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ABSTRACT 

Layer manganese(III,IV) oxides are amongst the most reactive transition metal oxides 
in surface environments. The high reactivity of these minerals towards sorption and oxidation 
of many organic and inorganic compounds arises from their high specific surface area and 
density of sorption sites, as well as from the high redox potential of the Mn(III,IV)/Mn(II) 
couples. Because of these mineral properties, Mn is linked to the biogeochemical cycle of 
carbon and many trace elements.  

The reactivity of birnessite essentially depends on its structural and chemical stability. 
In particular, the dissolution of these minerals occurs through the reduction of Mn(III,IV), with 
the potential to mobilize associated compounds. One of the pathways for Mn oxide reduction 
in surface environments is photoreductive dissolution, a process in which sunlight initiates the 
electron transfer that leads to reductive dissolution of the mineral. Although this process is 
predicted to occur, it has never been observed in a system without components that themselves 
react to light. Therefore, the intrinsic photoreactivity of birnessite minerals in an environmental 
system lacks experimental evidence. 

The objective of this dissertation was to identify the effect of visible light irradiation 
on the stability of δ-MnO2, a fully oxidized synthetic birnessite. The rate and mechanism of 
photoreduction in aqueous mineral suspensions were determined by combining the rates 
measured on laboratory-based photoreactors with the molecular scale insights on electron 
transfer dynamics provided by pump-probe optical and synchrotron based techniques. The 
experiments were initially carried out in simple system containing only the mineral and water 
at a fixed pH. We then included the effect of environmentally relevant parameters, such as 
solution pH and the presence of the redox-inactive trace metal Ni(II) adsorbed onto the surface, 
on the photoreduction of birnessites. Our results show that irradiation of δ-MnO2 results in the 
formation of Mn(III), which is stabilized against chemical re-oxidation by migrating in the 
interlayer. The migration of Mn(III) to the interlayer is pH dependent, with a greater rate at 
lower pH. Furthermore, the higher amount of Mn(III) stabilized at low pH is also able to 
compete with Ni(II) adsorbed onto the surface by driving previously adsorbed Ni to solution.  

The results from this dissertation provide experimental evidence to the thermodynamic 
predictions on the intrinsic photoreactivity of birnessite minerals, allowing us to predict the 
stability of Mn oxides in sunlit surface environments even in the absence of organic and 
inorganic electron donors. Furthermore, birnessite minerals have been studied recently as 
viable cost-effective candidates in water oxidation photocatalysis. Our results on the role of 
Mn(III) may be relevant to the material sciences community, providing better constraints for 
the design of efficient photoelectrocatalysts for water oxidation. 

  



 

 

RÉSUMÉ 

Les oxydes de manganèse (III, IV) sont parmi les plus réactifs des oxydes de métaux 
de transition présents dans les écosystèmes de surface. La birnessite, qui est un oxyde de 
manganèse lamellaire, en est la phase prédominante. Elle est formée principalement via une 
oxydation du Mn (II) mediée par des microorganismes. Ces minéraux sont caractérisés par une 
réactivité élevée à l’adsorption et à la dégradation de nombreux composés organiques et 
inorganiques, dûe à une surface spécifique et une densité des sites d’adsorption très importante 
(au niveau des bords des particules et des sites vacants), ainsi qu’au potentiel redox élevé des 
couples Mn (III, IV) / Mn (II). Ces propriétés de la birnessite font que le Mn se retrouve en 
intéraction avec le cycle biogéochimique du carbone et de nombreux oligo-éléments.  

La grande capacité d’adsorption de la birnessite dépend essentiellement de sa stabilité 
structurelle et chimique. En particulier, sa dissolution se produit par la réduction de Mn (III, 
IV), qui peut mobiliser les composés associés. Une des voies de réduction de l’oxyde de Mn 
est la dissolution photoréductive, un processus dans lequel la lumière initie le transfert 
d'électrons qui conduit à une dissolution réductrice du minéral. Bien que ce processus soit 
connu en théorie, il n'a jamais été observé dans un système sans éléments réactifs à la lumière. 
Par conséquent, la photoréactivité intrinsèque de la birnessite n’a pas encore été démontrée 
expérimentalement. 

L'objectif de cette thèse a été d'identifier l'effet de l'irradiation sur la stabilité de la δ-
MnO2, une birnessite synthétique, en déterminant le taux et le mécanisme de sa photoréduction 
intrinsèque. Pour ce faire, des mesures de taux de photoréduction ont été prises en laboratoire 
à l’aide de photoréacteurs. Puis, elles ont été combinées avec des mesures portant sur le 
mécanisme de photoréduction à l’échelle moléculaire obtenues par des techniques de type 
“pump-probe” optiques et de synchrotron. Les expériences ont été initialement réalisées dans 
un système simplifié à pH fixe contenant une solution aqueuse de birnessite. Ensuite, le pH a 
été modifié et un métal inactif d’un point de vue rédox a été ajouté, le Ni (II), pour observer 
leur influence sur la photoreduction du Mn ainsi que sur la spéciation de Mn et Ni entre la 
surface minérale et la solution. Les résultats montrent que l'irradiation de δ-MnO2 mène à la 
formation de Mn(III) qui, lorsqu’il migre au niveau des sites vacants, se retrouve stabilisé 
chimiquement évitant ainsi d’être oxydé à nouveau. La migration de Mn(III) s’intensifie avec 
une diminution de pH. A faible pH, le Mn(III) formé entre en compétition avec le Ni(II) qui 
après désorption se retrouve en solution.  

Ces résultats confirment les prédictions thermodynamiques sur la photoréactivité 
intrinsèque de la birnessite. Aussi, ils permettent de prédire la stabilité des oxydes de Mn dans 
des écosystèmes de surface irradiés par le soleil même en l'absence de donneurs d'électrons 
organiques ou inorganiques. De plus, les minéraux de birnessite sont des candidats rentables 
pour créer des énergies renouvelables par photocatalyse de l’eau. Nos résultats sur le rôle de 
Mn (III) dans la photoréduction fournissent des contraintes supplémentaires pour la conception 
de photoélectrocatalyseurs utilisés pour l'oxydation de l'eau en sciences des matériaux. 
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Chapter 1. Introduction 

1.1. The natural abundance of manganese and its applications in human activities 

Manganese is the fifth most abundant element in the Earth's crust, with an average 

concentration of 11 g/kg (Morgan, 2000). It is an essential micronutrient for many organisms 

(Tebo et al., 2004) and plants  (Armstrong, 2008; Hocking et al., 2011; Hsu et al., 2012; 

Wiechen et al., 2012b), and can be found in natural waters as dissolved Mn at concentration 

levels that range from nano- to millimolar (Post, 1999). As a solid species, Mn is mostly found 

as Mn oxides in surface environments, with concentrations that can reach up to 324 g/kg in 

ocean sediments (Morgan, 2000). The primary sources of Mn to the Earth's surface are igneous 

and metamorphic rocks as well as Mn bearing carbonates and silicates, which weather both 

physically (erosion) and chemically (redox reactions) and release Mn to soils and freshwaters. 

The release of Mn to the environment from human activities (secondary sources) is even 

greater. In fact, the anthropogenic mobilization factor for Mn, defined as the mass of element 

extracted by human activities divided by the mass released from weathering or volcanic 

activity, is equal to 10 (Sposito, 2008). The total Mn delivered to soils and freshwaters then 

eventually accumulates in the oceans (Post, 1999). The oceans are also supplied with Mn 

through hydrothermal vents from oceanic ridges, where Mn co-precipitates with Fe in oceanic 

ferromanganese nodules (Elderfield, 1976; Morgan, 2000). These nodules, being often 

associated with trace metals, have been considered in the past as an economically exploitable 

minable resource (Chung, 1994).  

Manganese has found various economic applications in the past and present, ranging 

from an agent to decolorize glass since the Roman age (Maltoni et al., 2016) to a component 

in metallurgical products that increase strength (Nurnberger, 1978; Dalai et al., 2014; Ma et 

al., 2016) as well as reduce corrosion (Al-Negheimish et al., 2014) in steel alloys. Manganese 

oxides have also found many technological applications, for example as the cathode material 

of choice in alkaline batteries (Daley, 1961; Greenwood and Earnshaw, 1984; Kordesch and 

Weissenbacher, 1994) as well as more recently in the development of Li/Mg ion batteries in 

the pursuit of cost-effective energy storage (Ghouri et al., 2016; Lee et al., 2016; Lu et al., 

2016). Because of the strong redox potential of the Mn(IV)/Mn(II) and Mn(III)/Mn(II) couples, 
1
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Mn oxides have also been applied as catalysts in many industrial processes (Ching et al., 2016; 

Delmondo et al., 2016; Dinh et al., 2016). Their redox properties, together with their high 

sorption affinity, makes them well suited for remediation strategies (e.g. decontamination of 

polluted water both through the oxidative decomposition of organic compounds (Dang et al., 

2016; Peng et al., 2016; Periyasamy et al., 2016) or by sorption and oxidation or precipitation 

of potentially toxic transition elements (Al Abdullah et al., 2016; Bai et al., 2016; Kim et al., 

2016)). Recognizing Mn oxides as semiconductors and the importance of Mn at the core of the 

water oxidation center (WOC) of photosystem II (Armstrong, 2008), many studies have 

focused on the potential application of Mn oxides to create efficient and inexpensive 

photocatalysts for the splitting of water into hydrogen and oxygen for renewable energy 

generation (Hocking et al., 2011; Wiechen et al., 2012a; Wiechen et al., 2012b; Robinson et 

al., 2013), as well as in the photocatalytic degradation of organic pollutants (Liu et al., 2016)  

and inorganic contaminants (Shumlas et al., 2016). 

1.2. Speciation of Mn between soluble and insoluble species 

In natural environments, Mn is stable in several different oxidation states: Mn(II), 

Mn(III) and Mn(IV). The cycle of this element is a function of redox conditions and oxygen 

availability, with the oxidized species, Mn(IV), forming insoluble oxides at oxic, alkaline 

conditions and the reduced species, Mn(II), mostly present as dissolved ions in acidic, oxygen 

limited conditions (Morgan, 2000; Tebo et al., 2007). Mn(III), on the other hand, can occur in 

both solid form (e.g., Mn(III/IV) oxides) as well as a soluble species if complexed by ligands 

(Morgan, 2000; Madison et al., 2013).  

Soluble (aqueous) Mn is found mainly as the free divalent ion, Mn(II). It can be 

oxidized by molecular oxygen to form Mn oxides, but this process is known to be kinetically 

limited at the pH of natural waters if uncatalyzed. In fact, the half-life of Mn(II) in oxic 

seawater is 350 days in the absence of catalysts for its oxidation (Morgan, 2005). 

Microorganisms (bacteria and fungi) serve as the main catalysts for Mn(II) oxidation (Tebo et 

al., 2004). The precipitated oxide then catalyzes further oxidation of Mn(II) on its surface 

(Spiro et al., 2010; Droz et al., 2015). Manganese oxidation can also be catalyzed on mineral 

surfaces (Wilson, 1980) as well as by reactive oxygen species (Hansel et al., 2012). Because 

of its widespread occurrence and the range of stable oxidation states, Mn is also known to play 
2
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an important role in biological systems. In fact, it is an essential component of the oxygen 

evolution center in Photosystem II to yield O2 from the oxidation of water in photosynthesis 

(Armstrong, 2008; Hocking et al., 2011; Hsu et al., 2012; Wiechen et al., 2012b), as well as an 

important component of many enzymatic processes that protect cells from reactive oxygen 

species (Morgan, 2000; Tebo et al., 2007). Another soluble species of Mn that has recently 

gained importance is aqueous Mn(III), although it is not stable as a free ion. In fact, Mn(III) 

requires complexation by natural organic or inorganic ligands in order to remain stable in 

solution (Madison et al., 2013). In the absence of such ligands, Mn(III) disproportionates 

rapidly into Mn(II) and Mn(IV) in solution. The presence of soluble Mn(III) has recently been 

found to be a major component of the sedimentary redox system, accounting for up to 90% of 

the soluble manganese present in suboxic porewaters up to 20 cm of depth (Madison et al., 

2013). Recently, it has been shown that aqueous Mn(III) is also stable in oxic conditions, 

complexed by humic ligands (Oldham et al., 2016). Therefore, in natural environments where 

Mn(III) complexing ligands are present, aqueous Mn(III) may be a non-negligeable aqueous 

Mn species.  

Insoluble Mn, on the other hand, is found primarily as Mn oxides, which in nature 

contain Mn(IV) and Mn(III) in varying proportions (Post, 1999). The majority of Mn oxides 

form layer or tunnel type structures. The most environmentally relevant structures are the layer 

Mn oxides, also known as birnessites. These minerals occur as randomly stacked sheets of 

MnO6 edge sharing octahedra containing Mn in both the Mn(III) and Mn(IV) states. 

Birnessites are the predominant natural Mn oxide as they form through microbially catalyzed 

Mn(II) oxidation (Villalobos et al., 2003; Jurgensen et al., 2004). During biogenic Mn(II) 

oxidation the first oxidation product is a fully oxidized phase (only Mn(IV) present), which 

subsequently accumulates Mn(III) within its structure (Spiro et al., 2010). Birnessite minerals 

have a set of properties that make them important players in the biogeochemical cycle of many 

other elements, including trace metals and carbon. The first property is their particle size: 

natural birnessites are characterized as nanoparticles with a high specific surface area. A 

consequence of their size and layer-type structure is the high density of sorption sites (i.e., sites 

in the octahedral sheet that lack a Mn octahedron), situated both on particle edges and Mn 

octahedral vacancies, (Ruetschi, 1984). Finally, the Mn(IV)/Mn(II) and Mn(III)/Mn(II) redox 

couples are amongst the most potent in nature, rendering them powerful oxidants of many 
3
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organic and inorganic compounds (Stumm and Morgan, 1996; Sposito, 2008). Given these 

properties, birnessite minerals, together with Fe oxides, play an important role in governing 

numerous biogeochemical cycles. Furthermore, the greater sorptive and redox reactivity per 

unit mass of Mn oxides (relative to Fe oxides) makes them at least as important as these 

ubiquitous Fe oxides even though the average concentration of Mn oxides in soils and 

sediments is 10 times lower than that of Fe oxides (Tebo et al., 2007). A schematic 

representation of the Mn cycle is shown in Figure 1. 

 
Figure 1. Mn cycle showing the oxidation and reduction of Mn by microorganisms and the reduction of Mn by 
sunlight and natural organic matter. The position of aqueous Mn(II), ligand-bound and solid Mn(III) and solid 
Mn(IV) on the vertical is related to the redox potential of the system, as well as the oxic/anoxic conditions in the 
absence of reducing and oxidizing forces. 

1.3. The sunlight-dependent distribution of Mn in surface waters 

In oxygen-rich environments, manganese forms oxides through the catalyzed oxidation 

of Mn(II). Therefore, aqueous Mn is generally absent in surface waters characterized by high 

dissolved oxygen concentrations and in the presence of Mn-oxidizing bacteria. In contrast to 

thermodynamic predictions, however, the vertical profile of Mn in a multitude of oceanic and 

lacustrine water columns shows dissolved Mn(II) in surface waters reaching nanomolar 

concentrations (Klinkhammer and Bender, 1980; Landing and Bruland, 1987; Sunda and 

Huntsman, 1990; Davison, 1993; Statham et al., 1998). The Mn profile contrasts that of most 

trace metals, which are depleted at the surface due to biological scavenging (Morgan, 2000). 

A gradual decrease in the concentration of aqueous Mn is observed with depth, becoming 
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negligible below the photic zone, where particulate Mn (Mn(IV/III) oxides) predominate 

(Sunda et al., 1983).  

The anomaly of Mn speciation with depth is attributed to the fact that Mn oxides are 

transition metal oxides, and like many transition metal oxides, they are semiconductors. 

Therefore, visible light can initiate electronic transitions in the mineral. Manganese oxides are 

known to undergo photoreductive dissolution whereby light can mediate the transfer of 

electrons from surface sorbed species (Stone, 1983; Waite, 1990; Sunda and Huntsman, 1994). 

Although semiconduction theory and thermodynamic calculations predict that Mn oxides 

should react to light (Sherman, 2005), few experimental studies have investigated the 

mechanism and environmental controls on the photoreduction of these oxides. Among these 

studies, the most complete are those of Sunda et al. (1983); Sunda and Huntsman (1990, 1994). 

These studies propose that photoreductive dissolution is caused either by a ligand to metal 

charge transfer process involving organics, or by reduction of the oxide by photochemically 

generated H2O2 and/or photoinhibition of biogenic Mn oxidation. These hypotheses support 

the low occurrence of Mn oxides in the surface of oceanic waters and the presence of modest 

concentrations of aqueous, reduced Mn.  

1.4. Theoretical background on the photochemistry of transition metal oxides 

Before introducing the objectives of this dissertation, I first outline the theoretical basis 

behind photochemical processes in semiconducting transition metal oxides. Photochemical 

processes at the mineral-water interface can follow three main processes: i) light absorption in 

the bulk mineral, which leads to electron transfer by a semiconduction mechanism; ii) light 

absorption by surface species which leads to electron transfer between the mineral and the 

surface species (i.e., ligand to metal charge transfer – LMCT - or metal to ligand charge transfer 

– MLCT) which often involves the formation of radical species; and iii) light absorption by 

surface species, which does not lead to electron transfer between the mineral and the surface 

species (Waite, 1990).  
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Figure 2. Schematic outlining a) the steps in the photocorrosion (~photoreduction) process of a semiconductor 
nanoparticle: 1) photon absorption, 2) electron excitation from valence band to conduction band with creation of 
a valence hole, 3) hole scavenging (equivalent to electron injection) from a surface sorbed hole scavenger 
(~electron donor), 4) desorption of the hole scavenger as an oxidized species. The nanoparticle then re-
equilibrates through a valence change, in this case a reduction of the metal atoms (~conduction band); b) band 
gap excitation of a semiconducting nanoparticle that does not lead to photoreduction. Steps are identical to the 
photocorrosion, except that: 3) photoexcited electron may or may not move by conduction in the conduction band 
until 4) it recombines with the valence band hole, terminating the photexcitation process. Usually during 
photoexcitation of semiconductors with surface sorbed hole scavengers, a combination of the two processes 
occurs. Diagram adapted from Gilbert and Banfield (2005). 

The basis for all of the photochemical processes described is the semiconduction 

mechanism, of which a schematic representation in relation to a metal to ligand charge transfer 

mechanism is shown in Figure 2. Semiconduction can be described more precisely using band 

theory, which treats the photoexcitation from an energetic perspective. The energy separation 

between the valence band, which is equivalent to the “filled” electronic orbitals, and the 

conduction band, which is equivalent to the “unoccupied” electronic orbitals, is such that 

visible light may promote/excite a valence band electron into the conduction band. These bands 

are separated by a band gap, with the Fermi level found in the middle of the band gap and can 

be considered the electrochemical potential of the mineral. The band gap can be either direct 

or indirect (i.e., the electrons and holes in the conduction and valence bands have the same or 

opposite momentum, respectively). Upon absorption of visible light, a photoexcited electron 

is promoted to the conduction band and an electron hole is formed in the valence band. If the 

band gap is indirect, additional energy is required for the electron to transfer momentum to the 

material. Once excited into the conduction band, the electron can relax in three different ways: 
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i) it may recombine with the hole emitting heat (non-radiative degradation), thereby 

terminating the photoexcited state without any change to the mineral; ii) it can be temporarily 

trapped into various intra- or interband states or receive additional energy from a second 

photon absorption, then relax into the valence band hole emitting one or more photons of higher 

or lower energy (luminescence – radiative degradation); or iii) it may move by conduction 

within the conduction band until it, or the valence hole, are scavenged by a surface species. In 

this last scenario the mineral will have a deficiency or excess of electrons, thereby resulting in 

a chemical change that is termed photo-oxidation or photo-reduction (Waite, 1990; Gilbert and 

Banfield, 2005; Balzani et al., 2014). 

The semiconducting properties of many transition metal oxides including Mn and Fe 

oxides originate from their partially filled d orbitals, by which the absorption of light leads to 

d-d transitions (Sakai et al., 2005). In the case of Mn oxides, the transitions occur from Mn 

3dt2g orbitals, which lie at the top of the valence band, to Mn 3deg orbitals, which lie at the 

bottom of the conduction band. Usually the conduction band states are localized in the metal 

(3d) orbitals, whereas the valence band states are localized in the O (2p) orbitals. However, M-

O bonds are partially covalent, since electrons are shared between the metal and oxygen 

orbitals. Therefore, the Mn atom has some O (2p) character, which allows the top of the valence 

band to be localized on Mn atoms (Sakai et al., 2005).  

The semiconducting properties of minerals are also influenced by surface impurities, 

defects (such as vacancies), and finite size (Waite, 1990; Gilbert and Banfield, 2005). Surface 

impurities, for example, may introduce electrons in the conduction band by underbonded 

atoms, mediate charge transfer between adsorbates and the mineral surface, and modify the 

lifetime of the photoexcited electron and hole (Gilbert and Banfield, 2005). For example, since 

electron/hole recombination is size independent, while electron transit to a surface is directly 

size dependent, electron or hole escape before recombination may be enhanced in smaller 

particles with respect to larger particles. An opposite effect occurs when a nanoparticle small 

enough to be comparable to the Bohr radius (the distance for the lowest energy attraction 

between an electron-hole pair) is irradiated. In this case, additional energy for band gap 

excitation is required to overcome the electron-hole interaction, which results in an overall 

increase in the band gap (Gilbert and Banfield, 2005).  
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Different band gap values have been measured for birnessite due to the effect of size, 

impurities and defects on semiconducting properties. For example, Sherman (2005) measured 

a band gap between 1.8 and 1.0 eV in triclinic Na-birnesite with oxygen X-ray absorption 

(valence band sensitive) and emission (conduction band sensitive) spectroscopy, respectively, 

and Kwon et al. (2009) showed an increase in vacancies from 0 to 12.5 % reduced the band 

gap in the mineral from 1.3 eV to 0.3 eV when estimating the effect of vacancies on the band 

gap of hexagonal K-birnessite with density of states (DOS) studies. Furthermore, with an 

increase in vacancies to 12.5 % the band gap changes from indirect to direct. Hsu et al. (2012), 

on the other hand, measured a band gap of 2.1 eV for birnessite nanosheets synthesized through 

electrochemical oxidation of MnSO4. Finally, Sakai et al. (2005) estimated an indirect band 

gap of 2.23 eV for atom-thick birnessite nanosheets by correlating the incident photon to 

electron conversion efficiency (IPCE) with the photon energy. These band gap values, being 

lower than 3.1 eV (i.e., the highest energy obtainable by visible light (400 nm)), confirm that 

birnessite minerals are susceptible to band gap excitations by visible light. 

1.5. Photochemistry of Fe oxides in environmental science: state of the art 

Most transition metal oxides undergo photoreductive processes due to their 

semiconducting nature. However, even though the photoreduction of Mn oxides strongly 

affects the distribution of Mn in the ocean water column, this process has not been well-studied 

experimentally (Sunda et al., 1983; Waite et al., 1988; Sunda and Huntsman, 1994; Kim et al., 

2012). The environmental chemistry literature has primarily focused on the photoreduction of 

Fe oxides (Siffert and Sulzberger, 1991; Karametaxas et al., 1995; Sulzberger and Laubscher, 

1995; Voelker et al., 1997; Emmenegger et al., 2001; Borer et al., 2005; Borer et al., 2007; 

Borer et al., 2009b, c; Sulzberger and Laubscher, 2009). In particular, the photochemistry of 

Fe oxides has been studied in the presence and absence of organic compounds such as citrate 

and siderophores (Borer et al., 2005; Borer et al., 2009b) and as a function of pH and irradiation 

wavelength (Borer et al., 2009a; Borer et al., 2009c). These studies show that the 

photoreduction of Fe oxides depends on wavelength, where lower wavelengths lead to higher 

photoreduction rates due to the wavelength-dependent photolysis of photoreduced Fe(II)-

hydroxo groups. Photoreduction is pH dependent, where lower pH leads to greater 

photoreduction because of the pH dependence of Fe(II) stability against re-oxidation by 
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oxygen. Fe photoreduction is also highly dependent on the presence of organic compounds to 

complex and scavenge photoreduced Fe(II) from the Fe oxide mineral surface as Fe(II) rapidly 

re-oxidizes on the surface of the oxide under oxic conditions. Furthermore, the authors observe 

that photoreduction of Fe(III) to Fe(II) is coupled to the generation of hydroxyl radicals (OH•), 

where the combination of 2 hydroxyl radical molecules eventually results in the formation of 

H2O2. In their studies, the authors also observed that the pH dependence of the reaction is 

largely due to the pH-dependent reoxidation kinetics of Fe(II) on the mineral surface. Finally, 

the authors calculate apparent quantum yields (Fe(II) formed per photon absorbed) for the 

photoreduction process, which were on the order of ~10-5 for the highest rate conditions (low 

pH) in the absence of organic compounds.  

The few studies on Mn photoreduction were carried out in natural systems and 

investigated the photoreductive process in seawater in the presence of organic compounds and 

microorganisms. Organic compounds and microorganisms are also known to react separately 

with the oxides in the presence of sunlight. A LMCT mechanism between organics and the 

mineral, reduction by reaction of photoproduced H2O2 with the oxides, or photoinhibition of 

Mn oxidizing microorganisms was invoked to explain the photoreductive dissolution of Mn 

oxides (Sunda et al., 1983; Sunda and Huntsman, 1994). However, H2O2 is also known to 

oxidize Mn(II) (Hansel et al., 2012) and photoinhibition of Mn oxidizing bacteria has only 

been observed indirectly. Furthermore, no experiments have been carried out to decouple the 

photoreduction mechanism of the Mn mineral from the photoreactivity of other components 

present in the natural system, and advanced techniques providing molecular scale information 

were at the initial stage of development at the time of those studies. Therefore, the Mn oxide 

photoreduction mechanism has not yet been confirmed experimentally.  

1.6. Photochemistry of Mn oxides in materials science: state of the art 

In the last two decades Mn oxides have emerged as a promising technology to harvest 

sunlight, both as a catalyst for water oxidation and in the design of novel solar cells for 

electricity generation (Sakai et al., 2005; Hocking et al., 2011; Young et al., 2011; Hsu et al., 

2012; Kolling et al., 2012; Takashima et al., 2012; Wiechen et al., 2012b; Birkner et al., 2013; 

Robinson et al., 2013; Zhou et al., 2013). A review of the main findings of a selection of these 
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studies provides some information to constrain the controlling processes of Mn 

photochemistry.  

Recent water oxidation studies have shown that the layer structure and bonding of 

birnessite minerals mimicks the water oxidation center (WOC) of photosystem II (Hocking et 

al., 2011; Hsu et al., 2012; Wiechen et al., 2012b). In fact, the WOC is the only established 

system that efficiently catalyzes water oxidation (Hocking et al., 2011), a process that is  

otherwise demanding both kinetically and thermodynamically. The WOC is constituted of 

CaMn4O5 in which 3 Mn ions and Ca form a cubane and the fourth Mn is bound with ligands. 

Hocking et al. (2011) studied the catalysis of water oxidation by a Mn containing molecule 

similar to the WOC incorporated onto a Nafion ® polymer matrix. This molecule was shown 

to convert to a Mn(III/IV) phase similar in structure to birnessite after electro-oxidation, which 

then was able to generate oxygen upon irradiation. Similarly, Deibert et al. (2015) have shown 

that under photocatalytic conditions their initial Mn based photocatalysts convert to a layer 

phase similar to birnessite, with varying amounts of Mn(III). The final layer-type phase and 

not the initial WOC-mimicking molecule was responsible for the high photocatalytic activity, 

since the final phases retained the activity over various photoelectrochemical cycles.  

 Wiechen et al. (2012b) confirmed that the birnessite structure is a good mimic of the 

WOC because of Mn-Mn distances, Mn oxidation state and Mn-Ca connectivities. Their 

studies also show that Ca is necessary for water oxidation, which derives from both a biological 

and structural role in the WOC. These observations were also confirmed by Lucht and 

Mendoza-Cortes (2015); Rong et al. (2016). Interestingly, also the microbial oxidation of 

Mn(II) requires the presence of calcium (Webb et al., 2005). The nature of interlayer cations, 

in particular the charge, also affects the frustration of water molecules coordinated to them in 

the interlayer (Remsing et al., 2015). Frustration defines the complex structures that arise 

because of conflicting inter-atomic forces. An increased cation charge leads to greater water 

molecule frustration, which potentially enhances the water oxidation capacity in birnessite 

minerals  (Remsing et al., 2015). 

The role of Mn(III) in the photocatalytic activity of Mn oxides is also important. The 

presence of up to 50 % mol Mn(III) mol-1 Mntotal
-1 and its crystallographic location have been 

shown to strongly enhance the photocatalytic activity of the materials (Maitra et al., 2013; 
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Robinson et al., 2013; Lucht and Mendoza-Cortes, 2015). In particular, Maitra et al. (2013) 

have shown that the photocatalytic activity occurs due to Mn(III) having a single electron in a 

eg
1 degeneracy which facilitates electron transfer during the electrochemical water oxidation 

reaction and Lucht and Mendoza-Cortes (2015) have shown that the presence of Mn(III) lowers 

the band gap in the mineral. Finally, Robinson et al. (2013) showed that the Jahn-Teller 

distortion of Mn(III) imparts greater structural flexibility to the mineral, and suggested this to 

be important for the catalytic activity of the oxides.  

The effect of mineral size has been observed in studies investigating the potential 

applications of Mn oxides to harvest light for direct production of electricity in solar cells. For 

example, photocurrent generation by birnessite nanosheets was studied by Hsu et al. (2012) 

and Sakai et al. (2005). Hsu et al. (2012) observed a modest current generation (7% incident 

photon to current efficiency – IPCE) when irradiating these oxides with visible light. In Sakai 

et al. (2005), the authors showed that only the topmost layer is photoactive, whereas the lower 

layers are characterized by recombinative processes. Therefore, these studies show that 

nanostructures are important in designing an efficient Mn oxide-based solar cell.  

In summary, the reactivity of Mn oxides in the oxidation of water depends on the 

interlayer cation, where Ca has a strong effect on the catalytic activity of the oxides relative to 

other cations, and on the amount and structural location of Mn(III). Therefore, these parameters 

are likely to affect Mn oxide photoreactivity in environmental systems. The small particle size 

of these oxides was also shown to enhance their photoreactivity in a solar cell circuit. 

Therefore, the nanoscale of environmentally occurring birnessite minerals will play an 

important role in their photoreactivity, where smaller particles will likely be more reactive than 

larger particles (within the physical limit set by the Bohr radius as previously described). 

1.7. Dissertation objectives and research questions 

This PhD dissertation aims to identify the mechanism and environmental controls on 

the photoreduction of Mn oxides independent of the interference of microorganisms and 

organic compounds on the process. A simple model will be initially studied, to which layers 

of complexity will be gradually added. The experimental design builds on information obtained 

in the Mn oxide photocatalysis and photoelectrochemistry studies, combined with the 

11



CHAPTER 1 

 

information from the Fe oxide environmental photochemistry studies. These studies also 

provide a reference basis to frame the obtained results, bridging an important knowledge gap 

in the environmental science community and providing new insights for the material science 

community. The objectives of this dissertation will be achieved by attempting to answer the 

following research questions: 

• What is the rate and mechanism of birnessite photoreduction? 

• How does pH affect the rate and mechanism of birnessite photoreduction? 

• How does the photoreduction of birnessite affect the fate of surface-sorbed trace metals? 

We will focus particularly on the key parameters identified by the material sciences 

studies, such as interlayer cations, Mn(III) content and particle size. The interpretation of our 

results will be linked with the environmental studies on Fe oxide photochemistry, in particular 

the photoreduction mechanism resulting in OH radical generation and the pH dependence of 

the photoreduction rates.  

1.8. Dissertation organization 

This dissertation begins with an initial chapter introducing the analytical techniques 

that were key to obtaining the results presented throughout this thesis. The following four 

chapters describe the experimental work carried out during the duration of this PhD project. 

Each chapter addresses a system of increasing complexity. The final chapter summarizes the 

conclusions obtained in the previous chapters and presents future research directions that can 

be addressed to further advance the knowledge on the photoreduction of birnessite minerals. 

A summary of the motivation, objectives and main results of the different chapters is provided 

below. 

Chapter 2 provides a description of the analytical techniques that were used in this 

dissertation, in particular the techniques that were either key to results obtained in this work or 

that are uncommon in the geochemistry community, including: the average Mn oxidation 

number determination by potentiometric titration, the Mn(III) extraction protocol with sodium 

pyrophosphate, the photoreactor design and characterization, the transient absorption pump-

probe spectroscopy, and the X-ray absorption spectroscopy. 
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Chapter 3 describes the synthesis of the mineral used for the photoreduction studies, 

δ-MnO2. This mineral is the synthetic analog to naturally occurring birnessites, in particular 

those precipitated by microorganisms in surface environments (Spiro et al., 2010). The 

motivation for this study arose from variations in the published physicochemical properties of 

δ-MnO2. In addition, the initial synthesis of this mineral in our laboratory gave products with 

differing physicochemical properties including Na content, particle size, and specific surface 

area. This chapter therefore addresses these issues, showing that the pH of the synthesis is 

directly proportional to the Na content and inversely proportional to specific surface area. 

Furthermore, an in-depth characterization of the mineral phase used in all subsequent 

photoreduction experiments is provided. 

Chapter 4 investigates the rates and photoreduction mechanism for δ-MnO2 in a 

simplified system containing only water at circumneutral pH and a background electrolyte 

(either CaCl2, NaCl, or sodium pyrophosphate). The advantage of obtaining molecular scale 

information allows us to constrain the effects of sunlight to the mineral alone, and not to the 

components of the natural system that are often associated with the mineral (e.g. redox-active 

and photoactive organic compounds) as well as transition metals that may enhance or reduce 

the (photo)reactivity of the mineral. In this study we combined hour to day time resolution 

experiments on photoreactors to evaluate the Mn(IV) photoreduction rates with ultrafast 

transient absorption spectroscopy (both all optical and optical/X-ray) to investigate the 

photoexcitation mechanism on the femto- to microsecond timescale. The results show that 

photoreduction occurs with the progressive accumulation of Mn(III) in the mineral in a 

different crystallographic location compared to the initial Mn(IV). Furthermore, the amount of 

photogenerated Mn(III) is much lower than the actual number of atoms that are photoexcited 

in the mineral, as evidenced by the apparent quantum yield of the process (defined as the 

amount of Mn(III) generated per photon absorbed) on the order of ~10-4, which is one order of 

magnitude greater than that of Fe oxides. By extrapolating from the Fe oxide photoreduction 

studies and the simplicity of our studied system, we predict that Mn(IV) photoreduction is 

coupled to partial water oxidation, leading to the formation of OH radical species. However, 

these species still have to be determined experimentally. 
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Chapter 5 expands the previous model for δ-MnO2 photoreduction to include the 

effect of the master variable controlling most environmental systems: solution pH. In this 

chapter, the photoreduction rates and mechanism were investigated at pH values of 4.0, 6.5 

and 8.0 using either sodium pyrophosphate as a pH buffer or using HCl and NaOH adjustment 

by automatic titrators in the presence of a NaCl electrolyte. The experiments were carried out 

as outlined in the previous chapter with lab-based photoreactors and transient absorption all 

optical spectroscopy. The results show that although photoreduction rates vary as a function of 

pH, the photoexcitation mechanism remains the same. In particular, we relate the greater 

photoreduction at lower pH to increased protonation of the mineral surface, which leads to a 

weakening of Mn-O bonds and enances the probability for the migration of photogenerated 

Mn(III) to the stable structural site identified in Chapter 3. 

