization and work regulations (which were 

already reserved for specific trades) based notably on the growing avail-

ability of information and communication technologies. This strategy of 

“fissuration of the workplace” (Weil 2014), well in line with the financial-

ization of Western economies,12 helped to further promote outsourcing: 

instead of depending on employees benefiting from statutory logic, it has 

become preferable and valued to depend on remote worldwide networks 

of contingent staff. And crowdsourcing, as distributed computer-supported 

on-demand low-valued work, can be seen as the continuation of contin-

gent work’s support to and modification of industrial capitalism. As Gray 

and Suri (2019, 58) noted: “Those on-demand jobs today are the latest itera-

tion of expendable ghost work. They are, on the one hand, necessary in the 

moment, but they are too easily devalued because the tasks that they do are 

typically dismissed as mundane or rote and the people often employed to 

do them carry no cultural clout.”13

Let us come back to the Lab. In November 2013, like most people, the 

Group was not aware of the dynamics underlying generalized outsourcing 

and devaluation of contingent labor as supported by contemporary crowd-

sourcing processes. An indication of this unawareness could be found in the 

term “users” the Group often employed to refer to the anonymous workers 

engaged in this new form of precariat.14 For the Group, at that moment, 

the estimated benefits of crowdsourcing were huge: once the desired web 

application was coded and set with an instruction, such as “please highlight 

the features that directly attract your attention,” the Group would be able 

to pay a crowdsourcing company whose API would take charge of linking 

the survey to dozens of low paid “users” of the Group’s web application. In 

turn, these “users”—that I will from now on call “workers”—would feed the 
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Group’s server with labeling coordinates that could be processed on soft-

ware packages such as Matlab.15 For our story, crowdsourcing—as a rather 

easily available paid service—created a difference: the gathering of many 

manually labeled salient features became more manageable for the Group 

than it had been for Liu et al. in 2007, and an extension of the notion of 

saliency to multiple features became—at least in November 2013—doable.

Another difference effected by crowdsourcing was a potential redefinition 

of the saliency problem as being continuous:

Group meeting, the Lab’s cafeteria, November 7, 2013

FJ:  “So, basically you want many labels?”

GY:  “Yes because you know, in the state-of-the-art face detection or 

saliency models only detect things in a binary way, like face/no face, 

salient/not salient. What we also try to do is a model that evaluates the 

importance of faces and objects and segments them. Like ‘this face is 

more important than this other face which is more important than that 

object’ and so on.  … But anyways, to do that [a ground truth based on 

the results of a crowdsourcing task], we first need a dataset with many 

images with different contents.”

CL:  “Yes, we thought about something like 1,000 image at least, to train 

and evaluate. But it has to be images with different objects and faces 

with different sizes.”

GY:  “And we have to select the images; good images to run the sur-

vey.  … We’ll try to propose a paper in [the] spring so it would be good to 

have finished crowdsourcing in January, I guess.”

If the images used to construct the ground truth contained only one or two 

objects and were labeled only by several individuals, no relational values 

among the labeled features could be calculated. From this point, defining 

saliency as a binary problem in the manner of Liu et al. (2007) would make 

complete sense. Yet as the Group could afford to launch a social survey that 

asked for many labels on a dataset with complex images containing many 

features, it would become methodologically possible to assign relative impor-

tance values to the different labeled features. This was a question of arithme-

tic values: if one feature were manually labeled as salient, the Group could 

only obtain a binary value (foreground and background). But if several fea-

tures were labeled as more or less salient by many workers, the Group could 

obtain a continuous subset of results. In short, for the Group, crowdsourcing 
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once again created a difference by making it possible to create new types 

of targets with relatively continuous values. It was difficult at this point to 

predict if the Group’s algorithm would effectively be able to approach these 

subtle results. Nevertheless, the ground truth the Group wanted to consti-

tute would enable the development of such an algorithm by providing the 

targets that the model should try to retrieve in the best possible way.

Even though the Group had managed to build on previous works in 

saliency detection and other related fields to reframe the problem of saliency, 

it still lacked the ground truth that could numerically establish the terms 

of this new problem: both the inputs the desired algorithm should work 

on and the outputs (the “targets”) it should try to retrieve still needed to 

be constructed. In that sense, the Group was only at the beginning of the 

problematization process that may lead to a new computational model: its 

new definition of the saliency problem still needed to be equipped (Vinck 

2011) with tangible elements (a new set of complex images, a crowdsourcing 

task, continuous values, segmented faces) to form a referential database that 

would, in turn, constitute the material base of the new computerized method 

of calculation. Borrowing from Michel Callon (1986), we might say that, for 

the members of the Group, the new ground truth appeared as an obliga-

tory passage point that could make them become—perhaps—indispensable 

for the research community in saliency detection. Without a new ground 

truth, saliency-detection models would still operate on unrealistic images; 

they would still be one-off object related; they would still ignore the detec-

tion and segmentation of faces; and they would still, therefore, be irrel-

evant for real-world applications. With the help of a new ground truth, 

these shortcomings that the Group attributed to saliency detection may 

be overcome. In a similar vein—this time borrowing from Joan Fujimura 

(1987)—we might say that, at this point, the Group’s saliency problem was 

doable only at the level of its laboratory. The Group had indeed been given 

time and money to conduct the project and had insights on how to run 

it. But without any ground truth, the Group had no tangible means to 

articulate this “laboratory level” with both the research communities in 

image processing and the specific tasks required to effectively define a work-

ing model of computation. It is only by constructing a database gathering 

“input-data” and “output-targets” that the Group would be able to propose 

and, eventually, publish an algorithm capable of solving the saliency prob

lem as the Group reframed it.
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Constructing a New Ground Truth

We have now a better sense of some of the pitfalls that sometimes get in 

the way of computer scientists trying to shape a new algorithm. As we were 

following the Group in the beginning of its saliency-detection project, we 

realized that the constitution of an image-processing algorithm capable of 

establishing a new research direction goes along with the shaping of a new 

ground truth that should precisely support and equip the constitution of 

the algorithm. Yet for now, we only considered the reasons why the Group 

needed to design a new ground truth. But how did it actually make it?

In addition to working on the coding of the crowdsourcing web 

application, the Group also dedicated November and December 2013 to 

the selection of images that echo the algorithm’s three expected perfor

mances: (1) detecting and segmenting the contours of salient features, 

including faces; (2) detecting and segmenting these salient features in com-

plex images; and (3) evaluating the relative importance of the detected and 

segmented salient features. These specifications led to several Group meet-

ings specifically organized to discuss the content and distribution of the 

selected images:

Group meeting, the Lab’s cafeteria, November 21, 2013

BJ:  “Well, we may avoid this kind of basketball photo because these 

players may be famous-like. They are good because the ball contrasts 

with faces, but at least I know some of the players. And if I know, we 

include other features like ‘I know this face,’ so I label it.”

CL:  “I think maybe if you have somebody that is famous, the impor-

tance of the face increases and then we just want to avoid modeling that 

in our method.”

…

CL:  “OK. And the distributions are looking better?”

FJ:  “Yes definitely. BJ just showed me what to improve.”

CL:  “OK. So what other variables do we consider?”

GY:  “Like frontal and so on. But equalizing them is real pain.”

CL:  “But we can cover some of them; maybe not equalize. So there 

should be like the front face with images of just the front of the face and 

then there is the side face, and a mixture in between.”
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The selection process took time because a wide variety of image contents 

(e.g., sport, portraits, side faces) had to be gathered to cover more natural 

situations than the other ground truths. Also, no famous features (e.g., build-

ings, comedians, athletes) that could influence attention processes should be 

part of the content. As we can see, the Group’s anticipated capabilities for the 

algorithm oriented this manual selection process: similarly to Liu et al. (2007) 

but in a manner that made the Group include more complex “natural situa-

tions,” the assembling of a dataset was driven by the algorithm’s future tasks.16 

By December 2013, eight hundred high-resolution images were gathered—

mostly from Flickr—and stored in the Lab’s server. Since the Group consid-

ered the inclusion of faces within saliency detection as the most significant 

contribution of the project, 632 of the selected images included human faces.

In parallel to this problem-oriented selection of images, organizational 

work on the selected images had to be defined in order not to be overloaded 

by the increasing number of files and by the huge amount of labeled results to 

be gathered throughout the crowdsourcing task. This kind of organizational 

procedure was very close to data management and implied the realization of 

a whole new database for which information could be easily retrieved and 

anticipated. Moreover, the shaping of the crowdsourcing survey also required 

coordination and adjustments: What question would be asked? How would 

answers be collected and processed in order to fulfill the ambitions of the 

project? Those were crucial issues as the “raw” labeled answers obtained via 

crowdsourcing could only be rectangles and not precise contours:

Group meeting, the Lab’s cafeteria, December 12, 2013

CL:  “But for the database, do we rename the images so that we have a 

consistency?”

BJ:  “Hum.  … I don’t think so because now we can track the files back to 

the website with their ID. And with Matlab you can like store the jpg files 

in one folder and retrieve all of them automatically”

…

CL:  “What do you think, GY? Can we ask people to select a region of the 

image or to do something like segmenting directly on it?”

GY:  “I don’t think you can get pixel-precision answers with crowdsourc-

ing. We’ll need to do the pixel-precision [in the Lab] because if we ask 

them, it’s gonna be a very sloppy job. Or too slow and expensive anyway.”
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CL:  “So what do you want? There is your Matlab code to segment fea-

tures, right?”

GY:  “Yes, but that’s low-level stuff, pixel-precision [segmentation]. It’s 

gonna be for later, after we collect the coordinates, I guess. I still need to 

finish the scripts [to collect the coordinates] anyway. Real pain. … But what 

I thought was just like ask people to draw rectangles on the salient things, 

then collect the coordinates with their ID and then use this information to 

deduce which feature is more salient than the other on each image. Loca-

tion of the salient feature is a really fuzzy decision, but cutting up the edges 

is not that dependent.  … You know where the tree ends, and that’s what 

we want. Nobody will come and say ‘No! The tree ends here!’ There is not 

so many variances between people I guess in most of the cases.”

CL:  “OK, let’s code for rectangles then. If that’s easy for the users, let’s 

just do that.”

The IDs of the selected images allowed the Group to put the images in a 

Matlab database rather easily. But within the images, the salient features 

labeled by the crowdworkers were more difficult to handle since GY’s inter-

active tool to get the precise boundaries of image contents was based on 

low-level information. As a consequence, segmenting the boundaries of 

low-contrasted features such as faces could take several minutes, whereas 

affordable crowdsourcing was about small and quick tasks. The Group could 

not take the risk of either collecting “sloppy” tasks or spending an infea-

sible amount of money to do so.17 The labeled features would thus have to 

be post-processed within the Lab to obtain precise contours.

Moreover, another potential point of failure of the project resided in the 

development of the crowdsourcing web application. Indeed, asking people 

to draw rectangles around features, translating these rectangles into coor-

dinates, and storing them into files to process them statistically required 

nontrivial programming skills. By January  2014, when the crowdsourc-

ing web application was made fully operational, it comprised seven dif

ferent scripts (around seven hundred lines of code) written in html, PHP, 

and JavaScript that responded to each other depending on the workers’ 

inputs (see figure 2.7). Yet, if the Lab’s computer scientists were at ease 

with numerical computing and programming languages such as Matlab, C, 

or C++, web designing and social pooling were not competencies for which 

they were necessarily trained.
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Once coded and debugged—a delicate process in its own right (see chap-

ter 4)—the different scripts were stored in one section of the Lab’s server 

whose address was made available in January  2014 to the now-defunct 

company ShortTask whose API offered the best-rated contingent workers. 

By February 2014, thirty workers’ tasks qua tens of thousands of rectangles’ 

coordinates were stored in the Group’s database as .txt files, ready to be pro

cessed thanks to the previous preparatory steps. At this point, each image of 

the previously collected dataset was linked with many different rectangles 

drawn by the workers. By superimposing all the coordinates of the different 

rectangles on Matlab, the Group created for each image a “weight map” 

with varying intensities that indicated the relative consensus on salient 

regions (see figure 2.8). The Group then applied to each image a widely 

used threshold taken from Otsu (1979)—part of Matlab’s internal library—

to keep only weighty regions that had been considered salient by the work-

ers. In a third step that took two entire weeks, the Group—in fact, BJ and 

me—manually segmented the contours of the salient elements within the 

salient regions to obtain “salient features.” Finally, the Group assigned the 

mean value of the salient regions’ map to the corresponding salient features 

to obtain the final targets capable of defining and evaluating new kinds of 

saliency-detection algorithms. This laborious process took place between 

February and March 2014; almost a month was dedicated to the processing 

of the coordinates produced by the workers and then collected by the html-

JavaScript-PHP scripts and database.

By March 2014, the Group successfully managed to create targets with 

relative saliency values. The selected images and their corresponding targets 

could then be organized as a single database that finally constituted the 

ground truth. From this point, one could consider that the Group effec-

tively managed to redefine the terms of the saliency problem: the transfor-

mations the desired algorithm should conduct were—finally—numerically 

defined. Thanks to the definition of inputs (the selected images) and the 

definition of outputs (the targets), the Group finally possessed a problem 

that numerical computing could take care of.

Of course, establishing the terms of a problem by means of a new ground 

truth was not enough: to propose an actual algorithm, the Group also had 

to design and code lists of instructions that could effectively transform 

input-data into output-targets according to the problem they had just estab-

lished. To design and code these lists of instructions, the Group randomly 
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selected two hundred images out of the ground truth to form a training 

set. After formal analysis of the relationships between the inputs and the 

targets of this training set, the Group extracted several numerical features 

that expressed—though not completely—these input-target relationships.18 

The whole process of extracting and verifying numerical features and par

ameters from the training set and translating them sequentially into Matlab 

programming language took almost a month. But at the end of this process, 

the Group possessed a list of Matlab instructions that was able to transform 

the input values of the training set into values relatively close to those 

of the targets.

By the end of March 2014, the Group used the remainder of its ground-

truth database to evaluate the algorithm and compare it with already available 

Figure 2.8
Matlab table summarizing the different steps required for the processing of the coor-

dinates produced by the workers who accomplished the crowdsourcing task. The first 

row shows examples of images and rectangular labels collected from the crowdsourc-

ing task. The second row shows the weight maps obtained from the superposition of 

the labels. The third row shows the salient regions produced by using Otsu’s (1979) 

threshold. The last row presents the final targets with relative saliency values. The 

first three steps could be automated, but the last segmentation step had to be done 

manually. At the end of this process, the images (first row, without the labels) and 

their corresponding targets (last row) were gathered in a single database that consti-

tuted the Group’s ground truth.
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saliency-detection algorithms in terms of precision and recall measures (see 

figure 2.9). The results of this confrontation being satisfactory, the features 

and performances of the Group’s algorithm were finally summarized in a 

draft paper and submitted to an important European Conference on image 

processing.

As these Group meetings and documents show, the Group’s algorithm 

could only be made operational once the newly defined problem of saliency 

had been solved by human workers and expressed in a ground-truth data-

base. In that sense, the finalization of Matlab lists of instructions capable 

of solving the newly defined problem of saliency followed the problemati-

zation process in which the Group was engaged. The theoretical refram-

ing of saliency, the selection of specific images on Flickr, the coding of a 

web application, the creation of a Matlab database, the processing of the 
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Figure 2.9
Two Matlab-generated graphs comparing the performances of the Group’s algorithm 

(“Ours”) with already published ones (“AMC,” “CH,” etc.). The new ground truth 

enabled both graphs. In the graph on the left, the curves represented the variation of 

precision (“y” axis) and recall (“x” axis) scores for all the images in the ground truth 

when processed by each algorithm. In the graph on the right, histograms measured 

the same data while also including F-Measure values, the weighted average of preci-

sion and recall values. Both graphs indicated that, according to the new ground truth, 

the Group’s algorithm significantly outperformed all state-of-the-art algorithms.
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workers’ coordinates: all these practices were required to design the ground 

truth that ended up allowing the extraction of the relevant numerical fea-

tures of the algorithm as well as its evaluation. Of course, the mundane 

work required for the construction of the ground truth was not sufficient to 

complete the complex lists of Matlab instructions that ended up effectively 

processing the pixels of the images: critical certified mathematical claims 

also needed to be articulated and expressed into machine-readable format. 

Yet, by providing the training set to extract the numerical features of the 

algorithm and by providing the evaluation set to measure the algorithm’s 

performances, the ground truth greatly participated in the completion of 

the algorithm.

The above elements are not so trivial, and some deeper reflections are 

required before moving forward. In November 2013, the Group had only 

few elements at its disposal. It had desires (e.g., contesting previous papers), 

skills (e.g., mathematical and programming abilities), means (e.g., access to 

academic journals, powerful computers), and hopes (e.g., make a difference 

in the field of image processing). But these elements alone were not enough 

to effectively shape its new intended algorithm. In November 2013, the 

Group also needed an empirical basis that could serve as a fundamental 

substratum; it needed to ground a material coherence that could establish 

the veridiction of their future model. This was the whole benefit of the 

new ground truth—which should rather be called grounded truth—as it was 

now possible to found and bring into existence a set of phenomena (here, 

saliency differentials) operating as an analytical referential. Once this scrip-

tural fixation was achieved in March 2014, the world the Group inhabited 

was no longer the same: it was enriched and oriented by a set of relations 

materialized in a database. And the algorithm that finally came out from 

this database organized, reproduced, and in a sense, consecrated the rela-

tions embedded in it. From a static and particular ground truth emerged 

an operative algorithm potentially capable of reproducing and promoting 

the organizational rules of the ground truth in different configurations. By 

rooting the yet-to-be-constructed algorithm, the ground truth as assembled 

by the Group oriented the design of its algorithm in a particular direction. 

In that sense, the new ground truth was the contingent yet necessary bias 

of the group’s algorithm.19

This propensity of computational models to be bound to and fundamen-

tally biased by manually gathered and processed data is not limited to the 
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field of digital image processing. For example, as Edwards (2013) showed for 

the case of climatology, the tedious collection, standardization, and com-

pilation of weather data to produce accurate ground truths of the Earth’s 

climate is crucial for both the parametrization and evaluation of General Cir-

culation Models (GCMs).20 Of course, just as in the field of image processing, 

the construction of ground truths by climatologists does not guarantee the 

definition of accurate and effective GCMs: crucial insights in fluid dynam-

ics, statistics, and (parallel) computer programming are also required. Yet, 

without ground truths providing parameters and evaluations, no efficient 

and trustworthy GCM could come into existence. For the case of machine 

learning algorithms for handwriting recognition or spam filtering, Burrell 

(2016, 5–6) noted the importance of “test data” in setting the learning par

ameters of these algorithms as well as in evaluating their performances. Here 

as well, ground truths appear central, defining what is statistically learned 

by algorithms and allowing the evaluation of their learning performances.21 

The same seems also to be true of many algorithms for high-frequency trad-

ing: as MacKenzie (2014, 17–31) suggested, detailed analysis of former finan-

cial transactions as well as the authoritative literature of financial economics 

work as empirical bases for the shaping and evaluation of “execution” and 

“proprietary trading” algorithms.

Yet, despite growing empirical evidences, algorithms’ tendency to be exis-

tentially linked to ground-truth databases that cannot, obviously, be reduced 

to mere sets of data remains little discussed in the abundant computer sci-

ence literature on algorithms. The issue is generally omitted: mathematical 

analysis and programming techniques, sometimes highly complex, are dis-

cussed after, or as if, a ground truth has been constructed, accepted, distrib-

uted, and made accessible. The theoretical exploration of what I called in 

chapter 1 the standard conception of algorithms tends to take for granted 

the existence of stable and shared referential repositories. This omission 

may even be what makes such a vision of algorithms possible: considering 

algorithms as tools ensuring the computerized transition from problems 

to solutions might imply to suppose already defined problems and already 

assessable solutions.

Some sociologists—most of them STS-inspired—do consider the topic 

head on, though. In their critique of predictive algorithmic systems, Baro-

cas and Selbst (2016) warned against the potentially harmful consequences 

of problem definition and training sets’ collection. In a similar way, Lehr 

The MIT Press January 2021



78	 Chapter 2

and Ohm (2017) emphasized on the handcrafted aspect of “playing with 

the data” for the design of statistical learning algorithms. More recently, 

Bechmann and Bowker (2019) built on these arguments to propose the 

notion of value-accountability-by-design: a call for systemic efforts to make 

arbitrary choices involved in algorithm-related data collection, prepara-

tion, and classification more explicit. In the wake of Ananny and Crawford 

(2018), they thus suggest that, to better appreciate algorithmic behavior, ex 

ante focus on ground-truthing processes might be more conclusive than ex 

post audits or source code scrutinization (as it is, for example, proposed in 

Bostrom [2017] and Sandvig et al. [2016]). In a similar way, Grosman and 

Reigeluth (2019) investigated the design of an algorithmic security system 

for the detection of threatening behaviors. They show that the definition 

of the problem that the algorithm will have to solve—and, therefore, the 

“true positives” it will have to detect—derive from collective problematiza-

tion processes that include discussions and compromises among sponsors, 

competing interpretations of legal documents, and on-site simulations of 

threatening and inoffensive behaviors conducted by the project’s engineers. 

They conclude that the normativity proper to algorithmic systems must 

also be considered in the light of the tensions that contributed to mak-

ing this normativity expressible. In sum, all the above-mentioned authors 

have uncovered processes that resemble the one the Group had just gone 

through. Their investigations also show that what is called an “algorithm” 

often derives from collective processes expressed materially in contingent, 

but necessary, referential repositories.

At this early stage of the present inquiry, it would be unwise to define a 

general property common to all algorithms. Yet based on the preliminary 

insights of this chapter and the growing body of studies that touched on 

similar issues, one can make the reasonable hypothesis that behind many 

of these entities we like to call “algorithms” lie ground-truth databases 

that have made designers able to extract relevant numerical features and 

evaluate the accuracy of the automated transformations of inputs-data into 

output-targets. Consequently, as soon as such algorithms—once “in the 

wild,” outside of their production sites—automatically process new data, 

their respective initial ground truths—along with the habits, desires, and 

values that participated in their shaping—are also invoked and, to a cer-

tain extent, promoted. As I will further develop at the end of this chapter, 

studying the performative effects of such algorithms in the light of the 
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collective processes that constituted the output-targets these algorithms 

try to retrieve appears a stimulating, yet still underexplored, research topic 

when compared with the growing influence algorithms have on our lives.

Almost Accepted (Yet Rejected)

June 19, 2014: The reviewers rejected the Group’s paper. The Group was 

greatly disappointed to see several months of meticulous work unrewarded 

by a publication that could have launched new research lines and gener-

ated many citations. But the feeling was also one of incomprehension and 

surprise in view of the reasons provided by the three reviewers.

Along with doubts about the usefulness of incorporating face information 

within saliency detection, the reviewers agreed on one seemingly key defi-

ciency of the Group’s paper: the performance comparisons of the computa-

tional model were only made with respect to the Group’s new ground truth:

Assigned Reviewer 1
The paper does not show that the proposed method also performs better than 

other state-of-the-art methods on public benchmark ground truths.  … The exper-

iment evaluation in this paper is conducted only on the self-collected face images. 

More evaluation datasets will be more convincing.  … More experiment needs to 

be done to demonstrate the proposed method.

Assigned Reviewer 2
The experiments are tested only on the ground truth created by the authors.  … It 

would be more insightful if experiments on other ground truths were carried out, 

and results on face images and non-face images were reported, respectively. This 

way one can more thoroughly evaluate the usefulness of a face-importance map.

Assigned Reviewer 3
The discussion is still too subjective and not sufficient to support its scientific 

insights. Evaluation on existing datasets would be important in this sense.

The reviewers found the technical aspects of the paper to be sound. But they 

questioned whether the new best saliency-detection model—as the Group 

presented it in the paper—could be confronted only with the ground truth 

used to create it. Indeed, why not confront this new model with the already 

available ground truths for saliency detection? If the model were really “more 

efficient” than the already published ones, it should also be more efficient 

on the ground truths used to shape and evaluate the performances of the 

previously published saliency-detection models. In other words, since the 
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Group presented its model as commensurable with former models, the Group 

should have—according to the reviewers—more thoroughly compared its 

performances. But why did the Group stop halfway through its evaluation 

efforts and compare its model only with respect to the new ground truth?

Discussion with BJ on the terrace of the CSF’s cafeteria, June 19, 2014

FJ:  The committee didn’t like that we created our own ground truth? 22

BJ:  No. I mean, it’s just that we tested on this one but we did not test on 

the other ones.

FJ:  They wanted you to test on already existing ground truths?

BJ:  Yes.

FJ:  But why didn’t you do that?

BJ:  Well, that’s the problem: Why did we not test it on the others? We 

have a reason. Our model is about face segmentation and multiple features. 

But in the other datasets, most of them do not have more than ten face 

images.  … In the saliency area, most people do not work on face detection 

and multiple features. They work on images where there is a car or a bird in 

the center. You always have a bird or something like this. So it just makes no 

sense to test our model on these datasets. They just don’t cover what our 

model does.  … That’s the thing: if you do classical improvement, you are 

ensured that you will present something at big conferences. But if you pro-

pose new things, then somehow people just misunderstand the concept.

It would not have been technically difficult for the Group to confront its 

model with the previous ground truths; they were freely available on the 

web, and such performance evaluations required roughly the same Matlab 

scripts as those used to produce the results shown in figure 2.9. The main 

reason the Group did not do such comparisons was that the previous models 

deriving from the previous ground truths would certainly have obtained bet-

ter performance results. Since the Group’s model was not designed to solve 

the saliency problem as defined by the previous ground truths, it would 

certainly have been outperformed by these ground truths’ “native” models.

Due to a lack of empirical elements, I will not try to interpret the reasons 

why the Group felt obliged to frame the line of argument of its paper around 

issues of quantifiable performances.23 Yet, in line with the argument of 

this chapter, I assume that this rejection episode shows again how image-

processing algorithms can be bound to their ground truths. An algorithm 
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deriving from a ground truth made of images whose targets are centered, 

contrastive objects will somehow manage to retrieve these targets. But 

when tested on a ground truth made of images whose targets are multiple 

decentered objects and faces, the same algorithm may well produce statisti-

cally poor results. Similarly, another algorithm deriving from a ground truth 

made of images whose targets are multiple decentered objects and faces will 

somehow manage to retrieve these targets. But when tested on a ground 

truth made of images whose targets are centered contrastive objects, it may 

well produce statistically poor results. Both such algorithms operate in dif

ferent categories; their limits lie in the ground truths used to define their 

range of actions. As BJ suggested in a dramatic way, to a certain extent, we 

get the algorithms of our ground truths. Algorithms can be presented as statisti-

cally more efficient than others when they derive from the same—or very 

similar—ground truths. As soon as two algorithms derive from two ground 

truths with different targets, they can only be presented as different. Quali-

tative evaluations of the different ground truths in terms of methodology, 

data selection, statistical rigor, or industrial potentials can be conducted, 

but the two computational models themselves are irreducibly different and 

not commensurable. From the point of view of this case study—which may 

differ from the point of view of the reviewers—the Group’s fatal mistake 

might have been to mix up quantitative improvement of performances with 

qualitative refinement of ground truths.

Interestingly, one year after this rejection episode, the Group submitted 

another paper, this time to a smaller conference in image processing. The 

objects of this paper were rigorously the same as those of the paper that was 

previously rejected: the same ground truth and the same computational 

model. Yet instead of highlighting the statistical performances of its model, 

the Group emphasized its ground truth and the fact that it allowed the inclu-

sion of face segmentation within saliency detection. In this second paper 

that won the “Best Short Paper Award” of the conference, the computa-

tional model was presented as one example of the application potential of 

the new ground truth.

Problem Oriented and/or Axiomatic

This first case study accounted for a small part of a four-month-long proj

ect in saliency detection run by a group of young computer scientists in 
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the Lab. Is it possible to draw on the observations of this exploratory case 

study? Could we use some of the accounted elements to make broader 

propositions and sketch analytical directions for the present book as well 

as for other potential future inquiries into the constitution of algorithms? 

More than just concerning a group of young computer scientists and a 

small prototype for saliency detection, I think indeed that this case study 

fleshes out important insights that deserve to be explored more thoroughly. 

For the remaining part of this chapter then, I will draw on this empirical 

case to tentatively propose two complementary research directions for the 

sociological study of algorithms.

I assume that this case study implicitly suggests a new way of seeing 

algorithms that still accepts their standard definition while expanding it 

dramatically. Indeed, we may now still consider an algorithm as being, at 

some point, a set of instructions designed to computationally solve a given 

problem. Though as explained at the end of chapter 1, I intentionally did 

not take this standard definition of algorithms as a starting point; at the 

end of the Group’s project, once the numerical features were extracted 

from the training set and translated into machine-readable language, sev-

eral Matlab files with thousands of lines of instructions constituted just 

such a set. From that point of view, the study of these sets of instructions 

at a theoretical level—as proposed, for example, by Knuth (1997a, 1997b, 

1998, 2011); Sedgewick and Wayne (2011); Dasgupta, Papadimitriou, and 

Vazirani (2006); and many others—is wholly relevant to the problem at 

hand. How to use mathematics and machine-readable languages in order to 

propose a solution to a given problem in the most efficient way is indeed a 

fascinating question and field of study.

At the same time, however, we saw that the problem an algorithm is 

designed to solve does not preexist: it has to be produced during what one 

may call a “problematization process”—a succession of collective practices 

that aim to empirically define the terms of a problem to be solved. In our 

case study, the Group first drew on recent claims published in authorita-

tive journals of cognitive biology to reframe the saliency problem as being 

face-related and continuous. As we saw, this first step of the Group’s prob-

lematization process implied mundane and problematic practices such as 

the critique of previous research results (what did our opponents miss?) and 

the inclusion of some of the Lab’s recent projects (how to pursue our recent 

developments?). The second step of the Group’s problematization process 
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implied the constitution of a ground truth that could operationalize the 

reframed problem of saliency. This second step also implied mundane and 

problematic practices such as the collection of a dataset on Flickr (what 

images do we choose?), the organization of a database (how do we organize 

our data?), the design of a crowdsourcing task (what question do we ask to 

the workers?), and the processing of the results (how do we get contours of 

features from rectangles?). Only at the very end of this process—once the 

laboriously constructed targets have been associated to the laboriously con-

structed dataset in order to form the final ground-truth database—was the 

Group able to formulate, program, and evaluate the set of Matlab instruc-

tions capable of transforming inputs into outputs by means of numerical 

computing techniques. In short, to design a computerized method of cal-

culation that could solve the new saliency problem, the Group first had to 

define the boundaries of this new problem.

From these empirical elements, two complementary perspectives on 

the Group’s algorithm seem to emerge. A first perspective might consider 

the Group’s algorithm as a set of instructions designed to computationally 

solve a new problem in the best possible way. This first traditional view on 

the Group’s algorithm would, in turn, put the emphasis on the mathemati-

cal choices, formulating practices, and programming procedures the Group 

used to transform the input-data of the new ground truth into their cor-

responding output-targets. How did the Group manipulate its training set 

to extract relevant numerical features for such a task? How did the Group 

translate mathematical operations into lines of code? And did it lead to 

the most efficient result? In short, this take on the Group’s algorithm would 

analyze it in the light of its computational properties. Yet symmetrically, a 

second view on the Group’s algorithm might consider it as a set of instruc-

tions designed to computationally retrieve, in the best possible way, output-

targets that were designed during a specific problematization process. This 

second take on the Group’s algorithm would, in turn, put the emphasis 

on the specific situations and practices that led to the definition of the 

terms of the problem the algorithm was designed to solve. How was the 

problem defined? How was the dataset collected? How was the crowdsourc-

ing task conducted? In short, this second perspective—which this chapter 

endorsed—would analyze the Group’s algorithm vis-à-vis the construction 

process of the ground truth it originally derived from (and by which it was 

biased).
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If we tentatively expand the above propositions, we end up with two 

ways of considering algorithms that both pivot about these material objects 

called ground truths. What we may call an axiomatic perspective on algo-

rithms would consider algorithms as sets of instructions designed to com-

putationally solve in the best possible way a problem defined by a given 

ground truth. A second, and complementary, problem-oriented perspective 

on algorithms would consider algorithms as sets of instructions designed 

to computationally retrieve what has been defined as output-targets during 

specific problematization processes.

While I do think that both axiomatic and problem-oriented perspectives on 

algorithms are complementary and should thus be intimately articulated—

specific numerical features being suggested by ground truths (and vice 

versa)—I also believe that they lead to different analytical efforts. By con-

sidering the terms of the problem at hand as given, the axiomatic way of 

considering algorithms facilitates the study of the actual mathematical and 

programming procedures that effectively end up transforming input sets of 

values into output sets of values in the best possible ways. This may sound 

like an obvious statement, but defining a calculating method requires mini-

mal agreement on the initial terms and prospected results of the method 

(Ritter 1995). It is by assuming that the transformation of the input-data 

into the output-targets is desirable, relevant, and attestable that a step-by-

step schema describing this transformation might be proposed. In the case 

of computer science, different areas of mathematics with many different 

certified rules and theorems can be explored, adapted, and enrolled to 

automate at best the passage from selected input-data to specified output-

targets; linear algebra in the case of image processing (Klein 2013), proba-

bility theory in the case of data compression (Pu 2005), graph theory in the 

case of data structure (Tarjan 1983), number theory in the case of cryptog-

raphy (Koblitz 2012), or statistics (and probabilities) in the case of the ever-

popular machine-learning procedures supposedly adaptable to all fields of 

activity (Alpaydin 2016). As we will see in chapters 5 and 6, the exploration 

and teaching of these different certified mathematical bodies of knowledge 

must therefore be respected for what they are: powerful operators allowing 

the reliable transformative computation of ground-truth’s input-data into 

their corresponding output-targets.

If the problem-oriented perspective on algorithms may not directly focus 

on the formation and computational effectiveness of algorithms, it may 
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contribute to better documenting the processes that configure the terms 

of the problems these algorithms try to solve. Considering algorithms as 

retrieving entities may put the emphasis on the referential databases that 

define what algorithms try to retrieve and reproduce; the biases they build 

on in order to express their veracity. What ground truth defined the terms 

of the problem this algorithm tries to solve? How was this ground-truth 

database constituted? And when? And by whom? By pointing at moments 

and locations where outputs to be retrieved were, or are, being constituted 

within ground-truth databases, this analytical look at algorithms—that 

Bechmann and Bowker (2019) and Grosman and Reigeluth (2019) contrib-

uted to igniting—may suggest new ways of interacting with algorithms and 

those who design them. This avenue of research, which is still in its infancy, 

could moreover link its results to those of the more explicitly critical posi-

tions I mentioned in the introduction. If the investigations by Noble 

(2018) on the racist stereotypes promoted by the search engine Google or 

by O’Neil (2016) on how proxies used by proprietary scoring algorithms 

tend to punish the poorest have effectively acted as warning signs, practi-

cal ways to change the current situation still need to be elaborated. This is 

where the notion of composition, the keystone of this inquiry, comes again 

into play: at the time of (legitimate) indignation, the time of constructive 

confrontation must follow, which itself implies being able to present one-

self realistically. As long as the practical work subtending the constitution 

of algorithms remains abstract and indefinite, modifying the ecology of 

this work will remain extremely difficult. Changing the biases that root 

algorithms in order to make them promote different values may, in that 

sense, be achieved by making the work practices that underlie algorithms’ 

veracities more visible. If more studies could inquire into the ground-truthing 

practices algorithms derive from, then actual composition potentials may 

slowly be suggested.

* * *

Part I is now coming to an end. Let me then quickly recap the elements pre-

sented so far. In chapter 1, I presented the main setting of this inquiry: an 

academic laboratory I decided to call the “Lab” whose members spend a fair 

amount of time and energy assembling and publishing new image-processing 

algorithms, thus participating—at their own level—in the heterogeneous net-

work of computer science industry. I also considered methodological issues 
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and critically discussed the notion of algorithm as it is generally presented in 

the specialized literature.

In chapter 2, we dived into the daily work of the Lab and followed a 

group of young computer scientists trying to design a new algorithm for 

an important conference in image processing. Our initial encounter with 

the Group at the Lab’s cafeteria was at first confusing, but after a quick 

detour via the image-processing literature on saliency detection, we were 

able to understand why the Group’s project implied the shaping of a new 

referential database that could define the terms of the problem its desired 

algorithm should later try to solve. As we were accounting for these mun-

dane yet crucial ground-truthing practices, we realized something very banal 

for practitioners of computer science but surprising to many others: it turns 

out that, to a certain extent, we get the algorithms of our ground truths. As 

the construction of image-processing algorithms implies the formation of 

training sets for formulating the relationships between input-images and 

output-targets as well as the formation of evaluation sets for measuring and 

comparing the performances of these formulated relationships, image-

processing algorithms—and potentially many others—must rely, in one 

way or another, on manually constructed ground truths that precisely pro-

vide both sets. This half-discovery further suggested a research agenda that 

two complementary analytical perspectives on algorithms could irrigate. 

First, and in the wake of this chapter 2, a “problem-oriented perspective” 

could explore the collective processes leading to the formation and circula-

tion of ground truths. This unconventional glance on algorithms may con-

tribute to equipping broader topics related to data justice and algorithmic 

fairness. Yet to avoid reducing algorithms to the ground truths from which 

they derive, such studies of algorithms should be intimately articulated 

with an “axiomatic perspective” on algorithms that could further explore 

the formulation and evaluation of computational models from already con-

stituted ground truths.
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It is sometimes difficult to say things that are quite simple.

—Hutchins (1995, 356)

If part I led, I hope, to interesting insights, it was nonetheless mundane-

biased. Although I kept on insisting on the ordinary aspect of ground-

truthing—criticizing previous papers, selecting data, defining targets, and 

so on—I remained very vague about less common practices that those who 

are not computer scientists generally expect to see in computer science lab-

oratories. For example, where is the mathematics? If the Group managed to 

define relationships between input-data and output-targets, it certainly for-

mulated them with the help of mathematical knowledge and inscriptions. 

And where are the cryptic lines of computer code? If the Group managed 

to first design a web application and later test its computational model on 

the evaluation set, it must have successfully written machine-readable lists 

of instructions. If I really want to propose a partial yet realistic constitution 

of algorithms, do I not need to account for these a priori exotic activities 

as well? The practices leading to the definition of mathematical models 

of computation will be the topic of part III. For now, I need to consider 

computer programming, this crucial activity that never stops being part of 

computer scientists’ daily work.

Let us warm up with some basic assertions. Is it not a platitude to say 

that computer programming is a central activity? Every digital device that 

takes part in our courses of action required indeed the expert hands of “pro-

grammers” or “developers” who translated desires, plans, and intuitions 

into machine-readable lists of instructions. Banks, scientific laboratories, 
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high-tech companies, museums, spare part manufacturers, novelists, eth-

nographers: all indirectly rely on people capable of interacting with com-

puters to assemble files whose content can be executed by processors at 

electronic speed. If by a mysterious black-magic blow all programmers who 

make computers compute in desired ways were removed from the collec-

tive world, the remaining people would very soon end up yapping around 

powerless relics like, as Malraux says, crowds of monkeys in Angkor temples. 

The current importance of fast and reliable automated processing for most 

sectors of activity positions computer programming as an obligatory pas-

sage point that cannot be underestimated.

Yet if the courses of action of computer programming are terribly impor

tant—without them, there would be no digital tools—their study does not 

always appear relevant. Most of the individuals of the collective world 

rightly have other things to do than spending time studying what animates 

the digital devices with which they interact. Moreover, those who study 

these individuals—for example, sociologists and social scientists—can also 

take programming practices for granted as political, social, or economic 

processes often appear after innumerable programming ventures have been 

successfully conducted. For many interesting activities and research topics, 

then, it makes perfectly sense not to look at how computer programs are 

empirically assembled.

In other situations, though, the activity of computer programming is 

more difficult to ignore. Computer scientists and engineers cannot, for 

example, take this activity for granted as it would imply ignoring an impor

tant and often problematic aspect of their work.1 Unfortunately, as we shall 

see later, the methods they use to better understand their own practices 

tend to privilege the evaluation of the results of computer programming 

tasks rather than the practices involved in the production of these results. 

Programmers’ insights resulting from the analysis of programming tasks 

thus remain distant from the actions of programming, for which they often 

remain unaccountable.

But programming practices are also difficult to ignore for cognitive scien-

tists who work in artificial intelligence departments: as human cognition 

is—according to many of them—a matter of computing, understanding 

how computers become able to compute via the design of programs seems 

indeed to be a fruitful topic. But just like computer scientists and engineers, 

cognitive scientists have difficulties with properly accessing and inquiring 
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into computer programming courses of action. For entangled reasons 

which I will cover in the following chapter, when cognitivists inquire into 

what makes programs exist, they cannot go beyond the form “program” 

that precisely needs to be accounted for. In a surprisingly vicious circle that 

has to do with the so-called computational metaphor of the mind, cognitiv-

ists end up proposing numerous (mental) programs to explain the develop-

ment of (computer) programs.

Programming practices therefore appear quite tricky: terribly important 

but at the same time very difficult to effectively study. What makes these 

courses of action so elusive? Is it even possible to account for them? And 

if it is, what are their associative properties? And what do these properties 

suggest? The goal of this part II is to tackle some of these questions. The 

journey will be long, never straightforward, and sometimes, not developed 

enough. But let the reader forgive me: as you will hopefully realize, a full 

historical and sociological understanding of computer programming is a 

life project of its own. So many things have been said without much being 

shown! The reasons for dizziness are legitimate, the chances of success 

infinitesimal; yet, if we really care about these entities we tend to call algo-

rithms, an exploratory attempt to better understand the practices required 

to make them effectively participate in our courses of action might not be, 

I hope, completely senseless.

Part II is organized as follows. In chapter 3, I start by retracing how the 

activity of programming was progressively made invisible before propos-

ing conceptual means to help restore its practicality. I first focus on an 

important document written by John von Neumann in 1945 that presented 

computers as input-output devices capable of operating without the help 

of humans. This initial setting aside of programming practices from elec-

tronic computing systems further seemed to depict them as self-sufficient 

“electronic brains.” In the second section of the chapter I present academic 

attempts to make sense of the incapacity of “electronic brains” to operate 

meaningfully. As we shall see, for intricate reasons related to the computa-

tional metaphor of the mind, I assume that researchers conducting these 

studies did not manage to properly approach computer programming prac-

tices, thus further contributing to their invisibilization. In the last section 

of the chapter where I progressively try to detach myself from almost every

thing that has been said about the practice of computer programming, I 

draw on contemporary work in the philosophy of perception to propose 
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a definition of cognition as enacted. This enactive conception of cognition 

will further help us fully consider actions instead of minds. In chapter 4, I 

build on this unconventional conception of cognition as well as several 

other concepts taken from Science and Technology Studies to closely analyze a 

programming episode collected within the Lab. The study of these empiri-

cal materials makes me tentatively partition programming episodes into 

three intimately related sets of practices: scientific with the alignment of 

inscriptions, technical with the work-arounds of impasses, and affective with 

the shaping of scenarios. The need for constant shifting among these three 

modes of practices might be a reason why computer programming is a dif-

ficult yet fascinating experience. The last section of chapter 4 will be a brief 

summary.
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Many things have been written regarding computer programming—often, 

I believe, in problematic ways. To avoid getting lost in this abundant lit

erature, it is important to start this chapter with an operational definition 

of computer programming on which I could work and eventually refine 

later. I shall then temporally define computer programming as the situated 

activity of inscribing numbered lists of instructions that can be executed by 

computer processors to organize the movement of bits and to modify given 

data in desired ways. This operational definition of computer programming 

puts aside other practices one may sometimes describe as “programming,” 

such as “programming one’s wedding” or “programming the clock of one’s 

microwave.”

If I place emphasis on the practical and situated aspect of computer pro-

gramming in my operational definition, it is because important historical 

events have progressively set it aside. In this first section that draws on 

historical works on early electronic computing projects, we will see that 

once computer systems started to be presented as input-output instruments 

controlled by a central unit—following the successful dissemination of the 

so-called von Neumann architecture—the entangled sociotechnical rela-

tionships required to make these objects operate in meaningful ways had 

begun to be placed in the background. If electronic computing systems 

were, in practice, intricate and highly problematic sociotechnical processes, 

von Neumann’s modelization made them appear as functional devices 

transforming inputs into outputs. The noninclusion of practices—hence 

their invisibilization—in the accounts of electronic computers further led 

to serious issues that suggested the first academic studies of computer pro-

gramming in the 1950s.

3  Von Neumann’s Draft, Electronic Brains, and Cognition
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A Report and Its Consequences

One cornerstone of what will progressively be called “von Neumann architec-

ture” is the First Draft of a Report on the EDVAC that John von Neumann wrote 

in a hurry in 1945 to summarize the advancement of an audacious electronic 

computing system initiated during World War II at the Moore School of Elec-

trical Engineering at the University of Pennsylvania. As I believe this report 

has had an important influence on the setting aside of the practical instantia-

tions of computer systems, we first need to look at the history and dissemina-

tion of this document as well as the world it participated in enacting.

World War II: An Increasing Need for the Resolution  

of Differential Equations

An arbitrary point of departure could be President Franklin D. Roosevelt’s 

radio broadcast on December 29, 1940, that publicly presented the United 

States as the main military supplier to the Allied war effort, therefore imply-

ing a significant increase in US military production spending.1 Under the 

jurisdiction of the Army Ordnance Department (AOD), the design and indus-

trial production of long-distance weapons were obvious topics for this war-

oriented endeavor. Yet for every newly developed long-distance weapon, a 

complete and reliable firing table listing the appropriate elevations and azi-

muths for the reaching of any distant targets had to be calculated, printed, 

and distributed. Indeed, to have a chance to effectively reach targets with a 

minimum of rounds, every long-distance weapon had to be equipped with 

a booklet containing data for several thousand kinds of curved trajectories.2 

More battles, more weapons, and more distant shots: along with the mass 

production of weapons and the enrollment of soldiers capable of handling 

them, the US’s entry into another world war in 1942 further implied an 

increasing need for the resolution of differential equations.

These practical mathematical operations—which can take the form of 

long iterative equations that require only addition, subtraction, multiplica-

tion, and division—were mainly conducted in the premises of the Ballistic 

Research Laboratory (BRL) at Aberdeen, Maryland, and at the Moore School 

of Electrical Engineering in Philadelphia. Hundreds of “human comput-

ers” (Grier 2005), mainly women (Light 1999), along with mechanical desk 

calculators and two costly refined versions of Vannevar Buch’s differential 
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analyzer (Owens 1986)—an analogue machine that could compute math-

ematical equations3—worked intensely to print out ballistic missile firing 

tables. Assembling all of the assignable factors that affect the trajectories 

of a projectile shot from the barrel of a gun (gravity; the elevations of the 

gun; the shell’s weight, diameter, and shape; the densities and temperatures 

of the air; the wind velocities, etc.)4 and aligning them to define and solve 

messy differential equations5 was a tedious process that involved intense 

training and military chains of command (Polachek 1997). But even this 

unprecedented ballistic calculating endeavor could not satisfy the comput-

ing needs of this wartime. Too much time was required to produce a com-

plete table, and the backlog of work rapidly grew as the war intensified. As 

Campbell-Kelly et al. (2013, 68) put it:

The lack of an effective calculating technology was thus a major bottleneck to the 

effective deployment of the multitude of newly developed weapons.

In 1942, drawing on the differential analyzer and on the pioneering work of 

John Vincent Atanasoff and Clifford Berry on electronic computing (Akera 

2008, 82–102; Burks and Burks 1989) as well as on his own research on 

delay-line storage systems,6 John Mauchly—an assistant professor at the 

Moore School—submitted a memorandum to the AOD that presented the 

construction of an electronic computer as a potential resource for faster and 

more reliable computation of ballistic equations (Mauchly [1942] 1982).7 

The memorandum first went unnoticed. But one year later, thanks to the 

lobbying of Herman Goldstine—a mathematician and influential member 

of the BRL—a meeting regarding the potential funding of an eighteen-

thousand-vacuum-tube electronic computer was organized with the BRL’s 

director. And despite the skepticism of influent members of the National 

Defense Research Committee (NDRC),8 a $400,000 research contract was 

signed on April  9, 1943.9 At this point, the construction of a computing 

system that could potentially solve large iterative equations at electronic 

speed and therefore accelerate the printing out of the firing tables required 

for long-distance weapons could begin. This project, initially called “Project 

PX,” took the name of ENIAC for Electronic Numerical Integrator and Computer.

The need to quickly demonstrate technical feasibility forced Mauchly 

and John Presper Eckert—the chief engineer of the project—to make irre-

versible design decisions that soon appeared problematic (Campbell-Kelly 
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et al. 2013, 65–87). The biggest shortcoming was related to the new com-

puting capabilities of the system: If delay-line storage could potentially 

make the system add, subtract, multiply, and divide electric translations 

of numbers at electronic speed, such storage prevented the system from 

being instructed via punched cards or paper tape. This common way of 

both temporally storing data and describing the logico-arithmetic opera-

tions that would compute them was well adapted for electromechanical 

devices, such as the Harvard Mark I that proceeded at three operations per 

second.10 But an electronic machine such as the ENIAC that was supposed 

to perform five thousand operations per second could not possibly handle 

this kind of paper material. The solution that Eckert and Mauchly proposed 

was then to set up both data and instructions manually on the device by 

means of wires, mechanical switches, and dials. This choice led to two 

related impasses. First, it constrained the writable electronic storage of the 

device; more storage would have indeed required even bigger machinery, 

entangled wires, and unreliable vacuum tubes. Second, the work required 

to set up all the circuitry and controllers and start an iterative ballistic equa-

tion was extremely tedious; once the data and the instructions were labori-

ously defined and checked, the whole operating team needed to be briefed 

and synchronized to set up the messy circuitry (Campbell-Kelly et al. 2013, 

73). Moreover, the passage from diagrams provided by the top engineers 

to the actual setup of the system by lower-ranked employees was by no 

means a smooth process—the diagrams were tedious to produce, hard to 

read, and error-prone, and the number of switches, wires, and resistors was 

quite confusing.11

Two important events made an alternative appear. The first is Eckert’s 

work on mercury delay-line storage, which built upon his previous work on 

radar technology. By 1944, he became convinced that these items could be 

adapted to provide more compact, faster, and cheaper computing storage 

(Haigh, Priestley, and Rope 2016, 130–132). The second event is one of the 

most popular anecdotes of the history of computing: the visit of John von 

Neumann at the BRL in the summer of 1944. Contrary to Eckert, Mauchly, 

and even Goldstine, von Neumann was already an important scientific fig-

ure in 1944. Since the 1930s, he was at the forefront of mathematical logic, 

the branch of mathematics that focuses on formal systems and their abili-

ties to evaluate the consistencies of statements. He was well aware of the 

works on computability by Alonzo Church and Alan Turing, with whom 
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he collaborated at Princeton.12 As such, he was one of the few mathema-

ticians who had a formal understanding of computation. Moreover, by 

1944, he had already established the foundations of quantum mechanics 

as well as game theory. Compared with him and despite their breathtaking 

insights on electronic computing, Eckert and Mauchly were still provincial 

engineers. Von Neumann was part of another category: he was a scientific 

superstar of physics, logics, and mathematics, and he worked as a consul-

tant on many classified scientific projects, with the more notable one cer-

tainly being the Manhattan Project.

Von Neumann’s visit was part of a routine consulting trip to the BRL and 

therefore was not specifically related to the ENIAC project. In fact, as many 

members of the NDRC expressed defiance toward the ENIAC, von Neu-

mann was not even aware of its existence. But when Goldstine mentioned 

the ENIAC project, von Neumann quickly showed interest:

It is the summer of 1944. Herman Goldstine, standing on the platform of the rail-

road station at Aberdeen, recognizes John von Neumann. Goldstine approaches 

the great man and soon mentions the computer project that is underway in Phila-

delphia. Von Neumann, who is at this point deeply immersed in the Manhattan 

Project and is only too well aware of the urgent need of many wartime projects 

of rapid computations, makes a quick transition from polite chat to intense inter-

est. Goldstine soon brings his new friend to see the project. (Haigh, Priestley, and 

Rope 2016, 132)

By the summer of 1944, it was accepted among Manhattan Project’s scien-

tific managers that a uniform contraction of two plutonium hemispheres 

could make the material volume reach critical mass and create, in turn, a 

nuclear explosion. Yet if von Neumann and his colleagues knew that the 

mathematics of this implosion would involve huge systems of partial differ-

ential equations, they were still struggling to find a way of defining them. 

And for several months, von Neumann had been seriously considering elec-

tronic computing for this specific prospect (Aspray 1990, 28–34; Goldstine 

[1972] 1980, 170–182).

After his first visit to the ENIAC, von Neumann quickly realized that 

even though the ENIAC was by far the most promising computing system 

he had seen so far, its limited storage capacity could by no means help 

define and solve the very complex partial differential equations related to 

the Manhattan Project.13 Convinced that a new machine could overcome 

this impasse—notably by using Eckert’s insights about mercury delay-line 
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storage—von Neumann helped design a new proposal for the construction 

of a post-ENIAC system. He moreover attended a crucial BRL board meeting 

where the new project was evaluated. His presence definitely helped with 

attaining the final approval of the project and its new funding of $105,000 

by August 1944. The new hypothetical machine—whose design and con-

struction would fall under the management of Eckert and Mauchly—was 

initially called “Project PY” before being renamed EDVAC for Electronic Dis-

crete Variable Automatic Computer.

Different Layers of Involvement

The period between September 1944 and June 1945 is crucial for my adven-

turous story of the setting aside of computer programming practices. It 

was indeed during this short period of time that von Neumann proposed 

considering computer programs as input lists of instructions, hence sur-

reptitiously invisibilizing the practices required to shape these lists. As this 

formal conception of electronic computing systems was not unanimously 

shared among the participants of both ENIAC and EDVAC projects, it is 

important at this point to understand the different layers of involvements 

in these two projects that were intimately overlapping. One could sche-

matically divide them into three layers: the engineering staff, the operating 

team, and von Neumann himself.

The first layer of involvement included the engineering staff—headed 

by Mauchly, Eckert, Goldstine, and Arthur W. Burks—that was responsible 

for the logical, electronic, and electromechanical architectures and imple-

mentations of both the ENIAC and the EDVAC. The split of the ENIAC 

into different units, the functioning of its accumulators—crucial parts for 

making the system compute electric pulses—and the development and test-

ing of mercury delay-line storage for the future EDVAC were part of the 

prerogatives of the engineering staff. It is difficult to see now the blurriness 

of this endeavor that was swimming in the unprecedented. But besides the 

systems’ abilities to compute more or less complex differential equations, 

one crucial element the engineering staff had to conceive and make happen 

was a way to instruct these messy systems. In parallel to the enormous sci-

entific and engineering problems of the different parts of the systems, the 

shaping of readable documents that could describe the operations required 

to make these systems do something was a real challenge: How, in the end, 

could an equation be put into an incredibly messy electronic system? In 
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the case of the ENIAC, the engineering staff—in fact, mostly Burks (Haigh, 

Priestley, and Rope 2016, 35–83)—progressively designed a workflow that 

could be summarized as such: assuming ballistic data and assignable factors 

had been adequately gathered and translated into a differential equation—

which was already a problematic endeavor—the ENIAC’s engineering staff 

would first have to transform this equation into a logical diagram; then into 

an electronic diagram that took into account the different unit as blocks; 

and then into another, bigger, diagram that took into account the inner 

constituents of each block. The end result of this tedious process—the final 

“panel diagram” drawn on large sheets of paper (Haigh, Priestley, and Rope 

2016, 42)—was an incredible, yet necessary, mess.

This leads us to another layer that included the so-called operators—

mainly women computers—who tried to make sense, correct, and even-

tually implement these diagrams into workable arrangements of switches, 

wires, and dials. Contrary to what the top engineers had initially thought, 

translating large panel diagrams into a workable configuration of switches 

and wires was not a trivial task. Errors in both the diagrams and the con-

figurations of switches were frequent—without mentioning the fragility of 

the resistors—and this empirical “programming” process implied constant 

exchanges between high-level design in the office and low-level implemen-

tations in the hangar (Light 1999, 472; Haigh, Priestley, and Rope 2016, 

74–83). Both engineers and operators were engaged in a laborious process 

to have ENIAC and, to a lesser extent, EDVAC produce meaningful results, 

and these computing systems were considered heterogeneous processes that 

indistinctly mixed problematic technical components, interpersonal rela-

tionships, mathematical modeling, and transformative practices.

Next to these two layers of involvement was von Neumann who cer-

tainly constituted a layer on his own. First, contrary to Mauchly, Eckert, 

Burks, and even Goldstine, he was well aware of recent works in math-

ematical logic and, in that sense, was prone to formalizing models of 

computation. Second, von Neumann was very interested in mathematical 

neurology and was well aware of the analogy between logical calculus and 

the brain as proposed by McCulloch and Pitts in 1943 (more on this later). 

This further made him consider computing systems as electronic brains 

that could more or less intelligently transform inputs into outputs (Haigh, 

Priestley, and Rope 2016, 141–142; von Neumann 2012). Third, if he was 

truly involved in the early design of the EDVAC, his point of view was that 
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of a consultant, constantly on the move from one laboratory to another. 

He attended meetings—the famous “Meetings with von Neumann” (Stern 

1981, 74)—and read reports and letters from the top managers of the ENIAC 

and EDVAC but was not part of the mundane tedious practices at the Moore 

School (Stern 1981, 70–80; Haigh, Priestley, and Rope 2016, 132–140). He 

was thus parallel to, but not wholly a part of, the everyday practices in the 

hangars of the Moore School. Finally, being deemed one of the greatest sci-

entific figures of the time—which he certainly was—his visits were real trials 

that required preparation and cleaning efforts. If he visited the hangars of 

the Moore School several times, he mainly saw the results of messy setup 

processes, not the processes themselves. A lot was indeed at stake: at that 

time, the electronic computing projects of the Moore School were not con-

sidered serious endeavors among many important applied mathematicians 

at MIT, Harvard, or Bell Labs—notably Vannevar Buch, Howard Aiken, and 

George Stibitz (Stern 1981). Taking care of von Neumann’s support was 

crucial as he gave legitimacy to the EDVAC project and even to the whole 

school.

All of these elements certainly contributed to shaping von Neumann’s 

particular view on the EDVAC. In the spring of 1945, while the engineering 

and operating layers had to consider this post-ENIAC computing system 

as a set of problematic relations encompassing the definition of equations, 

the adequate design of fragile electromechanical units, and back-and-forth 

movements between hangars and offices, von Neumann could consider 

it as a more or less functional object whose inner relationships could be 

modeled.