Chapter 6 investigates the effect of mineral irradiation on the mobility of Ni previously 

adsorbed onto δ-MnO2 in suspensions at pH 4.0 and 8.0, as well as on the photoreduction rates 

of δ-MnO2 with and without Ni on the surface. Toward this end, we combine the knowledge 

gained from Chapters 4 on the photoreduction rate and mechanism for δ-MnO2 and Chapter 

5 on the effect of pH on the photoreduction rate with the well understood sorption mechanism 

of Ni, a redox-inactive transition metal, on δ-MnO2. The results show that at pH 4.0, irradiation 

leads to a 50% release of Ni from the mineral surface, and the remaining Ni is sorbed primarily 

on particle edges and not on vacancy sites as occurs in the dark. At pH 8.0, on the other hand, 

there is no Ni release. There is, however, a slight change in the sorption geometry of Ni, where 

irradiation leads to a small increase in Ni incorporation into the nanosheets with respect to Ni 

adsorbed onto vacancy sites. These results have important implications for a wide range of 

trace metal dynamics in surface environments (e.g. lakes, streams and ocean waters), where 

diel variations in sunlight irradiation may modify the speciation of Ni and other similar trace 

metals through the formation of Mn(III) on the mineral surface. Furthermore, these results give 

an indirect indication that photogenerated Mn(III) is preferentially located above layer 

vacancies confirming the model developed in Chapter 3. 
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Chapter 2. Experimental approach 

The purpose of this chapter is to describe the photoreactor setup used in this thesis, as 

well as to provide an overview of the key analytical and spectroscopic techniques used in this 

dissertation. Furthermore, since the approach followed in this study applies techniques from 

the materials science community to answer an environmental geochemistry research question, 

a brief review of the techniques is necessary to provide the reader with a context for the work 

described in the following chapters. The design, characterization and use of the photoreactor 

setup, the analytical techniques to determine the photoreduction of Mn in this setup (Mn(III) 

quantification and average Mn oxidation number titration), and the techniques used to observe 

the photoexcitation mechanism on the electron-transfer timescale (femto- to microseconds) 

will be described. 

2.1. Photoreactor design 

Background. The primary requirement for the experiments in this dissertation is the 

design and development of a photoreactor with set requirements. In particular, the light source 

in the photoreactor must be able to initiate the investigated reactions and be easily 

characterizable, and we must be able to run the experiments in it for multiple days. We opted 

to custom-design a photoreactor instead of using a commercially available photoreactor such 

as a solar simulator. The drawbacks of a sunlight simulator include the broad wavelength 

employed that is more difficult to characterize precisely and the difficulty to optimize the 

irradiation geometry to specific requirements. In our custom setup, the choice of a single 

wavelength for the irradiation rendered the characterization of the photon flux much more 

precise through chemical actinometry than would have been the case with a solar simulator. 

Furthermore, the design of our photoreactor allowed us to optimize the irradiation efficiency 

to birnessite suspensions: the use of particle suspensions that tend to settle required an effective 

mixing that was achieved by a flow-through configuration. 

Design and construction of the photoreactor. The designed flow through photoreactor, 

of which the designs and photographs are shown in ANNEX 1, was composed of 2 main 

components: the irradiation module and the flow-through module. The design was based on a 
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prototype built by Dr. Benjamin Gilbert (Lawrence Berkeley National Laboratory, CA, USA), 

which had proven to work for the photoreduction of birnessite in preliminary experiments. The 

irradiation module was composed of 3x high power light emitting diodes (1W LEDs from 

ProLight Opto Technology Corporation) tuned at 400 nm that were mounted with thermally 

conductive paste onto a cooling support (An Enzotech® WMST-81 MOSFET – metal-oxide 

semiconductor field-effect transistor - liquid cooler designed for ASUS PC motherboards). 

This LED and mosfet cooling assembly was mounted on a custom built support in order to be 

positioned onto a breadboard. The cooling support was connected to an aquarium pump with 

rubber tubing, which was submerged in a container with tap water, in order to cool the LEDs, 

which emit heat on the opposite side from where they emit light. Cooling of the LEDs serves 

to optimize their efficiency and lifetime, as well as to avoid overheating the setup. The LEDs 

were equipped with focusing lenses (60° focusing radius) from the same brand (ProLight) to 

optimize the photon flux to the flow through module. The three LEDs were connected in series 

at around 1 cm from each other to a 700 mA DC output, 220 V AC input power source, which 

was plugged directly into a power outlet. During the experimental run, the aquarium pump ran 

continuously to keep the temperature of the irradiation assembly at room temperature (20° C). 

The flow-through module was designed to allow the mineral suspension to flow in a 

closed circuit by means of a peristaltic pump and Teflon ® tubing into a quartz flow through 

cuvette (Hellma Analytics), except for the portions connected to the peristaltic pump, which 

were in Tygon ®. This cuvette was connected on the top and on the bottom to the tubing, and 

positioned into an aluminum casing support that kept it in vertical position and aligned with 

the LED array. The casing support also both shielded the photoreactor from external light and 

avoided dispersion of the LED light. The choice of aluminum with respect to other non-

reflective materials allowed internal reflection of the light, increasing the photon flux to the 

cuvette. Furthermore, this setup allowed us to position three photoreactors close to one another 

on a breadboard in order to run 3 experiments simultaneously.  

The final assembly, as shown in Figure 5, ANNEX 1, was placed in a « dark room » 

that was screened by ambient light through the use of thick dark-blue curtains. During 

operation, a red light was used to allow subsampling of the reactors while minimizing any light 

exposure to the system. The calculation of the quantum yield of the photoreduction reaction, 
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which defines the number of molecules photochemically reacted divided by the number of 

photons absorbed, could be calculated exclusively by using the photon flux to the photoreactor 

as quantified with chemical actinometry. A solar simulator, on the other hand, requires the 

photon flux to be measured either with a series of different chemical actinometers, each 

sensitive to different wavelengths, or with solar irradiance meters, which is a solid device that 

measures irradiance on on surface.  

Characterization of the photon flux. The photon flux of the irradiation module to the 

flow-through module was measured by chemical actinometry. Chemical actinometry uses the 

photochemical properties of a chemical compound with a well-known quantum yield to back-

calculate the moles of photons absorbed in the system. The advantage of this technique is that 

accounts for the geometry of the setup since the actinometer is a solution that is flows through 

the system identically to the mineral suspensions. One of the most commonly used 

actinometers in the 220-550 nm spectrum is potassium ferrioxalate. The use of a chemical 

actinometer in this system was possible because the LEDs were tuned to a single irradiation 

wavelength. The disadvantage of the chemical actinometry is that not necessarily all 

wavelengths are taken into account, which may lead to errors in the measurement of the photon 

flux. However, this disadvantage is counterbalanced by the error introduced using a solar 

irradiance meter, which does not take into account the geometry of the setup, which is often 

difficult to estimate with precision in a complex setup. The photon flux to the flow-through 

module was evaluated by potassium ferrioxalate (Fe(C2O4)3
3-) actinometry (Parker, 1953; 

Hatchard and Parker, 1956) as modified by Montalti et al. (2006). This technique involves the 

irradiation of a photochemically sensitive molecule for which the quantum yield is well known 

at the wavelength at which it is employed. Because the photon flux is defined as the moles of 

photons absorbed in unit time, and the quantum yield of the actinometer is well known at every 

wavelength, this technique only requires a measurement of irradiation time and moles of 

converted actinometer. By using potassium ferrioxalate, the photoreduction of Fe(III) to Fe(II) 

is obtained through irradiation, and the quantification of Fe(II) obtained 

spectrophotometrically after complexation of the irradiated actinometer with a 1,10 

phenanthroline solution. Briefly, 20 mL of 0.012 M potassium ferrioxalate (K3[Fe(C2O4)3]) 

were circulated through the photoreactor. Samples (0.4 mL) collected after 10, 25, 50, 75 and 

100 seconds were added to BrandTech® plastic UV-cuvettes previously filled with 0.8 mL 
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0.1% buffered 1.10-phenanthroline solution and 1.4 mL of ultrapure water, shaken and left in 

the dark for 30 minutes. The extinction coefficient of the Fe(II)-phenanthroline complex was 

measured at 510 nm in a dark room (ɛ510 = 11100 L mol-1 cm-1). The photon flux was then 

calculated according to: 

φ = 
Nhν

t  = 
moles of Fe(II)-phenanthroline

Φ400 nm × t × F  

where Φ400 nm is the quantum yield of the ferrioxalate at 400 nm (equal to 1.14 (Montalti 

et al., 2006)), t is the irradiation time and F is the fraction of light absorbed by the ferrioxalate 

solution, which in this case was equal to unity (Montalti et al., 2006).  

Use.  Once assembled in a 3x array on the breadboard (Figure 5 – ANNEX 1), a 

photoreaction experiment was carried out by preparing a 500 mL stock suspension of a given 

concentration of Mn oxide (typically between 250 and 500 µM on a Mn molar basis), which 

was then divided into two 250 mL sub-aliquots in glass bottles covered with aluminium foil. 

One of these suspensions was kept in the dark and one was irradiated by inserting the tubing 

of the photoreactors into holes in the bottle caps. Both bottles were put on a magnetic stir plate 

(6x positions for 3x dark and light samples, one pair per photoreactor) to stir the bottle contents.  

The suspension to be irradiated was circulated the through the photoreactor for a set amount 

of time (typically 4 to 5 days) using a peristaltic pump at 80 rpm with 1.6 mm inner diameter 

Tygon tubing (65 ml/min) connected to the Teflon tubing of the remaining setup. All these 

operations were carried out under diffuse red light. Once the experiment was completed, 

cleaning of the flow through setup was achieved by flowing ultrapure water through the system 

in one way and in the other. Typically, an initial aliquot of 1 L water was flown to remove any 

particles trapped in the tubing and cuvette, followed by two aliquots of 4 L in one direction 

and in the other, respectively. Visual inspection of the cuvettes under iradiation was achieved 

to evaluate whether any particles remained attached to the cuvette walls. In the rare cases where 

the first aliquot of water was insufficient to remove the particles (particles sticking to the tubing 

and cuvette), an aliquot of a 3% HNO3 and 2 mM oxalic acid solution was flown through the 

system until no particles were visible, followed by an additional rinse with 1 L water and the 

4 L rinse in one direction and the other, respectively. Rinse the cuvettes with water prior to the 

acid solution turned out to be critical since a precipitate formed in the cuvettes upon acid 
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rinsing of the system with containing residual suspensions that had contained both 

pyrophosphate and calcium. Failure to identify this contamination led to several months of 

unusable data collection, in particular when we were trying to evaluate the effect of suspension 

concentration on the photoreduction efficiency of the mineral. Furthermore, if the circuit was 

dried after the final rinse with water, precipitation occurred. Therefore, once the rinse was 

complete, the inlet and outlet tubing were connected to eachother before detaching the 

peristaltic pump, to maintain the system full with clean MQ water while not in use. The Tygon 

® tubing that was connected to the pump was replaced every 3-4 weeks because of wear and 

tear prevented homogeneous flow beyond this time. 

2.2. Identification and quantification of photoreduced Mn 

Mn(III) quantification by extraction with sodium pyrophosphate. The photoreduction 

of δ-MnO2 may lead to either a 1 or 2 electron reaction to yield Mn(III) or Mn(II). Divalent 

manganese can be determined easily because it is stable as a soluble ion in the solution phase. 

However, this is not true for Mn(III), which remains sorbed onto the surface. Therefore, an 

analytical method was required to determine precisely the amount of Mn(III) that formed upon 

photoreduction. A common lab-based method that is known to complex Mn(III) in birnessite 

without being redox-active itself is sodium pyrophosphate (Wang and Stone, 2003). This 

complexing agent has been used extensively to quantify Mn(III) formed upon oxidation of 

Mn(II) by potassium permanganate (Lingane and Karplus, 1946), to evaluate whether Mn(II) 

oxidation by microorganisms leads to an intermediate Mn(III) species (Stone, 1983; Kostka et 

al., 1995; Webb et al., 2005), as well as to characterize the amount of Mn(III) present in various 

Mn oxide phases (Klewicki and Morgan, 1995; Klewicki and Morgan, 1999) or accumulated 

during organic-promoted reduction of Mn oxides (Wang and Stone, 2003). The protocol for 

Mn(III) quantification with sodium pyrophosphate involves the equilibration of the mineral in 

excess PP for a given amount of time, 48 hours (Klewicki and Morgan, 1998), and then to 

measure the absorbance of the filtrate by UV-Vis spectrophotometry at 2 wavelengths (ε254 nm 

=  6562 M-1 cm-1 and ε484 nm = 100 M-1 cm-1 – Table 1), depending on the concentration of 

Mn(III) (Klewicki and Morgan, 1998). We found that the minimum PP : Mn ratio for Mn(III) 

extraction with this technique was 25 :1. We validated the PP extraction method by 
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determining the extinction coefficient for the Mn(III)-PP complex using a set of Mn(III)-

acetate standards (Figure 1) and comparing it with published values (Table 1).   

 

Figure 1 right) Calibration curve for the Mn(III)-acetate-pyrophosphate standards used for the determination of 
the extinction coefficient of Mn(III)-pyrophosphate at 254 nm by UV-Vis spectrometry; left) absorbance of all of 
the standards at 254 nm; right) calibration curve selecting only standards below 500 µM, which followed the beer-
lambert law, thus fell into the linear range allowing us to assing an extinction coefficient for Mn(III)-
pyrophosphate. 

Table 1: Comparison of the obtained extinction coefficient with literature values 
Mn(III) conc 

range 
ligand to mn 

ratio 
medium wavelength epsilon reference 

mM 4:1 MN3 medium 480 100 /M*cm Kostka et al. (1995) 

uM 4:1 MN3 medium 290 1600 /M*cm Kostka et al. (1995) 

mM 10:1 Deionized water 484 96 /M*cm Klewicki and 
Morgan (1995) 

uM 20:1 to 4:1 seawater 480 65 /M Webb et al. (2005) 

uM 20:1 to 4:1 seawater 258 6750 /M Webb et al. (2005) 

            

0-500 uM 25:1 Deionized water 254 6562/M*cm This work 

0.5 - 1 mM 25:1 Deionized water 484 99.9 /M*cm This work 

Average Mn oxidation number (AMON) determination by potentiometric titration. The 

determination of the AMON of the mineral before irradiation was carried out by titration of 

the Mn oxidation number. Although different titration protocols are described in the literature 

for Mn : the iodometric, oxalometric and potentiometric titrations (Gaillot, 2002; Villalobos et 

al., 2003), the advantages of the potentiometric titration over the oxalometric and iodometrict 

titrations is a more precise determination of the AMON, as described by (Gaillot, 2002; Gaillot 
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et al., 2003; Grangeon et al., 2008). In particular, it has the critical advantage of not requiring 

an independent measurement of the total Mn concentration by a separate technique. The 

detailed description of the protocol is described in the materials and methods of Chapter 3. 

Briefly, this titration protocol involves the titration of excess Fe(II) remaining after reductive 

dissolution of the oxides in a Fe(II) solution with KMnO4 and back titration of dissolved 

Mn(II) to Mn(III) with KMnO4 in a 3 step titration procedure. We decided to apply this method 

after validating it on known oxides. This was achieved by measuring the AMON of birnessite 

end-members for which the oxidation number was known from published studies (Gaillot et 

al., 2003; Feng et al., 2004; Duckworth and Sposito, 2007). This value was then compared with 

the amount of extracted Mn(III) with sodium pyrophosphate on the same minerals, which 

provided two independent measurements of Mn(III) content (Table 2). Once validated, the 

AMON determination of irradiated samples and samples kept in the dark was measured and 

compared to the amount of extracted Mn(III), to evaluate whether all Mn that was not Mn(IV) 

was Mn(III) or a combination of Mn(III) and Mn(II).  

Table 2: Mn extractions results. The results are in accordance with calculations from AMON (potentiometric 
titration): δ-MnO2_0 (AMON 3.84):81% Mn(IV) + 19% Mn(III) or 90.5% Mn(IV) + 9.5% Mn(II), δ-MnO2_1 
(AMON TcBi (AMON 3.84): 84% Mn(IV) + 16% Mn(III), KBi (AMON 3.90): 91% Mn(IV) + 9% (Mn(III). 

 ICP-OES measurements: Mn sol/Mn tot 

 
Na2P2O7 at pH 6.5  

150 mM 100 mM 75 mM 50 mM AMON ± standard deviation on triplicate 
measurements 

δ-MnO2_0 0.21 0.19 0.17 0.18 3.82 ± 0.01 

δ-MnO2_1 0.02 0.01 0.01 0.01 4.06 ± 0.02 

δ-MnO2_3 0.01 0.01 0.01 0.01 4.11 ± 0.01 

δ-MnO2_4 0.02 0.02 0.01 0.01 4.11 ± 0.01 

TcBi 0.16 0.15 0.15 0.08 3.84 ± 0.05 

Kbi 0.10 0.11 0.10 0.07 3.90 ± 0.01 

2.3. Photoexcitation mechanism 

Photoreduction largely depends on the photoexcitation mechanism which occurs on 

very fast timescales as most electron transfer processes. In a system where multiple 

components are present, it is necessary to identify the timescales for the photon absorption and 

electron transfer processes in order to identify the photoreduction mechanism. In the context 

of this dissertation, it was important to identify the timescales for i) photoexcitation of the 
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electron into the conduction band, ii) electron or hole scavenging by surface species, and iii) 

electron-hole recombination.  The comparison of these timescales allowed us to discriminate 

the different steps of the photoreduction process. In particular, if the timescales for electron 

excitation and scavenging were shorter than the timescales of electron-hole recombination, this 

could confirm that photoexcitation governs the photoreduction process, otherwise the observed 

process is likely related to a chemical process (Balzani et al., 2014). Also, the electron-hole 

recombination timescales are important because they describe the lifetime of photoexcited 

electrons and holes, and therefore provide the timescale during which photoexcited electrons 

can participate in the photoreduction process. These timescales, on the order of femto- to 

nanoseconds, require the use of ultrafast time-resolved spectroscopic techniques, such as 

ultrafast pump-probe optical spectroscopy and time resolved X-ray absorption spectroscopy. 

 Ultrafast (transient absorption) pump-probe optical spectroscopy 

Overview of the technique. Ultrafast pump-probe optical spectroscopy is a technique 

that combines « traditional » optical spectroscopy, such as UV-Vis, infrared or Raman 

spectroscopy, with an ultrafast laser to provide information with up to femtosecond (10-15 s) 

time resolution. These techniques measure real time motion in diatomic molecules as well as 

elementary chemical reactions in gases, liquids, solids and biological molecules (Bressler and 

Chergui, 2004). Furthermore, they have been used to probe photoexcitation dynamics in 

photosensitive materials, such as electron-hole pair generation and their relaxation, as well as 

electron transfer from surface sorbed species.  

The term pump-probe itself defines how the technique works : a « pump » signal, often 

a laser pulse, excites the material, whereas the « probe » signal provides a measure of the 

material after a given time delay from the pump. The time resolution (Δt) depends largely on 

the characteristics of the laser, as well as on the configuration of the acquisition setup. In 

particular, the ultrafast lasers used are pulsed lasers, whereby the pulse duration and the 

separation between pulses determines the time resolution of the measurement (Shah, 1999). A 

typical optical pump-probe setup has two main components: the optical source, which is often 

a laser or a combination of two lasers, and the acquisition setup, which is often a 

spectrophotometer. A schematic representation of a pump-probe setup is given in Figure 3. 
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Figure 3. schematic representation of a degenerate ultrafast optical pump-probe setup. 

The optical source is usually an ultrafast laser, for which the pulse width, shape, 

wavelength, energy and repetition rate are well known, and define the time resolution and 

application range of the instrument (Shah, 1999). A review of ultrafast lasers can be obtained 

in Svelto et al. (1996). Depending on the setup, one can distinguish two kinds of pump-probe 

spectroscopy based on the optical source : degenerate and non-degenerate (Shah, 1999). In the 

first case, the pump and the probe pulse trains come from the same laser source, but are split 

into two beams of which one is delayed optically with respect to the other before being focused 

on the sample. The optical delay is often achieved by a mechanical stage, which increases the 

pathlength of the beam to de-synchronize the originally synchronized pump and probe pulse 

trains. The probe pulse can then be either converted into a white light or to another frequency 

with appropriate optical devices, such as crystals or optical parametric amplifiers. The de-

synchronization of these pulses allows the user to observe with the probe the optical properties 

of the material with a time resolution that depends on the extent of de-synchronization of the 

laser pulses. The amount of delay that can be achieved essentially depends on the pulse width, 

generally minimized as much as possible in the design of the laser, and the pulse repetition rate 

(Svelto et al., 1996; Shah, 1999). In non-degenerate pump probe spectroscopy, either two 
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synchronized lasers or a laser and a separate white light source are used (Shah, 1999). The 

advantage of the second technique is that the time resolution becomes independent of the laser 

repetition rate, and thus can be extended to timescales of seconds. In this work, we used both 

degenerate and non-degenerate pump lasers, tuned at 400 nm. 

The acquisition module is typically a spectrophotometer adapted to the wavelength 

characteristics of the probe signal, which defines the wavelength spectrum that will be 

acquired. Various acquisition techniques have been developed in combination with ultrafast 

lasers in pump-probe spectroscopy, amongst which transmission, reflectance and Raman 

spectroscopies (Shah, 1999). In this work, UV-Vis transmission spectroscopy was employed 

as the acquisition technique. In such a setup, data is collected continuously on either a diode 

array or a CCD camera (Shah, 1999), and the data acquisition software converts the optical 

delay into a time delayor by electronics in the case of a degenerate setup and non-degenerate 

setup, respectively.  

Two signals can be identified in a pump-probe spectrometer: the ground state spectrum, 

which is the absorption spectrum of the material before the pump signal excites it, and the 

excited state spectrum, which is the absorbance of the material at a given delay after the pump 

pulse has excited it. Because of the small differences in absorption between excited and ground 

state signals, the spectrometer software usually collects the data as a differential transmission, 

or transient absorption (TA), which is given by ΔA/A0 = (A-A0)/A0, where A is the absorbance 

at time t, and A0 is the ground state absorbance (Shah, 1999).  

Data collection and analysis. Ultrafast transient absorption pump-probe spectroscopy 

data, as collected in this work, is given as a 2D matrix where each column represents a 

wavelength and each row represents a time delay, whereas the values in the matrix represent 

the differential absorbance. This matrix can be loaded into any data processing software, and 

converted into a 2D intensity plot, from which either « wavelength slices » or « time slices » 

can be extracted: the transient absorption data can be plotted as a function of probed 

wavelength, to obtain a transient absorption spectrum at a given delay time, or as a function of 

delay time at a given wavelength to investigate particular features as a function of time. In 

general, two main features can be observed in any transient absorption spectrum of a 

photosensitive material: a positive and a negative signal, which indicate the appearance and 
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disappearance, respectively, of optical features compared to the ground state absorbance. The 

positive signal is called the excited or enhanced state absorption (ESA), whereas the negative 

signal is called the ground state bleach. In the case of semiconducting nanoparticles, these two 

features, describe the population of photoexcited electrons and photoexcitable electrons in the 

valence band, respectively. Changes in the ESA over time describes the evolution of the 

photoexcited electrons in the conduction band, whereas changes in the ground state bleach 

describe the recombination of the photoexcited electrons and holes in the valence band. 

 Time resolved X-ray absorption spectroscopy (TRXAS) 

One of the main difficulties that arise in all optical pump-probe studies on complex 

systems is the interpretation of the spectroscopic data in terms of molecular structure. 

Therefore, there have been expansions of this technique to obtain molecular-scale information 

that is element specific. One such expansion is time resolved X-ray absorption spectroscopy. 

This technique is similar to ultrafast pump probe spectroscopy in that it uses a laser pump, but 

instead of using an UV-Vis probe,  the probe is an X-ray source, generally from a synchrotron. 

In particular, synchrotron based X-ray sources provide X-ray energy tunability and brilliance. 

The use of a synchrotron-based X-ray probe, by exciting core electrons in the material, has the 

advantage of providing information on valence changes of given elements in the system, as 

well as providing information of structural changes in the material within the local bonding 

environment of the absorber atom. The time resolution of TRXAS is typically limited by the 

pulse width of the X-ray pulses (~30-100 ps) (Bressler and Chergui, 2004).  A detailed review 

of the X-ray absorption spectroscopy technique is given elsewhere (Kelly et al., 2008; Calvin, 

2013).  The requirement of a synchrotron source largely complicates the experimental setup 

compared to all optical pump-probe spectroscopy. In particular, the frequency and pulse 

duration of the X-ray source is fixed by the synchrotron specifics and cannot generally be 

altered for the ultrafast spectroscopy studies. In a typical setup, specific electrons that are 

isolated from the other electrons in the electron bunch are identified and selected by the 

beamline (with various techniques – see Bressler and Chergui (2004)), which greatly reduces 

the X-ray photon flux to the sample compared to a traditional XAS beamline. Therefore, each 

datapoint at a particular energy or a particular delay time collected in a TR-XAS experiment 

typically requires 1-10 s of accumulation time (Bressler and Chergui, 2004). The low number 
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of incident photons also requires optimization of signal to noise ratio without introducing 

confounding beam damage issues. The sample must be therefore optimized to achieve the 

optimum S/N ratio with the least amount of X-ray photons absorbed. Conversely, the laser 

pulse must be able to excite enough sample to give a detectable change. Finally, the detector 

used must have a sufficiently fast response to avoid saturation during acquisition. Examples of 

such detectors are streak cameras and avalanche photodiodes (Bressler and Chergui, 2004). 

The setup used in this study is described in detail in Chapter 4. 

The TRXAS technique has been successfully applied to study systems that range from 

the dissociation of the CO ligand in carboxymyoglobin in biological systems (Mills, 1984), to 

photoinduced electron transfer between metallo-organic molecules such as Fe(III)-porphyrin 

to a Zn-porphyrin in coordination chemistry on the microsecond timescale (Thiel et al., 1993; 

Chen et al., 1999). In material science, investigations have been pushed to the nanosecond 

domain with semiconductor-to-metal phase transition investigations (Johnson et al., 2003) or 

photodissociation of nickel tetraphenylporphyrin (Chen et al., 2001). The current challenge is 

expanding the technique to the picosecond or subfemtosecond timescale, with experiments 

carried out essentially in material science investigations such as photoinduced electronic 

changes in semiconductors. In particular, the work of Adams et al. (2002) coupled optical and 

X-ray absorption pump probe spectroscopy to investigate electron and hole dynamics in the 

semiconductor gallium arsenide (GaAs). In particular, the use of X-ray absorption 

spectroscopy assigned the photoexcitation process to discrete levels instead of band states, 

which could not be obtained by all optical pump-probe spectroscopy. Other studies 

investigated metal-to-ligand charge transfer reactions in [RuII(bpy)3]2+ (Saes et al., 2004) or 

[CuI(dmp)2]2+(Chen et al., 2003). In particular, the use of TRXAS allowed the authors to 

investigate photoexcitation-dependent valence changes in the metals by observing the time 

dependent XANES and EXAFS on the metal K-edge. Of greater relevance to this dissertation, 

Katz et al. (2012) used TRXAS to investigate the electron mobility in dye-sensitized iron 

oxyhydroxide nanoparticles. In this case, TRXAS was used to expand the observations 

obtained by all optical pump-probe spectroscopy to investigate changes in short-range 

structural topology of the minerals upon electron transfer. The results allowed the authors to 

identify electron hopping across the mineral bulk through a localized lower valence metal site 

(polaron). This short review shows that the novelty of the field and the wides space still 
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available for development. Nevertheless, the technique is promising to obtain detailed 

structural information on processes occurring on ultrafast timescales in materials, which is of 

primary importance to understand the photochemical mechanisms involving semi-conducting 

mineral nanoparticles. 
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Chapter 3. Controlled synthesis of δ-MnO2: an in-depth 

characterization of the synthesis products 

This chapter was initially submitted and rejected by the Journal of Colloid Interface 

Science, and will be resubmitted to American Mineralogist with the title “Solution pH as a 

driver of specific surface area and coherent scattering domain size of δ-MnO2 nanoparticles”, 

Marafatto FF, Peña J. 

3.1. Abstract 

Layer-type Mn oxides (birnessite) are characterized by high redox reactivity, nanoscale 

dimensions and the presence of point defects in the form of layer vacancies. These properties, 

together with their common occurrence in the environment, make these minerals key players 

in the biogeochemical cycle of carbon and many trace metals. Delta MnO2, which is 

synthesized by reacting Mn(II) and Mn(VII) in the presence of NaOH, is considered an analog 

of natural birnessites and has been used widely in reactivity studies. Here, we investigate the 

effect of varying the synthesis pH and reagent addition speed, on the physico-chemical 

properties of the mineral. We produced δ-MnO2 batches with specific surface areas (SSA) 

ranging from 119 to 259 m2 g-1 and crystallite sizes ranging from about 3 to 7 nm. Our results 

show not only that pH is the key driver of SSA and nanoparticle aggregation, but that SSA can 

be tuned by varying the pH of washed post-synthesis materials. Crystallite size, on the other 

hand, is inversely correlated with SSA and changes only upon acidification of post-synthesis 

samples, which suggests that proton-promoted reduction of Mn(IV) leads to changes in crystal 

structure or size.  

Keywords 

δ-MnO2, mineral synthesis, birnessite, vernadite, nanoparticles, specific surface area, BET 

3.2. Introduction 

Birnessite minerals (layer-type Mn oxides) are among the most widespread oxides in 

the environment (Post, 1999). They often occur in association with other phases (i.e. with Fe 
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oxides in desert varnishes, soils, sediments and ocean nodules), or are found embedded in a 

biofilm matrix (Stumm and Morgan, 1996; Post, 1999; Villalobos et al., 2003; Tebo et al., 

2004). These minerals have either monoclinic or hexagonal sheet symmetry, depending on 

the Mn(III) content of the Mn octahedral layers (Burns, 1976). Birnessite minerals found in 

soils and sediments tend to have hexagonal sheet symmetry and be nanocrystalline (Tebo et 

al., 2004), with particles composed of randomly stacked sheets of edge-sharing 

MnO6 octahedra held together by interlayer alkaline cations and water (Post, 1999; Villalobos 

et al., 2003).  Birnessites are known to have Mn(III) substitution for Mn(IV), point defects in 

the form of Mn(IV) vacancies and high specific surface area deriving from their small particle 

size. The combination of these properties render these minerals exceptionally reactive towards 

the sorption of trace metals (Ruetschi, 1984; Marcus et al., 2004; Peacock and Sherman, 2007; 

Simanova et al., 2015). Furthermore, the high redox potential of the Mn(IV)/Mn(II) and 

Mn(III)/Mn(II) couples makes these minerals among the strongest oxidants present in nature 

(Sherman, 1984; Morgan, 2000; Sposito, 2008).  

Given their broad importance in environmental processes, the sorption and oxidative 

properties of birnessite have been investigated in numerous laboratory studies (Tebo et al., 

2004 and references therein ; Wang et al., 2012; Remucal and Ginder-Vogel, 2014 and 

references therein ). For example, the sorption of toxicant metals such as Pb, Zn, Cd, Ni 

(Zasoski and Burau, 1988; Villalobos et al., 2005; Peacock and Sherman, 2007; Grangeon et 

al., 2012; Simanova et al., 2013) as well as the sorption and oxidation of As, Co, Cr (Manceau 

et al., 1997; Nico and Zasoski, 2000; Lafferty et al., 2010; Simanova and Peña, 2015) by 

birnessite minerals has been extensively studied. Multiple studies have also investigated the 

degradation of organic compounds, including pollutants such as phenols and anilines (Remucal 

and Ginder-Vogel, 2014 and references therein) and low molecular weight aliphatic organic 

acids (Wang and Stone, 2006a, b). Furthermore, birnessite minerals have been studied to 

investigate their role in the photochemical oxidation of water, both to understand the 

photoreduction mechanism (Marafatto et al., 2015) and their use as potential water oxidation 

catalysts (Hocking et al., 2011; Wiechen et al., 2012). Most mechanistic laboratory studies 

employ δ-MnO2 as an analog of natural birnessite with hexagonal sheet symmetry and 

nanoscale dimensions (Post, 1999; Villalobos et al., 2005; Wang et al., 2012; Simanova et al., 

2015). This mineral is characterized by exclusively Mn(IV) octahedral nanosheets held 
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together by Na+ ions and water molecules, which balance the excess negative charge of the 

sheets. 

The most commonly cited synthesis pathway for δ-MnO2 involves the oxidation of 

Mn(II) by Mn(VII) in the presence of NaOH (Villalobos et al., 2003). The mineral 

nanoparticles obtained through this procedure are less than 10 nm across the crystallographic 

ab plane and consist of 2 to 3 turbostratically stacked sheets (Murray, 1974; Villalobos et al., 

2003). However, this preparation can lead to minerals with variations in both SSA, varying 

between 120 and 315 m2/g (Buser and Graf, 1955; Murray, 1974; Godtfredsen and Stone, 1994; 

Villalobos et al., 2003; Duckworth and Sposito, 2007; Lafferty et al., 2010) , and Mn(III) 

content, with average Mn oxidation numbers (AMON) reported between 3.69 (Grangeon et 

al., 2008) and 4.01 (Villalobos et al., 2003). Furthermore, reactivity varies strongly with these 

physicochemical properties. For example, both the adsorption of transition metals on δ-MnO2 

(Villalobos et al., 2003; Simanova et al., 2015) and the oxidation of organic compounds by 

birnessite (Remucal and Ginder-Vogel, 2014) have been shown to depend on SSA and AMON 

of the mineral. While differences in Mn(III) content in the products stem from the 

Mn(VII):Mn(II) ratio employed in the synthesis (Villalobos et al., 2003), to date, the synthesis 

parameters that control the SSA of the products have not been investigated systematically.  

The objective of this study was to evaluate the effect of two synthesis parameters, 

reagent addition rate and NaOH amount, on the physicochemical properties of δ-MnO2. Both 

of these variables can influence the kinetics of nucleation (Thanh et al., 2014). In addition, the 

amount of NaOH was also the main difference in the two most cited synthesis protocols 

(Murray, 1974; Villalobos et al., 2003). We synthesized six batches of δ-MnO2 by varying the 

speed of MnCl2 addition and the amount of NaOH (directly related to synthesis pH), while 

keeping constant all other parameters as described in Villalobos et al. (2003). We then 

characterized the minerals by measuring their chemical composition (alkali to Mn ratio, 

Mn(III) content and AMON), specific surface area (SSA) as measured by BET theory N2 

adsorption, water content, and crystal structure. Finally, we evaluated the reversibility of the 

physical-chemical properties of the as-synthesized minerals by equilibrating different 

suspensions to pH values that were several units above or below the synthesis pH value. 
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3.3. Materials and methods 

 Background 

The most common synthesis of δ-MnO2 requires mixing stoichiometric amounts of 

MnCl2 and KMnO4 in the presence of NaOH under vigorous stirring according to the 

following reaction: 

2𝐾𝐾𝐾𝐾𝐾𝐾𝑂𝑂4 + 3𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙2 + 4 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 → 5 𝑀𝑀𝑀𝑀𝑂𝑂2 + 2 𝐾𝐾𝐾𝐾𝐾𝐾 + 4 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 6 𝐻𝐻2𝑂𝑂  (1) 

where NaOH is used to neutralize the acid formed during the reaction and to enhance 

the kinetics of Mn(II) oxidation. The two most cited protocols use either 4 (Murray, 1974) or 

5 moles (Villalobos et al., 2003) of NaOH. Under condition of excess NaOH, Villalobos et al. 

(Villalobos et al., 2003; Villalobos et al., 2006) obtained a mineral with the following chemical 

formula 

 Na0.24MnO2 • 0.72 H2O (2) 

with Na and H2O assigned to interlayer positions. Their mineral had a BET-SSA of 

120 m2/g, a coherent scattering domain (CSD) size of 5 nm along the crystallographic ab plane 

and 2-3 MnO2 layers stacked turbostratically along the crystallographic c axis. Below, we 

summarize the protocol followed by Villalobos et al. (2003): 

• Solutions of 1280 ml of 0.2 M KMnO4, 1280 ml of 0.3 M MnCl2 and 1440 ml of 0.5 

M NaOH were prepared separately in volumetric flasks to yield a 2:3:5 mole ratio of 

Mn(VII):Mn(II):NaOH.  

• The KMnO4 solution was added to the NaOH solution at a rate of 256 ml/min (5 min 

total time) under vigorous stirring. 

• The MnCl2 solution was added to the KMnO4 + NaOH mixture at a rate of 36 ml/min 

(35 min total time) under vigorous stirring.  

• The suspension was allowed to settle for 4 hours. The supernatant was syphoned to 

reduce the washing volume.  