Despite many feuds over the paternity of what has later been fallaciously 

called “the notion of stored program,”14 it is clear now for historians of tech-

nology that the intricate relationships among these three layers of involve-

ment in the EDVAC project collectively led to the design decision of storing 

both data and instructions as pulses in mercury delay lines (Campbell-Kelly 

et al. 2013, 72–87; Haigh, Priestley, and Rope 2016, 129–152). After several 

board meetings between September 1944 and March 1945, the top engi-

neers and von Neumann agreed that, if organized correctly, the new storage 

capabilities of mercury delay lines could be used to temporally conserve not 

only numerical data but also the description of in-built arithmetical and 

logical operations that will later compute them. This initial characteristic 

of the future EDVAC further suggested, to varying degrees, the possibility 
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of paper or magnetic-tape documents whose contents could be loaded, read, 

and processed at electronic speed by the device, without the intervention 

of a human being.

For the engineers and operators deeply involved in the ENIAC-EDVAC 

projects, the notion of lists of instructions that could automatically instruct 

the system was rather disconnected from their daily experiences of unread-

able panel diagrams, electronic circuitry, and messy setup processes of 

switches and wires. To them, the differentiation between the computing 

system and its instructions hardly made sense: in practice, an electronic 

computing system was part of a broader sociotechnical process encompass-

ing the definition of equations, the writing of diagrams, the adequate design 

of fragile electromechanical units, back-and-forth movements between 

hangars and offices, etc. To paraphrase Michel Callon (1999) when he talked 

about Air France, for these two layers of involvement, it was not an elec-

tronic calculator that could eventually compute an equation but a whole 

arrangement of engineers, operators, and artifacts in constant relationship.

The vision von Neumann had for both the ENIAC and EDVAC projects 

was very different: as he was constantly on the move, attending meetings 

and reading reports, he had a rather disembodied view of these systems. 

This process of disembodiment that often affects top managers was well 

described by Katherine Hayles (1999) when she compared the points of 

view of Warren McCulloch—the famous neurologist—and Miss Freed—his 

secretary—on the notion of “information”:

Thinking of her [Miss Freed], I am reminded of Dorothy Smith’s suggestion that 

men of a certain class are prone to decontextualization and reification because 

they are in a position to command the labors of others. “Take a letter, Miss Freed,” 

the man says. Miss Freed comes in. She gets a lovely smile. The man speaks, and 

she writes on her stenography pad (or perhaps on her stenography typewriter). 

The man leaves. He has a plane to catch, a meeting to attend. When he returns, 

the letter is on his desk, awaiting his signature. From his point of view, what has 

happened? He speaks, giving commands or dictating words, and things happen. 

A woman comes in, marks are inscribed onto paper, letters appear, conferences 

are arranged, books are published. Taken out of context, his words fly, by them-

selves, into books. The full burden of the labor that makes these things happen is 

for him only an abstraction, a resource diverted from other possible uses, because 

he is not the one performing the labor. (Hayles 1999, 82–83)

Hayles’s powerful proposition is extendable to the case that interests us here: 

contrary to Eckert, Mauchly, Burks, and the operating team, von Neumann 
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was not the one performing the labor. Whereas the engineering and operat-

ing teams were entangled in the headache of making the ENIAC and EDVAC 

do meaningful things, von Neumann was entangled in the different head-

ache of providing relevant insights—notably in terms of formalization—to 

military projects located all around the United States. To a certain extent, this 

position, alongside his interest in contemporary neurology and his excep-

tional logical and mathematical insights, certainly helped von Neumann 

write a document about the implications of storing both data and instruc-

tions as pulses in mercury delay lines. Provided as a summary of the discus-

sions among the EDVAC team between the summer of 1944 and the spring 

of 1945, he wrote the First Draft of a Report on the EDVAC ([1945] 1993) that, 

for the first time, modeled the logical architecture of a hypothetical machine 

that would store both the data and the instructions required to compute 

them. Unaware of, and not concerned with, its laborious instantiations 

within the Moore School, von Neumann presented the EDVAC as a system 

of interacting “organs” whose relationships could by themselves transform 

inputs into outputs. And despite the skepticism of Eckert and Mauchly about 

presenting their project with floating terms, such as “neurons,” “memory,” 

“inputs,” and “outputs”—and eventually their fierce resentment to see that 

their names were never mentioned in the document15—thirty-one copies of 

the report were printed and distributed among the US computing-related 

war projects in June 1945.

Proofs of Concept and the Circulation of the Input-Output Model

The many lawsuits and patent-related issues around the First Draft are not 

important for my story. What matters at this point is the surreptitious shift 

that occurred and persistently stayed within the computing community: 

Whereas computing systems were, in practice, sociotechnical processes that 

could ultimately—perhaps—produce meaningful results, the formalism of 

the First Draft surreptitiously presented them as brain-like objects that could 

automatically transform inputs into outputs. And if these high-level insights 

were surely important to sum up the confidential work that had been under-

taken at the Moore School during the war and share it with other laboratories, 

they also contributed to separating computing systems from the practices 

required to make them operate. The First Draft presented the architecture of 

a functioning computing machine and thus put aside the actions required 

to make this machine function. The translation operations from equations 
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to logical diagrams, the specific configurations of electric circuitry and logic 

gates, the corrections of the diagrams from inaccurate electronic circulation 

of pulses; all of these sociotechnical operations were taken for granted in 

the First Draft to formalize the EDVAC at the logical level. Layers of involve-

ment were relative layers of silence (Star and Strauss 1999); by expressing the 

point of view of the consultant who built on the results of intricate endeav-

ors, the “list of the orders” (the programs) and the “device” (the computer) 

started to be considered two different entities instead of one entangled 

process.

But were the instructions really absent from the computing system as 

presented in the First Draft? Yes and no. The story is more intricate than 

that. In fact, the First Draft defined for the first time a quite complete set of 

instructions that, according to the formal definition of the system, could 

make the hypothetical machine compute every problem expressible in its 

formalism (von Neumann [1943] 1993, 39–43). But similarly to Turing’s 

seminal paper on computable numbers (Turing 1937), von Neumann’s set 

of instructions was integrally part of his formal system: the system consti-

tuted the set of all sets of instructions it could potentially compute. The 

benefits of this formalization were huge as it allowed the existence of all the 

infinite combinations of instructions. Yet, the surreptitious drawback was 

to consider these combinations as nonproblematic realizations of potenti-

alities instead of costly actualizations of collective heterogeneous processes. 

While making a universal machine do something in particular was, and is, 

very different from formalizing such a universal machine, both practices 

were progressively considered equivalent.16

The diffusion of von Neumann’s architecture as presented in the First 

Draft was not immediate. At the end of the war, several computing systems 

coexisted in an environment of mutual ignorance—most projects were clas-

sified during the war—and persistent suspicion—the Nazi threat was soon 

replaced with the communist (or capitalist) threat. During the conferences 

and workshops of the Moore School Series that took place in summer 1946, 

the logical design of the EDVAC was, for example, very little discussed as 

it was still classified. Nonetheless, several copies of the First Draft progres-

sively started to circulate outside of the US defense services and laborato-

ries, notably in Britain, where a small postwar research community could 

build on massive, yet extremely secret, code-breaking computing projects 

(Abbate 2012, 34–35; Campbell-Kelly et al. 2013, 83–84).
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Contrary to Cold War–oriented American research projects, postwar Brit-

ish projects had no important funding as most of the UK government’s 

money was being invested in the reconstruction of the devastated infra-

structures. This forced British scientific managers to design rather small 

prototypes that could quickly show promising results. In June 1948, inspired 

by von Neumann’s architecture as presented in the First Draft, Max New-

man and Frederic Williams from the University of Manchester provided a 

first minimal proof of concept that the cathode-ray tube storage system 

could indeed be used to store instructions and data for computation at elec-

tronic speed in a desired, yet fastidious, way. One year later, Maurice Wil-

kes from the University of Cambridge—who also obtained a version of the 

First Draft and participated in the Moore School Series in 1946—successfully 

led the construction of an electronic digital computer with a mercury delay-

line storage that he called the EDSAC for Electronic Delay Storage Automatic 

Calculator. Largely due to the programming efforts of Wilkes’s PhD student 

David Wheeler (Richards 2005), the EDSAC could load data and instructions 

punched on a ribbon of paper and print the squares of the first one hundred 

positive integers. These two successful experiences participated in rendering 

electromechanical relays and differential analyzers obsolete in the emerg-

ing field of computer science research. But more importantly for the pre

sent story, these two successful experiments also participated in the diffusion 

of von Neumann’s functional definition of electronic computing systems as 

input-output devices controlled by a central organ. As it ended up working, 

the model, and its encapsulated metaphors, were considered accurate.

At the beginning of 1950s, when IBM started to redefine computers as 

data-processing systems for businesses and administrations, von Neumann’s 

definition of computing system further expanded. As cited in Haigh, Priest-

ley, and Rope (2016, 240), an IBM paper written by Walker Thomas asserts, 

for example, that “all stored-program digital computers have four basic ele

ments: the memory or storage element, the arithmetic element, the control 

element, and the terminal equipment or input-output element” (Thomas 

1953, 1245). More generally, the broader inclusion of computing systems 

within commercial arrangements (Callon 2017) participated in the dissemi-

nation of their functional definition. It seems indeed that, to create new 

markets, intricate and very costly computing systems had better be pre-

sented as devices that automatically transform inputs into outputs rather 

than artefacts requiring a whole infrastructure to operate adequately. The 
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noninclusion of the sociotechnical interactions and practices required to 

make computers compute seems, then, to have participated in their expan-

sions in commercial, scientific, and military spheres (Campbell-Kelly et al. 

2013, 97–117). But the putting aside of programming practices from the 

definition of computers further led to numerous issues related to the ad hoc 

labor required to make them function.

The Psychology of Programming (And Its Limits)

The problem with practice is that it is necessary to do things: essence is 

existence and existence is action (Deleuze 1995). And as soon as electronic 

computing systems started to be presented as input-output functional devices 

controlled by a central organ, the efforts required to make them function in 

desired ways quickly stood out: it was extremely tedious to make the devices 

do meaningful things. These intelligent electronic brains were, in practice, 

dull as dishwater. But rather than casting doubts on the input-output frame-

work of the First Draft and considering it formally brilliant but empirically 

inaccurate, the blame was soon casted on the individuals responsible for 

the design of computer’s inputs. In short, if one could not make electronic 

brains operate, it was because one did not manage to give them the inputs 

they deserved. What was soon called the “psychology of programming” 

tried, and tries, to understand why individuals interact so laboriously with 

electronic computers.

This emphasis on the individual first led to aptitude tests in the 1950s that 

aimed at selecting the appropriate candidates for programming jobs in a 

time of workforce scarcity. By the late 1970s, entangled dynamics that made 

Western software industry shift from scientific craft to gender-connoted 

engineering supported the launching of behavioral studies that typically 

consisted of programming tests whose relative results were attributed to 

controlled parameters. A decade later, the contested results of these behav-

ioral tests as well as theoretical debates within the discipline of psychology 

led to cognitive studies of programming. Cognitive scientists put aside the 

notion of parameters as proposed by behaviorists to focus on the mental 

models that programmers should develop to construct efficient programs. 

As we shall see, these research endeavors framed programming in ways that 

prevented them from inquiring into what programmers do, thus perpetuat-

ing the invisibilization of their day-to-day work.
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Personnel Selection and Aptitude Tests

By the end of the 1940s, simultaneous to the completion of the first elec-

tronic computing systems that the von Neumann architecture inspired, the 

problem of the actual handling of these systems arose: these automatons 

appeared to be highly heteronomous. This practical issue quickly arose in 

the universities hosting the first electronic computers. As Maurice Wilkes 

wrote in his memoirs about the EDSAC:

By June 1949 people had begun to realize that it was not so easy to get programs 

right as at one time appeared. I well remember when this realization first came on 

me with full force. The EDSAC was on the top floor of the building and the tape-

punching and editing equipment one floor below on a gallery that ran round the 

room in which the differential analyzer was installed. I was trying to get work-

ing my first non-trivial program, which was one for the numerical integration 

of Airy’s differential equation. It was on one of my journeys between the EDSAC 

room and the punching equipment that “hesitating at the angles of stairs” the 

realization came over me with full force that a good part of the remainder of my 

life was going to be spent in finding errors in my own programs. (Wilkes 1985, 145)

Although the EDSAC theoretically included all possible programs, the actu-

alization of these programs within specific situations was the main practical 

issue. And this became obvious to Wilke once he was directly involved in 

trying to make the functional device function.

In the industry, the heteronomous aspect of electronic computing sys-

tems also quickly stood up. A first example is the controversies surrounding 

the UNIVAC—an abbreviation for Universal Automatic Computer—an elec-

tronic computing system that Eckert and Mauchly developed after they left 

the Moore School in 1946 to launch their own company (which Remington 

Rand soon acquired). The potential of the UNIVAC gained a general audi-

ence when a whole programming team—which John Mauchly headed—

made it run a statistical program that accurately predicted the results of 

1952 American presidential election. This marketing move, whose costs 

were carefully unmentioned, further expanded the image of a functional 

electronic brain receiving inputs and producing clever outputs. But when 

General Electric acquired a UNIVAC computer in 1954, it quickly realized 

the gap between the presentation of the system and its actual enactment: it 

was simply impossible to make this functional system function. And it was 

only after two years and the hiring of a whole new programming team that 

a basic set of accounting applications could start producing some meaningful 
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results (Campbell-Kelly 2003, 25–30). IBM faced similar problems with its 

computing system 701. The promises of smooth automation quickly faced 

the down-to-earth reality of practice: the first users of IBM 701—notably 

Boeing, General Motors, and the National Security Agency (Smith 1983)—

had to hire whole teams specifically dedicated to making the system do 

useful things.17

US defense agencies were confronted with the same issue. After the 

explosion of the first Soviet atomic bomb in August 1949, the United States 

appeared dangerously vulnerable; the existing air defense system and its 

slow manual gathering and processing of radar data could by no means 

detect nuclear bombers early enough to organize counter operations of 

interceptor aircrafts. This threat—and many other entangled elements 

that are far beyond the scope of this chapter—led to the development of a 

prototype computer-based system capable of processing radar data in real 

time.18 The promising results of the prototype further suggested in 1954 the 

realization of a nationwide defense system of high-speed data-processing 

systems—called Semi-Automatic Ground Environment (SAGE).19 The US Air 

Force contacted many contractors to industrially develop this system of sys-

tems, with IBM being awarded the development of the 250 tons AN/FSQ-7 

electronic computers.20 But none of these renowned institutions—among 

them IBM, General Electric, Bell Labs, and MIT—accepted the develop-

ment of the lists of instructions that would make such powerful computers 

usable. Almost by default, the $20 million contract was awarded to the 

RAND Corporation, a nonprofit (but nonphilanthropic) governmental 

organization created in 1948 that operated as a research division for the US 

Air Force. RAND had already been involved in the previous development of 

the SAGE project, but its team of twenty-five programmers was obviously 

far too small for the new programming task. So by 1956, RAND started an 

important recruiting campaign all around the country to find individuals 

who could successfully pursue the task of programming.

In this early Cold War period, the challenge for RAND was then to recruit 

a lot of programming staff in a short period of time. And to equip this 

massive personnel selection imperative, psychologists from RAND’s Sys-

tem Development Division started to develop tests whose quantitative results 

could positively correlate with future programming aptitudes. Largely 

inspired by the Thurstone Primary Mental Abilities Test,21 these aptitude 

tests—although criticized within RAND itself (Rowan 1956)—soon became 
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the main basis for the selection of new programmers as they allowed cru-

cial time savings while being based on the statistically driven discipline of 

psychometrics. The intensive use of aptitude tests helped RAND to rapidly 

increase its pool of programmers, so much so that its System Development 

Division was soon incorporated into a separate organization, the System 

Development Corporation (SDC). As early as 1959, the SDC had “more than 

700 programmers working on SAGE, and more than 1,400 people support-

ing them.  … This was reckoned to be half of the entire programming man-

power of the United States” (Campbell-Kelly 2003, 39). But besides enabling 

RAND/SDC to engage more confidently in the SAGE project, aptitude tests 

also had an important effect on the very conception of programming work. 

Although the main goal of these tests was to support a quick and nation-

wide personnel selection, they also contributed to framing programming as 

a set of abstract intellectual operations that can be measured using proxies.

The regime of aptitude testing as initiated by the SDC quickly spread 

throughout the industry, notably prompting IBM to develop its own ques-

tionnaire in 1959 to support its similarly important recruitment needs. Well 

in line with the computer-brain parallel inherited from the seminal period 

of electronic computing, the IBM Programming Aptitude Test (PAT) typi-

cally asked job candidates to figure out analogies between forms, continue 

lists of numbers, and solve arithmetic problems (see figure 3.1). Though 

the correlation between candidates’ scores to aptitude tests and their future 

work performances was a matter of debate, aptitude tests quickly became 

mainstream recruiting tools for companies and administrations that pur-

chased electronic computers during the 1960s. As Ensmenger (2012, 64) 

noted: “By 1962, an estimated 80 percent of all businesses used some form 

of aptitude test when hiring programmers, and half of these used IBM PAT.” 

The massive distribution and use of these tests among the emerging com-

puting industry further constricted the framing of programming practices 

as measurable innate intellectual abilities.

Supposed Crisis and Behavioral Studies

By framing programming as an activity requiring personal intuitive quali-

ties, aptitude tests have somewhat worked against gendered discrimina-

tions related to unequal access to university degrees. As Abbate (2012, 52) 

noted: “A woman who had never had the chance to earn a college degree—

or who had been steered into a nontechnical major—could walk into a job 
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PART III (Cont’d)

13. During his first three years, a salesman sold 90%, 105%, and 120%, respectively,
of his yearly sales quota which remained the same each year. If his sales totaled 
$252,000 for the three years, how much were his sales below quota during his first 
year?

(a) $800 (b) $2,400 (c) $8,000
(d) $12,000 (e) $16,000

14. In a large office, 2/3 of the staff can neither type nor take shorthand. However, 1/4
of the staff can type and 1/6 can take shorthand. What proportion of people in the 
office can do both?

(a) 1/12 (b) 5/36 (c) 1/4
(d) 5/12 (e) 7/12

15. A company invests $80,000 of its employee pension fund in 4% and 5% bonds and 
receives $3,360 in interest for the first year. What amount did the company have 
invested in 5% bonds?

(a) $12,800 (b) $16,000 (c) $32,000
(d) $64,000 (e) $67,200

16. A company made a net profit of 15% of sales. Total operating expense were 
$488,000. What was the total amount of sales?

(a) $361,250 (b) $440,000 (c) $450,000
(d) $488,750 (e) $500,000

17. An IBM Sorting Machine processes 1,000 cards per minute. However, 20% is 
deducted to allow for card handling time by the operator. A given job requires 
5,000 cards to be put through the machine 5 times and 9,000 cards to be put 
through 7 times. How long will it take?

(a) 1 hr. 10 min. (b) 1 hr. 28 min. (c) 1 hr. 45 min.
(d) 1 hr. 50 min. (e) 2 hrs. 10 min.

Figure 3.1
Sample of the 1959 IBM Programmer Aptitude Test. In this part of the test, the par-

ticipant is asked to answer problems in arithmetic reasoning. Source: Reproduced by 

the author from a scanned 1959 IBM Programmer Aptitude Test by J. L. Hughes and 

W. J. McNamara. Courtesy of IBM.
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interview, take a test, and instantly acquire credibility as a future program-

mer.” From its inception, computer programming, unlike the vast majority 

of skilled technical professions in the United States, has involved women 

workers, some of whom had already taken part to computing projects dur-

ing the war.

However, like most Western professional environments in the late 1950s, 

the nascent computing industry was fueled by pervasive stereotypes, often 

preventing women programmers from occupying upper managerial posi-

tions and encouraging them to do relational customer care work. These 

gender dynamics should not be overlooked as they help to understand 

the rapid, and often underappreciated, development of ingenious software 

equipment. Due to their unique position within the computer-related profes-

sional worlds—both expert practitioners and, often, representatives toward 

clients—women, given their rather small percentage within the industry, 

actively contributed to innovations aimed at making programming eas-

ier for experts and novices alike. The most notorious example is certainly 

Grace Murray Hopper, head of programming for UNIVAC, who developed 

the first compiler—a program that translates other programs into machine 

code22—in 1951 before designing the business programming language B-0 

(renamed FLOW-MATIC) in 1955. But many other women actively took 

part to software innovations throughout the 1950s and 1960s, though often 

in the shadow of more visible male managers. Among these important fig-

ures are Adele Mildred Koss and Nora Moser who developed widely used 

code for data editing in the mid-1950s; Lois Haibt who was responsible for 

flow analysis of the FORTRAN high-level programming language; and Mary 

Hawes, Jean Sammet, and Gertrude Tierney who were at the forefront of 

the common business-oriented language (COBOL) project in the late 1950s 

(Abbate 2012, 79–81).

From the mid-1960s onward, refinements over compilers and high-level 

programming languages, which had often come from women, were added 

to the impressive tenfold increase in computing power (Mody 2017, 47–77). 

This combination of new promising software and hardware infrastructures 

prompted large iconic computer manufacturers to start building increas-

ingly complex programs, such as operating systems and massive business 

applications. The resounding failures of some of these highly visible proj

ects, like the IBM project System 360,23 soon gave rise to a sense of uncer-

tainty among commentators at the time, some of whom used the evocative 
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expression of “software crisis” (Naur and Randell 1969, 70–73). Historians 

of computing have expressed doubts about the reality of this software crisis 

as precise inquiries have shown that, apart from some highly visible and 

nonstandard projects, software production in the late 1960s was generally 

on time and on budget (Campbell-Kelly 2003, 94). But the crisis rhetoric, 

which also fed on an exaggerated but popular discourse on software produc-

tion costs,24 nonetheless had tangible effects on the industry to the point of 

changing its overall direction and identity.

When compared with the related discipline of microelectronics, pro-

gramming has long suffered from a lack of credibility and prestige. Despite 

significant advances throughout the 1950s and the 1960s, actors taking 

part to software production were often accorded a lower status within West-

ern computing research and industry. This was true for women program-

mers since they were working in a technical environment. But it was also 

true for men programmers since they were working in a field that included 

women. Under this lens, the crisis rhetoric that took hold at the end of the 

1960s—feeding on iconic failures that were not representative of the state of 

the industry—provided an opportunity to reinvent programming as some-

thing more valuable according to the criteria of the time (Ensmenger 2010, 

195–222). This may be one of the reasons why the positively connoted term 

“engineering” started to spread and operate as a line of sight, notably via 

the efforts of the 1968 North Atlantic Treaty Organization (NATO) confer-

ences entitled “Software Engineering” and the setting up of professional 

organizations and academic journals such as the Institute of Electrical and 

Electronics Engineers’ IEEE Transactions on Software Engineering (1975) and 

the Association for Computing Machinery’s ACM Software Engineering Notes 

(1976). Though contested by eminent figures who considered that software 

production was already rigorous and systematic, this complex process of 

disciplinary relabeling was supported by many programmers—women and 

men—who saw the title of engineer as an opportunity to improve their work 

conditions. However, as Abbate (2012, 104) pointed out: “An unintended 

consequence of this move may have been to make programming and com-

puter science less inviting to women, helping to explain the historical puzzle 

of why women took a leading role in the first wave of software improve-

ments but become much less visible in the software engineering era.”

This stated desire to make software production take the path of 

engineering—considered the solution to a supposed crisis that itself built on 
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a gendered undervaluation of programming work—has rubbed off on the aca-

demic analysis of programming. Parallel to this disciplinary reorientation, 

a line of positivist research claiming behaviorist tradition began to take 

an interest in programming work in the early 1970s. For these research-

ers, the analytical focus should shift: instead of defining the inherent skills 

required for programming and design aptitude tests, scholars should rather 

try to extract the parameters that induce the best programming performances 

and propose ways to improve software production. The introduction and 

dissemination of high-level programming languages as well as the multi-

plication of academic curricula in computer science highly participated in 

establishing this new line of inquiry. With programming languages such as 

FORTRAN or COBOL that did not depend on the specificities and brands of 

computers, behavioral psychologists along with computer scientists became 

able to design programming tests in controlled environments. Moreover, 

the multiplication of academic curricula in computer science provided rel-

atively diverse populations (e.g., undergrads, graduates, faculty members) 

that could pass these programming tests. These two elements made possi

ble the design of experiments that ranked different sets of parameters (age, 

experience, design aids) according to the results they assumedly produced 

(see figure 3.2).

This framework led to numerous tests on debugging performances (e.g., 

Bloom 1980; Denelesky and McKee 1974; Sackman, Erikson, and Grant 

1968; Weinberg 1971, 122–189; Wolfe 1971), design aid performances (e.g., 

Blaiwes 1974; Brooke and Duncan, 1980a, 1980b; Kammann 1975; Mayer 

1976; Shneiderman et al. 1977; Weinberg 1971, 205–281; Wright and Reid 

1973), and logical statement performances25 (e.g., Dunsmore and Gannon 

1979; Gannon 1976; Green 1977; Lucas and Kaplan 1976; Sime, Green, 

and Guest 1973; Sime, Arblaster, and Green 1977; Sime, Green, and Guest 

1977; Sheppard et al. 1979; Weissman 1974). But despite their systematic 

aspect, these studies suffered from the obviousness of their results, for as 

explained by Curtis (1988), without formally being engaged in behavioral 

experiments, software contractors were already aware that, for example, 

experienced programmers produced better results than inexperienced ones 

did, or that design aids such as flowcharts or documentation were help-

ful tools for the practice of programming. These general and redundant 

facts did not help programmers to better design lists of instructions. By 

the 1980s, the increasingly powerful computing systems remained terribly 
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difficult to operate, be they instructed by software engineers working in 

more and more malely connoted environments.

The Cognitive Turn

By the end of the 1970s, the behavioral standpoint began to be criticized 

from inside the psychological field. To more and more cognitive psychologists, 

sometimes working in artificial intelligence departments, it seemed that the 

obviousness of behavioral studies’ results was function of a methodologi-

cal flaw, with many of the ranked sets of parameters gathering important 

individual variations of results. According to several cognitive researchers, 

the unit of analysis of behavioral studies was erroneous; since many results’ 

disparities existed within the same sets of parameters, the ranking of these 

sets was simply senseless (Brooks 1977, 1980; Curtis 1981; Curtis et al. 1989; 

Moher and Schneider 1981). The solution that these cognitivists proposed 

to account for what they called “individual differences” was then to dive 
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Figure 3.2
Schematic of behavioral studies of computer programming. Let us assume a program-

ming test T, the test’s best answers A, and five sets of parameters SP1,…,5. SP1 could, 

for example, gather the parameters “unexperimented, male, with flowcharts”; SP2 

could, for example, gather the parameters “experienced, female, without flowcharts,” 

and so on. Once all SPs have passed T, the results Rs of each SP allow the ranking of 

all SPs from best to worst. In this example, R3 (the results of SP3) made SP3 be considered 

the best set of parameters. Inversely, R4 (the results of SP4) made SP4 be considered the 

worst set of parameters.
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inside the individuals’ head to better understand the cognitive processes and 

mental models underlying the formation of computer programs.

The strong relationships between the notions of “program” and “cog-

nition” also participated in making the study of computer programming 

attractive to cognitive scientists. As Ormerod (1990, 63–64) put it:

The fields of cognition and programming are related in three main ways. First, cog-

nitive psychology is based on a “computational metaphor,” in which the human 

mind is seen as a kind of information processor similar to a computer. Secondly, 

cognitive psychology offers methods for examining the processes underlying per

formance in computing tasks. Thirdly, programming is a well-defined task, and 

there are an increasing number of programmers, which makes it an ideal task in 

which to study cognitive process in a real-world domain.

These three elements—the assumed-fundamental similarity between cog-

nition and computer programs, the growing population of programmers, 

and the available methods that could be used to study this population—

greatly contributed to making cognitive scientists consider computer pro-

gramming as a fruitful topic of inquiry. Moreover, investing in a topic that 

behaviorists failed to understand was also seen as an opportunity to dem-

onstrate the superiority of cognitivist approaches. To a certain extent, the 

aim was also to show that behaviors were a function of mental processes:

[Behaviorists] attempt to establish the validity of various parameters for describ-

ing programming behavior, rather than attempting to specify underlining pro

cesses which determine these parameters. (Brooks 1977, 740)

The ambition was then to describe the mental processes that lead to good 

programming performances and eventually use these mental processes to 

train or select better programmers. The methodology of cognitive studies 

was, most of the time, not radically different from that of behavioral stud-

ies on programming, though. Specific programming tests were proposed to 

different individuals, often computer science students or faculty members. 

The responses, comments (oral or written), and metadata (number of key 

strokes, time spent on the problem, etc.) of the individuals were then ana-

lyzed according to the rights answers of the test as well as based on general 

cognitive models of human understanding that the computational meta

phor of the mind has inspired (especially the models of Newell and Simon 

[1972] and, later, Anderson [1983]). From this confrontation among results, 

comments, and general models of cognition, different mental models specific 
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to the task of computer programming were inferred, classified, and ranked 

according to their performances (see figure 3.3).

This research pattern on computer programming led to numerous stud-

ies proposing mental models for solving abstract problems (e.g., Adelson 

1981; Brooks 1977; Carroll, Thomas, and Malhotra 1980; Jeffries et al. 1981; 

Pennington 1987; Shneiderman and Mayer 1979) and developing program-

ming competencies (e.g., Barfield 1986; Coombs, Gibson, and Alty 1982; 

McKeithen et al. 1981; Soloway 1986; Vessey 1989; Wiedenbeck 1985). Due, 

in part, to their mitigated results—as admitted by Draper (1992), the numer-

ous mental models proposed by cognitivists did not significantly contribute 

to better programming performances—cognitive studies have later rein-

tegrated behaviorist considerations (e.g., controlled sets of parameters) to 

acquire the hybrid and management-centered form they have today (Cap-

retz 2014; Ahmed, Capretz, and Campbell 2012; Ahmed et al. 2012; Cruz, da 

Silva, and Capretz 2015).

Limits

From the 1950s up to today, computer scientists, engineers, and psycholo-

gists have deployed important efforts in the study of computer program-

ming. From aptitude tests to cognitive studies, these scholars have spent 
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Figure 3.3
Schematic of cognitive studies of computer programming. Let us assume a program-

ming test T, the test’s best answers A, five individuals I1,….,5, and a general model of 

cognition GM. Once all Is have passed T, the corresponding results Rs and metadata 

MD (for example, comments from I on T) are gathered together to form five R&MDs. 

All R&MDs are then evaluated and compared according to A and GM. At the end of 

this confrontation, specific mental models (SMMs) are proposed and ranked from best 

to worst according to their assumed ability to produce the best programming results.
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a fair amount of time and energy trying to understand what is going on 

when someone is programming. They certainly did their best, as we all do. 

Yet I think one can nonetheless express some critiques of, or at least reser-

vations about, some of their methods and conceptual habits regarding the 

study of programming activity.

Aptitude tests certainly constituted useful recruiting tools in the confus-

ing days of early electronic computing. In this sense, they surely helped 

counterbalance the unkeepable promises of electronic brains, themselves 

deriving—I suggest—from the dissemination of von Neumann’s functional 

depiction of electronic computers and its setting aside of programming 

practices. Moreover, the weight of aptitude tests’ results has also constituted 

resources for women wishing to pursue careers in programming, and some 

of these women have devised crucial software innovations. Yet as central as 

they might have been for the development of computing, aptitude tests suf-

fer from a flaw that prevents them from properly analyzing the actions tak-

ing part in computer programming: they test candidates on what electronic 

computers should supposedly do (e.g., sorting numbers, solving equations) 

but not on the skills required to make computers do these things. They mix 

up premises and consequences: if the results of computer programming can 

potentially be evaluated in terms of computing and sorting capabilities, the 

way in which these results are achieved may require other units of analysis.

Behavioral studies suffer from a similar flaw that keeps them away from 

computer programming actions. By analyzing the relationships between 

sets of parameters and programming performances, behaviorist studies put 

the practices of programming into a black box. In these studies, the prac-

tices of programmers do not matter: only the practices’ conditions (reduced 

to contextual parameters) and consequences (reduced to quantities of errors) 

are considered. One may object that this nonconsideration of practices is 

precisely what defines behaviorism as a scientific paradigm, its goal being 

to predict consequences (behaviors) from initial conditions (Watson 1930), 

an aim that well echoed the engineerization of software production in the 

1970s. It is true that this way of looking at things can be very powerful, espe-

cially for the study of complex processes that include many entities, such as 

traffic flows (Daganzo 1995, 2002), migrations (Jennions and Møller 2003), 

or cells’ behaviors (Collins et al. 2005). But inscribing numbered lists of sym-

bols is a process that does not need any drastic reduction: a programming 

situation involves only one, two, perhaps three individuals whose actions 
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can be accounted for without any insurmountable difficulties. For the study 

of such a process that engages few entities whose actions are slow enough 

to be accounted for, no need a priori exists to ignore what is happening in 

situation.

For cognitive studies, the story is more intricate. They are certainly right 

to criticize behavioral studies for putting into black boxes what precisely 

needs to be accounted for. Yet the solution cognitivists propose to better 

understand computer programming leads to an impasse we now need to 

consider.

As Ormerod (1990, 63) put it, “cognitive psychology is based on a ‘com-

putational metaphor’ in which the human mind is seen as a kind of infor-

mation processor similar to a computer.” From this theoretical standpoint, 

cognition refers to the reasoning and planning models the mind uses to 

transform emotional and perceptual input information into outputs that 

take the form of thoughts or bodily movements. Similarly to a computer—

or rather, similarly to one specific and problematic image of computers—the 

human mind “runs” mental models on inputs to produce outputs. The sys-

tematic study of the complex mental models that the mind uses to trans-

form inputs into outputs is the very purpose of cognitive studies. Scientific 

methods of investigation, such as the one presented in figure 3.3, can be 

used for this specific prospect.

When cognitive science deals with topics such as literature (Zunshine 

2015), religion (Barrett 2007), or even chimpanzees’ preferences for cooked 

foods (Warneken and Rosati 2015), its foundations usually hold on: com-

plex mental models describing how the mind processes input information 

in terms of logical and arithmetic statements to produce physical or mental 

behaviors can be proposed and compared without obvious contradictions. 

But as soon as cognitive science deals with computer programming, a short 

circuit appears that challenges the whole edifice: the cognitive explanation 

of the constitution of computer programs is tautological as the very notion 

of cognition already requires constituted computer programs.

To better understand this tricky problem, let us consider once again the 

computational metaphor of the mind. According to this metaphor, the 

mind “runs” models—or programs—on inputs to produce outputs. In that 

sense, the mind looks like a computer as described by von Neumann in 

the First Draft: input data are stored in memory where lists of logical and 

arithmetic instructions transform them into output. But as we saw in the 
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previous sections, von Neumann’s presentation of computers was functional 

in the sense that it did not take into consideration the elements required 

to make a computer function. In this image of the computer that reflects 

von Neumann’s very specific position and status, the elements required 

to assemble the actual transformative lists of instructions—or programs—

that command the functioning of an electronic computer’s circuitry have 

already been gathered.

From here, an important flaw of cognitive studies on computer program-

ming starts to appear: as the studies rely on an image of the computer that 

already includes constituted computer programs, these cognitive studies are 

not in a position to inquire into what constitutes computer programs. In 

fact, the cognitive studies are in a situation where they can mainly propose 

circular explanations of programming: if there are (computer) programs, 

it is because there are (mental) programs. Programs explain programs: a 

perfect tautology.

As long as cognitive science stays away from the study of computer pro-

gramming, its foundations hold on: mental programs can serve as explica-

tive tools for observed behaviors. But as soon as cognitive science considers 

computer programming, its limits appear: cognition and programs are of 

the same kind. Thunder in the night! Cognition, as inspired by the compu-

tational metaphor of the mind, works as a stumbling stone to the analysis 

of computer programming practices as its fundamental units of analysis 

are assembled programs. In such a constricted epistemic culture (Knorr-

Cetina 1999), the in situ analysis of courses of action cannot but be omit-

ted, despite their active participation in the constitution of the collective 

computerized world. This is an unfortunate situation that even the bravest 

propositions in human-computer interaction (HCI) have not been able to 

modify substantially (e.g., Flor and Hutchins 1991; Hollan, Hutchins, and 

Kirsh 2000). Is there a way to conceptually dis-constrict the empirical study 

of computer programming?

Putting Cognition Back to Its Place

Most academic attempts to better understand computer programming seem 

to have annoying flaws: aptitude tests mix up premises and consequences, 

behavioral studies put actions into black boxes, and cognitive studies are stuck 

in tautological explanations. If we want to consider computer programming 
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as accountable practices, it seems that we need to distance ourselves from 

these brave but problematic endeavors.

Yet, provided that our critics are relevant, we are at this point still unable 

to propose any alternative. Do the actions of programmers not have a cogni-

tive aspect? Do programmers not use their minds to computationally solve 

complex problems? The confusion between cognition and computer pro-

grams may well derive from a misleading history of computers—as I tried 

to suggest—its capacity to establish itself as a generalized habit commands 

respect. How can we not present empirical studies of computer programming 

practices as silly reductions? How can we justify the desire to account for, 

and thus make visible, the courses of action of computer programming, these 

practices that are obligatory passage points of any computerization project?

Fortunately, contemporary work in philosophy has managed to fill in the 

gap that has separated cognition from practices, intelligent minds from dull 

actions. It is thanks to these inspiring studies that we will become able to 

consider programming as a practice without totally turning our back on the 

notion of cognition. To do so, I will first need to quickly reconsider the idea 

that computers were designed in the image of the human brain and mind. 

As we already saw—though partially—this idea is relevant only in retrospect: 

what has concretely happened is far more intricate. I will then reconsider 

the philosophical frame that encloses cognition as a computational process. 

Finally, following contemporary works in the philosophy of perception, I will 

examine a definition of cognition that preserves important aspects of how 

we make sense of the things that surround us while reconnecting it to prac-

tices and actions. By positing the centrality of agency in cognitive processes, 

this enactive conception of cognition will further help us empirically consider 

what is happening during computer programming episodes.

A Reduction Process

The computational metaphor of the mind forces cognitivists to use pro-

grams to explain the formation of programs. The results of programming 

processes—programs—are thus used to explain programming processes. It 

is not easy to find another example of such an explicative error: it is like 

explaining rain with water, chicken poultry with the chicken dance … But 

how did things end up this way? How did programs end up constituting the 

fundamental base of cognition, thus participating in the invisibilization of 

computer programming practices?
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The main argument that justifies the computational metaphor of the 

mind is that “computers were designed in the image of the human” (Simon 

and Kaplan 1989, quoted in Hutchins 1995, 356). According to this view 

that spread in the 1960s in reaction to the behavioral paradigm (Fodor 

1975, 1987; Putnam [1961] 1980), how the human brain works inspired 

the design of computers, and this can, in turn, provide a clearer view on 

how we think. Turing is generally considered the father of this argument, 

with the Universal Machine he imagined in his 1937 paper “On Comput-

able Numbers” being able to simulate any mechanism describable in its 

formalism. According to this line of thought, it was Turing’s self-conscious 

introspection that allowed him to define a device capable of any compu-

tation as he was looking “at what a mathematician does in the course of 

solving mathematical problems and distilling this process to its essentials” 

(Pylyshyn 1989, 54). Turing’s demonstration would then lead to the first 

electronic computers, such as the ENIAC and the EDVAC, whose depiction 

as giant brains appears legitimate as how we think inspired these computers 

in the first place.

In line with the recent work of Simon Penny (2017), I assume that this 

conception of the origins of computers is incorrect. As soon as one consid-

ers simultaneously the process by which Turing’s thought experiment was 

reduced to an image of the brain and the process by which the EDVAC was 

reduced to an input/output device controlled by a central organ, one real-

izes that the relationship between computers and the human brain points 

to the other direction: the human brain was designed in a very specific 

image of the computer that already included all possible programs.

Let us start with Turing as he is often considered the father of the com-

putational metaphor of the mind. It is true that Turing compared “a man 

in the process of computing a real number” with a “machine which is only 

capable of a finite number of conditions” (Turing 1937, 231). Yet his image 

of human computation was not limited to what is happening inside the 

head: it also included hands, eyes, paper, notes, and sets of rules defined 

by others in different times and locations. As Hutchins put it: “The math-

ematician or logician was [for Turing] materially interacting with a material 

world” (Hutchins 1995, 361). By modeling the properties of this socio-

material arrangement into an abstract machine, Turing could distinguish 

between computable and noncomputable numbers, hence showing that 

Hilbert’s Entscheidungsproblem was not solvable. His results had an immense 
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impact on the mathematics of his time as they suggested a class of num-

bers calculable by finite means. But the theoretical machine he invented to 

define this class of numbers was by no means designed only in the image of 

the human brain; it was a theoretical device that expressed the sociomate-

rial process enabling the computation of real numbers.

What participated in reducing Turing’s theoretical device to an expres-

sion of a mental process was the work of McCulloch and Pitts on neurons. 

In their 1943 paper entitled “A logical Calculus of the Ideas Immanent in 

Nervous Activity,” McCulloch and Pitts built upon Carnap’s (1937) prop-

ositional logic and a simplified conception of neurons as all-or-none fir-

ing entities to propose a formal model of mind and brain. In their paper, 

neurons are considered units that process input signals sent from sensory 

organs or from other neurons. In turn, the outputs of this neural processing 

feed other neurons or are sent back to sensory organs. The novelty of 

McCulloch and Pitts’s approach is that, thanks to their simplified concep-

tion of neurons, the input signals that are processed by neurons can be re-

presented as propositions or, as Gödel (1931) previously demonstrated, as 

numbers.26 From that point, their model could consider configurations of 

neural networks as logical operators processing input signals from sensory 

organs and outputting different signals back to sensory organs. This way to 

consider the brain as a huge network of neural networks able to express the 

laws of propositional calculus on binary signals allowed McCulloch and 

Pitts to hypothetically consider the brain as a Turing machine capable of 

computing numerical propositions (McCulloch and Pitts [1943] 1990, 113). 

Even though they did not mathematically prove their claim and recognized 

that their model was computationally less powerful than Turing’s model, 

they nonetheless infused the conception of mind as the result of the brain’s 

computational processes (Piccinini 2004).

At first, McCulloch and Pitts’s paper remained unnoticed (Lettvin 

1989, 17). It was only when von Neumann used some of their proposi-

tions in his 1945 First Draft (von Neumann [1945] 1993, 5–11) that the 

equivalence between computers and the human mind started to take off. 

As we saw earlier, von Neumann had a very specific view on the EDVAC: 

his position as a famous consultant who mainly sees the clean results of 

laborious material processes allowed him to reduce the EDVAC as an input-

output device. Once separated from its instantiation within the hangars of 

the Moore School of Electric Engineering, the EDVAC, and especially the 
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ENIAC, effectively looked like a brain as conceived by McCulloch and Pitts. 

From that point, the reduction process could go on: von Neumann could 

use McCulloch and Pitts’ reductions of neurons and of the Turing machine 

to present his own reductive view on the EDVAC. However, it is important 

to remember that von Neumann’s goal was by no means to present the 

EDVAC in a realistic way: the main goal of the First Draft was to formalize 

a model for an electronic computing system that could inspire other labo-

ratories without revealing too many classified elements about the EDVAC 

project. All of these intricate reasons (von Neumann’s position, wartime, 

von Neumann’s interest in mathematical biology) made the EDVAC appear 

in the First Draft as an input-output device controlled by a central organ 

whose configuration of networks of neurons could express the laws of prop-

ositional calculus.

As we saw earlier, after World War II, the First Draft and the modeliza-

tion of electronic computers it encapsulates began to circulate in academic 

spheres. In parallel, this conception of computers as giant electronic brains 

fitted well with their broader inclusion in commercial arrangements: these 

very costly systems had better be presented as functional brains automati-

cally transforming inputs into outputs rather than intricate artifacts requir-

ing great care, maintenance, and an entire dedicated infrastructure. Hence 

there were issues related to their operationalization as the buyers of the 

first electronic computers—the Air Force, Boeing, General Motors (Smith 

1983)—had to select, hire, and train and eventually fire, reselect, rehire, 

and retrain whole operating teams. But despite these initial failures, the 

conception of computers as electronic brains held on, well supported, to 

be fair, by Turing’s (1950) paper “Computing Machinery and Intelligence,” 

the 1953 inaugural conferences on artificial intelligence at Dartmouth Col-

lege (Crevier 1993), Ashby’s book on the neural origin of behavior (Ashby 

1952), and von Neumann’s posthumous book The Computer and the Brain 

([1958] 2012). Instead of crumbling, the conception of computers as elec-

tronic brains started to concretize to the point that it even supported a 

radical critique of behaviorism in the field of psychology. Progressively, the 

mind became the product of the brain’s computation of nervous inputs. 

The argument appeared indeed indubitable: as human behaviors are the 

results of (computational) cognitive processes, psychology should rather 

describe the composition of these cognitive processes—a real tour de force 

whose consequences we still experience today.
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But this colossus of the computational metaphor of the mind has feet 

of clay. As soon as one inquires sociohistorically into the process by which 

brains and computers have been put into equivalence, one sees that the 

foundations of the argument are shaky; a cascade of reductions, as well 

as their distribution, surreptitiously ended up presenting the computer as 

an image of the brain. Historically, it was first the reduction of the Turing 

machine as an expression of mental processes, then the reduction of neu-

rons as on/off entities, then the reduction of the EDVAC as an input-output 

device controlled by a central organ, then the distribution of this view 

through academic networks and commercial arrangements that allowed 

computers to be considered as deriving from the brain. It is the collusion of 

all of these translations (Latour 2005), along with many others, that made 

computers appear as the consequences of the brain’s structure.

Important authors have finely documented how computer-brain equiva-

lences contributed, for better or worse, to structuring Western subjectivi-

ties throughout the Cold War period (e.g., Dupuy 1994; Edwards 1996; 

Mirowski 2002). For what interests me here, the main problem of the con-

ception of computers as an image of the brain is that its correlated concep-

tion of cognition as computation contributed to further invisibilizing the 

courses of actions taking part in computer programming. According to the 

computational metaphor of the mind, the brain is the set of all the com-

binations of neural networks—or logic circuits27—that allow the computa-

tion of signals. The brain may choose one specific combination of neural 

networks for the computation of each signal, but the combination itself is 

already assembled. As a consequence, the study of how combinations of 

neural networks are assembled and put together to compute specific sig-

nals—as it is the case when someone is programming—cannot occur as it 

would imply to go beyond what constitutes the brain. Cognitive studies 

may involve inquiring about which program the brain uses for the compu-

tation of a specific input, but the way this program was assembled remains 

out of reach: it was already there, ready to be applied to the task at hand. 

In short, similarly to von Neumann’s view on the EDVAC but with far less 

engineering applications, the brain as conceived by the computational 

metaphor of the mind selects the appropriate mental program from the infinite 

library of all possible programs. But as this library is precisely what constitutes 

the brain, it soon becomes senseless to inquire into how each program was 

concretely assembled.
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The cognitivist view on computers as designed in the image of the brain 

seems then to be the product of at least three reductions: (1) neurons as on/

off firing entities, (2) the Turing machine as an expression of mental events, 

and (3) the EDVAC as an input/output device controlled by a central organ. 

The further distribution of this view on computers through academic, com-

mercial, and cultural networks further legitimatized the conception of cog-

nition as computation. But this cognitive computation was a holistic one 

that implied the possibility of all specific computations: the brain progres-

sively appeared as the set of all potential instruction sets, hence preventing 

inquiries into the constitution of actual instruction sets. The tautological 

impasse of cognitive science when it deals with computer programming 

seems, then, to be deriving from a delusive history of the computer. The 

ones who inherit from a nonempirical history of electronic computers 

might consider cognition as computation and programming as a mental 

process. Yet the ones who inherit from an empirical history of the constitu-

tion of electronic computing systems and who pay attention to translation 

processes and distributive networks have no other choice but to consider 

cognition differently. But how?

The Classical Sandwich and Its Consequences

We now have a clearer—yet still sketchy—idea of the formation of the 

computational metaphor of the mind. An oriented “double-click” history 

(Latour 2013, 93) of electronic computers that did not pay attention to the 

small translations that occurred at the beginning of the electronic com-

puting area enabled cognitive scientists—among others—to retroactively 

consider computers as deriving from the very structure of the brain. But 

historically, what has happened is far more intricate: McCulloch and Pitts’s 

work on neurons and von Neumann’s view on the EDVAC echoed each 

other to progressively form a powerful yet problematic depiction of com-

puters as giant electronic brains. This depiction further legitimized the 

computational metaphor of the mind—also coined computationalism—that 

yet paralyzed the analysis of the constitution of actual computer programs 

since the set of all potential programs constituted the brain’s fundamental 

structure. At this point of the chapter, then, to definitively turn our back 

on computationalism and propose an alternative definition of cognition 

that could enable us to consider the task of computer programming as a 

The MIT Press January 2021



Von Neumann’s Draft, Electronic Brains, and Cognition	 125

practical activity, we need to look more precisely at the metaphysics of this 

computational standpoint.

If computationalism in cognitive science derives from a quite recent 

nonempirical history of computers, its metaphysics surely belongs to a 

philosophical lineage that goes back at least to Aristotle (Dreyfus 1992). 

Susan Hurley (2002) usefully coined the term “classical sandwich” to sum-

marize the metaphysics of this lineage—also referred to as “cognitivism”—

that considers perception, cognition, and agency as distinct capacities. For 

the supporters of the classical sandwich, human perception first grasps an 

input from the “real” world and translates it to the mind (or brain). In the 

case of computationalism, this perceptual input takes the shape of nervous 

pulses that can be expressed as numerical values. Cognition, then, “works 

with this perceptual input, uses it to form a representation of how things 

are in the subject’s environment and, through reasoning and planning that 

is appropriately informed by the subject’s projects and desires, arrives at a 

specification of what the subject should do with or in her current environ-

ment” (Ward and Stapleton 2012, 94). In the case of computationalism, the 

cognitive step implies the selection and application of a mental model—or 

mental program—that outputs a different numerical value to the nervous 

system. Finally, agency is considered the output of both perception and 

cognition processes and takes the form of bodily movements instructed by 

nervous pulses.

This conception of cognition as “stuck” in between perception and action 

as meat in a sandwich has many consequences. It first establishes a sharp 

distinction between the mind and the world. Two realms are then created: 

the realm of “extended things” that are said to be material and the realm 

of “thinking things” that are said to be abstract and immaterial.28 If matter 

thrones in the realm of “extended things” by allowing substance and quan-

tities, mind thrones in the realm of “thinking things” by allowing thoughts 

and knowledge.

Despite the ontological abyss between them, the realms of “thinking 

things” and “extended things” need to interact: after all, we, as individuals, 

are part of the world and need to deal with it. But a sheet of paper cannot go 

through the mind, a mountain is too big to be thought, a spoken sentence 

has no matter: some transformation has to occur to make these things pos

sible for the mind to process. How, then, can we connect both “extended” 
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and “thinking” realms? The notions of representation (without hyphen) and 

symbols have progressively been introduced to keep the model viable. For 

the mind to keep in touch with the world of “real things,” it needs to work 

with representations of real things. Because these representations happen in 

the head and refer to extended things, they are usually called mental repre

sentations of things.

Mental representations of things need to have at least two properties. 

They first need a form on which the mind could operate. This form may 

vary according to different theories among cognitivism. For the computa-

tional metaphor of the mind, this form takes, for example, the shape of elec-

tric nervous pulses that the senses acquire and that are then routed to the 

brain. The second property that mental representations of things require is 

meaning; that is, the distinctive trace of what representations refer to in the 

real world. Both properties depend on each other: a form has a meaning, 

and a meaning needs a form. The notion of symbol is often used to gather 

both the half-material and semantic aspects of the mental representations 

of things. In this respect, cognition, as considered by the proponents of 

the classical sandwich, processes symbolic representations of things that 

the senses offer in their interactions with the real world. The result of this 

processing is, then, another representation of things—a statement about 

things—that further instructs bodily movements and behaviors.

The processing of symbolic representations of things does not always 

lead to accurate statements about things. Some malfunctions can happen 

either at the level of the senses that badly translate real things or at the level 

of the mind that fails to interpret the symbols. In both cases, the whole pro

cess would lead to an inaccurate, or wrong, statement about things. These 

errors are not desirable as they would instruct inadequate behaviors at the 

end of the cognitive process. It is therefore extremely important for cogni-

tion to make true statements. If cognition does not manage to establish 

adequate correspondences between our minds and the world, our behaviors 

will be badly instructed. Conversely, by properly acquiring knowledge about 

the real world, cognition can make us behave adequately.

I assume that the symbolic representational thesis that derives from cog-

nition as considered by the classical sandwich leads to two related issues. 

The first issue deals with the amalgam between knowledge and reality it cre-

ates, hence refusing giving any ontological weight to entities whose tra-

jectories are different from scientific facts. The second issue deals with the 
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thesis’s incapacity to consider practices in the wild, with most of the models 

that take symbolic representational thesis to the letter failing the test of 

ecological validation.

Let us start with the first issue, certainly the most difficult. We saw that, 

according to cognitivism, the adaequatio rei et intellectus serves as the mea

sure of valid statements and behaviors. For example, if I say “the sun is ris-

ing,” I make an invalid statement and thus behave wrongly because what 

I say does not refer adequately to the real event. Within my cognitive pro

cess, something went wrong: in this case, my senses that made me believe 

that the sun was moving in the sky probably deceived me. In reality, thanks 

to other mental processes that are better than mine, we know as a matter of 

fact that it is the earth that rotates around the sun; some “scientific minds”—

in this case, Copernicus and Galileo, among others—managed indeed to 

adequately process symbolic representations to provide a true statement 

about the relations between the sun and the earth, a relation that the laws 

of Reason can demonstrate. My statement and behavior can still be con-

sidered a joke or some form of sloppy habit: what I say/do is not true and 

therefore does not really count.

The problem of this line of thought that only gives credit to scientific 

facts is that it is grounded on a very unempirical conception of science. 

Indeed, as STS authors have demonstrated for almost fifty years, many mate-

rial networks are required to construct scientific facts (Knorr-Cetina 1981; 

Lynch 1985; Latour and Woolgar 1986; Collins 1992). Laboratories, experi-

ments, equipment, colleagues, funding, skills, academic papers: all of these 

elements are necessary to laboriously construct the “chains of reference” 

that give access to remote entities (Latour 1999b). In order to know, we 

need equipment and collaboration. Moreover, as soon as one inquires into 

science in the making instead of ready-made science, one sees that both the 

knowing mind and the known thing start to exist only at the very end of 

practical scientific processes. When everything is in place, when the chains 

of reference are strong enough, when there are no more controversies, I 

am becoming able to look at the majestic Californian sunrise and meditate 

about the power of habits that makes me go against the most rigorous fact: 

the earth is rotating. Thanks to numerous scientific networks that were 

put in place during the sixteenth and seventeenth centuries, I gain access 

to such—poor—meditation. Symmetrically, when everything is in place, 

when the chains of reference are strong enough, the sun gains its status of 
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known thing as one part of its existence—its relative immobility—is indeed 

being captured through scientific work and the maintenance of chains 

of reference. In short, what others have done and made durable enables 

me to think directly about the objective qualities of the sun. As soon as I 

can follow solidified scientific networks that gather observations, instru-

ments, experiments, academic papers, conferences, and educational books, 

I become a knowing mind, and the sun becomes a known object. Cognitiv-

ism started at the wrong end: the possibility of scientific knowledge starts 

with practices and ends with known objects and knowing minds. As Latour 

(2013, 80) summarized it:

A knowing mind and a known thing are not at all what would be linked through 

a mysterious viaduct by the activity of knowledge; they are the progressive result 

of the extension of chains of reference.

One result of this relocalization of scientific truth within the networks 

allowing its production, diffusion, and maintenance is that reality is not 

the sole province of scientific knowledge anymore: other entities that go 

through different paths to come into existence can also be considered real. 

Legal decisions (McGee 2015), technical artifacts (Simondon 2017), fictional 

characters (Greimas 1983), emotions (Nathan and Zajde 2012), or religious 

icons (Cobb 2006): even though these entities do not require the same type 

of networks as scientific facts in order to emerge, they can also be consid-

ered real since the world is no longer reduced to sole facts. As soon as the 

dichotomy between knowledge and mind is considered one consequence of 

chains of reference, as soon as what is happening is distinguished from what 

is known, there is space for many varieties of existents. By disamalgamating 

reality and knowledge, the universe of the real world can be replaced with 

the multiverse of performative beings (James 1909)—an ontological feast, a 

breath of fresh air.

Besides its problematic propensity to posit correspondence between 

things and minds as the supreme judge of what counts as real, another 

problem of cognitivism—or computationalism, or computational metaphor 

of the mind; at this point, all of these terms are equivalent—is its mitigated 

results when it comes to support so-called expert systems (Star 1989; For-

sythe 2002).

A first example concerns what Haugeland (1989) called “Good Old Fash-

ioned Artificial Intelligence” (GOFAI), an important research paradigm in 
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artificial intelligence that endeavored to design intelligent digital systems 

from the mid-1950s to the late 1980s. Although the complex algorithms 

implied in GOFAI’s computational conception of the mind soon appeared 

very effective for the design of computer programs capable of complex tasks, 

such as playing chess or checkers, these algorithms symmetrically appeared 

very problematic for tasks as simple as finding a way outside a room without 

running into its wall (Malafouris 2004). The extreme difficulty for expert sys-

tems to reproduce very basic human tasks started to cast doubts on computa-

tionalism, especially since cybernetics—an cousin view on intelligence that 

emphasizes “negative feedback” (Bowker 1993; Pickering 2011)—effectively 

managed to reproduce such tasks without any reference to symbolic repre

sentation. As Malafouris (2004, 54–55) put it:

When the first such autonomous devices (machina speculatrix) were constructed 

by Grey Walter, they had nothing to do with complex algorithms and represen

tational inputs. Their kinship was with W. Ross Ashby’ Homeostat and Norbert 

Wiener’s cybernetic feedback … On the basis of a very simple electromechanical 

circuitry, the so-called ‘turtles’ were capable of producing emergent properties 

and behavior patterns that could not be determined by any of their system com-

ponents, effecting in practice a cybernetic transgression of the mind-body divide.

Another practical limit of computationalism when applied to computer 

systems is the so-called frame problem (Dennet 1984; Pylyshyn 1987). The 

frame problem is “the problem of generating behaviour that is appropri-

ately and selectively geared to the most contextually relevant aspects of 

their situation, and ignoring the multitude of irrelevant information that 

might be counterproductively transduced, processed and factored into the 

planning and guidance of behaviour” (Ward and Stapleton 2012, 95). How 

could a brain—or a computer—adequately select the inputs relevant for 

the situation at hand, process them, and then instruct adequate behaviors? 