• The suspension obtained in Step 4 was centrifuged at 27500 relative centrifugal force 

(RCF) for 20 minutes at 25° C in 250 ml polypropylene co-polymer (PPCO) bottles. 

The supernatant was discarded after centrifugation. 
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• The mineral paste was resuspended in 1 M NaCl, washed by shaking for 1 hour and 

centrifuged (27500 RCF, 20 min, 25°C). The supernatant was discarded. This washing 

procedure was repeated four more times, with washing times that ranged from 1 hour 

to overnight. This step exchanges K+ for Na+ as the interlayer counter ion. 

• The mineral paste was washed a total of 10 times as described in Step 5, but using MQ 

water instead of NaCl. The washing times ranged from 1 hour to overnight. This step 

removes all Na from the supernatant. 

• The final product was divided into 2 aliquots: one was kept in suspension and 

equilibrated at pH 8 and the other was freeze-dried. 

 Mineral synthesis  

All solutions, unless specified otherwise, were prepared using A.C.S.-grade reagents 

and fresh MQ water (18 Ω • cm). Six batches of δ-MnO2 were prepared with three 

modifications of the protocol established by Villalobos et al. (2003) (Figure S1, Table 1).  

First, we downscaled the reagent volumes (Step 1) to obtain a final suspension volume of 940 

mL. We used 300 ml of 0.2 M KMnO4, 300 ml of 0.3 M MnCl2 and 340 ml of NaOH. 

Potassium MnO4
- was purchased as a standardized 0.2 M solution (Sigma-Aldrich). The 

MnCl2 solutions were prepared using MnCl2 • 4H2O (≥99%, ReagentPlus®) and nitrogen-

purged MQ water; prior to use, the Mn(II) concentration was measured by ICP-OES 

spectrometry. The accurate determination of Mn(II) concentration is necessary to avoid the 

accumulation of Mn(III) in the products if excess Mn(II) is used, as we could observe in 

preliminary syntheses. Second, the concentration of NaOH was varied between 0.4 M and 0.6 

M. Third, the addition speed of MnCl2 to the KMnO4 and NaOH mixture (Step 3) was varied 

between 18 ml/min and 72 ml/min. The different δ-MnO2 batches are identified by a letter-

number scheme where the letter indicates the molarity of the NaOH solution used (A = 0.4 M, 

B = 0.5 M, C = 0.6 M) and the number indicates the MnCl2 addition speed (1 = 18 ml/min, 2 

= 36 ml/min and 3 = 72 ml/min. Finally, we repeated the A3 synthesis to verify the 

reproducibility of the protocol and refer to this sample as A3_b.  
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Table 1: Synthesis parameters 
Sample name MnCl2 addition [mL/min] NaOH [M] 

δ-MnO2_A1 18 0.4 

δ-MnO2_A2 36 0.4 

δ-MnO2_A3 72 0.4 

δ-MnO2_A3b 72 0.4 

δ-MnO2_B2 36 0.5 

δ-MnO2_B3 72 0.5 

δ-MnO2_C2 36 0.6 

All syntheses were carried out in a wide neck 1 L Erlenmeyer flask (15 cm bottom 

diameter) and reagent addition rate was controlled by a Cole-Parmer Masterflex peristaltic 

pump and Tygon© tubing (Figure S1). The flask contents were mixed vigorously using an 

overhead paddle stirrer (IKA RW 16 basic) set at 500 rpm and equipped with a BOLA PTFE-

coated 4-blade stirrer shaft (5.5 cm propeller head diameter and 2 cm propeller blade height). 

Once the addition of reagents was completed, the suspension was left to settle for 30 min 

instead of 4 hours (Step 4) and 100-200 ml of clear supernatant were syphoned. The remaining 

suspension (800-900 ml) was transferred to 250 ml PPCO centrifuge bottles for washing as 

described in Steps 5 – 7. After each washing cycle, the pH of the supernatant was measured 

with Merck Millipore pH paper. The electrical conductivity (Mettler EL30 conductivity meter) 

of the supernatant was also measured after each MQ washing cycle (Step 7). No further 

washing steps were conducted once the conductivity of the supernatant fell below 30 μS/cm to 

avoid losing significant amounts of the product. Typically, five washing cycles were sufficient 

to meet this criterion.  

After synthesis, half of the suspension was freeze dried and stored at -20 oC, whereas 

the remaining half was stored in suspension at room temperature in the dark without further 

pH equilibration. In a separate set of experiments, an aliquot of sample C2 (high NaOH) was 

equilibrated to pH 4 and an aliquot of sample A2 (low NaOH) was equilibrated to pH 11 for 7 

days to test whether solution pH could modify the physicochemical properties measured for 

the “as-synthesized” minerals. Suspension pH was maintained constant using a Metrohm 718 

stat titrino with either 50 mM NaOH or 50 mM HCl. The C2 and A2 samples equilibrated at 

pH 4 and pH 11 are identified as C2_H and A2_OH, respectively.  
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 Chemical analyses 

The chemical composition of δ-MnO2 was characterized with respect to the alkali metal 

content, Mn(III) content, average Mn oxidation number and water content. The Na,K:Mn ratio 

was measured by inductively coupled plasma optical emission spectrometry (ICP-OES, Perkin 

Elmer Optima 8300) from samples digested in a 3% HNO3 and 0.05 M H2C2O4 solution. The 

average Mn oxidation number (AMON) was determined by a three-step potentiometric 

titration that yields a concentration-independent measure of AMON (Grangeon et al., 2008) 

with a Metrohm 888 Titrando automatic titrator equipped with a Pt potentiometric electrode. 

Briefly, 15 mg of δ-MnO2 were dissolved in a 0.01 M Mohr’s salt [(NH4)2Fe(SO4)2•6H2O] 

solution and residual Fe(II) was titrated with 0.01 M KMnO4. A parallel Mohr’s salt solution, 

to which no mineral was added but whose mass was matched gravimetrically on an analytical 

balance (± 0.001 g precision), was also titrated with 0.01 M KMnO4. The difference in the 

volume of KMnO4 used in these two titrations thus provided the amount of Fe(II) required to 

reductively dissolve the mineral. The amount of Mn(II) generated by reductive dissolution of 

the mineral was back titrated with 0.02 M KMnO4 to Mn(III), which was trapped by 

complexation with excess sodium pyrophosphate (Na4P2O7, abbreviated hereafter as PP) 

(Kostka et al., 1995; Klewicki and Morgan, 1998; Webb et al., 2005). The sensitivity of this 

method was assessed by AMON determinations of MnCl2, Mn(III)-acetate powder and 

pyrolusite (-MnO2, 99.99 % trace metals basis). The measured values were accurate within 

0.05 AMON units of the theoretical oxidation numbers, which is equivalent to a 5% uncertainty 

in the Mn(III) and Mn(IV) content for a mineral containing exclusively Mn(III) and Mn(IV). 

A reproducibility of 0.02 - 0.04 AMON units was determined from the standard deviation of 

triplicate measurements on the synthesis products (Table 2).  

A second measure of average Mn oxidation number was obtained by determining the 

amount of Mn(III) extractable by pyrophosphate (Kostka et al., 1995; Klewicki and Morgan, 

1999; Wang and Stone, 2003). Briefly, 5 mg of dry sample were equilibrated in excess PP with 

a 20:1 PP:Mn ratio (50 ml of 20 mM PP at pH 6.5) for 48 hours in polypropylene centrifuge 

tubes in the dark. Pyrophosphate is a redox-inert chelator (Wang and Stone, 2008), thus no 

Mn(III) should be generated by reduction of Mn(IV) during the extraction. The absorbance of 

a filtered aliquot was measured at 254 nm (ε = 6562 M cm-1 L-1) in a 1 cm path length quartz 
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cuvette using a 20 mM PP solution as a blank. To obtain the mole fraction of Mn(III), the 

Mn(III) concentration measured spectrophotometrically was divided by the total Mn 

concentration in the suspension, as measured by ICP-OES analysis of an acid-digested 

suspension aliquot. All measurements were conducted in triplicate. Finally, this method was 

validated through AMON measurements of two well-defined Mn oxide phases under the 

assumption that each mineral consisted exclusively of Mn(III) and Mn(IV). For triclinic 

birnessite [Na0.25Mn(III)0.16Mn(IV)0.84O2 • 0.66 H2O (Feng and Lingrel, 1994)], we found 

15.3 ± 0.5 % PP-extractable Mn(III) and an AMON value of 3.84 ± 0.05, which corresponds 

to  11 – 21 % Mn(III). For K-birnessite [K0.265Mn(III)0.10(Mn(IV)0.825Vac.0.175)O2 • 0.68 H2O 

(Gaillot et al., 2003)], we found 10.3 ± 0.5 % extractable Mn(III) and an AMON value of 3.90 

± 0.01, which corresponds to 9 – 11 % Mn(III). These independent measurements of Mn(III) 

are in excellent agreement. However, the uncertainty on Mn(III) content as extracted by PP is 

generally lower than that determined by the potentiometric titration method. 

To determine the amount of water strongly sorbed at the mineral surface, we performed 

thermogravimetric analyses (Mettler Toledo TGA/SDTA 851e) by heating approximately 30 

mg of sample in alumina crucibles between 30 °C and 480 °C at a rate of 10°C/min. The water 

content was determined by subtracting the TGA curve of an empty crucible from the TGA 

curve of the sample, and normalizing this mass loss value by the initial sample mass. The 

structural water content was obtained by measuring the weight loss percentage between 80° C 

and 250° C (Villalobos et al., 2006).  

 Structural characterization of the synthesis products 

The δ-MnO2 products were characterized in terms of specific surface area, mineral 

phase and intermediate-range structure (< 2 nm) using freeze-dried samples, whereas short-

range structure (< 6 Å) was characterized on samples filtered onto 0.45 µm nitrocellulose 

membranes from mineral suspensions. Specific surface area was determined by a 5-point BET 

theory N2 adsorption isotherm at 77 K (Micromeritics Gemini 2375). The measurement 

uncertainty was defined by the instrument error (5 %).   

Synchrotron-XRD (SR-XRD) patterns were acquired at the Swiss-Norwegian beamline 

of the European Synchrotron Radiation Facility (BM01B - ESRF) from powders packed into 
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Kapton® polyimide capillaries mounted on a goniometric stage, which was spun at 50-100 rpm 

during data acquisition. Diffraction patterns were acquired with the SPEC software (Certified 

Scientific Software ©) on a 2D CCD plate using a 0.54 Å radiation wavelength. Data reduction 

was carried out with FIT-2D (Hammersley, 1997) using a LaB6 standard for calibration. The 

2D XRD patterns were extracted from the background-subtracted azimuthal images using 

custom routines written in the Python programming language [PyFAI (Kieffer and Karkoulis, 

2013)]. The SR-XRD patterns were background subtracted by subtracting the diffraction 

pattern of an empty polyimide capillary from the diffraction pattern of the sample. These data 

were used to estimate particle size according to the Scherrer formula (Patterson, 1939), which 

provides a volume-averaged dimension along the direction perpendicular to the diffracting 

plane (Patterson, 1939; Warren, 1990): 

 L = Kλ/BcosΘ (3) 

where L is the cube root of a spherical particle (nm), K is the Scherrer constant, B is 

the broadening of the reflection (in rad) and λ (nm) and Θ (rad) are the radiation wavelength 

and the scattering angle, respectively. We estimated particle size by approximating B as the 

FWHM of the diffraction peaks, as determined by fitting Gaussian functions to the diffracting 

peaks and K values of 0.726 to 1.027 (Langford and Wilson, 1978). 

X-ray absorption spectra were collected at the Swiss light source (SLS) in Villigen, 

Switzerland, at beamline SuperXAS-X10DA, with a beam current of 400 mA. Manganese K-

edge spectra were acquired at room temperature in transmission mode using a quick-scanning 

Si(111) double crystal monochromator oscillating around the Mn K-edge (6.4 – 6.9 KeV) at a 

frequency of 1 Hz. The X-ray energy was calibrated with a Mn metal foil by setting the first 

inflection point in the first derivative of the X-ray absorption near edge structure (XANES) 

spectrum to 6539 eV. The samples were mounted on acrylic sample holders, sealed with 

polyimide tape. The spectra were inspected to verify that no beam-induced damage occurred 

and then averaged with the JAQ software (M., 2015). All data reduction was performed in 

ATHENA (Ravel and Newville, 2005) to obtain XANES and EXAFS (extended X-ray 

absorption fine structure) spectra, a GUI built on the IFEFFIT engine (Newville, 2001). 

Averaged spectra were background subtracted and normalized by fitting the pre-edge region 
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with a linear function and the post-edge region with a quadratic function, and setting E0 = 6554 

eV, Rbkg = 1.0 Å, no clamps, k-weight = 3, normalization order 3.  

3.4. Results 

 Physical-chemical characterization 

Table 2 summarizes the chemical characteristics of the different δ-MnO2 samples. At 

the end of Step 4 in the synthesis protocol, the supernatant pH was close to 4, 8 and 12 for the 

A, B, and C mineral series, respectively.  At the end of the MQ washing steps (Step 7), the 

supernatant pH increased to 6 for the “A” minerals, whereas the pH decreased to 8 and 11 for 

the B and C minerals, respectively. The electrical conductivity decreased by one order of 

magnitude at each MQ washing step, from ~10 mS/cm to < 10 µS/cm after 5 washing steps, 

except in the high pH synthesis (C2). In this batch, the conductivity of the supernatant did not 

decrease below 433 μS/cm after the third washing step and the supernatant contained 

colloidally-stable particles.  

Table 2: Physico-chemical properties of synthesis products.  
Sample name Na/Mn 

[%] 

EC1 

[µS/cm] 

pH1 

 

Mn(III)-PP1 

±  SD [%] 

AMON1 ± 

SD 

SSA1  ± 

σ  [m2/g] 

CSD (ab plane) 

[nm] 

        

δ-MnO2_A1 16.1 4 6 2.57 ± 0.92 4.03 ± 0.03 196 ± 10 4.30 – 6.08 

δ-MnO2_A2 16.6 8 6 1.99 ± 0.29 4.02 ± 0.02 190 ± 10 4.30 – 6.08 

δ-MnO2_A3 16.0 4 6 2.07 ± 0.38 4.03 ± 0.01 259 ± 13 4.22 – 5.97 

δ-MnO2_A3b 16.7 4 6 1.77 ± 0.03 4.06 ± 0.04 257 ± 13 4.08 – 5.77 

δ-MnO2_B2 30.2 10 8 2.07 ± 0.52 4.03 ± 0.01 163 ± 8 3.59 – 5.08 

δ-MnO2_B3 28.9 10 8 2.14 ± 0.79 4.02 ± 0.01 167 ± 8 3.49 – 4.93 

δ-MnO2_C2 35.1 433 11 4.05 ± 0.26 4.00 ± 0.02 119 ± 6 2.83 – 4.00 

δ-

M O A2 OH 
- - 11 2.88 ± 0.35 3.99 ± 0.01 117 ± 6 5.01 – 7.09 

δ-MnO2_C2_H - - 4 5.66 ± 1.58 3.92 ± 0.01 213 ± 11 4.72 – 6.67 

1The electrical conductivity (EC) and pH were measured in the supernatant at the end of the synthesis. The 
precision of the pH measurement was ± 1. 2Standard deviations (SD) were calculated from triplicate 
measurements; σ indicates instrument error. 
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After freeze drying and grinding in an agate mortar, all minerals were of comparable 

color, between dark brown and black. Chemical analysis showed that the Na: Mn ratio 

increased from 16% to 35% as the synthesis pH increased from 4 to 12, whereas the K: Mn 

ratio was less than 0.1% in all samples. The AMON measurements gave values between 4.00 

± 0.02 at high pH and 4.06 ± 0.04 at low pH. These AMON values, which are accurate to 0.05 

AMON units, are consistent with the calculated AMON based on PP extractions. However, we 

measured about 2 % PP-extractable Mn(III) in all samples, except for batch C2, which showed 

4.3% ± 0.7% Mn(III) (Table 2).  Because PP is a non-redox active chelating agent (41), any 

aqueous Mn(III) must derive from the mineral as Mn(III). However, for sample C2, which had 

a pH of 11, it is not possible to rule out the production of additional Mn(III) as the pH was 

lowered from 11 to 6.5 (Manceau et al., 2013). Finally, the structural water content as 

determined from TGA curves (Figure S2) was comparable between samples: decreasing from 

17 % to 12 % as the synthesis pH increased from 4 to 12. Based on these measurements, we 

assigned a chemical formula to each synthesis product: 

δ-MnO2_A Na0.15Mn(IV)0.98Mn(III)0.02O2 • 1.04 H2O (3) 

δ-MnO2_B Na0.27 Mn(IV)0.97Mn(III)0.03O2 • 0.94 

H2O 

(4) 

δ-MnO2_C Na0.32 Mn(IV)0.96Mn(III)0.04O2 • 0.74 

H2O 

(5) 

 Structural characterization  

Among the structural properties, we found that the SSA measured by BET theory N2 

adsorption was proportional to the amount of NaOH employed for the synthesis, as shown in 

Figure 1A. The SSA also correlates with the MnCl2 addition rate, although only in the low pH 

samples (A1, A2 and A3, Figure 1B). Finally, aging of suspensions of the washed minerals 

did not have a significant effect on the BET-SSA, as indicated by a smaller than 3 % change 

in SSA measurements of a δ-MnO2 batch (Marafatto et al., 2015) stored as a suspension for 

about 11 months. The long-term stability of the particles suggests mineral storage in 

suspension, rather than as freeze-dried powders, may be preferable to avoid particle 

aggregation or changes in aggregate morphology that may not be reversible after re-suspension 

(58). 
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Figure 1A) Specific surface area as a function of pH (equivalent to NaOH concentrations of 0.4 M, 0.5 M and 
0.6 M, respectively) for minerals synthesized with MnCl2 addition rate of 36 ml/min; B) Specific surface area as 
a function of MnCl2 addition rate for minerals synthesized with 0.4 M NaOH (red circles) and 0.5 M NaOH 
(green diamonds).  

In Figure 2 the powder SR-XRD patterns for the different δ-MnO2 samples show the 

characteristic broad reflections of the 20l, 11l planes at ~12° 2Θ and 02l, 31l planes at ~25° 

2Θ (Villalobos et al., 2003). The ratio between these d-spacings is close to √3, which indicates 

hexagonal symmetry. However, there are differences between samples that are worth noting. 

For example, the 02l, 31l reflection at 12° 2Θ shows greater asymmetry at higher 2Θ angles in 

the high pH samples compared to the lower pH samples. This broadening is related to the 

coherent scattering domain (CSD) size in the ab plane, as well as to the position of interlayer 

species (Na, H2O and Mn(III), if present) (Villalobos et al., 2006). The “bumps” visible in the 

2Θ region between the 20l,11l and the 02l,31l reflection are sensitive to the position of 

interlayer species with respect to the octahedral layer. The broadening of the 20l,11l peak, on 

the other hand, is strictly related to the CSD size: a broader peak indicates a smaller CSD 

(Villalobos et al., 2006). The greater CSD size along the ab plane of the samples synthesized 

at low pH relative to those synthesized at high pH is apparent in Figure 3, where we compare 

a subset of the diffraction patterns. Finally, through application of the Scherer equation, we 

estimated CSD sizes along the ab plane that ranged from 5.19 ± 0.89 to 3.42 ± 0.59 nm (Table 

2). The formation of smaller crystallites at high pH values is consistent with the base-catalyzed 

oxidation (and nucleation) of Mn.  
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Figure 2: SR-XRD patterns for the synthesized minerals. The diagnostic broad diffraction peaks at 13° and 21° 
2Θ, equivalent to d spacings of 0.35-0.36 and 0.24 nm respectively, are visible, and represent the reflections from 
the 21l, 11l and 31l, 11l crystallographic planes, respectively.  

  
Figure 3: SR-XRD patterns showing the 21l, 11l and 31l, 11l reflections in a subset of samples show different 
degrees of peak broadening. Data was background subtracted by subtracting the diffraction pattern of the empty 
kapton capillary between 5° and 40° 2Θ, then each diffraction pattern was normalized to the maximum intensity 
of the reflection at 12° 2Θ. A) SR-XRD data for the three synthesis batches chosen as endmembers based on BET-
SSA (δ-MnO2 A3, B2 C2). 2Θ; B) SR-XRD of δ-MnO2 A2 and δ-MnO2 A2 after equilibrating at pH 10 for 1 
week; C) SR-XRD of δ-MnO2 C2 and δ-MnO2 C2 after equilibrating to pH 4 for 1 week. 

The XANES and EXAFS Mn K-edge spectra collected from all samples are shown in 

Figures 5 and 6, respectively. Consistent with wet chemical data, the XANES and first 

derivative of the XANES (Figures 5) show that Mn(IV) is the prevalent oxidation state in all 

samples. The white line position at 0.5 absorption units is 6551.9 eV, which is consistent with 

the energy reported previously for a mineral composed dominantly of Mn(IV) (Bargar et al., 
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2005). The EXAFS spectra from the different samples (Figure 6) are also in good agreement 

with the published EXAFS spectrum of δ-MnO2 (Marcus et al., 2004). In particular, the 

“staircase” feature between 4 and 6 Å-1 indicates a mineral of the phyllomanganate family, 

whereas the absence of symmetric oscillations peaking at 8.1 and 9.2 Å-1 in the “indicator” 

region between 7.8 and 9.6 Å-1 indicates the absence of interlayer Mn(III) and low to no 

Mn(III) in the octahedral layer (Manceau et al., 2004). This data is consistent with the XANES 

spectra and PP extraction results, which show Mn(III) at levels below the 5-10% detection 

limit of XAS (Bargar et al., 2000). 

 
Figure 4: Comparison of the specific surface area and the FWHM of the 310,020 reflection in the XRD diffraction 
patterns shown in Figure 3, which is inversely proportional to the coherent scattering domain size along the 
crystallographic ab plane. 
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Figure 5 A) Normalized XANES spectra for the various minerals, all showing the same white-line position; B) 
First derivative of the XANES spectra shown in A, with indication of the features that are sensitive to changes in 
AMON. 

 
Figure 6. EXAFS spectra collected from all mineral samples. The “staircase” and “indicator” regions show the 
typical features of a phyllomanganate phase with little to no Mn(III). 
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3.5. Discussion 

Mn(IV) content. Our potentiometric titration and PP extraction measurements show 

that all δ-MnO2 preparations consisted dominantly of Mn(IV) (Table 2).  These results indicate 

that neither MnCl2 addition speed nor NaOH concentration influence the oxidation state of Mn 

in the mineral. Instead, the Mn valence in the products is governed by the Mn(VII)/Mn(II) 

ratio, such that lowering the Mn(VII)/Mn(II) ratio from 0.67 to 0.52 leads to a decrease in 

AMON value from 4.02 to 3.70 – 3.80 (Villalobos et al., 2003; Duckworth and Sposito, 2007). 

In a separate synthesis where we applied a stoichiometric ratio of 0.52 Mn(VII) to Mn(II), we 

obtained a comparable Mn(III) content: 20.3% ± 1.4% Mn(III) and an AMON of 3.80 ± 0.01. 

This was also observed in the preliminary synthesis batch where excess Mn(II) was added 

(approximately 0.45 Mn(VII):Mn(II) ratio instead of 0.67). In this synthesis, the products were 

found to contain 30% Mn(III). 

Na:Mn ratio. The δ-MnO2 batches we synthesized varied with respect to Na:Mn 

content. The minerals that were synthesized at higher pH had a greater Na:Mn ratio than those 

synthesized at low pH, which was also observed by Manceau et al. (2013). This result can be 

rationalized chemically and geometrically. Because δ-MnO2 has a negative surface charge 

over most of the pH scale (PZC ~ 2-3 (Sposito, 2008)), the excess in surface charge will be 

balanced by cations. In addition, as the solution pH increases and proton activity decreases, 

Na+ can compete more effectively for negatively charged surface sites. The Na:Mn content can 

also be related to particle size and surface site density. We built nearly circular monolayer 

MnO2 model particles using the XRD-derived estimates of CSD size and a vacancy content 

equal to 0.06 mol vacancy mol-1 Mn (Villalobos et al., 2006) using Crystalmaker ® .  For each 

particle, we calculated the amount of Na+ needed to balance the negative charge arising from 

all undersaturated oxygen atoms under the assumption that each vacancy site requires 4 Na+ 

ions (+4 charge deficit) and lateral edge sites accommodate 1 or 2 Na+ ions depending on 

whether the oxygen atom is doubly or singly coordinated to Mn, respectively. We found that 

as the CSD of the minerals decreased from 5 nm to 3 nm, the Na: Mn ratio increased from 0.85 

to 1.31. The 35 % increase in the Na: Mn ratio is consistent with our measurements, which 

showed a 48 % increase in the Na: Mn ratio with decreasing CSD size along the 

crystallographic ab plane and increasing synthesis pH.   
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Crystallite size. The CSD sizes along the ab plane that we estimated from the 

broadening of the 20l,11l reflection in the X-ray diffraction patterns showed that crystallite 

size decreased moderately 5.19 ± 0.89 to 3.42 ± 0.59 nm as the synthesis pH was increased. 

The acidification or basification of the washed mineral samples, however, influenced the CSD 

size differently. The SR-XRD pattern for sample C2_H showed less broadening in the main 

diffraction peaks relative to sample C2 (Figure 3), indicating an increase in crystallite size 

along the ab plane from about 3.4 to 6.0 nm. The basified sample (A2_OH), on the other hand, 

showed no structural change with respect to the parent mineral and did not exhibit any change 

in the Mn(III) content. The small to moderate increase in C2_H upon acidification relative to 

C2 supports the hypothesis that proton-promoted reduction of Mn(IV) with the electron 

deriving from water or Cl- ions (Grätzel et al., 1985; Marafatto et al., 2015) and/or crystallite 

growth may occur upon acidification. 

Specific surface area. The specific surface area of the different mineral preparations 

ranged from 119 to 259 m2 g-1 (Figure 1A). BET theory N2 adsorption, which measures the 

amount of gas that can be physisorbed on the mineral surface per unit mass, can yield an 

indirect measurement of particle size (Sing et al., 1985). However, BET-SSA measurements 

generally cannot distinguish an aggregate from a single crystallite when the size of the 

crystallite is on the order of a few nanometers (Sing et al., 1985).  In fact, a plot of the FWHM 

of the 310,020 reflection in the XRD patterns, which is proportional to the CSD size of the ab 

plane (Table 2), against the SSA shows an inverse correlation between the XRD-sensitive CSD 

size and SSA.  Thus, we suggest that the BET-SSA values reflect the specific surface area of 

aggregated crystallites.  

Two studies on Fe oxide nanoparticles have shown that BET-SSA can underestimate 

particle size when there is nanoparticle aggregation (Gilbert et al., 2009). The authors found 

that increasing solution pH from 5 to 10 and ionic strength from 0.01 to 1 M led to 30 % and 

10 % decreases in BET-SSA, respectively. In our samples, we also found that solution pH 

strongly influenced the BET-SSA. However, we observed a 40 % increase in BET-SSA as pH 

increased from 6 to 11. The opposite trends observed for ferrihydrite and δ-MnO2 may be 

explained by differences in surface charge and/or particle shape, which likely affects particle 

aggregation dynamics (Gilbert et al., 2009). In our samples, we expect that aggregation due to 
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ionic strength would cause a small to negligible impact on the BET-SSA since the ionic 

strength varied by 0.1 M across the different syntheses.  An additional factor that may influence 

the measured BET-SSA is the length of time during which the freshly precipitated particles 

settle in the mother liquor before the washing (ionic strength 0.5 M; Step 4 in synthesis 

protocol).  In fact, the B2 synthesis replicated the procedure of Villalobos et al. (2), but used a 

30 minutes settling time instead of a 4 hour settling time and yielded BET-SSA of 163 ± 8 

m2/g and 120 m2/g, respectively. Thus, we suggest that the settling time after reagent mixing 

may have a moderate effect on the SSA since particle growth or aggregation processes may 

occur during that time.  

The acidification or basification of the mineral samples showed large differences in 

BET-SSA relative to the parent mineral. In particular, the SSA of C2_H increased to values 

comparable to the low pH samples, from 119 ± 6 to 213 ± 4 m2/g, whereas A2_OH decreased 

in SSA from 190 ± 10 m2/g to 117 ± 2 m2/g. These observations indicate that the BET-SSA of 

the minerals is a dynamic property that can be modified after synthesis, and support our 

conclusion that BET provides a measure of the surface area of aggregates rather than structural 

properties such as CSD size. Furthermore, the increase in Na content at the particle edges as 

the suspension pH increases may promote aggregation between crystallites and lower the 

accessibility of aqueous species to these surface sites.   

3.6. Conclusions 

This work tested the effect of varying synthesis parameters on the composition and 

structure of δ-MnO2 nanoparticles. All minerals showed hexagonal sheet symmetry in the ab 

plane and the lack of ordered stacking along the c-axis direction. About 98 % Mn(IV) in all 

but one synthesis was observed by measurements of Mn valence, whereas the “outlier” batch 

only 96 % Mn(IV). Our results showed that the BET-SSA can be tuned by varying the NaOH 

concentration and, to a lesser extent, by the speed of MnCl2 addition during the synthesis. We 

also found that changes in suspension pH post-synthesis are sufficient to modify the BET-SSA. 

We obtained the highest BET-SSA for minerals synthesized at pH 4 (259 m2 g-1) or by 

acidification of the mineral post-synthesis from pH 11 (119 m2 g-1) to pH 4 (213 m2 g-1).  

However, the coherent scattering domain size along the ab plane decreased and Na content 

increased with increasing suspension pH.  Thus, we suggest that the increase of Na at 
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nanoparticle edges leads to nanoparticle aggregation and, thus, lower BET-SSA. The 

reversibility of BET-SSA in acidified or basified samples further confirms that suspension pH 

and Na content drive aggregation. The findings of this study are significant to the geochemistry 

and environmental science communities since BET-SSA has been shown to correlate with the 

reactivity of birnessite minerals with respect to the sorption of toxic metals and metalloids 

(Villalobos et al., 2005; Lafferty et al., 2010; Simanova et al., 2015) and organic contaminant 

degradation (Remucal and Ginder-Vogel, 2014, and references therein). In various other 

studies, mineral reactivity (e.g., sorption, desorption, dissolution, etc.) has been also been 

related to particle size and particle aggregation (Nico and Zasoski, 2000; Gilbert et al., 2009; 

Liu et al., 2009; Kuhn et al., 2014). Therefore, we strongly recommend that future studies 

report the synthesis and mineral characterization protocols accurately and account for the 

reversible effect of solution pH on the BET-SSA. Finally, studies to decouple the effects of 

nanoparticle aggregation, which may lower reactivity of edge surface sites, and increasing 

solution pH, which enhances the adsorption of cations but diminishes the adsorption of 

oxyanions, may shed light on the conditions that favor reactivity of the edge surface sites 

(Simanova et al., 2015; Villalobos, 2015; van Genuchten and Pena, 2016).  
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Chapter 4. The mechanism and rate of δ-MnO2 

photoreduction in a simplified system 

This chapter was submitted and published in Proceedings of the American Society of 

Sciences (PNAS), Vol. 112 issue 15, with the title “Rate and mechanism of the photoreduction 

of birnessite (MnO2) nanosheets”, Marafatto FF, Strader ML, Gonzalez-Holguera J, 

Schwartzberg A, Gilbert B, Peña J (doi: 10.1073/pnas.1421018112), and is presented in this 

dissertation with slight modifications. The originally published article is presented in Annex 

6. 

4.1. Abstract  

The photo-reductive dissolution of Mn(IV) oxide minerals in sunlit aquatic 

environments couples the Mn cycle to the oxidation of organic matter and fate of trace elements 

associated with Mn oxides, but the intrinsic rate and mechanism of mineral dissolution in the 

absence of organic electron donors is unknown. We investigated the photoreduction of δ-

MnO2 nanosheets at pH 6.5 with Na or Ca as the interlayer cation under 400 nm light 

irradiation and quantified the yield and timescales of Mn(III) production. Our study of transient 

intermediate states using time-resolved optical and X-ray absorption spectroscopy showed key 

roles for chemically distinct Mn(III) species. The reaction pathway involves: 1) formation of 

Jahn-Teller distorted Mn(III) sites in the octahedral sheet within 0.6 ps of photoexcitation; 2) 

Mn(III) migration into the interlayer within 600 ps; and 3) increased nanosheet stacking. We 

propose that irreversible Mn reduction is coupled to hole scavenging by surface water 

molecules or hydroxyl groups, with associated radical formation. This work demonstrates the 

importance of direct MnO2 photoreduction in environmental processes and provides a 

framework to test new hypotheses regarding the role of organic molecules and metal species 

in photochemical reactions with Mn oxide phases. The timescales for the production and 

evolution of Mn(III) species and a catalytic role for interlayer Ca2+ identified here from 

spectroscopic measurements can also guide the design of efficient Mn-based catalysts for water 

oxidation.  
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4.2. Significance Statement 

The photoreductive dissolution of Mn oxides governs the biogeochemical cycle of Mn 

and the fate of organic and inorganic species associated with Mn oxides in the euphotic zones 

of marine and freshwater systems. Mn oxide minerals also have garnered interest as water 

oxidation catalysts inspired by the Mn4CaO4 cluster of photosystem II. However, the 

mechanism of water oxidation by MnO2 and the rate limiting steps for this reaction are 

unknown. In this study, we couple flow-through experiments and ultrafast pump-probe optical 

and X-ray absorption spectroscopy to develop a photoreduction model that includes the 

mechanism and timescales for the initial electron transfer steps in the oxidation of water by 

MnO2. 

4.3. Introduction 

Manganese is a key element in environmental processes, catalytic materials, and 

biological systems due to its rich redox chemistry and ability to form species with a high 

oxidizing potential. Photochemical processes can enhance significantly the cycling of Mn 

between the +4, +3 and +2 valence states (Sunda and Huntsman, 1990; Armstrong, 2008; 

Hocking et al., 2011). Photoreduction of Mn(IV) is the first step in the reductive dissolution of 

birnessite minerals in the euphotic zone of marine and lacustrine environments (Sunda and 

Huntsman, 1994; Morgan, 2000; Spiro et al., 2010). This process couples the biogeochemical 

cycle of Mn to the redox cycling of carbon and trace metals associated with Mn oxide phases. 

In addition, the greater role of Mn(IV) photoreduction relative to microbial Mn(II) oxidation 

leads to the predominance of dissolved over particulate Mn in the photic zone of natural waters 

(Sunda and Huntsman, 1990). Thermodynamic calculations predict that direct photoexcitation 

of Mn oxides in water by visible light will lead to net metal reduction over a wide range of 

environmentally-relevant pH values (Sherman, 2005). However, experimental evidence of 

direct photoexcitation of MnO2 and subsequent photoreduction of Mn(IV) in the absence of 

organic electron donors is currently lacking. Experimental studies on the photochemical 

cycling of Mn have incorporated natural organic ligands that can enhance metal reduction via 

multiple pathways (Waite et al., 1988; Sunda and Huntsman, 1994; Kim et al., 2012). These 

studies have identified aqueous Mn(II) as a reaction end product but have not investigated the 

fate of Mn(III) in the dissolution process, even though Mn(III) is a necessary intermediate in 
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the reduction of Mn(IV) to Mn(II) (Luther III, 2005) and an important component of 

environmental systems (Madison et al., 2013). 

The photochemistry of Mn also enables solar-energy harvesting (Sakai et al., 2005) and 

water-oxidation catalysis in synthetic and biological systems (Armstrong, 2008; Kolling et al., 

2012; Johnson et al., 2013). Mn-based cluster compounds (Hsu et al., 2012; Wiechen et al., 

2012) and disordered birnessite nanoparticles (Hocking et al., 2011) can exhibit analogous 

reactivity to the water-oxidizing center of photosystem II. Metal reduction is a key step in 

water oxidation using Mn oxide catalysts (Hocking et al., 2011; Wiechen et al., 2012; Birkner 

et al., 2013; Robinson et al., 2013) with evidence that Mn(III) plays an important role in O2 

generation (Takashima et al., 2012). However, no information on the intrinsic kinetics or 

efficiency of Mn(IV) reduction has been reported to date. Furthermore, the structural and 

chemical constraints on the mechanism of Mn photoreduction are not known for any Mn phase 

(Birkner et al., 2013; Robinson et al., 2013), although a recent study of MnO2-based water 

oxidation showed that the substitution of Na with Ca in the interlayer of MnO2 greatly 

enhances reactivity (Wiechen et al., 2012). The mineralogy literature suggests that the 

interlayer cations which balance the excess charge in the MnO2 sheet may influence its 

photoreactivity because the interlayer cations in birnessite are known to bind water molecules 

to the neighboring MnO2 octahedral sheets via hydrogen bonding, with the strength of the 

interactions dependent on the cation valence (Drits et al., 1998; Johnson and Post, 2006; Cygan 

et al., 2012). However, the specific role of Ca in the photoreduction process is unknown 

(Wiechen et al., 2012). 