Sports is, in this respect, an illuminating example: within the mess of a 

cricket stadium, how could a batter process the right input in a very short 

amount of time and behave adequately (Sutton 2007)? By what magic is a 

tennis player’s brain capable of selecting the conspicuous input, processing 

it, and—eventually—instructing adequate behaviors on the fly (Iacoboni 

2001)? To date, the only satisfactory computational answer to the frame 

problem, at least with regard to perceptual search tasks, is to consider it NP-

complete, thus recognizing it should be addressed by using heuristics and 

approximations (Tsotsos 1988, 1990).29
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Finally, the entire field of HCI can be considered an expression of the 

limits of computationalism as it is precisely because human cognition is 

not equivalent to computers’ cognition that innovative interfaces need to 

be imagined and designed (Card, Moran, and Newell 1986). One famous 

example came from Suchman (1987) when she inquired into how users 

interacted with Xerox 8200 copier: as the design of Xerox’s artifact included 

an equivalence between computers’ cognition and human cognition, inter-

acting with the artifact was a highly counterintuitive experience, even for 

those who designed it. Computationalism made Xerox designers forget about 

important features of human cognition, such as the importance of action 

and “situatedness” for many sense-making endeavors (Suchman 2006, 15). 

Besides refusing giving any ontological weight to nonscientific entities, com-

putationalism thus also appears to restrain the development of intelligent 

computational systems intended to interact with humans.

Enactive Cognition

Despite its impressive stranglehold on Western thought, cognitivism has 

been fiercely criticized for quite a long time.30 For the sake of this part II—

whose main goal is, remember, to document the practices of computer 

programming because they are nowadays central to the constitution of 

algorithms—I will deal only with one line of criticisms recently labeled 

“enactive conception of cognition” (Ward and Stapleton 2012). This refram-

ing of human cognition as a local attempt to engage with the world is here 

crucial as it will—finally!—enable us to consider programming in the light 

of situated experiences.

Broadly speaking, proponents of enactive cognition consider that agency 

drives cognition (Varela, Thompson, and Rosch 1991). Whereas cognitiv-

ism considers action as the output of the internal processing of symbolic 

representations about the “real world,” enactivism considers action as a 

relational co-constituent of the world (Thompson 2005). The shift in per-

spective is thus total: it is as if one were speaking two different languages. 

Whereas cognitivism deals with an ideal world that is being accessed indi-

rectly via representations that, in turn, instruct agency, enactivism deals 

with a becoming environment of transformative actions (Di Paolo 2005). 

Whereas cognitivism considers cognition as computation, enactivism con-

siders cognition as adaptive interactions with the environment whose prop-

erties are offered to and modified through the actions of the cognizer. For 
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enactivism, the features of the environment with which we try to couple 

are then not fixed nor independent: they are continuously provided as well 

as specified based on our ability to attune with the environment.

With enactivism, the cognitivist separations among perception, cogni-

tion, and agency are blurred. Perception is no longer separated from cog-

nition because cognizing is precisely about perceiving the takes that the 

environment provides: “The affordances of the environment are what it 

offers the animal, what it provides or furnishes, for either good or ill” (Gibson 

1986, cited in Ward and Stapleton 2012, 93). Moreover, cognition does not 

need to be stuck in between perception and agency, processing inputs on 

representations to instructively define actions: for enactivism, the cognizer’s 

effective actions both participate in, and are functions of, the takes that the 

sensible situation provides (Noë 2004; Ward, Roberts, and Clark 2011). Finally, 

agency cannot be considered the final product of a well or badly informed 

cognition process because direct perception itself is also part of agency: the 

way we perceive grips also depends on our capacities to grasp them. But the 

environment does not structure our capacity to perceive either; actions also 

modify the environment’s properties and affordances, thus allowing a new 

and always surprising “dance of agency” (Pickering 1995). Perceptions sug-

gest actions that, in turn, suggest new perceptions. From take to take, as far 

as we can perceive: this is what enactive cognition is all about.

This very minimal view on cognition that considers it “simply” as our 

capability to grasp the affordances of local environments has many conse-

quences. First, enactivism implies that cognition (and therefore, to a certain 

extent, perception) is embodied in the sense that “the categories about the 

kind and structure of perception and cognition are constrained and shaped 

by facts about the kind of bodily agents we are” (Ward and Stapleton 2012, 

98). Notions such as “up,” “down,” “left,” and “right” are not anymore nec-

essarily features of a “real” extended world: they are contingent effects of 

our bodily features that suggest a spatially arrayed environment. We experi-

ence the world through a body system that supports our perceptual appa-

ratus (Clark 1998; Gallagher 2005; Haugeland 2000). Cognition is therefore 

multiple: to a certain extent, each body cognizes in its own way by engag-

ing itself differently with its environment.

Second, enactivism implies that cognition is affective in the sense that 

“the form of openness to the world characteristic of cognition essentially 

depends on a grasp of the affordances and impediments the environment 
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offers to the cognizer with respect to the cognizer’s goal, interest and proj

ects” (Ward and Stapleton 2012, 99). Evaluation and desires thus appear 

crucial for a cognitive process to occur: no affects, no intelligence (Ratcliffe 

2009, 2010). “Care” is something we take; what “shows up” concerns us. 

Again, it does not mean that our inner desires structure what we may per-

ceive and grasp; our cognitive efforts also suggest desires to grasp the takes 

our environment suggests.

Third, enactivism considers that cognition can sometimes be extended: 

nonbiological elements, if properly embodied, can surely modify the bound

aries of affective perceptions (Clark and Chalmers 1998). It does not mean 

that every nonbiological item would increase our capability to grasp affor-

dances: some artifacts are, of course, constraining ongoing desires (hence 

suggesting new ones). But at any rate, the combinations of human and non-

human apparatus, the association of biological and nonbiological substrates 

fully participate in the cognitive process and should therefore also be taken 

into account.

The fourth consequence of enactivism is the sudden disappearance of the 

frame problem. Indeed, although this problem constitutes a serious draw-

back for cognitivism by preventing it from understanding—and thus from 

implementing—the initial selection of the relevant input for the task at 

hand, enactive cognition avoids it by positing framing as part of cognition. 

Inputs are not thrown at cognizers anymore; their embodied, affective, and, 

eventually, extended perception tries to grasp the takes that the situations 

at hand propose. Cricket batters are trained, equipped, and concerned with 

the ball they want to hit; tennis players inhabit the ball they are about to 

smash. In short, whereas cognitivism deals with procedural classifications, 

enactivism deals with bodily and affective intuitions (Dreyfus 1998).

The fifth consequence is the capacity to consider a wide variety of exis-

tents. This consequence is as subtle as it is important. We saw that one del-

eterious propensity of cognitivism was to amalgamate truth (or knowledge) 

and reality: what counts as real for cognitivism is a behavior that derives 

from a true statement about the real world. Cognition is, then, considered 

the process by which we know the world and—hopefully—act accord-

ingly. The picture is very different for enactivism. As enactive cognition is 

about interacting with the surrounding environment, grasping the takes it 

offers and therefore participating in its reconfiguration, knowledge can be 

considered as an eventual, very specific, and very delightful by-product of 
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cognitive processes. Cognition surely helps scientists to align inscriptions 

and construct chains of reference according to the veridiction mode of the 

scientific institution; however, cognition also helps writers to create fictional 

characters, lawyers to define legal means, or devout followers to be altered 

via renewed yet faithful messages. In short, by distinguishing knowledge 

and cognition—cognizers do not know the world but interact with it, hence 

participating in its reconfiguration—enactivism places the emphasis on our 

local attempts to couple with what surrounds us and reconfigure it, hence 

sometimes creating new existing entities.

Finally, enactivism makes the notions of symbols and representations 

useless for cognitive activities. Indeed, since the world is now a local envi-

ronment whose properties are constantly modified by our attempts to 

couple with it, no need exists to posit an extra step of mental represen

tations supported by symbols. For enactivism, there may be symbols—in 

the sense that a take offered by the environment may create a connection 

with many takes situated elsewhere or co-constructed at another time—but 

agency is always first. When I see the hammer and sickle on a red flag on a 

street of Vientiane, Laos, I surely grasp a symbol but only by virtue of the 

connections this take is making with many other takes I was able to grasp 

in past situations: TV documentaries about the Soviet revolution, school 

manuals, movies, and so on. In that sense, a symbol becomes a network 

of many solidified takes. Similarly, some takes may re-present other takes, 

but these re-presentations are always takes in the first place. For example, 

I may grasp a romantic re-presentation of a landscape at the second floor 

of Zürich’s Kunsthaus, but this re-presentation is a take that the museum 

environment has suggested in the first place. This take may derive from 

another take—a pastoral view from some country hill in the late eighteenth 

century—but, at least at the cognitive level, it is a take I am grasping at the 

museum in the first place.

To sum up, enactive cognition starts with agency; affective and embod-

ied actions are considered our way of engaging with the surrounding envi-

ronment. This environment is not considered a preexisting realm; it is a 

collection of situations offering takes we may grasp to configure other take-

offering situations. From this minimal standpoint, cognition infiltrates 

every situation without constituting the only ingredient of what exists. 

Scientists surely need to cognize to conduct experiments in their laborato-

ries; lawyers for sure need to cognize to define legal means in their offices; 
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programmers surely need to cognize to produce numbered lists of instruc-

tions capable of making computers compute in desired ways; yet facts, legal 

decision, or programs cannot be reduced to cognitive activities as they end 

up constituting existents that populate the world. With enactive cognition, 

the emphasis is made on the interactions among local situations, bodies, 

and capabilities that, in turn, participate in the formation of what is exist-

ing, computer programs included. Cognition, then, appears crucial as it 

provides grips but also remains very limited as it is constantly overflowed: 

there is always something more than cognition. May computer program-

ming be considered as part of this more. This could make it finally appear 

in all its subtleties.

The MIT Press January 2021



The journey was convoluted, but we are now finally in a position to consider 

computer programming as a practical, situated activity. In chapter 3, I first 

questioned von Neumann’s architecture; for fundamental yet contingent 

reasons, its definition of computers as functional devices took for granted the 

situated practices required to make them function. If this unempirical pre

sentation of electronic systems was certainly useful at the beginning of the 

computer area by sharing classified work and proposing a research agenda, 

it nonetheless misled the understanding of what makes computers actually 

compute. I then distanced myself from the different academic answers to 

the nonfunctional aspects of electronic computers as functionally defined by 

von Neumann. Aptitude tests for the selection of programmers started at the 

wrong end as they tried to select people without inquiring into the require-

ments for such tasks. Behavioral studies aiming to isolate the right parameters 

for efficient programming implied looking at the results of actions and not at 

the actions themselves. Finally, I tried to show how the cognitivist response 

to behavioral studies had, and has, problematic limitations: as mainstream 

cognitivism relies on the computational metaphor of the mind that itself 

needs already assembled programs, many cognitivists cannot go beyond the 

form “program” that ends up explaining itself. A process is being explained 

by its own result; programs need programs, a perfect tautology. Yet in the 

last section of chapter 3, I suggested that the very notion of cognition, once 

freed from the throes of computationalism, could still be a useful concept for 

rediscovering experience. Once cognition is considered an enactive process of 

grasping the affordances of local environments, the emphasis is placed on 

specific situations, places, bodies, desires, and capabilities.

From this point, we are ready to grasp programming in all of its materi-

ality without being obtruded by the notions of “representations” (without 

4  A Second Case Study

The MIT Press January 2021



136	 Chapter 4

hyphen), “mental models,” or “computation.” All of these things—and 

more generally von Neumann’s functional presentation of computers—are 

the results of the situations we want to account for. To a certain extent, 

we are back in 1943 at the Moore School of Electrical Engineering: no 

mental models, no internal cognition, no von Neumann architecture, no 

programs; only actions, desires, and artifacts that interactively try to make 

meaningful electronic computations occur. Even though the following case 

study is based on data collected in the Lab between 2015 and 2016, I will 

try to study them as if the unempirical conceptions of electronic comput-

ing did not occur.

Presentation of the Empirical Materials

The development of an image-processing algorithm intended for academic 

publication is a process that involves many different activities and situa-

tions. But along the gathering of relevant data; the construction of ground 

truths; the formulation of transformative relationships between input-data 

and output-targets; and the numerous Group meetings, informal discus-

sions, seminars, and coffee breaks that help all these things to happen, 

there are more or less long computer programming episodes when numbered 

lists of instructions have to be written in order to make an electronic device 

adequately compute digital data. It is these courses of action that have a 

beginning and an end that I will try to account for in this case study.

The problem that quickly stood out during my ethnographic endeavor 

within the Lab was how to document these courses of action. First, as the 

code being written during programming episodes was very cryptic, it was 

in the beginning difficult to have a grip on what was going on. Second, the 

configurations of these cryptic signs on the screens were constantly chang-

ing; new characters were added, other erased, other corrected, and so on. 

Third, these situations appeared quite engaging for the people involved, 

which prevented me from asking them questions about what they were 

doing. During these moments that looked particularly intense, I was clearly 

out of place.

To palliate these methodological issues, I designed my own image-

processing project with the help of the Lab’s members. After several Lab 

meetings, we collectively decided that I should try to design a preprocessing 

model that could sort images whose pixel configurations would fit further 
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specific segmentation processes that were under development within the 

Lab. This modest project was explicitly designed to force me learn the basics 

of several computer programming languages and become more familiar 

with image processing in general. Importantly, the project also included a 

“helping clause” that allowed me to ask members of the Lab for help when 

I was stuck in a programming impasse. This somewhat unusual method 

turned out immensely fruitful. It first made me become more comfort-

able with several programming languages;1 little by little, all these cryptic 

signs started to make more sense. It also made the members of the Lab 

more comfortable during the programming episodes I tried to document 

and account for. As the project had been designed collectively and could 

potentially be used for future projects, the members of the Lab found it 

somewhat relevant. And as the so-called helping sessions did not directly 

concern their own projects, they also felt more at ease with me taking notes 

and asking questions while they were programming. Finally—and perhaps 

more importantly—this method allowed me to better equip and document 

programming episodes: along with notes describing the movements and 

gestures of the one who was programming next to me, I could video rec

ord my monitors and audio record the discussions. For the eight helping 

sessions I needed for this project, I then ended up with descriptions, screen 

recordings, and audio recordings I could thoroughly analyze.

Though insightful in many respects, the materials collected during these 

helping sessions nonetheless had limitations. As the small programs result-

ing from these sessions were primarily intended for my own specific use, 

they were not directly designed to circulate within a professional commu-

nity of programmers as it is typically the case in corporate software settings. 

In this sense, important topics such as program reading for the in situ shap-

ing of intelligibility, as considered by Button and Sharrock (1995) in their 

paper on computer programming practices, could not be specifically inves-

tigated. Nevertheless, as we will see later in the chapter, some of my analyti-

cal propositions may well be related to Button and Sharrock’s conclusions.

The following materials are taken from one helping session during 

which DF—a PhD student of the Lab—wrote a small program that I will 

from now on call PROG that dealt with data I had previously collected via 

a crowdsourcing task. The crowdsourcing task was divided into ten rounds. 

For each round, twenty to thirty unknown workers were shown fifty “natu

ral pictures” of landscapes, faces, birds, buildings, and so on. The content 
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of these pictures was extremely varied. For each image, each worker was 

asked to draw one or several rectangles around the parts of the image that 

first attracted their attention. Before switching to the next image, each 

worker also had to grade from one to seven how straightforward it had been 

for them to choose what specific parts of the image to label. After the ten 

rounds of this crowdsourcing task, 254 different workers each labeled fifty 

images for a total of five hundred images. The data collected from the activity 

of the workers (the IDs of the images they processed, the coordinates of the 

rectangles they drew, and the grades they gave for each labeling task) via a 

web application were gathered in .txt files organized as in figure 4.1. The 

content of these .txt files along with the natural images used for the crowd-

sourcing task were the data on which PROG had to work.

If this small project was explicitly designed to better document program-

ming practices, it also had an image-processing goal. This secondary goal 

was to find correspondences between the contents of the natural images—

in terms of arrangement of numerical pixel-values—and both the rectangles 

and grades provided by the workers. In short, the assumption was that for 

16714267603_cd60601b7f_b.jpg  1 startX: 25px startY: 32px width: 450px height: 361px 
16705290404_d8de298f0e_b.jpg  5 startX: 430px startY: 76px width: 260px height: 414px
 startX: 234px startY: 227px width: 189px height: 216px

Figure 4.1
Excerpt of a .txt file named “worker_05Waldave56jm9815.txt” as provided by the 

web application at the end of each session of the crowdsourcing task. The name 

of the file (“worker_05Waldave56jm9815.txt”) corresponds to the ID given to the 

worker by the web application. Only two rows of the file are presented here. The first 

element of each row is a string of text that ends with “.jpg”; it corresponds to the 

ID of the image that had been processed by the worker. The second element of each 

row corresponds to the numeral grade given to the labeling task by the worker. The 

subsequent elements of each row correspond to the coordinates of the rectangle(s) 

drawn by the worker. Every rectangle is defined by four values part of the coordi-

nate space of the image that was being processed. The first value of each rectangle 

(“startX: npx”) corresponds to the horizontal coordinate of the picture. The second 

value (“startY: npx”) corresponds to the vertical coordinate of the picture. The third 

value (“width: npx”) corresponds to the pixel width of the drawn rectangle. The 

fourth value (“height: npx”) corresponds to the pixel height of the drawn rectangle. 

Altogether, these four values allow to reconstruct—later—the rectangle(s) drawn by 

the user. Moreover, as indicated by the second row of the excerpt, the workers could 

draw several rectangles.
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images with high grades and very dispersed rectangles, it may not make sense 

to divide their content into smaller parts. Symmetrically, for images with low 

grades and very compact rectangles, it may eventually make sense to divide 

their content into smaller parts (see figure 4.2). Being able to automatically 

sort pictures whose contents may or may not be divided into smaller parts 

could be useful for further lossy compression schema based on segmentation 

processes. In that sense, the computational method I tried to define could 

eventually serve as a preprocessing step for further, more complex, segmenta-

tion/compression methods that members of the Lab were developing at that 

time. But at any rate, to propose such a preprocessing method, many inter-

mediary programs—including PROG—had to be assembled.

The design of the web application that enabled the crowdsourcing task 

and the gathering of data as shown in figure 4.2 required the completion of 

many different programs. First, a Python web-scrapping program had to be 

designed in order to browse and download heterogeneous, high-definition, 

and Creative-Commons-licenced images made available by the API of the 

Flickr website. The design of this small yet not-so-trivial program first 

required a “helping session” with a member of the Lab. Second, several pro-

grams using html, JavaScript, and PHP computer programming languages 

Figure 4.2
Two views on the data collected during the crowdsourcing task. Both views were 

made possible by a Matlab program that parsed the data of the .txt files and related 

them to the corresponding .jpg images. On the left, workers roughly labeled the same 

part of the image and gave a very low grade to this labeling task (average of 1.16). 

One may then assume that it would make sense to divide the content of this image 

into smaller parts (in this case, the bird and the rest). On the right, the opposite situ-

ation: the workers labeled the image almost randomly and gave a high grade to this 

labeling task (average 5.25). One may them assume that it would make little sense to 

divide the content of this image into smaller parts.
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had to be designed to allow workers to interact with a specific number of 

images and store their IDs, labels, and grades within .txt files. The design of 

this web application required two “helping sessions” with members of the 

Lab. Third, a first Matlab program was required in order to read the tex-

tual and numerical contents of all the .txt files and reorganize them within 

Matlab software environment. Because of its agility to design problems of 

linear algebra—all integers being considered scalars—Matlab is widely used 

for research and industrial purposes in computer science, electrical engi-

neering, and economics. Yet if Matlab programming language is known 

for being well adapted for the computation of matrices and arrays, it is 

also known for being badly adapted for the reorganization of .txt data into 

matrices and arrays. This reorganization of data into matrices and arrays 

was generally called “parsing” by the members of the Lab. Again, a fourth 

helping session was required to help me assemble parsing programs that 

further enabled views such as those presented in figure 4.2.

The program whose formation we are about to follow—PROG—dealt 

with the analysis of the data as reorganized by previous parsing programs. 

The shaping of PROG required a fifth “helping session” with DF. The speci-

fications of PROG can be summarized as such: for reasons we will cover 

at length in the next sections, PROG should be able to transform each 

labeled digital image as presented in figure 4.2 into another less complex 

digital image as presented in figure 4.3. The value of the pixels of each 

Figure 4.3
Two views on the results of PROG. Both simplified matrices are translations of the 

labeled images of figure 4.2. PROG was intended to select one part of the parsed data 

in order to transform the labeled images of figure 4.2 into much less complex matrices. 

These matrices allowed further analysis, notably in terms of histograms and frequencies.
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less complex image should correspond to the number of rectangles each 

pixel is part of. For example, if a given pixel is part of zero rectangle, PROG 

should attribute the value zero to this pixel. But if another given pixel 

is part of, say, six rectangles, PROG should attribute the value six to this 

pixel. PROG was thus intended to gather together different values (dimen-

sions of the natural image, dimensions of each rectangle drawn by the 

participants of the crowdsourcing task, incrementing values of each pixel) 

in order to create new images or, as usually coined in image processing, 

new matrices.

At this point, it is not necessary to fully understand the goals and specifi-

cations of PROG as we will closely consider them in the next sections. What 

is more important for now is to understand that PROG was designed in the 

Matlab software environment. Like other popular high-level programming 

languages, such as Python or C, Matlab is generally used in conjunction 

with an integrated development environment (IDE) that includes visualization 

and file organization functionalities (see figure 4.4). But unlike Python, C, 

and some of their compatible IDEs (e.g., PyCharm, Eclipse), Matlab—as 

a programming language in its own right and as an IDE—is owned and 

maintained by MathWorks Inc. and is distributed on a license basis. At the 

time of this inquiry, Matlab’s proprietary feature was criticized by a grow-

ing number of Lab members who tended to prefer Python, which is open-

source and supported by an active community of developers. However, 

notably because of its internal organization natively designed for matrix 

processing, Matlab was and still is frequently used. For reasons of readabil-

ity, my follow-up of the practical formation of PROG will only focus on the 

Editor and the Command Window of the Matlab IDE. In the next sections, 

the content of figure 4.4 will then be presented as in figure 4.5.

Even if PROG was by far the smallest program of the project, I will not 

be able to account for its entire formation process. Instead of accounting for 

the whole programming episode that established PROG, I will only focus 

on specific sequences that are particularly instructive. My follow-up of the 

programming sequences is chronological, starting at Time 0 (T0) and end-

ing at Time n. Yet the sampling of each T does not follow a fixed period of 

time but rather the modifications of both the Editor and the Command 

Window. Let us assume, for example, that figure 4.5 is the first expression of 

PROG during the programming sequence we are following (T0). As soon as 
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Figure 4.4
Screenshot of the Matlab IDE. The far-right window is called the Workspace. It gath-

ers all the variables the programmer creates during their session. To the left of the 

Workspace, the Variables Window allows the programmer to visualize in spread-

sheets the variables she created. In this screenshot, the variable “images[1,1]” is being 

visualized. Below it, to the left of the Workspace, there is the Command Window 

that shows the results of the operations conducted by the programmer. In this 

screenshot, the Command Window shows the answer “[ ]”. The long window in the 

middle of the screenshot is the Current Folder Window that shows the content of 

the folder currently accessed by the software. On the left, the Editor is the window 

that allows the programmer to write Matlab programs—also called scripts—that is, 

numbered lists of instructions written in the Matlab programming language. When 

the programmer clicks on the Run icon (on the top middle of the Editor) or uses an 

equivalent personalizable shortcut key, the results of the script are printed in the 

Command Window. In this screenshot, the running of the script made “[ ]” appear in 

the Command Window. The spatial arrangements of these different windows can be 

modified according to the programmer’s preferences.
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the programmer makes changes in both the Editor and the Command Win

dow, these changes will be documented and highlighted as in figure 4.6.

In between the different Ts, the sayings and actions of the programmer 

(DF) and me (FJ) will be transcribed. To keep things readable, I may omit 

some small actions, such as quick mistypes or hesitation disfluencies. Fol-

lowing T1 (figure 4.6), the programming sequence would, for example, go 

on like this:

DF:  “Hum, it doesn’t work anymore.”

FJ:  “Apparently.  …”

DF:  “Tssssss.”

[at line 14, DF deletes “{1}”]

[DF runs the script]

[figure 4.7—T2]

DF:  “OK. But why are there only two of them? I don’t get it. Difficult 

today!”

[laughs]

1. f = fopen(‘user_05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. %coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end 
20. %
21. %images{1}{3}

ans = 

[]

Figure 4.5
Simplified Matlab IDE as it will be presented for the remainder of the analysis. To 

make the follow-up of programming sequences more readable, only the content of 

the Editor and the Command Window will be displayed. Here, the figure expresses 

(part of) the content of figure 4.4.
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1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. coords = [cords sscanf(c. ., ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end 
20. %
21. %images{1}{3}

ans = 

83  74

14. {1}

Figure 4.7
Editor and Command Window at T2.

1. f = fopen(‘user_ 05Waldave56jm9815.txt’);
2.

3. images = cell(1);
4. images{1} = cell(1);
5. line = fgetl(f)
6. while ischar(line)
7. elements = strsplit(line);
8. rating = elements(2);
9. images{1}{1,2} = sscanf(rating{1}, ‘%1’);
10. rect = elements(4:2:10)
11. cords = [];
12. for I = size(rect)
13. c = rect{i}
14. .coords = [cords sscanf(c{1}, ‘%ipx’)];
15. end
16. images{1}{1,3} = coords;
17.

18. line = fgetl(f);
19. end 
20. %
21. %images{1}{3}

>> parse

Cell contents 

reference from a non-

cell array object

Error in parse(line 

14)

coords = [coords 

sscanf(c{1}, ‘%ipx’)]

14. %

Figure 4.6
The Editor and the Command Window at T1, when modified by the programmer. In 

the caption’s title, the term “T1” indicates that it is the first change of the program-

ming sequence being followed. The instructions that have been removed or added in 

the Editor are highlighted in gray. The content of the Command Window is updated. 

Finally, the instructions that have been deleted are indicated as strikeout text in the 

bottom cell. The line numbers of the deleted instructions are those of Tn-1 (here T0).
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Here and then, I will also intervene to clarify things and analyze what is 

happening. Before we start with the first sequence, it is important to keep 

in mind that one does not need to understand everything that is said in the 

transcriptions nor all the elements within each T. What is important in this 

close analysis of computer programming practices is what is happening in 

between each T. It is by focusing on the relative differences between each T 

that we will manage to understand some of the issues at stake during these 

unconventional courses of actions.

I need to mention one last thing before we dive into the practices of com-

puter programming. One may easily object that the following case study and 

its subsequent tentative propositions are not representative of programming 

practices in general. To this, I answer that representativeness is simply not at 

stake here. Representativeness is indeed a powerful and important concept 

but only when the boundaries of a population are clearly defined. Inhabit-

ants of a town, cells of a tissue, words of a book: all can be related to a very 

costly and equipped set—the administrative and geographical limits of a 

towns, the physical limits of a sample, the hardcover of a book—that sub-

sequently defines a territory and a population. In these specific—but very 

rare and often controversial—cases, the concept of representativeness can 

be used to extract statistically meaningful results. But when there is no ter-

ritory, no set, the very notion of representativeness loses its raison d’être. 

What is programming? Who are programmers when they program? We do 

not know as there were very few studies of computer programming prac-

tices. This is typically where ethnography can be useful: the exploration of 

nondefined—or problematically defined—territories may provide takes for 

the design of subsequent boundaries to be explored statistically. And while 

I do think that the young street artist in Leipzig who is writing a small Java

Script program to animate the menus of her personal website, the engineer 

of Boeing who is working on the last Ada’s update for cabin pressurization 

modules, or the computer scientist who tries to parse .txt files with the Mat-

lab IDE differ in many ways—they have different problems, affects, environ-

ments, equipment—I also think that (almost) none of these situations have 

yet been accounted for ethnographically. We still have to start somewhere. 

The following case study is then one of the very first steps into, I hope, more 

systematic studies of programming courses of action; hence the exploratory 

aspect of its propositions.

The MIT Press January 2021



146	 Chapter 4

Aligning Inscriptions

Let us focus on PROG. Building on what I presented in the last section, 

I will document a very short programming sequence that took less than 

five minutes in real time. I will stay as close as possible to the formatted-

yet-empirical material, using the presentation method I introduced above 

as well as several concepts developed in STS in the course of the analysis. 

My hope is to show that one set of practices that are terribly important for 

programmers deal with the proliferation and alignment of inscriptions in 

order to pave out an access to a remote entity and, simultaneously, identify a 

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1; 
15. end
16. end

>>

Figure 4.8
Editor and Command Window at T0.

1. I = imread(images{1});
2. R = zeros(size(I));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1; 
15. end
16. end

Index exceeds matrix 
dimensions

Figure 4.9
Editor and Command Window at T1.
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location. Hopefully, this odd proposition will become clearer as the chapter 

goes on. For the moment, let us start in medias res with figures 4.8 and 4.9:

[figure 4.8—T0]

[DF runs the script]

[figure 4.9—T1]

DF:  “OK. So it tells me it doesn’t work.”

FJ:  “Apparently.”

What is happening between T0 and T1? After DF runs the script, a red 

(here, gray) inscription appears in the Command Window, indicating that 

“Index exceeds matrix dimensions.” Where does this text come from? 

Who wrote it? To better understand the origin of this cryptic notification, I 

have to introduce an important participant to the sequence: the interpreter 

(INT). For the sixteen lines of code in the Editor to generate electric pulses 

that would further allow the hardware of the computer to effectively com-

pute the data of the .txt files, many steps have to be taken. Fortunately, for 

the case that interests us here, only the very first step is important. This first 

step consists in translating every line of code into something else—in this 

case, subroutines compiled into machine code—that would, in turn, gen-

erate electric pulses and the effective computation of the data. One of the 

entities responsible for this complex translation is INT. Every time DF runs 

the script, INT is surreptitiously triggered to translate the content of the 

Editor, byte by byte. We do not need to know exactly what INT does during 

its translating processes: even for DF, the very functioning of INT remains 

obscure. In fact, we just need to understand four characteristics of INT:

1.	 INT has its own trajectory that is fully understood by almost nobody: 

highly specialized teams employed by the company MathWorks, editors 

of Matlab, were required to shape it and are still currently maintaining 

it. In that sense—at least from the point of view of DF—INT can be con-

sidered a being that takes the risk of existence (James [1912] 2003; Latour 

2013), just as a cat or an elephant seal.

2.	 INT translates one line of the Editor after the other.2

3.	 As soon as INT successfully translates a line, if this line instructs the print-

ing of an inscription, INT prints this inscription in the Command Window.

4.	 As soon as INT cannot translate one line, it stops and prints a red (here, 

gray) inscription in the Command Window.
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This leads us to the important notion of inscription that we have already 

encountered in the introduction where I emphasized the world-generative 

capabilities of these durable, mobile, and re-presentable entities. There are, 

of course, many different types of inscriptions: books, WhatsApp messages, 

shopping lists, or even tattooed bodies can be considered inscriptions, 

some being more durable, mobile, and re-presentable than others (Gitel-

man 2014). But in any case, inscriptions are translated manifestations of 

more or less attributable events and thus constitute, at least potentially, 

takes offered by the environment in specific situations. These inscriptions 

are not representations (without hyphen) of “real things” that feed mental 

computations. They are formatted re-presentations of events that may be 

grasped and, in turn, configure other world-generative takes. This is why I 

needed to tediously introduce enactive cognition at the end of chapter 3: as 

we are now aware that agency precedes cognition, documents and inscrip-

tions can be considered no more but also no less than takes that may sug-

gest other actions—from take to take, as far as we can perceive and make 

sense (Penny 2017).

Inscriptions-takes are sometimes grasped by cognizing individuals; other 

times, they are not. In our case, the inscription “Index exceeds matrix 
dimensions” is indeed grasped by DF. In fact, as DF ran the script, he 

expected an inscription to appear in the Command Window. Moreover, as 

DF is well aware—just as we are now—that any red inscription in the Com-

mand Window manifests that INT could not translate all the lines of the 

script, DF knows that the inscription “Index exceeds matrix dimensions” 

is the trace of an event related to INT.

From this point, we are able to better understand what the first inscription 

does to DF. At T1, the inscription “Index exceeds matrix dimensions” is a 

take grasped by DF that manifests that something—but what?—is affecting 

the trajectory of INT: it tells me it doesn’t work.

Let us continue:

DF:  “It doesn’t go through. I’ll just check the size of the image.”

[DF creates a new line at 2 in the Editor; types “size(I)”]

INT has a problem: it doesn’t go through the script. But what part of PROG 

is affecting INT? At this point, it is difficult to know exactly. In fact, under-

standing what is happening to INT is, from now on, necessary to the real-

ization of PROG.
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For DF, the initial red inscription indicates—though quite vaguely—that 

INT is affected by the size of something. The terms “exceeds” and “dimen-
sions” of the red inscription attest for such a size-related problem. In order 

to have a better grip on what size-related problem is affecting the trajectory 

of INT, DF starts by examining the size of the image. To do this, DF adds the 

small line of code “size(I)” at the second line of the script and then runs 

it, thus triggering INT (figure 4.10—T2).

By adding the line of code “size(I)” at line 2 and then triggering INT, 

DF makes a new inscription appear in the Command Window:

ans =

Columns I through 2

1024 712

Column 3

3

This new inscription printed by INT in the Command Window is not red 

and can therefore be considered an actual translation of the code. This is 

taken for granted: decades of engineering developments allow DF to be 

certain that this new inscription is an unproblematic expression of INT. But 

still, is this inscription expressing the dimension of the right image? If not, 

the whole script should be reconsidered. To verify that INT is indeed failing 

to process the right image, DF uses the second non-red inscription to create 

a third one, this time emanating from me:

1. I = imread(images{1});
2. size(I)
3. R = zeros(size(I));
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1; 
16. end
17. end

ans =
Columns 1 through 2
1024   712

Column 3
3

Index exceeds matrix 
dimensions

Figure 4.10
Editor and Command Window at T2.
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DF:  “OK, so the size is 1024 × 712. Does that sound right to you?”

FJ:  “Yes, it is correct for this image.”

DF:  “Ok. So it’s happening after.”

The oral statement “Yes, it is correct for this image”—itself deriving from 

inscriptions I had previously produced and encountered during a former 

unsuccessful programming attempt—allows DF to consider that the non-

red inscription refers adequately to the image INT is failing to process. 

The certitude emanating from the articulation of the non-red inscription 

and the inscription-derived oral statement further allows DF to infer that 

“it’s happening after.” The “after” is here crucial. Indeed, since the second 

inscription is not red and appears above the red inscription in the Com-

mand Window, DF can conclude that whatever is affecting the trajectory 

of INT, it lies somewhere after the instruction “size(I)” he has just added 

at line 2. By adding and articulating two new inscriptions—the non-red 

inscription and the inscription relayed by my confirmatory oral state-

ment—DF already gets a clearer view on INT: what is affecting its trajectory 

lies after the second line of the script.

Let us continue:

[DF examines the Command Window of figure 4.10—T2]

DF:  “Ah, but it indicates also the colors! Typical Matlab.”

[DF puts the cursor on “Column 3” in T2 Command Window]

DF:  “See? [to FJ] We should take only the first two values for “R.” Other

wise, it blocks.”

FJ:  “Because now ‘R’ has three values?”

DF:  “I guess so.”

[DF deletes line 2; at the end of “new” line 2, he types “.1), size(I,2”]

By pursuing his inspection of the non-red inscription in the Command 

Window at T2, DF notices that the size of the image INT fails to process is 

expressed by three values: “1024,” “712,” and “3.” Where does this “3” come 

from? Difficult to say. It may come from Matlab systematic consideration of 

the data that structure a digital color image. Indeed, these specific matrices are 

bound to a width, a height, and three layers of RGB values. Most high-level 

programming languages do not take into consideration this third value as it 

generally does not express useful information about the actual dimensions 
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of an image. But Matlab—in its fussy fashion—apparently expresses it, and 

this may be, according to DF, the source of the problem affecting INT.

At this point, DF believes that the documentation he gathered about 

INT’s trajectory through the piling up and alignment of three inscriptions—

the red inscription, the non-red inscription, and the auditory statement 

(itself being a translation of written inscriptions considered in the past)—is 

accurate enough to complete the script; according to DF, based on the evi-

dences he produced, collected, and aligned, INT does not support the third 

value of “size(I).” This information about INT that points toward line 3 

may, in turn, allow the modification of the script and smooth the trajectory 

of INT. DF also deletes “size(I)” at line 2 that mainly served for him as an 

instrument for the probing of INT. Then, in line with his insight about the 

provenance of the problematic phenomenon that affects the trajectory of 

INT, he types “,1),size(I,2” in the Editor in order to define “R” according 

to only two values: “1024” and “712,” for the case of the first image of the 

ground truth. He then runs the script:

[DF runs the script]

[figure 4.11—T3]

DF:  “Ah no. It’s not here, apparently.”

Unfortunately for DF, these modifications do not change the state of INT. 

As we can see in the Command Window at T3 (figure  4.11), DF’s new 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. rect = users{i,j+3};
8. if size(rect,2) == 0
9. break
10. end
11. j = j+1;
12. x = rect(1):rect(1)+rect(3);
13. y = rect(2):rect(2)+rect(4);
14. R(y,x) = R(y,x) + 1; 
15. end
16. end

Index exceeds matrix 
dimensions

2. size(I)

Figure 4.11
Editor and Command Window at T3.
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triggering of INT does not lead to the disappearance of the red inscription: 

something is still affecting INT, and it was not the image size defined by 

three values instead of only two.3 Using a scientific expression, we can say 

that “INT-being-affected-by-the-third-value-of-size(I)” was an artifact: it 

does not participate in the phenomenon that affects INT’s trajectory. In 

turn, the problematic location is not line 2; it is somewhere else. More experi-

ments are therefore needed; more inscriptions have to be produced, com-

pared, and aligned.

The artifact “INT-being-affected-by-the-third-value-of-size(I)” was 

not totally worthless for DF, though. Thanks to it, DF is now certain that 

INT is being affected by a size-related problem that occurs after line 2. But 

this certainty about INT is for the moment too thin; it does not allow DF 

to precisely identify what is affecting INT and therefore modify the code 

accordingly.

Let us continue:

DF:  “OK. Well, we’ll print the rectangle then. And just compare.”

�[DF deletes “;” at the end of line 8; he creates a new line at 3 in the Edi-

tor; he types “size(R)” at line 3]

PROG deals with natural images on which rectangles have been previously 

drawn by workers during a crowdsourcing task. As we saw in the previous 

section that presented the empirical materials of this chapter, the drawn rect-

angles are not strictly speaking on the images: they are stored as coordinates 

within .txt files. The script we are now examining is intended to use the 

width and height values of each natural image as well as its rectangles in 

order to create a new image that is less complex and easier to analyse. These 

new simplified images—that I will from now on call matrices—should only 

express the number and the position of the rectangles that the workers drew 

on the initial color images. In this respect, the workflow of the script is quite 

straightforward: first, an empty matrix is created using the width and height 

values of the initial natural image, then a rectangle is created using the work-

ers’ data in the .txt file related to this image, then the rectangle is added 

to the empty matrix. Progressively, as more and more rectangles are added to 

the matrix, the matrix acquires more values. In the field of image processing, 

we say that the matrix is incremented. Figure 4.3 provides two examples of 

PROG’s final outputs; that is, matrices that have been incremented according 

to the coordinates of the rectangles related to their IDs in .txt files. But we 

are not there yet; at this point of the programming episode, INT—this lively 
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entity on which it is difficult to have a grip, at least for biped mammals—is 

affected by something that prevents it from translating the code adequately.

What is affecting INT is not clear. But the previous inscriptions DF man-

aged to handle and align have made him see that INT’s problem has to do 

with some size and dimension. Moreover, DF is also aware of the general 

workflow of the script since he mostly designed it (more on this later). In this 

respect, what if the first rectangle that is added to the first matrix exceeds 

the boundaries of the matrix? It would be very problematic as it would sig-

nify that some .txt data are corrupted. But as the rectangle is indexed to .txt 

data, this would satisfy the red inscription “Index exceeds matrix dimen-
sion.” But how could DF be certain of that? Just as before, by producing 

more inscriptions and compare them.

To print the size of the first rectangle, DF deletes “;” at the end of line 8.4 

In order to print the dimension of the first image of the dataset, he writes 

“size(R)” on line 3. He then runs the script:

[DF runs the script]

[figure 4.12—T4]

[DF examines the Command Window of figure 4.12—T4]

DF:  “So, 197 and 323. Makes less than 1024, obviously. And same for 

height. Alright. It’s strange because it doesn’t exceed.”

Two new non-red, and thus a priori nonproblematic, inscriptions appear in 

the Command Window at T4 (figure 4.12). The first one “ans = 1024 712” 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}.
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3); 
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + 1; 
16. end
17. end

ans =
1024   712

rect=
197  91  323  371

Index exceeds matrix  
dimensions

8. ;

Figure 4.12
Editor and Command Window at T4.
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describes the dimension of the first image of the collection. The second one 

“rect = 197 91 323 371” describes the dimensions of the first rectangle 

drawn by the first worker as well as the location of this rectangle within the 

first image. The first value of rect, “197,” refers to its horizontal coordinate 

within the image, and the second value, “91,” refers to its vertical coordi-

nate. These two numbers therefore indicate that the rectangle starts at pixel 

[197:91] of the image. The third value of rect, “323,” expresses the width of 

the rectangle and the fourth value, “371,” expresses its height. These two 

last numbers therefore indicate that the width of the rectangle is 323 pixels 

and that its height is 371 pixels.

At T4, DF is already aware of what all these values refer to; before 

this programming episode, I explained to him the conventions I used to 

structure the data of the .txt files. But once these values are printed and 

compared with the width and height of the image, basic yet terribly impor

tant arithmetic evaluations can be undertaken: “197 + 323 < 1024” and 

“91 + 371 < 712.” These are crucial clues as they do not corroborate the red 

inscription of the Command Window; the rectangle doesn’t exceed the 

dimensions of the image. The size and position of the rectangle is not what 

is affecting INT. Something else is disrupting INT in its relation with PROG. 

But what? And where is it? More inscriptions are required to better docu-

ment what affects INT and modify the script accordingly.

What we see at T4 is a perfect example of the process I’m here trying to 

highlight: by printing the size of the image and the coordinates of the rect-

angle, DF acquires a better grip on the process at hand. He can articulate these 

two new inscriptions and align them to the previous ones. In that sense, he is 

enactively paving out some access to INT and its red inscription. Even though 

this production and alignment of inscriptions do not work as DF hoped—the 

dimensions of the rectangle do not exceed the dimensions of the image—this 

gives him another clue about the phenomenon under scrutiny: what is affect-

ing INT lies somewhere else. This practice of grasping, producing, and aligning 

inscriptions in order to identify the origin of a problematic phenomenon is, 

I believe, central to programming. As we will see, it is not the only type of 

practices that are deployed during computer programming sequences. But in 

some specific situations, when an important entity is blocked in its trajec-

tory, thus preventing the computation of data by means of electric pulses, 

the handling and aligning of inscriptions remains crucial. In these situations 

when a problematic location has to be found, the design of experiments and 

the articulation of their results appear necessary to pave a very specific path, 
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itself providing very specific information about some small, scattered, and very 

swift entities we may call “interpreters,” “compilers,” or even “processors” in 

the case of microcode. I will come back to this proposition at the end of this 

programming sequence. But already at this point, it is important to note that 

the mundane addition and alignment of inscriptions DF is currently making 

might be central to the very activity of computer programming.

With these preliminary elements in mind, let us continue:

DF:  “I’ll just try something else. We’ll see if the rectangle corresponds.”

�[DF creates a new line at 13  in the Editor; on this new line, he types 

“imshow(I(y,x,:))”]

DF needs a new inscription: if the relationship between the rectangle and 

the image is not problematic for INT, something else must be. But what? 

As is often during programming episodes, the situation starts to be con-

fusing. To be sure that the rectangle expressed in the Command Window 

at T4 is the right one and not some sort of not-yet-identified artifact, DF 

needs to see this first rectangle when superimposed over the first image. To 

do so, he creates a new line in the Editor and types the small instruction 

“imshow(I(y,x,:)).” He then runs the script:

[DF runs the script]

[figure 4.13—T5]

[figure 4.14]

[DF examines figure 4.14]

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3}
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. imshow(I(y,x,:))
14. x = rect(1):rect(1)+rect(3);
15. y = rect(2):rect(2)+rect(4);
16. R(y,x) = R(y,x) + 1; 
17. end
18. end

ans =
1024   712

rect=
197  91  323  371

Index exceeds matrix 
dimensions

Figure 4.13
Editor and Command Window at T5.
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DF:  “OK. So theoretically, this should be the first rectangle labeled by 

the first worker.”

The new inscription triggered by DF at T5 (figure 4.14) is this time a little 

different. Instead of text, it is a part of an image. More precisely, it is the 

expression of the first rectangle the first worker drew on the first image. 

And just like between T2 and T3, this new inscription allows DF to create 

another inscription, this is time emanating from me:

DF:  “Does it correspond?”

FJ:  “Yes, yes, it does.”

DF:  “OK good. So it definitely blocks somewhere else. Maybe it can’t 

define the second rectangle.”

Having worked on the data of the ground truth for a couple days, I am a 

trustworthy reference: at least for the first image, I know quite well the 

position of the different rectangles. Once again, the articulation and align-

ment of two inscriptions—the first rectangle over the first image and my 

own verification (informed by inscriptions I had previously encountered)—

allow DF to pursue his inquiry into the problematic phenomenon engaging 

INT. If the first rectangle and the part of the code responsible for defining 

it are not what is affecting INT, the problem should lie somewhere else. 

Perhaps in the second rectangle and, more generally, the part of the code 

responsible for defining it? Once again, new inscriptions are required:

Figure 4.14
Output of PROG at T5.
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DF:  “It might be when we define the empty matrix.”

[DF deletes “imshow(I(y,x,:))” on line 13; on line 2, he selects the 

function “zeros,” right clicks on it, and selects “help on selection”]

[figure 4.15]

The new inscription (figure  4.15) is again a little different from those 

appearing in the Command Window. It turns out indeed that the Matlab 

IDE provides access to a “Help on Selection” database that, if connected 

to the internet, displays the correct syntax for each selected function. This 

pop-up window being aligned with the suspect function at line 2, DF can 

use the mouse cursor to compare the correct syntax of the help menu with 

what is written in the Editor:

DF:  “No, no, we did it right. It is somewhere else.”

[DF closes the “help on selection” window]

The comparison between the help menu and the script allows DF to be cer-

tain that INT is not affected by this line of code; the syntax is right, so INT 

is able to understand it. The problem lies somewhere else:

[DF runs the script]

[figure 4.16—T6]

Figure 4.15
Screenshot of “help on selection” as triggered by DF at T5.
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DF:  “Huh, I don’t get it  … There’s only the empty matrix.”

At T6 (figure 4.16), DF is getting a little lost. The new inscription he has just 

produced is difficult to grasp; how does it relate to the previous ones? The 

zeros only refer to the empty matrix “R” that, by definition, cannot become 

too big. This inscription is “not eligible” as one says in law; no relationship 

between this inscription and the previous ones can be established. Some-

thing else has to be tried:

DF:  “It’s so stupid. Sorry, I’m a bit rusty  … I’ll just try another way.”

[at the end of line 15, DF types “= R(y,x) + ones(numel(y), numel(x));”]

DF:  “So basically [to FJ], I do a 1 × 1 matrix that contains one and then I 

repeat it according to the size of the region. It’s very stupid, but at least 

I’m sure it will work. We’ll see if it changes anything.”

[DF runs the script]

[figure 4.17—T7]

DF:  “Well, at least it doesn’t change anything. It doesn’t block here either.”

The experiment of DF is conclusive. At T6 (figure 4.16), he was not totally 

convinced by the instruction at line 15. At T7 (figure 4.17), he tries another 

equivalent “stupid” way to express it. We do not need to dig too far into this 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;

. .

13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) . .
16. end
17. end

0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0
0   0   0   0

Index exceeds matrix 
dimensions

13. imshow(I(x,y,:))
16. =R(y,x) + 1;

Figure 4.16
Editor and Command Window at T6.
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affective aspect of code since we are going to consider it later on in the chap-

ter. At this point, what is more important is that DF used an instruction he 

was certain INT could translate. The solidity of this fact, certainly consolidated 

during his previous experiences with Matlab programming language, allows 

him to equip a new experiment. Once again, when articulated with the previ-

ous inscriptions, the two new inscriptions “ans = 1024 712” and “rect = 197 
91 323 371” are instructive; as they are similar to the ones that appeared at 

T4, DF can conclude that the problematic phenomenon engaging INT does 

not derive from the line 15 of the script. It has to be somewhere else, again:

DF:  “OK, I’ll do something very, very stupid but I just want to see if it’s 

here.”

[DF creates a new line at 7; types “1”; creates a new line at 10; types “2”]

[DF runs the script]

[figure 4.18—T8]

[DF examines the Command Window of figure 4.18—T8]

DF:  “OK. It’s here [at line 9 of figure 4.18—T8]. See? [DF puts the cur-

sor on line 9] It gives ‘1,’ then ‘rect,’ then ‘2,’ then ‘1,’ then stops. It’s 

this ‘j+3’ that becomes too big after the first rectangle. It takes the first 

rectangle, and if the second rectangle is bigger, it just can’t increment.”

At T8 (figure 4.18), the stupid thing pays off: the new inscription successfully 

identifies the source of the problematic phenomenon engaging INT. At 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. rect = users{i,j+3};
9. if size(rect,2) == 0
10. break
11. end
12. j = j+1;
13. x = rect(1):rect(1)+rect(3);
14. y = rect(2):rect(2)+rect(4);
15. R(y,x) = R(y,x) + ones(numel(y),

numel(x));
16. end
17. end

ans =
1024   712

rect=
197  91  323  371

Index exceeds matrix 
dimensions

Figure 4.17
Editor and Command Window at T7.
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line 9, “j+3” becomes too big after the first rectangle, thus disrupting INT in its 

translation efforts. But how does DF make this inference? How does he con-

fidently attribute to line 9 the responsibility of disrupting INT? If we look 

attentively at the Command Window of T8, just as DF does, we see that its 

first series of numbers—“1024” and “712”—expresses the size of “R” as line 

3 of the script in the Editor instructs it. If we continue our examination, 

we see that the subsequent number “1” expresses the instruction “1” as line 

8 instructs it. Then we see that the third series of numbers—“197,” “91,” 

“323,” and “371”—expresses the size of the first rectangle as line 9 instructs 

it. Then the fourth number in the Command Window—“2”—expresses the 

instruction “2” as instructed at line 10. The fifth number—“1”—expresses, 

again, the instruction “1” on line 8. This element is crucial because it shows 

that, at this specific moment, INT is about to deal with the second rectangle. 

And as the last element of the Command Window indicates, as soon as INT 

tries to translate line 9 for the second time, it blocks and prints a red error. 

By sequentially examining the Command Window, what is affecting INT 

becomes for us—as for DF—identifiable: at the second round of the script, 

INT is not able to translate line 9. This last inscription allows DF to attribute 

the origin of the INT-related phenomenon to one specific location.

At this point, it is important to remember that this last inscription—even 

though crucial—did not allow by itself the constitution of a connection 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. size(R)
4. users = images {1,2};
5. for i = 1:size(users), 1)
6. j = 0;
7. while 1
8. 1;
9. rect = users{i,j+3};
10. 2
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3); 
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

numel(x)); 
18. end
19. end

ans =
1024   712

ans =
1 

rect =
197  91  323  371

ans =
2

ans =
1

Index exceeds matrix  
dimensions

Figure 4.18
Editor and Command Window at T8.
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between INT’s red inscription and line 9. It is the addition and the align-

ment of all the previous inscriptions that progressively led to the definition 

of this last inscription. The whole aligning process allowed DF to pinpoint 

the provenance of the phenomenon affecting INT: it cannot translate “j+3” 

at line 9 for the second time.

As some readers may have noticed, in order to account for this small 

programming sequence I used several notions that have been developed in 

the STS literature to describe an a priori very different process: experimental 

practices in scientific laboratories. I now need to discuss this connection 

between laboratory practices and computer programming practices I have 

surreptitiously drawn.

For the last fifty years, many studies of scientific work have underlined 

the centrality of textual documents (Latour and Woolgar 1986), diagrams 

(Netz 2003), graphs (Dennis 1989; Gooday 1990), and notes (Lynch 1985; 

Garfinkel 1981) that I gather here—following Latour (2013)—under the 

umbrella term “inscriptions.” Other important studies also showed the cen-

trality of the instruments and experiments required to produce, confront, 

and articulate these inscriptions (Hacking 1983; Knorr-Cetina and Mulkay 

1983; Collins 1975; Dear 1987; Gooding, Pinch, and Schaffer 1989). And 

still other studies further emphasized the importance of the manipulation 

and circulation of these inscriptions (Latour 1987; Knorr-Cetina 1999) that, 

through comparison, confrontation, alignment—in short, articulation—

sometimes end up forming what Latour (1999a) calls “chains of reference”: 

more or less solidified paths that document, when everything is in place, 

the behavior of some remote entity (e.g., a planet, a virus, a particle). These 

important studies present certified knowledge as being produced and objec-

tive at the same time: thanks to scientific practices—and scientific institu-

tions that support the expression of these practices—knowledge is objective.5

As this short programming sequence seems to indicate, programming 

practices may sometimes—not always—resemble some of the practices 

required for the construction of certified knowledge. Indeed, the production 

of inscriptions—via experiments and instruments—and their comparison 

and alignment in order to produce even more inscriptions echo well with 

what has been observed in scientific laboratories. Little by little, through the 

manipulations, comparisons, and alignments of inscriptions, some access is 

paved out that may allow the characterization of a phenomenon engaging 

a remote entity. In the case of computer programming, this remote entity 
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may vary: it can be, for example, a Matlab interpreter, a C compiler, or an 

Intel microprocessor. At any rate, the common characteristic of these dif

ferent entities is the incredible swiftness of their constitutive relationships. 

Indeed, how is it possible to have a grip on an interpreter, a compiler or—

worst—a processor that executes billions of operations per second? Once 

assembled, these entities are very difficult to grasp; hence the relevance 

of the scientific mode of veridiction to better understand what is affecting 

them. Moreover, I assume that the adoption of laboratory practices during 

computer programming episodes is not a result of the miniaturization of 

electronic components that followed the development of planar process at 

the end of the 1950s (Lécuyer, Brock, and Last 2010). As shown by historical 

studies of early electronic computers made of two-meter-high accumulators 

and multipliers—themselves made of hundreds of resistors connected with 

wires and soldered joints—every short circuit, carry errors, or divider fault 

that occurred during computation episodes had to be identified and located 

through the tedious formation of error reports, inscriptions, and experi-

ments (Haigh, Priestley, and Rope 2014; 2016, 60–83). In these early days of 

electronic computing, programmers also had to align inscriptions to pave 

out an access to the affected component of the system.

Another similarity between scientific practices and the practices of com-

puter programming is a common tendency to forget about the instruments 

that enabled the characterization of the phenomenon under scrutiny. In both 

cases, when the source of a phenomenon has been identified thanks to a 

specific laboratory setting, the practices, instruments, and experiments that 

allowed the formation of the chain of reference are generally put aside (Latour 

and Woolgar 1986, 105–155). This characteristic of science can make its his-

tory difficult to conduct. As established facts are purified from the scaffoldings 

that allowed them to be assembled and solidified in the first place, great may 

be the temptation to start from established facts and extrapolate backward 

(Collins 1975). To empirically grasp the practice of science, it is therefore cru-

cial to consider facts as consequences of specific processes rather than causes 

of prior events (Bloor 1981). To a lesser extent, the same is true for computer 

programming. When the phenomenon engaging the remote entity is charac-

terized; when the problematic location in the script is identified, most of the 

instruments (small bits of code, questions to FJ, “stupid things”) are put aside 

and soon forgotten. At the end of the programming episode, when the script 

is functional and performs as desired, most of these intermediary objects (Vinck 
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2011) are generally left behind. Consequently, if one takes completed scripts 

or programs as starting points for the study of programming, the greater is the 

risk to miss what has been necessary to complete these scripts or programs.6

For the case of computer programming, one may imagine different expres-

sions of the alignment practices I have documented above. Even though I 

conjecture that these expressions still consist in forming chains of reference 

in order to access remote entities and point at specific locations within num-

bered lists of inscriptions, they may not necessary deploy themselves in a 

spatio-temporal landmark that is similar to the one of DF. If we consider for 

example “program testing”—an important industrial process that consists 

in detecting and documenting errors in order to modify lines of code—this 

work can be highly distributed in space and time (Parrington and Roper 1989; 

Myers, Sandler, and Badgett 2011).7 The “bug reports” we often encounter 

when one of our software programs crash for mysterious reasons are other 

expressions of this necessity to align inscriptions because they consist pre-

cisely in documenting at what time and following what actions the program 

fatally affected the interpreter, compiler, or processor. These reports serve as 

first inscriptions that will, in turn, be articulated with another one, and then 

another one, until eventually it indicates one origin of the phenomenon 

within the source code of the program. Moreover, alignment practices can 

also be automated and integrated within the programming languages them-

selves. This is typically the case when an interpreter or compiler indicates 

by itself its breakpoint, the line of the script that negatively affects its tra-

jectory. But if these error reports appear automatic to the programmer, it 

should not be forgotten that they are the product of heteromatic processes 

as the programming teams involved in the maintenance and enhancement 

of programming languages have to cope with alignment of inscriptions in 

order to establish what type of errors should be indexed in the first place.8 

While different in terms of extension and labor involved, these processes of 

program testing, bug reporting, and programming language design are also, 

possibly, about aligning inscriptions and producing chains of reference.