The current work combines laboratory-based experiments and ultrafast pump-probe 

spectroscopy to investigate the photoreduction of δ-MnO2, a fully oxidized synthetic analog 

of natural birnessites, which is comprised of randomly stacked MnO2 nanosheets that extend 

only a few nanometers in the ab plane. The first objective was to measure the photoreduction 

efficiency of δ-MnO2 in flow-through experiments by 400-nm illumination of aqueous 

suspensions of δ-MnO2, with Na (Na-MnO2) or Ca (Ca-MnO2) as the interlayer cation.The 

second objective was to elucidate the mechanism of photoreduction by following the coupled 

changes in Mn valence and coordination that follow photon absorption over picosecond to 

microsecond timescales using time-resolved optical (Gilbert et al., 2013) and X-ray (Katz et 
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al., 2012) absorption spectroscopy. Pyrophosphate was used in the flow-through experiments 

to quantitate Mn(III) but was not added during spectroscopic experiments because the time-

scale for Mn(III) production could be determined directly from the transient X-ray absorption 

data.  

4.4. Materials and methods 

ACS-grade Chemicals were purchased from Sigma-Aldrich or Merck; Nafion was 

purchased from Fuel Cell Earth LLC (Clearwater, FL, USA). All solutions were prepared with 

ultrapure water (18 MΩ • cm). The δ-MnO2 phase used in flow-through photodissolution 

experiments and pump-probe experiments was synthesized according to Villalobos et al. 

(2003), and was comparable to the mineral B2 described in Chapter 3. Synthesis and 

characterization of the mineral phase are described in the SI text (ANNEX 4). All experiments 

were carried out at ambient temperature, on suspensions under aerated conditions or purged 

with N2(g) or He2(g).  

Efficiency of MnO2 photoreduction. Flow-through experiments were carried out to 

verify whether δ-MnO2 photoreduction by band gap excitation generated reduced Mn ions 

irreversibly and to measure the rates and efficiency of the process. A preliminary plan to 

sensitize the oxides with Safranin T, an organic dye used for biological staining, in order to 

investigate the ligand to metal charge transfer kinetics similarly as described Gilbert et al. 

(2013) failed. This was due to rapid degradation of the dye without irradiation upon sorption 

to the oxide in preliminary studies. We prepared oxide suspensions containing 500 μM Mn and 

25 mM sodium pyrophosphate (PP) to trap Mn(III) with a final pH of 6.5 (no pH-adjustment 

was required). The Ca-MnO2 suspensions were prepared by equilibrating the oxide with 

CaCl2(aq) in a 3:1 molar ratio. All suspensions were equilibrated in the dark for 3 days prior to 

irradiation. The suspensions were then divided into 2 aliquots: one was used as a dark control 

and the second was recirculated through a flow-through quartz cuvette. Irradiation for 72 hours 

was provided by an array of three 1-W light emitting diodes (LEDs) at 400 nm (3.1 eV), close 

to the maximum UV-vis absorbance of a Na-MnO2 suspension in water (Figure S5a). The 

photoreactor was screened from ambient light.  
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Every 24 hours a sample aliquot was collected for ICP-OES measurement of [MnTOT] 

after digestion with 0.05 M H2C2O4 and 3% HNO3 and another was filtered through a 0.2 μm 

polyethersulfone syringe filter for ICP-OES measurement of [Mn(aq)] and [Mn(III)-PP] 

quantification by UV-vis spectrophotometry (ɛ254 nm = 6562 L mol-1 cm-1) with 1 cm path 

length quartz cuvettes using a 25 mM PP solution as a blank. Measurements of [Mn(aq)] and 

[Mn(III)-PP] were within 10 %, with concentrations ranging from 10 to 50 µM. Experiments 

were conducted in duplicate; suspension pH was 6.5 ± 0.2 before and after irradiation. 

Complementary experiments were carried out to confirm that PP did not influence Mn 

photoreduction. Experiments were conducted as described above but in the absence of PP and 

with Na-MnO2 supplemented with 10 mM NaCl. After 0, 24, 48 and 72 hours of irradiation, 

10 mL sample aliquots were collected, mixed with 2 mL of a 100 mM PP stock solution (pH 

6.5) and placed on an end-to-end shaker for 24 hours in the dark. Measurements of [MnTOT], 

[Mn(aq)] and [Mn(III)-PP(aq)] were made as described above; suspension pH was 6.5 ± 0.2 

before and after irradiation.  

The rate of Mn(III) production was determined from linear regression of Mn(III)-PP 

against time, after correction for any Mn(III) released in dark control experiments. We then 

calculated the apparent quantum yield for Mn(III) generation, which is defined as the amount 

of photoproduced Mn(III) per photon absorbed by the MnO2 suspension (ANNEX 1). To 

calculate the number of photons absorbed, we measured the photon flux to the photoreactor by 

chemical actinometry using potassium ferrioxalate and then scaled the photon flux to the ratio 

of the absorbance of MnO2 to ferrioxalate (Chapter 2).  

Optical transient absorption spectroscopy. Optical transient absorption (TA) 

spectroscopy can be used to follow excited-state valence electron dynamics in semiconducting 

metal oxides (Gilbert et al., 2013). Optical TA experiments were carried out on a HELIOS 

femtosecond transient absorption spectrometer and on an EOS sub-nanosecond transient 

absorption spectrometer from Ultrafast systems installed at the Molecular Foundry, Lawrence 

Berkeley National Laboratory, Berkeley, USA. The laser source for both instruments was a 

Coherent Libra Amplified Femtosecond Laser System operating at 1 kHz with 45 fs pulse 

duration. The laser output was split, one arm passing through a Coherent OPerA optical 

parametric amplifier (OPA) to produce pump pulses at 400 nm, the other arm delivered to the 

63



CHAPTER 4 

 

transient absorption system where a white-light probe pulse was generated in a sapphire plate 

or by a fiber white light source (Leukos-STM) for the HELIOS and EOS spectrometers, 

respectively. The intensity of the pump beam was measured to be 800 nJ pulse-1. Time delay 

was provided by a mechanical delay stage on the HELIOS setup and by instrument electronics 

on the EOS setup. Spectra were collected between 335 and 900 nm. 

Samples of Ca-MnO2 and Na-MnO2 were either kept in their original aqueous 

suspension or resuspended in an aqueous solution of 1.5% Nafion in 3% isopropanol. The 

Nafion polymer reduced particle aggregation and there is no evidence that it influences the 

photochemical behavior of birnessite-based photocatalysts (Hocking et al., 2011; Young et al., 

2011). Furthermore, the comparison of TA data of Na-MnO2 in water vs in an aqueous Nafion 

solution showed no detectable differences on pico- to nanosecond timescales (Figure S9). The 

3% isopropanol was evaporated in air from the Nafion solution for 12 h before starting the 

measurements to ensure complete isopropanol evaporation. Additional Na-MnO2 samples 

were re-suspended in 0.1 M terephthalic acid (TPA), a hydroxyl radical trap (Barreto et al., 

1995), and measured on the EOS setup. The samples were measured in 1 mm path length quartz 

cuvettes and stirred with a magnetic stir bar or recirculated in a flow-through cuvette. The 

optimum MnO2 concentration for TA measurements ranged from 3 to 6 mM on a Mn molar 

basis, corresponding to an optical density (OD) at 400 nm between 0.8 and 1.6 absorption units 

on 0.5 mm path length quartz cuvettes. Spectra were collected from -10 ps to 8 ns (relative to 

laser pulse) on the HELIOS system and from 1 ns to 50 μs on the EOS system. Custom user 

routines developed in the IGOR Pro software (WaveMetrics Inc., Lake Oswego, OR, USA) 

were used to process the data, including correction of the time dependent frequency modulation 

of the laser (laser chirp) on the signal to within ~0.15 ps and to extract transient kinetic data at 

354 nm and 550 nm from 2D plots of spectra versus time. IGOR Pro was also used to fit first-

order exponential decay kinetics to the extracted data. The decay kinetics for all samples were 

adequately reproduced by fitting two exponential time constants (SI text – ANNEX 4).  

Light-initiated time-resolved X-ray absorption spectroscopy. LITR-XAS excites 

core electrons and yields information on the oxidation state and local bonding environment of 

the probed atoms following light excitation (Katz et al., 2012). LITR-XAS experiments were 

carried out at Beamline 6.0.1 at the Advanced Light Source (ALS, Berkeley, USA). At this 
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beamline, the X-ray beam pulses are isolated with an X-ray chopper and combined with the 

output of a femtosecond Ti:Sapphire laser system with a power output of 800 mW measured 

at the sample position. The X-ray energy was scanned across the Mn K-edge (6530 eV to 6595 

eV). Ground state and transient X-ray absorption spectra were collected in fluorescence mode 

with an avalanche photodiode (APD) fitted with Soller slits and a Cr filter. The 400 nm laser 

pulse was obtained by converting the 800 nm output from the 4 kHz Ti:Sapphire laser system 

with an optical parametric amplifier (OPA). The laser pulse was synchronized to a single 

electron bunch by locking the 62.5 MHz repetition rate of the laser system oscillator to the 

499.64 MHz of the synchrotron’s radiofrequency cavity to an accuracy of less than 20 ps. The 

full width at half maximum (FWHM) of the laser and X-ray pulses were 0.1 ps and 70 ps, 

respectively. Finally, the time zero delay between X-ray and laser pulses was determined using 

an iron(II) tris(2,2’-bipyridine) solution, which exhibits distinct changes in absorption at the 

Fe K-edge upon laser excitation. 

The laser and X-ray beams intersected the sample in a closed He2(g) purged chamber. 

Samples were recirculated from a bottle on a stir plate through a nozzle forming a 600-μm 

diameter liquid jet. The size of the X-ray beam on the sample was 60 by 60 µm. To begin an 

experiment, 250 mL suspensions of approximately 10 mM Ca- and Na-MnO2 were prepared. 

Before data acquisition, the chamber and sample were purged with He2(g). Each experimental 

condition was repeated in duplicate on suspensions recirculated for up to 4 hours to obtain 

transient and kinetic data. For transient X-ray absorption experiments, spectra were collected 

at a fixed time delay and the monochromator was scanned from 40 eV below to 70 eV above 

the Mn K-edge (6539 eV). The transient spectra were 3-point smoothed for plotting. Kinetic 

data were acquired by setting the monochromator at a fixed energy position and varying the 

time delay between laser and X-ray pulses. In both acquisition modes, data were collected 

before and after laser irradiation at the chosen time delay in order to extract ground state and 

excited state spectra. Following each LITR-XAS experiment, the samples were retained for 

analysis by X-ray diffraction. To assess the possibility of X-ray radiation damage, a 

conservative Mn:photon ratio was calculated. We estimated that 1014 X-ray photons are 

delivered to the sample over the 4 hour timespan of the experiment, compared to approximately 

1021 Mn atoms in the sample (SI text). The Mn:photon ratio was thus estimated to be 106:1, 

strongly suggesting that X-ray beam damage is negligible. 
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4.5. Results 

Efficiency of MnO2 photoreduction. Flow-through experiments were carried out to 

evaluate the irreversibility of MnO2 photoreduction, to identify the reduced Mn species and to 

quantify the efficiency of the process. The irradiation of 500 µM δ-MnO2 suspensions at pH 

6.5 ± 0.2 in 1 cm path length flow-through cuvettes showed irreversible Mn(III) generation 

upon 400 nm irradiation under a photon flux of 0.77 µE s-1, which is comparable to that of 

sunlight between 400 and 600 nm (calculations in SI text). We measured the steady formation 

of Mn(III) at a rate of 2.20 ± 0.27 μmol Mn(III) day-1 (95% confidence interval) in Ca-MnO2 

suspensions and 1.50 ± 0.19 μmol Mn(III) day-1 in Na-MnO2 suspensions containing 

pyrophosphate (PP) as a Mn(III) trapping agent (Figure S1). These rates were corrected for 

any release of Mn(III) in dark controls (0.2 – 0.9 μmol Mn(III) day-1). The non-zero dark 

release is attributed to the extraction of residual Mn(III) not detectable by the method used to 

determine average Mn oxidation number (AMON). Apparent quantum yields of 8.2 ± 0.1 x 10-

4 and 3.1 ± 0.3 x 10-4 (95% confidence interval) were calculated for Ca-MnO2 and Na-MnO2, 

respectively. Similar rates measured in suspensions where PP was added after irradiation 

(Figure S1) indicate that PP does not influence photoreduction. Further evidence that PP and 

Mn(III)-PP do not influence Mn photoreduction comes from their UV-vis spectra, which show 

no absorption at 400 nm (Wang and Stone, 2008). 

Optical transient absorption spectroscopy. Figures 1 and 2 present optical transient 

absorption (TA) spectra and kinetics, respectively, for Ca-MnO2 acquired at subpicosecond to 

microsecond timescales. Equivalent data for Na-MnO2 are presented in Figures S2 – S3. All 

samples were re-suspended in 1.5% Nafion to reduce particle aggregation. Following 

photoexcitation at 400 nm, the TA spectra acquired at a few picoseconds exhibited a broad 

excited-state absorption (ESA) feature with maximum intensity at 538 nm (Ca-MnO2; Figure 

1) or 570 nm (Na-MnO2; Figure S2a). The TA spectra also showed a ground-state bleach 

extending from the laser wavelength to the lowest wavelength measureable (~335 nm); the 

bleach reflects the decrease in the population of valence band electrons that remain in the 

ground state. After correcting for the laser chirp, the comparison of the TA kinetics at 345 and 

550 nm showed a rise in ESA intensity that was delayed relative to the prompt bleach signal. 

The maximum ESA intensity occurred at ~0.3 ps for Ca-MnO2 (Figure 2a) and ~0.6 ps for 
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Na-MnO2 (Figure S3a). The ESA and bleach signals decayed with similar dynamics up to ~10 

ps (Figure 2b). The ESA then decayed completely within 1 ns but the bleach signal remained 

detectable on the microsecond timescale. The decay kinetics of the bleach differed for Ca- vs 

Na-MnO2 (Figure 1c), although both samples exhibited short (sub-μs, τ1) and long (10 – 30 

μs, τ2) decay timescales (Table 1).  

Table 1: Time constants obtained from fitting the EOS data with exponential decay functions (cf. Fig. S7). A 
time offset of 0.047 µs was used for all data. 

 τ1 [μs] ± st.dev τ2[μs] ± st.dev χ2 

Na-MnO2    

water 0.36 ± 0.03 15.31 ± 0.96 11.03 

TPA 0.36 ± 0.04 14.38 ± 1.32 18.68 

Nafion 0.24 ± 0.02 10.14 ± 0.63 12.68 

Ca-MnO2    

Nafion 0.81 ± 0.06 27.35 ± 1.75 6.53 
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Figure 1. Optical transient absorption (TA) spectra acquired from Ca-MnO2 in an aqueous suspension containing 
Nafion at 0.75 ps, 3.6 ps and 2 ns after photoexcitation at 400 nm. The TA spectra (milli-∆OD units; left axis) are 
compared to the ground-state UV-vis absorption spectra (OD units; right axis). Vertical lines at 550 nm (the 
maximum intensity of the excited state absorption) and at 345 nm (ground-state bleach) indicate wavelengths 
chosen for kinetics analysis. The data from 390 – 410 nm are affected by scattering of the excitation beam. 
Equivalent TA data for Na-MnO2 are given in Figure S2a. 

 
Figure 2. Summary of optical transient absorption kinetics acquired from Ca-MnO2 in an aqueous suspension 
containing Nafion. (a) Transient kinetic traces show a slight delay in the onset of the excited-state absorption 
(ESA) at 550 nm relative to the bleach at 345 nm. (b) Decay kinetics of the ESA and bleach up to 8 ns. The time-
zero was shifted by 0.2 ps to enable plotting on a logarithmic scale. Equivalent data for Na-MnO2 are given in 
Figures S3 a and b. (c) Comparison between the decay kinetics of the bleach recorded at 580 nm for Ca-MnO2 
and Na-MnO2 in Nafion, fitted with two-component exponential decay functions.  

Direct comparison of the fitted first-order decay constants for Ca-MnO2 and Na-MnO2 

in Nafion-stabilized suspensions reveals that the recombination rates are 3-4 fold slower in the 
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presence of interlayer Ca. In particular, the τ2 values indicate that the bleach returns to baseline 

within 50 µs for Na-MnO2 (5 half-lives elapsed, 0.02% of initial signal remains), whereas for 

Ca-MnO2 the bleach does not return to the baseline within the resolution of the experiment (2 

half-lives elapsed, 8% of initial signal remains). Slightly slower decays were observed for 

samples prepared without Nafion, possibly indicating an effect of aggregation upon 

recombination rates. Slower decay could occur if recombination involved diffusion of soluble 

species, but this effect is impossible to explain confidently and is smaller than the influence of 

the interlayer cation (SI text). The addition of the anionic hydroxyl radical scavenger, 

terephthalic acid (TPA), had no detectable effect on the decay kinetics for Na-MnO2.  

Light initiated time-resolved X-ray absorption spectroscopy. Selected ground-state 

Mn K-edge spectra collected during a single four-hour LITR-XAS experiment with Ca-MnO2 

are displayed in Figure 3. The increase in the absorption intensity at 6550 eV (Figure 3 inset) 

shows a shift of the Mn K-edge to lower energies, which is consistent with a decrease in the 

average oxidation state of Mn (Villalobos et al., 2003). Thus, 400-nm laser excitation causes 

the accumulation of reduced Mn. A difference X-ray absorption (ΔXA) spectrum, obtained by 

subtracting the initial ground state spectrum from the three-hour ground state spectrum, is 

included in Figure 3 to emphasize the irreversible change in Mn valence and bonding 

environment after three hours of irradiation.  
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Figure 3. Ground-state Mn K-edge X-ray absorption (XA) spectra show the steady reduction of Mn in a ~10 mM 
Ca-MnO2 suspension at pH 6.5 during a ca. 4-hour laser-pump/X-ray probe study. Spectra are shown for 1 minute 
(solid line), 19 minutes (dashed line) and 175 minutes (dotted line) after the onset of the experiment (left vertical 
axis). The difference (ΔXA) spectrum obtained by subtracting the spectrum at 175 minutes from the spectrum at 
1 minute (right vertical axis) is included beneath the XA spectra. Inset shows the XA intensity at 6550 eV as a 
function of time, which indicates an increase in reduced Mn. 

Transient ΔXA spectra were obtained by subtracting the ground state spectrum from 

the excited state spectra at delay times of up to 10 ns (Figure 4a). The first oscillation between 

6540 and 6570 eV in the transient ΔXA spectrum at a 50 ps delay indicates a shift in the 

absorption edge position to lower energies that is consistent with the formation of reduced Mn 

(cf. Figure 3). The feature is approximately constant from 50 ps (the temporal resolution of 

the experiment) to 10 ns (the latest timepoint studied). As shown in Figure 4b, transient kinetic 

data at 6550 eV confirmed the prompt formation and negligible decay of the signal for reduced 

Mn. Within 600 ps, we observed modulations at energies above 6570 eV, the fine-structure 

portion of the transient ΔXA spectrum, which reflect changes in the coordination environment 

of Mn. Finally, the close agreement between the transient ΔXA data at 10 ns and the ΔXA data 

associated with permanent photoreduction at 3 hours indicates that at least a fraction of the 

reduced Mn species observed at 10 ns persists indefinitely.  
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Figure 4. (a) ΔXA spectra at various delay times reveal a prompt change in the Mn oxidation state (feature at 
6550 eV – first arrow) and evolution in fine structure within 1 ns (feature at 6570 eV – second arrow). The ground 
state ΔXA spectrum, obtained by subtracting the ground spectrum at 175 minutes from the ground spectrum at 1 
minute (cf. Figure 3), is shown for comparison with the transient ΔXA spectra.  (b) Kinetic traces of the X-ray 
absorption intensity at 6552 eV with (solid line) and without (dashed line) the laser pump confirm a prompt 
change in Mn valence and no decay within 2 ns.  

The long-term effect of Mn(III) accumulation on the irradiated Mn oxide was assessed 

by characterization of the mineral structure. Powder X-ray diffraction (XRD) patterns acquired 

from samples prior to laser irradiation show broad hk0 peaks at 2.4 Å and 1.4 Å and no stacking 

peak at 7.2 Å (in d-spacing). This pattern is characteristic of δ-MnO2 nanosheets with 

hexagonal sheet symmetry and fewer than three randomly stacked sheets (Villalobos et al., 

2003). Following laser irradiation, the XRD patterns showed additional 001 and 002 Bragg 

reflections (Figure S4) that are consistent with increased ordered stacking of the MnO2 sheets 

(Villalobos et al., 2003).  

4.6. Discussion 

Efficiency of Mn(IV) oxide photoreduction. Our flow-through experiments show that 

the irreversible photoreduction of δ-MnO2 to form Mn(III) occurs readily under 

environmentally relevant conditions in the absence of any electron donor other than water. In 

addition, our measurementsindicate no production of Mn(II). The apparent quantum yield of 

the process at pH 6.5 is up to two orders of magnitude larger than the quantum yield measured 

for γ-Fe2O3(s) at pH 3.0, ~10-5 (Litter and Blesa, 1992), and comparable to the value measured 

for γ-FeOOH(s) at pH 3.0, ~10-3 (Borer et al., 2009). Furthermore, Fe photoreduction in water 
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has only been observed at pH values below 5. These results emphasize the importance of 

photoreduction in the redox cycling of Mn oxides relative to Fe oxides and support the 

thermodynamic calculations presented by Sherman (2005), which indicate that photoreduction 

may occur at higher pH values for Mn oxides than for Fe oxides.  

Environmental Mn cycling is frequently coupled to the oxidation of dissolved organic 

matter (DOM). Manganese oxide photodissolution in the presence of 10 to 40 mg/L DOM has 

been reported to have a five to ten-times greater efficiency (Waite et al., 1988) than measured 

here for MnO2 photoreduction without organics. Dissolved organic matter can increase the 

accumulation of reduced Mn by acting as the chromophore that either initiates electron transfer 

to the mineral (Waite et al., 1988) or photolyzes to generate reactive oxygen species (Sunda 

and Huntsman, 1994); by acting as an electron donor to the photoexcited mineral; or by 

providing ligands that can complex intermediate Mn3+ as Mn(III)(aq) species (Madison et al., 

2013). Due to the optical properties of DOM, the first mechanism is only important under UV-

light, which is a minor component of the sun’s irradiance spectrum on the Earth’s surface and 

has a lower penetration depth (up to ~25m) in natural waters than visible wavelengths (~100m) 

(Smith and Baker, 1981). The complexation of reduced manganese by DOM is likely to occur 

independently from the photoreduction mechanism. Thus, our results indicate that Mn 

photoreduction in which water serves as electron donor must be a significant contributor to 

any overall environmental rate. 

Manganese redox dynamics. We used the time-resolved optical and X-ray data to 

construct a model for the photoexcitation and evolution of Mn(III) states in δ-MnO2 as 

visualized in Figure 5.  
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Figure 5. Proposed model for the evolution of metal redox chemistry during δ-MnO2 photoreduction. (a) 
Absorption of a photon (hv) by a single Mn(IV) oxide nanosheet that includes metal vacancy sites (V); (b) 
Formation within 600 fs of a Jahn-Teller distorted Mn(III) state within the nanosheet (dark red octahedron); (c) 
Migration within 1 ns of Mn(III) from the nanosheet to an adsorption site above a new vacancy; (d) Increased 
nanosheet stacking due to increased compensation of sheet negative charge by interlayer Mn(III). Water 
molecules are omitted for clarity. 

A transient Jahn-Teller distorted Mn(III) intermediate forms in the nanosheet. We 

interpret the transient optical ESA that appears within 0.3 – 0.6 ps, and that has a lifetime less 

than 1 ns, as a transient intermediate Mn(III) state that is formed by a ligand-to-metal charge-

transfer excitation that excites an oxygen-centered valence electron into the metal 3d state 

(Sherman, 2005).  This interpretation requires justification because transient electronic 

excitations observed in TA spectroscopy of metal oxides could be associated with either 

electrons (e.g., the transitions of electrons promoted to the conduction band) or holes (i.e., new 

excitations within the valence band). For example, band-gap excitation of hematite (α-Fe2O3) 

generates a prompt optical ESA centered at 580 nm attributed to hole excitations based on UV-

vis spectra of a thin-film hematite electrode under oxidizing vs reducing conditions (Barroso 

et al., 2013). In the present case, however, the delayed onset of the ESA is consistent with 

electronic relaxation into a polaronic state, as observed for photoexcitation of manganites (Wu 

et al., 2009). Polaron formation would be expected for the creation of a Mn(III) state, for which 

Jahn-Teller (JT) distortion of the octahedron can lower the ground state energy by adopting 

high spin d4 electron configuration and splitting the eg and t2g orbitals (Burns, 1993). In this 

depiction, the ESA is caused by low-energy excitations of the extra electron localized in the 

JT state. Additionally, UV-vis spectra from well characterized MnOx phases show that Mn(III) 

located in the MnO2 sheets confers absorption features in the visible range between 400 and 

600 nm (Figure S5). 
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The line shape of the ESA reported here closely matches a feature in the UV-vis 

spectrum reported for a birnessite anode poised at sufficiently positive potentials to oxidize 

water (Takashima et al., 2012). Takashima et al. (2012) assigned the optical feature between 

400 – 600 nm to adsorbed Mn(III) based on pyrophosphate extractions. However, any Mn(III) 

extracted by pyrophosphate after the electrochemical oxidation of water reflects only the final 

Mn(III) state. Our kinetic measurements demonstrate that the visible ESA is due to a transient 

state.  

A long-lived interlayer Mn(III) adsorbate between the nanosheets. We propose that the 

loss of the optical ESA signal (i.e., the JT state) is caused by two processes occurring on 

different timescales. Within the first 10 ps, the ESA decay and that of the bleach were closely 

coupled, indicating electron-hole recombination. Further decay of the ESA signal, however, 

was not matched by further loss of the bleach. The LITR-XAS also showed that within ~600 

ps there was a change in the Mn bonding environment but no loss of the reduced Mn state. We 

explain these trends by the displacement of Mn(III) from the nanosheet layer into the hydrated 

interlayer region, with the formation of a vacancy site beneath (Figure 5c). Prior studies have 

established that Mn(III) cations can reside stably within the interlayer of birnessite nanosheets 

to reduce the sheet steric strain (Gaillot et al., 2003; Manceau et al., 2013). The JT distortion 

at the Mn(III) site could drive its migration into the interlayer, where it can act as an adsorbed 

cation that enhances the stacking of the negatively-charged sheets (Figure 5d). In addition, JT 

distorted Mn(III) sites have been reported as key species for water oxidation (Robinson et al., 

2013). The migration of JT distorted Mn(III) from the MnO2 sheet into the interlayer and 

change in Mn(III) bonding environment may decrease the overall reactivity of the material for 

multi-electron water oxidation. Thus, our finding has implications regarding the mechanistic 

constraints on Mn oxide photocatalysis. The formation of new vacancy sites likely also alters 

the optical absorption properties of the modified nanosheet (Kwon et al., 2009). Our model, 

however, requires that the putative interlayer Mn(III) ion lack an optical absorption signature 

in the 335 – 800 nm range. This could not be verified through published studies of the UV-vis 

absorption spectra of Mn3+ because this species is unstable in aqueous solution (Wang and 

Stone, 2008; Madison et al., 2013). 
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Hole dynamics: recombination vs. water oxidation chemistry. Photoexcitation of δ-

MnO2 and the generation of Mn(III) must be accompanied by the formation of valence band 

holes. Hole states in transition metal oxides are typically localized at oxygen sites but holes 

that form close to surface sites may participate in reactions with water, including steps in the 

four-electron oxygen evolution reaction (OER) (Tang et al., 2008) or with aqueous ions such 

as Cl- (Grätzel et al., 1985).  

The bleach signal in the TA data shows complete return to the ground state after 50 µs 

or longer, indicating that most of the hole states are able to recombine with the photoexcited 

electrons in Mn(III) even after migration of the metal ion into the interlayer. Although we 

proved that net photoreduction occurs, the apparent quantum yield is too low for the 

irreversible fraction to be detectable above the statistical noise in the TA data. Recombination 

may involve exclusively solid-phase species, or the formation of chemical intermediates. Borer 

et al. (2009) used a hydroxyl radical scavenger to demonstrate the generation of hydroxyl 

radicals (OH•) through hole reaction with surface hydroxyls on γ-FeOOH, but in that case only 

an anionic scavenger was able to react with the net positively charged surface of iron 

oxyhydroxides. In the present case, we were unable to identify a cationic hydroxyl scavenger 

that was stable against dark reaction with Mn(IV), and the anionic TPA may have been unable 

to interact with the net negatively charged δ-MnO2 surface. Nevertheless, surface bound 

hydroxyl groups on birnessite have been identified in a synthetic Mn(III)-bearing 

microcrystalline birnessite phase from the interpretation of thermogravimetric data (Gaillot et 

al., 2003). Reactions between OH• species could yield H2O2 or other ROS that could oxidize 

Mn(III) back to Mn(IV) and thus reduce the net quantum yield of direct photoreduction by 

band gap excitations. Our efforts are currently dedicated to identifying these radical species, 

which can also enhance microbial Mn oxidation (Hansel et al., 2012) and induce cellular 

oxidative stress. 

Influence of interlayer cation on MnO2 photoreduction. We observed that the 

interlayer cations, which balance the negative layer charge, influence the optical properties and 

photochemistry of layer-type MnO2, as observed previously in water-oxidation studies 

(Wiechen et al., 2012). The slower microsecond timescale kinetics for Ca- vs Na-MnO2 and 

greater apparent quantum yield, which cannot be explained by aggregation (SI text – ANNEX 
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4), suggest a catalytic role for this ion that reduces the rate at which interlayer Mn(III) species 

and photoexcited hole states can recombine. Because Ca2+ has a greater hydration enthalpy 

(Cygan et al., 2012) and longer water-exchange constants than Na+ (108 s-1 vs 109 s-1) (Stumm 

and Morgan, 1996), its catalytic role may reduce the mobility of water and other species in the 

interlayer. However, Ca also caused red-shifts in both ground-state and transient UV-vis 

spectra (Figures S3b and S6a), indicating that this ion has significant chemical interactions 

with the Mn oxide nanosheets. Further work will be required to fully determine the role of Ca, 

but the model proposed here provides a basis for future studies.  

4.7.  Environmental implications 

This work provides new insight into the mechanism, rates and chemical controls on the 

photoreduction of fully-oxidized Mn oxide phases that are the initial products of biological 

manganese oxidation (Spiro et al., 2010) and that may have been precursors to biological 

water-oxidation catalysts (Johnson et al., 2013). The evidence we provide for δ-MnO2 

photoreduction in the absence of organic electron donors establishes this pathway as an 

important component of the Mn cycle. That this reaction occurs at 400 nm indicates that it is 

important at all depths of the water column to which visible light penetrates, including depths 

where dissolved organic matter is not photoactive. The broad absorbance of MnO2 suggests 

that photoreduction can occur across a wide spectrum of solar irradiation, although further 

experiments will be required to establish the wavelength dependence. Photoreduction creates 

Mn(III) states that are stabilized by adsorption at interlayer sites and increase nanosheet 

stacking. Our results also suggest that Mn(IV) photoreduction in sunlit environments may 

cause initial biogenic Mn(IV) oxides to transform to a phase with varying amounts of Mn(III) 

(Spiro et al., 2010). We cannot generalize our conclusions to the many other phases of 

birnessites that can be found in nature, but we anticipate that photochemical transformations 

of these phases will retain similar mechanistic aspects, although the net rates may be influenced 

by Mn(III) content.  
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Chapter 5. The pH-dependent photoreduction of δ-MnO2: 

increased surface protonation leads to greater rates of 

irreversible Mn(III) photogeneration 

This chapter will be submitted to Environmental Science and Technology with slight 

modifications as “Photoreduction of δ-MnO2: low pH enhances the rates of structural 

stabilization of photogenerated Mn(III)”, Marafatto FF, Schwartzberg A, Gilbert B, Peña J. 

5.1. Abstract 

The high reactivity of layer Mn oxides (birnessites) towards organic and inorganic sorption 

and oxidation is intrinsically linked to the stability of these oxides against reductive processes. 

One such process is photoreduction, which has been predicted in theory and observed in natural 

settings yielding dissolved Mn(II) in a light-initiated two electron transfer process from surface 

sorbed species. However, the photoreduction mechanism has only been confirmed recently by 

experiments. In particular, the irradiation of birnessite in the absence of organic electron donors 

yields Mn(III), which remains on the mineral surface. The experiments were carried out at pH 

6.5, but the natural surface environments in which birnessites are found are governed by pH 

conditions that range from acidic to alkaline. To predict the stability of birnessite against 

photoreduction in such environments, it is therefore important to evaluate the effect of pH on 

the rate and mechanism of birnessite photoreduction. In this study, we evaluated the pH-

dependence of the rates and mechanism of birnessite photoreduction with macroscopic flow-

through photoreactor experiments and ultrafast optical pump-probe spectroscopy, respectively. 

Our results show that lower pH leads to greater photoreduction rates, but these rates are not 

reflected in a different photoreduction mechanism. We suggest that protonation of the mineral 

surface decreases the Mn-O bond strength, the breaking of which is a necessary step to stabilize 

photoreduced Mn(III) in the mineral interlayer. 
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5.2. Introduction 

Birnessite minerals (layer type Mn(IV,III) oxides) are  highly reactive, influencing the 

fate of many organic and inorganic species in a wide range of environments (Post, 1999; Tebo 

et al., 2004). These minerals are also susceptible to photoreductive dissolution, whereby light 

initiates the reduction of Mn(III,IV) to Mn(II) and the release of the latter to solution (Waite, 

1990). However, photoreductive processes may also lead to the reduction of Mn(IV) to Mn(III) 

on the mineral surface, without dissolution (Marafatto et al., 2015). Dissolved Mn(II) may then 

be oxidized by microorganisms, generating birnessite minerals. In such a scenario, a complete 

oxidation-reduction cycle may occur on the timescale of hours to days (Sunda and Huntsman, 

1990). Because of the reactivity of birnessites, these oxidation/reduction processes may affect 

the biogeochemical cycle of other chemical species, either in solution or associated with the 

mineral. Although multiple investigations have been carried out to determine the microbial 

oxidation mechanism on the molecular scale (Tebo et al., 2004; Hansel et al., 2012), only few 

studies have investigated the photoreduction process. Furthermore, the existing studies on the 

photoreduction of Mn oxides involved complex systems that were composed of multiple light-

sensitive components such as microorganisms and organic compounds, which precluded 

decoupling direct Mn photoreduction from other photochemical or microbiological processes 

(Sunda and Huntsman, 1994).  

The photoreduction mechanism of birnessite was elucidated only recently by 

investigating the effect of irradiation on aqueous mineral suspensions in the presence of only 

water and background electrolytes. The results showed that irradiation of mineral suspensions 

leads to the accumulation of Mn(III) on the mineral surface, without release of Mn(II) to 

solution (Marafatto et al., 2015). The main finding of the study evidenced a role for the 

crystallographic location of photogenerated Mn(III) (i.e. in the interlayer vs in the nanosheet) 

in determining the irreversible photoreduction rate, in line with recent studies that have 

demonstrated the importance of Mn(III) in driving many environmental and engineered 

processes (Luther III, 2005; Webb et al., 2005; Madison et al., 2013; Robinson et al., 2013; 

Simanova and Peña, 2015). Furthermore, through the use of time-resolved pump-probe 

spectroscopy we identified the kinetics for electronic transitions following photoexcitation of 

the mineral. The use of a simplified system allowed us to develop a model for the 
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photoreduction mechanism by constraining the interpretation of the results to the few 

components that were present: water, δ-MnO2 and either NaCl or CaCl2 electrolyte. However, 

the experiments were conducted at a single solution pH value of 6.5. 