The practice of aligning inscriptions to identify locations within num-

bered lists of written symbols may also explain, at least in part, the obses-

sion of professional programmers with program intelligibility.9 This topic 

has been well documented by Button and Sharrock (1995) in their admira-

ble, yet solitary, study of computer programming practices. As they showed, 

making a program intelligible to other programmers involves conventional 

The MIT Press January 2021



164	 Chapter 4

naming of variables and functions to make its structure readable as an orga

nized and referenced document. It also involves formatting and laying out 

the different functions and parameters of the code to make it easily brows-

able from its visual organization. This also typically includes commenting on 

the program by means of small explicative sentences whose initial symbols 

(“%” for the case of Matlab) allow them to be ignored by interpreters or 

compilers. If the programming sequence we have just been following does 

not directly deal with formatting, laying out, and commenting, it none-

theless specifies what these practices are striving toward. In view of the 

elements presented above, naming, formatting, and commenting all point 

to future moments when they can operate as landmarks directly enrollable 

in the constitution of chains of reference. These marks may thus form an 

additional referential infrastructure capable of accelerating alignment work 

in the event of a future negative affection of an interpreter or a compiler 

(which is likely to happen in corporate settings where complex programs 

have to be maintained and enhanced).

But are the alignment practices of computer programming equivalent to 

the laboratory practices in the sciences? Of course not, and it is now time 

to present an important difference between them. Whereas the alignment 

practices of programming lead to the identification of a location within a 

script, scientific laboratory practices generally lead to the definition of new 

objects whose properties and contours are later presented in academic papers 

and discussed among peers. We will come back to this crucial aspect of the 

formation of scientific knowledge when we will consider mathematics in 

chapters 5 and 6. For now, suffice it to say that whereas both impetuses 

and outcomes of alignment practices in computer programming mainly 

concern programmers who try to complete adequate scripts, alignment 

practices in scientific laboratories are turned toward the completion of per-

suasive written claims. Scientific laboratories are always counter-laboratories 

(Latour 1987, 79–100): they are also to be understood as a means to publish 

stronger claims than their competitors. The agonistic aspect of laboratory 

practices in the sciences that constantly try to establish what should count 

as natural must then be demarcated from the self-referential aspect of labo-

ratory practices in computer programming: While scientists try to make 

a case for the objective reality of the phenomena they practically make 

appear, programmers try to follow a scenario they are attached to (more 

on this later). In short, the networks in which scientists and programmers 
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participate are, I believe, quite dissimilar. Whereas alignment of inscrip-

tions in the sciences support the publication of claims, alignment practices 

in computer programming support the completion of a technical artifact 

that yet needs to be intelligible in corporate settings.

The analogy between scientific and programming practices therefore has 

its limits. Yet I also believe that both practices share some crucial—and 

quite surprising—similarities, both allowing the formation of chains of ref-

erence and access to remote beings. And just like scientific work, computer 

programming cannot be reduced to this specific type of practice. Indeed, 

once the remote entity has been reached, once the problematic location has 

been localized, many operations still need to be conducted. In this respect, 

aligning inscriptions is only a small part of the activity of programming.

Technical Detours

We saw in the previous section that sometimes, during programming epi-

sodes, when a small, swift, and difficult-to-grasp entity (e.g., an interpreter, 

a compiler, a microprocessor) is affected in its trajectory to the point of not 

being able to trigger electric pulses for the computation of data anymore, 

programmers need to multiply inscriptions, align them, and pile them up 

until the inscriptions constitute some access to the entity—access that, in 

turn, indicates a location within the script. But what happens next?

In this section, we will focus on another set of practices deployed dur-

ing programming episodes. While this set of practices surely goes along 

the alignment of inscriptions, it has different implications. Whereas the 

scientific aspect of programming involves the addition and alignment of 

inscriptions (experiments, confirmations, “stupid things”) in order to reach 

a remote entity, what I shall call the technical aspect of programming involves 

the inclusion and substitution of entities to get around impasses. Once 

again, this odd sentence will hopefully become clearer as the chapter goes 

on. For now, we shall continue to follow PROG, starting exactly when the 

previous sequence ended:

[DF examines the Command Window of figure 4.18—T8]

DF:  “It is this ‘j+3’ that becomes too big after the first rectangle. It takes 

the first rectangle and if the second rectangle is bigger, it just can’t incre-

ment. So I’ll just put in some order.”
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[DF deletes lines 3, 8 and 10; deletes “;” at the end of line 9]

[DF runs the script]

[figure 4.19—T9]

DF:  “OK, we just need to change a few things.”

As we saw in the previous section, DF managed to localize the line of the 

script that is badly affecting INT. Several inscriptions had to be produced 

and aligned in order to establish this certified knowledge. But these inscrip-

tions are now useless; they were only relevant as part of DF’s quasi-scientific 

inquiry into INT. It is now time for DF to really change a few things in the 

script. To do so, he starts by putting in some order and deleting the instruc-

tions that were used to him as experimental instruments (figure 4.19).

At this point of the chapter, to account for what happens next, I need 

to introduce a complementary notation that will allow us to have a better 

grip on the technical innovations DF is about to conduct. Following results 

of historical and sociological studies of technical projects, the notation I 

will draw on has been proposed during the 1990s as an attempt to illustrate 

the evolution of technical projects without using the traditional and prob-

lematic distinction between nature and society (Latour, Mauguin, and Teil 

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));

.

3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1

..

7. rect = users{i,j+3}..
.

8. if size(rect,2) == 0
9.

10.

11.

12.

13.

14.

break
end
j = j+1;
x = rect(1):rect(1)+rect(3);
y = rect(2):rect(2)+rect(4);
R(y,x) = R(y,x) + ones(numel(y),               
numel(x));

15. end
16. end

Index exceeds matrix 
dimensions

3. size(R)
8. 1
10. 2

Figure 4.19
Editor and Command Window at T9.
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1992). We do not need to understand all the subtleties of this mapping that, 

by the way, never really took off.10 For what interests us here, we shall only 

cover the basic principles of these so-called sociotechnical graphs (STGs).

One of the results of the studies of sociotechnical projects was to show 

that the trajectories of such projects are a function of their capacity to enroll 

new actants—human or nonhuman entities—in order to overcome critical 

impasses (Akrich 1989; Callon 1986; Latour 1993a). Historical examples of 

such enrollments are legion: in order for American Bell to prevail over West-

ern Union in the development of the telephone network in the United States, 

it had to enroll—after many lawsuits—crucial telephone patents within its 

sociotechnical network (Brooks 1976). By enabling the production of highly 

reliable and flexible switching transistors, the planar process allowed Fair-

child Semiconductor to become a commercial partner of the US Air Force 

(Lécuyer, Brock, and Last 2010). By enrolling the time-sharing technology as 

developed at MIT at the beginning of the 1960s, John Kemeny and his team 

were able to pursue the development of the BASIC programming language 

at Dartmouth College (Montfort et al. 2013, 158–194). For each example, 

a specific actant—a set of telephone patents, the planar process, the time-

sharing technology—is enrolled, and this, in turn, makes the project slightly 

shift. One important credit to the history and sociology of technologies is 

to have successively demonstrated how crucial the inclusion of new actants 

for the development of technical projects is—may they be huge as the elec-

trification of the United States at the end of the nineteenth century (Hughes 

1983; Nye 1992) or small as the installation of a road bump (Latour 2006).

Yet, this “latitudinal” dimension of technical projects enrolling new 

actants in order to develop and expand would be incomplete without an 

orthogonal “longitudinal” dimension expressing the transformations sug-

gested by the newly enrolled actants. Another crucial result of the history 

and sociology of technical projects is indeed that the inclusion of new actants 

simultaneously modifies the relationships among the previous actants of the 

project, thus potentially creating new impasses. Using the examples of the 

previous paragraph, Bell’s technical system was transformed by the inclusion 

of telephone patents: the previously tiny network became a potential mono

poly over telephone communications in the United States, hence necessitat-

ing further reconfigurations so as not to be the target of antitrust lawsuits by 

the US Department of Justice (Gertner 2013). Fairchild Semiconductor was 

fundamentally transformed by the inclusion of the planar process: it became 
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a powerful entity soon capable of industrial production of integrated cir

cuits. These production capacities participated, in turn, in the development 

of intercontinental ballistic missiles, and this further created an explosion of 

the demand for integrated circuits and the progressive formation of serious 

competitors (most notably, Texas Instruments and Motorola; see Campbell-

Kelly et al. 2013, 210–225). Similarly, the inclusion of time-sharing technol-

ogy within Dartmouth’s computer system greatly participated in the design of 

the BASIC programming language by considerably increasing its beta testing. 

But the inclusion of the actant “time sharing” also transformed Dartmouth’s 

computing infrastructure, which, by allowing its extensive utilization by 

students, soon started to be used for original computer-game experiments 

(Montfort et al. 2013, 165–194). More than just enrolling (or losing) actants, 

technical projects are also modified by them. And just like the latitude—

inclusive—axis of technical projects, this longitude—transformative—axis 

does not only concern large and highly complex technological systems: small 

mundane projects are also affected by it (Latour 1992).

Building on this dual aspect of technical projects as well as concepts bor-

rowed from linguistics, the proponents of STGs proposed a way to map the 

development of technical projects according to two dimensions: a syntagmatic 

dimension and a paradigmatic dimension. The first dimension (syntagmatic) 

of STG is defined by specific assemblages of actants at a certain time T. 

This configuration of actants at a time T is specific to each technical proj

ect and should therefore be supported by a narrative that exposes the whys 

and wherefores of the project being considered. As this dimension expresses 

association among variables, it can be called the AND dimension. The con-

figuration of actants in the AND dimension is separated into two branches: 

the “allies” whose configuration participates in the development of the proj

ect and the “opponents” whose configuration constitutes an obstacle to the 

completion of the project. Again, which actant counts as an ally or as an 

opponent to the development of the project depends on the narrative the 

STG is only summarizing (Latour, Mauguin, and Teil 1992, 39). The bound-

ary that separates allies’ configuration of actants and opponents’ configura-

tion of actants constitutes the “frontline” of the technical project at time T.

The second (paradigmatic; nothing to do with Thomas Kuhn’s notion) 

dimension is defined by the substitutions that have occurred in both allies’ 

and opponents’ configurations at time T + 1. Since this dimension expresses 

substitution of variables, it can be called the OR dimension. Depending on 
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the fluctuation of allies’ and opponents’ configurations at T + 1, the front-

line of the technical project may also fluctuate. Once again, which actant 

is substituted by another, thus potentially making the frontline fluctuate, 

depends on the narrative of the technical project.

Two other elements are necessary to translate the narrative of a technical 

project into an STG: a specified point of view and what I call a “scenario.” 

First, the point of view of the actant whose view on the project is being 

summarized by the STG has to be specified. In that sense, for any given 

narrative about a technical project, if this narrative takes the point of view 

of many different actants, each point of view can (potentially) be mapped 

by one specific STG. Second, the desire of the actant whose point of view is 

being mapped also has to be specified. This topic is a tricky one and will be 

further developed in the next section of this chapter. For now, suffice it to 

say that what the actant wants to achieve, the future it wants to live in, the 

scenario to which it is attached should be specified in each STG.

Let us now try to adapt these theoretical elements to the project that 

interests us here: DF’s project to complete PROG. If we consider T8 and 

the whole narrative that precedes it, we might be able to translate it into 

an STG summarizing DF’s allies and opponents. The first element of the 

graph should indicate the point of view that it re-presents. Contrary to 

most narratives about large technical systems where many points of view 

are considered and confronted, our small narrative only accounts for the 

point of view of DF. The second element of the graph should be the scenario 

to which DF is attached. As already touched upon in the previous section, 

we know that DF’s scenario for PROG can be summarized as such: “Creating 

a matrix whose pixel-values correspond to the numbers of rectangles drawn 

by workers on each pixel.” Concerning the actants: every instruction of the 

script can be considered an actant as they all make INT do things. But other 

actants might also be included in the graph as long as they impact on the 

project as framed by its scenario. In that sense, the red inscriptions printed 

in the Command line and what these inscriptions refer to according to DF 

as well as the final actions the script is intended to accomplish on the data 

of the .txt file can also be included in the STG. Moreover, as the narrative of 

the script-project indicates that several instructions are now stabilized, we 

may consider these “stable packages” of instructions as one single actant. 

If we consider these elements altogether and adapt them for T8, we end up 

with a diagram that looks like figure 4.20.
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It is important to remember that the STG mapping of T8 is a simplifica-

tion of T8 as initially presented in its Matlab view and enriched by DF’s 

sayings. As any simplification, it omits many elements. But as many sim-

plifications, it may also work as an instrument to identify key features of 

messy processes (Star 1983).

From this point, based on the narrative presented above, we can include 

T9 in the STG graph, thus slightly modifying the configurations of allies 

and opponents (see figure 4.21).

For each remaining T of this programming sequence, I will first present 

its complete narrative (simplified Matlab IDE and transcriptions of DF’s 

sayings), discuss it shortly, and then present its STG translation. As both 

“point of view” and “scenario” will not change throughout the program-

ming sequence, I will ignore them from now on. Moreover, in every new 

STG, I shall highlight the newly enrolled actant in bold. At the very end 

of the programming sequence, when DF will have completed PROG, the 

succession of all the STGs should allow us to detect another set of practices 

deployed by programmers that goes along with the alignment of inscrip-

tions while being, I believe, fundamentally different.

Create a matrix whose pixel-values correspond to the numbers of rectangles
drawn by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

Figure 4.20
STG of T8. “A” refers to PROG lines 1, 2, and 4 (stabilized since T0); “B” refers to 

line 3; “C” refers to lines 5, 6, and 7 (stabilized since T0); “D” refers to line 8; “E” 

refers to line 9; “F” refers to line 10; “G” refers to lines 11, 12, 13 (stabilized since 

T0); “H” refers to lines 14, 15, 16, 17, 18, 19 (stabilized since T6); “W” refers to the 

inscription “Index exceeds matrix dimensions”; “X” refers to DF’s assertions “the 

second rectangle is too big for INT”; “Y” refers to DF’s assertion “rectangles cannot 

increment the values of the matrix”; and “Z” refers to the script’s incapacity to follow 

the desired scenario.
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Let us continue to follow DF as he tries to shape PROG:

DF:  “We’re gonna do it like this.”

[DF creates a new line at 7]

DF:  “If ‘j+3’ is larger”

[at line 7, types “if j+3 >”]

DF:  “than the size of the cell of the user”

[at line 7, types “size(users{j})”]

DF:  “then it goes over it”

[DF creates a new line at 8; types “break”]

[DF runs the script]

[figure 4.22—T10]

[DF examines Command Window of figure 4.22—T10]

DF:  “Argh, of course. I shouldn’t take ‘j.’ Can’t define anything that way.”

At T10 (figure 4.22), DF enrolls a new actant: the “if” statement that starts 

at line 7 and ends at line 9. Since, at this point, he knows for a fact that INT is 

blocked if the second rectangle is bigger than the first one, the addition of a 

conditional statement that could ask INT to go over this dimension problem 

makes complete sense. The addition of an “if” statement would thus allow 

INT to continue its interpretation of the script even though it encounters a 

rectangle bigger than the previous one. But as the red inscription and DF’s 

Create a matrix whose pixel-values correspond to the numbers of rectangles drawn
by workers on each pixel

Point of view of DF

Scenario:

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

Figure 4.21
STG of T8 and T9.
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saying indicate, the statement was inappropriately expressed: DF should 

not have taken “j” as the size variable of “users” since it already equals to 

zero at line 5. The consequence of this attribution mistake is that INT can-

not define anything. No rectangle can be defined, and the matrix cannot, in 

turn, be incremented.

If we map T10 as an STG in line with T8 and T9, we obtain figure 4.23. 

Looking at it, we can see that new actants have appeared and created differ-

ences in the project, slightly altering its frontline. In the allies’ configuration, 

“I” has been added by DF in order to get around the configuration of “W,” 

“X,” “Y,” and “Z.” But if this new actant made “W” and “X” disappear—that 

is, the index does not exceed the matrix dimension anymore, and the second 

rectangle is not too big anymore—it is only by making two new opponents 

appear: “V” and “U.” “Y” and “Z” are then still solidly opposing resistance to 

DF’s project since, at this point, no rectangle can be defined.

Let us continue:

[at line 7, DF deletes “users, {j})”]

DF: “Actually, the size of the cell should just be ‘users, 2’ ”

[at line 7, types “users,2)”]

[runs the script],

[figure 4.24—T11]

DF:  “OK, it may work.”

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, {j})
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

. numel(x));
18. end
19. end

Cell contents indices 
must be greater than 
0

Figure 4.22
Editor and Command Window at T10.
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T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

Figure 4.23
STG of T8, T9, and T10. At T10, “I” refers to lines 7 to 9; “V” refers to the inscription 

“cell contents indices must be greater than 0”; and “U” refers to DF’s asser-

tion “nothing can be defined.”

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

numel(x));
18. end
19. end

>>

7. size(users, {j})

Figure 4.24
Editor and Command Window at T11.
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At T11 (figure  4.24), DF modifies the conditional instruction: instead of 

referring to “j,” the size of the new rectangle now refers to the second value 

of the cell, “users.” We do not need to understand precisely what this value 

and cell refer to. The important thing at T11 is that the inclusion of a new 

actant—the modified “if” statement—creates an important difference: INT 

does not print a red inscription anymore. This indicates that INT has man-

aged to translate every line, thus triggering electronic computation on the 

data of the .txt files. At this point, then, it may work: the rectangles may 

increment the empty matrix. But it is not over yet since, symmetrically, it 

may also not work. Since the Command Window does not provide any indi-

cation about the incrementation of the empty matrix, something else may 

also have happened.

If we continue our STG re-presentation of this programming sequence 

by including T11, we obtain figure 4.25. Several changes affected the allies’ 

configuration at T11. “I” disappeared: DF deleted it because it made oppo-

nents disappear only by making new ones appear. But two new actants 

are included: “J” that corresponds to the new conditional statement and 

“K” that corresponds to the absence of any error inscription within the 

Command Window (and, corollary, to DF’s assertion that “it may work”). 

Did this new configuration of allies managed to get around the configura-

tion of opponents? Only partially since the incertitude suggested by “K” 

has its corollary: as there is no indication in the Command Window, the 

script may also not work (“T”), that is, it may not increment the empty 

matrix properly. As a consequence, “Z”—“the script does not follow the 

scenario”—holds on. At this point, DF still needs to include something else; 

he still needs to pursue his project by other means in order to get around the 

impasse constituted by “T” and “Z.”

Let us continue to follow DF:

DF:  “But I just need to be sure.”

[creates a line 20; types “imshow(R)”]

[runs the script]

[figure 4.26—T12 and figure 4.27]

FJ:  “This is close!”

DF:  “Yep. But it clips after the value 1.”

FJ:  “Clips?”
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T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

Figure 4.25
STG of T8, T9, T10, and T11. At T11, “J” refers to the new “if” statement at lines 7 

to 9; “K” refers to DF’s assertion that “it may work”; and “T” refers to DF’s implicit 

assertion that, symmetrically, “it may not work.”

1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

. numel(x));
18. end
19. end
20. imshow(R)

>>

Figure 4.26
Editor and Command Window at T12.
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DF:  “Yes, it often does that. Basically, it doesn’t consider anything above 

1. I mean, the matrix may have values more than one, but it does not 

show it on the image.”

At T12 (figure 4.26), DF adds a new instruction—“imshow(R)”—that asks INT 

to print an image of the incremented matrix (figure 4.27). The results are 

convincing as well as disappointing. The positive thing is that a matrix has 

effectively been incremented. The image printed by INT attests to this: it has 

differentiated values that together form a white shape. But the negative thing 

is that this image has only binary values: ones forming the white shape and 

zeros forming the black background. According to DF, INT is once again the 

cause of this problem: by clipping after the value 1 the printed image can only 

be binary. In these conditions, it is difficult to know what values constitute 

the incremented matrix. At this point, again, DF needs to include something 

else in the script in order to make it follow the desired scenario.

Let us have a look on the STG to get a condensed look on what has just 

happened (figure 4.28). The configuration of allies has again expanded: “L” 

and “M” allowed DF to be sure that the rectangles increment the matrix. 

Figure 4.27
Screenshot of the output of PROG at T12.
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This, in turn, made “T” disappear so that no incertitude remains concern-

ing this aspect of the project. But the binary characteristic of “M” made “R” 

appear in the configuration of opponents: for unknown reasons, INT clips 

after one. This, in turn, creates “S,” the incertitude about the incrementing 

capability of the script that may stop after “1.” In these conditions, Z remains, 

and the script is still not following the desired scenario. Once again, DF has no 

choice: he has to enroll something else to the configuration of allies; he has to 

delegate the work-around of “R,” “S,” and “Z” to a new actant.

With these elements in mind, let us continue:

DF:  “So I’ll just try to divide the value of ‘R’ by the maximal value of the 

matrix. If it has other values than one, it should show it.”

[at line 20, types “/max(R(:))”]

[runs the script]

[figure 4.29—T13 and figure 4.30]

DF:  “All right, this is the right image of the matrix. This is it.”

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

Figure 4.28
STG of T8, T9, T10, T11, and T12. At T12, “L” refers to the instruction “imshow(R)” at 

line 20; “M” refers to the binary image of the matrix output by PROG; “N” refers to 

DF’s conclusion that rectangles do increment the matrix; “R” refers to DF’s assertion 

that INT “clipps” after 1; and “S” refers to the DF’s saying that the matrix should not 

have only binary values.
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1. I = imread(images{1}); 
2. R = zeros(size(I,1), size(I,2));
3. users = images {1,2};
4. for i = 1:size(users), 1)
5. j = 0;
6. while 1
7. if j+3 > size(users, 2)
8. break
9. end
10. rect = users{i,j+3};;
11. if size(rect,2) == 0
12. break
13. end
14. j = j+1;
15. x = rect(1):rect(1)+rect(3);
16. y = rect(2):rect(2)+rect(4);
17. R(y,x) = R(y,x) + ones(numel(y),               

. numel(x));
18. end
19. end
20. imshow(R / max(R(:)))

>>

Figure 4.29
Editor and Command Window at T13.

Figure 4.30
Screenshot of the output of PROG at T13.
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By including this last small bit of code—“/max(R(:))”—DF manages to 

complete the script (figure 4.29). No incertitude remains: the matrix is cor-

rectly incremented as the new output image shows (figure 4.30). DF thus 

successfully managed to make INT design an empty matrix according to 

width and height values; define rectangles from width, height, and position 

values; and use these rectangles to successively increment the pixel-values 

of the matrix. Several technical operations had to be conducted but, in the 

end, the project fulfilled its initial ambitions. At this point, the script can be 

considered a technical artifact that does something definable.

If we take a look at the STG (figure 4.31), we see that the inclusion of 

“/max(R(:))” managed to get around the impasse previously formed by “R,” 

“S,” and “Z.” At T13, the inclusion of “O” and its corollary “P” made “R,” 

“S,” and “Z” disappear. The addition of the instruction “/max(R(:))” made 

T8 A B C D E F G H W X Y Z

Allies Opponents

OR

AND

A C E G HT9 W X Y Z

A C E G HT10 I V U Y Z

T11 A C E G H J K T Z

T12 A C E G H J L M N R S Z

T13 A C E G H J L M N O P Q

Figure 4.31
STG of T8, T9, T10, T11, T12, and T13. At T13, “O” refers to the instruction “/max(R(:))”; 

“P” refers the output image generated by PROG; and “Q” refers to the fulfillment of 

PROG’s scenario: now, the pixel-values of the new matrix correspond to the number 

of rectangles drawn by workers on each pixel.
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INT print a gray-scale image of the matrix, hence showing DF that its values 

do indeed variate between zero and the total number of rectangles drawn 

by the crowdworkers. All the opponents to the project have been replaced 

by allies; all dead-ends have been bypassed. The scenario is followed. As DF 

puts it, “this is it.” The programming sequence is over.

What do these STGs add to our analysis of this programming sequence? 

What does this simplification allow us to see? While the previous section 

put the emphasis on the scientific moment of programming practices, I 

assume that the present section puts the emphasis on the technical moment 

of programming practices. Are scientific and technical practices different? In 

the middle of the action, they surely overlap to the point of appearing simi-

lar. But, following Latour (2013), I nonetheless assume that both express 

themselves quite differently.

We saw that the surprising similitude between the laboratory practices 

of science and the practices of programming lies in that they both multi-

ply and align inscriptions in order to shape chains of reference, thereby 

allowing the assemblage of information about remote entities. Even though 

both activities cannot be considered equivalent, I believe they echo well 

with each other: both sometimes produce and align inscriptions in order to 

access remote beings.

Although the sequence we have just documented required the formation 

of a (small) chain of reference in order to be initiated, I assume the sequence 

also expressed something radically different. At T9, DF needed to change 

things in the script. What did he do? At each T, he included new actants and 

delegated actions to them in order to get around impasses that were obstruct-

ing the following of the scenario. The practices involved in this sequence 

did not tend toward gaining knowledge about these impasses; they tended 

toward finding ways to get around them. This is precisely why STGs were, 

in the end, instructive tools: by simplifying the narrative, they allowed to 

follow these successive shifts, this constant zigzag that expressed the enroll-

ment of new entities, the delegation they implied, and the work-arounds 

they triggered. The script, once completed at T13, became a technical arti-

fact. But it was only through technical practices, ingenious inclusions, del

egations, and work-arounds that such an artifact could come to existence. 

Along with the finished script, thanks to the simplification provided by the 

STGs, we can glance at the lightning strike drawn by DF and its technical 

actions (figure 4.32).
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The sequence was not linear; it was rhythmed by breaks of continuity 

that vanished at soon as the script was completed. Just as chains of refer-

ence are ignored as soon as they allowed the constitution of an informa-

tion about a remote being, the constant shifts, inclusions, delegations, and 

work-arounds of technical practices are made invisible once they allowed 

the completion of the artifact. Here lies, I believe, a serious limitation of 

the studies of programming that only consider the results of programming 

tests (see chapter  3). By only considering the final technical object (the 

finished script), they cannot grasp the practices that were necessary to the 

technicality of this object. It is only by going backward from the artifact to 

the detours that have constantly modified its form, thus making it singular, 

that we may capture the technical aspect of computer programming. Any 

working script holds thanks to all the now-invisible allies that were added 

to each configuration in order to get around—one may even say, in order 

to hack (Nissenbaum 2004)—now also-invisible opponents. Just as the pro-

liferation and alignment of inscriptions made DF become knowledge-able, 

T 8

T 9

T 10

T 11

T 12

T 13

Figure 4.32
Technical zigzag of DF while assembling PROG.
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the technical detours made him in-genious: by catching entities—jinns—

and enrolling them in work-arounds, he was able to include allies and get 

around opponents, thus drawing a dazzling zigzag.

It is interesting to note that these types of technical moments, when pro-

gramming is about the drawing of a zigzag, are often the most appreciated ones. 

While the construction of chains of reference can be very frustrating—the 

inscriptions keep piling up without forming any reliable chain of reference—

the practices involved in the drawing of zigzags often appears more playful. 

Unfortunately, I cannot support this claim by any empirical materials; this 

would imply the presentation of many other programming figures that are 

already too numerous at this point in the chapter. But in one of her literary 

accounts of programming affects, Ellen Ullman nicely expressed this feeling 

programmers often experience when they are engaged into technical detours 

that are very difficult to catch once the artifact is completed:

“Damn! The NULL case!”

“And if not we’re out of the text field and they hit space—”

“—yeah, like for—”

“—no parameter—”

“Hell!”

“So what if we space-pad?”

“I don’t know. … Wait a minute!”

“Yeah, we could space-pad—”

“—and do space as numeric.”

“Yes! We’ll call SendKey(space) to—”

“—the numeric object.”

…

“No, no, no, no. What if the members of the set start with spaces. Oh, God.”

He is as near to naked despair as has ever been shown to me by anyone not 

in a film. Here, in that place, we have no shame. He has seen me sleeping on the 

floor, drooling. We have both seen Danny’s puffy, white midsection—young as 

he is, it’s a pity—when he stripped to his underwear in the heat of the machine 

room. I have seen Joel’s dandruff, light coating of cat fur on his clothes, noticed 

things about his body I should not. And I’m sure he’s seen my sticky hair, noticed 

how dull I look without make-up, caught sight of other details too intimate to 

mention. Still, none of this matters anymore. Our bodies were abandoned long 

ago, reduced to hunger and sleeplessness and the ravages of sitting for hours at 

a keyboard and a mouse. Our physical selves have been battered away. Now we 

know each other in one way and one way only: the code.

Besides, I know I can now give him pleasure of an order which is rare in any 

life: I am about to save him from despair.
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“No problem,” I say evenly. I put my hand on his shoulder, intending a ges-

ture of reassurance. “The parameters never start with a space.”

It is just as I hoped. His despair vanishes. He becomes electric, turns to the key-

board and begins to type at a rapid speed. Now he is gone from me. He is disap-

pearing into the code. (Ullman 2012, 8–9; italics added)

In this literary excerpt, an information is progressively being assembled—

the narrator provides the very last inscription (“The parameters never start 

with a space”)—and a location is, in turn, defined: let entities be enrolled, 

actions be delegated, and opponents be gotten around. And the joyful tech-

nical lightning strike soon unfolds.

Let the reader forgive me if I rave a little at this point of the chapter, but 

both technical and scientific practices as documented in these two sections 

provide such a refreshing perspective on computer programming that it is 

difficult for me to remain placid. We see indeed how the standard cognitive-

behavioral framing of computer programming as a problem-solving process 

(cf. chapter 3) can be misleading. Programmers may never solve any prob

lem; when confronted to a remote entity that refuses to generate electric 

pulses on data, they more or less collectively constitute a chain of refer-

ence that, if equipped enough, may indicate a problematic location, a loca-

tion that, in turn, may trigger the enrollment of new actants and technical 

work-arounds of impasses. Nothing is solved; something is located, thus 

eventually triggering the drawing of a zigzag that will soon be forgotten. 

“Problem solving” and even the likable expression “debugging” may both 

miss the point: by amalgamating two different and equally important sets 

of practices, they may not adequately catch the subtle practical tempos a 

programmer goes through when defining appropriate lists of instructions.

Yet, despite my enthusiasm, this tentative model still lacks something 

crucial. Indeed, where does this “appropriateness” come from? Is it not 

something I surreptitiously invoke from outside, without defining its attri-

butes? At this point, it surely is. Fortunately, this is precisely the topic of the 

next section of this chapter.

Attached to a Scenario

We have seen so far that programming can be viewed as the expression of 

two sets of intimately related practices. The first set implies the multiplica-

tion and alignment of inscriptions in order to assemble chains of reference 
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that can provide information about remote entities whose trajectories are 

affected in undesirable ways. These practices echo well, to some degree, 

with some of the laboratory practices required for the construction of sci-

entific facts. The second set of practices—much more difficult to capture—

implies the inclusion of new actants in order to get around impasses. These 

practices of inclusion, delegation, and bypassing echo well, to some degree, 

with practices required for the running of technical projects. From this 

point, we may conjecture that during a computer programming episode, 

scientific and technical practices are intimately articulated, the program-

mer constantly shifting from one mode to the other. This tentative but 

empirical look at computer programming unfolds many crucial elements—

inscriptions, chains of reference, impasses, detours—that most standard 

takes on computer programming do not stress.

At this point of the chapter though, something essential to computer 

programming is still taken for granted. While I keep on talking about “pro-

gramming episodes,” what defines the limits and the scope of such epi-

sodes? Where do these “meta-instructions” that establish the boundaries 

of the programming episodes come from? What is this wind that pushes 

programmers in the back, making them inquire into remote entities, enroll 

actants, and get around impasses? In the previous section of the chapter, 

readers may have noticed that I surreptitiously used the term “program-

ming project” to speak about the technical skills DF was deploying for the 

composition of PROG. But where does this projection come from? At this 

point, this aspiration, this desire shall not be ignored anymore. It is time 

now to address the issues of projection and attachment without which there 

would simply be no programming practices.

Lucy Suchman thoroughly explored this relationship between projects 

and situated actions or, as she put it, “the utility of projecting future actions 

and the reliance of those projections on a further horizon of activity they do 

not exhaustively specify” (Suchman 2007, 19; emphasis in the original). Ini-

tially struggling against mid-1980s artificial intelligence experts who tended 

to consider the relationship between plans and actions as deterministic—

the former rigorously defining the latter—she proposed an alternative view 

of plans as resources that set up horizons without specifying the actions 

required to reach them. To clarify her proposition, she used the example 

of canoe:
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In planning to run a series of rapids in a canoe, one is very likely to sit for a while 

above the falls and plan one’s descent. The plan might go something like “I get 

as far over to the left as possible, try to make it around that next bunch.” A great 

deal of deliberation, discussion, simulation, and reconstruction may go into such 

a plan. But however detailed, the plan stops short of the actual business of get-

ting your canoe through the falls. When it really comes down to the details of 

responding to currents and handling a canoe, you effectively abandon the plan 

and fall back on whatever embodied skills are available to you. The purpose of the 

plan in this case is not to get your canoe through the rapids, but rather to orient 

you in such a way that you can obtain the best possible position from which to 

use those embodied skills on which, in the final analysis, your success depends. 

(Suchman 2007, 72)

Plans do not determine actions. Rather, by suggesting future orientations, 

plans help express skills in appreciable conditions. Moreover, building on 

Suchman’s example, we can also assume that plans create something like 

another world, another layer of existence: by telling stories, plans express 

figures that could not exist without them. Before running the rapids, when 

I am expressing my plan above the fall, I am projected into another space 

(“into the rapids,” “as far over to the left as possible”), another time (“later”), 

and toward other human and nonhuman actants (“me, alive, at the end of 

the rapids,” “the canoe, struggling to get around the next bunch,” “the 

powerful rapids I—hopefully—managed to run”). In this respect, by estab-

lishing a triple shifting out (Latour 2013, 234–257) into other space and 

time, and toward other actants, plans are also narratives that help us engage 

into desirable processes.

Yet this definition of plans as narratives establishing desirable hori-

zons without specifying how to reach them is still quite loose. In what 

sense are these narratives different from, say, bedtime stories for children 

or Hollywood mega-productions? What specific transformations do plans-

narratives institute? How do we address the modifications they suggest? 

To better understand the specificity of these narratives—or, as I will soon 

call them, these scenarios—we shall consider the narrative DF constructed 

for the completion of PROG. One point of departure could be two days 

before the programming episode we have followed in the last sections. At 

that time, I was struggling with the data I had previously collected from a 

crowdsourcing task. Unable to make sense of these data, I asked the director 

of the Lab (DIR) for some advice:
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Thursday February 4, 2016, at the office of DIR

FJ:  The thing is that I am still struggling to find measures that could 

make sense of the variations of the rectangles drawn by the workers [and] 

depending on the images.11 Because at this point, I have this kind of result:

[FJ shows images on his laptop to DIR, see figure 4.33]

FJ:  But the rectangles vary both in terms of size and alignment. That 

is, some rectangles are well aligned and small compared to the image; 

others are aligned but vary in terms of dimensions; others are aligned but 

in groups of different sizes; and others are just spread out everywhere.

DIR:  Well, there’s surely a way to measure how much overlap there is. But 

in any case, you should get other views than these. You can’t see anything 

here.

…

�There are many ways; but for example, you could go through each pixel 

and see how often they are in a rectangle. And once you get these graphs, 

we can help you find a measure that explains the variations.

FJ:  You mean, something like getting for each pixel, the relative differ-

ence of the number of rectangles they are part of?

DIR:  Yes. Or rather, I guess in your case, for each image, the proportion 

of pixels that are part of one rectangle, two rectangles, and so on.  … 

And then you can get gray-scale images, or graphs like histograms. For 

example, assume you’re giving zero to every pixel that is labeled by no 

one, one for every pixel that is labeled by only one worker, etc. You add 

this up and you’ll get a maximum or, like twenty. Then you can normal-

ize between zero and one or do other things. But for now at least, you 

should get better matrices from these images.

DIR’s advice was clear: if I wanted to find correlations between the pixel-

values of the images and the rectangles drawn by the workers, the very first 

step was to simplify the collected results through the design of better matri-

ces. But how should these matrices be designed? This issue was the raison 

d’être of PROG: in order to define simpler/better matrices whose values can 

be expressed by graphs, PROG should instruct my computer to transform 

the values of each image and its associated rectangles. In short, the graphs 

that could help me explain the dispersion/alignment of rectangles required 

matrices that still needed to be designed computationally by an instructed 
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Figure 4.33
Sample of labeled images shown to DIR.
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computer. The first narrative—or plan—that further supported the formula-

tion of PROG can thus be summarized as such: “FJ shall make a computer 

assemble matrices whose pixel-values correspond to the number of rect-

angles each pixel is part of.”

I soon tried to write this program that could help me have a better grip 

on the data I had collected but was soon confronted to my incapacity to 

specify the problem with Matlab. What should be the first step? And the 

second step? Using the project’s helping clause that allowed me to ask for 

help whenever I needed to (cf. above), I sent an email to DF:

Monday, January 15, 2016. Email from FJ to DF, header “Struggling with 

Matlab.  …”

Hi DF,

For my project I need to process each pixel of each image individually in 

order to count how many rectangles belong to each pixel. I got the idea, 

I think, but am still struggling with Matlab to write the script. Would 

you have some time to help me do it? That’d be great!

Have a great day,

FJ

Monday, January 15, 2016. Email from DF to FJ, header “Struggling with 

Matlab.  …”

Hi Florian,

No problem. What about this afternoon then? It should be quite easy. 

We’ll check this together.

DF

Monday, January, 15, 2016. Email from DF to FJ, header “Struggling 

with Matlab.  …”

This afternoon is great. I’ll be in my office. Come whenever you want.

See you then!

FJ

A couple of hours later, DF arrived at my office. Before starting to program, 

he told me what he intended to do:

DF:  “Well, I think I know how to compute this. It shouldn’t be difficult. 

So for each rectangle, we have the x and y coordinates right?”
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FJ:  “Well, a rectangle is defined by four values”

DF:  “Yes so x and y [coordinates] and then the size, right?”

FJ:  “Yes.”

DF:  “So basically we have this.”

[DF starts to write in FJ’s logbook]

DF:  “And this, and then size. And all this defines the rectangle.”

[DF draws figure 4.34 (A)]

DF:  “Here [pointing at figure 4.34 (A)], you initialize all pixels of the 

matrix with the value 0. Then you iterate on all rectangles. So for the first 

rectangle of the image [starts to draw in FJ’s logbook], you have the coor-

dinates and you check what pixels of the matrix are in the rectangle.”

[DF draws figure 4.34 (B1)]

DF:  “And you add one for these pixels in the matrix. And then you do 

the same for the second rectangle [starts to draw in FJ’s logbook] that 

might be here.”

[DF draws figure 4.34 (B2)]

DF:  “And you also add one for all these pixels. So here [pointing at fig-

ure 4.34 (B2)], some pixels in the matrix will have the value 0, some will 

have the value 1, and some others will have the value 2.”

FJ:  “OK, I see.”

DF:  “And you do this for all the rectangles. And once you have a script 

that works for one image, it’s easy to adapt it [the script] to go through 

all the images.”

FJ:  “Sure.”

DF:  “And well, when you have these matrices with values 0, 1, 2, etc., 

you can make all the graphs you want like gray-scale images or histo-

grams [draws in FJ’s logbook] like this.”

[DF draws figure 4.34 (C)]

DF:  “Where x is the number of rectangles and y the number of pixels.”

At this point, the narrative of PROG has thickened. From “FJ shall make a 

computer create matrices whose pixel values correspond to the number of 

rectangles they are part of,” it has become “for every image, DF shall first 

make a computer use the dimension of the image to create an empty matrix, 
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then define the first rectangle of this image according to its coordinates as 

defined in its correlated .txt file, then add this rectangle to the matrix, then 

define the second rectangle, then add it to the matrix, and so on for every 

rectangle of the image.” Even though the topic is slightly different from Such-

man’s (2007, 72) example of canoe, DF’s narrative also works as a resource that 

sets up a horizon without specifying the actions required to reach it. Nothing 

is said about how to define the empty matrix, how to define a rectangle, and 

how to increment the matrix with these rectangles. Yet, altogether, the pileup 

of these steps institutes a desired future that the following actions should try 

to reach. Moreover, similar to Suchman’s example, DF’s narrative also creates 

(A)

(B1) (B2)

(C)

Figure 4.34
Drawings of DF in FJ’s logbook.
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another layer of existence. His story projects us into another time (“in a 

couple of minutes”), another space (“in front of the Matlab IDE”), and toward 

other actants (“incremented matrices,” “gray-scale images,” “histograms,” “FJ 

being able to produce meaningful graphs thanks to the new program”).

But DF’s narrative—when considered in the light of the last two sections 

of this chapter—also suggests an important difference between narratives 

that institute desired futures and, say, bedtime stories for children or Holly

wood mega-productions. When after the narrative has been expressed—

that is, after having been projected into other times, other locations, and 

toward other actants—hopefully children fall into sleep and spectators 

leave the movie theater to carry on their occupations, DF’s narrative still 

has a hold on him. More than just establishing a triple shifting out into 

other space and time and toward other actants, DF’s narrative engages DF; 

it asks DF to do things. In this sense, as soon as DF expresses the narrative, 

he finds himself simultaneously in two positions: he is the writer of the 

narrative who can modify it any time he wants but also the actor who has 

to follow the narrative he has just expressed (Latour 2013, 391). Following 

Austin (1975) and recent works in STS (Barad 2007), we can consider these 

narratives as performative in the sense that they engage those who articulate 

them. In our case, DF holds the narrative but is also held by it.

To underline the literary and performative dimensions of these par

ticular narratives that are crucial for computer programming—since they 

institute a desired horizon to be achieved, hence supporting both align-

ments of inscriptions and technical detours—I shall call them scenarios.12 

The cinematographic connotation is voluntary. Indeed, a scenario—in the 

case of cinema or computer programming—is a narrative: it tells a story and 

therefore instantiates a beginning, an end, a plot, and characters that all 

possess ontological weights. Second, in both cases, a scenario is performa-

tive: it has a hold on both the movie director who is asked to transform it 

into a movie as well as on the programmer who tries to make it become an 

actual computer program. Third, if a scenario roughly describes the succes-

sive scenes of a movie or the successive steps of a computer program, it says 

almost nothing about how to shoot these scenes or implement these steps. 

While in both cases, the scenario draws desirable horizons, almost every

thing still needs to be done in order to reach them. Fourth, if the plot, steps, 

characters, or variables are described by the scenario, nothing prevents the 

movie director, the programmer, movie stars, or recalcitrant instructions 
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to modify some of its constitutive elements. In both computer program-

ming and movie production, a scenario can be revisited to better take into 

account unpredictable contingencies.

While they are not sufficient to assemble computer programs, scenarios 

are nonetheless crucial for computer programming. These flexible yet per-

formative narrative resources institute horizons on which programmers can 

hold—while being held by them—thus establishing the boundaries of com-

puter programming episodes. Scenarios both trigger and are blended with 

alignments of inscriptions and technical detours; altogether, they form pro-

gramming courses of action we can now consider in all their sinuosity.

But again, at this point, something is still missing. We are very close but 

are not there yet. If the notion of “scenario” is useful to better understand 

what helped DF shift between scientific and technical modes of practice, 

thus framing the programming sequences we have previously followed, it 

does not make us understand why DF wanted to engage himself in it. If sce-

narios provide the frame and the energy of programming episodes, where 

does this energy initially come from?

Something is definitely overflowing scenarios, making them “put into gear” 

more or less delightful affects: how do we consider them as well? If scenarios 

give horizons, they do not by themselves allow to grab what arises from pro-

gramming episodes. INT’s stubbornness, the multiple inclusions of actants, 

and the numerous work-arounds of impasses; all of this—in the middle of the 

action—is terribly uncertain. But when the program accomplishes what was 

hoped for at the beginning of the episode—or modified during the episode—

something is happening that cannot be reduced to the consequence of what 

allowed it to happen. This is the important contribution of the sociology of 

attachments against the social science of taste: reducing beloved objects to the 

conditions—social or material—of their appreciations tells us nothing about 

the objects themselves (Hennion 2015, 2017). While an object—a painting, a 

piece of music, a computer program—is constructed, it also exists in its own 

right. Or perhaps even more; as it is constructed, it exists more intensely. But 

how do we grab this appreciation of the constituted object? In our case, how 

do we consider the upsurging of PROG? We may perhaps refer to what DF 

tells me at the end of the programming episode:

FJ:  “Well, thanks. I’m always impressed by your patience.”

DF:  “You’re welcome. It was quick. And you know, I love it so it’s not a 

problem.”
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FJ:  “You love spending time on these lines of code?”

DF:  “Sure. It’s fun. What I really like is that you should never lose the 

thread. And when the script does the thing, it means you didn’t lose it.”

What may this excerpt tell us about the affects of computer programming? 

The notion of scenario seems, by itself, unable to provide a clearer under-

standing of what PROG, once assembled, does to DF. But, following DF 

and using the scenario as stepping stone, it helps to make appear some-

thing lovable: being able to constantly evaluate what has been done against 

what still needs to be done. This is what DF steadily needs to grab, the 

thread he tries never to lose: this scenario suggests a path, a plot, but also 

says nothing about how to follow it. Following a story by tracing his own 

path: a curious experience of establishing something by reaching it. But 

this reach, this access to the horizon—one should not simply consider it 

as the satisfaction of realizing something that was previously projected. 

Taking DF seriously—but also other Lab collaborators who participated in 

other “helping sessions”—we may consider it as the asymptote of a con-

stant evaluation. “This” had to be done, then “this,” then “this,” and now, 

there is nothing else to do until the next affect-bearing scenario, of course. 

The specificity of the affects of computer programming may lie in the recur-

rent upsurging of this temporary “nothing else.”

This is only an adventurous proposition about the attachments that 

bind programmers to the scripts they may instaure (Latour 2013, 151–178; 

Souriau [1943] 2015). More systematic studies are obviously necessary to 

enrich the above speculations. But let the reader not forget, once again, that 

one goal of this chapter, besides its analytical ambitions, is also to point to 

innovative avenues of research on computer programming situated prac-

tices. In that sense, looking at the formation of scenarios and their com-

plex relationships with the attachments they may suggest—but not strictly 

produce—could be a relevant way to inquire into what moves programmers, 

sometimes to the point of spending huge amount of unpaid (or detoured) 

hours on uncertain free and open-source software projects. In the light of 

programmers’ attachments to scenarios, what Demazière, Horn, and Zune 

(2007, 35) called the “enigma of free software development”—the ability 

to produce coherent programming results from evanescent involvement—

could, for example, be tackled in an alternative way. While entangled modes 

of regulations among these voluntary collectives are certainly important for 

the actual production of free and open-source software, these arrangements 
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may also benefit from being considered in the light of the passions they 

make exist. What is indeed happening when a scenario is realized through 

a computer script? Can such an affective event only be reduced to the orga

nizational processes (Demazière, Horn, and Zune 2007), individual incen-

tives (Lerner and Tirole 2002), or ideologies (Elliott and Scacchi 2008) that 

made it possible? Is there not something in DF’s emotive spark that may 

also contribute to the formation and maintenance of programmers’ com-

munities? It is the whole ecology of programming work—be it free, open-

source, or corporate—that may deserve to be considered also in the light 

of what programmers are after when they are writing numbered lists of 

instructions.

* * *

Despite its lengthy and tortuous aspect, the point I wanted to make in 

this part II is quite simple. Once we inquire into computer programming 

courses of action, we see that they engage the alignment of inscriptions, 

the work-around of impasses, and the definition of scenarios. These three 

modes of practices are intimately related: Working around impasses implies 

the localization of a problematic phenomenon that itself requires a scenario 

to be considered problematic. DF and more generally, perhaps, programmers 

constantly shift from one mode to the other until temporally realizing their 

desired narratives.

The main difficulty lay in the preparatory work required to distinguish 

the process of programming from its result. For complicated reasons we 

covered in chapter 3, a confusing mix has progressively been established 

between human cognition and programmed computers. This confusion 

led, in turn, to important misunderstandings such as cognitive studies of 

programming that ended up being tautological as they supposed the exis-

tence of what they tried to account for. As I wanted to analyze the situated 

practice of programming, I had to distance myself from cognitivism and 

embrace very minimal, yet powerful, enactivism that considers cognition 

as the process by which we grasp affordances of local environments.

Unfortunately, I could play only at the edge of computer programming 

practices, and many questions were left unanswered. Regarding the align-

ment of inscriptions, it would be insightful to learn more about the differ

ent modalities, organizations, and even institutions that participate in a 

programmer’s multiplications and articulations of inscriptions. Regarding 
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the working around of impasses, what about exploring more thoroughly 

the equipment that supports the identification and enrollment of new 

actants? This may even lead to innovative programming devices and equip-

ment. Concerning scenarios, I will soon document the formation of some 

specific, easily transposable ones. But in light of the fascination exerted by 

computer programming as well as its importance for contemporary socie

ties, I wish there were more studies documenting the actions that some-

times make the joy of programming emerge. In these times of controversies 

over algorithms—entities that seem to rely on ground-truthing and pro-

gramming activities—these are, I believe, crucial research directions.
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It is easy to study laboratory practices because they are so heavily equipped, so 

evidently collective, so obviously material, so clearly situated in specific times 

and spaces, so hesitant and costly. But the same is not true of mathematical prac-

tices: notions like … “calculating,” “formalism,” “abstraction” resist being shifted 

from the role of indisputable resources to that of inspectable and accountable 

topics. … We seem to be inevitably contaminated by [these notions], as if abstrac-

tion has rendered us abstract as well!

—Latour (2008, 444)

We are not out of the woods yet. We may have a clearer idea about the whys 

and wherefores of ground-truthing (part I) and programming (part II), yet we 

still lack, at this point of the inquiry, one activity that is sometimes crucial 

to the formation of algorithms in computer science laboratories. Without 

accounting for these practices, I could only propose an extremely partial con-

stitution of algorithms.

One way to become sensitive to the “missing mass” of our inquiry could 

be to look at a recent academic paper in computer science. And why not 

choose the subfield of image processing since it is the empirical ground of 

this ethnographic venture? While browsing, for example, through a paper 

entitled “Learning Deep Features for Discriminative Localization” (Zhou 

et al. 2016), we would encounter many things we are now familiar with. 

We would read about a specific problem (localizing class-specific image 

regions) that, according to the paper’s authors, is solved satisfactorily by 

means of a computer program they call CAM, which stands for “class acti-

vation mapping.” We would see that the problem, CAM, and what this 

program should retrieve all derive from an already-assembled ground truth 
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(in this case, ImageNet Large Scale Visual Recognition Challenge [ILSVRC] 

2014) that has been split into two parts: a training set and an evaluation 

set. We would also feel, behind the printed words and numbers, the long 

and fastidious computer programming episodes that were necessary to pro-

vide and discuss the paper’s results. After all, if the authors did not write 

lists of instructions capable of triggering electric pulses in meaningful ways, 

they could not have provided any statistical evaluations of their algorithm’s 

performances.

However, while browsing through this academic paper that presents 

and tries to convince us about the relevance of a new image-processing 

algorithm, we would very quickly bump into cryptic passages such as this 

one: 

By plugging Fk = ∑x,y fk (x, y) into the class score, Sc, we obtain

Sc = wk
c f k x,y( ) =
x,y
∑

k
∑ wk

cf k x,y( )
k
∑

x,y
∑ 	 (1)

We define Mc as the class activation map for class c, where each spatial ele

ment is given by

Mc x,y( ) = wk
cf k x,y( )

k
∑ 	 (2)

Thus, Sc = ∑x,y Mc (x,y), and hence Mc (x,y) directly indicates the importance of 

the activation at spatial grid (x,y) leading to the classification of an image to class c. 

(Zhou et al. 2016, 2923)

Such sentences that mix English words with combinations of Greek and 

Latin letters divided by equals signs are indeed widely used by computer sci-

entists when they communicate about their algorithms in academic jour-

nals. Of course, as grown-up readers, we immediately understand that such 

an excerpt deals with mathematics and that (1) and (2) are proper formulas 

(or equations once their variables are replaced by numerical values). But if 

we only consider the descriptive system developed so far in this inquiry, 

we have no grip on these mathematical inscriptions. The conceptual appa-

ratus of the inquiry enables us to deal with graphs and numeric values as 

they refer somehow to both data and targets as defined by ground truths. 

The inquiry’s apparatus also enables us to deal with lines of code as they 

refer to numbered lists of instructions that trigger electric pulses in desired 

ways. But what about mathematical formulas? Where do they come from? 

Why do computer scientists need them, and how are they assembled? 

At this point, I do not have any other choice. In this last and important 
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part III, I will have to consider the role of mathematics in the formation of 

algorithms.

The road I am about to take is dangerous; one second of inattention and 

my action-oriented method will be lost. For intricate reasons that I will 

cover, mathematical entities such as “theorems,” “proofs,” or “formulas” are 

indeed extremely resistant to empirical considerations; even though they 

certainly are the products of situated activities, they are often considered 

fundamental ingredients of thoughts. This tenacious habit is frequently the 

starting point of a downward spiral, itself leading to grand questions such 

as: “Are mathematics the expressions of abstract structures or individual 

consciousness?” So many innocent souls have been consumed by such float-

ing interrogations! To avoid digging my own grave in this cemetery of prac-

tice, I will have to be extremely cautious and process one small step at a 

time. But with some patience, the construction of mathematical knowledge 

as well as its further enrollment in the formation of algorithms may be par-

tially accounted for. Altogether, these efforts to define formulating practices 

will allow me to link both ground-truthing practices (necessary to establish 

the terms of solvable problems) and programming practices (necessary to 

make computers compute in desired ways). Within the present constituent 

effort, what we tend to call “algorithms” may then be described as uncer-

tain products of (at least) these three interrelated activities.

As in part II—and largely for similar reasons—I will require operation-

alization efforts before diving into ethnographic materials. I will first have 

to put aside the vast majority of studies on mathematics. Too many top-

ics, too many studies, too many methods; without preliminary cleaning 

efforts, dealing with mathematics in an action-oriented way is doomed 

to fail. As we shall see in chapter 5, the only way not to duck will be to 

start (almost) afresh, from very basic observations and hypotheses. Progres-

sively, these hypotheses—well inspired by several STS on mathematics—will 

make us realize that mathematical entities such as “theorems,” “proofs,” or 

“formulas” are quite akin to more familiar scientific facts. If mathematical 

knowledge is often considered the expression of some superior reality, it 

might only be due to its extreme combinability. Once the vascularization 

of mathematics is put forward, we will realize that its indubitable power 

also comes from the humble instruments and actions that make nonmath-

ematical topics mathematicable. This important point will, in turn, allow me 

to define formulating practices as the empirical process of merging networks 
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that sustain given domains of activity with networks that sustain certified 

mathematical knowledge. In chapter 6, I will account for a small yet suc-

cessful formulating effort that took place within the Lab. This third and last 

case study will underline the centrality of certified mathematical knowledge 

for the progressive formation of algorithms as it both forces the refinement 

of ground truths and unfolds scenarios for further programming episodes. It 

will also allow me to consider recent issues related to machine learning and 

artificial intelligence in an unconventional way. The last section of chap-

ter 6 will be a brief summary.
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This chapter aims to consider mathematical knowledge not as the expres-

sion of some superior reality but as a huge collection of scientific facts whose 

shaping necessitated a fair amount of practical work. As we will see, by con-

sidering mathematical knowledge to be one specific product (among many 

others) of scientific activity, we may provide a reasonable explanation of its 

capacity to make important differences in other scientific domains (neurol-

ogy, geography, gambling, computer science, etc.). Once this operational-

ization exercise is over, I will come back to the main goal of this part III: 

understanding when, how, and why mathematical knowledge takes active 

part in the constitution of algorithms (chapter 6).

Where Is the Math?

If we want to better understand how mathematical entities (formulas, theo-

rems, conjectures, equations) are manipulated and related to ground truths 

and programming languages, we first need to better understand where they 

come from. Such entities surely do not exist by themselves; they need to be 

assembled by people in specific designated places. Where are these places? 

Who are these people, and what do they do?

Such trivial questions lead to many, many heterogeneous answers. This 

is one reason why dealing with mathematics can be dangerous: Where shall 

we start? From the mathematics of ancient Greece (Heath 1981a, 1981b; 

Netz 2003)? From mathematics of medieval Islam (Berggren 1986; Netz 

2004)? From baroque mathematics of continuous change (Bardi 2007; 

Boyer 1959)? But if we use the adjective “baroque,” we already define the 

seventeenth century in quite an orientated way (Deleuze 1992). Shall we 

5  Mathematics as a Science
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then focus on more contemporary mathematics such as set theory (Ferreirós 

2007; Tiles 2004), Weierstrass functions (Bottazzini 1986), and the subse-

quent “crisis of foundations” that shook up mathematics at the beginning 

of the twentieth century (Ewald 2007; Ferreirós 2008; Hesseling 2004; Man-

cosu 1997)? But what do we mean by “mathematics” anyway? Do we mean 

mathematical texts (Rotman 1995, 2006; Sha 2005)? Do we mean famous 

mathematicians such as Leibniz (Antognazza 2011), Gauss (Tent 2006), or 

Cantor (Dauben 1990)? Do we mean philosophies of mathematics that try to 

define what mathematics is (Aspray and Kitcher 1988; Corfield 2006; Hack-

ing 2014)? Our head is spinning and we start to feel dizzy. But it is not over 

yet! Indeed, are we talking about arithmetic (Husserl 2012), algebra (Everest 

2007), geometry (Netz 2003; Serres 1995, 2002), or logic (Fisher 2007; Rosental 

2003)? Maybe are we talking about the evolution from numbers to logic (Kline 

1990a), from logic to geometry (Kline 1990b; Netz 2003), from geometry to 

algebra (Kline 1990c; Netz 2004)? And even within arithmetic, geometry, 

algebra, or logic, are we talking about theorems (Villani 2016), proofs (Lakatos 

1976; MacKenzie 1999, 2004, 2006) or conjectures (O’Shea 2008)? We do not 

know. We are lost in questions whose only enunciation makes us want to 

do something else. But we cannot; we must find a way to address mathe

matics as it seems important for the constitution of algorithms. How can 

we do so?

One way to avoid this spiral of confusion could be to start from some 

very basic hypotheses. We would, of course, have to develop these hypoth-

eses and justify them by using concrete examples. To do this, we may need 

to mobilize a tiny part of the gigantic mathematics literature that scares 

us. One step after the other, one hypothesis after the other—coupled with 

some STS assumptions—we may end up with an operative definition of 

mathematical knowledge that could suffice to achieve our specific task: 

accounting for the way that computer scientists, when they try to assem

ble new algorithms, are sometimes able to mobilize certified propositions 

previously shaped by their mathematician colleagues. We surely do not 

need to revolutionize our understanding of these powerful statements we 

sometimes call “theorems,” “conjectures,” or “formulas.” If we just manage 

to shape one simple version of what mathematicians do (instead of what 

mathematics is), our last duty—accounting for formulating practices—will 

be greatly facilitated.

The MIT Press January 2021



Mathematics as a Science	 205

Written Claims of Relative Conviction Strengths

To initiate our operationalization exercise and shape our first hypotheses, let 

us start with three scenes that all gravitate around mathematical notions:1

Scene 1

January 1994. Charles Elkan is in turmoil: his theorem demonstrating 

that only two truth values can be expressed by a system of fuzzy logic is 

highly contested.2 What went wrong? The initial presentation of his the-

orem at the Eleventh National Conference on Artificial Intelligence went 

very well. The paper that further appeared in the conference proceed-

ings was even selected for the “Best Written Paper Award” (Elkan 1993). 

The program committee saluted the elegance of the proof as well as its 

significance for further developments in expert systems. Everything was 

in place for his theorem to be accepted. But many logician colleagues—

who did not attend the conference but did read some of its proceedings 

published by MIT Press—are quite upset. Elkan can even follow their 

dissatisfaction on the newly established internet forum “comp.ai.fuzzy” 

that is dedicated to advanced discussions in fuzzy logic theories and sys-

tems. The critiques are harsh. Some say—and try to demonstrate—that 

Elkan’s basic hypotheses are flawed. Others accuse him of deliberately 

weakening fuzzy logic as it is a threat to old, “dusty” classical logic. Some 

colleagues even suspect him to be a thick-headed Aristotelian! As one 

of his friends advises him, Elkan should now “cool things down” and 

publish a “smoother” version of his theorem that could include some of 

its soundest critiques.

Scene 2

Summer of 1890. Alfred Kempe is puzzled;3 although not really because 

Percy Heawood recently managed to find a flaw in the proof of the four 

colors conjecture Kempe previously published in the American Journal of 

Mathematics (Heawood 1890; Kempe 1879). Heawood did a great job, and 

being refuted is part of the game anyway. No, it is more that even though 

his proof was shown to be erroneous, Kempe does not think that Fran-

cis Guthrie’s 1852 candid proposition—that says that four colors suffice 

to color any map drawn on a plane in such a way that no neighboring 

The MIT Press January 2021



206	 Chapter 5

countries have the same color—is wrong. But how could such a basic 

intuition lead to such great difficulties? Do mathematicians not have the 

tools to prove this conjecture and make it a theorem once and for all? 

“Poor Heawood,” thinks Kempe. “He is now hooked on it, as I was fifteen 

years ago. He’d better drop it; this four colors thing is old hat.”

Scene 3

November 8, 2013, 3 p.m. I sit at the back of the lecture hall.4 Around 

three hundred undergraduate students are also attending this Friday after

noon “Information, Computing and Communication” class that aims to 

inculcate (communicate?) the foundational concepts of computer science 

to future civil and mechanical engineers. I see my younger brother and 

his friends—good students—in the second row. They’ve just started their 

academic curriculum; I’ve almost finished mine. But here we are in the 

same classroom, waiting for the same information (orders?). The professor 

adjusts his microphone: “All right. Hi, everyone. So, last week we talked 

about the Nyquist-Shannon sampling theorem. Today, we’ll start with 

another contribution of Claude Shannon to the mathematical under-

standing of digital signals, which is the Shannon-Hartley theorem. It is 

quite a powerful theorem that can be summarized with this formula here:

C = B log2(1+ 
S
N
).

Of course, we’ll go through it together.”

At this point, we do not need to make any a priori distinction between “the-

orems” (scenes 1 and 3), “conjectures” (scene 2), “proofs” (scene 1 and 2), 

and “formulas” (scene 3). We just need to notice that all three scenes, while 

presumably concerning mathematics, deal with claims that attract more or 

less adherence. In scene 1, Elkan’s claim about fuzzy logic first attracts the 

adherence of the Eleventh National Conference on Artificial Intelligence’s 

program committee. But then, in January 1994, his claim repulses many 

logician colleagues who do not hesitate to publish “counterclaims” on the 

web forum “comp.ai.fuzzy.” In scene 2, Kempe’s claim about the veracity of 

Francis Guthrie’s claim (the “four colors conjecture”) also first attracts the 

adherence of the editorial board of the American Journal of Mathematics. But 

then, in the summer of 1890, Kempe dissociates himself from his own claim 
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and adheres to that of Heawood. However, Guthrie’s 1852 “candid” claim 

has not lost all of its conviction strength yet, which makes Kempe puzzled 

about the fate of Heawood. Scene 3 is quite straightforward: Shannon and 

Hartley’s claim—and its correlated formula projected on the lecture hall’s 

whiteboard—is about to be taught to a crowd of undergraduate students in 

engineering. There is little room for doubt here: in November 2013, Shan-

non and Hartley’s claim attracts the adherence of quite a lot of people. In 

fact, their claim is so strong that a well-known pedagogical device—the 

exam—will soon verify that all students properly adhere to it.

These basic but fair observations are all we need to start our operation-

alization exercise. Mathematicians certainly do a lot of things, but among 

these things, they make claims that attract the adherence of more or fewer 

individuals. Let us assume then that the grand notions of “theorems,” 

“conjectures,” “formulas,” or “proofs” can all be grasped in a down-to-earth 

manner; let us assume that, to a certain extent, they are claims that con-

vince more or fewer individuals.

This way to consider mathematical knowledge—theorems, conjectures, 

proofs, formulas—as the product of some rhetoric may sound odd at first. 

Many grand narratives have indeed chanted the abstract power of mathemati-

cal truths that, by themselves, supposedly describe some superior reality.5 But 

this is precisely the road we do not want to take, at least not yet. If we do not 

want to crash on the sharp rocks of epistemological accounts of mathematics, 

we need to plug our ears and, for the moment, ignore the sirens of necessity. 

Fortunately for us, our first operational hypothesis—mathematicians make 

claims that convince more or fewer individuals—echoes well the central the-

sis of Lakatos’s (1976) important book on mathematics. As he showed, instead 

of an accumulation of self-evident discoveries, mathematics should be con-

sidered a creative process during which concurrent claims are subjected to 

criticism and improvement. But how are such claims criticized or improved? 

How do they gain or lose their relative conviction strength? Shannon and 

Hartley’s claim in scene 3 seems much stronger than Elkan’s claim in scene 1. 

Similarly, in 1890, the claim Kempe made in 1879 is now powerless in front 

of Heawood’s claim (scene 2). How do such differences come about?

To better understand how (mathematical) claims gain or lose conviction 

strength, we need to make another basic observation about scenes 1, 2, and 

3. If more or fewer individuals could adhere to the scenes’ claims, it means 
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that they could access these claims. What medium allowed such access? 

Some claims are oral, but we are obviously not dealing with them here. 

The claims in scenes 1, 2, and 3 are all written. This important characteris-

tic allows individuals to read them and eventually—very rarely—adhere to 

them. In scene 1, it is Elkan’s written claim as it appears in the conference’s 

proceedings that makes the program committee adhere to it. But in Janu-

ary 1994, it is the multiplication of written counterclaims on the web forum 

“comp.ai.fuzzy” that begins tormenting Elkan. In scene 2, both Kempe and 

Heawood access their respective claims by reading mathematical journals. 

Finally, the engineering students in scene 3 are asked to adhere to Shannon 

and Hartley’s claim projected on the classroom’s whiteboard. Of course, 

Shannon and Hartley did not write their claim on the projected document; 

many individuals intervened to carry their claim further through time and 

space until reaching this specific lecture hall. But this translation process 

does not change the overall shape of the claim; it is still something that 

is written down on a flat surface. At this point, we can therefore slightly 

refresh our first hypothesis: mathematicians surely do a lot of things, but 

among these things, they write claims that attract the adherence of more or 

fewer individuals.

It is also fair to assume that the written claims in the above scenes did 

not appear ex nihilo. In order to be published in proceedings, specialized 

web forums, mathematical journals, or the slides of a computer science 

professor, they all had to overcome a series of tests, trials upon which their 

existence as written claims depended. I agree that this hypothesis flirts 

with the metaphysics of subsistence—close to “process thought” (cf. intro-

duction)—as proposed by influential, yet contested, thinkers. Let us then 

consider it an assumption we need for our operationalization exercise. 

“Whatever resists trials is real” (Latour 1993a). The above (mathematical) 

written claims are real; they thus resisted trials. But what trials?

Resisting Trials, Becoming Facts

The first kind of trial we can consider regarding the conviction strengths 

of (mathematical) written claims such as those in scenes 1, 2, and 3 are the 

trials they must endure before their actual publication. Examining what we 

often call the “sources” of claims is indeed a common way to evaluate their 

seriousness.
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For example, we can make the fair assumption that, all things being 

equal, a claim published in the journal Nature will generally have more con-

viction strength than a claim posted on some social media platform with 

very little monitoring. Without even considering their respective content, 

both claims will have different capabilities. Why is that? We must immedi-

ately put aside the question of prestige or symbolic power; these are short-

cuts our sociological method of inquiry forbids us to manipulate. A more 

empirical grip on this topic would quickly point to the number of indi-

viduals who could prevent the publication of a claim. Very few people—or 

bots—can prevent me from publishing a claim on, say, Facebook. Con-

versely, many individuals can prevent me from publishing a claim in the 

journal Nature. Taking into account those who have to be convinced by 

claims in order for them to circulate and reach a broader audience is crucial 

as it somewhat calibrates the cost of disagreement. If someone disagrees 

with a claim I publish on Facebook, they can just shrug their shoulders and 

move on to something else.6 But if the same person disagrees with a claim 

I publish in Nature, they will have to disagree with me, my institution, 

the funding agencies that supported my research, Nature’s editorial board, 

those responsible for the nomination of this board, and so on. Compared 

with a claim I publish on Facebook, a claim I publish in Nature is initially 

supported by a far bigger team of external allies (Latour 1987, 31–33).

But if we consider our three scenes, we quickly realize that surviving 

publication trials—and thus enrolling external allies—is not enough to 

assure any durable conviction strength of (mathematical) claims. Although 

this lecture, in terms of convinced gatekeepers, may be enough to quickly 

account for the conviction strength of Shannon and Hartley’s claim within 

the lecture hall—the students being literally crushed by all its external allies 

(their professor, their manuals, all those responsible for the engineering 

curriculum of their university, the exam they will soon have to pass)—it 

does not help us understand the relative strengths of Kempe’s, Heawood’s, 

and Elkan’s claims (scene 1 and scene 2). In scene 2, both Kempe’s and 

Heawood’s claims survived similar publication trials; both propositions 

were initially supported by roughly the same number of individuals.7 Yet 

Kempe’s claim became distrusted as Heawood’s appeared certified. The situ-

ation is even more confusing in scene 1: even though Elkan’s claim suc-

cessively resisted the scrutiny of the sixty-eight individuals responsible for 

the publication of the proceedings and the selection of the “Best Written 
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Paper,”8 his claim is seriously shaken up by posts on a web forum with 

almost no monitoring (Rosental 2003, 81–86). Again, these counterclaims 

must have survived other kinds of trials in order to gain such strength.

Another kind of trial that may provide strength to written claims is one 

that consists in successively enrolling internal allies by means of citations 

and references (Latour 1987, 33–45). Equipping one’s claim with previously 

published claims is indeed an important conviction strategy that has even 

become a whole field of study.9 In addition to allies outside of the writ-

ten document, a claim with references and citations is now supported by 

allies inside of it. Or is it? While often necessary, augmenting the convic-

tion strength of a claim by means of references and citations can be a risky 

endeavor. What if the references do not match the claim, or worse, what if 

some unmentioned references contradict the presented claim? In some cases, 

this citation trial is overcome. One example is Shannon’s initial paper that 

presented the basic elements of what would later be called the “Shannon-

Hartley theorem” (Shannon 1948). In this paper, Shannon enrolls previ-

ously “solidified” claims made by Ralph Hartley (hence his later inclusion in 

the theorem’s name) and thirteen other important mathematicians. As far as 

I know, no serious disagreements about the use of these references emerged 

after Shannon’s initial publication. But the same was not true of Elkan’s 

publication. Although he mobilized thirty-nine internal allies to strengthen 

his claim about the limitations of fuzzy logic, his contradictors managed to 

find and publish many strong “counter references” on the specialized web 

forum. Elkan soon appeared as someone unaware of many recent uses of 

fuzzy logic in advanced expert systems (Rosental 2003, 157–168). Although 

they were at first certainly useful to convince the program committee of the 

Eleventh National Conference on Artificial Intelligence, the internal allies 

of Elkan’s paper ended up working as stepping stones for his contradictors.

However, surviving or not surviving citation trials is, again, not enough 

to account for the relative conviction strengths of the claims in all of our 

scenes. Indeed, in scene 2, Kempe’s 1879 paper makes only three references 

to former mathematical propositions, the first two being loose statements 

made by Augustus De Morgan and Arthur Cayley to the London Mathemat-

ical Society (Kempe 1879, 193–194) and the third one being a more impor

tant claim made by Augustin-Louis Cauchy about polyhedrons (Kempe 

1879, 198). Yet this scarcity of references did not prevent his claim—the 

proof that Guthrie’s 1852 proposition was correct—from convincing his 
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mathematician colleagues for eleven years. The same is even truer of 

Heawood’s claim, for his 1890 paper includes no references other than 

Kempe’s 1879 paper. Again, this scarcity did not prevent his claim from 

attracting the adherence of the chief person concerned: Kempe himself 

(MacKenzie 1999, 22). There must be something else in published (math-

ematical) claims that makes them gain, sometimes, in persuasion strength.

Some potential objectors of published (mathematical) claims will not be 

impressed by lists of convinced gatekeepers nor by the references invoked 

by the author. To be convinced by a claim, these skeptical readers want to 

see the thing the author asks them to believe in. This strategy that consists 

of presenting the thing in question to the reader was precisely the one used 

by Heawood in his paper against Kempe. He did not only rely on external 

allies; he also showed a figure (see figure 5.1) that, according to Kempe’s 

1871 claim, was impossible to draw:

Mr. Kempe says—the transmission of colours throughout E’s red-green and B’s 

red-yellow regions will each remove a red, and what is required is done. If this 

were so, it would at once lead to a proof of the proposition in question [the four-

colours conjecture].  … But, unfortunately, it is conceivable that though either 

transposition would remove a red, both may not remove both reds. Fig [below] is 

an actual exemplification of this possibility. (Heawood 1890, 337–338)

We do not need to spend too much time on the specificities of Heawood’s 

figure10 nor on the role of drawings in published mathematical claims.11 

Here, the important thing to notice is the conviction strategy; just as scien-

tists engaged in many other fields—biology (Rheinberger 1997), chemistry 

(Bensaude-Vincent 1995), climatology (Edwards 2013)—mathematicians 

try to gain in persuasion strength by adding the referent of what they write 

about. At this point, then, “this is not a question any more of belief: this is 

seeing” (Latour 1987, 48). If, until now, I put the adjective “mathematical” 

in parenthesis, it was not to grant too much specificity to mathematical 

claims; they too are part of the scientific genre that tries to silence poten-

tial objectors by gathering more and more supporters. Scientific as well as 

mathematical texts can indeed be compared with bobsled tracks allowing 

very little room for maneuver while implying high level of skills. In both 

cases, readers must start at point A, pass through checkpoints B1,2,…,n, and 

finally finish at point C, the claim that tries to be established as a fact.

If scientific literature can be described as texts gathering many external 

and internal allies in order to isolate their readers and force them to take 
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Figure 5.1
Reproduction of Heawood’s figure showing that Kempe’s proof does not hold. Source: 

MacKenzie (1999). Reproduced with permission from Sage Publications.
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only one path, different scientific domains progressively shaped their own 

specific rhetorical habits.12 In the case of mathematics, this whole captation 

trial (Latour 1987, 56–61) that consists in subtly controlling the movements 

of potential objectors has been finely analyzed by Rotman (1995, 2006). As 

he showed, mathematical publications are full of verbs in the imperative 

form, such as “construct,” “define,” “connect,” or “compute.” But a close 

analysis of these imperative forms reveals that they are in fact split into two 

distinctive types: inclusive imperative to establish premises—often equipped 

with references—and exclusive imperative to present lists of actions an imagi-

nary reader should perform to reach the claimed result:

Inclusive command marked by the verbs “consider,” “define,” “prove” and their 

synonyms—demand that speaker and hearer institute and inhabit a common 

world or that they share some specific argued conviction about an item in such a 

world; and exclusive commands—essentially the mathematical actions denoted 

by all other verbs—dictate that certain operations meaningful in an already 

shared world be executed. (Rotman 2006, 104)

These elements are crucial for our operationalization exercise as they indi-

cate the felicity conditions of captation trials within mathematical texts. 

If skeptical readers, thanks to all the allies mobilized by the writer, have 

no other choice than to accept the premises and follow one specific path 

in order to reach one necessary conclusion, a mathematical text and its 

concomitant claim have, at least temporally, overcome their captation trial. 

In this respect, Kempe’s 1879 paper on the four colors conjecture is quite 

illustrative. Remember that Kempe wanted to prove that four colors suf-

fice to color any map drawn on a plane in such a way that no neighboring 

countries have the same color. How did he enjoin his readers to reach this 

conclusion? With a succession of inclusive commands, both Kempe and his 

imaginary skeptical reader start by defining a perfectly four-colored “singly 

connected surface” divided into many “districts” (Kempe 1879, 193). Once 

this basic common world has been instituted, they then consider two sets 

of “detached regions” either colored in red and green or in yellow and blue 

(Kempe 1879, 194). These premises allow Kempe and his reader to further 

define the properties of “points of concourse” (points where boundaries 

and districts meet) that themselves permit the definition of six classes of 

districts with different characteristics: “island districts,” “island regions,” 

“peninsula districts,” “peninsula regions,” “complex districts,” and “simple 

districts” (Kempe 1879, 195–196). Once this quite complex common world 
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has been instituted, Kempe then switches to exclusive commands and asks 

his reader to execute a series of operations:

Now, take a piece of paper and cut it out to the same shape as any simple-island 

or peninsula-district, but larger, so as just to overlap the boundaries when laid on 

the district. Fasten this patch (as I shall term it) to the surface and produce all the 

boundaries which meet the patch … to meet at a point, (a point of concourse) 

within the patch. If only two boundaries meet the patch, which will happen if 

the district be a peninsula, join them across the patch, no point of concourse being 

necessary. The map will then have one district less, and the number of boundaries 

will also be reduced. (Kempe 1879, 196–197; italics added)

By asking the reader to reiterate this patching process, the whole imagined 

map is progressively reduced to one single district with no boundaries or 

points of concourse. Kempe then asks the reader to reverse the process; that 

is, to “strip off the patches in reverse order, taking off first that which was put 

on last. As each patch is stripped off it discloses a new district and the map 

is developed by degrees” (Kempe 1879, 197). At this precise point, Kempe 

switches to inclusive command again, thus instituting a second common world 

based on the first one that has just been modified. The author and the reader, 

together again, define the progressive reconstitution of all districts, bound

aries, and points of concourse. Little by little, they soon realize that their 

recombination of districts, boundaries, and points of concourse is equivalent 

to, respectively, faces, edges, and points of polyhedrons as already defined by 

Augustin-Louis Cauchy in 1813 (Kempe 1879, 198). Once this polyhedron 

world has been instituted, Kempe switches one last time to exclusive com-

mand and makes the reader reach the claimed result: obviously—look, we 

have just done it together!—four colors suffice to color any map drawn on a 

plane in such a way that no neighboring countries have the same color.

We do not need to understand every little step of Kempe’s paper. We just 

need to appreciate how Kempe manages to control the movements of his 

reader; from the initial premises to the conclusion, the reader is literally car-

ried through Kempe’s line of argument. His allies are quite numerous—“single 

connected surface,” “districts,” “detached regions,” Cauchy’s “polyhedrons”—

and his transitions are smooth enough to transport the reader through the 

flow of necessity. But as we saw, Kempe’s captatio was only temporary, for as 

eleven years later, Heawood managed to escape from Kempe’s line of argu-

ment and propose a figure that dismantled the whole rhetorical edifice (see 

figure 5.1).
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Publication, citation, and captation trials—just as any other claim trying 

to gain conviction strength and become a fact, mathematical claims must 

survive many jeopardies. Yet this is still not enough. A claim published in 

an important journal, with well-arrayed references and a smooth line of 

argument, may still vanish if it is not carried further by later claims. This is a 

sine qua non condition as there is no such thing as a solitary scientific fact: 

“Fact construction is so much a collective process that an isolated person 

builds only dreams, claims and feelings, not facts” (Latour 1987, 41). The 

fate of a claim, its progressive transformation into a solidified fact, depends 

ultimately on how it is used by later claims. We saw that Kempe’s claim, 

despite its captation strength, ended up being refuted by Heawood. From 

the status of mathematical fact, it turned into mere fiction. What about 

Heawood’s claim? It is difficult to call it a fact as it only concerned Kempe’s 

fiction; it successively refuted Kempe’s claim but did not provide any con-

firmable, or refutable, proposition. What about Elkan’s claim, then? Despite 

Elkan’s efforts to make it stronger—especially via the inclusion of many 

coauthors, better arrayed references, and smoother transitions (Elkan et al. 

1994; Rosental 2003, 282–331)—it ended up being known for the doubt-

ful reactions it gave rise to; that is, precisely, for not being a fact. Among 

our arbitrary mathematical examples, only Shannon’s claim survived this 

important posterity trial, as scene 3 already suggested it. In fact, Shannon’s 

claim survived the posterity trial so well that it progressively became part 

of a very small number of facts that are constantly used as resources in later 

claims. As it became more and more enrolled without any skeptical modali-

ties, it became a black box with certified content presented in a clear-cut 

form. This stylization process (Latour 1987, 42) is typical of scientific facts 

that are much enrolled in later claims. Although Shannon went through 

several demonstrations in his initial paper, only the results of these demon-

strations were progressively retained. These results were later concatenated, 

polished, and linked with former results established by Hartley until reach-

ing a stylized form expressed by the formula presented in scene 3. Soon, 

perhaps, this strong mathematical fact may even become a “single sentence 

statement” (Latour 1987, 43): a scientific fact that is so accepted that it no 

longer needs any reference. If this happens, Shannon and Hartley’s theo-

rem will be part of tacit, undisputable, and necessary knowledge.

These last elements about blackboxed polished facts that may become 

part of tacit knowledge allow us to respond to an important objection:
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Objection of a skeptical reader

But is not mathematics different from all the other scientific disciplines 

in that it deals with fundamental truths? We could feel it when you 

presented Kempe’s paper: in order to overcome the captation trial, he 

followed the timeless laws of deduction, did he not?

Not so long ago, it would have been very difficult to respond to this classi-

cal objection.13 But thanks to the philological efforts made by Reviel Netz 

(2003, 2004), we now know that what we call “deduction” and “logical 

relations” are themselves blackboxed polished facts that were initially pub-

lished around the middle of the fifth century BCE in Greece and southern 

Italy.14 At that time, several self-educated amateurs who, presumably, tried 

to distance themselves from ancient Greece’s highly polemical culture,15 

were surprised to discover that when they wrote only about the properties 

of lettered diagrams drawn on wax tablets, they could, step by step, express 

indisputable propositions. More precisely, by starting with some lettered 

parts of a diagram—say, two segments—they could, in turn, compare them 

with another lettered part of the same diagram. This very basic operation, 

made possible by the combination of drawings and letters on a flat surface, 

can be reconstituted as such: “This segment A here is equal to that segment 

B there. And that segment B there is equal to that segment C over there.” In 

turn, thanks to the lettered diagram, Greek geometers could surreptitiously 

use conjunctive adverbs in a necessary way: “Therefore this segment A here is 

equal to that segment C over there.” The shift seems trivial but is in fact cru-

cial. Indeed, this first necessary result could be used to compare other parts 

of the diagram: “And that segment D over there is two times segment C. 

Therefore, segment A is half segment D.” Progressively, by comparing more 

and more parts of the diagram, using more and more conjunctive adverbs 

and cumulating more and more intermediary results such as “A is half seg-

ment D,” the Greek geometer could end up with a complicated yet neces-

sary true proposition—the written list of indexical steps going from his first 

basic assertion to his last complicated one being the proof of the veracity of 

his claim.

For the sake of this section that only tries to present mathematical claims 

as part of the broader family of scientific claims, we do not need to dig fur-

ther into the fascinating work done by Netz. Suffice it here to say that thanks 

to his efforts, we can now assert with some confidence that even deduction 
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is the solidified product of past accepted claims. These constructed-yet-

fully-logical laws of necessity must certainly have been surprising in ancient 

Greece.16 But after centuries of enrollments in further claims, this style of 

reasoning—that obviously overcame its posterity trial—was progressively 

blackboxed, polished, and stylized until acquiring the status of indisput-

able knowledge.17 Who would now quote Aristotle when using the infer-

ence rule of modus ponens? Yet even these principles of logic—dear to the 

formalist school of mathematics18—went through a process similar to that of 

Shannon and Hartley’s theorem that very few mathematicians in signal pro

cessing would now try to contest. Just as the theorem they helped to shape, 

deductive laws were themselves shaped a long time ago by people equipped 

with specific instruments (in this case, lettered diagrams drawn on wax tab-

lets and indexed to small Greek sentences).

Flat Laboratories

In the previous sections, we spent some time trying to stress the similarities 

between mathematical and scientific claims. It appeared that both need to 

survive similar trials to become, eventually, indisputable facts. No supe-

rior necessity helps mathematical claims to become certified facts; they too 

need to convince their readers in order to be enrolled in later claims and 

become, very rarely, polished black boxes.

However, so far, we have only considered one side of the coin. Although 

looking at mathematical published claims helps us realize that successful 

mathematical propositions could be considered genuine certified knowledge, 

we can legitimately assume that mathematicians do not prepare, write, and 

read papers all their working time. They must also spend time and energy on 

the things they write about. All the claims we considered in the last sections 

were indeed about things: limitations of fuzzy logic systems for Elkan, the 

four colors conjecture for Kempe, Kempe’s claim about the four colors con-

jecture for Heawood, and maximum rate of information transmission over 

noisy channels for Shannon (and later, Hartley). But how are these things 

assembled? What practices lead to the presentation of these mathematical 

things—or objects—in published materials? Are these practices different 

from laboratory practices in other scientific communities?

As we prepare to look inside the locations in which mathematical objects 

are shaped, we immediately face a difficulty: there are very few empirical 
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studies of such locations. Although there are robust studies about contro-

versies within mathematical domains (Warwick 1992, 1993; MacKenzie 

1999, 2000, 2004, 2006; Rosental 2003, 2004) and historical reconstruc-

tions of the shaping of mathematical objects from famous mathematicians’ 

logbooks (Lakatos 1976; Pickering and Stephanides 1992), there are very 

few laboratory studies of mathematics.19 It is thus with limited means that 

I will now try to stress the scientific aspect of mathematics a little bit more:

Scene 4

Salk Institute for Biological Studies at La Jolla (California), winter of 1972.20 

Paul Brazeau is on edge. His boss, Professor Roger Guillemin, is after him, 

casting doubts on his ability to handle the lab’s brand new—and very 

expansive—radioimmunoassay. It is true that the graphs recently printed 

by the massive bioelectronic instrument are surprising; instead of show-

ing that Guillemin’s newly purified peptide triggers the growth hormone, 

it shows that it decreases it. This drives Guillemin crazy. But Brazeau 

and his technicians retro-inspected the whole experimental procedure a 

dozen times: there were no mistakes. The right amount of purified pep-

tide was injected in the carefully assembled rat pituitary cell culture, and 

no mishandling occurred during the operationalization of the radioim-

munoassay. “It’s terribly simple,” thinks Brazeau. “Either I am no consci-

entious professional or, for the last three years, we were all wrong about 

this peptide.”

Scene 5

Dublin, fall of 1843. William Rowan Hamilton is in a challenging mood: 

even though he bumps into another impasse in his attempt to extend 

complex number theory to a three-dimensional space, he is obviously 

making important progress.21 He is particularly proud of his new start-

ing point; what a mistake it was to start his previous experiments from 

tiring algebraic models! As he now starts geometrically by moving from 

x + iy to x + iy + jz, he possesses a three-dimensional line segment that is 

far easier to test (even though it adds a second imaginary number j right 

from the start). His first experiment was, in that sense, very conclusive. 

Thanks to the advice of his German colleague Gotthold Eisenstein, he 

could reach an equivalence between algebraic and geometrical defini-

tions of the square of his three-dimensional segment by abandoning the 
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assumption of commutation between i and j. He could then further test 

his model by multiplying two arbitrary coplanar triplets according to his 

new noncommutative rule for ij. Although he struggled at first to define 

the orientation of his new product, he realized—after several attempts—

that Pythagoras’s theorem could nicely do the trick. Here again, an 

encouraging achievement. Yet this last move led him to another prob

lem: the algebraic and geometrical representations of this coplanar mul-

tiplication differ by a factor of (bz—cy)2. “I must find a way to remove 

this superfluous term,” he thinks. “I don’t want to start the whole thing 

over again!”

Despite their cryptic aspects, what do these two scenes tell us about labora-

tory practices? Can we draw similarities between what takes place within 

Guillemin’s laboratory of endocrinology (scene 4) and what takes place 

within Hamilton’s laboratory of mathematics (scene 5)?

We can first notice that both scenes deal with experiments; they both put 

something to the test in order to evaluate its reactions. The peptide in scene 

4 is, in 1973, still undefined. Guillemin—in line with recent claims about 

this class of amino acid polymer—is convinced that it should trigger the 

rat’s growth hormone.22 But how much is such growth hormone triggered? 

And under what circumstances? To have a clearer view on the capacities of 

this peptide, he puts Brazeau in charge of implementing an experiment he 

recently designed. In scene 5, a complex three-dimensional line segment 

x + iy + jz is, in 1843, still undefined.23 Hamilton hopes that this “triplet”—

as he calls it—will allow him to extend the geometrical representation of 

complex number theory.24 But at this point, nothing is certain. To better 

understand the capacities of his complex three-dimensional line segment, 

he puts it through two successive experiments: he first squares it and then 

multiplies it with another arbitrary coplanar triplet.

In both scenes then, experiments are run to test undefined entities. Yet 

experiments do not happen by themselves; in both scenes, instruments are 

used by scientists in order to help them probe their undefined entities. 

In scene 4, the delicately assembled rat pituitary cell culture and the very 

expansive radioimmunoassay are the two principal tools used to test the 

peptide. It is worth noting that both instruments are highly visible and take 

up a lot of space. The instruments in scene 5 are a priori less impressive but 

equally important. The first instrument is, obviously, the algebraic apparatus 
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as progressively defined by medieval Islamic mathematicians; without any 

means to express relationships among variables in a condensed and succinct 

manner, Hamilton could not juggle his triplet.25 But he also needs a coor-

dinate space to express his triplet geometrically. In that sense, without the 

efforts of seventeenth-century mathematicians such as Descartes, de Fermat, 

Newton, and Leibniz, Hamilton would have no means to consider the trans-

formations of his triplet. He further requires some insight from noncommu-

tative algebra, as then recently proposed by Gotthold Eisenstein, to handle 

the complex product ij (Hankins 1980). Finally, he needs good old Pythago-

ras’s theorem to multiply his initial triplet with another arbitrary coplanar 

triplet.26

At this point, we need to make another down-to-earth observation: 

although both laboratories have instruments to conduct experiments on 

undefined entities, the shapes of these instruments differ from each other. 

On the one hand, there is a bioelectronic assemblage that gathers peptides, 

Brazeau, rat cells, laboratory technicians, and an imposing metal box full of 

electronic parts; on the other hand, there are books, paper, Hamilton, and 

a pencil. There is little room for doubt here: the instruments do not take up 

the same amount of space. Hamilton’s instruments appear dryer and thinner 

whereas Guillemin’s instruments appear wetter and thicker. One could say—

and that is the terminology I will use for the remainder of this section—that 

Hamilton’s laboratory is flat whereas Guillemin’s laboratory is bulky. Both 

laboratories are engaged in the same process—testing the reactions of an 

undefined entity—but they use instruments that are different in terms of 

occupied space.27

Can we in turn say that Guillemin’s laboratory is more expansive than 

Hamilton’s laboratory? If we only consider the relative price of their instru-

ments, it seems indeed to be the case: paper is cheaper than laboratory 

technicians, most books (even in nineteenth-century Ireland) are cheaper 

than a radioimmunoassay from the 1970s, and pencils are cheaper than a 

rat pituitary cell culture. Yet if one considers the relative networks of both 

laboratory apparatuses, the question appears trickier. Indeed, how many 

efforts were needed to cultivate and sell standardized rat cells? Many, indu-

bitably. But how many efforts were required to establish coordinate spaces? 

Many, indubitably. And what about algebra? As Netz (1998, 2004) showed, 

without centuries of commentaries on Greek geometrical writings, without 
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Byzantine libraries, and without the classification efforts of Bagdad mathe-

maticians, no algebraic system of notation could have come into existence. 

The same is true of Pythagoras’s theorem; many long-standing efforts were 

required to gather, compile, and preserve Pythagorean propositions from 

early antiquity to nineteenth-century Ireland. Let us then stick to the topo-

logical difference between our two laboratories: Hamilton’s laboratory is 

flatter than Guillemin’s.

If we continue to analyze both scenes, we can see that despite their 

topological differences, both bulky and flat instruments end up producing 

comparable inscriptions; that is, readable traces on documents. Indeed, the 

bulky bioelectronic experimental assemblage of scene 4 ends up produc-

ing graphs whose curves indicate that the rat’s hormone decreases. The 

results of the experiment on the undefined peptide conducted by Brazeau 

are pieces of paper anxiously examined by Guillemin.28 Similarly, the flat 

experimental assemblage of scene 5 ends up producing a series of coupled 

algebraic and geometrical equations; at first, both equations appeared 

equivalent (which was good news for Hamilton), but in the second step of 

the experiment, both appeared dissimilar (which was bad news for Ham-

ilton). Yet, just as for Brazeau and Guillemin, the results of Hamilton’s 

flat experiments are readable traces on documents he examines with his 

eyes.29

At this point then, we can tentatively say that both scenes deal with 

experiments, instruments (of different topologies), and series of inscrip-

tions. But where does all this work lead to? At this stage, it certainly cannot 

lead to any published claim that may later become a scientific fact. Within 

these two laboratories, scientists impose tests on undefined entities, but 

how can these practices lead to the formation of objects capable of being 

described in academic papers?

Scene 6

Salk Institute for Biological Studies at La Jolla (California), January 1973.30 

There is nothing to do about it; even after two other meticulous experi-

ments, the graphs printed by the radioimmunoassay still show that the 

rat’s hormone decreases when put in contact with Guillemin’s peptide. 

The rat pituitary cell culture is indisputable as are the composition of Guil-

lemin’s peptide, the radioimmunoassay, and Brazeau’s professionalism 
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(Guillemin quickly admits it). The only way to escape from this impasse is 

to cast doubt on what the peptide does. Leading figures in endocrinology—

including Guillemin—thought that this class of peptide triggered the 

growth hormone; obviously, it does the opposite. After being in contact 

with rat pituitary cell culture for a certain amount of time and after having 

gone through the radioimmunoassay with some consistent parameters, 

this new thing significantly decreases the rat’s growth hormone. As it is cer-

tain that there have been no mistakes during the experimental procedures, 

a paper is now being prepared to convince skeptical readers about the exis-

tence of this new scientific object Guillemin starts to call somatostatin (lit-

erally, “that which blocks the body”).

Scene 7

Dublin, fall of 1843.31 There is nothing to do about it: the superfluous 

term (bz—cy)2 within the geometrical expression of the length of a com-

plex line segment cannot be removed without adding a new imaginary 

quantity. The rules of algebra—including noncommutativity—are indis-

putable, as are Pythagoras’s theorem and Hamilton’s scriptural opera-

tions (he ran the whole experiment several times). The only way to 

escape from this impasse is to cast doubt on the premises of the experi-

ment: What if the extension of the geometrical representation of com-

plex number theory required not three but four dimensions? Indeed, 

only the inclusion of a third imaginary quantity k as the product of i 

and j can make the superfluous term (bz—cy)2 disappear. It is true that 

this new imaginary quantity needs in turn a fourth axis in order to be 

geometrically represented, but who cares? After the introduction of k as 

either an imaginary quantity (in the algebraic representation) or a fourth 

dimensional axis (in the geometrical representation), this new thing can 

be squared and multiplied while producing equivalent equations, hence 

effectively extending the geometrical representation of complex number 

theory. If Hamilton now manages to define the quantities k2, ik, kj, and 

i2—almost a formality at this stage—he will be able to completely define 

the behavior of this new mathematical object he starts to call quaternion 

(literally, “that which is made of four”).

Again, beyond their cryptic aspects, what do these two scenes tell us about 

the formation of new objects within scientific laboratories? Can we draw 
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some similarities between the progressive shaping of somatostatin (scene 6) 

and quaternions (scene 7)?

We can first see that in both scenes, inscriptions printed out by instru-

ments begin by expressing singular phenomena. In scene 6, the graphs 

printed by the radioimmunoassay indicate confidently that after the pep-

tide is injected in the rat pituitary cell culture over a specific period of time 

and after it goes through the radioimmunoassay with specific parameters, 

the growth hormone decreases significantly. This is what is inscribed within 

the graphs Guillemin can read; the whole experimental process ends up 

decreasing the rat’s growth hormone. Trustful graphs become flatter; there-

fore the growth hormone decreases.

Similarly, in scene 7, the inscriptions produced by the hands of Hamil-

ton indicate that after a fourth dimension is added to the triplet in order 

to geometrically express the new imaginary quantity k—itself required to 

make the superfluous term (bz—cy)2 disappear—both algebraic and geomet-

rical representations of complex number theory become equivalent. Again, 

this is the phenomenon described by the inscriptions Hamilton can read 

on a sheet of paper; the whole experimental process ends up expressing an 

extension of the equivalence between geometrical and algebraic represen

tation of complex number theory. A trustful geometrical equation becomes 

equivalent to another algebraic equation; therefore, the geometrical repre

sentation of complex number theory is extended.

However, and this is the crucial point, by virtue of the experimental set-

ting, the origins of these two phenomena—“quantifiable inhibition of the 

growth hormone” and “extension of the equivalence between geometry 

and complex number theory”—can be attributed to specific things. In scene 

6, the only element whose actions were undefined at the beginning of the 

experimental process was the peptide. The actions of rat pituitary cell cul-

tures, radioimmunoassay, Brazeau, and the technicians were all predictable; 

the unpredictable phenomenon—the graphs becoming flatter—must thus 

result from the action of this peptide-thing that “blocks the body.” Similarly, 

in scene 7, the only element whose actions were undefined at this stage of 

the experimental setting was the third imaginary quantity k geometrically 

expressed by a fourth dimensional axis. The actions of noncommutative 

algebra, Pythagoras’s theorem, and Hamilton’s pencil and paper operations 

were all predictable; the unpredictable, yet anticipated, phenomenon—

geometrical and algebraic equations becoming equivalent—can only be 
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attributed to this four-dimensional thing that “groups together four num-

bers.” In both scenes, new things emerge from the same attribution process; 

scriptural traces of a new phenomenon are imputed to the behavior of a 

previously undefined entity.

At the end of both scenes, this attribution process that imputes a behav

ior to a previously undefined entity by virtue of an experimental setting 

ends up being summarized by a term that encapsulates what the now 

defined thing does: “that which blocks the body” becomes somatostatin and 

“that which groups four numbers” becomes quaternion. New objects come 

into existence, but there has been no miracle; in both cases, the shape of 

the new object was progressively defined as scientists made it “grow” from a 

list of actions to the name of a thing. In scene 6, somatostatin was first “the 

graphs become flatter,” then “under these experimental conditions, there 

is a diminution of the growth hormone,” then “our new peptide decreases 

rat’s growth hormone,” and finally “somatostatin decreases rat’s growth 

hormone.” The same reification process (Latour 1987, 86–100) happened in 

scene 7: quaternion was first “two equations become equivalent,” then “there 

is an extension of geometrical representation of complex number theory,” 

then “four-dimensional representation allows the extension of geometrical 

representation of complex number theory,” and finally “quaternions express 

geometrically complex number theory in a four-dimensional space.” In 

both cases, experiments, instruments, and alignments of inscriptions—in 

short, laboratory practices (Latour and Woolgar 1986)—progressively led to 

the shaping of scientific objects whose properties and contours could, in 

turn, become the topics of papers claiming their existence.32

However, as we saw in the previous section, both somatostatin and qua-

ternions as presented in papers that can be read by skeptical colleagues still 

need to overcome many trials to become certified scientific facts capable 

of being blackboxed, stylized, polished, and enrolled in further claims and 

experimental settings. Although both objects came into existence within 

their respective bulky and flat laboratories, they still need to attract the 

adherence of a wider community. But when the doubts of skeptical read-

ers are removed, when the veracity of both claims are certified by the 

scientific institution, we can in turn confidently say that Guillemin dis-

covered somatostatin and that Hamilton discovered quaternions. Or can we? 

We saw indeed that both objects were the results of laboratory practices 

that progressively shaped them. Can scientists discover objects they were 
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previously constructing? Were somatostatin and quaternions already part 

of “nature” even though they had to be shaped in well-equipped (yet topo-

logically different) laboratories? This is where the story starts to become 

tricky. If STS has long shown that scientific objects need to be manufac-

tured in laboratories, the heavy apparatus of these locations as well as the 

practical work needed to make them operative tend to vanish as soon as 

written claims about scientific objects become certified facts. Once there 

are no more controversies or disagreements about a new scientific object, 

nature tends to be invoked as the realm that always already contained this 

constructed scientific object. Here, we encounter something we discussed 

in chapter 4 where we were dealing with computer programming practices: 

when facts are certified and enrolled in further studies, the experiments, 

instruments, communities, and practices that allowed their progressive for-

mation are generally put aside (Latour and Woolgar 1986, 105–155). This is 

what makes the history and sociology of sciences (including mathematics) 

so difficult to conduct; as established facts are purified from the artificial 

setting that supported their formation, the temptation is great to start from 

these established facts and extrapolate backward (Collins 1975).33

However, if one is not interested in the history or sociology of sciences, if 

one “just” wants to speak about objective facts and eventually enroll them in 

further claims, the reference to nature appears completely justified. In that 

sense, one may of course say—as a kind of convenient shortcut—that Ham-

ilton “discovered” quaternions or that Guillemin “discovered” somatostatin, 

but only because these objects ended up being accepted as certified facts, put 

in black boxes, translated, polished, and enrolled in later claims. As both ini-

tially manufactured objects presented in written claims successively resisted 

trials, the conditions of their production within dedicated laboratories can 

be, temporarily, neglected; nature can take over and support their raison 

d’être. In this respect, Latour’s funny analogy is quite instructive:

Nature, in scientists’ hands, is a constitutional monarch, much like Queen Eliza-

beth the Second. From the throne she reads with the same tone, majesty and 

conviction, a speech written by Conservative or Labour prime ministers depend-

ing on the election outcome. Indeed she adds something to the dispute, but only 

after the dispute has ended; as long as the election is going on she does nothing 

but wait. (Latour 1987, 98)

The notion of “nature” is thus convenient to speak about noncontrover-

sial scientific facts—why not?—but as soon as one speaks about scientific 
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controversies or about scientific objects in the making, one needs to consider 

nature as the uncertain result of scientific practices.34 This cautious posi-

tion toward nature applies to “conventional” bulky scientific objects such 

as somatostatin as well as to “unconventional” flat scientific objects such as 

quaternions. Again, no superior reality makes mathematical objects appear 

to mathematicians. They too need to be shaped within (flat) laboratories 

equipped with instruments that print inscriptions.

Mathematicable

A good thing has been taken care of: it seems indeed that the construc-

tion process of scientific facts is quite similar to the construction process of 

mathematical facts. Theorems (cf. scenes 1 and 3), mathematical systems 

(cf. scenes 5 and 7), conjectures (cf. scene 2), and even formulas (cf. scene 

3) may all be considered genuine scientific claims that try to convince col-

leagues of the existence of objects previously shaped within (flat) laborato-

ries. If the vast majority of these claims do not overcome the trials that can 

make them become certified facts, some of them (e.g., Shannon-Hartley’s the-

orem, Hamilton’s theory of quaternions) may become stylized and polished 

black boxes that are used as instruments in further experimental settings. It is 

this huge—and changing—repository of certified mathematical facts that we 

may call “mathematical knowledge.” Moreover, several elements of this certi-

fied body of knowledge may, sometimes, become part of tacit, indisputable, 

and necessary knowledge (e.g., the logical laws of deduction).

However, despite the striking similarities between their respective con-

struction processes, certified scientific and mathematical facts—and their 

correlated objects—still seem to differ significantly:

Objection of a skeptical reader

All right, let’s assume that both facts—and correlated objects—go through 

similar construction processes, as you obviously believe (while only rely-

ing on small, incomplete examples). An important difference subsists: 

mathematical objects never stop being used for the constitution of non-

mathematical objects! We could even see it in the laboratory of endo-

crinology you used to illustrate your point. The graphs printed by the 

radioimmunoassay, which quantify how much the growth hormone is 
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decreased by the peptide, are importations of solidified mathematical 

facts (in this case, basic analytical geometry). The same is certainly true 

of the inner mechanisms of the radioimmunoassay; complex mathemat-

ical theories must have been used to develop this costly instrument. Sim-

ilar processes happen all the time in demography, climatology, political 

science, biology, and so on. Mathematical objects such as logarithms, 

Gaussian functions, or probabilities infiltrate all domains of “hard” sci-

ence, helping scientists to shape new objects and facts. Yet the inverse 

is not true: how could peptides or radioimmunoassay help mathemati-

cians shape new objects? Mathematicians have to do things by them-

selves, without the help of the other sciences. This is why mathematics 

is the queen of all sciences: without the work of mathematicians in their 

“flat laboratories”—we may keep that—there would simply be no exact 

sciences. Mathematical objects are so powerful; they must be of some 

superior nature. How could it be otherwise?

There are two glitches in this classical objection. First, it is not tenable to 

say that the practice of mathematics is self-sufficient, for many disciplines 

intervene in the construction process of mathematical objects and facts. 

Netz (1998, 2004) showed, for example, how archiving and standardization 

were central to overcome the stagnation of Greek geometry.35 Thanks to the 

assembling of well-arrayed corpora of papyruses and parchments—especially 

in Byzantium—late antiquity commentators such as Eutocius became able to 

compare, annotate, and complete the entangled multiplicities of Greek geo-

metrical writings. Progressively, these systematic standardization efforts made 

early antiquity’s geometrical propositions commensurable; unlike Greek 

geometers,36 medieval mathematicians—especially in Bagdad’s House of Wis-

dom (Netz 2004, 131–186)—could see what Greek geometry was. Equipped 

with “intellectual technologies” (Goody 1977)—here, collections of standard-

ized Greek geometrical treatises—mathematicians such as al-Khwarizmi and 

Khayyam could systematize and classify the geometrical problems solved 

by the Greeks. These systematic comparisons progressively led, according to 

Netz, to the formation of the algebraic language: “Al-Khwarizmi’s algebra was, 

ultimately, a fairly unambitious ambition, translated into major transforma-

tions. Without himself doing anything beyond classifying the results of the 

past, Al-Khwarizmi, effectively, created the equation” (Netz 2004, 143).
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Since archiving and standardization were, and are,37 central to the for-

mation of mathematical objects, do we have to say that these two respect-

able disciplines are the queens of the queen of all sciences? To me, a more 

reasonable position would be to accept that hierarchal classification of 

disciplines is misleading. When something allows something else to come 

into existence, it may not be a matter of vertical hierarchy but of horizontal 

arrangement.

This leads us to the second objection regarding the usability of mathe-

matical objects for the assembling of nonmathematical objects. It is true that 

the combinational capabilities of mathematical facts are surprising. In every 

scientific discipline, recent or ancient mathematical discoveries are used to 

conduct experiments, organize inscriptions, express new phenomena, and 

eventually define new objects. I would go even further than our skepti-

cal reader and expand this extreme combinability of mathematical objects 

to everyday life. For example, how many times a day do we use the basic 

precepts of arithmetic? Obviously, mathematics is everywhere, from labo-

ratories of high energy physics to cashiers’ desks. This capacity to infiltrate 

heterogeneous domains of activity is very impressive. But does it neces-

sarily mean that mathematical objects come from a different nature? Does 

their plasticity necessarily manifest a supernatural essence?

Let us consider Guillemin’s laboratory of endocrinology since it is the 

example used by our skeptical reader. It is true that the results printed by the 

computer of the radioimmunoassay required the application of elementary 

mathematical theories in order to indicate a diminution of the growth hor-

mone. Was there some magic? Not if we consider more precisely the process 

by which the rat pituitary cell culture was “flattened” to become represent-

able as a graph with numerical values varying through time. What hap-

pened indeed within the radioimmunoassay? Schematically, the very small 

radioactive waves emitted by the rat pituitary cell culture were captured 

and, after a series of translations, counted by the costly equipment. Radio-

active waves became signals that, in turn, became discrete values varying 

through time. This transubstantiation process—or, more succinctly, transla-

tion process—that made a cell culture go from the state of complex liquid 

to the state of a writable list of (radioactive) values spread over time is pre-

cisely what allowed the enrollment of the elementary mathematical notion 

of “ratio” and the further calculation of the growth hormone’s decreasing. 

How did the ancestral theory of ratios as developed by the Pythagoreans 
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become applicable to the world of endocrinology? The concrete efforts to 

form differently (trans-form) the cell culture into quantifiable inscriptions, 

thus making it become a geometrical graph, allowed the connection between 

ratios and Guillemin’s peptide. It was by flattening the cell culture and 

adapting it to the flat ecology of ratios that these mathematical objects 

became applicable to the cell culture. Nothing mysterious happened; by 

progressively translating a complex entity into a scriptural form, it became 

possible to link it with certified mathematical facts.

Another—better—example of such an empirical process that makes non-

mathematical entities become mathematicable is provided by Michal Lynch 

(1985) in his book Art and Artifact in Laboratory Science. During the 1970s, an 

important topic in neurology was the plasticity of the brain; that is—briefly 

stated—its capacity to recover lost functions through the reorganization of 

some of its tissues. How this reorganization occurs was a controversial topic 

at the time of Lynch’s laboratory study. Two major conjectures were in com-

petition. The first one considered that the reorganization occurred through 

the densification of the synapses—the structures that allow interneuro-

nal communication between axons and dendrites—within the damaged 

brain territory.38 The second theory, labeled “axon sprouting,” considered 

that the reorganization was due to the extension of axons adjacent to the 

damaged territory. For many reasons encompassing results of then recent 

laboratory experiments as well as promising industrial applications, the 

director of the laboratory studied by Lynch believed that axon sprouting 

was the main ingredient for the brain’s reorganizational capacity (Lynch 

1985, 32–33). But how could he demonstrate it? Many pitfalls got in his 

way. First, neurons are very small. Observing their (re)organization required 

powerful zooms. Fortunately, the advent of electron microscopy—a tech-

nology recently purchased by the laboratory—allowed him to make ultra-

structural observations. But this led to another issue: at that time, these 

observations could only be made on tiny slides whose flat topology was 

different from the bulky topology of neurons. Fortunately, a “methodic 

series of renderings of laboratory rats” (Lynch 1985, 37) could be orga

nized to properly slice brains and adapt them to ultrastructural visibility. 

But this extraction of brain slides led to another issue as a reorganizational 

brain process can only happen within a living brain. How could it then be 

possible to observe brain plasticity on dead sliced samples? Fortunately, 

the availability of many standardized laboratory rats with almost identical 
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brains allowed the organization of a “chain of sacrifices” (Lynch 1985, 38). 

Although it was not possible to observe the reorganization of one living 

damaged brain, it progressively became possible to observe the reorgani

zation of “same” damaged brains killed at different time intervals. A regu-

lar series of discrete—and meticulously referenced—dead slices permitted 

the reconstitution of the evolution of one living brain trying to palliate its 

damages. Yet the scientists followed by Lynch still needed to discern spe-

cific events within the mess of every single slide. They were indeed trying 

to account for axon fibers that were expanding their territories to damage 

zones. But how could they define territories of axons as well as their poten-

tial expansions? Fortunately—and this greatly contributed to designing 

the whole project—one interesting characteristic of the “dorsal hippocam-

pus” helped them to establish points of reference common to all electron 

microscopic observable sections. It had indeed been demonstrated—and 

accepted—that the structure of the dorsal hippocampus looks like a grid, 

the dendrites of its cell bodies regularly intersecting axons indexed to differ

ent brain regions (Ramón y Cajal 1968). Therefore, if the brain researchers 

managed to produce electron microscopic observable slices of dorsal hip-

pocampus extracted from similarly damaged rats’ brains (killed at different 

time intervals), the “natural” grid structure produced by the intersections 

of the dendrites of dorsal hippocampus’s body cells with axons indexed to 

different brain regions could constitute an initial empirical base for further 

measurements (Lynch 1985, 35–39). In other words, as it was certified that 

one specific part of the dorsal hippocampus contained cell bodies whose 

dendrites always intersected regularly with axons indexed to two different 

brain regions, which I call here α and β, it became possible to damage the β 

brain regions of all rats and then check if the axons indexed to α “sprouted” 

to infiltrate the territory of the axons previously indexed to β. But again, 

a new problem arose: how to go from specific electron microscopic views 

on slices to a panorama of many slices distributed over time? At the time 

of Lynch’s study, the easiest way to operate this translation was first to 

take analogical photographs of electron microscopic dorsal hippocampus 

displays. Brain scientists then had to develop these photographs in high 

definition and equip them with a coordinate system scaled according to 

the ultrastructural levels of observation (between 2,160 and 24,000 times, 

depending on the photographs). How did Lynch’s scientists concretely 

manage to equip these high-definition photographs? They pinned down 
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the photographs on a cardboard sheet, hence creating a chronological 

montage of the microscopic displays. As Lynch put it, “these successions of 

photographs provided the visible configuration of brain ultrastructure that 

was addressed in the analytical phase of the study” (Lynch 1985, 38). But 

here again, it was not enough to measure an extension of axons indexed to 

α. Even though the dendrites of dorsal hippocampus’s cell bodies regularly 

intersected axons indexed to α and β, it remained necessary to affix a refer-

ential common to all photographs. How did the brain scientists do this? It 

is difficult here not to quote Lynch’s account:

As each montage was constructed, it was analytically addressed in the follow-

ing manner: a clear plastic sheet was laid over the surface of the photographs, 

and a linear scale was drawn over the surface of the sheet running in a vertical 

direction which paralleled the edge of the columnar montage of photographs.  … 

A scale of “microns” (computed with reference to the magnificational power of 

the photographs) was plotted for the drawn-line, where the “zero” point was set 

at a horizontal line that approximated the alignment of the granule cell body 

layer.  … Measurement along this scale was used to estimate linear distance along the 

“vertical” alignment of granule cell dendrites as they arose from the cell bodies and 

coursed “upward.” (Lynch 1985, 38; italics added)

Flat linear distances are a priori far removed from neurons and the poten-

tial sprouting of their axons. Yet, once enlarged photographs of tiny little 

slices of standardized rats’ dorsal hippocampus are mounted on cardboard 

and equipped with a linear scale drawn on clear plastic sheets whose “zero” 

point corresponds to the cell body of each slice, this venerable mathe-

matical theory and its correlated objects become very, very close (Latour 

1987, 244). The experimental setting of the laboratory and all of its instru-

ments producing “alignable” inscriptions—standardized rats; tiny, care-

fully washed (and stained) slices of rats’ dorsal hippocampus; montages of 

enlarged photographs; linear scales drawn on clear plastic sheets—end up 

conferring to rats’ dorsal hippocampus the same form as graphs on which 

linear distances can be estimated. At the end of this measurement process, 

ratios of intact/dead terminals—junctions between axons and dendrites—

plotted in terms of days post the lesion could even be computed by the 

scientists, thus demonstrating statistically the phenomenon of axon sprout-

ing: “Measurement of this expansion showed a consistent reoccupancy of 

the lower 25 per cent of the region of the granule cell dendrites formerly 

occupied by the [damaged] layer of axons” (Lynch 1985, 35).
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Again, as Lynch demonstrated, no magic intervened; laboratory prac-

tices made the relationships between axons and dendrites become mathe-

maticable. Standardized rats became dorsal hippocampus, tiny slices became 

enlarged photographs, and a montage of cardboard became one regular 

geometrical space whose occupancy evolved through time. If some pol-

ished mathematical facts—computation of surfaces progressively occupied 

by intact terminals—did help demonstrate the existence of a nonmathe-

matical phenomenon (axon sprouting), this event necessitated a succession 

of translations in order to connect the wet and bulky ecology of the brain 

with the dry and flat ecology of mathematics.

Formulating: A Definition

Mathematics does not apply to the world. A cascade of translations is required 

to connect nonmathematical entities with certified mathematical facts. But 

at this point of our operationalization exercise, one question remains: if 

the rats’ dorsal hippocampus of the brain research laboratory we have just 

considered and the rat pituitary cell culture of Guillemin’s laboratory both 

end up being trans-formed in order to fit with the networks sustaining 

solidified mathematical objects (themselves formerly described by claims 

that progressively became certified facts and even, sometimes, single sen-

tence statements part of tacit undisputable knowledge), do they not lose 

many properties on the road? After all, from a rich and complex region of 

the brain, the dorsal hippocampus becomes a tinkered montage of gridded 

photographs; from a rich and complex soup of cells, the rat pituitary cell 

culture becomes a simple graph. To make both entities mathematicable, 

they must endure important reductions. But is it worth it? What justifies 

such flattening and drying?

In these specific situations, the gains of these reductions are important 

because the properties of the mathematical objects as formerly defined 

by mathematicians within their flat laboratories are progressively “lent” 

to the pituitary cell culture and the dorsal hippocampus. First, both enti-

ties become easier to handle. After the translation process from a cell soup 

to a graph, Guillemin does not need the cell soup anymore. He certainly 

conserves it for potential verifications, but whenever he needs to see or 

show the rat pituitary cell culture, he can now use the graph printed by the 

radioimmunoassay that expresses only the tiny important part of the soup’s 
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properties. The same is true of the brain research laboratory studied by 

Lynch: instead of handling tiny slices of hippocampus, brain scientists can 

now consider gridded photographs. One direct consequence of this ergo-

nomic gain is that the reduced entities become also more sharable. Although 

it is impossible to e-mail—or, in these cases, fax—wet and bulky dorsal hip-

pocampus, after their translation into a succession of photographs, trustful 

brain scientist colleagues based on the other side of the world are also able to 

scrutinize them. Transforming the hippocampus into gridded pieces of paper 

allows it to invest extended—yet expansive and fragile—communication 

networks. Such a reduced and flattened hippocampus therefore also becomes 

more comparable; if the brain scientists based on the other side of the world 

also manage to operate similar reductions on the dorsal hippocampus, they 

may be able to compare both successions of gridded photographs. The same 

is also true of Guillemin’s graphs: instead of comparing cell soups, endocri-

nologists can compare graphs, a far easier endeavor.