Solution pH is the master variable that drives the aqueous and redox speciation of 

inorganic species in many sunlit aquatic environments. Additionally, the fate of dissolved 

species in such environments is often related to the ubiquitous presence of Fe and Mn oxides 

(Hochella et al., 2008). These environments are also characterized by a broad range of pH 

conditions, from the strongly acidic conditions of acid mine drainage (pH < 3), to moderately 

alkaline conditions of ocean waters (pH ~ 8.3). Since Fe and Mn oxides are known to be 

semiconductors, that is light is able to promote electronic transitions that can lead to changes 

in the mineral (Sherman, 2005), the effect of sunlight on the stability of these oxides has the 

potential to affect the mobility of many inorganic species associated with them in these 

environments. Thermodynamic predictions indicate that photoreduction should increase with 

decreasing pH for both Fe and Mn oxides (Sherman, 2005). These predictions have been 

confirmed by experimental studies for Fe oxides (Borer et al., 2009a). The authors showed a 

decrease in the rates of lepidocrocite (FeOOH) photoreduction from ~4 x 10-10 M s-1 at pH 2 

to negligible at pH values above 4 in a solar simulator. The decrease in rate with increasing pH 

was interpreted as an increase in the Fe(II) reoxidation rate by dissolved oxygen or reactive 

oxygen species. However, the redox speciation of Mn is different than that of Fe: while Fe is 

stable in two oxidation states, Fe(II) and Fe(III), Mn occurs as Mn(II), Mn(III) and Mn(IV). 

Additionally, the stability of aqueous Fe(II) against oxidation by oxygen is constrained to very 

low pH,  whereas Mn(II) can be stable as an aqueous species in the presence of oxygen for 

several years at pH values of seawater (~8.3) without the catalytic effect of microorganisms 

(Morgan, 2000). Although these differences may lead to a difference in the pH dependence of 

Mn oxide photoreduction, there have not been experimental studies investigating this to date.  

The aim of this study was to expand the current model for the photoreduction of 

birnessite to include the effect of solution pH. To achieve this goal, δ-MnO2 suspensions with 

average Mn oxidation number (AMON) of 4.03 ± 0.01 and specific surface area (SSA) of 163 

± 8 m2/g at pH 4.0, 6.5 and 8.0 were irradiated with 400 nm light. Rates of Mn(III) formation 

were measured on hour to day timescales in flow-through photoreactors. The photoexcitation 
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mechanism, on the other hand, was investigated on femtosecond to microsecond timescales by 

measuring the kinetics of electron/hole pair generation and decay with transient absorption all-

optical pump-probe spectroscopy. Our results show that irreversible formation of Mn(III) in 

the dark as well as following mineral irradiation with water or Cl- as the electron donor depends 

on pH. These results suggest that Mn(III) stabilization as a surface species, which inhibits 

electron/hole recombination, is likely favored by the protonation of surface sites, which may 

also be responsible for proton promoted dissolution in the dark. 

5.3. Materials and methods 

ACS reagent-grade chemicals were purchased from Sigma-Aldrich or Merck. All 

solutions and suspensions were prepared with ultrapure water (18 MΩ). The MnO2 phase used 

in batch photodissolution experiments and pump-probe experiments was δ-MnO2. This 

synthetic mineral was prepared and characterized following previous methods (Villalobos et 

al., 2003). Briefly, the minerals were characterized by a SSA of 163 ± 8 m2/g, an AMON of 

4.03 ± 0.01, a crystallite size of ~4 nm and a chemical formula of 

Na0.27Mn(IV)0.97Mn(III)0.03•0.94H2O. A brief description of the synthesis and characterization 

of the products is reported in the supporting information. All experiments were carried out at 

ambient temperature and either open to the atmosphere or under a N2(g) purge to exclude O2 

and CO2. 

Flow-through photoreactor experiments. Batch experiments were carried out at 

different pH values to measure the rates and efficiency of the photoreduction process. We 

prepared suspensions of 22 - 25 mg L-1 δ-MnO2, corresponding to a concentration of 218 - 254 

μM Mn, at pH 4.0, 6.5 and 8.0 by diluting concentrated aqueous mineral suspensions with MQ 

water (Table S1). Suspensions contained 12.5 mM sodium pyrophosphate (PP), added from 

stock solutions previously equilibrated at pH 4.0, 6.5 or 8.0 through dropwise addition of 4 M 

HCl, to trap Mn(III) in the Mn(III)-PP complex (log k apparent pH 8.0 = 31.35) (Parker et al., 2004). 

We confirmed that PP was able to efficiently trap Mn(III) at pH 4.0, 6.5 and 8.0 by preparing 

Mn(III)-PP solutions with Mn(III)-Acetate in PP, filtering them through 0.2 µm 

polyethersulphone (PES) filters, and comparing the UV-Vis quantified Mn(III)-PP with the 

total Mn concentration measured by ICP-OES spectrometry. At all pH values tested the UV-

Vis-determined Mn(III) was equivalent to the ICP-OES quantified total Mn within 
84



  CHAPTER 5 

 

experimental and instrumental error (5%), as shown previously for pH 6.5 (Marafatto et al., 

2015).  In the photoreduction experiments, excess PP in the suspension also acted as a pH 

buffer. All mineral + PP suspensions were equilibrated in the dark over the weekend prior to 

irradiation. The suspensions were then divided into 2 aliquots: one bottle was mixed with a 

magnetic stirrer as a dark control and the second was recirculated through a 1-cm flow-through 

quartz cuvette in a flow-through system with a peristaltic pump. Irradiation was provided by a 

photoreactor composed of an array of three 1W light emitting diodes (LEDs) at 400 nm (3.1 

eV). Independent experiments were run simultaneously using an array of 3 photoreactors that 

were assembled onto a breadboard support and screened from each other to avoid interferences. 

The photon flux to each photoreactor was evaluated with ferrioxalate actinometry, as described 

previously (Chapter 4). This value was different for each photoreactor due to small differences 

in the individual LED outputs, power supply output and irradiation geometry (Chapter 2). The 

photoreactor setup was then screened from ambient light with a black curtain. All sample 

collection and other manipulations necessary during the irradiation period were conducted 

under diffuse red light.  

Samples were irradiated for a total of 96 hours, with dark control experiments 

performed in parallel under exactly the same conditions as the irradiated samples. Reactors 

were sampled approximately every 6 hours for the first 48 hours and every 8 hours for the last 

48 hours. The total manganese concentration in suspension [Mn]tot was measured in duplicate 

at each timepoint by inductively coupled plasma optical emission spectrometry (ICP-OES) 

after digestion of an aliquot with 0.01 M H2C2O4 and 3% HNO3. The [Mn(III)-PP] was 

quantified by filtering an additional aliquot through a 0.2 μm PES syringe filter, discarding the 

first ml, and measuring the absorbance of the filtrate by UV-Vis spectrophotometry (ɛ254 nm = 

6562 L mol-1 cm-1) with 1 cm path length quartz cuvettes, using a 12.5 mM PP solution as a 

blank. Experiments were conducted in triplicate.  

To evaluate whether the trends in photoreduction rate as a function of pH were affected 

by the presence of PP, we performed complementary experiments without PP addition on N2(g)-

purged suspensions of MnO2. Nitrogen purge was necessary to reduce the effect of 

atmospheric CO2 on the pH adjustment. We have previously shown that N2 purge does not 

alter the photoreduction rates compared to aerated conditions (Marafatto et al., 2015). In these 
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experiments, mineral suspensions were prepared in 10 mM NaCl electrolytes with pH 

maintained at pH 4.0 and 8.0 through the use of a Metrohm STAT titrando 906 automatic 

titrator. Data at pH 6.5 is available from a previous study (Marafatto et al., 2015). One mL of 

a 100 mM PP stock solution (equilibrated at pH 4.0 or 8.0) was added to a 7 mL aliquot of 

mineral suspension collected at set timepoints (up to 3 samples per day) within the 96 hours of 

the irradiation experiment, and placed on an end-to-end shaker for 48 hours in the dark. 

Measurements of [Mn]tot and [Mn(III)-PP] were carried out as described above after the 48-

hour equilibration. The main observable difference in these experiments was extensive 

aggregation in the minerals, which was not present in experiments where PP was added before 

irradiation, since PP also helped keep particles in suspension. 

The rate of Mn(III) production was determined from linear regression of extracted 

Mn(III)-PP against time, after correcting for any Mn(III) released in dark control experiments. 

To account for the different photon flux in each photoreactor a scaling factor was applied: The 

photon flux of each reactor was divided by the photon flux of the reactor with highest 

irradiance, and the Mn(III) rates were then normalized by this scaling factor for comparison. 

We then calculated the quantum yield for Mn(III) generation, which is defined as the amount 

of photogenerated Mn(III) per photon absorbed by the δ-MnO2 suspension. To calculate the 

number of photons absorbed, we first measured the photon flux to the photoreactor by chemical 

actinometry using potassium ferrioxalate (Parker, 1953; Hatchard and Parker, 1956; Montalti 

et al., 2006) and then scaled the photon flux to the ratio of the absorbance of δ-MnO2 at the 

different pH values to that of ferrioxalate, according to the following equation (Marafatto et 

al., 2015): 

 
𝛷𝛷 =  

 𝑓𝑓 𝑀𝑀𝑀𝑀(𝐼𝐼𝐼𝐼𝐼𝐼),𝑡𝑡  × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑓𝑓 𝑀𝑀𝑀𝑀 

𝜑𝜑 ∗  𝑡𝑡  ×  
𝐴𝐴400 𝑛𝑛𝑛𝑛,   𝑀𝑀𝑀𝑀𝑀𝑀2

𝐴𝐴400 𝑛𝑛𝑛𝑛,   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 
(1) 

where fMn(III), t, the fraction of photoreduced Mn after time, t, is multiplied by the total 

number of moles of Mn in the system; φ is the photon flux measured for the photoreactor (units 

of µE/s) (Marafatto et al., 2015); and A400 nm MnO2  and A 400 nm ferrioxalate are the absorbances (in 

OD units) of δ-MnO2 at pH 4.0, 6.5 or 8.0 and ferrioxalate at 400 nm measured in 1 cm path 

length quartz cuvettes with water as a blank. 
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Optical transient absorption spectroscopy. Optical transient absorption (TA) 

spectroscopy is sensitive to excited-state valence electron dynamics and can be used to follow 

the dynamics of electronic states in semiconducting metal oxides (Cherepy et al., 1998; Zhang, 

2000; Gilbert et al., 2013). Optical TA experiments were carried out on a HELIOS 

femtosecond transient absorption spectrometer and on an EOS sub-nanosecond transient 

absorption spectrometer from Ultrafast Systems at the Molecular Foundry (Lawrence National 

Laboratory, Berkeley, CA USA). The laser source for both instruments was a Coherent Libra 

amplified femtosecond laser operating at 1 kHz with 45 fs pulse duration. The laser output was 

split into two arms. The first arm passed through a Coherent OPerA optical parametric 

amplifier (OPA) to produce tunable pump pulses. A white-light probe pulse was generated in 

the transient absorption system either by sapphire plate via the second arm of the laser output 

or by a fiber white light source (Leukos-STM) for the HELIOS and EOS spectrometers, 

respectively. The pump pulse used in our measurements was tuned at 400 nm. The intensity of 

the pump beam was measured to be 800 nJ pulse-1. Time delay was provided by a mechanical 

delay stage on the HELIOS setup and by instrument electronics on the EOS setup. Spectra 

were collected between 330 and 800 nm. 

Aqueous oxide suspensions were resuspended in aqueous PP solutions pre-equilibrated 

at pH 4.0, 6.5 or 8.0 in order to give a 20:1 PP:Mn ratio. As per a previous study (Marafatto et 

al., 2015), the sample concentration for the TA measurement was tuned to obtain an optical 

density (OD) between 0.8 and 1.6 absorption units on 0.5 mm path length cuvettes, 

corresponding to an oxide concentration between 3 and 6 mM. The purpose of resuspending 

in PP was to assure consistency with the photoreduction experiment conditions and avoid 

severe aggregation of the particles, especially at low pH. 10 to 15 ml of sample were 

recirculated in 1-mm pathlength flow-through cuvettes, and spectra were collected from -10 

ps to 8 ns (relative to the laser pulse) on the HELIOS system and from 1 ns to 200 μs on the 

EOS system. Data was collected on the EOS system only for the pH 8.0 and pH 4.0 samples, 

because differences between these samples were within the noise of the data, therefore we 

judged that the pH 6.5 data would not have shown differences. Custom user routines developed 

in the IGOR Pro software (WaveMetrics Inc., Lake Oswego, OR, USA) were used to process 

the data, including correction of the time dependent frequency modulation of the laser (laser 

chirp) on the signal to within ~150 fs.  Custom routines were also used to extract transient 
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kinetic data at 354, 450 and 580 nm from 2D plots of spectra versus time, after shifting the 

data by +1 ps to allow the kinetic data to be plotted on a logarithmic scale. IGOR Pro was also 

used to fit first-order exponential decay kinetics to the extracted data. The decay kinetics for 

all samples were adequately reproduced by fitting two exponential time constants. 

5.4. Results 

Flow-through photoreactor experiments. The irradiation of δ-MnO2 suspensions at pH 

4.0, 6.5 and 8.0 in the presence of PP resulted in the accumulation of Mn(III) over time (Figure 

1A). The suspensions at lower pH resulted in greater Mn(III) production than those at higher 

pH (~6% at pH 4.0, ~4.5% at pH 6.5, ~1.5% at pH 8.0, of the total Mn present, respectively), 

indicating that solution pH affects the rate of irreversible Mn(III) generation. The amount of 

Mn(III) generated in the dark was also higher at pH 4.0 (~3% Mn total) than at pH 6.5 and pH 

8.0 (~2% and 0.7% Mn total, respectively - Figure S1). The Mn(III) amount was regressed 

against time (4 days) without forcing the intercept through zero to obtain a photoreduction rate. 

Linear regression with a non-zero intercept gave a better fit than forcing linear regression with 

a zero intercept. A plot of the residuals showed that these were homoscedastic only for a non-

zero intercept (Figures S3). The photoreduction rates thus obtained were 9.17 ± 0.43 × 10-11 

M s-1 + 2.9 × 10-7 M for pH 4.0, 6.67 ± 0.23 × 10-11 M s-1 for pH 6.5, and 2.42 ± 0.25 × 10-11 

M s-1 for pH 8.0 (errors calculated as the 95% confidence interval on the slope). Only the pH 

4.0 data had a significant intercept, leading us to include it in the rate, whereas for the pH 6.5 

and 8.0 data the intercept values were within the confidence interval calculated on the rate. The 

photoreduction quantum yield, which represents the efficiency of the photoreduction process, 

was calculated to be 1.90 ± 0.09 x 10-4 (pH 4.0), 1.44 ± 0.4 x 10-4 (pH 6.5) and 7.46 ± 3.5 x 

10-5 for the pH 8.0 samples (errors calculated as 95% confidence interval on replicates).  
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Figure 1A) Time course plot showing the photoreduction of δ-MnO2 suspensions in the presence of PP as a 
function of pH. Dashed lines indicate the linear interpolations plotted to calculate the rates reported in the main 
text; B) Photoreduction rates, obtained from the slope of the linear regressions in Figure 1A, plotted against 
suspension pH. Error bars are plotted as the 95% confidence interval. 

The results of the pH stat experiments with 10 mM NaCl background electrolyte and 

the absence of PP are shown in Figure S2. The results confirmed the trends observed in the 

experiments where PP was added before irradiation, although the amounts of photogenerated 

Mn(III) were different. In particular, the measured photoreduction rates were 2-3 times greater 

than those obtained in the PP experiments: 3.17 ± 0.49 x 10-10 M s-1 and 4.92 ± 4.78 x 10-11 M 

s-1 for pH 4.0 and pH 8.0, respectively (errors calculated as 95% confidence interval on the 

slope). The quantum yield calculated for the reaction in this case was 1.08 ± 0.2 x 10-3 for pH 

4.0 and 2.5 ± 1.2 x 10-4 for pH 8.0 (errors calculated as 95% confidence interval on replicates). 

Fits were carried out on the data only up to 53 hours (2.2 days). The measurements made 

beyond 2 days were visibly affected by extensive aggregation, which led to large scatter in the 

data.  

Optical transient absorption spectroscopy. The optical transient absorption spectra of 

δ-MnO2 suspensions in excess PP are shown in Figure 2. The transient absorption spectra 

extracted at a delay of 5 ps in Figure 2A show the two main features: i) below 430 nm the 

signal is characterized by the ground state bleach, where the negative ΔOD represents the 

population of electron/hole pairs generated upon photoexcitation, ii) above 430 nm, the signal 

is dominated by a positive ΔOD peaking at 580 nm, the excited state absorption (ESA), that 

represents the evolution of photoexcited electrons in the conduction band of the mineral. In 

89



CHAPTER 5 

 

particular, we previously assigned the ESA in δ-MnO2 to the localization of the photoexcited 

electrons into transient Mn(III) states (Marafatto et al., 2015). The optical transient absorption 

spectra and kinetics of the ground state bleach and ESA extracted at 345 nm and 580 nm, 

respectively, did not differ substantially from one another as a function of pH (Figures 2A, 2C 

and 2D). However, a slight red-shift in the shoulder at 450 nm of the ESA at 5 ps could be seen 

as a function of pH (Figure 2A and 2B). The ESA values extracted at 450 nm for the 3 

experimental pH conditions, shown in Figure 2B, confirm that the decay kinetics are identical 

in all three samples once the signal has reached its maximum intensity. However, the rise to 

the maximum intensity of the ESA was slower for the higher pH samples than the lower pH 

samples, as shown in Figure 2B between 100 and 101 ps.  
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Figure 2A) Comparison between the ground state UV-Vis absorption spectrum of δ-MnO2, Mn(III)-PP and the 
transient absorption spectrum extracted at a 5 ps delay for δ-MnO2 at pH 4.0, 6.5 and 8.0 in the presence of PP 
above 430 nm the signal is dominated by the enhanced state absorption (ESA), below 430 it is dominated by the 
ground state bleach, except for the laser scatter at 400 nm ± 20 nm; B) Transient absorption kinetics for the excited 
state absorption extracted at 450 nm for the 3 experimental pH values studied; C) Transient absorption kinetics 
for the excited state absorption extracted at 580 nm (upper curves) and the ground state bleach extracted at 345 
nm (lower curves) for the samples at different pH; D) Transient absorption kinetics collected on the EOS setup, 
showing the ground state bleach extracted at 580 nm up to 200 µs delay time. 

To evaluate whether there could be a trend between ESA and ground state bleach as a 

function of pH, the maximum intensity of the ESA was normalized to the maximum intensity 

of the ground state bleach for each sample. This operation allowed us to visually identify the 

differences between samples. To check whether this trend was conserved across the TA 

spectra, this operation was carried out on three different wavelengths for both the ESA and 

ground state bleach, chosen to be equally representative of these portions of the signal: < 430 

nm for the ground state bleach excluding the laser scatter region; > 440 nm for the ESA. The 
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results shown in Figure 3 indicate that the values do not show a decrease with increasing pH, 

which is in contrast with the photoreduction rate measurements.  

 
Figure 3. Comparison between the maximum intensity of the enhanced state absorption, normalized by the 
maximum intensity of the ground state bleach, extracted at 3 different wavelengths, as a function of pH, showing 
no apparent trend with pH. 

5.5. Discussion 

The results of this study show that the photoreduction of δ-MnO2 increases with 

decreasing pH. However, this difference is not reflected substantially in the photoexcitation 

dynamics probed by ultrafast pump probe optical spectroscopy. In addition, the amount of 

Mn(III) trapped in the dark, which also varied as a function of pH, indicates that changes in 

solution pH are sufficient to modify the redox state of the mineral without photoexcitation. The 

comparison between the δ-MnO2 photoreduction rates (Figure 1) and the photoexcitation 

dynamics (Figure 2) as a function of pH therefore suggests that the pH-dependence of 

macroscopic photoreduction rates are likely controlled by a chemical step that is independent 

from the photoexcitation of the mineral.  
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Under the assumption that the overall chemical reaction can be represented only by 

H2O and Mn atoms on the surface of the mineral, Mn(III) photogeneration can be described 

by the following expression: 

 𝑀𝑀𝑀𝑀(𝐼𝐼𝐼𝐼)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐻𝐻2𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ℎ𝑣𝑣 →  𝑀𝑀𝑀𝑀(𝐼𝐼𝐼𝐼𝐼𝐼)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  𝐻𝐻2𝑂𝑂∗
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2) 

Where Mn(IV)surf is a Mn atom in the nanosheet, H2Osurf is an adsorbed water 

molecule, hν is the photon, Mn(III)surf is the photoreduced Mn atom after migration to the 

interlayer, and H2O*
surf is the hypothesized oxidized species. Solution pH can affect this 

reaction either by modifying the oxidizable species (H2O) or the reducible species (Mn). Based 

on the Eh-pH stability diagram for H2O, water is oxidized more favorably at high pH. 

However, our results suggest a greater formation of the oxidized species coupled to Mn 

photoreduction at lower pH than at higher pH. Therefore, the rates of photoreduction are likely 

dominated by the effect of pH on the surface of δ-MnO2, which will be discussed in the 

following paragraphs. 

pH effect on the mineral surface. δ-MnO2 is characterized by a low point of zero charge 

(PZC) of around 1-3 (Gray et al., 1978; Tan et al., 2008). However, recent studies on ion and 

oxyanion sorption have suggested that edge sites of δ-MnO2 may be protonated at higher pH 

values than the known PZC (Villalobos, 2015; van Genuchten and Pena, 2016). In particular, 

singly-coordinated edge sites may be protonated at pH values as high as 6 (Villalobos, 2015). 

This conclusion was based on bond strength calculations, which showed a degree of surface 

oxygen saturation for δ-MnO2 lying between that of β-MnO2 and ferryhydrite, characterized 

by a PZC of ~6 and 7-8, respectively. The main differences in our experiments between pH 

4.0, 6.5 and 8.0 is the amount of H+ available from the surrounding solution to sorb onto the 

edge sites. Because of the increased availability of H+ with lower pH, the protonation of the 

edge sites is expected to increase. The Na+ content could also have changed as a function of 

pH (Chapter 3), but it was not possible to evaluate given that Na+ was in excess in all 

experimental conditions. The protonation of surface Mn-O leads to an increase in their 

hydration, which contributes to reduce the bond strength between these groups and the solid 

lattice. This effect is what leads to proton promoted dissolution on the oxide surface (Stone, 

1983). The formation of Mn(III) in the dark as a function of pH supports this observation, since 

lower pH led to four times more Mn(III) formation than higher pH. The release of Mn(III) in 
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the dark also suggests that there may be a thermodynamic drive to the accumulation of Mn(III) 

in the mineral, for which protonation alone is sufficient to drive Mn reduction and light simply 

accelerates the process. The increase in protonation of edge sites may also bridge Cl- ions to 

the mineral surface, known hole scavengers (Grätzel et al., 1985) that were present in the pH 

STAT experiments. This could explain the enhanced photoreduction rates observed in the pH 

STAT experiments compared to the PP experiments. Finally, quick X-ray absorption 

spectroscopy experiments on the effect of pH on the structure of triclinic birnessite (data not 

shown) have shown that the reduction of pH below 5 results in the rapid migration of Mn(III) 

from the layer to the interlayer. Therefore, low pH may also favor the presence of Mn(III) as 

an adsorbate in the interlayer vs the nanosheet.  

Effect of pH on the photon absorption by δ-MnO2. The absorption of a photon by δ-

MnO2 results in the formation of an electron/hole pair, where the photoexcited electron is 

localized around the Mn atom, and the related hole is localized around the oxygen atom 

(Gerische.H, 1966; Sherman, 2005). This process can be seen as the breaking of a Mn-O bond 

(Maruska and Ghosh, 1978) and the formation of a transient Mn(III) species which we attribute 

to the ESA feature in Figure 2A. Therefore, a weakening of the Mn-O bond prior to photon 

absorption may enhance the probability that photon absorption will result in the formation of 

a transient Mn(III) species. We previously suggested that the delay in the rise of the ESA to its 

maximum intensity, lasting approximately 600 fs, could be assigned to the timescale required 

for the formation of the transient Mn(III) species (Marafatto et al., 2015). Figure 2B, which 

shows the kinetics of the ESA feature (~transient Mn(III) formation) extracted at 450 nm, 

suggests that the timescale for its formation is faster at low pH (more surface protonation) than 

at high pH (less surface protonation).  

Electron transfer from sorbed water molecules and structural rearrangement. In order 

to complete the photoreduction process, the transient Mn(III) species must find a structural 

configuration that hinders electron-hole recombination. This final reaction step requires hole 

scavenging by a surface-sorbed species. We previously identified the stabilization of transient 

Mn(III) through its migration from the nanosheet to the interlayer region (Marafatto et al., 

2015). Since the quantum yield for the photoreduction is on the order of 10-4 – 10-5, most of 

the photogenerated electron/hole pairs recombine without the rearrangement of Mn(III) in a 
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stable structural site. Despite the low quantum yield, the migration of transient Mn(III) species 

to the interlayer is favoured in the presence of protonated surface sites because Mn(III) is less 

strongly bound to the lattice than in the presence of deprotonated surface sites. Additionally, a 

Mn(IV) to Mn(III) reduction results in a decrease in the charge to radius ratio (ionic potential 

– IP), which increases the exchange rate with coordination ligands (for example, water 

molecules (Stumm and Morgan, 1996)) and therefore decreases the Mn-O bond strength that 

keeps it bound to the layer. Furthermore, since the Mn(III) octahedron is characterized by Jahn-

Teller distortion that is absent in Mn(IV) (Burns, 1993), the steric strain in the nanosheet is 

increased with the formation of Mn(III) in an almost fully Mn(IV) sheet. The accumulation of 

Mn(III) in the interlayer or adsorbed at the edge sites would create no additional steric strain. 

The interlayer site that can be occupied by Mn(III) is either above/below an octahedral vacancy 

in a triple corner sharing configuration or above/below an edge site in a double corner or edge 

sharing configuration. From a geometric perspective, the most likely site for the stabilization 

of Mn(III) is the double corner sharing configuration, above or below an edge site (SI text).  

Formation and evolution of oxidized species.  The formation of an oxidized species, 

which is a necessary by-product of the irreversible reduction of Mn(IV), has not been observed 

experimentally. We suggest that coordinated water molecules are most likely the electron 

donor in the process, given that no other electron-doning species are present in the main system 

we studied (PP system). Chloride might contribute to the photoreduction of Mn(IV), since it 

has been shown to enhance the rate of Fe oxide photoreduction (Grätzel et al., 1985), but Cl- 

is only present in the pH-STAT experiments, therefore cannot explain the results in the PP-

only system. Although we expect that adsorbed water (H2O or OH-) is the dominant oxidized 

species, the full oxidation of water to form molecular oxygen is not likely, since this reaction 

would require the scavenging of 4 holes by two water molecules. This reaction is unlikely 

given the low quantum yield of the photoreduction process. Instead, we suggest that Mn(IV) 

photoreduction is coupled to the formation of a radical species, most likely OH•. Although this 

hypothesis remains to be verified, it is supported by our results and is the most likely pathway, 

given the simple chemical composition of the studied system. Furthermore, OH• radicals were 

identified as the oxidized species in the photoreduction of lepidocrocite in water (Borer et al., 

2009b). In future studies, the presence of OH• may be confirmed by radical trapping 

experiments with probe compounds that do not react with the birnessite mineral. In fact, our 
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attempts to trap the likely end product deriving from combination of two hydroxyl radicals, 

H2O2, failed because the probe compounds reacted with δ-MnO2. One such compound could 

be benzyl trimethyl ammonium (BTMA), which is known to react strongly with hydroxyl 

radicals (kOH =  4 x 109 M-1 s-1)(Buxton et al., 1988).  

The steps in the photoreduction process analyzed in the previous paragraphs can be 

summarized by the following chemical expressions: 

1. 2 Mn(IV)layerO≡H2O + hv  ↔ 2 Mn(III)layerO*≡H2O (photon absorption by δ-

MnO2) 

2. 2 Mn(III)layerO*≡H2O ↔ 2 Mn(III)layer-O≡H2O*  (e- transfer from sorbed H2O) 

3.  2 Mn(III)layer-O≡H2O* → 2 Mn(III)interlayer- OH• + 2 H+   (formation of OH• species) 

Where the oxidized species are hypothetical, since they have not yet been measured 

experimentally, and protonation has been excluded for simplicity. A graphical representation 

of the protonation effect on the surface during photoreduction is given in Figure 4.   

 
Figure 4. Simplified graphical representation of the steps leading from protonation to Mn(III) stabilization in an 
out-of-plane site. The thickness of the lines representing the Mn-O bonds is intended to represent the bond 
strength. A) mineral before pH equilibration; B) protonation of the surface (for simplicity, only one site is shown 
protonated); C) irradiation of the mineral and resulting formation of a transient Mn(III) species in the layer; D) as 
a consequence of the reduction in the Mn-O bond strength from protonation, the Mn(III) octahedron can partially 
detach from the surface to find a stable Mn(III) position, as an adsorbed interlayer Mn(III) species. 

5.6. Environmental implications 

The results of this study allow us to expand the existing model for birnessite 

photoreduction by band gap excitation to include the effect of solution pH. Solution pH is a 

master variable in environmental systems that affects multiple processes, from mineral 

formation to aqueous speciation and ion sorption (Stumm and Morgan, 1996). The 

considerably higher rate of δ-MnO2 photoreduction compared to that of Fe oxides and in the 
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absence of organic electron donors confirm the importance of Mn photoreduction in a broader 

range of environmental systems than Fe oxides (Sherman, 2005). Furthermore, the Fe oxide 

studies showed an important role for Fe reoxidation on the oxide surface, which we assume to 

not occur once Mn(III) is stabilized out of the 001 plane. Moreover, our results indicate a 

pathway for Mn(III) accumulation in the mineral, which has been related to the reduced 

sorptive capacity of birnessite minerals (Simanova et al., 2015). The sorption of inorganic 

species on birnessites has been intensely researched in environmental contexts that ranged 

from low pH-governed acid mine drainage (Kimball et al., 1995; Fuller and Harvey, 2000) to 

ocean waters (pH 8.1) (Peacock and Sherman, 2007), but have rarely been observed as a 

function of light. Therefore, our results contribute to the understanding of the behaviour of 

birnessites in such contexts, which are often affected by diel variations in sunlight.  
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Chapter 6. Photoreactivity of Ni-doped MnO2 : pH 

dependent metal release reflects stabilization of photogenerated 

Mn(III) in the mineral structure 

This chapter was written as a manuscript to be submitted for publication to Chemical 

Geology with the title « Irradiation of Ni-laden birnessite results in differential metal release 

as a function of pH », authored by Marafatto FF, Peña J. 

6.1. Abstract 

Layer manganese oxides (birnessite) are characterized by nanoscale dimensions and a 

high density of sorption sites, which make them effective sorbents of numerous trace metals. 

In sunlit aquatic environments, photoreduction of Mn oxides can potentially affect the mobility 

of associated trace metals due to the dissolution of the mineral to yield Mn(II), or accumulation 

Mn(III) on the mineral surface. However, the fate of trace metals adsorbed to birnessites under 

irradiation has only been studied in systems where mineral dissolution occurred, and not when 

irradiation led to accumulation of Mn(III) on the mineral. By irradiating suspensions of Ni-

sorbed δ-MnO2 at pH 4 and 8 and following the speciation of Ni and Mn in both the aqueous 

phase by wet chemical methods and in the solid phase by EXAFS spectroscopy, we show that 

16% Mn(III) photogeneration leads to 50% Ni release at pH 4, with a redistribution of the 

remaining Ni from vacancy sites to edge sites. At pH 8, no Ni release occurs upon 5% Mn(III) 

photogeneration and only slight modifications in the Ni local coordination environment are 

observed. These results are relevant to surface aquatic environments that range from 

contaminated mining impacted sites to freshwater and saltwater bodies, where the distribution 

of Ni between the solid and aqueous phase can make the difference between having 

micronutrient or toxic effects to many life forms. 

6.2. Introduction 

Layer type Mn oxides (birnessite), are among the most widespread metal oxides on the 

Earth’s surface (Post, 1999). These minerals are characterized by a high specific surface area 
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and density of sorption sites both on particle edges and on octahedral vacancy sites (Sposito, 

2008). Birnessite is also the strongest solid phase oxidant present in nature (Morgan, 2000; 

Remucal and Ginder-Vogel, 2014). A direct consequence of this reactivity is that the fate of 

many organic and inorganic species is coupled to the biogeochemical cycle of birnessite. 

Furthermore, these minerals can undergo precipitation and dissolution reactions on daily 

timescales in sunlit environments (Sunda and Huntsman, 1990; Haack and Warren, 2003). For 

example, the main formation pathway is through the enzymatic oxidation of aqueous Mn(II) 

to form MnO2(s) with first rate constants of up to 10 hr-1 (Morgan, 2005). Over similar 

timescales, the (photo)reductive dissolution of MnO2 has been shown to yield aqueous Mn(II) 

in the presence of organic compounds (Sunda et al., 1983; Tebo et al., 2004). Sunlight 

irradiation of natural organic matter is also known to stimulate reactive oxygen species 

production in (Garg et al., 2011) which may lead to oxidative processes in both 

microorganisms and inorganic compounds (Tebo et al., 2005; Hansel et al., 2012), inhibiting 

microbial oxidation of Mn(II) (Sunda and Huntsman, 1994). 

Birnessite is also known to influence trace metal speciation in diverse environments. 

For example, birnessites are the main solid phase sequestering Co, Ni, Zn and As from ocean 

waters in ocean nodules (Marcus et al., 2004; Peacock and Sherman, 2007), and multiple toxic 

trace metals in mining impacted streams (Fuller and Harvey, 2000; Haack and Warren, 2003; 

Fuller and Bargar, 2014). The release of trace metals in such environments may be influenced 

by the photoreduction of Mn oxides, but this process has not been scarcely studied. Kim et al. 

observed in the presence of humic acid, up to 1% release of pre-sorbed Cu(II) coupled to ~0.5 

% Mn(II) was release from birnessite after 10 hours of simulated sunlight irradiation (Kim et 

al., 2014). Another study showed that the extent of As(III) oxidation to As(V) coupled to 

Mn(IV) and/or Mn(III) reduction and release of Mn(II) to solution was 25 % greater on the 

surface of birnessite after 8 hours of irradiation in a solar simulator compared to similar 

suspensions kept in the dark, (Shumlas et al., 2016). These studies showed that irradiation can 

influence contaminant behavior through partial desorption of the sorbed metal and enhanced 

metal reduction. Additionally, these studies also showed a release of Mn(II) in the dark. 

Manganese release was attributed to the nature of the Mn(III,IV)/As(III) redox couples 

investigated in the first study (Shumlas et al., 2016) and to the presence of organic compounds 

in the second study (Kim et al., 2014), where the oxidation of As(III) and organic compounds 
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by Mn was thermodynamically favourable. We have previously showed that irradiation of 

MnO2 in the absence of electron donors other than water results in accumulation of Mn(III) in 

the interlayer region of the nanosheets without release of aqueous Mn(II) (Marafatto et al., 

2015). However, the effect of sunlight on trace metal mobility in a system that undergoes 

photoreduction but without mineral dissolution is unknown.  

The structure of birnessite, and in particular the amount and crystallographic location 

of Mn(III), is known to strongly affect their sorptive properties (Wang et al., 2012; Simanova 

et al., 2015; Simanova and Peña, 2015). For example, up to 30% Mn(III) accumulation on the 

mineral (mol Mn(III) mol-1 Mntot) leads to Ni sorption primarily on particle edges with respect 

to vacancy sites, in contrast to Mn(III)-free δ-MnO2 (Simanova et al., 2015). The overall 

sorption capacity for Ni is also diminished in Mn(III)-rich δ-MnO2 (Simanova et al., 2015). 