Another gain of reducing entities and making them fit with the flat net-

work of certified mathematical knowledge is that reduced entities become 

much more malleable; new takes appear that, in turn, suggest new instru-

ments, tests, and inscriptions. For example, when active junctions between 

axons and dendrites become points within a uniform geometrical space, the 

instruments already defined by mathematicians for this geometrical space 

can be used to further probe the still undefined phenomenon of axon sprout-

ing, thus producing new inscriptions that will precisely help to define it. 

Within this geometrical space, new tests can be made, such as measuring sur-

faces, counting terminals, and calculating ratios of occupancy. These tests and 

their correlated instruments will, in turn, produce readable inscriptions—

here, lists of numbers—that will help further characterize the phenomenon 

under scrutiny. The same is true of Guillemin’s rat pituitary cell culture: once 

complex biochemical reactions become discrete values varying through 

time, all the instruments that become available through this graphic form 

can be used to further probe the cell soup. What is the slope of the graph? 

What is the speed of the growth hormone’s decreasing? Again, a flat reduced 

form enables the use of new instruments and the production of new readable 

inscriptions that help with the characterization of a new phenomenon.

This leads us to one last gain of these crucial reduction processes, perhaps 

the consequence of all the other gains:39 when an entity is made compatible 

with mathematical facts, it also becomes enrollable within the written claim 
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that will try to attest to its reified existence. This element is crucial if we 

want to understand the full additional strength these reduction processes 

may give to undefined entities. How indeed to include axons within a text 

claiming their ability to sprout? How to include Guillemin’s new peptide 

within a paper attesting to its decreasing effect on the growth hormone? 

Reducing them until they reach the same form as certified “flat” mathe-

matical facts allows them to become the referents of the prose that presents 

them to their respective scientific communities. In addition to making both 

axons and peptide easier to handle, more shareable, more comparable, and 

more malleable, reducing them to make them compatible with the flat ecol

ogy of mathematical facts allows them to be included inside the texts that 

talk about them. The reified object “axon sprouting,” more than just being 

described in a paper, is also present within the paper in the flat and dry 

form that precisely allowed its mathematization (in this case, according to 

Lynch [1985, 40–49], as a succession of gridded photographs whose points 

move “upward”). Similarly, the reified object “somatostatin,” more than 

just being described in a paper, is also within the paper in the form of a 

graph summarizing its behavior (Brazeau et al. 1973). The attentive reader 

may have noticed that we have now come full circle from the beginning of 

this operationalization exercise where we were talking about written claims 

of relative conviction strengths. The end results of laboratories, experi-

ments, instruments, and inscriptions are indeed the formulation of claims 

that try to attract the adherence of individuals. In this respect, we should 

now be in a position to better understand the fascinating power of math-

ematical objects and facts; they may go through construction processes that 

are similar to other scientific facts, but their particular flat and dry ecology 

makes them relevant for the formation of nonmathematical objects and 

facts. They make undefined entities easier to handle, more shareable, more 

comparable, more malleable, and more enrollable within claims they pre-

cisely help to formulate.

It is not mathematical facts and their correlated objects that give, by 

themselves, some additional strength to the transformed entities they some-

times encounter. Rather, it is the flat ecology within which mathematical 

knowledge deploys itself that, sometimes, provides advantages to the entities 

that acquire the same form. This last element allows me to finally define the 

activity of formulating more technically; for the remainder of this part III, I 

shall call formulating the empirical process of translating an undefined entity 
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until it acquires the same form as already defined mathematical object. The 

encounter between a “made-flat” entity and a mathematical object—that 

previously had to be constructed in a laboratory and presented in a claim 

whose conviction strength made it a polished fact—will, in turn, help scien-

tists to further characterize the behavior of the entity and present its reified 

version in a written claim. Just as any scientific claim (including those for-

mulated by mathematicians), this written claim will still have to overcome 

publication, citation, captation, and posterity trials to become, eventually, a 

certified fact. A circle has been drawn; we are now back to where we started. 

With all these elements in mind, it is high time to return to computer science 

in the making and engage with ethnographic materials.
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As in part II when we were dealing with computer programming, the journey 

was long and full of zigzags. But we did not have any other choice: in order not 

to get lost in our further explorations of the role of mathematics in the forma-

tion of algorithms, we needed to understand where certified mathematical facts 

come from; how they solidify; and how, sometimes—very rarely—they become 

part of tacit necessary knowledge. Thanks to STS works on mathematics as well 

as heterogeneous examples taken from nineteenth-century protograph theory, 

contemporary controversies in fuzzy logic, a well-accepted theorem in theoreti-

cal signal processing, and the laboratory practices that led to the shaping/discov-

ery of quaternions, we progressively realized that mathematical objects—and 

the certified facts that describe them—need academic papers, trials, labora-

tories, instruments, and inscriptions to come into existence. Moreover, when 

nonmathematical disciplines, such as endocrinology or brain research, need 

to borrow the heuristic and ergonomic strength of certified mathematical 

objects and facts to qualify bulky and wet entities (e.g., a new peptide, axons 

of dorsal hippocampus), a cascade of translations is required in order to make 

these entities compatible with the flat ecology of certified mathematical facts. 

Consequently, we saw that the indubitable power of mathematics should be 

understood in the light of the mundane practices that allow nonmathemati-

cal entities to become “mathematicable.” These mundane yet often ignored 

practices aiming to connect undefined entities to certified mathematical 

knowledge are what I call “formulating.”

But how do formulating practices express themselves within computer 

science laboratories? What is their role in the construction of algorithms? 

In light of the previous parts of this book, how does formulating articulate 

with ground-truthing and programming activities? This is what we are going 

to consider in this third case study.

6  A Third Case Study
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Presentation of the Empirical Materials

This case study is taken from the saliency-detection project we already 

encountered in chapter 2. Just to refresh the memory of the reader, this 

saliency-detection project included two PhD students and a postdoc—BJ, 

GY, and CL—that I shall keep on referring to as a single entity: “the Group.” 

In a nutshell, the Group’s argument that framed the project was that 

saliency detection in image processing may become industrially more inter

esting if saliency-detection algorithms could detect, segment, and evaluate 

the varying importance of salient objects and human faces within complex 

digital photographs. This new problematization of the saliency problem 

called for the construction of a new ground-truth database gathering unla-

beled complex digital images and their manually labeled counterparts, the 

“targets.” The new ground truth was central to the formation of the Group’s 

algorithm as this database materially established the terms of the problem 

to be solved computationally. To effectively shape its algorithm, the Group 

divided its new ground-truth database into two sets: a training set and an 

evaluation set. The training set was used to study the relationships between 

input-data and their targets. Once these relationships were defined and 

expressed in a computational model, the Group translated this model into 

numbered lists of machine-readable instructions, thus assembling a genu-

ine computer program. The performances of this program could then be 

evaluated on the evaluation set of the ground truth by means of standard 

statistical measures. The new ground-truth database, the principles of the 

computational model, and the processing performances of the correlated 

computer program were later presented in an academic paper that was 

rejected by the committee of an important conference in image processing. 

Yet one year later, a revised version of the article won the “Best Short Paper 

Award” at a smaller conference.

In the following sections, I will mainly focus on the training set and 

the practices that led to the formulation of the relationships between input-

images and their targets that was then translated into lines of code. As the 

targets of the Group’s new ground truth were quite complex, I will focus 

exclusively on one of the targets’ component: the relative importance values 

of the detected and segmented faces (see figure 6.1). My goal is to account 

for the formulating practices that led to the characterization of a way to 

automatically calculate the relative importance values of detected faces, 

thus retrieving one—small—part of the ground truth’s targets. Accounting 
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Figure 6.1
Montage assembled from the data of Group’s ground truth. On the left, an “input-

image” of the Group’s new ground-truth database. In the middle, the same image 

as labeled by the workers of the crowdsourcing task. The crowdworkers did not all 

agree on the salient features of the image. If all of them labeled the whole body of the 

woman, then some others also labeled her face, the face in the middle of the image, 

and the face on the right-hand side of the image. The gray-scale image on the right 

is based on the labeled image in the middle. It was post-processed within the Lab 

after the crowdsourcing experiment. Each gray-scale zone corresponds to one target 

of the unlabeled image on the left. These zones are what the computer program, 

as defined by the computational model, should retrieve in the best possible way. 

The relative saliency values of the targets—expressed by different gray-scale values—

were defined as the ratios of the number of rectangles that surround them over the 

number of workers who performed the labeling task on the image. In this case, four-

teen workers performed the labeling task. Fourteen rectangles surrounded the whole 

woman, which makes the shape of her body have the maximum value 1. But thirteen 

rectangles also specifically surrounded the face of the woman, making it have the 

value 0.93. Twelve rectangles surrounded the face in the middle (value 0.85), and 

ten rectangles surrounded the face on the right (value 0.71). The background of the 

gray-scale image—everything that is not labeled—has the value zero. All these values 

and zones have been defined with the help of the labels drawn by the workers. At this 

point, the goal of the Group’s project was to find a way to automatically transform 

the image on the left into the image on the right without the help of the labels. In 

this case study, we will only examine how the Group found a way to automatically 

retrieve the relative saliency values of faces. We will not deal with nonface elements 

nor with any sort of segmentation. Following the Group, the question we will have 

to answer is thus the following: How do we retrieve face importance values (e.g., 

0.93, 0.85, 0.71) from input-images such as the one on the left?

for these practices will allow me to link this part III with part I (ground-

truthing) and part II (programming). This case study will also serve as step-

ping stone to touch on the now widely discussed topics of machine learning 

and artificial intelligence.

To better understand the practices that lead to the definition of a computa-

tional model for face importance, we will have to closely examine the Group’s 

training set and the progressive reorganization of its data. Yet, as a Matlab 
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Figure 6.2
Screenshot of the Group’s training set used for the modeling of face importance val-

ues as it appeared in the Matlab software environment. On the right, the Workspace 

of Matlab IDE indicates all the variables used to create the database. In the center of 

the screenshot, a spreadsheet that summarizes the organization of the database. The 

first column of the spreadsheet gathers the IDs of the input-images of the training 

set. The second column indicates the number of crowdworkers who performed the 

labeling task on the input-image of the same row. The third column gathers the coor-

dinates of the face-detection rectangles as provided by BJ’s algorithm when run on 

the input-image of the same row (more on this below, in the main text). Each group 

of four coordinates refers to (a) the point on the x axis of the input-image where the 

rectangle starts; (b) the point on the y axis where the rectangle starts; (c) the point 

on the x axis where the rectangle ends; and (d) the point on the y axis where the 

rectangle ends. The fourth column indicates the number of salient feature within 

the input-image according to the crowdworkers. This value can be different from the 

number of groups of four coordinates in column 3. The fifth column refers to the 

importance values of the faces as the Group computed them based on the labels of 

the crowdworkers. On the left of the spreadsheet, the window Current Folder indi-

cates the folder currently accessed by Matlab IDE. On the far left, the Editor shows a 

small part of the Matlab script that was required to parse the data of the crowdsourc-

ing task and organize it as a Matlab database. The computer programming practices 

that were needed for the completion of this Matlab script were similar to those I 

described in chapter 4.
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training set is quite confusing (see figure 6.2), I will not be able to base my 

analysis on “real” screenshots. Just like in chapter 4 when I was accounting 

for programming practices, I will have to simplify the Group’s training set 

and retain only the elements that are relevant for the present analysis. The 

simplified version of the Group’s training set will thus be presented as in 

table 6.1. As we are going to follow a succession of translations, the first trans-

lation of the Group’s training set will be counted as one, the second transla-

tion as two, and so on. The initial form of the training set will be counted as 

translation 0.

This case study is organized as follows. I will first start by illustrating 

how the anticipation of formulating practices may sometimes impact on 

the design of ground truths. It seems indeed that translating undefined 

Table 6.1
Translation 0: Simplified Matlab IDE as it will be presented for the remainder of 

the analysis

Input-images ID
Coordinates of labeled faces 
(BJ’s model)

Face importance 
values of labeled faces

image1.jpg [52; 131; 211; 295] [479; 99; 
565; 166] [763; 114; 826; 168]

[0.928] [0.857] 
[0.714]

image2.jpg [102; 181; 276; 306] [501; 
224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379] [367; 
142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]

Note: The term “Translation 0” indicates that it is the “initial” state of the train-

ing set. This “Translation 0” is of course relative to the sequence we will follow: 

many other translations were necessary to give this dataset its “initial” form. The 

first column refers to the input-images’ IDs. For this case study, we will only need 

to consider the first three and the very last input-images. For the sake of clarity, 

I simplified their IDs. All the rows between image3 and image152 are summarized by 

the ellipsis “…”. The second column indicates the coordinates of the labeled faces in 

the input-images. These coordinates were provided by BJ’s face-detection algorithm 

(more on this in the main text). The last column gathers the importance values of 

these faces as provided by the crowdworkers. These are the only data we need in 

order to follow the group as it tried to define the relationship between input-images 

and the varying importance values of their faces.
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data-target relationships to make them fit with certified mathematical 

knowledge requires, sometimes, preparatory efforts. In the subsequent sec-

tion, I will account for the formulating practices that led to the charac-

terization of a computational model that could satisfactorily retrieve face 

importance values from input-images. As we shall see, many parallels can 

be drawn between what the Group did to its data-target relationships and 

what other scientists do to the undefined entities they try to characterize. 

In that sense, apart from the fact that they often rely on ground-truth data-

bases, the formulating practices that sometimes take place within computer 

science laboratories may not be very different from formulating practices that 

take place within laboratories of biology, anthropology, or physics. In the 

next section of the chapter, I will link formulating practices with program-

ming practices as defined in chapter 4. As we shall see, formulating data-target 

relationships can make appear polished mathematical facts that operate as 

scenarios for further programming episodes. Finally, I will consider machine-

learning techniques as audacious attempts at automating formulating prac-

tices at the cost of more ground-truthing and programming efforts. This last 

element will make me tentatively deal with what is nowadays called (often 

indiscriminately) “artificial intelligence.”

But first things first; for the moment, let us go back to November 2013 

at the Lab’s cafeteria.

Ground-Truthing—Formulating

November 2013, at the Lab’s cafeteria: I meet the Group for the very first 

time. As I know almost nothing about image processing, ground truths, and 

saliency detection, this first Group meeting is for me difficult to follow. But 

during the presentation of the project, the Group soon shares with me one 

important assumption:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “Experiments have shown that saliency of faces varies according 

to their size and number. Basically, one large face is considered more 

important than many small faces.”

GY:  “And when there are many faces, each face ‘loses’ some saliency, so 

to speak.”

FJ:  “But when there are many faces, they are also smaller, no?”
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GY:  “Well, not necessary. You can have one large face on the foreground 

and many faces in the background.”

FJ:  “I see. And the other algorithms don’t do that?”

SL:  “No, they don’t pay attention to faces. At least in saliency. And that’s 

precisely the point of including faces to saliency.”

As I will find out a few days later, the experiments CL mentions at the 

beginning of the above transcription come from papers in gaze predic-

tion (Cerf, Frady, and Koch 2009), cognitive psychology (Little, Jones, and 

DeBruine 2011), and neurobiology (Dekowska, Kuniecki, and Jaśkowski 

2008) published in peer-reviewed journals. These papers claim that the rela-

tive size and number of faces within a given scene tend to affect their attrac-

tion strength. Roughly stated, in a given scene, one large face will generally 

attract more attention than one small face that itself will attract more atten-

tion than many small faces but less attention than, for example, two larger 

faces. That the importance of faces is somehow related to their size and 

number within a given image is an important assumption for the Group as 

it further contributes to defining the selection criteria of the images of the 

new ground truth:

Group meeting, the Lab’s cafeteria, November 7, 2013

CL:  “So if it’s OK for you, you can start downloading images. Mean-

while, we’ll keep working on the code [of the experiment].”

FJ:  “Sure.”

CL:  “But again, it has to be complex images. And most of them must 

also contain faces.”

BJ:  “And faces of different sizes and number.”

FJ:  “You mean, images with many faces as well?”

BJ:  “Yes because it impacts on their importance. Otherwise everybody 

will agree and we won’t have continuous values.”

How could crowdworkers disagree if the dataset only includes simple images 

with one centered face or object? As one goal of the Group’s project is to 

refine saliency and make it become more flexible, the images the workers 

will be asked to label should also give interpretative opportunities. In that 

sense, the recent findings in gaze prediction and neurology are decisive: 

gathering images with more or less faces of different sizes may guarantee 

some healthy disagreement among workers.
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Still dazed by all these new stories about ground truths and models, I 

soon started downloading images on the Lab’s server. At the second Group 

meeting, on November 14, 2013, I showed the Group sample images just to 

be sure I understood the instructions correctly. As the feedback was positive 

I continued to download photos. On November 16, 2013, nine hundred 

carefully selected complex images were available on the Lab’s server. But 

the day after, I received an email from BJ:

Friday, November  17, 2013. Email from BJ to FJ, header “About the 

distribution of faces”

Hey FJ,

I’ve quickly processed the faces in the images you selected and binned 

the x axis. Here is the distribution of our database over number of faces 

and face size so far.

[see figure 6.3]

We’ll try to model things later so we need to equalize a little with more 

images with two or more large faces. So if you can keep on digging for 

such images (say two hundred), that’d be great.

Best,

BJ

Many questions immediately arose. First, how did BJ manage to count the 

number of faces and calculate their respective sizes for every image I put on 

the server? It turned out that BJ had previously worked on a face-detection 

algorithm that does precisely this: detecting, counting, and measuring the 

size of faces within images.1 Capitalizing on BJ’s previous work on face 

detection was even a reason why this saliency project was launched in the 

first place (see chapter 2). But why would the current distribution impact 

the model the Group will have to shape after the crowdsourcing task that 

was not even submitted? This is precisely the question I asked BJ:

Friday, November  17, 2013. Email from FJ to BJ, header “About the 

distribution of faces”

Sure, no problem. But, if I may, why is it so important to equalize at this 

stage of the project?

Best,

FJ
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Figure 6.3
Two graphs sent by BJ illustrating the distribution of the database on November 17, 

2013.
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Saturday, November 18, 2013. Email from BJ to FJ, header “About the 

distribution of faces”

Great if you can do it.

It’s just that if face importance really varies with size and number, we’ll 

surely need a bigger range of cases to fit the data.

Best,

BJ

At this stage of the chapter, we do not need to understand what “fit the 

data” means (we will cover this in the next section). Suffice here to notice 

the projection BJ makes toward the Group’s forthcoming analysis of the rela-

tionship between input-images and the importance values of faces, the one 

small aspect of the output-targets I decided to cover in this case study. In 

November 2013, the Group does not possess any ground-truth database yet: 

the web application is not finished; the crowdworkers have not labeled any 

images; no coordinates of rectangles have been stored in the Lab’s server; no 

multilevel targets have been post-processed. At this stage, there is nothing. Or 

is there? We saw indeed that the Group has an assumption based on papers 

it considered trustworthy: the perceived importance of faces is somehow cor-

related to their size and number. This assumption suffices to make BJ foresee 

a convenient way to connect the output-target relationship of face values 

with—hopefully—some certified mathematical claim that will, in turn, help 

to qualify it. It is indeed not the first time that BJ and the other members 

of the Group have embarked on the construction of a new algorithm. They 

have done it before—especially the postdoc CL—and know what to expect. 

It is perhaps this habit that pushes them to be on the safe side. If equalizing 

face data can facilitate the future work that will consist in automating the 

passage from input-images to output-targets that still need to be constructed, 

it is indeed important to do it.

At the end of chapter 1, I suggested two complementary analytical per-

spectives on algorithms: a “problem-oriented perspective” that should 

inquire into the problematization processes leading to the formation of 

ground truths and an “axiomatic perspective” that should inquire into the 

numerical procedures extracted from already constituted ground truths. The 

distinction between these two perspectives was motivated by the need to 

better understand the formation of the ground truths from which algorithms 

ultimately derive—hence the “problem-oriented” perspective—while not 
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completely reducing algorithms to these ground truths—hence the “axi-

omatic” perspective. But I also stipulated, though quite loosely, that both 

perspectives should be intimately articulated as ground-truthing and what I 

now call formulating activities may sometimes overlap, specific numerical 

features being suggested by ground truths (and vice versa). We see here 

concretely how these two processes can overlap; the uncertainty related 

to the construction of a ground truth relying on anonymous and scattered 

crowdworkers certainly encourages the development of equalizing habits 

that can further help connect with certified mathematical facts capable of 

specifying a new phenomenon.

Reaching a Gaussian Function

March 2014: the post-processing of the crowdworkers’ rectangular labels is 

now over. The Group finally possesses a new ground-truth database gather-

ing input-images and their corresponding multilevel targets (see chapter 2, 

figure 2.8). At this stage, one can say that the Group effectively managed 

to redefine the terms of the saliency problem, at least at the “laboratory 

level” (Fujimura 1987). The task of the not yet fully designed algorithm 

is now clear: from the input-images of the ground truth, it will have to 

retrieve their corresponding targets in the best possible way. The ground-

truth database is thus the material base that will allow both the shaping 

of the algorithm as well as its evaluation in terms of precision and recall 

statistical measures.

The next move of the Group is to split the ground truth into two subsets: 

a training set and an evaluation set. Only the training set containing two 

hundred images and targets is used to design the computational model. The 

remaining six hundred images and targets are stored in the Lab’s server and 

will only be used to test the accuracy of the model’s program and compare 

it with other models’ programs already proposed by concurrent laboratories 

(cf. figure 2.9).2 Within the training set, 152 images contain faces. It is thus 

this subset of the training set that is used to define a way to automatically 

retrieve face importance values from input-images without the help of the 

workers’ labels.

Let us have a closer look on this subset of the training set. What does it 

look like? For the case that interests us here—the definition of the relation-

ship between input-images and face importance values—the training set 
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concretely looks like a spreadsheet of 152 rows and five columns (only the 

first three columns are represented in the simplified table 6.2).3

The first column of table 6.2 refers to the IDs of the input-images, the 

second column refers to groups of four coordinates—each group providing 

information about one face of the input-image (more on this below)—and 

the third column refers to the importance values attributed by the crowd-

workers to each labeled face of the input-images. The data of this Matlab 

spreadsheet—actually, a genuine database—is crucial as it is the material 

base of the still to be defined model that will have to retrieve face impor-

tance values as provided by the labels of the crowdworkers without the help 

of these labels. But arranged in such a spreadsheet, these data remain quite 

confusing. How indeed to discern the relationship between the faces of 

input-images and their correlated face importance values in such an austere 

classification? Something needs to be done to better appreciate what this 

relationship looks like.

A convenient way to get a better grip on this relationship between faces 

of input-images and their importance values—the still-undefined entity 

the Group tries, precisely, to define—is to make it seeable all at once. But 

how to see faces and their importance values within one legible document? 

Importance values are numbers so they can be represented as dots within 

a readable drawing—for example, a graph—rather easily. But what about 

faces? What are they? Technically, within the training database—thanks to 

BJ’s face-detection algorithm—the faces of input-images are groups of four 

coordinates linked to one image ID. But how then do we make these groups 

Table 6.2
Translation 0 of the Group’s training set

Input-images ID
Coordinates of labeled faces 
(BJ’s model)

Face importance values 
of labeled faces

image1.jpg [52; 131; 211; 295] [479; 99; 
565; 166] [763; 114; 826; 168]

[0.928] [0.857] 
[0.714]

image2.jpg [102; 181; 276; 306]  
[501; 224; 581; 304]

[0.916] [0.818]

image3.jpg [138; 256; 245; 379]  
[367; 142; 406; 202]

[0.916] [0.636]

… … …

image152.jpg [396; 151; 542; 280] [0.928]

The MIT Press January 2021



A Third Case Study	 249

commensurable with face importance values? One necessary operation is 

to reduce these groups and translate them into something else, hopefully 

comparable to the face importance numerical values. In line with its doc-

umented initial assumption regarding the size and number of faces—an 

assumption that participated in the collection of the data in the first place 

(cf. above)—the Group decided to summarize every group of coordinates 

with only two numerical values: a “number-value” and a “size-value.” The 

number-value is provided by BJ’s face-detection algorithm. It refers to the 

absolute number of faces within each input-image. This value can some-

times be superior to the number of labeled faces as crowdworkers have not 

always labeled as salient all the faces within the input-images. The “size-

value” refers to the size of the faces labeled as salient by the crowdwork-

ers. Again, BJ’s face-detection algorithm helped to produce these values as 

it computed the faces’ sizes as the ratio of the area of the face-detection 

rectangle over the size of the image. After the Group wrote the appropriate 

scripts in the Matlab Editor to compute these values with the help of BJ’s 

face-detection algorithm, the spreadsheet of its training set is reorganized 

as in table 6.3.

If this first translation successively reduces each labeled face of input-

images to two numerical values—a “number-value” (column 2) and a 

“size-value” (column 3)—it remains difficult to compare them with their 

importance values deriving from the workers’ labels. Indeed, how would 

it be possible to represent such different orders of magnitude on the same 

scale? We saw that face importance values can vary between zero and one. 

But what about “number-values” and “size-values”? Number-values can be 

problematic as they can vary from one to ninety-eight. But the real issue 

comes from the size-values that can vary from 0.0003 (smallest labeled face 

of the training set) to 0.7500 (the biggest labeled face of the training set): 

four orders of magnitude separate the smallest size-value from the high-

est. And six orders of magnitude separate the smallest size-value (0.0003) 

from the highest number-value (98). With such differences of scale, it is 

extremely difficult to gather all these values in one readable document.

Yet all these numerical values possess an important property: they are 

numerical values and can thus be written down, studied, and tested in flat 

laboratories by researchers called mathematicians (as we saw in chapter 5). 

In fact, a whole subfield of mathematics—number theory—daily dedicates 

itself to the study of these flat and dry entities. An important proto number 
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theorist, John Napier, even shaped/discovered what he called, in 1614, 

“logarithm”: the inverse of exponentiation.4 Thanks to this mathematical 

fact that is now a “single sentence statement” (Latour 1987, 21–62), it is 

nowadays easy to translate values of different orders of magnitude and re-

present them on one same readable drawing. Thanks to the instrument 

of logarithm, both number-values and size-values referring to the faces of 

input-images can be further translated by the Group into logarithmic values. 

Thanks to this basic operation—imbedded in Matlab—the initial problem 

of scale vanishes, and a whole set of comparable integers now appears in 

the Group’s dataset (see table 6.4). And the undefined entity “relationship 

between faces of input images and their importance values” the Group tries 

to describe becomes a little bit more characterizable.

But still, at this stage, the training set remains hard to read. Whereas the 

Group is mainly interested in the faces of its training set, the database keeps 

being organized around the IDs of the input-images. This organization of 

the data was important at the beginning of the translation process as it 

helped to indicate what BJ’s face-detection algorithm was to look at. But at 

this stage, this image-centered organization is cumbersome. It is then time 

for the Group, once again, to reorganize its spreadsheet to center it around 

its face-related data: log(number-values), log(size-values), and face impor-

tance values. When put together, these “triplets” of values give a unique 

“signature” to each of the 266 labeled faces of the training set (see table 6.5).

After this third translation, the training set has become a list of signa-

tures gathering triplets of relatively close values. Though quite common 

and mundane, the efforts undertook by the Group from Translation 0 

Table 6.3
Translation 1 of the Group’s training set

Input-images ID
number-
values

size-values of labeled 
faces

Face importance values 
of labeled faces

image1.jpg 3 [0.065] [0.014] 
[0.008]

[0.928] [0.857] 
[0.714]

image2.jpg 2 [0.042] [0.012] [0.916] [0.818]

image3.jpg 3 [0.030] [0.0054] [0.916] [0.636]

… … … …

image152.jpg 1 [0.053] [0.928]
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start to pay off: every labeled face is now described by a unique combina-

tion of numbers. But still, in this list form, it remains hard for the Group 

to discern a relationship among the values of these triplets: how do face 

importance values interact with both number-values and size-values? Even 

though this list well simplifies the initial spreadsheet, it still has an impor

tant inconvenience: it looks like any other list—from shopping lists to 

lists of bond prices. The values within these lists may differ, but the lists 

themselves have always roughly the same shape: they remain successions 

of lines (Goody 1977, 78–108). How then to grasp the particularity of the 

undefined entity the Group tries to characterize? How to define its shape, 

its unique behavior?

Table 6.4
Translation 2 of the Group’s training set

Input-images ID
log(number-
values) log(size-values)

Face importance 
values

image1.jpg 0.477 [-1.187] [-1.853] 
[-2.096]

[0.928] [0.857] 
[0.714]

Image2.jpg 0.301 [-1.376] [-1.920] [0.916] [0.818]

Image3.jpg 0.477 [-1.522] [-2.267] [0.916] [0.636]

… … … …

image152.jpg 0 [-1.275] [0.928]

Table 6.5
Translation 3 of the Group’s training set

Face signatures

1 [0.477; -1.187; 0.928]

2 [0.477; -1.853; 0.857]

3 [0.477; -2.096; 0.714]

4 [0.301; -1.376; 0.916]

5 [0.301; -1.920; 0.818]

6 [0.301; -1.522; 0.916]

7 [0.301; -2.267; 0.636]

…

266 [0; -1.275; 0.928]
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If the forms of lists of numbers are difficult to differentiate, these lists 

have nonetheless a crucial quality: they can—at least since the second half 

of the seventeenth century—give form to the values they contain. Indeed, 

when coupled with an appropriate coordinate space, the numbers contained 

by lists can be transformed into points that draw distinguishable shapes. 

As the transformation of lists of values into graphs is nowadays a “single 

sentence statement” part of tacit and necessary knowledge, the Group just 

needs to write the Matlab instruction “scatter(data(:,1), data(:,2), 
data(:,3))” to create the scatterplot of figure 6.4.

Every labeled face of the training set is re-presented in this Matlab scatter-

plot of log(number-values)—x axis—and log(size-values)—y axis—against 

importance values—z axis, ψ in the plot. At this point, the undefined entity 

the Group tries to characterize starts to get a shape. Its behavior begins to 

appear; a genuine phenomenon is being drawn that has specific characteris-

tics. It starts “slowly” with low ψ values before drawing a steep slope. This 

slope then stops to form a kind of ridge before abruptly dropping again. 

The bell shape of this phenomenon might not talk to everyone. Yet to the 

Group’s members, who are used to encountering mathematical objects, it 

soon reminds them of a Gaussian function:

Friday April 14, 2014. The terrace of CSF’s cafeteria, discussion with BJ

FJ:  But how did you know that face importance was a Gaussian?5

BJ:  Well, once we got the plot, it was sure that it was a Gaussian.

FJ:  I mean, it could have been something else?

BJ:  Sure, but here, the data drew a Gaussian.

FJ:  But you juggled the data in the first place!

BJ:  Yes, but it’s just to make something appear. You have to do these 

things; otherwise you have nothing to model.

Thanks to this fourth translation of the training set, the Group has a strong 

intuition: the relationship between faces of input images and their impor-

tance values is surely close to some kind of Gaussian function, a polished 

certified mathematical object whose behavior is now decently understood 

and documented. But how could the Group be certain that the phenom-

enon its experiment created really behaves like a Gaussian function? After 

all, a Gaussian function is something smooth while the scatterplot the Group 

asked Matlab to draw is quite discontinuous. From a distance, this heap of 
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points may look like a Gaussian function but when one looks closer, its shape 

appears rough and uneven.

This is where Matlab, as a huge repository of certified mathemati-

cal knowledge, is again crucial as the simple instruction “fit(x.’, y.’,  
‘gauss2’)” allows the Group to verify its intuition by producing other 

graphs and captions (see figure 6.5).

Once again, the training set is translated, trans-formed. Its shape is now 

smooth and homogeneous; it becomes an actual function. This new transla-

tion of the training set also produces a series of new inscriptions describing 

the junction between the previous rough heap of points and its smooth 

counterpart. Let us have a look at these inscriptions: What do they refer 

to? The last piece of inscription—“R2 = 0.8567”—indicates that more than 

85 percent of the variability in the z data points that constitute the phe-

nomenon the Group tries to qualify can be described by this mathemati-

cal function. The inscriptions “μ1 = -1.172” and “μ2 = 0.4308” refer to 

the peak of the function. They assert that the xy point [−1.72; 0.4308] cor-

responds to the function’s highest z value. Finally, the inscriptions “σ1 = 

0.9701” and “σ2 = 0.7799” indicate the standard deviation of the function 
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Figure 6.4
Translation 4 of the Group’s training set.
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along the x axis and y axis, respectively. Altogether, “μ1,” “μ2,” “σ1,” and 

“σ2” form the parameters of the Gaussian function.

In this chapter, I try to account for the formulating practices required 

for the shaping of an image-processing algorithm (and potentially many 

others). As a consequence, we do not need to understand every subtlety 

of these mathematical objects called Gaussian functions. All we need to 

understand is, first, that Gaussian functions do not come from some 

superior reality: just as any other mathematical object, Gaussian func-

tions had to be shaped within flat laboratories and described in written 

claims that had to overcome many trials to become polished certified facts 

(see chapter 5). Second, we need to understand that thanks to the par

ameters provided by Matlab—themselves relying on the training set as 

transformed into a list of coordinates (see table 6.5)—the Group becomes 

able to deduce face importance values as provided by crowdworkers from 

log(number-values) and log(size-values) as provided by the input-images 
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Figure 6.5
Translation 5 of the Group’s training set: Gaussian function fitted on the distribution 

and normalized between 0 and 1. Function’s information: General model Gauss2: 
f(x,y) = exp(-((x-­μ1)^2/2σ1^2)-((y-­μ2)^2/ 2σ2^2)). Coefficients: μ1 = 

-1.172 ; μ2 = 0.4308 ; σ1 = 0.9701 ; σ2 = 0.7799 ; R2 = 0.8567.
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after being processed by BJ’s algorithm. In other words, the Group can 

now decently retrieve face importance values without any labels. This is 

the consequence of a certified mathematical fact about Gaussian func-

tions. As Matlab reminds the Group after the fifth translation, any z value 

of this Gaussian function at any point (x,y) can be expressed by the follow-

ing formula:

z = f(x,y) = exp(-((x-μ1)^2/2σ1^2)-­ ((y-μ2)^2/2σ2^2)).

When reorganized more elegantly, this formula provided by the certified 

mathematical knowledge embedded in Matlab gives us:

z = f xi ,yi( ) = exp(−
xi − µ1( )
2σ1

2

2

−  
yi − µ2( )
2σ 2

2

2

).

A connection has been made with the flat ecology of mathematics; thanks 

to this fifth translation and its correlated inscriptions, the Group now pos-

sesses all the elements it needs to compute face importance values. With the 

fourth translation, the undefined entity “relationship between face impor-

tance values and faces” became an observable phenomenon. With this fifth 

translation and the connection it creates with a certified mathematical 

fact, the behavior of this phenomenon is describable: for any duets (x, y) 

with coordinates (log[number-value],log[size-value]), there is a z coordinate 

described by the following equation:

z = f xi ,yi( ) = exp(−
xi − (−1.172)( )
2 0.9701( )2

2

−  
yi − 0.4308( )
2 0.7799( )2

2

).

But how does the parametrized equation of the formula that describes the 

Gaussian function work concretely? How does this equation effectively 

output face importance values close to those provided by the crowdwork-

ers? Let us consider the first input-image of the training set—the one we 

used to introduce the topic of the case study in figure 6.1. We saw that, 

thanks to BJ’s face-detection algorithms, the faces of this input-image can 

be described as [0.065; 3], [0.014; 3], and [0.008; 3], the first values of 

these duets representing the size-value of the face, the second value repre-

senting its number-value. Now, by plugging the log values of these three 

duets (x1, y1), (x2, y2), and (x3, y3) into the formula provided by the certified 

mathematical knowledge embedded in Matlab (itself deriving from the 

Group’s translations of the training set), one obtains the three following 

equations:
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f x1,y1( ) = exp(− (log 0.065( )− (−1.172))
2(0.9701)2

2

−  
(log 3( )− 0.4308)

2 0.7799( )2
2

) = 0.998

f x2 ,y2( ) = exp(− (log(0.014)− (−1.172))
2(0.9701)2

2

−  
(log(3)− 0.4308)

2(0.7799)2

2

) = 0.779

f x3,y3( ) = exp(− (log(0.008)− (−1.172))
2(0.9701)2

2

−  
(log(3)− 0.4308)

2 0.7799( )2
2

) = 0.633

The values [0.998], [0.779], and [0.633] are the three face-importance val-

ues of the three faces of input-image1 as computed by the Group’s com-

putational model. We can see that these values are close but not similar to 

the “original” values [0.928], [0.857], and [0.714] as computed from the 

crowdworkers coordinates. This is the cost but also the benefit of the whole 

formulation as the Group now possesses a face importance model that can 

retrieve different, yet close, face importance values without the help of the 

crowdworkers’ labels.

But the translation process is not over yet. After the statistical evalua-

tion of the whole algorithm on the evaluation set (see chapter 2), one last 

operation needs to be done; the Group still has to present its reified object 

within the claim that attests for its existence. This is another advantage of 

formulating practices—more than connecting undefined entities with cer-

tified mathematical facts that help to characterize them, it also allows the 

inclusion of the characterized object inside the text that presents it to the 

peers. At this point, I must then quote the passage of the Group’s initially 

rejected manuscript where the computational model for face importance is 

presented:

We use the following function, denoted as G in Eqn. 2, as a model for varying 

importance of faces in our saliency algorithm.

ψ i
f ≈G si

f ,ni( ) = exp(−
(log si

f( )− µ1)

2σ 1
2

2

−
(log ni( )− µ2 )

2σ 2
2

2

)	 (2)

Here, ψ i
f  is the importance values of f  th face in ith image. si

f  and ni are the 

size of the f  th face in ith image and the number of faces in ith image, respectively. 

Note that si
f  is the relative size compared to the size of the image, therefore it is 

between 0 and 1. The parameters of the Gaussian fit are μ1 = −1.172, μ2 = 0.4308, 

σ1 = 0.9701. σ2 = 0.7799, and the base of the logarithm is equal to 10.

Our efforts paid off: we finally managed to account for these sentences 

that mix English words with combinations of Greek and Latin letters 

divided by equal signs that are widely used by computer scientists when 
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they communicate about their algorithms in academic journals. We first 

had to better understand how mathematical facts and objects come into 

existence. We then had to accept that the power of these facts and objects 

does not come from a superior reality but from the mundane formulat-

ing practices that progressively translate and reduce undefined nonmath-

ematical entities—peptides, axons, relationships between values of Matlab 

databases—in order to, eventually, connect them to the flat ecology of math-

ematical knowledge. We also had to better appreciate the extra strength 

these connections provide to undefined entities: formulating practices—

and the reductions that go with them—make undefined entities easier to 

handle, more sharable, comparable, malleable, and enrollable within texts 

claiming for their existence and behavior. With all these elements of chap-

ter  5  in mind, we further had to account for how formulating practices 

are expressed in the construction of new image-processing algorithms (and 

potentially many others). We first saw that the anticipation of these prac-

tices may sometimes impact on the shaping of ground truths. We then saw 

how these practices—and all the translations they call for—progressively 

make an undefined entity become a mathematical object capable of being 

described by a formula. These connections with the flat ecology of mathe

matics—in fact, genuine transformations into well-documented mathemati-

cal objects—participate in the assemblage of computational models that 

further appear in academic publications. To paraphrase Latour (1999a, 55), 

we saw in this section that mathematics has never crossed the great abyss 

between ideas and things. Yet it often crosses the tiny gap between the 

already geometrical graph of Translation 4 (figure 6.4) and the solid formula 

as provided by Translation 5 (figure 6.5). Once this tiny gap is crossed—and 

this requires many preparatory small gaps—mathematics provides full addi-

tional strength to the object under scrutiny.

Yet despite this small victory, something remains mysterious. Indeed, a 

mathematical formula such as the one summarizing the (very small part of) 

the Group’s model within its academic paper is surely powerful as it allows 

us to retrieve face importance values without the data provided by the 

crowdworkers. In that sense, this formula decently describes the behavior 

of the phenomenon “relationship between faces of input images and their 

importance values” that was still an undefined entity at the beginning of 

the formulating process. But in this “formula state,” such a computational 

model cannot make any computer compute anything. In this written form, 
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within the Group’s manuscript, the model might be understandable to 

human beings, but it is not able to trigger electric pulses capable of making 

computers compute. Yet it somehow needs to; as the performances of the 

Group’s model will also be evaluated on the evaluation set of the ground 

truth, the model must also take the shape of an actual program. What is 

then the relationship between the mathematical inscriptions that describe 

computational models and the actual computer programs that effectively 

compute data by means of electric pulses?

Formulating—Programming

The point I want to make in this section is quite simple: if mathemati-

cal inscriptions that describe computational models in academic papers 

cannot, of course, trigger electrical pulses capable of making computers 

compute actual data, they nonetheless work, sometimes, as transposable sce-

narios for computer programming episodes.

In chapter 4, we saw that computer programming practices imply the 

alignment of inscriptions to produce knowledge about a remote entity (e.g., 

a compiler, an interpreter, a microprocessor) that is negatively affected in 

its trajectory. We also saw that programmers constantly need to enroll new 

actants to get around impasses. More importantly for the case that interests 

us here, we also found that both aligning and contouring actions needed to 

be “triggered” by special narratives that engage those who enunciate them. 

Building on Lucy Suchman and Bruno Latour, I decided to call these perfor-

mative narratives “scenarios.”

Scenarios are crucial as they provide the boundaries of programming 

episodes while enabling them to unfold. But their irritating drawback is 

that while they constitute indispensable resources that set up desirable 

programming horizons, they often tell little about the actions required to 

reach these horizons. We experienced this when we were following DF in 

his small computer programming venture. Even though his scenario stipu-

lated the need for the incrementation of an empty matrix with rectangles 

defined by coordinates stored in .txt files, the scenario said almost nothing 

about how to do this incrementation. The lines of code had to be progres-

sively assembled as this process was required to align inscriptions and to get 

around impasses.
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Yet some scenarios might be more transposable than others. Let us 

imagine the following programming scenario: “FJ shall make a computer 

compute the square root of 485,692.” Though quite short, this imaginary 

example can be considered a genuine scenario as it operates a triple shifting 

out into other space (at my desk) and time (later) and toward other actants 

(the Matlab Editor, my having completed the script, etc.) while also engag-

ing me, the one who enunciated it. How could I reach the horizon I am 

projecting? If I am using Matlab or many other high-level programming 

languages, the program would be the single instruction “sqrt(485692).” 

The passage from the scenario to its completion would thus seem quite 

direct. Let us imagine a trickier scenario: “FJ shall make a computer com-

pute k-means of five clusters over dataset δ.” How could I reach this horizon? 

For the case of Matlab and several other high-level programming languages, 

the program will, once again, be the single instruction “kmeans(δ,5)”—

another straightforward accomplishment.6 Both imaginary scenarios thus 

appear quickly transposable into lines of code; the horizon they establish 

can be reached without many tedious alignments of inscriptions and work-

arounds of impasses.

Are both imaginary scenarios simpler that the scenario defined by DF in 

chapter 4? It is difficult to say as both square roots of large numbers and 

k-means of five clusters are not so trivial operations.7 Rather, it seems that 

there is a difference of density: while our imaginary scenarios can be trans-

lated into code almost as they stand, DF’s scenario needs to be completed, 

patched, and refreshed. If nothing seems to stand in between the terms 

of the statements “square root of 485,692” and “k-means of five clusters,” 

many gaps surely separate each term of the statement “empty matrix incre-

mented with coordinates of rectangles.”

The issue is trickier that it seems. One may indeed think that these differ-

ences of density within programming scenarios come from scenarios them-

selves. One may, for example, think that if DF’s scenario is less transposable 

than our two examples, it is because it is less precise. But it is actually the 

opposite: whereas “square root of 485,692” and “k-means of five clusters” 

tell us almost nothing about how to perform such tasks, DF’s scenario takes 

the trouble to specify a succession of actions. Yes, there are differences of 

density, but no, they are not necessarily related to what is inside scenarios. 

So where do these differences come from? I believe these differences of 

The MIT Press January 2021



260	 Chapter 6

density might be linked to the diffusion of the operations necessary to real-

ize a scenario. My hypothesis, which still needs to be further verified, is that 

the more an operation is common to the community of users and designers 

of programming languages, the less it will need to be decomposed, trans-

lated, and completed. The most striking example of such diffusion-related 

difference of density within a programming scenario is certainly arithmetic 

operations. What can be more common to users and designers of program-

ming languages than adding, subtracting, dividing, and multiplying ele

ments? Electronic computers themselves have been progressively designed 

around these widely distributed operations (Lévy 1995). The terms “add,” 

“subtract,” “multiply,” or “divide”—when part of a scenario—will thus be 

immediately translated into their well-known mathematical symbols “+,” 

“/,” “–,” and “*.” The same is true of many other widely diffused calculat-

ing operations. “Sine,” “cosine,” “greatest common divisor,” “logarithms,” 

and even sometimes “k-means clustering” are all operations that can be 

straightly transposed from scenarios to programs.

Though quite wild, these propositions will allow us to better understand 

how the Group’s computational model can be almost directly transposed 

into an actual computer program. Let us first consider once again the for-

mula describing the model shaped by the Group. We saw that the phenom-

enon observed by the Group was a particular Gaussian function that could 

be described as

zi = f xi ,yi( ) = exp(−
log(xi )− µ1( )

2σ 1
2

2

−
log(yi )− µ2( )

2σ 2
2

2

),

where xi is the size-value of the ith face, yi is the number-value of the ith face, 

and μ1, μ2, σ1, σ2 are the parameters of the Gaussian fit. When all the par

ameters of this formula are replaced by the numerical values provided by 

Matlab, the model becomes the following equation:

zi = f xi ,yi( ) = exp(−
log(xi )+1.172( )
1.88218802

2

−
log(yi )− 0.4308( )
1.21648802

2

).

From that point, the Group just needs to transpose this mathematical sce-

nario almost as it is within Matlab Editor. This translation gives us the fol-

lowing line of code:

z = exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308) 
   ^2/1.21648802));
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As we can see, there is an almost one-to-one correspondence among the 

mathematical operations as expressed within the equation and the mathe-

matical operations as expressed within the program of this equation: “exp,” 

“–,” “log,” and “+” all keep the same shape. Only the squaring and dividing 

operations had to be slightly modified.

Yet in this state, the Group’s program of the model will not do anything; it 

still needs to become iterative to process the changing values of x1,2,…,266 and 

y1,2,…,266. Here again, the scenario as defined by the computational model is 

quickly transposable. We saw in the last section that the training set could 

be reorganized as needed, as long as the Group manages to write the appro-

priate Matlab scripts to instruct the training set’s reorganization. To opera-

tionalize its computational model, the Group just needs to organize the 

faces of its training set according to their size-values and number-values. 

Expressed within the Matlab software environment, this reorganization 

takes the (simplified) form of table 6.6.

This reorganized Matlab spreadsheet will allow the program to know 

what data it should process. With Matlab programming language, the data 

of every cell of such spreadsheets can be accessed by inscribing a duet of 

values in between curly brackets. For our case, the instruction “cell{1,1}” 

will ask INT to consider the value [0.065]; the instruction “cell{1,2}” will 

ask INT to consider the value [3]; and so on.8 Thanks to this referential 

system, it is possible to ask INT to go through all the cells of the spread-

sheet and iteratively plug their values inside the equation. Moreover, the 

Table 6.6
Simplified view on the Group’s reorganization of the training set

1 2

1 [0.065] [3]

2 [0.0143] [3]

3 [0.008] [3]

4 [0.042] [2]

5 [0.012] [2]

6 [0.030] [3]

7 [0.0054] [3]

… … …

266 [0.053] [1]
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spreadsheet has a finite length of [266]. This easily accessible information—

it is the number of rows of the spreadsheet—can be used to instruct INT 

to start at line 1 of the spreadsheet and stop at its end. When all the size-

values and number-values are processed, they will finally be integrated in 

the spreadsheet for their further use in the definition of the remainder of 

the Group’s algorithm (remember that we only considered one tiny part 

of the Group’s whole algorithm). The small yet crucial script that permits to 

operationalize the Group’s computational model for face importance takes 

the form of figure 6.6. When run, this small script outputs something close 

to table 6.7.

At this point, we can say that the Group managed to assemble a model 

that effectively computes data. The deal is now changed: every digital 

image can now—potentially—be processed by the Group’s model program 

for face importance evaluation. Of course, it only forms one small aspect 

of the Group’s saliency-detection project that ended up being rejected by 

Table 6.7
Simplified view on the results of the Matlab script as instructed by the Group’s 

mathematical model

1 2 3

1 [0.065] [3] [0.998]

2 [0.0143] [3] [0.779]

3 [0.008] [3] [0.633]

4 [0.042] [2] [0.964]

5 [0.012] [2] [0.732]

6 [0.030] [3] [0.935]

7 [0.0054] [3] [0.527]

… … … …

266 [0.053] [1] [0.853]

1. for i = 1:length(cell)
2. x = cell{i,1};
3. y = cell{i,2};
4. z = exp(-((log10(x)+1.172)^2/1.88218802)-((log10(y)-0.4308)^2/1.21648802));
5. cell{i,3} = z;
6. end

Figure 6.6
Operational script for the computation of face importance values.
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the reviewers of the conference (before being awarded the “Best Short Paper 

Award” at a smaller conference one year later). But still, some existence 

must be granted to this tiny entity we carefully followed. For three tortur-

ous parts divided into six chapters, we have looked for these things we like 

to call “algorithms”; now we finally glimpse one. And in such a prototypi-

cal state, this small piece of algorithm is the uncertain product of account-

able courses of action.

The (Varying) Reality of Machine Learning

So far in this case study, we saw that although ground-truthing activities—in 

their capacity as producers of training and evaluation sets and enablers of per

formance measures—influence formulating activities, expectations regarding 

future formulating requirements may also influence the initial generation of 

ground truths. We then saw how formulating courses of action unfold in situ. 

As we continued to follow the Group in its algorithm project, we saw that 

many practical translations were necessary to make a training set acquire the 

same form as a mathematical object. Moreover, we saw how the results of 

formulating activities—in this case, a mathematical formula—relate to pro-

gramming activities, the former providing transposable scenarios to the latter.

When we combine these empirical elements with those of part I and part 

II, we get a quite unusual action-oriented conception of algorithms (see 

figure 6.7). Indeed, it seems that sometimes what we tend to call an algo-

rithm may be the result of three interrelated activities that I call ground-

truthing, programming, and formulating. Of course, these activities may not 

be the only ones partaking in the constitution of algorithms (hence the inter-

est in launching other ethnographic inquiries). At least, however, in these 

days of controversies, we can now realistically account for some of the con-

stitutive associations of algorithms.

Yet this action-oriented conception of algorithms remains unduly nar-

row. Nowadays, is there such a thing as a solitary algorithm? As we have seen 

throughout the chapters of this book, the constitution of one algorithm under-

takes the enrollment of many other algorithms. This was noticeable when we 

were dealing with ground-truthing practices; whether the selection of images 

on the Flickr website, their uploading onto the Lab’s server, the administration 

of the crowdsourcing task, or the subsequent pixel-level segmentation of mul-

tilayered salient elements, these moments were all supported by additional 
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algorithms, among many other things. The same is true of computer pro-

gramming. Even though this specialized activity currently contributes signifi-

cantly to the constitution of new algorithms, it goes itself through numerous 

algorithms, many of which operate close to the computer’s hardware to help 

interpreters, compilers, or processors compute digital data in appreciable 

ways. Moreover, as we just saw in this chapter, formulating practices are also 

irrigated by algorithms, an especially visible example being BJ’s algorithm that 

reliably counted the number of faces in an image and calculated their respec-

tive sizes. During the constitution of algorithms, algorithms are everywhere, 

actively contributing to the expression of ground-truthing, programming, 

and formulating activities. Yet we may reasonably assume that, one way or 

another, these other algorithms also had to be constituted in specific times 

and places, being themselves—if my proposition is right—the products of, at 

least, the same three activities (see figure 6.8).

This conception of algorithms as the joint product of ground-truthing, 

programming, and formulating activities—themselves often supported 

by other algorithms that may have undergone analogue constituting 

??
G-T

F P

Figure 6.7
Schematic of the interpolation of ground-truthing (G-T), programming (P), and for-

mulating (F) activities. The gray area in the middle of the figure is where algorithms 

sometimes come into existence. The fourth ellipse tagged “??” stands for other 

potential activities my inquiry has not managed to account for.
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processes—complicates the overall picture while making it more intelli-

gible. Indeed, whenever controversies arise over the effect of an algorithm, 

disputants may now refer to this basic mapping and collectively consider 

questions such as: How was the algorithm’s ground truth produced? Which 

formulas operated the transformation of the input-data into output-targets? 

What programming efforts did all this necessitate? And, if deeper reflections 

are required, disputants may excavate another layer: Which algorithms 

contributed to these ground-truthing, programming, and formulating pro

cesses? And how were these second-order algorithms constituted in the first 

place? These are the kinds of empowering questions the present book aims 

to suggest to fuel constructive disputes about algorithms—a political argu-

ment I will develop further in the next, and concluding, chapter.

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

??G-T

F P

Figure 6.8
Complementary schematic of constituted algorithms partaking in the constitutive 

activities of other algorithms.
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Again, however, something is still missing. Although the inquiry may 

sharpen the overall picture, it still fails to address a massive issue—an issue 

that may even be the most discussed algorithm-related topic at present 

among the press and academia: machine learning. Machine learning is an 

extremely sensitive topic, sometimes considered in itself (Alpaydin 2010), 

other times in relation to closely related, yet evolving, terms such as “big 

data” (Bhattacharyya et al. 2018) or “artificial intelligence” (Michalski, Car-

bonell, and Mitchell 2014); it is sometimes presented as industrially well 

established (Finlay 2017) and at others, as still in its infancy (Domingos 

2015); it is sometimes praised for its performance (Jordan and Mitchell 

2015), and other times criticized for the danger it (but what is it?) seems 

likely to represent to the collective world (Müller 2015). As soon as it is 

articulated, the term “machine learning” triggers warring feelings of famil-

iarity and ignorance, hopes and fears, utopia and dystopia; a strange mad-

ness that seems very incompatible with the down-to-earth vision I am 

trying to constitute here. In these difficult conditions, how do we address, 

even superficially, iterations of machine learning as expressions of lived 

courses of action?

One way to scratch the very surface of machine learning, in the light 

of our empirical and theoretical equipment, may be to make the follow-

ing observation: during the formulating process accounted for in the sec-

tion entitled “Reaching a Gaussian Function,” something crucial happened 

just after the Group wrote and ran the Matlab instruction “fit (x’, y’, 
‘gauss2’).” Before this quick Matlab computation—which took only a few 

seconds—face values (x), size-values (y), and importance values (z) were sim-

ply put in the same three-dimensional coordinate space. As we saw, putting 

this together required several translations of the training set, but at a cer-

tain point, it was possible to arrange variables x, y, and z together within the 

same vector space (figure 6.4). At this point, these values were attached to 

different desires (themselves progressively shaped during ground-truthing 

processes); x and y values were the Group’s desired inputs, and z values were 

its desired outputs. But their respective antecedence and posteriority—there are 

first inputs that should then become outputs—were not operationalized; 

x, y, and z values coexisted simultaneously in one mathematical world. 

But after INT had computed the translated training set by means of the 

instruction “fit (x’, y’, ‘gauss2’)” and printed the correlated graph, 

formula, and parameters (figure 6.5), number-values and size-values became 
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mathematical inputs, and face importance values became mathematical out-

puts. The Gaussian fit, as the Group happened to call it, made x and y values 

become operands, just as it made z values become the results of an operation. 

From the Group’s perspective, temporality shifted, it was now possible to 

start with input values and end with output values. An operation has been 

implemented to allow sequential transformations; dimensionality has been 

reduced by extracting a before and an after.

This turning point, a shift in temporality, was enabled by the enrollment 

of and delegation to another algorithm. Indeed, when the Group wrote 

the Matlab instruction “fit,” it asked INT to estimate the parameters of a 

function—in this case, a Gaussian one—from a series of coordinate points. 

At this precise point for the Group, this was a routine intuitive action that 

required only a handful of characters in the Editor of the Matlab IDE. For 

INT, however, which effectively computed this estimation of parameters, 

this was a not so trivial endeavor. How did INT do it?

If we refer to MathWorks’ official 2017 documentation, the instruction 

“fit (… ‘gauss2’)” uses a nonlinear least square computerized method 

of calculation to estimate the optimal parameters of a Gaussian function 

from coordinate points.9 It can thus be inferred that INT does something 

not so dissimilar to, first, defining the error associated with each point and 

then defining a function that is the sum of the squares of these errors before 

taking the partial derivative of the function’s equation—with respect to the 

four parameters—thereby establishing four nonlinear equations that can in 

turn be solved by using, for example, the Newton-Gauss method. Though 

contested by several researchers in the field of statistical signal processing 

(e.g., Hagen and Dereniak 2008; Guo 2011)—thereby making it a genuine 

research topic—the nonlinear least square algorithm is currently a standard 

way of estimating parameters of Gaussian functions. Further, by writing 

this Matlab-imbedded instruction, the Group deployed another computer-

ized method of calculation—one with its own shaping history—to take an 

important step toward formulating the relationships between the data and 

the targets of its training set.

That the Group used another algorithm to formulate its new algorithm 

should not surprise us; ground-truthing, programming, and formulating 

activities are full of moments where past algorithms contribute to the con-

stitution of a new algorithm (see figure 6.8). What should beg our atten-

tion, however, is the decisive temporal shift provoked by the nonlinear 
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least square algorithm subtending the Matlab “fit” instruction during the 

formulating process. Before the appearance of the Gaussian fit’s parameters 

in the Command Window, the Group had no means to effectively com-

pute the face importance values without the labels of the crowdworkers; its 

appearance, however, furnished the Group with such an operative ability. 

Can this specific algorithmically based predictive capacity for the constitu-

tion of the Group’s algorithm be our entry point to the topic of machine 

learning?

It is tempting to assert that the algorithm invoked by the Group to 

help formulate its model found the Gaussian function. In fact, it would 

be more appropriate to say that the algorithm found an approximation of 

the initial function that already underlined the reorganized training set. 