Similarly, Mn(II) sorption on the mineral at pH 4 renders Ni and Zn unable to sorb on vacancy 

sites (Hinkle et al., 2015) and leads to Zn release at pH 6.5 (Lefkowitz and Elzinga, 2015). In 

contrast, there is little to no effect above pH 7 on Zn sorption (Hinkle et al., 2015; Lefkowitz 

and Elzinga, 2015). Although Hinkle et al. (2015) focused on Mn(II) sorption without 

quantification of Mn(III) production in an anoxic system, is very likely that Mn(II) underwent 

comproportionation with Mn(IV) to yield Mn(III), in particular at pH 7, since this process is 

well documented over a broad range of pH (Lanson et al., 2000; Elzinga, 2011; Lefkowitz et 

al., 2013). In another study, through refinement of powder X-ray diffraction data, Grangeon et 

al. (2008) showed that Mn(III) outcompetes Ni for the mineral surface at pH 4, but is unable 

to do so at pH 8. All these studies showed that the presence or accumulation of Mn(III) in a 

trace-metal laden birnessite affected the mobility of the surface-sorbed metals. Therefore, we 

expect similar effects during photoreduction of birnessite. Specifically, we expect that the 

enhanced photogeneration of Mn(III) at low pH (Chapter 5) will lead to competition between 

Ni and Mn(III) for the sorption sites in the mineral. On the other hand, at high pH this effect 

will be reduced both by the lower amount of Mn(III) formed and the lower affinity of the 

surface for Mn(III) compared to Ni. 

This objective of this work is to investigate the effect of visible light irradiation both 

on the uptake and release of Ni from birnessite minerals as a function of pH and on the rates 

of Ni-laden birnessite photoreduction. Nickel was chosen because it does not undergo 
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reduction or oxidation, and its sorption mechanism in the dark is well established (Manceau et 

al., 2007; Peacock and Sherman, 2007; Grangeon et al., 2008; Pena et al., 2010). To investigate 

the effect of irradiation on Ni mobility from birnessite, dilute synthetic mineral suspensions 

were prepared with a Ni surface loading of 5 % (mol Ni mol-1 Mn) at pH 4 and pH 8 and 

irradiated in a flow through system under 400 nm LED irradiation for 96 hours under constant 

pH control. The amount of solid-phase Mn(III) produced through photoreduction as well as 

changes in the Ni surface loading were monitored for the duration of the experiment by wet 

chemical methods. X-ray absorption spectra (XAS) at the Mn and Ni K-edge were collected at 

the end of the experiment to investigate the local coordination environment of Ni on dark and 

irradiated samples. Our results show that mineral irradiation leads to 50 % desorption of Ni 

and modifies the coordination environment of the remaining, surface-bound Ni at pH 4, 

whereas no release and only slight changes in the local coordination environment are observed 

at pH 8. These results have strong implications in predicting the fate of Ni in multiple 

environmental settings where light may play a role in determining the speciation of Ni 

associated with birnessite minerals (Fuller and Harvey, 2000; Haack and Warren, 2003; 

Peacock and Sherman, 2007; Atkins et al., 2014). 

6.3. Materials and methods 

All chemicals were reagent grade and purchased from Sigma-Aldrich unless specified 

otherwise. All solutions were prepared with fresh ultrapure Milli-Q water (18 Ω • cm). The δ-

MnO2 phase used in sorption and irradiation experiments was synthesized and characterized 

previously (Mineral B2 from Chapter 3). Briefly, the synthetic mineral had an average Mn 

oxidation number (AMON) of 4.03 ± 0.01, a dry specific surface area (SSA), as measured by 

Brunauer Emmet Teller (BET) theory N2(g) absorption, of 163 ± 8 m2/g, and a Na:Mn molar 

ratio of 0.3. The mineral phase was from the same suspension as the one used in Chapter 5, 

and comparable to the one used in Chapter 4.  

Ni sorption. Five hundred mL suspensions containing 250 µM δ-MnO2 (on a Mn molar 

basis) were prepared in 10 mM NaCl electrolyte in aluminum foil covered glass bottles and set 

to equilibrate on a magnetic stir plate in the dark. The pH was set to 4 or 8 on a Metrohm 906 

STAT titrando automatic titrator using 50 mM HCl or NaOH titer solutions, respectively. After 

4-5 hours of pH equilibration (the target pH was reached after 1 hour), aliquots of a stock NiCl2 
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(8.3 mM) solution were added to the suspensions to achieve a 5% Ni loading on a Mn molar 

basis and to have no extra Ni in solution. The suspensions were then left to equilibrate for 2 

days in the dark, keeping the pH constant. A speciation calculation with the MINEQL+ 

software (Schecher and McAvoy, 1992) showed that the suspensions were undersaturated with 

respect to homogenous precipitation of Ni(OH)2 at the Ni concentrations used in the sorption 

experiments (data not shown).  

Irradiation of mineral suspensions. After the 2-day equilibration in the dark, each 

suspension was divided into two 250 mL aliquots in aluminum foil covered glass bottles. One 

suspension was recirculated in a flow-through photoreactor described previously (Chapter 2, 

Annex 1).  Briefly, the photoreactor comprised a flow through quartz cuvette in a peristaltic 

pump driven system. Irradiation was provided by an array of 3x 1 W light emitting diodes 

(LEDs) tuned at 400 nm. The second aliquot was left in the dark, under the same conditions as 

the irradiated sample. The pH of the irradiated suspension was maintained constant by using a 

pH stat during the entire duration of the experiment, whereas the pH was monitored regularly 

on the dark aliquot (Metrohm 912 pH meter). These experiments were not conducted in excess 

PP since the presence of PP would have led to the formation of a Ni-PP complex that could 

interact with the 400 nm irradiation wavelength (SI Text). An equal amount of the acid or base 

added by the titrator to the irradiated sample was added manually to the dark control twice per 

day. Both suspensions were bubbled with humidified N2(g) to minimize the effect of 

atmospheric CO2(g) on the pH of the suspension. We previously showed that there are no 

changes in the rate and mechanism of MnO2 photoreduction in oxygenated versus N2-purged 

conditions (Marafatto et al., 2015). The duration of each irradiation experiment was 96 hours, 

and experiments were conducted in triplicates under the same conditions. 

Prior to starting the irradiation experiment, a 1 mL sample aliquot was taken from both 

suspensions and digested in 2 mL of 0.01 M H2C2O4 and 3% HNO3 and diluted with 9 mL of 

MQ water for [MnTOT] and [NiTOT] determination by inductively coupled plasma optical 

emission spectrometry (ICP-OES - Perkin Elmer Optima 8300). A 5 mL aliquot was filtered 

through a 0.2 µm polyethersulfone (PES) filter and measured by ICP-OES for [MnAQ] and 

[NiAQ] after acidification with 0.1 mL of 65% HNO3. Seven mL aliquots of each sample were 

collected into 15 mL PP centrifuge tubes, to which 0.75 mL of a 120 mM sodium 
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pyrophosphate (PP) solution at pH 4 or 8 were added. The tubes were then covered in 

aluminum foil and equilibrated in the dark for 48 hours to extract Mn(III). Once equilibrated, 

1 mL aliquots were collected and prepared for ICP-OES determination of [MnTOT] as described 

previously, while the remaining suspensions were filtered through 0.2 µm PES filters and the 

aqueous [Mn(III)-PP] compexes were quantitated by UV-Vis spectrophotometry (ɛ254 nm = 

6562 L mol-1 cm-1) with 1 cm path length quartz cuvettes using a 12.5 mM PP solution as a 

blank. We previously showed that all MnAQ measured is found as Mn(III)-PP (Marafatto et al., 

2015). Sample aliquots were collected 3 times per day for aqueous Mn and Ni determination, 

two times per day for Mn(III)-PP quantification, and at the beginning and the end of the 

experiment for total Mn and Ni determination.  

The amount of Ni sorbed on the mineral in the dark and in the light was evaluated by 

calculating the surface excess (q) expressed in mol Ni mol-1 Mn, which is obtained by 

normalizing the moles of Ni adsorbed on the mineral minus the moles of Ni in solution to the 

moles of Mn total minus the moles of Mn in solution. These units are more useful than the 

conventional units of mol Ni kg-1 sorbent, since they facilitate the interpretation of the results 

in terms of vacancy site occupancy (Pena et al., 2010). The concentration of Mn in solution 

was below the detection limit of the instrument (0.5 µM Mn), therefore the value of q was 

obtained as [(NiTOT - NiAQ) / MnTOT].  

The rate of Mn(III) production for Ni-laden δ-MnO2 was determined by linear 

interpolation of the moles of Mn(III) generated after irradiation (after subtracting any Mn(III) 

generated in the dark) versus irradiation time and the slope represented the Mn(III) 

photoreduction rates, similarly as described in Chapter 5. The quantum yield for the 

photoreduction process, defined as the amount of Mn(III) formed per photon absorbed, was 

also calculated as described previously (Chapter 5). The results from Ni-laden δ-MnO2 were 

compared to the Mn(III) production rate in the absence of Ni to evaluate the effect of Ni on the 

photoreduction of δ-MnO2.  

X-ray absorption spectroscopy. Separate samples were prepared for EXAFS 

spectroscopy following the same procedure as for the photoreduction experiments. These 

suspensions contained a total Mn concentration of 500 µM, compared to the photoreduction 

experiments that had a total concentration of 250 µM. Representative aliquots of the irradiated 
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sample and the dark control for the pH 8 and pH 4 experiments were collected after 96 hours 

of irradiation onto 0.45 µm nitrocellulose filters for XAS experiments. We calculated the 

amount of necessary sample to filter to give an absorption edge step of 1 at the Mn K edge 

with the sample mounted at 45° with respect to the incident beam (Kelly et al., 2008).  

Nickel and Mn K-edge X-ray absorption (XA) spectra for the pH 4 samples were 

collected at beamline 23 of the European Synchrotron Radiation Facility (ESRF) using a Si 

111 double crystal monochromator. The monochromator energy was calibrated using either a 

Mn or Ni metal foil and setting the first inflection point in the first derivative of the spectrum 

to 6539 or 8333 eV, respectively. Samples were mounted at 45° with respect to the incident 

beam on plastic sample holders, inserted in a liquid He cryostat equipped with a heating unit 

that increased the temperature on the sample to 80 K (to approximate the data acquisition 

conditions used ad SSRL). Manganese K-edge spectra were collected in transmission mode up 

to k of 14 Å-1 whereas Ni K-edge spectra were collected in fluorescence mode on a 13 element 

Ge detector. For data acquisition the vertical slit size was 1 mm and the horizontal slit size was 

varied between 4 mm and 6 mm. Three to 6 replicate scans were collected per sample per 

absorption edge. 

The X-ray absorption spectra for the pH 8 samples were collected on the Mn K-edge 

and the Ni K-edge at beamline 4-1 of the Stanford Synchrotron Radiation Lightsource (Menlo 

Park, USA), using a Si 220, ϕ = 90° double crystal monochromator. The incident beam was 

detuned to 70% at 10 keV to minimize higher-order harmonics. Vertical sample slit size was 

1 mm, whereas the horizontal slit size was varied between 6 and 8 mm. The monochromator 

energy was calibrated with a Mn and Ni metal foil. Samples were mounted on aluminium 

sample holders, placed at a 45° angle with respect to the incident beam in a LN2 cryostat (77 

K). Mn K-edge spectra were collected up to k of 14 Å-1 in transmission mode, whereas Ni K-

edge spectra were collected up to k of 12 Å-1 in fluorescence mode on a passivated implanted 

planar silicon (PIPS) detector equipped with soller slits to filter elastic scatter and a Co(III) 

foil as a filter for fluorescent photons of lower energy. Three to 4 replicate scans were collected 

per sample and edge.  

Data reduction and analysis of the X-ray absorption near edge structure (XANES) and 

the extended X-ray absorption fine structure (EXAFS) spectra was carried out with Sixpack 
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(Webb, 2005a), a graphical user interface (GUI) built on the IFEFFIT engine (Newville, 2001). 

Replicate scans were aligned to a common energy scale using the metal foils to average both 

the fluorescence and transmission spectra. Background subtraction of the averaged spectra was 

achieved by fitting the pre-edge region with a Gaussian function and the post-edge region with 

a quadratic function, Rbkg was set to 1 Å, no clamps, the k-weight was set to 3, and the E0 set 

at 6554 for the Mn K-edge data and 8347 for the Ni K-edge data. The k-weighted EXAFS were 

then Fourier-transformed with a Kaiser-Bessel transformation window in the 2-11 Å-1 range 

for the Ni data, and the 2-14 Å-1 range for the Mn data. The Mn data was analyzed qualitatively 

to confirm changes in the valence and local coordination environment of Mn before and after 

irradiation. 

Shell by shell fitting of Ni EXAFS. Shell-by-shell fitting of the Ni K-edge EXAFS was 

carried out by fitting the experimental data with the EXAFS equation (Kelly et al., 2008) using 

the FEFF EXAFS fitting module of SIXPACK (Webb, 2005a). The aim of this fitting 

procedure was to determine the structural parameters that describe the local coordination 

environment of Ni on δ-MnO2. Specifically, the Ni-Mn interatomic distances can be used to 

distinguish between corner-sharing and edge-sharing complexes, whereas the fitted 

coordination number can be used to estimate the fraction of Ni adsorbed on edge sites versus 

vacancy sites. The EXAFS spectra were fit using Ni-O and Ni-Mn scattering paths built with 

the FEFF v6L code using the atomic coordinates from density functional theory (DFT) 

geometry-optimized models of Ni adsorbed onto MnO2 in a triple corner sharing (TCS) 

complex at a vacancy site or incorporated (INC) into the nanosheet, respectively (Pena et al., 

2010; Simanova et al., 2015).  

All EXAFS spectra were fit with a simplified 2-shell model in the 1- 4.1 Å R + ΔR 

range, which included only single scattering paths, and an extended model that included single 

and multiple scattering paths up to 6.1 Å R + ΔR. All spectra were fit in R-space over a k-

range of 2.5 – 10 Å-1 and 3 – 11.9 Å-1, dk = 1 and dk = 3 for the pH 4 and pH 8 data, 

respectively. A dK value of 1 was chosen over dK = 3 for the pH 4 data because it fitted the 

data with better precision as could be observed visually (Figure S2). We observed that the 

differences in the FT window in the dk = 1 and dk = 3 case did not sensibly cut out important 

data in one case or the other, but only glitches which should not affect the FT-EXAFS 
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considerably (Calvin, 2013) (Figure S3). An amplitude reduction factor (S0
2) of 0.96 was 

applied based on previous studies (Pena et al., 2010). After evaluating the uncertainties on 

fitted parameters and visual inspection of the fit of the magnitude and imaginary part of the 

data, the goodness of fit was evaluated by the R-factor (a value equal or below 0.02 was 

deemed reasonable (Calvin, 2013)) and the reduced chi2 as outputted by the fitting program. 

The model of choice as well as the constraints on the fitted interatomic distances (R), 

coordination numbers (CN) and Debye-Waller factors (σ2) were selected based on chemical 

reasoning on the wet chemical results (q value, Mn(III) content). The R-value on all fits (≤ 

0.02) indicated a satisfactory goodness of fit (Calvin, 2013). 

6.4. Results 

Mn photoreduction rates. The photoreduction rates for Ni-laden δ-MnO2 at pH 4 and 

8 are shown in Figure 1 and compared with the photoreduction rates of δ-MnO2 at pH 4 and 

8 (Chapter 5). The data are affected by a large amount of scatter, which is attributed to particle 

aggregation during irradiation because of the 10 mM NaCl present as the background 

electrolyte. Visually observable aggregation of the mineral nanoparticles as a function of pH 

(Chapters 3 and 5) led to poor sampling, especially for the Mntot sample measured by ICP-

OES, which led to scatter in the data. The aggregation was found to increase with time both in 

the dark and in the irradiated sample. Also, the effect of aggregation was greater in the Ni-

laden δ-MnO2 than in the δ-MnO2 without Ni (Chapter 5), and greater in the pH 4 samples 

than in the pH 8 samples. Notwithstanding the scatter in the measurements, we calculated the 

photoreduction rates from linear regression of the data. The amount of Mn(III) formed was 

0.88 ± 0.46 µmol Mn(III) day-1 for the pH 4 series, and 0.18 ± 0.08 µmol Mn(III) day-1 for the 

pH 8 series. The rates of photoreduction for δ-MnO2 without Ni, for comparison, were 0.97 ± 

0.52 µmol Mn(III) day-1 and 0.19 ± 0.12 µmol Mn(III) day-1 for the pH 4 and pH 8 data, 

respectively (uncertainties reported as 95 % confidence interval). The amount of Mn(II) 

released was below the detection limit (0.5 µM) of the ICP-OES. The quantum yield for the 

photoreduction process was quantified as 1.69 ± 0.37 x 10-3 for the pH 4 series and 3.11 ± 0.67 

x 10-4 for the pH 8 series. The quantum yield for the photoreduction of δ-MnO2 without Ni, on 

the other hand, was 1.08 ± 0.2 x 10-3 and 2.5 ± 1.2 x 10-4 for the pH 4 and pH 8 series, 

respectively (errors determined as standard deviation on replicates). A total of 5 % mol Mn(III) 
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mol-1 Mntot was present in the mineral after 96 hours of irradiation at pH 8, compared to 16 % 

mol Mn(III) mol-1 Mntot at pH 4 for the samples prepared for XAS experiments (Table 1), 

which was comparable to the amount generated in the photoreduction rate triplicate 

experiments.  

 
Figure 1. a - left) Manganese photoreduction rates in Ni-laden δ-MnO2 as a function of pH (pH 4 red circles, pH 
8 blue squares); b - right) Manganese photoreduction rates for Ni-laden δ-MnO2 as a function of pH (symbols as 
in left figure) compared with the photoreduction trends of δ-MnO2 without Ni (pH 4 yellow triangles, pH 8 cyan 
pentagons). Athough the data is strongly scattered, the rates are comparable. 

Table 1: summary of the wet chemical data for the samples for which XAS data was collected. 
Sample ID pHaq qNi (mol Ni mol-1 Mn) qMn(III) (mol Mn(III) mol-1 Mn) 

Ni laden δ-MnO2 pH 4 dark 4.0 0.04 0.05 
Ni-laden δ-MnO2 pH 4 light 4.0 0.02 0.16 
Ni-laden δ-MnO2 pH 8 dark 8.0 0.02 0.01 
Ni-laden δ-MnO2 pH 8 light 8.0 0.02 0.02 

Ni release and readsorption during irradiation. The surface excess of Ni (q) on δ-

MnO2 as a function of time is shown in Figure 2a for the pH 4 series and in Figure 3a for the 

pH 8 series. About 6% surface loading was achieved both at pH 4 and pH 8 at the beginning 

of the experiment. A gradual release of Ni was observed in the pH 4 data with irradiation, 

reaching ~50 % of the initially sorbed Ni after 96 hours of irradiation (~3 % Ni surface excess). 

The pH 8 data, on the other hand, did not show any net Ni release during irradiation. The 

experiments run for XAS data collection for which the initial surface excess was different (4 

% vs 6% Ni in the dark), but the Ni dynamics were similar (~50% of the originally sorbed Ni 

was released after 96 hours of irradiation at pH 4) as shown by plotting the Ni surface excess 
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(q) normalized to the Ni surface excess at the beginning of the experiment (qini) (Figures 2b 

and 3b). 

 
Figure 2. a – left) Ni surface loading as a function of irradiation time for the pH 4 experiments. Irradiation of Ni-
laden δ-MnO2 at pH 4 results in up to 50% Ni release to solution. The experiment from which the XAS sample 
was collected shows half the surface loading, but the same trend (up to 50% Ni release with irradiation); b – right) 
Ni surface loading normalized to the initial loading (~loading in the dark sample), to show that the Ni release in 
the XAS sample is comparable to the Ni release in the replicate experiments. 

 
Figure 3. a – left) Ni surface loading as a function of irradiation time for the pH 8 experiments. Irradiation of Ni-
laden δ-MnO2 at pH 8 results in no Ni release to solution. The experiment from which the XAS sample was 
collected shows half the surface loading, but the same trend (no Ni release); b – right) Ni surface loading 
normalized to the initial loading (~loading in the dark sample), to show that the Ni release in the XAS sample is 
comparable to the Ni release in the replicate experiments. 

Mn K-edge X-ray absorption spectroscopy. Mn X-ray absorption spectra for the pH 4 

and pH 8 series are shown in Figures 4 and 5, respectively. The XANES spectra from the pH 
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4 samples shows a slight shift of the white line position to lower energies, consistent with a 

decrease in the AMON of the mineral, as expected from the wet chemical data (~ 16 % Mn(III) 

accumulation). Attempts to quantify the proportions of Mn(III) and Mn(IV) by linear 

combination fitting of the data using spectra for δ-MnO2 containing only Mn(IV) and Mn2O3 

for Mn(IV) and Mn(III), respectively, did not show appreciable differences between the dark 

and irradiated samples. The lack of differences was related to the low sensitivity of this 

technique to small changes in AMON and the high dependence on the reference spectra used 

(Manceau et al., 2012). The pH 8 data, on the other hand, did not show differences between 

dark and irradiated samples, as expected from the low amount of Mn(III) formed (~ 4 %). This 

value is below the detection limit (5-10%) of the AMON determination by XANES (Bargar et 

al., 2005).  

 
Figure 4. Manganese k-edge X- ray absorption spectra for Ni-laden δ-MnO2 at pH 4 in the light vs in the dark. 
Left) XANES; center) EXAFS; right) Fourier transformed EXAFS. 

 
Figure 5. Manganese k-edge X- ray absorption spectra for Ni-laden δ-MnO2 at pH 8 in the light vs in the dark. 
Left) XANES; center) EXAFS; right) Fourier transformed EXAFS. 

The EXAFS spectra for both pH series show the « staircase » feature between 3 and 6 

Å-1, characteristic feature of layer type Mn oxides. The spectra of both series also lack a peak 
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splitting in the « indicator » feature between 7.9 and 8.1 Å-1, indicating low to no Mn(III) in 

the layers (Manceau et al., 2004). The FT-EXAFS spectra of the pH 4 series shows a reduction 

in the Mn-Mn peak amplitude (the second peak at ~2.3 Å R + ΔR), consistent with the presence 

of Mn(III) octahedrons in out-of-plane structural sites, which introduce different Mn-Mn 

interatomic distances. Additionally, the Jahn-Teller distortion that characterizes the Mn(III) 

octahedron also lowers the amplitude of this peak because of a splitting of the Mn-O distances 

(Webb, 2005b). In the FT-EXAFS spectra of the pH 8 series, a slight reduction in the Mn-Mn 

peak amplitude can be observed (Figure 5). This observation is consistent with the presence 

of some Mn(III), but considerably less than in the pH 4 data. Manganese(III) in the interlayer 

is also evidenced by the shoulder in the FT-EXAFS on both pH 4 and pH 8 datasets, at ~3 Å 

R + ΔR. 

Ni K-edge XAS spectroscopy. The Ni K-edge EXAFS spectra for the pH 4 data are 

shown in Figure 6a whereas the FT-EXAFS spectra are shown in Figure 6b. The EXAFS 

spectra are strongly glitched, nevertheless there are apparent differences between the dark and 

light sample, which are reflected in the FT-EXAFS spectra. In particular, the EXAFS spectrum 

of the dark sample contains stronger amplitude oscillations than the irradiated sample at higher 

k-values. In particular, the oscillations between 6.5 and 8.2 Å-1 are of greater amplitude, with 

two distinct peaks that are less discernible in the light sample. Greater amplitudes and a peak 

splitting are also visible, but to a lower extent, in the oscillations between 4 and 6.5 Å-1. The 

greater amplitude in oscillations in the dark sample is consistent with a greater order in the 

coordination environment and a greater number of near neighbors. These differences are 

reflected in the FT-EXAFS spectra, which show four main features: a first sharp peak at ~1.5 

Å R + ΔR, a second peak at ~3.0 Å R + ΔR, a third small peak at ~3.9 Å R + ΔR and a fourth 

broad peak at ~4.8 Å R + ΔR. These peaks are consistent with the interatomic distances for 

first and second shell Ni-O and Ni-Mn, respectively. In particular, the Ni-Mn shells reflect Ni 

adsorbed to vacancy sites or particle edges in a triple or double corner sharing configuration, 

respectively (Pena et al., 2010; Simanova et al., 2015). About 50 % reduction in the amplitude 

of the second peak is observed in the irradiated sample compared to the dark sample. This 

change in peak amplitude is consistent with an increase in disorder and/or a reduction in the 

number of Mn neighbors at this distance. The latter scenario would result from a change in the 
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proportion of Ni sorbed at vacancies (6 Mn near neighbors) versus particle edges (2-3 Mn near 

neighbors). 

 
Figure 6. A) Ni K-edge EXAFS for the pH 4 light vs dark samples; B) Ni K-edge FT-EXAFS for the pH 4 light 
vs dark samples; C) Ni K-edge EXAFS for the pH 8 light vs dark samples; D) Ni K-edge FT-EXAFS for the pH 
8 light vs dark samples. 

The Ni K-edge EXAFS spectra for the pH 8 data are shown in Figure 6c whereas the 

FT-EXAFS spectra are shown in Figure 6d. We observed only modest differences in the 

EXAFS spectra of the light and dark samples compared to the pH 4 data. Among these 

differences, an increase in the shoulder at 7 Å-1 is visible in the dark compared to the light 

sample. In addition, irradiation leads to the disappearance of the shoulder in the peak around 

11 Å-1. In addition to the peaks observed for the pH 4 data, the FT-EXAFS spectra of the pH 

8 samples show an additional peak at ~2.5 Å R + ΔR, which is consistent with Ni in a double 
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edge sharing configuration at particle edges or incorporated into the nanosheet as predicted by 

the INC model (Pena et al., 2010; Simanova et al., 2015). Additionally, a broad peak composed 

of 3 overlapping peaks can be observed between 4 and 6 Å R + ΔR. The first and third peak 

are consistent with distances for Ni-O and Ni-Mn on a vacancy in a triple corner sharing 

configuration. The second peak at ~4.2 Å R + ΔR, on the other hand, is consistent with the 

second Ni-Mn shell when Ni is incorporated into the nanosheet (Pena et al., 2010; Simanova 

et al., 2015). The comparison between the irradiated and dark sample shows a slight reduction 

in the amplitude of the peak relative to Ni adsorbed as a triple corner sharing complex, and an 

increase in the amplitude of Ni incorporated in the nanosheet. 

Shell-by-Shell fits of Ni EXAFS spectra in the R + ΔR < 4.1 Å range. Fits of the Ni-O 

and Ni-Mn shells in the 1 - 4.1 Å range for the pH 4 and 8 data are shown in Figure 7 and 8 

and fit parameters are reported in Tables 2 and 3. The fits of the pH 4 data included a Ni-O 

path and a Ni-Mn path from the TCS model, which represent the first oxygen coordination 

shell of Ni (Ni-O1) and the first Mn coordination shell of Ni when Ni is sorbed at a vacancy or 

edge site as a corner sharing complex (Ni-MnCS). All values for CN, R and σ2 values were 

floated. The pH 8 data required an additional Ni-Mn path for Ni incorporated into the nanosheet 

(Ni-MnINC). Following the approach in Pena et al. (2010), the CN for the Ni-Mn peak at ~3 Å 

R + ΔR and that at ~2 Å R + ΔR were constrained to their theoretical values and a species 

abundance scaling factor (f) was used to evaluate the proportion of Ni sorbed on vacancy sites 

and incorporated into the nanosheet.  
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Figure 7. Ni k-edge fourier transformed EXAFS (magnitude + imaginary part) and shell by shell fits (magnitude 
+ immaginary part) for the pH 4 samples in the dark (above) and after irradiation (below) in the simplified 2-shell 
fit. Fit parameters are shown in Table 2. 
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Figure 8. Ni k-edge fourier transformed EXAFS (magnitude + imaginary part) and shell by shell fits (magnitude 
+ immaginary part) for the pH 8 samples in the dark (above) and after irradiation (below) in the simplified 2-shell 
fit. Fit parameters are shown in Table 3. 

In the pH 4 data, the fit-derived distances for the Ni-O and Ni-Mn peaks of 2.05 ± 0.01 

Å and 3.48 ± 0.01 Å, respectively, as well as their σ2 values were consistent with previous 

studies (Pena et al., 2010; Simanova et al., 2015). The similarity in the σ2 values obtained for 

the light and dark sample indicates that increased disorder resulting from Mn(III) accumulation 
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during irradiation cannot explain, alone, the decrease in the amplitude of the Ni-MnCS peak 

upon irradiation. Instead, the 50% decrease in amplitude for the Ni-Mn peak in the irradiated 

sample compared to the dark sample was manifest in the fitted CN values of 4.57 ± 1.58 and 

8.06 ± 1.68, respectively (Table 2). A CN value of 4.6 could arise from 65 ± 40 % Ni adsorbed 

as a TCS complex on vacancy sites (CN of 6) and 35 ± 40% Ni adsorbed as a DCS complex 

on particle edges (CN of 2). This estimate is compromised, however, by the large uncertainties 

in the fitted CNs and by the high CN of the dark sample, which exceeds significantly the 

theoretical value of 6. In addition, the short k-range to which the data extends (k-range 2.5 – 

10 Å-1) also contributes to the large uncertainty of the CNs A more reliable estimate of the 

proportion of Ni on edge sites in the irradiated sample requires that these shortcomings in the 

fitted coordination number be resolved, as explored in the next sections.   

Table 2: Fit scenarios for the pH 4 samples with a simplified 2-shell model (R range 1-4.1 Å). A dK value of 0.96 
was applied based on the work published by Pena et al. (2010). It can be seen that floating all parameters gives 
an unrealistically large CN on the Ni-Mn shell. 

 

 Ni- laden δ-MnO2 dark Ni-laden δ-MnO2 light 

 
Ni-O1 

  

CN 6.06 ± 0.83 6.13 ± 0.81 

R (Å) 2.06 ± 0.01 2.05 ± 0.01 

σ2 (Å2) 0.003 ± 0.001 0.004 ± 0.001 

 
Ni-MnTCS 

  

CN 8.06 ± 1.68 4.57 ± 1.58 

R (Å) 3.49 ± 0.01 3.48 ± 0.01 

σ2 (Å2) 0.005 ± 0.001 0.006 ± 0.003 

   

E0 (eV) -1.55 ± 1.14 -1.81 ± 1.29 

Red Chi2 3.88 9.07 

R-factor 0.02 0.02 

N vars/IDP 7/14 7/14 
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Table 3: Fit scenarios for the pH 8 samples with a simplified 2-shell model (R range 1-4.1 Å). A dK value of 0.96 
was applied based on the work published by Pena et al. (2010).  

 

The fit derived distances for the Ni-O and Ni-MnCS shells in the pH 8 data were 

consistent with the pH 4 data and Pena et al. (2010) and (Manceau et al., 2007; Peacock and 

Sherman, 2007).  The interatomic distance obtained for the Ni-MnINC shell (2.86 ± 0.01), as 

well as all other floated variables were also consistent with published values (Pena et al., 2010). 

No large differences between the dark and light sample were observed, particularly for the σ2 

values and interatomic distances fitted for the Ni-Mn paths. Assuming that no significant 

amount of Ni was adsorbed at the particle edges in these samples, the values obtained on the 

species abundance fractional parameter (f), indicate that the amount of Ni incorporated into the 

nanosheet increased from 60 ± 3% to 68 ± 3% with irradiation compared to Ni adsorbed on 

vacancies in a TCS complex.  

 Ni- laden δ-MnO2 dark Ni-laden δ-MnO2 light 

 
Ni-O1 

  

CN 6.15 ± 0.74 6.04 ± 0.75 

R (Å) 2.04 ± 0.01 2.04 ± 0.01 

σ2 (Å2) 0.005 ± 0.001 0.005 ± 0.001 

 
Ni-MnINC 

  

CN 6 * (1- f) 6 * (1- f) 

R (Å) 2.86 ± 0.01 2.86 ± 0.01 

σ2 (Å2) 0.004 ± 0.001 0.004 ± 0.001 

   

 
Ni-MnTCS 

  

CN 6 * f 6 * f 

R (Å) 3.48 ± 0.01 3.47 ± 0.01 

σ2 (Å2) σ2 Ni-MnTCS σ2 Ni-MnTCS 

   

f 0.68 ± 0.03 0.60 ± 0.03 

   

E0 (eV) -2.04 ± 1.08 -2.30 ± 1.09 

Red Chi2 36.97 3.44 

R-factor 0.02 0.02 

N vars/IDP 8/17 8/17 
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Alternative shell-by-shell fit scenarios for pH 4 Ni EXAFS spectra in the R + ΔR < 4 Å 

range. The large uncertainties in the fitted CNs of the dark and light sample (20-40 %) and the 

high CN of the dark sample (8.06 ± 1.68) indicate that the simple 2-shell model does not fully 

explain the pH 4 data.  A likely explanation for these fitting results is that absorber-scatter pairs 

not included in the two-shell model contribute amplitude of the Ni-MnCS peak. Based on the 

structural models for Ni-TCS and Ni-INC, the shells most likely to influence the amplitude of 

the Ni-MnCS peak are the Ni-O shell at around 3.5 Å (Ni-TCS model) and a Ni-Mn path at 

around 2.9 Å (Ni-INC model). Specifically, the TCS model contains a Ni-O shell between 3.44 

and 3.71 Å, whereas the INC model shows Ni-Mn scattering between 2.82 and 3 Å. Based on 

these constraints, we tested four fit scenarios to address the shortcomings of the two-shell fits 

for the dark sample. We also applied these four fit scenarios to the irradiated data to evaluate 

whether the CN of the Ni-Mn shell was affected similarly as the CN of Ni-Mn shell of the dark 

sample.  

In fit scenarios one and two, we assumed that the large amplitude of the Ni-Mn peak at 

3 Å R + ΔR could be explained by the scattering from the second Ni-O shell. The TCS model 

includes 3 oxygen atoms that are each triply coordinated to Mn at around 3.44 Å and 3 atoms 

that are doubly-coordinated to Mn at a distance of 3.51 - 3.70 Å. Scenario 1 assumed that the 

EXAFS spectra were sensitive to all 6 oxygen scatterers. To test this assumption, the model 

included a Ni-O path (Ni-O2) with a fixed CN of 6 and an R value of 3.54 Å, equal to the 

average distance between all paths in the model related to these oxygens. The Debye-Waller 

factor was floated to evaluate whether the value fitted was physically reasonable. In the second 

scenario, we assumed that only the triply-coordinated oxygens contributed to the amplitude at 

3 Å R + ΔR. The variation between the theoretical interatomic distances between Ni and these 

three atoms is small (3.446 Å, 3.449 Å and 3.454 Å) and the triple-coordination of these atoms 

with Mn is consistent with a greater rigidity in the structure for the dark sample, which almost 

only contains Mn(IV) (AMON = 4). To test this assumption, we added the Ni-O2 shell with 

the CN set to 3 and the interatomic distance set to 3.45 Å. The Debye-Waller factor in this case 

was constrained to that of the Ni-O1 shell. In the third and fourth scenarios, we assumed that 

the large CN and uncertainty on the Ni-Mn peak at 3 Å R + ΔR was due to a missing Ni-Mn 

shell at 2.86 Å related to Ni incorporated into the nanosheet (Ni-MnINC - CN = 6 - scenario 3) 

or bound to Mn(IV) as a double edge sharing complex on a particle edge (Ni-MnES - CN = 2 - 
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scenario 4) (Pena et al., 2010; Simanova et al., 2015). The Debye-Waller factors of all Ni-Mn 

paths were constrained to those of Ni-MnCS, and the CN of the Ni-MnCS peak was floated. 

Additionally, the fit statistics were not considerably affected by the inclusion of these paths, as 

was expected since the purpose of including these paths was not to increase the goodness of fit 

but to give a chemical explanation to the high CN value obtained. 

In the fits of the dark data (Figure S4a, Table S1), the inclusion of the Ni-O2 shell 

with a CN of 6 (scenario 1) did not result in a considerable decrease of the CN on the Ni-MnCS 

path nor a decrease in the CN uncertainty with respect to the initial fit. By applying a CN of 3 

and the shorter interatomic distance (scenario 2), the CN on the Ni-MnCS path decreased to 

6.62 ± 1.60. No large differences were observable in the other fitted parameters as well as in 

the R-factor. Scenarios 3 and 4, which included a Ni-MnES path to model the shoulder at around 

2 Å R + ΔR, returned unreasonably high fitted values on the CN of the Ni-MnCS peak. The 

effect was greater for scenario 4 than scenario 3, and in both cases the mismatch was visually 

evident. These results suggest that Ni-O2 may be the source of the high CN fitted in the free 

2-shell fit. Furthermore, Ni-O2 is more likely responsible for this CN than Ni-MnES. 

In the fits of the irradiated data (Figure S4b, Table S2), scenario 1 did not change 

considerably the CN on the Ni-MnCS path, whereas scenario 2 lowered the CN of Ni-MnCS in 

the irradiated sample to 3.22 ± 1.52. However, in both scenarios the uncertainty on the CN 

increased (40-50%). Compared to the dark data, the interatomic distances for the fitted Ni-

MnCS peak decreased from 3.49 ± 0.01 Å to 3.48 ± 0.01 Å, whereas the Debye-Waller factors 

increased slightly. Also for the Ni-O1 shell the interatomic distance decreased from 2.06 ± 0.01 

Å to 2.05 ± 0.01 Å while the Debye-Waller factor increased from 0.003 ± 0.001 Å to 0.004 ± 

0.001 Å. The R-factor, on the other hand, was 0.02 in both cases. However, compared to the 

dark data, there was a visual mismatch between data and fit when this shell was included. 

Similarly to the dark data, scenarios 3 and 4 gave unreasonably high values on the CN of the 

Ni-MnCS peak and were a visually identifiable mismatch. Therefore, the irradiated data did not 

benefit greatly from the additional shells as the dark data did. 

The pH 4 fits in the 1 - 4 Å R + ΔR range gave appreciable results but pointed out 

issues in the CN value of the dark sample, as well as large uncertainties on the fitted CN of 

both the dark and irradiated sample. By carrying out the alternative fit scenarios, we propose 
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the high CN on the dark sample to be related to the Ni-O2 shell. The uncertainties on the CN, 

on the other hand, increased by adding this shell in both the dark and irradiated sample. 

Through supplementary fits on other data with Ni adsorbed on vacancy sites and edge sites 

(Simanova et al., 2015), we observed that extending the data range FT-window up to a value 

of 11.9 Å-1 changed the uncertainty on the CN from 40 % to 30 %. However, this was not 

possible with our data because the data beyond 10 Å-1 was not usable. 

Shell-by-Shell fits of Ni EXAFS spectra in the R + ΔR < 6.1 Å range.  Based on the fits 

results in the 1 - 4 Å R + ΔR range, we extended the fits to 6.1 Å R + ΔR in order to test which 

features were distinguishable from the noise in the FT-EXAFS and to attempt to reduce the 

uncertainty in the fitted CN since improved and more constrained fits would provide a better 

estimate of the proportion of Ni-MnCS distributed between edge sites and vacancies. The shell-

by-shell model fits chosen for the pH 4 and 8 data are shown with the data as magnitude and 

imaginary part of the Fourier transform in Figures 9 and 10, respectively. A summary of all 

fitting parameters and constraints for the pH 4 and pH 8 data in the full range fits is reported 

in Tables 4 and 5, respectively.  
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Table 4: Optimized fit parameters for the pH 4 EXAFS data. The S0
2 value was set to 0.96 based on published 

data (Pena et al., 2010). The amplitude (A) for the different shells is defined by the product of the CN and a 
scaling parameter (f), where f refers to the fraction of Ni in TCS complexes above vacancies and (1-f) refers to 
the fraction of Ni as a double edge sharing complex at the particle edges. 

Sample ID Ni-laden δ-MnO2 
pH 4 dark 

Ni-laden δ-MnO2 
pH 4 light 

 Ni-laden δ-
MnO2 pH 4 dark 

Ni-laden δ-
MnO2 pH 4 light 

 
Ni-O1 

     

CN 6.23 ± 0.69 6.33 ± 0.65    
R (Å) 2.05 ± 0.01 2.05 ± 0.01    
σ2 (Å2) 0.003 ± 0.001 0.004 ± 0.001    
 
Ni-O2 

 
 

  
Ni-O4   

CN 3  CN CNNi-O1 CNNi-O1 
R (Å) 3.45  R (Å) 5.47 ± 0.05 5.45 ± 0.05 
σ2 (Å2) σ2 Ni-O1  σ2 (Å2) σ2 Ni-O1 σ2 Ni-O1 
 
Ni-MnTCS1    

Ni-MnTCS2 
  

CN 6.94 ± 1.37 6 * f + 2* (1-f) CN CN Ni-MnTCS1 6 * f + 2* (1-f) 
R (Å) 3.49 ± 0.01 3.47 ± 0.01 R (Å) 5.42 ± 0.02 5.39 ± 0.02 
σ2 (Å2) 0.005 ± 0.002 0.005 ± 0.002 σ2 (Å2) σ2 Ni-MnTCS1 σ2 Ni-MnTCS1 
 
Ni-O3      

CN 6.29 ± 2.73 4.12 ± 2.45    
R (Å) 4.52 ± 0.03 4.49 ± 0.04 f  0.56 ± 0.28 
σ2 (Å2) σ2 Ni-O1 σ2 Ni-O1    
      
E0 (eV) -1.34 ± 0.90 -2.11 ± 0.99    
Red Chi2 2.70 5.73    
R-factor 0.018 0.022    
N vars/IDP 11/24 11/24    
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Figure 9. Ni k-edge fourier transformed EXAFS (magnitude + imaginary part) and shell by shell fits (magnitude 
+ immaginary part) for the pH 4 samples in the dark (above) and after irradiation (below) in the full range fit (1 
– 6.1 Å). Fit parameters are shown in Table 4. 
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Figure 10. Ni k-edge fourier transformed EXAFS (magnitude + imaginary part) and shell by shell fits (magnitude 
+ immaginary part) for the pH 8 samples in the dark (above) and after irradiation (below). Fit parameters are 
shown in Table 5. 
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Table 5: Optimized fit parameters for the pH 8 data. The constraints for the coordination numbers and the debye 
waller factors (σ2), as well as the value for S0

2 (set to 0.96), were obtained from Pena et al. (2010). The amplitude 
(A) for the different shells is defined by the product of the CN and a scaling parameter (f), where f refers to the 
fraction of Ni in TCS complexes above vacancies and (1-f) refers to the fraction of Ni incorporated into the 
nanosheet. 

Sample ID Ni-laden δ-MnO2 pH 
8 dark 

Ni-laden δ-MnO2 pH 
8 light 

 Ni-laden δ-
MnO2 pH 8 

dark 

Ni-laden δ-
MnO2 pH 8 

light 
 
Ni-O1 

     

CN 6.19 ± 0.49 6.07 ± 0.59    
R (Å) 2.03 ± 0.003 2.03 ± 0.005    
σ2 (Å2) 0.005 ± 0.001 0.005 ± 0.001    
 
Ni-MnINC1 

   
Ni-MnTCS2 

  

A 6 x (1-ƒ) 6 x (1-ƒ) A 6 x f 6 x ƒ 
R (Å) 2.86 ± 0.01 2.86 ± 0.01 R (Å) 5.37 ± 0.02 5.36 ± 0.03 
σ2 (Å2) 0.004 ± 0.0002 0.004 ± 0.0003 σ2 (Å2) σ2 Ni-MnINC2 σ2 Ni-MnINC2 
 
Ni-MnTCS1    

Ni-MnMSP 
  

A 6 x ƒ 6 x f CN 6 6 
R (Å) 3.47 ± 0.01 3.47 ± 0.01 R (Å) 5.67 ± 0.01 5.66 ± 0.02 
σ2 (Å2) σ2 Ni-MnINC σ2 Ni-MnINC σ2 (Å2) σ2 Ni-MnINC2 σ2 Ni-MnINC2 
 
Ni-O2      

A (9 x ƒ) + ((1 - ƒ) x 12) (9 x ƒ) + ((1 - ƒ) x 12)    
R (Å) 4.44 ± 0.02 4.45 ± 0.03    
σ2 (Å2) 0.009 ± 0.003 0.01 ± 0.005    
 
Ni-MnINC2 

     

A 6 x (1-ƒ) 6 x (1-ƒ) ƒ 0.68 ± 0.02 0.60 ± 0.02 
R (Å) 5.00 ± 0.02 4.98 ± 0.03    
σ2 (Å2) 0.004 ± 0.001 0.006 ± 0.002    
      
E0 (eV) -2.32 ± 0.65 -2.47 ± 0.79    
Red Chi2 2.12 2.10    
R-factor 0.010 0.014    

 

In the pH 4 fits, only single scattering paths were included, since multiple scattering 

paths did not improve the fit and increased the uncertainties in the fitted parameters. The dark 

data included the Ni-O2 shell with the constraints from scenario 2 (Table S1), as well as all 

additional Ni-O and Ni-Mn single scattering paths from the Ni-TCS model up to 6.1 Å R + 

ΔR. Debye-Waller factors and CN values were floated for Ni-O1 and the first Ni-MnCS path, 

and constrained to these values for similar scattering pairs at further distance. Interatomic 

distances were floated for all paths. The CN value for Ni-O3 was floated because constraining 

it to 9, the number of O scatterers in the model at this distance (4.5 Å) as described in Pena et 

al. (2010), led to a visual mismatch in the fit compared to the data. The irradiated data did not 
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include the Ni-O2 shell, since the visual mismatch between data and fit increased and the 

uncertainty on the fitted CN did not decrease appreciably. The absence of the Ni-O2 shell may 

also be justified by the lower amount of Ni bound to vacancies, so a lower sensitivity of the 

EXAFS to the oxygen scatterers relative to this shell, as well as the increased disorder in the 

structure introduced by Mn(III) stabilizing in the interlayer (See Chapters 3 and 5). The fits 

for this sample included a species abundance parameter that was applied to quantify the 

proportion of Ni adsorbed as a TCS complex on vacancy sites (CN=6) and that adsorbed as a 

DCS complex on edge sites (CN=2), which are both at the same interatomic distance of 3.47 

Å. All other paths and constraints were the same as in the dark sample. The goodness of fit on 

both samples was deemed reasonable by an R-value of 0.02. 

The fitted Debye-Waller factors for the Ni-O and Ni-Mn paths and the interatomic 

distances for the paths in the dark sample were consistent with Pena et al. (2010). Some 

differences were observed between the interatomic distances of the dark and irradiated sample. 

In particular, the interatomic distances in the irradiated sample were shorter than in the dark 

sample, with differences of 0.02 Å increasing up to 0.03 Å with increasing interatomic 

distance. This decrease is consistent with the accumulation of Mn(III) in the mineral (increased 

disorder and decrease in Ni-O and Ni-Mn distances). The fitted CN value for the Ni-O3 was 

also lower in the irradiated sample than in the dark sample, with a large uncertainty. This is 

consistent with a more rigid and ordered structure, since the mineral is composed almost 

exclusively of Mn(IV), which would result in a more homogeneous range of distances of these 

scatterers from Ni. This extended model returned a 10% decrease in the uncertainty of the CN 

of the Ni-MnCS shell, as quantified on the f parameter (28 % uncertainty) compared to the 2-

shell fits (40-50 %).  

The fits of the pH 8 data included all single scattering paths from the TCS as well as 

from the INC models. An additional collinear multiple scattering path was included to model 

the feature at ~ 5.5 Å R + ∆R, which was poorly fitted by using only single scattering paths 

(Figure S5). The path was chosen by exclusion, by first adding all collinear multiple scattering 

paths and removing the ones that did not give satisfying results. Only one collinear multiple 

scattering path remained, and results from the interaction between the photoelectron and Mn 

atoms situated along one direction of the mineral ab plane. In analogy with the simplified 2-
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shell fits, the constraints on the data were obtained from Pena et al. (2010). The CN for the 

multiple scattering path was constrained to 6, which is the number of equivalent scattering 

paths calculated by the DFT optimized model, whereas the interatomic distance was floated 

and the Debye-Waller factor was set to that of the second Ni-MnCS path. The Ni-Mn shells 

were constrained to each other by means of the fractional parameter (Pena et al., 2010). The 

fractional parameter was also used to constrain the CN value on the Ni-O3 shell as described 

in the cited study. All resulting fits returned R values of <= 0.02) and physically reasonable fit 

parameters (Calvin, 2013). 

All fitted values were consistent with those published in Pena et al. (2010). The 

differences between the interatomic distances for the Ni-Mn paths did not differ substantially 

between dark and irradiated samples, similarly to the simplified 2-shell fit. The error estimated 

on the fractional parameter decreased from 3% to 2% in the extended range model compared 

to the 2-shell model, which is consistent with greater constraints to the fit given by the inclusion 

of the second Ni-Mn shell. One difference between the dark and irradiated sample was the 

Debye-Waller of the Ni-MnCS2 path, which increased from 0.004 ± 0.001 to 0.006 ± 0.002 

with irradiation. This difference is consistent with the presence of some Mn(III) in the 

interlayer, which increases the disorder in distances between Ni and Mn atoms.  

6.5. Discussion 

Comparison of δ-MnO2 photoreduction with Ni and without Ni. The Mn(IV) 

photoreduction rates in the presence of up to 6% Ni sorbed onto the surface showed differences 

that were within the measurement uncertainty compared to those of δ-MnO2 in the absence of 

Ni (Chapter 5). Some authors have suggested that up to 8% Ni sorbed onto birnessite may 

catalyze water oxidation (Du et al., 2015; Thenuwara et al., 2016), therefore potentially 

increasing the photoreduction rate. However, the 4 electron transfer reaction between MnO2 

and water described in the photocatalysis studies was pushed to completion yielding molecular 

oxygen in a photoelectrochemical cycle, where the oxide is « regenerated » by electro-

oxidation. In their study,  Du et al. (2015) showed a two-fold increase in the catalytic activity 

of a NiO-MnO2 nanocomposite compared to MnO2. In another study, the presence of Ni in the 

interlayer was shown to stabilize the oxide in subsequent oxidation/reduction cycles compared 

to undoped birnessite, and the authors suggest the catalytic activity to be enhanced by the 
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electro-oxidation of Ni2+ to Ni3+ (Thenuwara et al., 2016). Conversely, we have proposed that 

the rate limiting step in our system is the Mn(III) migration to the interlayer and/or the 

scavenging of the proposed reactive radicals from the mineral surface without generation of 

oxygen (Chapter 5). The absence of the electrochemical oxidation of Ni could therefore 

explain why a greater photocatalytic activity is not reflected in greater photoreduction rates. 

Ni release and Mn(III) accumulation at low pH in irradiated suspensions. The 50% 

change in surface loading of Ni with irradiation, together with the results from the shell-by-

shell fits for the pH 4 samples show that the release of Ni with irradiation is accompanied by 

a change in the coordination environment of the adsorbed Ni. In particular, the decrease in the 

amplitude of the Ni-MnCS peak from a fitted value of around 6.94 ± 1.37 to a fitted value of 

4.24 ± 1.12 is consistent with a significant proportion of Ni desorbing from a TCS complex on 

a vacancy (6 near Mn neighbors) to readsorb on corner sharing sites on the particle edge where 

the number of Mn neighbors would decrease to 2. The EXAFS fits suggest that the remaining 

2% Ni is distributed between corner sharing complexes on the edges and on the vacancies in a 

proportion of 44 ± 28% and 56 ± 28%, respectively. Our results suggest that this displacement 

and re-distribution is related to the accumulation of Mn(III). From the EXAFS fitting results, 

the 4% Ni surface excess in the dark sample is initially situated on vacancy sites, and there is 

a low amount of Mn(III) present. It is unlikely that Ni was initially present on edge sites 

because : i) at pH 4, Ni has only been observed to sorb as a TCS complex above vacancies 

when they are available (Peacock and Sherman, 2007; Grangeon et al., 2008; Pena et al., 2010); 

ii) even a small amount of Ni sorbed on edge sites would affect the CN value considerably 

because the surface loading is very low (2%), giving a fitted value lower than 6 (Simanova et 

al., 2015). In the irradiated sample, photoreduction leads to a gradual increase of Mn(III) in 

the mineral. The photogenerated Mn(III) is then stabilized in the interlayer on vacancy sites, 

which are partially occupied by Ni (Chapter 4 and Chapter 5). The Ni bound to vacancies is 

displaced as a consequence of Mn(III) accumulation, which is consistent with the observations 

of Grangeon et al. (2008). In that study, the authors observed that Ni displaced Na and H+ but 

not Mn(III) at pH 3-4, suggesting that the vacancy sites have a greater affinity for Mn(III) than 

Ni at low pH.  
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The desorption and re-adsorption of Ni to the edge sites of the particles shed light not 

only on how trace metal mobility changes upon birnessite irradiation, but also provide evidence 

that photogenerated Mn(III) must be stabilized in interlayer sites, capping vacancy sites. The 

vacancy content of δ-MnO2 has been indirectly estimated in different ways, amongst which 

the electrostatic charge balance by Na atoms (4 Na atoms per vacancy) (Villalobos et al., 2006) 

or by EXAFS studies on Ni sorption (Simanova et al., 2015), and it has been shown to range 

between 6% and 11%. This vacancy content is also pH dependent (more vacancies at lower 

pH) (Simanova et al., 2015). We can assume a vacancy content for our mineral on the high end 

of 11%, given the low pH of our experiments. Since the Ni loading is much lower than the 

vacancy content of the mineral, and this Ni is displaced upon Mn(III) generation, the formation 

of Mn(III) must strongly diminish the vacancy content. We have previously suggested that 

photogenerated Mn(III) may be produced either on edge sites, since these sites are the most 

protonated and thus are less strongly bound to the mineral (Chapter 5), or in the bulk mineral 

but not adjacent to existing vacancies, because photoreduction would produce two adjacent 

vacancies, which would introduce a very large and localized charge deficit. Therefore, any 

generation of Mn(III) in the bulk could increase the vacancy content, but these newly formed 

vacancies would be unavailable to Ni. The generation of Mn(III) on edge sites and its migration 

to the interlayer, as suggested in Chapter 5, may provide a more consistent explanation for 

the desorption and re-distribution of Ni observed in our experiments. If we assume an initial 

vacancy content on the high end of 11% and 1% Ni still on vacancies after irradiation, then as 

much as 10% Mn(III) generated near edge sites would be required to migrate to iinterlayer 

sites to cap empty vacancies and displace NiTCS complexes. The remaining 6% Mn(III) may 

be generated in the bulk, increasing the total vacancy content of the mineral to 17%. Future 

studies would be required to confirm the site of Mn(III) formation and its potential to migrate 

within the mineral. 

High pH only leads to changes in Ni coordination environment. Although the amount 

of Ni sorbed on δ-MnO2 at pH 8 after 96 hours of irradiation remained unchanged compared 

to the sample kept in the dark, a small but distinguishable change in the coordination 

environment of Ni could be observed from the EXAFS data. The fit procedure showed an 8 ± 

2% decrease in TCS complexes on vacancy sites upon irradiation in favor of the INC 

configuration. The absence of Ni desorption is consistent with the observations of Grangeon 
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et al. (2008), who reported that Ni can partially displace Mn(III) at high pH. Additionally, 

Lefkowitz and Elzinga (2015) observed that Zn(II) sorption was enhanced at pH 7.5. 

Therefore, any Mn(III) formed would not cause Ni release because the Mn(III) amount formed 

is below the amount of still available vacancies. The slight change in coordination environment 

observed could be explained by the increase in stress and strain of the crystallite during the 

formation of transient Mn(III) species and their stabilization in the interlayer. This change 

could lead to more degrees of freedom for the mineral to accommodate Ni(II), a larger 

octahedron than Mn(IV), in the nanosheet.  

6.6. Environmental implications 

The results of this study shed light on the mobility of Ni associated with birnessite 

under irradiation without mineral dissolution, and has implications in the prediction of trace 

metal mobility in both contaminated and natural environments affected by sunlight. Irradiation 

has been shown to enhance the oxidation of As on the surface of MnO2 (Shumlas et al., 2016), 

as well as induce Cu release in the presence of humic acids (Kim et al., 2014), However, these 

studies involved mineral dissolution, whereas we show that changes in surface-bound trace 

metals can occur even without mineral dissolution. The results of the pH 4 series are 

particularly relevant to environments such as acid-mine drainage impacted streams (Haack and 

Warren, 2003) or acid saline lakes where Mn(II) oxidation is enhanced (Tebo, 1991; Bowen 

and Benison, 2009). In such environments, sunlight irradiation may affect both metal sorption 

and release from birnessite minerals on diel timescales : not only does the presence of Mn(III) 

in the mineral reduce its capacity for trace metal sorption (Wang et al., 2012; Simanova et al., 

2015), we show here that the accumulation of Mn(III) by photoreduction may lead to 

desorption of previously-sorbed metals. Furthermore, the local changes in solution pH due to 

microbial respiration (decrease in pH) and photosynthesis (pH increase) in the immediate 

proximity of the cells (Haack and Warren, 2003), make these results relevant to a wider range 

of environmental settings which may include freshwater bodies (e.g. lakes, rivers, ponds) and 

marine settings. 

The results from the pH 8 experiments complement the knowledge on the sorption of 

Ni in seawater by including the effect of sunlight. Most of the previous experiments have 

studied the mechanism of Ni sorption on δ-MnO2 at pH values of seawater in the dark 
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(Manceau et al., 2007; Peacock and Sherman, 2007; Pena et al., 2010; Atkins et al., 2014; 

Simanova et al., 2015). However, the sorption of Ni combined with the biogenic formation and 

sunlight-mediated transformation of birnessite in such environments may be different than 

previously predicted from dark-only experiments (Balistrieri et al., 1994; Francis and Tebo, 

1999; Pena et al., 2010), especially because irradiation of ocean waters ranges from daily to 

monthly cycles from equatorial regions to polar regions, respectively. The results presented 

here show that sunlight promotes incorporation of Ni compared to surface complexation as a 

TCS on top of vacancy sites, similarly to the effect of increased reaction time and increased 

pH in the dark (Peacock and Sherman, 2007).  
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Chapter 7. Conclusions  

Birnessite is one of nature’s strongest oxidants, and its reactivity towards the sorption 

and/or oxidation of many organic and inorganic compounds depends on its structural and 

chemical stability. The reduction of Mn in these oxides may diminish their overall reactivity, 

either through reductive dissolution and release of Mn(II) or by accumulation of Mn(III) on 

the mineral surface. Manganese reduction may also lead to a release of associated metals or 

inhibit the degradation of organic compounds. One process by which Mn reduction occurs is 

photoreduction, a process that can diminish the reactivity of birnessite. However, 

photoreduction of birnessites has only been investigated in systems where photoactive, 

electron-rich organic compounds were also present. The objective of this dissertation work was 

to study the photoreduction of birnessite in a simplified system where the hypothesis that 

MnO2 could be intrinsically photoreduced could be easily tested. To this end, the first 

molecular scale knowledge on the rate and mechanism of δ-MnO2 photoreduction in simple 

electrolyte solutions was obtained by bridging the fields of environmental and material science. 

We combined the experimental techniques applied to study Fe oxide photochemistry within 

environmental systems with those developed for Mn oxide photocatalysis. Ultrafast 

techniques, more commonly used for catalysis studies, alongside X-ray absorption 

spectroscopy allowed us to explore the photoreduction mechanism of birnessite on the 

molecular scale and couple it to photoreduction rates obtained with techniques more familiar 

to the environmental science community.  

Summary. After introducing the importance of photochemical processes in Mn oxides 

in Chapter 1, and the analytical techniques and experimental approach adopted for this 

dissertation work in Chapter 2, the birnessite that was the most adapted to the experiments 

because of its physicochemical properties, δ-MnO2, was chosen, synthesized and characterized 

in depth in Chapter 3 with respect to its physicochemical properties. This mineral is 

characterized primarily by small particle size and an average Mn oxidation number close to 4, 

indicating that it is constituted almost exclusively of Mn(IV) atoms in the nanosheet. To 

propose a time-resolved photoreduction mechanism for each reaction step from 

photoexcitation to irreversible photoreduction, we studied a simplified system in which δ-
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MnO2 was present in an aqueous suspension containing only sodium, calcium, chloride or 

pyrophosphate. In Chapter 4 the proposed mechanism of Mn photoreduction is described. 

First, the photoexcitation of the mineral results in the formation of transient Mn(III) species in 

the nanosheet, coupled with a one-electron transfer from adsorbed water molecules. 

Subsequently, a small fraction of these transient Mn(III) species become irreversibily 

stabilized in the interlayer, as demonstrated by the low quantum yield of this process (~10-4). 

These results suggest that electron transfer from water molecules to Mn oxides leads to the 

formation of a radical species, the fate and existence of which requires further analysis. 

Nevertheless, a hydroxyl radical (OH•) is the most likely intermediary species given the 

simplicity of the studied system. A hydroxyl radical species is also consistent with the 

interpretation of similar Fe photochemistry studies (Borer et al., 2009). In Chapter 5, the 

photoreduction rates measured at hour to day resolution were shown to be pH dependent. Our 

results suggest that increased protonation of mineral edges at low pH enhances the stabilization 

of Mn(III) as an adsorbed species in the interlayer by weakening the Mn-O bonds that bind 

the Mn octahedron to the nanosheet. Furthermore, these results suggest that Mn(III) formation 

may not occur exclusively in the bulk mineral, but also on particle edges. In Chapter 6 we 

confirmed that photogenerated Mn(III) migrates to vacancy sites in the mineral, as suggested 

by extended X-ray absorption fine structure (EXAFS) spectroscopic analysis of irradiated Ni-

laden birnessite. The displacement of Ni from vacancies to edge sites upon photoreduction is 

consistent with photogenerated Mn(III) occupying vacancy sites. At high pH, the decreased 

formation of Mn(III) does not result outcompete Ni for the vacancy sites. Nevertheless, the 

small changes in Ni coordination on the surface of δ-MnO2 do not rule out Mn(III) migration 

to the interlayer since both Ni and Mn(III) can be accomodated on vacancy sites in the 

interlayer at the low Mn(III) content and low Ni surface loading of these experiments.  

Implications. The photoreduction model obtained in Chapter 4 provides empirical 

evidence to support the thermodynamic and computational studies of the feasibility of 

birnessite photoreduction through band gap photoexcitation by a ligand to metal charge 

transfer process. The previously hypothesized two-electron transfer process that leads to 

photoreductive dissolution does not occur in the absence of strong electron donors (e.g., 

organic compounds) (Sunda et al., 1983; Sunda and Huntsman, 1990, 1994). Contrary to 

thermodynamic predictions (Sherman, 2005), a one-electron transfer process leads to Mn(III) 
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accumulation on the mineral surface without mineral dissolution. These results also indicate 

that one pathway for the accumulation of Mn(III) in birnessite minerals, even though the initial 

microbial oxidation product is a fully oxidized MnO2, could be through photoreduction (Spiro 

et al., 2010). The expansion of the model to include the effect of pH (Chapter 5) has strong 

implications for multiple natural aquatic environments, where the reactivity of Mn oxides may 

be modulated in the presence of sunlight by the accumulation of Mn(III) in the mineral. The 

sorption capacity of birnessite minerals is proportional to the Mn(III) content (Simanova et al., 

2015) and the average Mn oxidation state (AMON) of the mineral (Remucal and Ginder-

Vogel, 2014), where higher Mn(III) content and a lower AMON result in a decrease in mineral 

reactivity. The experiments designed to quantify the effect of pH on the photoreduction of 

birnessite showed a greater accumulation of Mn(III) with lower pH. These results have 

implications on the reactivity of birnessites in multiple environmental settings, such as the low 

pH conditions of acid mine drainage, where the natural attenuation of toxic metals often relies 

on pre-existing Mn oxides. Low pH conditions can also be found at the microscale in 

environments that are generally governed by circumneutral to alkaline pH, such as ocean and 

lake waters, due to the localized effect of microbial activity, respiration and photosynthesis 

(Haack and Warren, 2003). The effect of pH on Mn-O bond strength can also have effects on 

the water oxidation capacity of birnessite in a photoelectrochemical cell, since it has been 

recently suggested that weakened Mn-O bonds provide active sites for water oxidation 

catalysis (Geng et al., 2016). Furthermore, irradiation of birnessite and the consequent 

accumulation of Mn(III) can strongly affect the mobility of Ni in acid conditions, as we showed 

in Chapter 6, therefore inhibiting the natural attenuation potential of birnessites in acidic 

environments also for other aqueous trace metals that are sequestered by birnessite similarly 

to Ni (e.g. Zn, Cu). At higher pH, the increase in incorporation of Ni in birnessite with 

irradiation suggests that sunlight may be partly responsible for the incorporation of Ni and 

similar trace metals on birnessite in ocean waters, which are characterized by pH values of 

~8.3. The reactivity of birnessite in sunlit environments will be overall decreased by the 

accumulation of Mn(III) on the mineral, although this effect may be reduced by biological 

oxidation and diel to monthly fluctuations in irradiation.  
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7.1. Directions of future research 

The research in this dissertation provides the first experimental evidence for the 

molecular scale photoreduction mechanism of birnessites, identifying the effect of light in 

addition to the control of pH, a key environmental parameter, on the mineral photoreduction 

rates. The mechanism for Mn photoreduction within the context of environmental systems 

raised three specific questions that can be addressed in future studies:  

• What is the role of interlayer cations in the photoreduction rates?  

• What is the location and amount of Mn(III) formed upon photoreduction?  

• What is the oxidized species coupled to Mn photoreduction? 

 Additionally, the effect of aggregation on the specific surface area of the minerals 

observed during the synthesis of δ-MnO2 requires further investigations, also to solve the 

issues of aggregation observed during the pH-dependent photoreduction experiments. Finally, 

the simplified model of photoreduction will gain more environmental relevance once it is 

expanded to include the effect of organic compounds and multichromatic irradiation, 

simulating the effect of sunlight. In the following sections, we highlight our findings and 

discuss strategies to address these future research opportunities. 

The relationship between Na, pH and surface area of δ-MnO2. The surface area of 

birnessite has been related by multiple authors to the reactivity of Mn oxides towards sorption 

of organic and inorganic compounds (Villalobos et al., 2005; Remucal and Ginder-Vogel, 

2014). However, there have not been studies investigating how the surface area of the minerals 

is affected by the synthesis conditions. In Chapter 3, we investigate the effect of synthesis 

conditions on the surface area of the minerals, and observe that a reduction in synthesis pH 

leads to δ-MnO2 minerals with greater specific surface area, as measured by BET theory 

nitrogen adsorption, which is coupled to a lower Na : Mn ratio. Conversely, the crystallite size 

is greater with lower pH. These results suggest that the specific surface area is related to the 

aggregation state of the crystallites, which may be related to the Na content on the mineral 

surface. Sodium is known to adsorb on the surface of δ-MnO2 to balance the negative charge 

arising from particle edges and octahedral vacancies. At low pH, protonation may explain the 

reduced Na : Mn ratio, whereas more alkaline conditions increase this ratio as only Na is 
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present to balance the negative charge. At high pH, Na could also sorb on edge sites, promoting 

particle aggregation.  

The correlation between Na content and birnessite synthesis pH, as well as the 

distribution of Na between basal surfaces and edge sites on the mineral warrant additional 

studies from XRD modelling, which would allow us to better constrain the structural model 

for the synthesized particles. Furthermore, the dry BET surface area does not reflect the 

specific surface area of nanoparticles in aqueous suspensions (Gilbert et al., 2009). A general 

issue is understanding how to best describe the reactive surface area of a material and what 

property provides the most reasonable measure between BET theory N2 absorption and other 

techniques. Particle aggregation also likely affects the photoreactivity of the minerals in the 

absence of electrolytes such as sodium pyrophosphate that we showed reduce aggregation 

(Chapters 5 and 6). Therefore, understanding the dependence of photoreduction on the “wet” 

specific surface area of the minerals could account for some of the differences observed as a 

function of pH in the absence and presence of pyrophosphate. One option to measure the 

surface area of δ-MnO2 in solution, once the structural model is better constrained, would be 

through dynamic light scattering to investigate the hydrodynamic radius of particle aggregates 

as well as their distribution in suspension. Addintionally, small angle X-ray scattering 

experiments could help investigate the fractal dimensions of the aggregates, but require a well 

constrained starting model (Gilbert et al., 2009). The results of such experiments would have 

implications on how the “wet” surface area of the minerals affects the sorptive properties of 

the minerals.  

The design of efficient engineered systems for the depollution of contaminated waters 

relies on the characterization of such properties in “wet” conditions. The evaluation of 

photoreduction rates as a function of fractal dimensions of the particles and “wet” surface area 

could also allow us to better constrain the photoreduction model in the identification of the 

most active sites for photon absorption and/or Mn(III) photogeneration, as discussed in the 

following subsections. 

Identifying the oxidized species in the photoreduction of δ-MnO2. In Chapter 4, we 

explore the photoreduction mechanism of δ-MnO2 with water as the most likely electron donor 

when only NaCl, sodium pyrophosphate and CaCl2 are present as electrolytes. Although the 
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results from ultrafast spectroscopy allow us to observe the individual steps and timescales of 

the photoreduction mechanism from photoexcitation to Mn(III) accumulation in the interlayer, 

we only have the capacity to experimentally follow the reduced Mn species. The species that 

oxidizes upon Mn reduction still has to be confirmed. Based on the simplicity of the system 

and on photocatalysis studies of water oxidation conducted within material science (Hocking 

et al., 2011; Wiechen et al., 2012b), we hypothesize that water sorbed on the mineral surface 

is the species which undergoes partial oxidation. The presence of small amounts of Cl- may 

also play a role, however this species is only present in the experiments without sodium 

pyrophosphate, as further described in Chapter 5. Based on studies on Fe oxide 

photoreduction (Borer et al., 2009), we hypothesize that this partial oxidation involves the 

formation of a hydroxyl radical species, which may or may not evolve into H2O2.  

To test these hypotheses, experiments should be carried out in the presence of chemical 

compounds that react with hydroxyl radical species with elevated reaction rate constants. One 

such species has been identified in benzyl trimethyl ammonium, since it is a positively charged 

species that may sorb onto the mineral surface subsequently quenching the reactive radical 

species formed upon photoreduction. An experimental setup where the photoreactor is coupled 

to a flow-through UV-Vis cuvette for periodical collection of UV-Vis spectra in a 

spectrophotometer, all while purging the system from oxygen with N2(g),has proven to be 

logistically feasible in preliminary tests. The main analytical challenge remains to avoid direct 

interactions between the probe compound and the mineral, which is known to react with many 

organic molecules (Remucal and Ginder-Vogel, 2014).  

The results from such a study, in which the reactivity of the mineral with the probe 

compound could be determined and subtracted by corresponding dark experiments, would 

allow us to confirm the photoreduction model and assign chemical expressions for the overall 

reaction. Furthermore, the rate-limiting step in the process has been assigned to the reaction of 

the adsorbed water molecules with the photoexcited mineral. Therefore, confirming the 

existence of radical species coupled to Mn photoreduction could provide insight for the 

material science community, for which the photoreduction/photocorrosion of the mineral is an 

unwanted effect. Within the environmental science community, identifying the formation of 

reactive radicals upon Mn photoreduction could have implications on the rates of 
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photoreduction, since the presence of radical scavengers in natural environments could 

potentially enhance the photoreduction rates by enhancing the formation of stable Mn(III). The 

scavenging of reactive radicals could also explain the greater photoreduction rates in natural 

environments without necessarily invoking a 2-electron transfer from organic compounds.  

Investigating the role of Ca in the photoreduction of δ-MnO2. The results from Chapter 4 show 

that Ca plays a role in the photoreduction process, enhancing the rates of δ-MnO2 

photoreduction. However, the role of this cation in the photoreduction process is still unknown, 

and in our studies the presence of Cl-, a known hole scavenger (Grätzel et al., 1985), could not 

be excluded because of the use of CaCl2. Calcium has been shown to affect Mn photocatalysis 

in other studies (Wiechen et al., 2012a), is known to be an essential cation in the microbial 

oxidation of Mn(II) (Webb et al., 2005), and is present in high concentrations in many natural 

environments. Furthermore, recent observations have shown that the identity of interlayer 

cations can affect water frustration in the interlayer region and greater water frustration has 

been shown to enhance the water oxidation capacity of birnessite (Remsing et al., 2015). 