In other words, given the ground-truth function f(x,y) that, presumably, 

structured the relationship among size-values, number-values, and face 

importance values within the translated training set, the algorithm found 

a useful estimate f′(x,y) that further allowed the production of prediction 

with an admittedly low probability of errors (hence its usefulness). Accord-

ing to Adrian Mackenzie (2017, 75–102), it is this very specific action that 

fundamentally consists of processing—some authors even say “torturing” 

(Domingos 2015, 73)—data to generate an approximation of an initially 

assumed function that is the main goal of machine learning algorithms, 

whether they are simple linear regressions or complex deep convolutional 

neural networks. As Mackenzie, building on the authoritative literature on 

this now widely discussed topic, astutely summarized it:

Whether they are seen as forms of artificial intelligence or statistical models, 

machine learners are directed to build “a good and useful approximation to the 

desired output” (Alpaydin 2010, 41) or, put more statistically, “to use the sample 

to find the function from the set of admissible functions that minimizes the prob-

ability of errors (Vapnik 1999, 31).” (Mackenzie 2017, 82)

It seems, then, that machine learning algorithms—or “machine learners,” as 

Mackenzie calls them—may be regarded as computerized methods of calcu-

lation that aspire to find approximations of functions that presumably orga

nize training and evaluation sets’ desired inputs and outputs, themselves 

deriving from ground-truthing practices (that are still sometimes oriented 

toward future-formulating practices, as we saw in a previous section of this 

chapter). This general argument allows us to better grasp the role played by 
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the Gaussian fit during the Group’s formulating process. By virtue of Mack-

enzie’s proposition, the Matlab-embedded algorithm enrolled by the Group 

during its formulating process worked as a machine learner, building the 

mathematical approximation of the ground-truth function and its related 

formula (itself working as an easily transposable programming scenario).

Yet if the Matlab least square algorithm can be considered a machine 

learner, is it reasonable to say that there was machine learning during the 

Group’s formulating episode? From Mackenzie’s point of view as well as 

the perspective of the specialized literature, it may appear so; as soon as the 

Group ran the “fit” instruction, the project became a machine-learning 

project as its model relied on a statistical learning method that found a 

useful approximation of the desired output. However, from the Group’s 

perspective, the story is more intricate than that as GY and BJ suggested to 

me after I shared some of my thoughts:

Wednesday, April  12, 2014. Terrace of the CSF’s cafeteria. Discussion 

with GY

FJ:  I’m still holding on to the Gaussian fit moment.  … To find the par

ameters, there was some kind of machine learning underneath in Mat-

lab, was there not?10

GY:  Huh, yes perhaps. Some kind of regression, I guess.

FJ:  Which is a kind of machine-learning technique, no?

GY:  Maybe, technically. But I wouldn’t say that. You know, we saw it was 

a Gaussian anyway, so it was no real machine learning.

FJ:  Real machine learning?

GY:  Yes. For example, like when you do deep-learning things, you first 

have no idea about the function. You just have many data, and you let 

the machine do its things. And there, the machine really learns.

Friday, April 14, 2014. Terrace of the CSF’s cafeteria. Discussion with BJ

FJ:  So, machine learning is not what you’ve done with the Gaussian fit?11

BJ:  No, no. I mean, there was a fit, yes. But it was so obvious, and Matlab 

does that very quickly, right? It’s nothing compared to machine learn-

ing. If you look at what people do now with convolutional neural net-

works, it’s very very different! Or with what NK is doing here with deep 

learning [for handwritten recognition]. There you need GPUs [graphical 
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processing units], parallelization, etc. And you process again and again 

a lot of raw data.

There seems to be some uncertainty surrounding the status of the Gaussian 

fit. If it “technically” can be qualified as machine learning, it is also opposed 

to “real” machine learning, such as “deep learning” or “convolutional neu-

ral networks,” where the machine “really learns.” It seems that, for GY 

and BJ—and also for CL, as I learned later on—regarding the Gaussian fit 

moment as machine learning would misunderstand something constitutive 

of it. How should we qualify this uncertainty? How should we seek to grasp 

what, at least for the Group, gives machine learning its specific expression?

An element that, for the Group, seems to subtend the distinction between 

real and less real machine learning is the visual component that puts the 

instruction “fit” into gear: “We saw it was a Gaussian anyway, so it was 

no real machine learning.” The visual component was indeed decisive in 

qualifying the phenomenon the Group tried to formulate; after several trans-

lations/reductions of the training set, the scatterplot of figure 6.4 literally 

looked like a Gaussian, and this similarity, in turn, suggested the use of the 

“fit” instruction to the Group. The dependent variables—size-values and 

number-values—were hypothesized before the formulating episode (they 

even contributed to the construction of the ground truth), and these were 

parsimonious enough to be visualized in an understandable graph. The 

group may well have used a machine learner made by others, in other places 

and at other times; this delegation was minimal, in the sense that most of 

the work involved in approximating the function had already been under-

taken. This is evidenced by the instruction “gauss2” within the instruction 

“fit,” which oriented INT’s work toward a 2D Gaussian function with four 

parameters.

What about deep learning? Why do GY and BJ use it to distinguish 

between real and less real machine learning? It is important to note that in 

the spring of 2014—at the time of our discussions at the CSF’s cafeteria—

deep learning was becoming a popular trend among image-processing 

communities that specialized in classification and recognition tasks. This 

popularity was closely related to an important event that occurred during 

a workshop at the 2012 European Conference on Computer Vision, where 

Alex Krizhevsky presented a model he had developed with Ilya Sutskever 

and Geoffrey Hinton—one of the founding fathers of the revival of neural 
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networks (more on this later)—for classifying objects in natural images. 

This model had partaken in the 2012 ImageNet challenge (more on this 

later) and won by a large margin, surpassing the error rate of competing 

algorithms by more than 10  percent (Krizhevsky, Sutskever, and Hinton 

2012). The method Krizhevsky, Sutskever, and Hinton used to design their 

algorithm was initially called “deep convolutional neural networks” before 

receiving the more generic label of “deep learning” (LeCun, Bengio, and 

Hinton 2015; Schmidhuber 2015), pursuant to the terminology proposed by 

Bengio (2009). While this statistical learning method had already been used 

for handwritten digit recognition (LeCun et al. 1989), natural language pro

cessing (Bengio et al. 2003), and traffic sign classification (Nagi et al. 2011), 

this was its first time being used for “natural” object classification and 

localization. And in view of its impressive results, a new momentum began 

to flow through the image-processing community as deep learning started 

to become more and more discussed in the academic literature, modular-

ized within high-level computer programming languages, and adapted for 

industrial applications.

In the Lab, NK was the member most familiar with the then latest advances 

in deep learning as suggested in the above excerpts. He was indeed conduct-

ing his PhD research on the application of deep learning for handwritten 

recognition of fiction writers, and it was through his work—and through 

communications during Lab meetings—that the topic progressively infil-

trated the Lab. As a sign of the growing popularity of these formulating 

techniques, five doctoral students were moving toward deep learning when 

I left the field in February 2016, compared with only one—NK—when I 

arrived. Unfortunately, despite the growing interest in these techniques 

within the Lab, I did not have the opportunity to explore in detail a deep 

learning formulating episode. However, based on Krizhevsky’s paper, which 

marked the rise of deep learning within digital image processing, it may 

be possible to dig further into—or rather, speculate on—the difference 

suggested by the Group between “real” and “less real” machine learning 

(despite the dangers that such an approach, based on a “purified account,” 

represents; On this topic, see this book’s introduction).

Let us start with the ground truth Krizhevsky, Sutskever, and Hinton 

used to develop their algorithm. If, to a certain extent, we get the algorithms 

of our ground truths (see chapter  2), then what was theirs? Krizhevsky, 
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Sutskever, and Hinton used a ground truth called ImageNet to train and 

evaluate their deep-learning algorithm. ImageNet was an ambitious project, 

initially conceived in 2006 by Fei-Fei Li, who was at that time a professor of 

computer science at the University of Illinois Urbana-Champaign.12 Even 

though the detailed history of ImageNet—an endeavor that would repre-

sent an important step toward problem-oriented studies of algorithms (see 

chapter 2)—has yet to be undertaken, several academic papers (Deng et al. 

2009, 2014; Russakovsky et al. 2015), journalist reports (Gershgorn 2017; 

Markoff 2012), and a section of Gray and Suri’s (2019, 6–8) book Ghost Work 

nonetheless allow us to make informed assumptions about its genealogy.

It seems then that Fei-Fei Li, at least since 2006, was fully aware of some-

thing that we realized in chapter 2: better ground truths may lead to better 

algorithms. Just like the Group, who was not satisfied with ground truths 

for saliency detection, Li regarded the use of ground truths for the classifica-

tion of natural images as too simplistic.13 Through exchanges with Christine 

Fellbaum, who, since the 1990s, has been building WordNet—a lexical data-

base of English adjectives, verbs, nouns, and adverbs, organized according 

to sets of synonyms called synsets (Fellbaum 1998)—the idea of associating 

digital images with each word of this gigantic database for computational 

linguistics progressively emerged. In 2007, when Fei-Fei Li joined the fac-

ulty of Princeton University, she officially started the ImageNet project by 

recruiting a professor, Kai Li, and a PhD student, Jia Deng. After several 

unsuccessful attempts,14 Fei-Fei Li, Kai Li, and Jia Deng turned to the new 

possibilities offered by the crowdsourcing platform Amazon Mechanical 

Turk (MTurk). Indeed, while images could be quickly scrapped via a keyword 

search engine such as Google or, at that time, Yahoo, reliably annotating the 

objects in these images required time-consuming human work. And Ama-

zon MTurk, as a provider of large-scale on-demand microlabor, effectively 

provided such valuable operations at an unbeatable price. Using ingenious 

quality control mechanisms, Li’s team managed to construct, in two and a 

half years, a ground-truth database that gathered 3.2 million labeled images, 

organized into twelve subtrees (e.g., mammal, vehicle, reptile), with 5,247 

synsets (e.g., carnivore, trimaran, snake).15 Despite difficult beginnings,16 

ImageNet has made its way into computer vision research not only through 

the publicization efforts of Fei-Fei Li, Jia Deng, Kai Li, and Alexander Berg 

(Deng et al. 2010, 2011b; Deng, Berg, and Li 2011a) but also through its asso-

ciation with a well-respected European image-recognition competition called 
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PASCAL VOC that has now been followed by ILSVRC.17 And it was in the 

context of the 2012 ILSVRC competition that Alex Krizhevsky, Ilya Sutskever, 

and Geoffrey Hinton developed their deep-learning method that surpassed, 

by far, all their competitors, initiating a wave of enthusiasm that we are still 

experiencing today.18

But what about the machinery implemented by Krizhevsky, Sutskever, 

and Hinton to develop their deep convolutional neural network algorithm? 

How did they formulate the relationship between the input-data (here, raw 

RGB pixel-values) and the output-targets (here, words referring to objects 

present in natural images) of the ImageNet ground truth? Let us start with 

the term “neural networks.” We have already encountered it in chapter 3 

when we were inquiring into the progressive invisibilization of computer 

programming practices. As we saw, the term neural network came from 

McCulloch and Pitts’s 1943 paper, which was itself made visible by its 

instrumental role in von Neumann’s First Draft of a Report on the EDVAC 

(von Neumann 1945). McCulluch and Pitts’s main argument was that a sim-

plified conception of “all-or-non” neurons could act, depending on their 

inputs, as logical operators OR, AND, and NOT and thus, when organized 

into interrelated networks, could be compared to a Turing machine. This 

analogy between logic gates and the inner constituent of the human brain 

was then used by von Neumann in his Draft, in which he was prompted to 

use unusual terms such as “organs” instead of “modules” and “memory” 

instead of “storage” (surprising analogies that must, crucially, be put into 

the 1945 context when military projects such as the ENIAC and the EDVAC 

were still classified). Yet, as intriguing as they were, McCulloch and Pitts’s 

neural networks, in their role as logic gates, could not learn; that is, they 

could not adjust the weight of their “synaptic” interconnections according 

to measurable errors. It is a merit of Frank Rosenblatt’s perceptron to have 

integrated a potential for repetition and modification of logic gates based 

on algorithmic comparisons between actual and desired outputs (Domingos 

2015, 97; Rosenblatt 1958, 1962). But the perceptron algorithm that allows 

neural networks to modify their synaptic weight according error signals 

could only learn to draw linear boundaries among vectorized data, mak-

ing it vulnerable to much criticism.19 Nearly twenty years later, physicist 

John Hopfield, as part of his work on spin glasses, proposed an information 

storage algorithm that allowed neural networks to effectively perform pat-

tern recognition, an achievement that finally brought to light this so-called 
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connectionist approach to learning (Domingos 2015, 102–104; Hopfield 

1982). Shortly thereafter, David Ackley, Geoffrey Hinton, and Terrence Sej-

nokwski built on Hopfield’s insights and adapted his deterministic neurons 

into probabilistic ones, by proposing a learning algorithm for Boltzmann’s 

machines (Ackley, Hinton, and Sejnowski 1985; Hinton, Sejnowski, and 

Ackley 1984).20 Then came the real tipping point of this neural network 

revival, with the design of a stochastic gradient retropropagation algorithm 

(called “backprop”) that could calculate the derivative of the network loss 

function and back-propagate the error to correct the coefficients in the lower 

layers, ultimately allowing it to learn nonlinear functions (Rumelhart, Hin-

ton, and Williams 1986).21 This was followed by a difficult period for this 

inventive and cohesive research community, who was once again gradually 

marginalized.22 But this did not include the increasing computerization of 

the collective world from the 2000s and the development of web services, 

both of which led to an explosion of neural networkable data (yet often at 

the expense of invisibilized on-demand microlabor). Krizhevsky, Sutskever, 

and Hinton’s (2012) paper is one expression, among many others, of this 

renewed interest in neural networks, which goes hand in hand with the 

provision of large ground truths such as ImageNet. Yet besides big data-

based labeled data, Krizhevsky, Sutskever, and Hinton could also rely on a 

stack of well-discussed algorithms (e.g., perceptron, learning for Boltzmann 

machines, backprop) to build their model; they were able to delegate a 

significant part of their formulating work to other neural network-related 

algorithms considered standard by the connectionist community in 2012.

What about the term “convolutional”? In this specific context, it is 

largely derived from a successful application of the backpropagation algo-

rithm for optimizing neural networks to address an industrial issue: the 

recognition of handwritten postal codes. It was developed by LeCun et al. 

(1989) and aimed to exploit the potential of data expressed as multiple 

arrays—such as RGB digital images “composed of three colour 2D arrays 

containing pixel intensities in the three colour channels” (LeCun, Bengio, 

and Hinton 2015)—to minimize the number of neural network parameters 

as well as the time and cost of learning. In a nutshell, the operation consists 

of reducing the matrix image into a matrix of lower dimension using a con-

volution product—a classical operator in functional analysis dating back, 

at least, to the work of Laplace, Fourier, and Poisson. These convolutional 

layers are then followed by pooling layers, aimed to “merge semantically 
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similar features into one” (LeCun, Bengio, and Hinton 2015, 439)—a typi-

cal way of doing this operation being, at the time of Krizhevsky, Sutskever, 

and Hinton’s study, to use an algorithm called “max-pooling” (Nagi et al. 

2011). And when Krizhevsky, Sutskever, and Hinton used convolutional 

neural networks, they effectively mobilized these convolution and pooling 

methods—integral parts of the standard algorithm “library”—to be used at 

their disposal.

Finally, what about the term “deep”? When convolutional layers, activa-

tion functions, and max-pooling layers are repeated several times to form 

a network of networks, this qualifies as “deep.” In this case, AlexNet—as 

the algorithm presented in Krizhevsky, Sutskever, and Hinton ended up 

being called—was the very first neural network to integrate five convolu-

tional layers in conjunction with three fully connected layers (Krizhevsky, 

Sutskever, and Hinton 2012, 2).

Though important, the technical features of the algorithm developed by 

Krizhevsky, Sutskever, and Hinton are not central to the proposition I wish 

to make here. It is more important to grasp the overall algorithmic machin-

ery that they mobilized to formulate the relationships between their input-

data and output-targets. Consider Boltzmann machines, backpropagation, 

convolutional networks, and max-pooling: although these algorithms were 

not mainstream in the image-processing and recognition community—as 

they came from an often marginalized connectionist tradition—they none-

theless constituted a relatively stable infrastructure that could be mobilized 

to find approximations of functions within large, yet reliable, training sets. 

The work of Krizhevsky, Sutskever, and Hinton was undoubtedly impressive 

in many respects. Nonetheless, they were able to capitalize on a modular 

algorithmic infrastructure capable of operating, at least theoretically, as a for-

mulating machine (see figure 6.9).

Yet one important question remains: How did Krizhevsky, Sutskever, and 

Hinton actually get their input-data processed by their audacious yet stan-

dard algorithmic machinery? How did they effectively produce a function 

approximation? This is where another crucial ingredient emerges (in addi-

tion to the ImageNet ground truth and the more or less ready-to-use pack-

age of connectionist algorithms): Graphics Processing Units (GPUs). Indeed, 

the machinery of deep convolutional neural networks requires a lot of 

computing power. However, as Krizhevsky, Sutskever, and Hinton were pro

cessing images—that is, arrays containing pixel intensities—they were able 
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to get some help from specially designed integrated circuits called GPUs 

(in this case, two NVIDIA GTX 580 3GB GPUs). It was necessary, however, 

to interact with these computing systems in such a way that allowed them 

to adequately express convolutional neural networks (and their whole 

algorithmic apparatus). This may be Krizhevsky, Sutskever, and Hinton’s 

most impressive achievement, and it should not be underestimated. They 

may have had a large and trustworthy ground truth made by others, and 

they may also have had a rich and modulatory algorithmic infrastructure 

progressively designed by a vivid and supportive community of connec-

tionists; all of these elements had yet to be rendered compatible with the 

ascetic environment of computers. And, if we refer to Cardon, Cointet, and 

Mazières’s interview of a well-respected researcher in computer vision:

[Alex Krizhevsky] ran huge machines, which had GPUs that at the time were 

not great, but that he made communicate with each other to boost them. It was 

a completely crazy machinery thing. Otherwise, it would never have worked, a 

geek’s skill, a programming skill that is amazing (Cardon, Cointet, and Mazières 

2018; my translation).

Besides the ground-truthing efforts made by Fei-Fei Li’s team and the algo-

rithmic infrastructure implemented by previous connectionist researchers, 

Krizhevsky, Sutskever, and Hinton also had to engage themselves in tre-

mendous programming efforts to propose their deep learning algorithm: 

an “amazing” venture. Yet, after these efforts, and probably many retrofit-

ting operations, they did manage to formulate a monster function with 

sixty million parameters (Krizhevsky, Sutskever, and Hinton 2012, 5).

When we compare the not quite machine learning of the Group’s Gauss-

ian fit with the real machine learning of Krizhevsky, Sutskever, and Hinton’s 

deep convolutional neural networks, what do we see? Beyond the obvious 

differences, notably in terms of algorithmic complexity, an important simi-

larity stands out: both lead to a roughly similar result; that is, an approxi-

mation of their respective assumed ground-truth functions. The function 

produced by the machine learner invoked by the Group may only have 

four small parameters, but it ends up transforming inputs into operands 

and outputs into results of an operation, just like Krizhevsky, Sutskever, 

and Hinton’s sixty-million-parameter function does. Both machine learners 

approximate the assumed function organizing the data of their respective 

ground truths, thus remaining subordinate to them.
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However, despite this important similarity, the two machine learners dif-

fer in that they emanate from differentiated processes; while the Gaussian 

fit takes over for only a brief moment, following manual translations that 

can be followed and accounted for, the machinery of Krizhevsky, Sutskever, 

and Hinton takes over much of the formulation of the training set. Whereas 

the Group must assume dependent variables, then translate/reduce its train-

ing sets according to these assumptions to progressively access a certified 

mathematical statement—here, a 2D Gaussian—Krizhevsky, Sutskever, and 

Hinton can delegate this formulating work to an algorithmic infrastructure. 

Yet again, if there has been automation of a significant part of the formulating 

activities, it is crucial to remember that this was at the cost of a symmetrical 

heteromation of the ground-truthing and programming activities. More than 

five years of ground-truthing ventures by Fei-Fei Li and her team as well 

as countless hours of programming work undertaken by Alex Krizhevsky 

(according to Cardon, Cointet, and Mazières 2018) have made it possible 

to automate the formulation of the relationship between input-data and 

output-targets, thereby rendering the former operands and the latter the 

results of an operation.

Speculating on these elements, we might be tempted to address machine 

learning—despite its great diversity—as unfolding along a continuum (figure 

6.10). Machine learners make approximations of functions, but perhaps, the 

more their invocation relies on the stacking of other algorithms—operating 

as an infrastructure that automates the formulating activities—the more 

they constitute machine learning. According to this perspective, the term 

“machine learning” no longer refers only to a class of statistical techniques 

but now also includes a practice (and perhaps, sometimes, a habit) of delega

tion, requiring an appropriate infrastructure that itself touches on ground-

truthing and programming issues.

This tentative requalification of machine learning, as a particular instance 

of formulating activities, may allow us to appreciate the issue of inscruta-

bility in an innovative way. Instead of regarding the growing difficulty in 

accounting for the processes that have led to the formation of a machine-

learned approximation of a ground-truth function as a limit, this conception 

of machine learning may see it as consubstantial with real machine learn-

ing: the more machine learning, the more delegation, and the more difficult 

it becomes to inspect what has led to the formation of the mathematical 

operation allowing the transformation of inputs into outputs. Yet—and this 
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is the real promise of my speculative proposition—real machine learning’s 

native inscrutability may have to be paid for by more ground-truthing and 

programming efforts, both of which are scrutable activities (as we saw in 

part I and part II).

I certainly do not here aspire to enunciate general facts; these tentative 

propositions are mainly intended to suggest further inquiries. This is even 

truer given that machine learning is both much discussed and very little 

studied, at least historically and sociologically. Yet as suggested by Jones 

(2018) and Plasek (2018), given machine learning’s growing importance in 

the formation of algorithms, it is more crucial than ever to investigate the 

historical and contemporary drivers of this latest expression of formulating 

activities.

* * *

Here in part III, I tried to document the progressive shaping of a compu-

tational model in the light of the elements presented in part I and part II. 

Given that what I ended up calling “formulating practices” dealt with the 

manipulation of mathematical propositions, we first had to better under-

stand mathematical facts and their correlated objects. Where do they come 

from? How are they assembled, and why do computer scientists need them? 

To answer these preliminary questions, we had to temporarily distance our-

selves from many accounts of mathematics: our tribulations in chapters 3 

and 4 taught us indeed to be suspicious of terms such as “thoughts,” “mind,” 

or “abstraction.” In chapter 5, inspired by several STS on mathematics, we 

privileged a down-to-earth starting point: at some point in their existence, 

mathematical propositions can be regarded as written claims that try to 

convince readers. This initial assumption allowed us to consider the striking 

Group’s Gaussian fit Krizhevsky et al.’s deep ConvNets

Reality of machine learning

Inscrutability of the operative function

Required ground-truthing efforts

Required programming efforts

Automation of the formulating activities

Delegation to an algorithmic infrastructure– +

Figure 6.10
Schematic of machine learning considered a continuous phenomenon.
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similarity between mathematics and the other sciences; the written claims 

made by both mathematicians and scientists must overcome many trials to 

become, eventually, accepted facts. Instead of existing as some fundamen-

tal ingredient of thought, mathematical knowledge progressively emerged 

as a huge, honorable, and evolving body of certified propositions.

We then had to consider the objects that these certified mathematical 

propositions deal with: Are they similar to scientific objects? By fictitiously 

comparing the work carried out in a laboratory for biomedicine with the work 

carried out in a laboratory for algebraic geometry, we realized that, yes, scien-

tific and mathematical objects can be considered quite similar. In both cases, 

despite topological differences (the mathematical laboratory being often 

“flatter” and “dryer” than the biomedical one), experiments, instruments, 

and alignments of inscriptions—in short, laboratory practices—progressively 

led to the shaping of scientific objects, the properties and contours of which 

became, in turn, topics of papers aimed to convince skeptical readers.

The striking similitude between scientific and mathematical objects 

prompted us, in turn, to consider why mathematical objects often partici-

pate in the shaping of nonmathematical scientific objects. Still supported 

by STS works on mathematics, we realized that the combinatorial strength 

of mathematics derives largely from mundane translation practices that 

progressively reduce entities to make them fit with the flat and dry ecology 

of mathematical knowledge. By means of such reductions, scientists render 

the entities they try to characterize as easier to handle, more sharable, more 

comparable, more malleable, and more enrollable within written claims try-

ing to convince colleagues of their reified existence. These elements finally 

allowed us to define formulating practices as the empirical process of trans-

lating undefined entities to assign them the same form as already defined 

mathematical objects.

We then tried to use these introductory elements to analyze a formulat-

ing episode that took place within the Lab. We started by considering how 

ground-truthing practices—especially the initial collection of the dataset—

may sometimes function as a preparatory step for forthcoming formulat-

ing practices. This first element made us appreciate the need for a close 

articulation between the “problem-oriented perspective on algorithms” we 

initiated in chapter 2 and the “axiomatic perspective on algorithms” we 

expanded on in chapter 6.
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We then inquired into the formation of one of the Group’s computa-

tional models. We first documented the many translations and reductions 

of the Group’s training set; from a messy Matlab database, the training set 

progressively evolved into a list of single values that the Group could trans-

late into a scatterplot whose shape expressed a singular phenomenon. The 

Group’s strong intuition that this phenomenon looked like a Gaussian func-

tion supported the further translation of the scatterplot into a graph that 

could, in turn, be expressed as a parametrized formula, thanks to centuries 

of certified mathematical propositions, among many other things.

We then saw that, although mathematical inscriptions describing com-

putational models in academic papers cannot, of course, trigger electric 

pulses capable of making computers compute actual data, these mathemati-

cal inscriptions can nonetheless institute transposable scenarios for computer 

programming episodes. This element was crucial as it completed the con-

nections among the three gerund-parts of this inquiry. Indeed, it seems that 

formulating practices rely on, and sometimes influence, ground-truthing 

practices that themselves are supported by programming practices that are 

themselves, sometimes, irrigated by the results of formulating practices. A 

whole action-oriented conception of algorithms started to unfold; what we 

like to call an algorithm may sometimes be the result of these three inter-

related activities I here call ground-truthing, programming, and formulating.

Speculating on this, we finally addressed the widely discussed yet socio-

logically little-investigated topic of machine learning. Based on some (few) 

empirical clues regarding the varying reality of machine learning, I made 

the following, tentative, proposition: it may be that machine learning, once 

considered a lived experience, consists of the audacious capacity to automate 

formulating processes. However, this recently acquired habit may rely on 

increasing ground-truthing and programming efforts, the springs of which 

would benefit from further sociological studies.
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If you want to understand the big issues, you need to understand the everyday 

practices that constitute them.

—Suchman, Gerst, and Krämer (2019, 32)

Constituent power thus requires understanding constitution not as a noun but a 

verb, not an immutable structure but an open procedure that is never brought to 

an end.

—Hardt (1999, xii)

There was a follow-up of the work required to ground the veracity of a 

computational model for digital image processing whose academic article 

was provisionally rejected (chapter 2), a description of the actions deployed 

to write a short Matlab program (chapter 4), and an analysis of the shaping 

of a four-parameter formula abstracted from a small training dataset (chap-

ter 6). These empirical elements might seem quite tenuous when compared 

with the ogre to whom this book is explicitly addressed: algorithms and 

their growing contribution to the shaping of the collective world.

And yet, this book is nonetheless driven by a certain confidence. If I 

did not believe in its convenience, I simply would not have written (or at 

least published) it. What justifies such confidence? Which way of thinking 

supports such a presumption of relevance? In this conclusion, it is time to 

consider this inquiry’s half-hidden assumptions regarding the political sig-

nificance of its results, however provisional they may be.

Catching a Glimpse, Inflating the Unknown

In the introduction, I mentioned some of the many contemporary sociologi

cal works on the effects of algorithms, and I assumed these works progressively 

Conclusion
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contributed to making algorithms become matters of public concern. I then 

suggested that the current controversies over algorithms call for composition 

attempts. As algorithms are now central to our computerized societies while 

engaging in moral and ethical issues, their very existence entails constructive 

negotiations. I then suggested that the ground for these contentious com-

promises needs to be somewhat prepared or, at least, equipped. As it stands, 

the negative invisibility (Star and Strauss 1999) of the practices underlying the 

constitution of algorithms prevents from grasping these entities in a compre-

hensive way; it is difficult, indeed, to make changes on processes that have 

no material thickness. I then suggested that one way—among other possible 

ones—to propose refreshing theoretical equipment was to conduct sociologi

cal inquiries in collaboration with computer scientists and engineers in order 

to document their work activities. This may lead to a better understanding 

of their needs, attachments, issues, and values that could help disputing par-

ties to start negotiate, as Walter Lippmann (1982, 91) said, “under their own 

colors.”

This was an unprecedented effort. While I could build on several STS 

authors dealing, among other things, with scientific and mathematical 

practices, I have most often, to be fair, been left to my own devices. How-

ever, it was a formative exercise that forced me, beyond the general frame-

work proposed by the “laboratory study” genre, to propose methodologies 

and concepts—especially in chapters 1, 3, and 5—that I believe are well 

adapted to the analysis of computer science work. The careful and fastidi-

ous unfolding of courses of action allowed me to document the progressive 

formation of entities—ground truths, programs, and formulas—aggregating 

choices, habits, objects, and desires. Moreover, it seemed that the congru-

ence of these entities and the practices involved in their shaping form, at 

least sometimes and partially, other entities we tend to call algorithms.

Nevertheless, this analytical gesture suffers from a certain asymmetry: on 

the one hand, a small ethnographic report resulting from a PhD thesis, and 

on the other hand, a whole industry that is constantly growing and innovat-

ing. With such limited means, the present investigation could only glimpse 

the irrigation system of algorithms in their incredible diversity. Worse, by 

shedding new light on a very limited part of the constituent relationships of 

algorithms, this inquiry suggested a continent without saying much about it. 

What about the courses of action involved in getting algorithms out of the 

laboratories, incorporating them into commercial arrangements, integrating 
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them into software infrastructures, modifying their inner components, main-

taining them, improving them, or cursing or loving them? By the very fact 

of showing that it was possible to bring algorithms back to the ground and 

consider them products of mundane amendable processes, this investigation 

probably promised more than it delivered. What value can be attributed to 

an inquiry that suggests more than asserts?

An Insurgent Document

One can start by stressing the protesting subtext of this investigation. Even 

if it did not wish to criticize contemporary social studies on algorithms—

because they help us to be concerned by our “algorithmic lives” (Mazzotti 

2017)—the present inquiry’s approach and results nonetheless take a stand 

against a habit of thought these studies sometimes tend to instill.

This habit, briefly mentioned in the introduction, consists in consider-

ing algorithms from an external position and in the light of their effects. 

I have said it over and over again, this posture is important as it creates 

political affections. However, by becoming generalized, it also comes up 

against a limit that takes the form of a looping drama. The argument, ini-

tially developed by Ziewitz (2016), is the following: while salutary in many 

ways, the recent proliferation of studies of the effects of algorithms insidi-

ously tends to make them appear autonomous. Increasingly considered 

from afar and in terms of the differences they produce, algorithms slowly 

start to become stand-alone influential entities. This is the first act of the 

algorithmic drama, as Ziewitz calls it: algorithms progressively become, at 

least within the social science literature, powerful floating entities.

Moreover, once the networks allowing them to deploy and persevere are 

overlooked, algorithms also become more and more mysterious. Indeed, 

according to this risky standpoint, what can these powerful entities be made 

of? As the study of the effects of algorithms tends to be privileged to the 

study of what supports and makes them happen, these entities appear to be 

made of theoretical, immaterial, and abstract ingredients, loosely referred 

to as mathematics, code, or a combination of both. Having no grip on what 

these packages contain, complexity is easily called for help: Whatever the 

mathematics or the code that form algorithms may refer to, algorithms 

have to be highly complex entities since they are abstract and powerful. 

How can something be distributed, evanescent, and influential at the same 
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time? This is the kind of question induced—in hollow—by the multiplica-

tion of studies on the effects of algorithms, surreptitiously introducing the 

second act of the algorithmic drama: algorithms become inscrutable. The end 

result is a disempowering loop, for as Ziewitz (2016, 8) wrote, “the opacity 

of operations tends to be seen as a new sign of their influence and power.” 

The algorithmic drama surreptitiously unfolding within the social science 

landscape is thus circular: algorithms are powerful because they are inscru-

table, because they are powerful, because they are inscrutable  …

The present investigation goes against this trend (which yet remains 

important and valuable). Instead of considering algorithms from a distance 

and in light of their effects, this book’s three case studies—with their theo-

retical and methodological complements—show that it is in fact possible 

to consider algorithms from within the places in which they are concretely 

shaped. It is therefore a fundamental, yet fragile, act of resistance and organ

ization. It challenges the setup of an algorithmic drama while proposing 

ways to renew and sustain this challenge. As it aims to depict algorithms 

according to the collective processes that make them happen, this inquiry 

is also a constituent impetus that challenges a constituted setup. Again, 

there is no innocence.

All the credit, in my opinion, goes to philosopher Antonio Negri for 

having detected the double aspect of insurgent acts. In his book Insurgen-

cies: Constituent Power and the Modern State, Negri (1999) nicely identifies 

a fundamental characteristic of critical gestures: they are always, in fact, 

the bearers of articulated visions. It is only from the point of view of the 

constituted setup and by virtue of the constitutionalization processes that 

were put it in place that insurgent impulses seem disjointed, incomplete, 

and utopian. Historically, and philosophically, the opposite is true: beyond 

the appearances, the constituted power is quite empty as it mainly falls 

back on and recovers the steady innovations of the constituent forces that 

are opposed to it. This argument allows Negri to affirm, in turn, that far 

from representing marginal and disordered forces to which it is necessary, 

at some point, to put an end—in the manner of a Thermidor—constituent 

impetuses are topical and coherent and represent the permanent bedrock 

of democratic political activities.

Though this book does not endorse all of Negri’s claims regarding the 

concept of constituent power,1 it is well in line with Negri’s strong proposi-

tion that the political, in the sense of politicization processes, cannot avoid 
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insurgent moves. By suggesting interesting, and surprising, bridges with the 

pragmatist tradition,2 Negri (1999, 335) indeed affirms that “the political 

without constituent power is like an old property, not only languishing but 

also ruinous, for the workers as well as for its owner.” And that is where the 

political argument of this book lies; it offers an alternative insurgent view 

on the formation of algorithms in order to feed arguments and suggest 

renovative modes of organization.

But if this book can be seen as an act of resistance and organization that 

intends to fuel and lubricate public issues related to algorithms by propos-

ing an alternative account of how they come into existence, why not call 

it “the constituent of algorithms”? Why did I deliberately choose the term 

“constitution,” seemingly antithetical to the insurgent acts that feed politi-

cization processes? This is where we must also consider this investigation as 

what it is materially: an inscription that circulates more or less. We find here 

a notion that has accompanied us throughout the book. Thanks to their 

often durable, mobile, and re-presentable characteristics, inscriptions con-

tribute greatly to the continuous shaping of the collective world. And like 

any inscription, due to what I have called “Dorothy Smith’s law” (cf. intro-

duction), this inscribed volume seeks to establish one reality at the expense 

of others. Once again, as always, there is no innocence: by expressing realities 

by means of texts, inscriptions also enact these realities. A text, however 

faithful—and some texts are definitely more faithful than others—is also a 

wishful accomplishment.

The fixative aspect of this investigation, which comes from its very 

scriptural form, should not be underestimated. This is even a limit, in my 

opinion, to Negri’s work on constituent power, however interesting and 

thorough it may be. Although insurrectional impetuses form the driving 

force of political history—we can keep that—they are nonetheless, very 

often, scriptural acts that contain a foundational character.3 The term “con-

stitution” thus appears the most appropriate; if this inquiry participates in 

the questioning of a constituted setup, it remains constitutive, in its capac-

ity as an inscription, of an affirmation power.

An Impetus to Be Pursued

However, nothing prevents this insurgent document from also being com-

plemented and challenged by other insurgent documents. It is even one of 
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its main ambitions: to inspire a critical dynamic capable of making algo-

rithms ever more graspable. This was the starting point of this investiga-

tion, and it is also its end point: to learn more about algorithms by living 

with them more intimately. And there are certainly many other ways to do 

just that.

Such alternative paths have been suggested throughout the book in both 

its theoretical and empirical chapters. Chapter 1, in introducing the meth-

odology of the inquiry, also indicated ways of organizing other inquiries 

that are grounded in other places and situations. For example, it would be 

immensely interesting if an ethnographer integrated the team of a start-

up trying to design and sell algorithm-related products.4 With regard to 

chapter 2, systematic investigations on the work required for the concep-

tion, compilation, and aggregation of academic and industrial ground 

truths would certainly help to link algorithms with more general dynamics 

related, for example, to the emergence of new forms of on-demand labor. 

Such an investigative effort could also build analytical bridges between cur-

rent network technologies that support the commodification of personal 

data and, for example, blockchain technology which is precisely based 

on a harsh criticism of this very possibility.5 In chapter 3, when it came 

to the progressive setting aside of programming practices from the 1950s 

onward, more systematic sociohistorical investigations of early electronic 

computing projects could ignite a fresh new look at “artificial intelligence,” 

a term that, perhaps, has built on other similar invisibilizations of work 

practices.6 With regard to chapter 4 and the situated practices of computer 

programming, conducting further sociological investigations on the orga

nizational and material devices mobilized by programmers in their daily 

work could contribute to better appreciating this specialized activity that is 

central to our contemporary societies. Programming practitioners may, in 

turn, no longer be considered an esoteric community with its own codes 

but also, and perhaps above all, differentiated groups constantly exploring 

alternative ways to interact with computers by means of numbered lists of 

instructions. In chapter  5, although it was about operationalizing a spe-

cific understanding of mathematical knowledge, the reader will certainly 

have noticed the few sources on which my propositions were based. It 

goes without saying that more sociological analyses of the theoretical work 

underlying the formation of mathematical statements is, in our increas-

ingly computerized world, more important than ever. Finally, concerning 
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formulating practices, as outlined at the end of chapter 6, analyzing the 

recent dynamics related to machine learning in light of the practical pro

cesses that make them exist could lead to considering the resurrected prom-

ises of artificial intelligence through a new lens: What are the costs of this 

intelligence? How is it artificial? What are its inherent limits? These are 

urgent topics to be considered at the ground level, not only to fuel contro-

versies but also, perhaps (and always temporarily), to close them.

For now, we are still far from such a generalized sociology of algorithms 

this book hopes to suggest. We are only at the very beginning of a road that, 

if we want to democratically integrate the ecology of algorithms into the 

collective world, is a very long one. With this book, beyond the presented 

elements that, I hope, have some value in themselves, one can also see an 

invitation to pursue the investigation of the mundane work underlying the 

formation and circulation of algorithms—an open-ended and amendable 

constitution, in short.
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actant  designates any particular human or nonhuman entity. The notion was devel-

oped by semiotician Algirdas Julien Greimas before being taken up by Bruno Latour 

(2005) to expand agency to nonhuman actors and ground his sociological theory, 

often labeled “actor-network theory.”

algorithm  is what this book tries to define in an action-oriented way. In view of the 

inquiry’s empirical results, algorithms may be considered, but certainly not reduced 

to, uncertain products of ground-truthing, programming, and formulating activities.

algorithmic drama  refers to the impasse threatening critical studies of algorithms. 

By mainly considering algorithms from a distance and in terms of their effects, these 

studies take the risk of being stuck in a dramatic loop: Algorithms are powerful because 

they are inscrutable, because they are powerful, because they inscrutable, and so on. 

The term “algorithmic drama” was initially proposed by Malte Ziewitz (2016).

association  refers to a connection, or a link, made between at least two actants. An 

association is an event from which emanates a difference that a text can, sometimes, 

partially account for.

BRL  is the acronym of Ballistic Research Laboratory, a now-dismantled center dedi-

cated to ballistics research for the US Army that was located at Aberdeen Proving 

Ground, Maryland. The BRL played an important role in the history of electronic 

computing because the ENIAC project was initially launched to accelerate the analy

sis of ballistic trajectories carried out within the BRL’s premises—in collaboration 

with the Moore School of Electrical Engineering at the University of Pennsylvania.

CCD and CMOS  are acronyms for charge-coupled device and complementary metal-oxide 

semiconductor, respectively. Through the translation of electromagnetic photons into 

electron charges as well as their amplification and digitalization, these devices enable 

the production of digital images constituted of discrete square elements called pixels. 

Organized according to a coordinate system allowing the identification of their loca-

tions within a grid, these discrete pixels—to which are typically assigned eight-bit 

red, green, and blue values in the case of color images—allow computers equipped 

Glossary
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with dedicated programs to process them. Both CCD and CMOS are central parts of 

digital cameras. Although they are still the subject of many research efforts, they are 

now industrially produced and supported by many norms and standards.

chain of reference  is a notion initially developed by Bruno Latour and Steve Wool-

gar (1986) to address the construction of scientific facts. Closely linked with the 

notion of inscription, a chain of reference allows the maintenance of constants, 

thus sometimes providing access to that which is distant. Making chains of refer-

ence visible, for example, by describing scientific instrumentations in laboratories 

allows appreciation of the materiality required to produce certified information 

about remote entities.

cognition  is an equivocal term, etymologically linked with the notion of knowledge 

as it derives from the Latin verb cognōscere (get to know). To deflate this notion, 

which has become hegemonic largely for political reasons, this inquiry—in the wake 

of the work of Simon Penny (2017)—prefers to attribute to it the more general pro

cess of making sense.

cognitivism  is a specific way to consider cognition. For contingent historical rea-

sons, the general process of making sense has progressively been affiliated with the 

process of gaining knowledge about remote entities without taking into account the 

instrumentation enabling this gain. The metaphysical division between a knowing 

subject and a known object is a direct consequence of this nonconsideration of the 

material infrastructure involved in the production of knowledge. This, in turn, has 

forced cognitivism to amalgamate knowledge and reality, thus making the adaequa-

tio rei et intellectus the unique, though nonrealistic, yardstick of valid statements and 

behaviors.

collective world  is the immanent process of what is happening. It is close to Wittgen-

stein’s definition of the world as “everything that is the case” (Wittgenstein 1922). 

The adjective “collective” seeks to underlie the multiplicity of entities involved in 

this generative process.

Command Window  is a space within the Matlab integrated development environment 

(IDE) that allows programmers to see the results of their programming actions on 

their computer terminal.

composition  is the focus of this inquiry; that in which it is trying, at its own level, 

to participate. Close to compromise, composition expresses a desire for commonal-

ity without ignoring the creative readjustments such a desire constantly requires. 

Composition is an alternative to modernity in that its desire for universality is based 

on comparative anthropology, thus avoiding—at least potentially—the traps of 

ethnocentrism.

computationalism  is a type of cognitivist metaphysics for which perceptual inputs 

take the shape of nervous pulses processed by mental models that, in turn, output 
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a different numerical value to the nervous system. According to computationalism, 

agency is considered the output of both perception and cognition processes and 

takes the form of bodily movements instructed by nervous pulses. This conception of 

cognition is closely related to the computational metaphor of the mind that establishes 

an identity relationship between the human mind and (programmed) computers.

constitution  refers to both a process and a document. The notion is here preferred to 

the more traditional one of construction because it preserves a fundamental tension 

of sociological ventures: to describe and contest. The term “constitution” reminds us 

that a reality comes into being to the detriment of another.

course of action  is an accountable sequence of gestures, looks, speeches, move-

ments, and interactions between human and nonhuman actants whose articulations 

sometimes end up producing something (a piece of steel, a plank, a court decision, an 

algorithm, etc.). Following the seminal work of Jacques Theureau, courses of action 

are the building blocks of this inquiry. The notion is closely linked to that of activity 

that, in this book, is understood as a set of intertwining courses of actions shar-

ing common finalities. The three parts of this book are all adventurous attempts to 

present activities taking part in the formation of algorithms; hence their respective 

gerund titles: ground-truthing, programming, formulating.

CSF  is the acronym of Computer Science Faculty. It is the department to which the 

Lab belongs. The CSF is part of what I call, for reasons of anonymity, the European 

technical institute (ETI).

digital signal  is, in its technical understanding, represented by n number of dimen-

sions depending on the independent variables used to describe the signal. A sampled 

digital sound is, for example, typically described as a one-dimensional signal whose 

dependent variables—amplitudes—vary according to time (t); a digital image is typi-

cally described as a two-dimensional signal whose dependent variables—intensities—

vary according to two axes (x, y) while audiovisual content will be described as a 

three-dimensional signal with independent variables (x, y, t).

Editor  is a space within the Matlab integrated development environment (IDE) allow-

ing a programmer to inscribe characters capable of triggering—with the help of an 

interpreter—electric pulses to compute digital data in desired ways. It is part of the 

large family of source-code editors that can be stand-alone applications or functional-

ities built into larger software environments.

EDVAC  is the acronym of Electronic Discrete Variable Automatic Computer. This clas-

sified project was launched in August 1944 as the direct continuation of the ENIAC 

project at the Moore School of Electrical Engineering. The EDVAC played an impor

tant role in the history of electronic computing because it was the subject of an 

influential report written by John von Neumann in 1945. This unfinished report, 

entitled First Draft of a Report on the EDVAC, laid the foundations for what would 

later be called the von Neumann architecture.
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ENIAC  is the acronym of Electronic Numerical Integrator and Computer. This classi-

fied project was launched in April 1943 under the direction of John Mauchly and 

John Presper Eckert at the Moore School of Electrical Engineering. It initially aimed 

to accelerate the production of firing tables required for long-distance weapons by 

solving large iterative equations at electronic speed. Although innovative in many 

ways, the limitations of ENIAC prompted Mauchly, Eckert, and later von Neumann 

to launch another electronic computing project: the EDVAC.

flat laboratory  is a figure of style aiming to address the physical locations in which 

mathematicians work to produce certified statements. Compared with, for example, 

laboratories of molecular biology or high-energy physics, the instrumentation of 

mathematical laboratories tends to take up less space. It is important here not to con-

fuse flatness with the mathematical concept of dimensionality often used to capture 

and qualify the experience of flatness (or bulkiness). According to the point of view 

adopted in this book, dimensionality should be considered a product of the relative 

flatness of mathematical laboratories’ equipment.

formula  is a mathematical operation expressed in a generic scriptural form. The prac-

tical process of enrolling a formula to establish antecedence and posteriority among 

sets of data is here called formulating.

ground truth  is an artifact that typically takes the shape of a digital database. Its 

main function is to relate sets of input-data—images, text, audio—to sets of output-

targets—labeled images, labeled text, labeled audio. As ground truths institute prob

lems that not-yet-designed algorithms will have to solve, they also establish their 

veracity. As this book indicates, many ground truths do not preexist and thus need to 

be constructed. The collective processes leading to the design and shaping of ground 

truths heavily impact the nature of the algorithms they help constitute, evaluate, 

and compare.

image processing  is a subfield of computer science that aims to develop and pub-

lish computerized methods of calculation capable of processing CDD- and CMOS-

derived pixels in meaningful ways. Because digital images can be described as 

two-dimensional signals whose dependent variables—intensities—vary according 

to two axes (x, y), image processing is also sometimes called “two-dimensional sig-

nal processing.” When it focuses on recognition tasks, it is generally called “image 

recognition.”

inscription  is a special category of actant that is durable (it lives on beyond the here and 

now of its instantiation), mobile (it can move from one place to another without being 

too much altered), and re-presentable (it can—together with suitable infrastructures—

carry, transport, and display properties that are not only its own). Due to these capaci-

ties, inscriptions greatly participate in shaping the collective world.

INT  is the abbreviation for interpreter, a complex computer program that translates 

inscriptions written in high-level programming language into an abstract syntax tree 
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before establishing communication with the computer’s hardware. Whenever an 

interpreter cannot complete its translation, the high-level program cannot perform 

fully.

Lab  stands for the computer science academic laboratory that is the field site of the 

present ethnographic inquiry. The Lab specializes in digital image processing, and 

its members—PhD students, postdocs, invited researchers, professors—spend a sig-

nificant amount of their time trying to shape new algorithms and publish them in 

peer-reviewed journals and conferences.

laboratory study  is an STS-inspired genre of ethnographic work that consists in 

accounting for the mundane work of scientists and technologists. Borrowing from 

anthropology, it implies staying within an academic or industrial laboratory for a 

relatively long period of time, collaborating with its members, becoming somewhat 

competent, and taking a lot of notes on what is going on. At some point, eventu-

ally, it also implies leaving the laboratory—at least temporarily—to further compile 

and analyze the data before submitting, finally, a research report on the scrutinized 

activity.

machine learning  is not only a class of statistical methods but also, and perhaps 

above all, a lived experience consisting of automating parts of formulating activities. 

However, this algorithmic delegation for algorithmic design relies on increasing, and 

often invisibilized, ground-truthing and programming efforts.

mathematics  is, in this book, considered integral part of scientific activity. It thus 

typically consists of producing certified facts about objects shaped or discovered 

with the help of instruments and devices within (flat) laboratories.

Matlab  is a privately held mathematical software for numerical computing built 

around its own interpreted high-level programming language. Because of its agil-

ity in designing problems of linear algebra, Matlab is widely used for research and 

industrial purposes in computer science, electrical engineering, and economics. Yet 

as Matlab works mainly with an interpreted programming language, its programs 

have to be translated by an interpreter (INT) before interacting with the hardware. 

This interpretative step makes it less efficient for processing heavy matrices than, for 

example, programs directly written in compiled languages such as C or C++.

model  is a term that is close to an algorithm. In this book, the distinction between 

an algorithm and a model can only be retrospective: If what is called a “model” 

derives from, at least, ground-truthing, programming, and formulating activities, it 

is considered an algorithm.

problematization  is, in this book, the collective process of establishing the terms of 

a problem. Building on Science and Technology Studies, analyzing problematization 

implies describing the way questions are framed, organized, and progressively trans-

formed into issues for which solutions can be proposed.
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process thought  is an ontological position supported by a wide and heterogeneous 

body of philosophical works that share similar sensibilities toward associations—

sometimes also called relations. For process thinkers, what things are is what they 

become in association to other entities, the association itself being part of the pro

cess. The emphasis is put on the “how” rather than the “what”: instead of asking 

what is something, process thinkers would rather ask how something becomes. This 

ontology is about continuous performances instead of binary states.

PROG  specifically refers, in this book, to a Matlab computer program aiming to cre-

ate matrices whose pixel-values correspond to the number of rectangles drawn by 

human crowdworkers on pixels of digital images.

program  is a document whose structure and content, when adequately articulated, 

makes computers compute data. The practical process of writing a computer program 

is called programming.

re-presentation  is the presentation of something again. Inscriptions are common re-

presentations in that they display properties of other entities over. Re-presentations, 

in this book, should not be confused with representations (without the hyphen), a 

term that refers to the solution found by cognitivist authors to overcome the distinc-

tion between extended things (res extensa) and thinking things (res cogitans).

saliency detection  is a subfield of image processing that aims to detect what attracts 

people’s attention within digital images. Because the topic of these detection efforts 

is extremely equivocal, saliency detection is a field of research that shows dynam-

ics that may go unnoticed in more traditional subfields such as facial or object 

recognition.

scenario  refers to a narrative operating a triple shifting out toward another place, 

another time, and other actants while having a hold on its enunciator. As performa-

tive narrative resources, scenarios are of crucial importance for programming activities 

because they institute horizons on which programmers can hold—while being held 

by them—and establish, in turn, the boundaries of computer programming episodes.

Science and Technology Studies (STS)  are a subfield of social science and sociology 

that aims to document the co-construction of science, technology, and the collec-

tive world. What loosely connects the practitioners of this heterogeneous research 

community is the conviction that science is not just the expression of a logical 

empiricism, that knowledge of the world does not preexist, and that scientific and 

technological truths are dependent on collective arrangements, instrumentations, 

and dynamics.

script  commonly refers to a small computer program. Many interlinking scripts and 

programs calling on each other typically form a software. The notion should not be 

confused with Madeleine Akrich’s (1989) “scripts” that, in this book, are close to the 

notion of scenario.
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sociology  is, in this book, the activity of describing associations (socius) by means of 

specialized texts (logos). It aims to help understand what is going on in the collective 

world and better compose with the heterogeneous entities that populate/shape it. In 

this book, sociology is differentiated from social science that is considered the scien-

tific study of an a priori postulated aggregate, generally called the social (or society).

technical detour  is a furtive and difficult-to-record experience that takes the form 

of a zigzag: Thanks to unpredictable detours, a priori distant entities become the 

missing pieces in the realization of a project. Technical detours—as conceptualized 

by Bruno Latour (2013)—involve a form of delegation to newly enrolled entities. 

They also imply forgetting their brief passages once the new composition has been 

established.

translation  is a work by which actants modify, move, reduce, transform, and articu-

late other actants to align them with their concerns. This is a specific type of asso-

ciation that produces differences that can, with an appropriate methodology, be 

reflected in a text. The notion was initially developed by Michel Serres (1974) before 

being taken up by Madeleine Akrich, Michel Callon, and Bruno Latour to ground 

their sociologie de la traduction, which I call sociology here.

trial  is a testing event whose outcome has a strong impact on the becoming of an 

actant. If the trial is overcome, the actant may manage to associate with other actants, 

with this new association becoming, in turn, more resistant. If the trial is not over-

come, the actant will lose some of its properties, sometimes to point of disappearing.

visibility/invisibility  are relative states of work practices. These variable states are 

products of visibilization, or invisibilization, processes. If complete invisibility of 

work practices is not desirable, complete visibility is not either. In this book, I have 

chosen public controversies as indicators of negative invisibilities, suggesting in 

turn the launching of visibilization processes by means of, for example, sociological 

inquiries.
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1. ​ Process thought refers to a wide and heterogeneous body of philosophical works 

that share similar sensibilities toward associations, sometimes also called relations 

(Barad 2007; Butler 2006; Dewey [1927] 2016; James [1912] 2003; Latour 1993b, 2013; 

Mol 2002; Pickering 1995; Serres 1983; Whitehead [1929] 1978). For process thinkers, 

as Introna put it (2016, 23), “relations do not connect (causally or otherwise) pre-

existing entities (or actors), rather, relations enact entities in the flow of becoming.” 

What things are is what they become in association to other entities, the association 

itself being part of the process. The emphasis is then put on the “how” rather than the 

“what”: instead of asking what is something, process thinkers would rather ask how 

something becomes. This ontology is then about continuous performances instead of 

binary states. The present volume embraces this ontology of becoming.

2. ​ At the end of the book, a glossary briefly defines technical terms used for this 

investigation (e.g., actant, collective world, constitution, course of action).

3. ​ This unconventional conception of the social has been initially developed and 

popularized by Madeleine Akrich, Michel Callon, and Bruno Latour at the Centre 

de Sociologie de l’Innovation (Akrich, Callon, and Latour 2006; Callon 1986). It is 

important to note that even though this theoretical standpoint has somewhat made 

its way through academic research, it remains shared among a minority of scholars.

4. ​ As pointed out by Latour (2005, 5–6), the Latin root socius that denotes a com-

panion—an associate—fits well with the conception of the social as what emanates 

from the association among heterogeneous entities.

5. ​ What connects the practitioners of the heterogeneous research community of 

Science and Technology Studies is the conviction that science is not just the expres-

sion of a logical empiricism; that knowledge of the world does not preexist; and 

that scientific and technological truths are dependent on collective arrangements, 

instrumentations, and dynamics (Dear and Jasanoff 2010; Jasanoff 2012). For a com-

prehensive introduction to STS, see Felt et al. (2016).

Notes
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6. ​ It is important to note that this lowering of capacity to act does not concern 

the sociology of attachments that precisely tries to document the appearance of 

delighted objects, as developed by Antoine Hennion (2015, 2017). At the end of 

chapter 5, I will discuss the important notion of attachment.

7. ​ The notion of “composition”—at least as proposed by Latour (2010a)—is, in 

my view, an elegant alternative to the widely used notion of “governance.” Both 

nonetheless share some characteristics. First, both notions suppose heterogeneous 

elements put together—collectives of humans, machines, objects, companies, and 

institutions trying to collaborate and persevere on the same boat. Second, they 

share the desire of a common world while accepting the irreducibility of its parts: 

for both notions, the irreducible entities that constitute the world would rather live 

in a quite informed community aware of different and competitive interests than 

in a distrustful and whimsical wasteland. Both composition and governance thus 

share the same basic topic of inquiry: how to step-by-step transform heterogeneous 

collectives into heterogeneous common worlds? Third, they both agree that traditional 

centralized decisional powers can no longer achieve the constitution of common 

worlds; to the verticality of orders and injunctions, composition and governance 

prefer the horizontality of compromises and negotiations. Yet they nonetheless 

differ on one crucial point: if governance still carries the hope of a smooth—yet 

heterogeneous—cosmos, composition promotes the need of a laborious and con-

stantly readjusted kakosmos (Latour 2010a, 487). In other words, if control is still an 

option for governance, composition is committed to the always surprising “made to 

do” (Latour 1999b). It is this emphasis on the constant need for creative readjust-

ments that makes me prefer the notion of “composition” over “governance.”

8. ​ The next two paragraphs derive from Jaton (2019, 319–320).

9. ​ The single term “algorithm” became increasingly common in the Anglo-American 

critical literature from the 2000s onward. It would be interesting to learn more about 

the ways by which the term “algorithm” has come to take over other alternative terms 

(such as “software,” “code,” or “software-algorithm”) that were also synonymously 

used in the past, especially in the 1990s.

10. ​ In Jaton and Vinck (submitted), we closely consider the specific dynamic of the 

recent politicization of algorithms.

11. ​ This controversy has been thoroughly analyzed in Baya-Laffite, Beaude, and 

Garrigues (2018).

12. ​ As we will see in the empirical chapters of this book, it is not clear whether we 

should talk about computer scientists or engineers. But as the academic field of com-

puter science is now well established, I choose to use the generic term “computer 

scientist” to refer to those who work every day to design surprising new algorithms.

13. ​ For thorough discussions on this topic, see Denis (2018, 83–95).
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14. ​ Does it mean that “objective knowledge” is impossible? As we will see in chap-

ters 4, 5, and 6, drawing such a conclusion is untenable: despite the irremediable 

limits of the inscriptions on which scientific practices heavily rely, these practices 

nonetheless manage to produce certified objective knowledge.

15. ​ In their 2004 paper, Law and Urry build upon an argument initially developed 

by Haraway (1992, 1997).

16. ​ This partly explains some hostile reactions of scientists regarding STS works on 

the “construction of scientific facts.” On this topic, see Latour (2013, 151–178).

17. ​ For recent examples, see Cardon (2015) and Mackenzie (2017).

18. ​ In chapter 5, I will discuss at greater length the crucial importance of scientific 

literature for the formation of certified knowledge.

19. ​ The term “infra-ordinary,” as opposed to “extra-ordinary,” was originally pro-

posed by Pérec (1989). The term was later taken up in Francophone sociology, nota-

bly by Lefebvre (2013).

20. ​ See, for example, Bishop (2007), Cormen et al. (2009), Sedgewick and Wayne 

(2011), Skiena (2008), and Wirth (1976). I will discuss some of these manuals in 

chapter 1.

21. ​ However, it is crucial to remain alert to the performative aspects of manuals 

and classes. This topic is well studied in the sociology of finance; see, for example, 

MacKenzie, Muniesa, and Siu (2007) and Muniesa (2015).

22. ​ This also often concerns social scientists interviewing renowned computer scien-

tists (e.g., Seibel 2009; Biancuzzi and Warden 2009). As these investigations mainly 

focus on well-respected figures of computer science whose projects have largely 

succeeded, their results tend to be retrospective, summarized narratives occluding 

uncertainties and fragilities. On some limitations of biographic interviews, see Bour-

dieu (1986). On the problematic habit of reducing ethnography to interviews, see 

Ingold (2014).

23. ​ For a presentation of some of the reasons why scholars started to inquire within 

scientific laboratory, see Doing (2008), Lynch (2014), and Pestre (2004).

24. ​ On some of the problematic, yet fascinating, dynamics of this rapprochement 

between computer science and the humanities (literature, history, linguistics, etc.) 

that gave rise to digital humanities, see Gold (2012), Jaton and Vinck (2016), and 

Vinck (2016).

25. ​ Among the rare attempts to document computer science work are Bechmann 

and Bowker (2019), Button and Sharrock (1995), Grosman and Reigeluth (2019), 

Henriksen and Bechmann (2020), and Mackenzie and Monk (2004). I will come 

back to some of these studies in the empirical chapters of the book.
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26. ​ After a thorough review of the contemporary critical studies of algorithms, 

Ziewitz (2016) warned that they could be about to reach a problematic impasse. 

Roughly put, the argument goes as follows: by mainly considering algorithms from 

a distance and in terms of their effects, critical studies are taking the risk of being 

stuck in a dramatic loop, constantly rehashing that algorithms are powerful because 

they are inscrutable, because they are powerful, because they inscrutable, and so on. 

The present volume can be considered an attempt at somewhat preventing such a 

drama from taking hold. In the conclusion, when I clarify the political aspect of this 

inquiry, I come back to this notion of algorithmic drama.

27. ​ Theureau’s work is unique in many ways. Building on the French ergonomics 

tradition (Ombredane and Faverge 1955) and critical readings of Newell and Simon’s 

(1972) cognitive behaviorism as well as Varela’s notion of “enactive cognition” 

(discussed in chapter  3), he has gradually proposed a simple yet effective defini-

tion of a course of action as an “observable activity of an agent in a defined state, 

actively engaged in a physically and socially defined environment and belonging to 

a defined culture” (Theureau 2003, 59). His analyses of courses of action involved in 

traffic management (Theureau and Filippi 2000), nuclear reactor control (Theureau 

et al. 2001), and musical composition (Donin and Theureau 2007) has led him to 

propose the notion of “courses-of-action centered design” for ergonomic studies.

28. ​ At the beginning of chapter 4, I will briefly consider the problem of “representa-

tiveness.”

Chapter 1

1. ​ The general issue subtending my research has not fundamentally changed since 

the date at which I was awarded the research grant.

2. ​ One of the particularities of the CSF was its international focus. During the official 

events I attended, deans regularly put forward the CSF’s capacity to attract foreign 

students and researchers. This was especially true in the case of the Lab where I was 

the only “indigenous” scientific collaborator for nearly a year. The lingua franca was 

in line with this international environment; even though the Lab was located in 

a French-speaking region, most interactions, presentations, and documents were in 

English.

3. ​ The history of the development of the charge-coupled device has been docu-

mented, though quite partially, in Seitz and Einspruch (1998, 212–228) and Gertner 

(2013, 250–265).

4. ​ For an accessible introduction to CCDs and image sensors, see Allen and Trian-

taphillidou (2011, 155–173).

5. ​ CMOS is a more recent variant of CCD where each pixel contains a photodetector 

and an amplifier. This feature currently allows significant size and power reduction 
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of image sensors. This is one of the reasons why CMOSs now equip most portable 

devices such as smartphones and compact cameras.

6. ​ It is commonly assumed that the term pixel, as a contraction of “picture ele

ment,” first appeared in a 1969 paper from Caltech’s Jet Propulsion Lab (Leighton 

et al. 1969). The story is more intricate than that as the term was regularly used in 

emergent image-processing communities thoughout the 1960s. For a brief history of 

the term pixel, see Lyon (2006).

7. ​ A digital signal is represented by n number of dimensions depending on the 

independent variables used to describe the signal. A sampled digital sound is, for 

example, typically described as a one-dimensional signal whose dependent variables—

amplitudes—vary according to time (t); a digital image is typically described as a two-

dimensional signal whose dependent variables—intensities—vary according to two 

axes (x, y), whereas audio-visual content will be described as a three-dimensional signal 

with independent variables (x, y, t). For an accessible introduction to digital signal 

processing, see Vetterli, Kovacevic, and Goyal (2014).

8. ​ It was not the only research focus of the Lab. Several researchers also worked on 

CCD/CMOS architectures and sensors.

9. ​ It is important to note that for digital image processing and recognition to become 

a major subfield of computer science, digital images first had to become stable enti-

ties capable of being processed by computer programs—a long-standing research 

and development endeavor. Along with the development, standardization, and 

industrial production of image sensors such as CCDs and, later, CMOSs, theoretical 

works on data compression—such as those of O’Neal Jr. (1966) on differential pulse 

code modulation; Ahmed, Natarajan, and Rao (1974) on cosine transform; or Gray 

(1984) on vector quantization—have first been necessary. The later enrollment of 

these works for the definition of the now-widespread International Organization for 

Standardization norm JPEG, approved in 1993, was another decisive step: from that 

moment, telecommunication providers, software developers, and hardware manu-

facturers could rely on and coordinate around one single photographic coding tech-

nique for digitally compressed representations of still images (Hudson et al. 2017). 

During the late 1990s, the growing distribution of microcomputers, their gradual 

increase in terms of processing power, and the development and maintenance of 

web technologies and standards have also greatly contributed to establishing digital 

image processing as a mainstream field of study. The current popularity of image 

processing for research, industry, and defense is thus to be linked with the progres-

sive advent of multimedia communication devices and the blackboxing of their fun-

damental components operating now as standard technological infrastructure.

10. ​ According to Japan-based industry association Camera & Imaging Products 

Association (to which, among others, Canon, Nikon, Sony, and Olympus belong), 

sales of digital cameras have dropped from 62.9 million in 2010 to fewer than 
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24.25 million in 2017 (Statista 2019). However, according to estimates generated by 

InfoTrends and Bitkom, the number of pictures taken worldwide increased from 660 

billion to 1,200 billion over the same period (Richter 2017). This discrepancy is due, 

among other things, to the increasing sophistication of smartphone cameras as well 

as the popularity and sharing functionalities of social-media sites such as Instagram 

and Facebook (Cakebread 2017).

11. ​ For example, Google, Amazon, Apple, Microsoft, and IBM all propose applica-

tion programming interface products for image recognition (respectively, Cloud 

Vision, Amazon Rekognition, Apple Vision, Microsoft Computer Vision, and Watson 

Visual Recognition).

12. ​ According to 2011 documents obtained by Edward Snowden, the National 

Security Agency intercepted millions of images per day throughout the year 2010 to 

develop computerized tracking methods for suspected terrorists (Risen and Poitras 

2014). Chinese authorities also heavily invest in facial recognition for security and 

control purposes (Mozur 2018).

13. ​ See, for example, International Journal of Computer Vision, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, IEEE Transactions on Image Processing, or Pat-

tern Recognition.

14. ​ See, for example, IEEE Conference on Computer Vision and Pattern Recogni-

tion, European Conference on Computer Vision, IEEE International Conference on 

Computer Vision, or IEEE International Conference on Image Processing.

15. ​ Giving an example of the close relationships between academic and industrial 

worlds regarding image-processing algorithms, Jordan Fisher—chief executive officer 

of Standard Cognition, a start-up that specializes in image recognition for autono-

mous checkout—says in a recent TechCrunch article (Constine 2019): “It’s the wild 

west—applying cutting-edge, state-of-the-art machine learning research that’s hot 

off the press. We read papers then implement it weeks after it’s published, putting 

the ideas out into the wild and making them production-worthy.”

16. ​ In 2016 and 2017, papers from Apple and Microsoft research teams won the 

best-paper award of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, the most prestigious conference in image processing and recognition. More-

over, in 2018, Google launched Distill Research Journal, its own academic journal 

aiming at promoting machine learning in the field of image and video recognition.

17. ​ This is for example the case in Knuth (1997a) where the author starts by recall-

ing that “algorithm” is a late transformation of the term “algorism” that itself 

derives from the name of famous Persian mathematician Abū ‘Abd Allāh Muham-

mad ibn Mūsa al-Khwārizmi—literally, “Father of Abdullah, Mohammed, son of 

Moses, native of Khwārizm,” Khwārizm referring in this case to a region south of 

the Aral Sea (Zemanek 1981). Knuth then specifies that from its initial acceptation 
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as the process of doing arithmetic with Arabic numerals, the term algorism gradually 

became corrupted: “as explained by the Oxford English Dictionary, the word ‘passed 

through many pseudo-etymological perversions, including a recent algorithm, in 

which it is learnedly confused’ with the Greek root of the word arithmetic” (Knuth 

1997a, 2).

18. ​ See, for example, the (very) temporary definition of algorithms by Knuth (1997, 

4): “The modern meaning for algorithm is quite similar to that of recipe, process, 

method, technique, procedure, routine, rigmarole.”

19. ​ See, for example, Sedgewick and Wade’s (2011, 3) definition of algorithms as 

“methods for solving problems that are suited for computer implementation.”

20. ​ See also Cormen et al.’s (2009, 5) definition: “A well-defined computational pro-

cedure that takes some value, or set of values, as input and produces some value, or 

set of values, as output [being] thus a sequence of computational steps that transform 

the input into the output.”

21. ​ See also Dasgupta, Papadimitriou, and Vazirani’s (2006, 12) phrasing: “When-

ever we have an algorithm, there are three questions we always ask about it: 1. Is it 

correct? 2. How much time does it take, as a function of n? 3. And can we do better?” 

And also Skiena (2008, 4): “There are three desirable properties for a good algorithm. 

We seek algorithms that are correct and efficient, while being easy to implement.”

Chapter 2

1. ​ This chapter expands Jaton (2017). I thank Geoffrey Bowker, Roderic Crooks, and 

John Seberger for fruitful discussions about some of its topics.

2. ​ Excerpts in quotes are literal transcriptions from audio recordings, slightly reworked 

for reading comfort. Excerpts not in quotes are retranscriptions from written notes 

taken on the fly.

3. ​ In chapter  3, I critically discuss the computational metaphor of the mind on 

which many cognitive studies rely.

4. ​ Studies on attention had already been engaged before the 1970s, notably through 

the seminal work of Neisser (1967) who suggested the existence of a pre-attentive 

stage in the human visual processing system.

5. ​ Another important neurobiological model of selective attention method was pro-

posed by Wolfe, Cave, and Franzel (1989). This model of selective attention method 

later inspired competing low-level feature computational models (e.g., Tsotsos 1989; 

Tsotsos et al. 1995).

6. ​ The class of algorithms that calculates on low-level features quickly became 

interesting for the development of autonomous vehicles for which real-time image 
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processing was sought (Baluja and Pomerleau 1997; Grimson 1986; Mackworth and 

Freuder 1985).

7. ​ Different high-level detection algorithms can nonetheless be assembled as mod-

ules in one same program that could, for example, detect faces and cars and dogs, 

and so on.

8. ​ At that time, only two saliency-detection algorithms were published, in Itti, Koch, 

and Niebur (1998) and Ma and Zhang (2003). But the ground truths used for the 

design and evaluation of these algorithms were similar to those used in laboratory 

cognitive science. The images of these ground truths were, for example, sets of dots 

disrupted by a vertical dash. As a consequence, if these first two saliency-detection 

algorithms could, of course, process natural images, no evaluations of their perfor

mances on such images could be conducted.

9. ​ Ground truths assembled by computer science laboratories are generally made 

available online in the name of reproducible research (Vandewalle, Kovacevic, and 

Vetterli 2009). The counterpart to this free access is the proper citation of the papers 

in which these ground truths were first presented.

10. ​ An API, in its broadest sense, is a set of communication protocols that act as an 

interface among several computer programs. If APIs can take many different forms 

(e.g., hardware devices, web applications, operating systems), their main function 

is to stabilize and blackbox elements so that other elements can be built on top of 

them.

11. ​ For a condensed history of contingent work, see Gray and Suri (2019, 48–63). 

On what crowdsourcing does to contemporary capitalism, see also Casilli (2019).

12. ​ As Gray and Suri (2019, 55–56) put it: “Following a largely untested manage-

ment theory, a wave of corporations in the 1980s cut anything that could be defined 

as ‘non-essential business operations’—from cleaning offices to debugging software 

programs—in order to impress stockholders with their true value, defined in terms 

of ‘return on investment’ (in industry lingo, ROI) and ‘core competencies.’ … Stock-

holders rewarded those corporations that were willing to use outsourcing to slash 

costs and reduce full-time-employee ranks.”

13. ​ It is important to note, however, that on-demand work is not necessarily alien-

ating. As Gray and Suri (2019, 117) noted: “[on-demand work] can be transformed 

into something more substantive and fulfilling, when the right mixture of work-

ers’ needs and market demands are properly aligned and matched. It can rapidly 

transmogrify into ghost work when left unchecked or hidden behind software 

rather than recognized as a rapidly growing world of global employment.” Concrete 

ways to make crowdsourcing more sustainable have been proposed by the National 

Domestic Workers Alliance and their “Good Work Code” quality label. On this 

topic, see Scheiber (2016).
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14. ​ However, this shared unawareness toward the underlying processes of crowd-

sourcing may be valued and maintained for identity reasons, for as Irani (2015, 58) 

noted: “The transformation of workers into a computational service … serves not 

only employers’ labor needs and financial interests but also their desire to maintain 

preferred identities; that is, rather than understanding themselves as managers of 

information factories, employers can continue to see themselves as much-celebrated 

programmers, entrepreneurs, and innovators.”

15. ​ Matlab is a privately held mathematical software for numerical computing built 

around its own interpreted high-level programming language. Because of its agility 

to design problems of linear algebra—all integers being considered scalars—Matlab 

is widely used for research and industrial purposes in computer science, electri-

cal engineering, and economics. Yet, as Matlab works mainly with an interpreted 

programming language—just like the language Python that is now Matlab’s main 

competitor for applied research purposes—its programs have to be translated into 

machine-readable binary code by an interpreter in order to make the hardware effec-

tively compute data. This complex interpretative step makes it less efficient for pro

cessing heavy matrices than, for example, programs directly written in compiled 

languages such as C or C++. For a brief history of Matlab, see Haigh (2008).

16. ​ In chapter 6, we will more thoroughly consider the relationship between ground-

truthing and formulating activities.

17. ​ The services of the crowdsourcing company costed the Lab around US$950.

18. ​ The numerical features extracted from the training set were related, among 

others, to “2D Gaussian function,” “spatial compactness,” “contrast-based filtering,” 

“high-dimensional Gaussian filters,” and “element uniqueness.” In chapter 6, using 

the case of the “2D Gaussian function,” I will deal with these formulating practices.

19. ​ This can be read as a mild critique of the recent, growing, and important liter

ature on algorithm biases. Authors such as Obermeyer et al. (2019), Srivastava and 

Rossi (2018), and Yapo and Weiss (2018), among others, show that the results of 

many algorithms are indeed biased by the preconceptions of those who built them. 

Though this statement is, I believe, completely correct—algorithms derive from 

problematization practices influenced by habits of thought and action—it also runs 

the risk of confusing premises with consequences: biases are not the consequences 

of algorithms but, perhaps, are one of the things that make them come into exis-

tence. Certain biases expressed and materialized by ground truths can and, in my 

opinion, should be considered harmful, unjust, and wrong; racial and gender biases 

have, for example, to be challenged and disputed. However, the outcome of these 

disputes may well be other biases expressed in other potentially less harmful, unjust, 

and incorrect ground truths. As far as algorithms are concerned, one bias calls for 

another; hence the importance of asserting their existence and making them visible 

in order to, eventually, align them with values one wishes algorithms to promote.
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20. ​ Edwards (2013) uses the term “data image” instead of “ground truth.” But I 

assume that both are somewhat equivalent and refer to digital repositories organized 

around data whose values vary according to independent variables (that yet need to 

be defined).

21. ​ At the end of chapter 6, I will come back to the topic of machine learning and 

its contemporary labeling as “artificial intelligence.”

22. ​ This discussion has been reconstructed from notes in Logbook 3, May–October 2014.

23. ​ However, it is interesting to note that BJ blames the reviewers of important 

conferences in image processing. According to him, the reviewers tend to privilege 

papers that make “classical improvement” over those that solve—and thus define—

new problems. At any rate, there was obviously a problem in the framing of the 

Group’s paper as the reviewers were not convinced by its line of argument. As a con-

sequence, the algorithm could not circulate within academic and industrial com-

munities and its existence remained, for a while, circumscribed to the Lab’s servers.

II

1. ​ In computer science and engineering, it is indeed well admitted that computer 

programming practices are difficult to conduct and their results very uncertain. On 

this well-documented topic, see Knuth (2002), Rosenberg (2008), and in a more lit-

erary way, Ullman (2012a, 2012b).

Chapter 3

1. ​ My point of departure is arbitrary in the sense that I could have started some-

where else, at a different time. Indeed, as Lévy (1995) showed, the premises of what 

will be called “von Neumann architecture of electronic computers” can be found 

not only in Alan Turing’s 1937 paper but also in the development of the office-

machine industry during the 1920s, but also in the mechanic-mathematical works 

of Charles Babbage during the second half of the nineteenth century, but also in 

eighteenth century’s looms programmed with punched cards, and so on, at least 

until Leibniz’s work on binary arithmetic and Pascal’s calculating machine. The 

history of the computer is fuzzy. As it only appears “after a cascade of diversions 

and reinterpretations of heterogeneous materials and devices” (Lévy 1995, 636), it 

is extremely difficult—in fact, almost impossible—to propose any unentangled filia-

tion. Fortunately, this section does not aim to provide any history of the computer: 

It “just” tries to provide elements that, in my view, participated in the formation of 

one specific and influential document: von Neumann’s report on the EDVAC.

2. ​ For a more precise account of the design of firing tables in the United States during 

World War II, see Haigh, Priestley, and Rope (2016, 20–23) and Polachek (1997).
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3. ​ More than their effective computing capabilities—they required up to several 

days to be set up (Haigh, Priestley, and Rope 2016, 26) and their results were often 

less accurate than those provided by hand calculations (Polachek 1997, 25–27)—an 

important characteristic of differential analyzers was their capacities to attract com-

puting experts around them. For example, by 1940, MIT, the University of Penn-

sylvania, and the University of Manchester, England—three important institutions 

for the future development of electronic computing—all possessed a differential 

analyzer (Campbell-Kelly et al. 2013, 45–50; Owens 1986). On the role of differential 

analyzers in early US-based computing research, see also Akera (2008, 38–45).

4. ​ The assembling of the numerous factors affecting the projectiles started at the test 

range in Aberdeen where the velocities of the newly designed shells were measured 

(Haigh, Priestley, and Rope 2016, 20).

5. ​ Although the differential equations defining the calculation of shells’ trajectories 

are mathematically quite simple, solving them can be very complicated as one needs 

to model air resistance varying in a nonlinear manner. As Haigh, Priestley, and 

Rope (2016, 23) put it: “Unlike a calculus teacher, who selects only equations that 

respond to elegant methods, the mathematicians at the BRL couldn’t ignore wind 

resistance or assign a different problem. Like most differential equations formulated 

by scientists and engineers, ballistic equations require messier techniques of numeri-

cal approximation.”

6. ​ Interesting to note that delay-line storage is originally linked to radar technology. 

More precisely, one problem of the radar technology in 1942 was that cathode-ray 

tube displays showed moving and stationary objects. Consequently, radar screens 

translated the positions of planes, buildings, or forests in one same messy picture 

extremely difficult to read. MIT’s radiation laboratory subcontracted the develop-

ment of a moving target indicator (MTI) to the Moore School in order to develop 

a system that could filter radar signals according to their changing positions. This 

was the beginning of delay-line storage technology at the Moore School, that at 

first had nothing to do with computing (Akera 2008, 84–86; Campbell-Kelly et al. 

2013, 69–74). Radar technology also significantly helped the design of British highly 

confidential Colossus computer in 1943–1944 (Lévy 1995, 646).

7. ​ By 1942, in order to speed up the resolution of ballistic differential equations, 

only a limited range of factors tended to be considered by human computers at the 

BRL. By simplifying the equations, more firing tables could be produced and distrib-

uted, but the drawback was that their precision tended to decrease (Polachek 1997). 

Of course, on the war front, once soldiers realized that the first volley was not ade-

quately defined, they could still slightly modify the parameters of the long-distance 

weapon to increase its precision. Yet—and this is the crucial point—in between the 

first volley and the subsequent ones, the opposite side had enough time to take 

cover, hence making the overall long-distance shooting enterprise less effective. The 
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nerve of war was precisely the first long-distance volleys that, when accurate, could 

lead to many casualties. By extension, then, the nerve of war was also, to a certain 

extent, the ability to include more factors in the differential equations whose solu-

tions were printed out in firing table booklets (Haigh, Priestley, and Rope 2016, 25).

8. ​ Created in 1940, the National Defense Research Committee (NDRC) united the 

research laboratories of the US Navy and the Department of War with hundreds of 

US universities’ laboratory. The NDRC initially had an important budget to fund 

applied research projects that could provide significant advantages on future battle-

fields. It also operated as an advisory organization as in the case of the ENIAC that 

was considered nearly infeasible due to the important amount of unreliable vacuum 

tubes it would require. On this topic, see Campbell-Kelly et al. (2013, 70–72).

9. ​ The history of this contract could be the topic of a whole book. For a nice presen

tation of its most important moments, see Haigh, Priestley, and Rope (2016, 17–33).

10. ​ Based on a proposal by Howard Aiken, the Harvard Mark 1 was developed by 

IBM for Harvard University between 1937 and late 1943. Though computationally 

slow, even for the standards of the time, it was an important computing system as 

it expressed an early convergence of scientific calculation and office-machine tech-

nologies. For a more in-depth history of the Harvard Mark 1, see Cohen (1999).

11. ​ Though its shape varied significantly throughout its existence, the ENIAC was 

fundamentally a network of different units (accumulators, multipliers, and function 

tables). Each unit had built-in dials and switches. If adequately configured, these dials 

and switches could define one single operation; for example, “clear the values of the 

accumulator,” “transmit a number to multiplier number 3,” “receive a number,” and 

so on. To start processing an operation, each configuration of dials and switches had to 

be triggered by a “program line” wired directly to the specific unit. All these “program 

lines” formed a network of wires connecting all the units for one specific series of oper-

ations. But as soon as another series of operations was required, the network of wires 

had to be rearranged in order to fit the new configurations of dials and switches. For 

more elements about the setup of ENIAC, see Haigh, Priestley, and Rope 2016 (35–57).

12. ​ Von Neumann tried to hire Alan Turing as a postdoctoral assistant at Princeton. 

Turing refused as he wanted to return to England (MacRae 1999, 187–202).

13. ​ The Manhattan Project was, of course, highly confidential and this prevented 

von Neumann from specifying his computational needs with the ENIAC team.

14. ​ As suggested by Akera (2008, 119–120) and Swade (2011), and further demon-

strated by Haigh, Priestley, and Rope (2014; 2016, 231–257), the notion of “stored 

program” is a historical artifact: “the ‘stored program concept’ was never proposed 

as a specific feature in the agreed source, the First Draft, and was only retroactively 

adopted to pick out certain features of the EDVAC design” (Haigh, Priestley, and 

Rope 2016, 256).
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15. ​ Shortly after the distribution of von Neumann’s First Draft, Eckert and Mauchly 

distributed a much longer—and far less famous—counter-report entitled Automatic 

High-Speed Computing: A Progress Report on the EDVAC (Eckert and Mauchly 1945) 

in which they put the emphasis on the idealized aspect the First Draft. The stakes 

were indeed high for Eckert and Mauchly: if the idealized depiction of the EDVAC 

by von Neumann was considered a realistic description of the engineering project, 

no patent could ever be extracted from it. And this is exactly what happened. In 

1947, the Ordnance Department’s lawyers decided that the First Draft was the first 

publication on the project EDVAC, hence canceling the patents submitted by Eckert 

and Mauchly in early 1946 (Haigh, Priestley, and Rope 2016, 136–152).

16. ​ This consideration of programming as an applicative and routine activity can 

also be found in the more comprehensive reports von Neumann coauthored in 1946 

and 1947 with Arthur  W. Burks and Herman  H. Goldstine at Princeton Institute 

for Advanced Study (Burks, Goldstine, and von Neumann 1946; Goldstine and von 

Neumann 1947). In these reports, and especially in the 1947 report entitled Planning 

and Coding of Problems for an Electronic Computing Instrument, the implementation of 

instruction sequences for scientific electronic calculations is carefully considered. 

But while the logico-mathematical planning of problems to be solved is presented 

as complex and “dynamic,” the further translation of this planning is mainly con-

sidered trivial and “static” (Goldstine and von Neumann 1947, 20). Programming 

is presented, in great detail, as a linear process that is problematic during its initial 

planning phase but casual during its implementation phase. What the report does 

not specify—but this was not its purpose—is that errors in the modeling and plan-

ning phases become manifest in the implementation phase (as it was often the case 

when the ENIAC was put in action), making empirical programming processes more 

whirlwind than linear.

17. ​ In 1955, to alleviate the operating costs of the IBM 701 and the soon-to-be-

released IBM 704, several of IBM’s customers—among them Paul Armer of the RAND 

Corporation, Lee Amaya of Lockheed Aircraft, and Frank Wagner of North American 

Aviation—launched a cooperative association they named “Share.” This customer 

association, and the many others that followed, greatly participated in the early cir-

culation of basic suites of programs. On this topic, see Akera (2001; 2008, 249–274).

18. ​ For a fine-grained historical account of this real-time computing project named 

“Whirlwind” that was initially designed as a universal aircraft simulator, see Akera 

(2008, 184–220).

19. ​ For more thorough accounts of the SAGE project, see Redmond and Smith 

(1980, 2000), Jacobs (1986), Edwards (1996, 75–112), and Campbell-Kelly et  al. 

(2013, 143–166).

20. ​ According to Pugh (1995), this contract gave IBM a significant advantage on the 

early computer market.
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21. ​ In a nutshell, Thurstone Primary Mental Abilities (PMA) test was proposed 

in 1936 by Louis Leon Thurstone, by then the first president of the Psychometric 

Society. Originally intended for children, the test sought to measure intelligence 

differentials using seven factors: word fluency, verbal comprehension, spatial visual-

ization, number facility, associative memory, reasoning, and perceptual speed. For a 

brief history of the PMA test and psychometrics, see Jones and Thissen (2007).

22. ​ One important insight of the EDSAC project was to use the new concept of 

program to initialize the system and make it translate further programs from non-

binary instructions into binary strings of zeros and ones. David Wheeler, one of 

Maurice Wilkes’ PhD students, wrote in 1949 such very first program he called 

“Initial Orders” (Richards 2005). This type of program whose function was to 

transform other programs into binary (the only code cathode-ray tubes, magnetic 

core, or  microprocessors can interact with) were soon called “assemblers” and 

cast to linguistic terms such as “translation” and “language” (Nofre, Priestley, and 

Alberts 2014). During the 1950s, as multiple manufacturers invested in the elec-

tronic computer market, many different assemblers were designed, thereby creating 

important problems of compatibility: as (almost) every new computer organized the 

accumulator and multiplier registers slightly differently, a new assembler was gener-

ally required. The problem lay in the one-to-one relationship between an assembler 

and its hardware. Since an assembler had one instruction for one hardware opera-

tion, every modification in the operational organization of the hardware required 

a new assembler. Yet—and this was the crucial insight of Grace Hopper and then 

John Backus from IBM (Campbell-Kelly et al. 2014, 167–188)—if, instead of a pro-

gram with a one-to-one relationship with the hardware, one could provide a more 

complex program that would transform lines of code into another program with 

somehow equivalent machine-instructions, one may be able to stabilize computer 

programming languages since any substantial modification of the hardware could 

be integrated within the “transformer” program that lay in between the program-

mer’s code and the hardware. This is the fundamental idea of compilers, programs 

that take as input a program written in so-called high-level computer language 

and outputs another program—often called “executable”—whose content can 

interact with specific hardware. In the late 1950s, besides their greater readability, 

a tremendous advantage of the first high-level computer programming languages 

such as FORTRAN or COBOL over assembly language lay in their compilers whose 

constant maintenance could compensate and “absorb” the frequent modifications 

of the hardware. For example, if two different computers both had a FORTRAN 

compiler—a crucial and costly condition—the same FORTRAN program could be 

run on both computers despite their different internal organizations.

23. ​ Between 1964 and 1967, IBM invested heavily in the development of an operating 

system for its computer System 360. The impressive backlogs, bugs, and overheads 

of this colossal software project made Frederick Brooks—its former manager—call it 

“a multi-million-dollar mistake” (Brooks 1975).
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24. ​ In 1968, an article by cofounder of Informatics General Corporation Werner 

Frank popularized the idea that the cost of software production will outpace the cost 

of computer hardware in the near future (Frank 1968). Though speculative in many 

respects, this claim was fairly reused and embellished by commentators until the 

1980s. Though Frank himself later acknowledged that he unintentionally generated 

a myth (Frank 1983), this story “reinforced a popular perception that programmer 

productivity was lagging, especially compared to the phenomenal advances in com-

puter hardware” (Abbate 2012, 93).

25. ​ The topic of “logical statement performances” is recurrent in behavioral studies 

of computer programming, especially during the 1970s. This has to do with a con-

troversy initiated by Edsger Dijkstra over the GOTO statement as allowed by high-

level computer programming languages such as BASIC or early versions of FORTRAN 

(Dijkstra 1968). According to Dijkstra, these branch statements that create “jumps” 

inside a program make the localization of errors extremely tedious and should thus 

be avoided. He then proposed “structured programming,” a methodology that con-

sists in subdividing programs in shorter “modules” for more efficient maintenance 

(Dijkstra 1972). Behavioral studies of computer programming in the 1970s typically 

tried to evaluate the asserted benefits of this methodology.

26. ​ To prove his second incompleteness theorem, Gödel first had to show that any 

syntaxic proposition could be expressed as a number. Turing’s 1937 demonstration 

highly relied on this seminal insight. On the links between Gödel’s incompleteness 

theorem and Turing’s propositions regarding the Entscheidungsproblem, see Dupuy 

(1994, 22–30).

27. ​ Neural networks, particularly those defined as “deep” and “convolutional,” 

have recently been the focus of much attention. However, it is important to note 

that the notion of neural networks as initially proposed by McCulloch and Pitts 

(who preferred to use the notion of “networks of neurons”) in their 1943 paper, and 

later taken up by von Neumann in his 1945 report, is very different from its current 

acceptance. As Cardon, Cointet, and Mazières (2018) have shown, McCulloch and 

Pitts’s neural networks that were initially logical activation functions were worked 

on by Donald O. Hebb (1949) who associated them with the idea of learning, which 

was itself reworked by, among others, Frank Rosenblatt (1958, 1962) and his notion 

of Perceptron. The progressive probabilization of the inference rules suggested by 

Marvin Minsky (Minsky and Papert 1970), the works on the back-propagation algo-

rithm (Werbos 1974; LeCun 1985; Rumelhart, Hinton, and Williams 1986) and on 

Boltzmann machines (Hinton, Sejnowski, and Ackley 1984) then actively partici-

pated in the association of the notions of “convolution” (LeCun et al. 1989) and, 

more recently, “depth” (Krizhevsky, Sutskever, and Hinton 2012). The term “neural 

network” may have survived this translation process but it now refers to very dif

ferent world-enacting procedures. At the end of chapter 6, I will consider this topic 

related to machine learning and artificial intelligence.
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28. ​ The division between “extended things” and “thinking things” derives, to a 

large extent, from Cartesian dualism. For thorough discussions of Descartes’s aporia, 

see the work of Damasio (2005).

29. ​ As we saw in chapter 2, saliency detection in image processing is directly con-

fronted with this issue. Hence the need to carefully frame and constrict the saliency 

problem with appropriate ground truths.

30. ​ One may trace these critics back to the Greek Sophists (Cassin 2014). James 

(1909) and Merleau-Ponty (2013) are also important opposition figures. In develop-

mental psychology, the “social development theory” proposed by Vygotsky (1978) 

is also a fierce critic of cognitivism.

Chapter 4

1. ​ To conduct this project, I had to become competent in Python, PHP, JavaScript, 

and Matlab programming languages.

2. ​ It is important to note that this line-by-line translation is what is experienced by 

the programmer. In the trajectory of INT and most other interpreters, the numbered 

list of written symbols is translated into an abstract syntax tree that does not always 

conserve the line-by-line representation of the Editor.

3. ​ It is difficult to know exactly how INT managed to deal with these three values 

at T1. It may by default consider that only the first two values of image-size—width 

and height—generally matter.

4. ​ In the Matlab programming language, every statement that is not conditional 

and that does not end with an semicolon is, by default, printed by the interpreter in 

the Command Window. This is different from many other high-level programming 

languages for which printing operations should be specified by an instruction (typi-

cally, the instruction “print”).

5. ​ In chapter 5, where I will consider the formation of mathematical knowledge, 

I will more thoroughly examine the shaping of scientific facts as proposed by STS.

6. ​ This may be a limitation of Software Studies, as for example presented in Fuller 

(2008) and in the journal Computational Culture. By considering completed code, 

these studies tend to overlook the practical operations that led to the completion 

of the code. Of course, this glance remains important as it allows us to consider 

the performative effects of software-related cultural products, something my action-

oriented method is not quite able to do.

7. ​ The successive operations required to assemble chains of reference in the case of 

program-testing are well documented, though in a literary way, by Ullman (2012b).

8. ​ It is interesting to note that DF’s alignment practices would have been greatly 

facilitated by the next version of Matlab. Indeed, the 2017 version of Matlab’s 
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interpreter automatically recognizes this type of dimension error during matrix 

incrementation processes and directly indicates the related breakpoint, the line at 

which the problem occurred (in our case, at line 9).

9. ​ Donald Knuth, one of the most prominent programming theorists, stressed the 

importance of program intelligibility by proposing the notion of literate programming: 

a computer programming method that primarily focuses on the task of explaining 

programs to fellow programmers rather than “just” instructing computers.

10. ​ To my knowledge, there are only three exceptions: Vinck (1991), Latour (2006), 

and Latour (2010b).

11. ​ This discussion has been reconstructed from notes in Logbook 8, November 2015–

March 2016.

12. ​ Some STS authors use the term “script” to define these particular narratives that 

engage those who enunciate them (Akrich 1989; Latour 2013). If I use the term “sce-

nario,” it is mainly for sake of clarity as “script” is often used by computer scientists 

and programmers—and myself in this book—to describe small programs such as 

PROG.

Chapter 5

1. ​ Here, my style of presentation and use of scenes are greatly inspired by Latour 

(1987).

2. ​ I am following here Rosental’s (2003) book.

3. ​ I am following here the work of MacKenzie (1999).

4. ​ This is taken from Logbook 1, October 2013–February 2014.

5. ​ With their distinction between apodeixis (rigorous demonstration) and epideixis 

(rhetorical maneuvering), Platonists philosophers may have initiated such grand 

narratives (Cassin 2014; Latour 1999). According to Leo Corry (1997), this way of 

presenting mathematics culminated with Bourbaki’s structuralist conception of 

mathematical truth. On this topic, see also Lefebvre (2001, 56–68). For a philosophi-

cal exploration of grand narratives, see the classic book by Lyotard (1984).

6. ​ Yet “likes” and “retweets” that support claims published on Facebook or Twitter 

may, sometimes, work as significant external allies. On this topic, see Ringelhan, 

Wollersheim, and Welpe (2015).

7. ​ Before the 1878 foundation of the American Journal of Mathematics (AJM), there 

was no stable academic facility for the publication of mathematical research in the 

United States (Kent 2008). The situation in England was a bit different: built on the 

ashes of the Cambridge and Dublin Mathematical Journal, the Quarterly Journal of Pure 

and Applied Mathematics (QJPAM) published its first issue in 1855 (Crilly 2004). Yet 

for both Kempe’s and Heawood’s papers, the editorial boards of their journals—as 
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indicated on their front matters—were rather small compared with today’s stan-

dards: five members for AJM in 1879 (J. J. Sylvester, W. E. Story, S. Newcomb, H. A. 

Newton, H. A. Rowland) and four members for QJPAM in 1890 (N. M. Ferrers, A. 

Cayley, J. W. L. Glaisher, A. R. Forsyth).

8. ​ According to the document in American Association for Artificial Intelligence 

(1993).

9. ​ See, for example, the Journal of Informetrics.

10. ​ In a nutshell, Kempe circumscribed the problem to maps drawn on a plane that 

contain at least one region called “country” with fewer than six neighbors. He could 

then limit himself to five cases, countries from one to up to five neighbors. Proving 

that “four colorability” is preserved for countries with three neighbors was, obviously, 

not a problem. Yet in order to prove it for countries with four neighbors, Kempe used 

an argument known as the “Kempe chains” (MacKenzie 1999, 19–20). This argument 

stipulates that for a country X with four neighbor countries A, B, C, D, two opposite 

neighbor countries, say A and C, are either joined by a continuous chain of, say, red 

and green countries, or they are not. If they are joined by such a red-green chain, A can 

be colored red and C can be colored green. But as we are dealing with a map drawn on 

a plane, the two other opposite neighbor countries of X—B and C—cannot be joined 

by a continuous chain of blue and yellow countries (one way or another, this chain is 

indeed interrupted by a green or red country). As a consequence, these two opposite 

neighbor countries can be colored blue and X can be colored yellow. Four colorability 

is thus preserved for countries with four neighbors. Kempe thought that this method 

also worked for countries with five neighbors. But Heawood’s figure shows a case of 

failure of this method where E’s red-green region (vertically cross-hatched in figure 5.1) 

intersects B’s yellow-red region (horizontally cross-hatched), thus forcing both coun-

tries to be colored red. Consequently, X has to be colored differently than red, blue, 

yellow, and green. In such a case, four colorability is not preserved.

11. ​ On this topic, see the work of Lefebvre (2001).

12. ​ For rhetorical habits in the life sciences, see Latour and Woolgar (1986, 119–

148) and Knorr-Cetina (1981, 94–130). For a thorough comparison among scientific 

disciplines—excluding mathematics—see Penrose and Katz (2010).

13. ​ Despite the efforts made by Serres (1995, 2002).

14. ​ There was, of course, no scientific institution at that time; experimental proto-

cols, peer witnessing, and, later, academic papers are products of the seventeenth 

century (Shapin and Shaffer 1989). Yet, as Netz (2003, 271–312) showed, theorems 

written on wax tablets and parchments did circulate among a restricted audience of 

(very!) skeptical readers.

15. ​ This is at least Netz’s (2003, 271–304) hypothesis, supported by the work of 

Lloyd (1990, 2005). As Latour summarized it: “It is precisely because the public life in 
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Greece was so invasive, so polemical, so inconclusive, that the invention, by ‘highly 

specialized networks of autodidacts’, of another way to bring an endless discussion to 

a close took such a tantalizing aspect” (Latour 2008, 449).

16. ​ So surprising that this careful and highly specialized method of conviction 

mastered by a peripheral community of autodidacts who took great care to stick to 

forms was soon “borrowed” by Plato and extended to content in order to, among 

other things, silence the Sophists. This is at least the argument made by Cassin 

(2014), Latour (1999b, 216–235), and Netz (2004, 275–282).

17. ​ Aristotle seems to be one of the first to compile geometrical texts and systematize 

their logical arguments (Bobzien 2002). During late antiquity, commentators such 

as Eutocius annotated many geometrical works and compiled their main results to 

facilitate their systematic comparisons (Netz 1998). According to Netz (2004), these 

collections of standardized geometrical compilations further helped Islamic math-

ematicians such as al-Kwarizmi and Khayyam to constitute the algebraic language.

18. ​ During the late nineteenth century’s so-called crisis of foundations in mathe

matics, the formalist school—headed by David Hibert—tried to establish the 

foundations of mathematics on logical principles (Corry 1997). This led to famous 

failures such as Russell and Whitehead’s three volumes of Principia Mathematica 

(Whitehead and Russell 1910, 1911, 1913). Thanks to the philological work of Netz, 

we now better understand why such an endeavor has failed: it was the very practice 

of mathematics—lettered diagrams carefully indexed to small Greek sentences—that 

led to the formulation of the rules of logic and not the other way round.

19. ​ Except, to a certain extent, Lefebvre (2001) and Mialet (2012). It seems then 

that Latour’s remark remains true: few scholars have had the courage to do a careful 

anthropological study of mathematics (Latour 1987, 246).

20. ​ This is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

21. ​ This is taken from Pickering and Stephanides (1992) and Hankins (1980, 280–312).

22. ​ Very schematically, peptides are chemical elements made of chains of amino 

acids. They are known for interacting intimately with hormones. As there are many 

different amino acids (twenty for the case of humans), there exists—potentially—

billions of different peptides made of combinations of two to fifty amino-acids. It 

is important to note that in 1972, at the time of Guillemin’s experiment, peptides 

could already be assembled—and probed—within well-equipped laboratories.

23. ​ At the time of Hamilton, the standard algebraic notation for a complex number—

so-called absurd quantities such as square roots of negative numbers—was x + iy, where 

i2 = –1 and x and y are real numbers. These advances in early complex algebra were 

problematic to geometers: if positive real numbers could be considered measurable 

quantities, negative real numbers and their square roots were difficult to represent 

as shapes on a plane. A way to overcome this impasse was to consider x and y as 
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coordinates of the end point of a segment terminating at the origin. Therefore, “the 

x-axis of the plane measured the real component of a given complex number repre-

sented as such a line segment, and the y axis the imaginary part, the part multiplied 

by i in the algebraic expression” (Pickering and Stephanides 1992, 145). With this 

visualization of complex numbers, algebraic geometers such as Hamilton could relate 

complex geometrical operations on segments and complex algebraic operations on 

equations. A bridge between geometry and complex algebra was thus built. Yet geom-

etry is not confined to planes: if a two-dimensional segment [0, x + iy] can represent 

a complex number, there is a priori no reason why a three-dimensional segment 

[0, x + iy + jz] could not represent another complex number. Characterizing the behav

ior of such a segment was the stated goal of Hamilton’s experiment.

24. ​ Hamilton’s inquiry into the relationships between complex number theory 

and geometry was not a purely exploratory endeavor. As Pickering and Stephanides 

noted, “the hope was to construct an algebraic replica of transformations of line 

segments in three-dimensional space and this to develop a new and possibly useful 

algebraic system appropriate to calculations in three-dimensional geometry” (Picker-

ing and Stephanides 1992, 146).

25. ​ Contrary to Hamilton, ancient Greek geometers could only refer to their let-

tered diagrams with short but still cumbersome Greek sentences (Netz 2003, 127–

167). Along with Greek geometers’ emphasis on differentiation, the absence of a 

condensed language such as algebra—that precisely required compiled collections 

of geometrical works in order to be constituted (Netz 1998)—may have participated 

in limiting the scope of ancient Greek geometrical propositions (Netz 2004, 11–54).

26. ​ Regarding these instruments, it is worth mentioning that here we retrieve what 

we were discussing about in the last section: all of them—except, perhaps, noncom-

mutative algebra—are blackboxed polished facts that were, initially, written claims. 

Rat pituitary cell cultures, algebraic notations, radioimmunoassays, coordinate 

spaces and even Pythagoras’s theorem all had to overcome trials in order to gain 

conviction strength and become established, certified facts.

27. ​ This topological characteristic of mathematical laboratories may be a reason 

why they have rarely been sites for ethnographic inquiries (Latour 2008, 444).

28. ​ Of course, as we saw in chapter 4, such inscriptions are meaningless without 

the whole series of inscriptions previously required to produce them. It is only by 

aligning the “final” inscriptions to former ones, thus creating a chain of reference, 

that Guillemin can produce information about his peptide (Latour 2013, chapter 3).

29. ​ Here we retrieve something we already encountered in chapters 3 and 4: the “cog-

nitive” practice of aligning inscriptions. Just as DF in front of his computer terminal, 

Brazeau, Guillemin, and Hamilton never stop grasping inscriptions they acquire from 

experiments. These inscriptions can, in turn, be considered takes suggesting further 

actions.
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30. ​ Again, this is taken from Latour (1987, chapter 2) and Wade (1981, chapter 13).

31. ​ Again, this is taken from Pickering and Stephanides (1992) and Hankins (1980, 

280–312).

32. ​ Brazeau and Guillemin published their results in Science (Brazeau et al. 1973). 

After having presented his results at the Royal Irish Academy in November 1843, 

Hamilton published a paper on quaternions in The London, Edinburg and Dublin 

Philosophical Magazine and Journal of Science (Hamilton 1844). An important thing 

to note about quaternions is that after Hamilton named them that way, he still had 

to define the complex quantities k2, ik, kj, and i2 in order to complete his system. 

According to a letter Hamilton wrote in 1865, the solution to this problem—the 

well-known i2 = j2 = k2 = ijk = −1—appeared to him as he was walking along the Royal 

Canal in Dublin. If this moment was indubitably important, it would be erroneous 

to call it “the discovery of quaternions” (Buchman 2009). As shown by Pickering 

and Stephanides (1992), quaternions were already defined as objects before the attri-

bution of values to the imaginary quantities’ products. In fact, when compared with 

the experimental work required to define the problem of these products’ values, 

what happened on Dublin’s Royal Canal appears relatively minor.

33. ​ This is the recurrent problem of biographies of important mathematicians; as 

they tend to use nature to explain great achievements, they often ignore the many 

instruments and inscriptions that were needed to shape the “discovered” objects. 

Biographies of great mathematicians are thus often—yet not always (see the amazing 

comic strip Logicomix [Doxiàdis et al. 2010])—unrealistic stories of solitary geniuses 

chosen by nature.

34. ​ Accepting the dual aspect of nature—the consequence of settled controversies as 

well as the retrospective cause of noncontroversial facts—provides a fresh new look at 

the classical opposition between Platonism and Intuitionism in the philosophy of 

mathematics. It seems indeed that the oddity of both Platonism—for which math-

ematical objects come from the outer world of ideas—and Intuitionism—for which 

mathematical objects come from the inner world of human consciousness—comes 

from their shared starting point: they both consider certified noncontroversial 

mathematical facts. Yet as soon as one accounts for controversies in mathematics—

that is, mathematics in the making—nature from above (the outer-world of ideas) or 

nature from below (the inner-world of human consciousness) cannot be considered 

resources anymore as both are precisely what is at stake during the controversies. 

It is interesting to note, however, that both antagonist unempirical conceptions of 

the origin of mathematics led to important performative disagreements about the 

practice of mathematics, notably through the acceptance, or refusal, of the law of 

excluded middle. On this fascinating topic, see Rotman (2006) and Corry (1997).

35. ​ According to Netz (2004, 181–186), the constant search for differentiation and 

originality in ancient mathematical texts had the effect of multiplying individual 
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proofs of similar problems stated differently. In short, Greek geometers were not 

interested in systems; they were interested in authentic proofs with a specific “aura” 

(Netz 2004, 58–63).

36. ​ Netz suggests that the polemical dynamics of ancient mathematical texts pre-

vented Greek mathematicians from normalizing their works, demonstrations, and 

problems. As he noted: “The strategy we have seen so far—of the Greek mathemati-

cian trying to isolate his work from its context—is seen now as both prudent and 

effective. It is prudent because it is a way of protecting the work, in advance, from 

being dragged into inter-textual polemics over which you do not have control. And 

it is effective because it makes your work shine, as if beyond polemic. When Greek 

mathematicians set out the ground for their text, by an explicit introduction or, 

implicitly, by the mathematical statement of the problem, what they aim to do is to 

wipe the slate clean: to make the new proposition appear, as far as possible, as a sui 

generis event—the first genuine solution of the problem at hand” (Netz 2004, 62–63).

37. ​ To a certain extent, as we will shall see in chapter 6, mathematical software such 

as Wolfram Mathematica and Matlab can be considered repositories of polished, 

compiled, and standardized mathematical certified knowledge.

38. ​ Very schematically, a neuron cell is made of three parts. There is first the “den-

drite”: the structure that allows a neuron to receive an electro-chemical signal. There 

is then the “cell body”: the spherical part of the neuron that contains the nucleus 

of the cell and reacts to the signal. There is finally the “axon”: the extended cell 

membrane that sends information to other dendrites.

39. ​ It is important to note that the inevitable losses that go along with reduction 

processes can be used to criticize the products of these reductions. This is exactly 

what I did in chapter 3 when I was dealing with the computational metaphor of the 

mind. I used what some reductions did not take into account in order to criticize the 

product of these reductions.

Chapter 6

1. ​ BJ’s face-detection algorithm computes the size of a face as the ratio of the area of 

the face-detection rectangle to the size of the image; hence the very small size-values 

of faces in figure 6.3.

2. ​ Remember that this comparison exercise was the main reason why the Group’s 

paper on the algorithm was initially rejected by the committee of the image-

processing conference (see chapter 2).

3. ​ It is important to note that this spreadsheet form required not so trivial Matlab 

parsing scripts written by the Group. The construction of a ground-truth database thus 

also sometimes requires computer programming practices as described in chapter 4.
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4. ​ Napier initiated the theory of logarithms mainly to facilitate manual numerical 

calculations, notably in astronomy. On this topic, see the old but enjoyable work by 

Cajori (1913).

5. ​ This discussion was reconstructed from notes in Logbook 2, February  2014–

May 2014.

6. ​ With lower-level programming languages such as C or C++, it might be trickier to 

transform this scenario into a completed program.

7. ​ If it is not time consuming to approximate square roots of positive real numbers, 

it is more complicated to get precise results. Nowadays, computers start by express-

ing the positive real number in floating point notation m * 2e where m is a number 

between 1 and 2 and e is its exponent (MacKenzie 1993). Thanks to this initial trans-

lation, computer languages can then use the Newton-Raphson iteration method to 

calculate the reciprocal of square root before finally multiplying this result with the 

initial real number to get the final answer. Calculating k-means of five clusters is also 

not that trivial. It can be summarized by a list of six operations: (1) place five arbitrary 

random centroids within the given dataset; (2) compute the distances of every point 

of the dataset from all centroids; (3) assign every point of the dataset to its nearest 

centroid; (4) compute the center of gravity of every centroid-assigned group of points; 

(5) assign each centroid to the position of the center of gravity of its group; and 

(6) reiterate the operation until no centroid changes its assignment anymore.

8. ​ Remember that INT stands for the Matlab interpreter that translates instructions 

written in the Editor into machine code, the only language that can make processors 

trigger electric pulses.

9. ​ Information retrieved from Matlab Central Community Forum (MATLAB Answers 

2017)

10. ​ This discussion has been reconstructed from notes in Logbook 3, February–

May 2014.

11. ​ This discussion has been reconstructed from notes in Logbook 3, February–

May 2014.

12. ​ Fei-Fei Li is now a professor at Stanford University. Between 2017 and 2018, she 

was chief scientist at Google Cloud.

13. ​ Image classification in digital image processing consists of categorizing the 

content of images into predefined labels. For an accessible introduction to image 

classification, see Kamavisdar, Saluja, and Agrawal (2013).

14. ​ The beginnings of the ImageNet ground truth project were difficult. As Gersh-

gorn noted it: “Li’s first idea was to hire undergraduate students for $10 an hour to 

manually find images and add them to the dataset. But back-of-the-napkin math 
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quickly made Li realize that at the undergrads’ rate of collecting images it would take 

90 years to complete. After the undergrad task force was disbanded, Li and the team 

went back to the drawing board. What if computer-vision algorithms could pick the 

photos from the internet, and humans would then just curate the images? But after 

a few months of tinkering with algorithms, the team came to the conclusion that 

this technique wasn’t sustainable either—future algorithms would be constricted to 

only judging what algorithms were capable of recognizing at the time the dataset 

was compiled. Undergrads were time-consuming, algorithms were flawed, and the 

team didn’t have money—Li said the project failed to win any of the federal grants 

she applied for, receiving comments on proposals that it was shameful Princeton 

would research this topic, and that the only strength of proposal was that Li was a 

woman” (Gershgorn 2017).

15. ​ To minimize crowdworkers’ labeling errors, Fei-Fei Li and her team asked differ

ent workers to label the same image—one label being considered a vote, the majority 

of votes “winning” the labeling task. However, depending on the complexity of the 

labeling task—categories such as “Burmese cat” being difficult to accurately identify—

Fei-Fei Li and her team have varied the levels of consensus required. To determine 

these content-related required levels of consensus, they have developed an algorithm 

whose functioning is, however, not detailed in the paper (Deng et al. 2009, 252).

16. ​ Once assembled, the ImageNet dataset and ground truth did not generate 

immediate interest among the image recognition community. Far from it: the first 

publication of the project in the 2009 Computer Vision and Pattern Recognition 

(Deng et al. 2009) was taken from a poster stuck in a corner of the Fontainebleau 

Resort at Miami Beach (Gershgorn 2017).

17. ​ In a nutshell, ILSVRC challenges, in the wake of PASCAL VOC challenges, 

consist of two related components: (1) a publicly available ground truth and (2) 

an annual competition whose results are discussed during dedicated workshops. As 

Russakovsky et al. summarized it: “The publically released dataset contains a set of 

manually annotated training images. A set of test images is also released, with the 

manual annotations withheld. Participants train their algorithms using the training 

images and then automatically annotate the test images. These predicted annota-

tions are submitted to the evaluation server. Results of the evaluation are revealed 

at the end of the competition period and authors are invited to share insights at 

the workshop held at the International Conference on Computer Vision (ICCV) or 

European Conference on Computer Vision (ECCV) in alternate years” (Russakovsky 

et al. 2015, 211).

18. ​ AlexNet, as the algorithm presented in Krizhevsky, Sutskever, and Hinton 

(2012) ended up being called, has brought back to the forefront of image processing 

the convolutional neural network learning techniques developed by Joshua Bengio, 

Geoffrey Hinton, and Yann LeCun since the 1980s. Today, convolutional neural 

networks for text, image, and video processing are ubiquitous, empowering products 
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distributed by large tech companies such as Google, Facebook, or Microsoft. More-

over, Bengio, Hinton, and LeCun received the Turing Prize Award in 2018, generally 

considered the highest distinction in computer science.

19. ​ These criticisms were summarized by Marvin Minsky, the head of the MIT Arti-

ficial Intelligence Research Group, and Seymour Papert in their book Perceptrons: An 

Introduction to Computational Geometry (1969).

20. ​ Boltzmann machines are expansions of spin glass-inspired neural networks. By 

including a stochastic decision rule, Ackley, Hinton, and Sejnokwski (1985) could 

make a neural network reach an appreciable learning equilibrium. As Domingos 

explained, “the probability of finding the network in a particular state was given by 

the well-known Boltzmann distribution from thermodynamics, so they called their 

network a Boltzmann machine” (Domingos 2015, 103).

21. ​ As noted in Cardon, Cointet, and Mazières (2018), there is a debate regarding 

the anteriority of backprop algorithm: “This method has been formulated and used 

many times before the publication of [Rumelhart Hinton, and Williams 1986]’s arti-

cle, notably by Linnainmaa in 1970, Werbos in 1974 and LeCun in 1985” (Cardon, 

Cointet, and Mazières 2018, 198; my translation).

22. ​ This second marginalization of connectionists during the 1990s can be related 

to the spread of Support Vector Machines (SVMs), audacious learning techniques 

that are very effective on small ground truths. Moreover, while SVMs manage to 

find, during the learning of the loss function, the global error minimum, convo-

lutional neural networks can only find local minimums (a limit that will prove to 

be less problematic with the advent of large ground truths, such as ImageNet, and 

the increase in the computing power of computers). On this specialized topic, see 

Domingos (2015, 107–111) and Cardon, Cointet, and Mazières (2018, 200–202).

Conclusion

1.  Though, like Negri, this book is drawn to the idea of contributing to founding a 

philosophy capable of going beyond modernity understood as “the definition and 

development of a totalizing thought that assumes human and collective creativity 

in order to insert them into the instrumental rationality of the capitalist mode of 

production” (Negri 1999, 323).

2. ​ Curiously, even though Negri explicitly positions himself as an opponent of 

the Anglo-American liberal tradition, his conclusions regarding the dual aspect of 

insurrectional acts are quite aligned with propositions made by American pragmatist 

writers such as Walter Lippmann and John Dewey. Indeed, whereas for these two 

authors, the political can only be expressed by means of issues that redefine our 

whole living together (Dewey [1927] 2016; Lippmann [1925] 1993; Marres 2005), for 

Negri, the political, as Michael Hardt notes, “is defined by the forces that challenge 
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the stability of the constituted order … and the constituent processes that invent 

alternative forms of social organization.  … The political exists only where innova-

tion and constituent processes are at play” (Hardt 1999, ix).

3. ​ This, I believe, is a potential way of somewhat reconciling Negri—at least, his 

writings—with the great German legal tradition that he is also explicitly opposed 

to. If Negri is certainly right to refuse the exteriority of constituent power vis-à-vis 

constituted power, thus emptying legal constitutions of any power of political inno-

vation, he is probably wrong to dismiss Georg Jellinek’s and Hans Kelsen’s proposi-

tions as to the scriptural, and therefore ontological, weight of constituent texts. On 

this tension between Sollen (what ought to be) and Sein (what is) within constitutive 

processes, see Negri (1999, 5–35) as well as Jellinek ([1914] 2016) and Kelsen (1991).

4. ​ This is the topic of Anne Henriksen’s and Cornelius Heimstädt’s PhD theses (cur-

rently being conducted at Aarhus University and Mines ParisTech, respectively), as 

well as Nick Seaver’s forthcoming book (Seaver forthcoming).

5. ​ The moral economy of blockchain technology is the topic of Clément Gasull’s 
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6. ​ This is part of Vassileios Gallanos’s PhD thesis, currently being conducted at the 

University of Edinburgh.
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