Additional investigations will be required to evaluate the role of Ca in the absence of 

Cl- ions. An experimental design where equilibration of the mineral with CaCl2 and then 

rinsing the suspension of Cl- in a similar fashion as described in Chapter 3 would allow us to 

verify whether the observed photoreduction enhancement is related to Ca or to the Cl- anions. 

These experiments should be carried out at the different pH values that were tested in Chapter 

5, pH 4.0, 6.5 and 8.0, in order to compare the effect of the interlayer cation as a function of 

pH. The issue of aggregation that was present with the pH-STAT equilibration should be 

addressed beforehand. To avoid the confounding effects of aggregation in the absence of 

sodium pyrophosphate, a non-redox active buffer that does not complex Mn(III) (e.g., 

phosphate buffer) could be used, after verifying that it does not complex Ca thereby extracting 

it from the mineral surface.  

Understanding the effect of Ca on the photoreduction of birnessite could expand the 

photoreduction model to many natural environments where Ca may often replace Na in the 

interlayer of birnessite minerals. The role of Ca also has implications in material science where 

this cation is required in the water oxidizing center (WOC) of photosystem II (Armstrong, 
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2008) and has been linked to a greater photocatalytic activity of Mn oxides in a WOC-

mimicking system (Wiechen et al., 2012b).  

Identifying the structural location for Mn(III) formation. Our results from Chapter 5 

suggest that the greater photoreduction rate with decreasing pH is related to protonation of the 

surface, which decreases the Mn-O bond strength thus enhancing Mn(III) stabilization in the 

interlayer. However, we could not assess whether Mn(III) originates on the edge sites or in the 

bulk of the mineral. This was indirectly probed in the following work (Chapter 6), by 

observing the absorption and desorption of Ni from the mineral surface as a function of 

irradiation and pH. Here, we suggest that Mn(III) at low pH is formed somewhere in the 

mineral, migrates to the interlayer and displaces Ni until all vacancies are occupied. In this 

study, no information was obtained on whether Mn(III) was initially formed on the edge sites 

or in the mineral bulk, but we confirmed that Mn(III) was stabilized on vacancy sites. 

Additionally, preliminary studies on triclinic birnessite, a birnessite characterized by 16 to 30% 

Mn(III) exclusively incorporated in the nanosheet, show that the locaton of Mn(III) strongly 

affected the photoreactivity of birnessite: In conditions of no vacancies and Mn(III) exclusively 

in the nanosheet, the mineral does not photoreduce and the transient absorption bleach signal 

is suppressed.  

Future studies could identify the sites for Mn(III) formation, for example, by designing 

time-resolved X-ray absorption spectroscopy (TRXAS) experiments on the oxygen K-edge. In 

such a study, the reaction at pH 4 (greatest photoreduction rate) could be probed by observing 

the changes in the oxygen coordination environment as a function of irradiation. The results of 

such a study would help us understand whether Mn(III) is formed on edge sites, where O atoms 

are bound to Mn and protons, or in the mineral bulk, where O atoms are bound only to Mn 

atoms. The design of such an experiment is particularly challenging because of the presence 

of oxygen in most materials and solvents, such as water in which the mineral suspensions are 

found. These challenges could be overcome by dispersing the mineral in a non-aqueous solvent 

in an atmosphere purged from oxygen with He2(g).  

Identifying the location in which Mn(III) forms is important to both expand the 

photoreduction model and to predict how the reactivitity of the mineral will be affected when 

organic or inorganic compounds are sorbed onto it. In fact, these compounds can sorb 
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preferentially on vacancy sites or edge sites, therefore the formation of Mn(III) on edge sites 

or in the bulk affects the remobilization potential of these compounds differently. The location 

of Mn(III) could also have implications on the aggregation state of the mineral if it is formed 

on edge sites, similarly as Na cations at high pH in the synthesis study (Chapter 3). 

Limit to the amount of Mn(III) that δ-MnO2 can accomodate. By considering the 

structure of birnessite, there should be a limit to the amount of vacancies that can be formed 

before the hexagonal layer structure is completely disrupted. Therefore, there must be a 

physical limit to the accumulation of Mn(III) in the mineral, determined by the amount of 

vacancy sites and edge sites that the mineral can accommodate. Burns (1976) suggested that 

the maximum amount of vacancies the mineral can physically accomodate is 1/6th of the total 

Mn atoms present, thus 17 %. From a geometric calculation based on a 5 nm particle on the ab 

plane (~ 287 Mn octahedra), we expect there to be an additional ~47 edge sites, which would 

result in the limit of edges + vacancies being equal to ~33 % Mn(III). This observation is based 

on the assumption that the mineral will not convert to a triclinic phase, which is found with 

Mn(III) incorporated in the nanosheet (Drits et al., 1997). The conversion of triclinic to 

hexagonal birnessite can occur rapidly (within seconds to minutes) by lowering the pH from 9 

to 3 (Lanson et al., 2000). However, preliminary studies show that the opposite does not occur 

within hour to day timescales. Therefore, we expect that over time the rate of Mn(III) formation 

should decrease as the physical limit is reached, since the incorportation of Mn(III) adsorbed 

in the interlayer is kinetically limited: we expect that any Mn(III) migrated in the interlayer 

cannot incorporate back into the nanosheet. Preliminary transient absorption studies on c-

disordered H+ birnessite, a mineral containing ~20% Mn(III) distributed between the interlayer 

and the nanosheet/edges, show similar optical properties but a lower photoreactivity compared 

to δ-MnO2  (Figure 1).  
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Figure 2: Ultrafast pump-probe optical spectroscopy data for 3 different minerals of the birnessite family: δ-
MnO2 , c-disordered H+ birnessite, and Triclinic birnessite. 

Experiments to probe the physical limit of Mn(III) in δ-MnO2  can be run by irradiating 

suspensions for long timescales where sodium pyrophosphate is added after irradiation to 

evaluate whether Mn(III) formation and accumulation in the mineral versus time increases 

linearly or plateaus. These experiments would be carried out at pH 4 since it is the pH at which 

the greatest photoreduction rate is achieved and where Mn(III) is not stable as an incorporated 

species (from the studies on triclinic birnessite pH equilibration). These experiments could also 

be carried out on Ni laden minerals and combined with EXAFS spectroscopy to obtain indirect 

information on the surface speciation of Mn(III). We have shown that the accumulation of 13 

% Mn(III) in the mineral results in 50 % Ni release, and half of the remaining Ni 

migrates/desorbs and readsobs onto edge sites. These results suggest that photogenerated 

Mn(III) occupies vacancy sites previously occupied by Ni. Previous studies have shown that 

the sorption of Ni on a δ-MnO2 phase characterized by up to 30 % Mn(III) resulted in Ni 

binding almost exclusively to particle edges, in contrast to exclusively sorbing to vacancy sites 

in a Mn(III)-free mineral (Simanova et al., 2015). We would expect that by reaching the 

calculated limit of 33 % Mn(III) content, all Ni would be released to solution, confirming that 

the mineral has reached the maximum amount of edge and vacancy sites it can physically 

accommodate. Furthemore, we expect the resulting mineral to not be reactive towards the 
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sorption of trace metals. The absence of pyrophosphate would be necessary to avoid extracting 

Mn(III) while it is formed. As described in the previous subsection, the issue of aggregation 

has to be investigated beforehand. Using a phosphate buffer would be a solution, once it is 

verified that it does not interact with the photoreaction and the structure of the mineral.  

The confirmation that there is a physical limit to the amount of Mn(III) that can be 

accumulated in the mineral would allow us to better understand the stability and reactivity of 

birnessite minerals in natural environments. Additionally, these results would have 

implications on engineered systems, where the reduced reactivity of Mn(III)-rich birnessites 

would require the extraction of Mn(III) to restore the original reactivity. Recent studies have 

also shown that there is a relationship between Mn(III) and vacancy content in birnessite for 

electrochemical capacitor applications (Gao et al., 2017). In those studies, an increased 

vacancy content leads to greater electric capacitance (the ability to store electric charge), 

whereas the presence of Mn(III) cations in the interlayer promote polaron hopping conduction, 

which improves the electical conductivity of the nanosheet. These results may explain the 

lower photoreactivity of Mn(III)-rich birnessite that we observed (c-disordered H+ birnessite). 

In fact, an improved conductivity may lead to faster electron-hole recombination (less 

intraband traps that may lead to hole scavenging), which may in turn lead to less irreversible 

photoreduction. 

Comparing the effect of other trace metals on δ-MnO2 photoreduction. Given the 

diversity of the bonding configurations and redox reactivities of different trace metals on 

birnessite, We propose further evaluation of the effect of irradiation on the sorbed metal 

mobility and mineral photoreduction in the presence of redox active metals such as Co, for 

which the sorption and redox mechanism on birnessite has been recently elucidated at different 

pH values in our group (Pena et al., 2013; Simanova and Peña, 2015). We expect that 

photoreduction of δ-MnO2 will enhance the Co oxidation rates, as recently shown for As 

species (Shumlas et al., 2016). Finally, by investigating the sorption dynamics of a metal that 

binds to the mineral surface in a different coordination than Ni (such as Zn: tetrahedral as well 

as octahedral), we expect that the accumulation of Mn(III) can compete with Zn for vacancy 

sites even when the latter is tetrahedrally bound, extending the results of Chapter 6 to elements 

that bind in tetrahedral coordination. These predictions are based on recent studies that show a 
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decrease in Zn sorption with increasing Mn(III) content in the mineral at low pH (Yin et al., 

2017). 

Since the coordination of the metal on the mineral surface likely modifies the band 

structure of the mineral as it introduces different electronic states, these additional states may 

affect the rates of δ-MnO2 photoreduction. For example, the presence of these metals may act 

as electron or hole traps, extending the lifetime of photoexcitation and thus increasing the 

probability for hole scavenging by surface sorbed hole scavengers. Cobalt and Zn are 

frequently found associated with birnessite in ocean environments, but their sorption 

mechanisms have always been studied in the dark. These elements can be both nutrients and 

toxic, depending on their concentration in solution. Mineral oxides, amongst which birnessite, 

contribute to governing the mobility of these transition metals in aqueous environments by 

scavenging them from the solution. By investigating the effect of irradiation on the mobility 

of these elements, we expect to contribute to the understanding of their biogeochemical cycle 

in sunlit environments, which may have important effects on their toxicity for living organisms. 

Investigating the effect of organic compounds in the current δ-MnO2 photoreduction 

model. The further expansion of this model to more environmentally relevant systems will 

require the inclusion of organic compounds. Organic compounds can either act as stronger 

electron donors than water in a ligand to metal charge transfer mechanism, or they can 

themselves act as the chromophore in the photoreaction. In both cases, we expect that the 

strong electron doning capacity of organic compounds to birnessite minerals will result in a 

complete, 2-electron transfer process, yielding aqueous Mn(II) as the end product of 

photoreduction.  

The photoreduction with the the mineral or the organic as the chromophore can both be 

probed in the photoreactor setup designed in this dissertation work. In particular, the first 

process can be probed by evaluating the photoreduction of δ-MnO2 in the presence of simple 

organic molecules such as pyruvate, citrate or oxalate. The second process, on the other hand, 

can be probed by sorbing more complex organic compounds, such as fulvic or humic acids, 

onto δ-MnO2 and irradiating with a longer wavelength which would minimize the 

photoreactivity of the mineral compared to the organic compound. By carrying out dark 

controls, any reductive dissolution of the mineral by the organic compounds in the dark may 
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be corrected. In preliminary experiments, we observed that the addition of 10% (mol/mol) 

sodium oxalate to a suspension containing δ-MnO2 and pyrophosphate resulted in a steady 

accumulation of Mn(III) in the dark over a several hour period, whereas in the absence of 

pyrophosphate aqueous Mn(II) was formed, indicating that pyrophosphate quenches the 

reaction by scavenging Mn(III) once it is formed.  

These experiments would allow us to expand the understanding of birnessite 

photoreduction to include the effect of organic compounds, which are often present in 

environmental settings, and address the uncertainties that still remain from the previous studies 

on the environmental photochemistry of manganese (Sunda et al., 1983; Sunda and Huntsman, 

1990, 1994).  

The effect of irradiation wavelength on the quantum yield of Mn(III) photogeneration. The 

experiments carried out in this study were all characterized by monochromatic irradiation close 

to the peak wavelength of the sunlight irradiance spectrum, which is 400 nm (Figure 2). The 

photoreduction yield was then obtained by dividing the amount of Mn(III) produced by the 

amount of photons absorbed, resulting in a value close to 10-4. Since sunlight irradiance is 

characterized by a multitude of wavelengths of visible light, and δ-MnO2 absorbs light over 

the whole visible spectrum (as shown by its UV-Vis absorption spectrum, Figure S5 Annex 

3, as well as inferred by its brown/black color), we expect that the quantum yield for 

photoreduction might increase if the mineral is exposed to simulated sunlight, as can be 

achieved by irradiating the mineral suspensions in a sunlight simulator. We have collected 

preliminary transient absorption spectra with an irradiation (pump) at wavelengths different 

than 400 nm, namely at 320 nm and 700 nm, and observed that the photoexcitation and decay 

kinetics are identical to those at 400 nm, only of lower intensity (Figure 3). These results 

suggest that δ-MnO2  will react to sunlight over the whole visible spectrum, where the 

photoreductive process will be enhanced compared to that at 400 nm, and are also corroborated 

by recent studies that show a photocatalytic activity of birnessite in degrading CO under 

irradiation of the full solar spectrum (Liu et al., 2016). The actual quantum yield may not be 

affected, since it is normalized by the amount of photons absorbed, but the photoreduction 

rates will likely be greater.  
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Figure 2: Reference spectrum for the solar irradiance acording to the standard ASTM E490 AM0. 

 
Figure 3: Ultrafast pump-probe optical spectroscopy data for δ-MnO2  with irradiation at 2 different wavelengths, 
320nm and 600 nm, showing the same photoexcitation and decay kinetics for both the enhanced state adsorption 
feature (ESA) as well as for the ground state bleach. 

To investigate the photoreduction under a broad wavelength range, the same flow-through 

photoreactor setup can be installed under a commercially available sunlight simulator. The 

issue of photon flux quantification, as described in Chapter 2, must be tackled. Precise 
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knowledge of the photoreactor geomoetry must be obtained since the easiest way to 

characterize the photon flux in such instruments is through a spectral irradiance meter that 

measures the irradiance on a photosensitive surface and then reports the surface/normalized 

value as W/m2. Alternatively, the photoreactor setup can be screened from the irradiation by 

covering the tubing with aluminum foil, only leaving the flow through cuvette exposed to light, 

since it’s geometry is easily characterized. 
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ANNEX 1. Photoreactor design 
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Figure 1. Technical drawing for the Irradiation module support 
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Figure 2. Technical drawing for the flow-through module. 
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Figure 3. Photographs of the 1 :1 scale 3D printed prototype of the photoreactor setup (irradiation and flow-
through modules). 
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Figure 4. The various components of the irradiation setup, as well as the flow through cuvette. from top left to 
bottom right :  Pump tubing, MOSFET cooler, LEDs, focusing lenses, thermally conductive paste, flow through 
cuvette, LED DC power driver. 
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Figure 5. Photographs of the assembled photoreactor setup 
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Figure 6. Detail of the cuvette installation in the flow-through module 
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Figure 7. Photograph of the photoreactor setup assembly (3x photoreactors side by side on a breadboard support, 
connected to the peristaltic pump). 
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ANNEX 2. Supporting information for Chapter 3 
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Figure 0: Graphical abstract describing the main methods and findings of this work 

 

 
Figure S1: Schematic of the synthesis procedure and legend for sample names as a function of the parameters 
that were varied during the synthesis of the different samples. 
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Figure S2: Thermogravimetric analysis weight loss curves normalized to sample weight at room temperature. 
The horizontal lines indicate the temperatures at which strongly bound water is lost. 
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ANNEX 3. Supporting information for Chapter 4 
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7.3. SI Materials and methods 

Mineral synthesis and characterization. The Mn oxide phase, δ-MnO2, was 

synthesized by combining stoichiometric amounts of MnCl2 with KMnO4 in excess NaOH 

under vigorous mixing (Villalobos et al., 2003). The solids were rinsed with water until the 

electrical conductivity of the supernatant was less than 30 μS cm-1. The washing procedure 

required 7 cycles of centrifuging the slurry (20 minutes at 27500 RCF and 25°C) and re-

suspending the mineral paste in MQ water. After the final rinsing step, the mineral paste was 

re-suspended in MQ water and stored in the dark at 4°C. Mineral composition was 

characterized with respect to average Mn oxidation number and Na:Mn content. The average 

Mn oxidation number (AMON) was characterized by potentiometric titration (Grangeon et al., 

2008) with a Metrohm 888 Titrando automatic titrator. Briefly, 15 mg of δ-MnO2 were 

dissolved in a 0.01 M Mohr’s salt [(NH4)Fe(SO4)2•6H2O] solution and residual Fe(II) was 

titrated with 0.01 M KMnO4. The amount of Mn(II) generated was back titrated with 0.02 M 

KMnO4 and all Mn(III) produced was trapped by complexation with excess sodium 

pyrophosphate (Na4P2O7, abbreviated as PP) (Kostka et al., 1995; Klewicki and Morgan, 1998; 

Webb et al., 2005). A detailed description of the titration protocol is provided by Grangeon et 

al. (2008). The Na:Mn ratio was measured by inductively coupled plasma optical emission 

spectrometry (ICP-OES) on a Perkin Elmer Optima 8300 spectrometer on samples digested in 

3% HNO3 and 0.05 M H2C2O4.  

Structural characterization of δ-MnO2 was carried out to determine specific surface 

area, mineral phase and intermediate-range structure (within 2 nm). Additionally, the light 

absorption spectrum of the mineral was measured by UV-vis spectrophotometry. Specific 

surface area was determined by a 5 point BET N2 adsorption isotherm at 77 K on a 

Micromeritics Gemini 2375 instrument. Powder XRD patterns were collected on a Thermo 

Electron ARL X’TRA diffractometer with Cu Kα radiation (λ=1.5418 Å) and a Peltier-cooled 

Si(Li) solid state detector, with a speed of 0.5° min-1, a step size of 0.02° and an integration 

time of 2400 s. Both for XRD and BET powders were obtained by oven drying at 45° for 1 

day pastes obtained by vacuum-filtering an aliquot of the stock suspension.  

UV-vis absorption spectra from 200 – 800 nm were obtained on a Shimadzu UV-2600 

spectrophotometer with 1 cm path length cuvettes or an Ocean Optics spectrophotometer with 
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0.5 mm path length cuvettes. High energy X-ray scattering data were collected at beamline 11-

ID-B at the Advanced Photon Source (Argonne, USA). Atomic pair distribution functions [i.e., 

G(r), Figure S7b] were obtained with the PDFgetX2 GUI utility following standard procedures 

(Qiu et al., 2004), which involve Fourier transformation of the reduced structure function, F(Q) 

= Q[S(Q)-1] (Figure S7a). The reduced structure function is the total scattering pattern 

multiplied by the magnitude of the scattering vector, Q, and divided by the square of the atomic 

form factor, |fi|2. 

Powder XRD patterns, high energy X-ray scattering data and UV-vis spectra were 

collected from both Na-MnO2 and Ca-MnO2, where Ca-MnO2 was obtained by equilibrating 

a suspension of approximately 90 mM Na-MnO2 with CaCl2(aq) in a 3:1 Ca:Mn molar ratio 

from 12 h (LITR-XAS) to 2 months (optical TA). The effect of oxygen on the chemical 

composition of δ-MnO2 upon the exchange of interlayer Na with Ca was evaluated by 

equilibrating an aliquot of Na-MnO2 with Ca under N2(g) purge. After equilibration, aliquots 

were filtered and digested for measurement of [MnTOT] and [Mn(aq)] by ICP-OES; filtered 

pastes were oven dried at 40°C before collecting powder XRD patterns.  

Quantum yield calculation. The apparent quantum yield for Mn(III) generation was 

calculated according to:  

𝛷𝛷 =  
 𝑓𝑓 𝑀𝑀𝑀𝑀(𝐼𝐼𝐼𝐼𝐼𝐼),𝑡𝑡  × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀 

𝜑𝜑 ∗  𝑡𝑡  ×  
𝐴𝐴400 𝑛𝑛𝑛𝑛,   𝑀𝑀𝑀𝑀𝑀𝑀2

𝐴𝐴400 𝑛𝑛𝑛𝑛,   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

where fMn(III), t, the fraction of photoreduced Mn after time, t, is multiplied by the total 

number of moles of Mn in the system; φ is the photon flux measured for the photoreactor; and 

A400 nm MnO2  and A 400 nm ferrioxalate are the absorbances (in OD units) of Ca- or Na-MnO2 and 

ferrioxalate at 400 nm (Chapter 4) measured in 1 cm path length quartz cuvettes with water 

as a blank. Due to the possible effect of birnessite aggregation on the measurement of optical 

extinction coefficients of the samples (see below), we use the term “apparent quantum yield”. 

The fraction of photoreduced Mn was calculated according to ([Mn(III)-PPlight] – [Mn(III)-

PPdark])/[MnTOT]. The ratio of the absorbance values in the denominator accounts for the 

different absorptivity of δ-MnO2 relative to ferrioxalate, where εNa-MnO2 pH 6.5 = 2525 L mol-1 

cm-1 and εCa-MnO2 2300 L mol-1 cm-1, and εferrioxalate = 110 L mol-1 cm-1. The molar absorptivity 
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of ferrioxalate was calculated from serial dilutions of stock solutions calibrated with ICP-OES 

measurements. 

Optical transient absorption kinetic fits. A bleach signal on the microsecond 

timescale between 550 – 580 nm with the EOS spectrometer was observed for Ca-MnO2 and 

Na-MnO2 samples in Nafion, and Na-MnO2 samples in water or terephthalic acid. The trends 

extracted at 580 nm were fitted by exponential decay functions with 2 time constants. The 

bleach appeared to return to baseline (∆OD~0), however this could not be judged from the data 

due to the noise level inherent to the data acquisition. To evaluate whether or not the signal 

returned to baseline within sub-second timescales, the data were refitted using a third decay 

constant fixed to 106 µs (i.e., no decay to baseline within the 50 µs resolution of the 

experiment). An F-test showed only 67 % confidence that the model with three time constants 

returned a significantly better fit than the model with two time constants. Thus, we do not have 

95 % confidence that the bleach persists over long time scales (106 µs). 

7.4. SI Results and discussion 

Mineral characterization. The δ-MnO2 powder had a BET specific surface area of 

141 ± 3 m2 g-1, an average Mn oxidation number (AMON) of 4.05 ± 0.05 and a Na:Mn ratio 

of 0.24. The XRD patterns collected from Na-MnO2 and Ca-MnO2, with a 5 day equilibration 

period under aerated and N2(g)-purged conditions for Ca-MnO2, were consistent with those 

reported for δ-MnO2 (Villalobos et al., 2003). The UV-vis absorption spectra of Na-MnO2 and 

Ca-MnO2 are shown in Figure S6a. The UV-vis absorption spectrum of Ca-MnO2 exhibits a 

significant red shift relative to that for Na-MnO2. This red shift is accompanied by a change in 

line shape. Therefore, the redshift cannot be attributed simply to scattering from aggregated 

particles. Additional UV-vis spectra were acquired to test the effect of the background 

electrolyte and ionic strength on the observed red-shift. Only the CaCl2-equilibrated sample 

showed a red shift (Figure S6b) that persisted after removing any excess CaCl2(aq) electrolyte 

by rinsing the particles with MQ water. In addition, similar average Mn oxidation numbers 

were measured for Na-MnO2 and Ca-MnO2, indicating that the red-shift cannot be explained 

by a change in Mn valence. Thus the UV-vis spectra confirm that the red shift is caused by the 

presence of Ca as the interlayer cation, which may influence the ordering of interlayer water 

molecules (Cygan et al., 2012). The PDFs (Figure S7) match those reported for Mn(IV)-rich 
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birnessite nanoparticles with hexagonal sheet symmetry (Zhu et al., 2012). The PDFs show 

identical peak positions, while the amplitude of the first Mn-O (1.91 Å) and Mn-Mn (2.85 Å) 

distances are lower for Ca-MnO2 than Na-MnO2. However, there is no difference in the 

intermediate-range order (within 2 nm) of these two samples.  

Photon flux comparison to natural environments. Our flow-through experiments 

were done using a photon flux of 0.77 µE/s. This photon flux can be compared to the photon 

flux delivered to the Earth’s surface by integrating the area under the irradiance spectrum of 

natural sunlight. First, we converted solar irradiance from units of W m-2 s-1 to µE m-2 s-1 by 

normalizing the irradiance at each wavelength by the energy of the photons at that wavelength. 

Integration of the ASTM G173-03 reference solar irradiance spectrum between 280 nm and 

900 nm yielded a photon flux equal to 3195 µE m-2 s-1. Once corrected to the surface area of 

the cuvette irradiated in our experiments (i.e., 0.0004 m2), we obtain a photon flux of 1.3 µE 

s-1 with photons of wavelengths ranging from 280 – 900 nm, which include the UV-visible 

wavelengths of the light spectrum. However, since 42% of the irradiance spectrum of sunlight 

is between 400 nm and 600 nm, the photon flux delivered by the LED array to our photoreactor 

at 400 nm is comparable to the photon flux that would be delivered by sunlight between 400 

and 600 nm. 

Nature of red-shift in optical absorption spectra. Our optical transient absorption 

spectra show a new absorption feature upon laser excitation that we assigned to a Mn(III) 

excited state in the MnO2 sheet. This feature is located at longer-wavelengths than the ground-

state absorption of the initial birnessite (i.e., it is red-shifted). A similar red-shift was observed 

in the ground state UV-vis spectra from triclinic birnessite and c-disordered H+ birnessite 

(Figure S5), with triclinic birnessite showing a greater red shift relative to c-disordered H+ 

birnessite. These Mn(III)-bearing minerals contain significant proportions of Mn(III), but vary 

with respect to the distribution of Mn(III) within the octahedral layer and interlayer region and 

the extent of sheet stacking (Villalobos et al., 2003).  

We expect that sheet stacking does not modify significantly the UV-vis absorption 

properties of birnessite. In their comparison between monolayer and multilayer MnO2, Sakai 

et al. (2005) found that only the topmost layer was photosensitive and that the band gap was 

nearly identical between the two materials. Because the band gap can be correlated to the UV-
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vis absorption, increased sheet stacking would not justify the observed red shift in our UV-vis 

absorption spectra.  

Instead, we conclude that the red shift in the UV-vis spectra arises from the presence 

of Mn(III) in the octahedral layer. Based on solid-phase characterization (i.e., pyrophosphate 

extraction, potentiometric titration, and XRD), our triclinic birnessite contains up to 16 % Mn 

(III) located in the octahedral sheets, whereas c-disordered H+ birnessite contains about 19 % 

Mn(III) (Duckworth and Sposito, 2007). Based on the synthesis protocol for c-disordered H+ 

birnessite (Villalobos et al., 2003; Duckworth and Sposito, 2007) and structural 

characterization of the material synthesized according to this method (Villalobos et al., 2003; 

Manceau et al., 2013), we conclude that approximately half of the Mn(III) is situated in 

interlayer positions. Thus, our transient UV-vis spectra that reveal an absorption feature 

between 500 and 600 nm are consistent with the formation of Mn(III) located in the octahedral 

sheets.  

Effects of aggregation on photoexcitation of birnessite. Light scattering due to 

particle aggregation may introduce Rayleigh scattering, which increases the observed optical 

extinction coefficient. If present and not accounted for, this effect could lead to an erroneous 

measurement of the true optical absorption coefficient, and hence an underestimation of the 

quantum yield. To minimize this potential source of error, we measured the UV-vis spectra of 

the samples prepared in water at the lowest possible concentrations (0.1 mM) at which we 

obtained visibly transparent suspensions with no noticeable aggregation. To investigate the 

consequences of aggregation, we added 10 mM of NaCl or CaCl2 (c.f. Figure S6). At the 

higher concentrations used for the flow-through studies (0.5 mM) we also did not observe signs 

of aggregation. Only at the highest concentrations used for the transient absorption 

spectroscopy (3-6 mM) did we observe aggregation in all samples (with and without added 

electrolyte), leading us to add Nafion (see below).  

Consequently, we do not believe that aggregation substantially altered our reported rate 

constants or quantum yield for photoreduction. However, because we do not have distinct 

measurements of scattering vs absorption, we now report the values as apparent quantum yield. 

If our reported absorbance at 400 nm of Ca-MnO2 is an overestimate due to the presence of 

scattering, this would increase the effect of Ca vs Na, and would not change any of the 
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conclusions in the manuscript concerning the role of the counterions. We also note that while 

aggregation, when it occurs, can affect the apparent absorption coefficient, it does not alter 

peak position. We demonstrate this in Figure S6, which compares UV-vis spectra for our 

samples in water and in salt solutions sufficiently concentrated as to cause aggregation. Thus, 

aggregation does not affect the intrinsic strength of the absorption of 400-nm photons by either 

Na- or Ca-equilibrated birnessite.  

Effects of aggregation on transient optical absorption kinetics. Aggregation 

interferes particularly strongly with the acquisition of kinetics data in time-resolved 

spectroscopy because it introduces non-statistical noise at each timepoint. Nafion reduced 

particle aggregation in time-resolved optical experiments, but the comparison of Figures S8a, 

S8c and S9 for Na-MnO2 shows that Nafion had a small effect on the observations. Slightly 

slower decays were observed for samples prepared without Nafion (Table 1), possibly 

indicating an effect of aggregation upon recombination rates. This could occur if 

recombination involved diffusion of soluble species, but this effect is impossible to explain 

confidently and is smaller than the influence of interlayer cation.  

Calculation of Mn:photon ratio. We evaluated the likelihood that the LITR-XAS data 

were influenced by X-ray beam damage by estimating the number of X-ray photons that can 

interact with the sample. First, we assumed that a maximum of 5000 X-ray photons are 

delivered per camshaft (electron bunch) to the beamline endstation at 5 keV, with two 

consecutive camshafts separated by a period of 656 ns. Therefore, about 7.6 x 109 camshaft 

photons may interact with the sample each second. However, the camshaft photons represent 

only 1% of the total photons available from the storage ring (i.e., camshaft curent is 5 mA and 

total storage ring current is 500 mA). Thus a total of 7.6 x 1011 camshaft and non-camshaft 

photons are delivered to the endstation per second. This total photon flux is attenuated 30 times 

by the X-ray chopper, a device designed to exlude non-camshaft photons, leading to a total 

exposure of 3.7 x 1014 photons to the sample during a 4 h experiment. Finally, a 250 mL 

suspension of 10 mM δ-MnO2 contains approximately 1.5 x 1021 Mn atoms, thus the Mn to X-

ray photon ratio is 1.5 x 1021:3.7 x 1014 or 106:1. 

A better estimate of the Mn:photon ratio can be obtained by modifying the above 

calculation to include more realistic estimates of photon flux and photon absorption by the 
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sample. First, fewer X-ray photons are actually delivered per camshaft to the beamline 

endstation at 5 keV: 3500 vs 5000 photons. Second, the photon flux drops anywhere from 10% 

- 90% when the monochomator is in motion because the motors move at different rates. Thus 

the sample exposure time is closer to 25% of the total experiment time. Third, about 50% of 

the photons are transmitted through the 600 μm jet. Of the photons that are absorbed by the 

sample, most are not absorbed by MnO2 ( < 2 % for Mn and O combined). With these 

assumptions, a less conservative estimate of the Mn:X-ray photon ratio would be 1.5 x 1021:6.4 

x 1011  or on the order of 109:1, lending strong support to our assumption that any long-term 

changes to the sample are not caused by X-ray exposure.  
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7.5. SI Figures 

 
Figure S1. Time course plot showing Mn(III) generation upon 400 nm irradiation in flow through experiments 
at pH 6.5. Blue for Ca-MnO2 and red for Na-MnO2, filled symbols and solid lines for samples with sodium 
pyrophosphate (PP) added before irradiation, dashed lines and empty symbols for samples with PP added after 
irradiation. Aqueous Mn determined by ICP-OES is within 10% of Mn(III)-PP determined colorimetrically. No 
Mn was released to solution in experiments without PP. 
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Figure S2. (a) Transient optical absorption spectra acquired on Na-MnO2 in aqueous suspension with Nafion. 
Transient absorption difference spectra at 0.75 ps, 3.6 ps and 2 ns (ΔOD units; left axis) compared with the 
ground-state UV-vis absorption (OD units; right axis). The maximum intensity of the excited state absorption 
(ESA) is 550 nm. The data from 390 – 410 nm are affected by scattering of the pump beam; (b) Comparison 
between the transient absorption spectrum of Ca-MnO2 and Na-MnO2 in Nafion 0.75 ps after laser excitation 
show that the Ca-MnO2 sample is red-shifted relative to the Na-MnO2 sample (cf. Fig. S6a). 

 

 
Figure S3. Summary of transient optical absorption kinetics acquired on Na-MnO2 in aqueous suspension with 
Nafion. (a) Transient kinetic traces show that the onset of the ESA at 550 nm is slightly delayed relative to the 
bleach at 345 nm. (b) Decay kinetics of the ESA and bleach up to 8 ns. The time-zero was shifted by 0.2 ps to 
enable plotting on a logarithmic axis. (c) The decay of the bleach at 550 nm was recorded for up to 50 µs.  
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Figure S4. Powder X-ray diffraction patterns for selected samples before and after the light-initiated time-
resolved XAS experiment. Samples after the LITR-XAS experiment show reflections of the 001 and 002 planes 
(reflection at ~14° and ~25° 2θ, respectively) due to increased stacking of MnO2 sheets along the crystallographic 
c-axis. 
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Figure S5. UV-vis absorption spectrum of Na-MnO2, triclinic birnessite (ca. 16% Mn(III) in the octahedral 
sheet), and c-disordered H+ birnessite (ca. 19% Mn(III) distributed between the layer and interlayer positions in 
similar proportions).  
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Figure S6: (a) UV-vis absorption spectra of Na-MnO2 in water without background electrolyte (blue line) and 
Ca-MnO2 with 10 mM background electrolyte (Cl- -red line); (b) UV-vis absorption spectra of Na-MnO2 with 
and without 10 mM NaCl and NaNO3 as background electrolytes compared to Ca-MnO2 with and without 10 
mM CaCl2 as the background electrolyte.  
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Figure S7. (a) reduced structure function, F(Q) = Q[S(Q)-1], for Ca-MnO2 and Na-MnO2, respectively. (b) PDF 
data, obtained by Fourier transformation of the F(Q), for Na-MnO2 (blue line) and Ca-MnO2 (red line), as well 
as difference PDF between the samples. 
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Figure S8. Comparison of the transient optical absorption kinetic data on the microsecond timescale extracted at 
580 nm for Na-MnO2 and Ca-MnO2 in different aqueous solutions, overlain with the fits using 2 time constants 
(cf. Table 1): (a) Na-MnO2 resuspended in water; (b) Na-MnO2 resuspended in an 0.1 M terephthalic acid 
solution to trap any hydroxyl radical species formed during photoreduction; (c) Na-MnO2 resuspended in an 
aqueous solution with Nafion to reduce particle aggregation; (d) Ca-MnO2 resuspended in an aqueous solution 
with Nafion to reduce particle aggregation. 
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Figure S9. (a) Transient absorption spectra at different delay times for Na-MnO2 in water; (b) transient absorption 
kinetic traces for Na-MnO2 on pico- to nanosecond timescales extracted at 345 nm (blue) and 550 nm (red). The 
transient spectra and decay kinetics do not show differences on the pico- to nanosecond timescale with respect to 
Na-MnO2 resuspended in Nafion. 
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7.7. SI Text 

Mineral Synthesis. Delta-MnO2 minerals were synthesized in a previous study (Chapter 

3). In particular, the mineral that was used for these studies was mineral B2 described in (Chapter 

3). The synthesis of this mineral involves the reduction of Mn(VII) by Mn(II) in excess base 

according to the following reaction:  

2𝐾𝐾𝐾𝐾𝐾𝐾𝑂𝑂4 + 3𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙2 + 4 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 → 5 𝑀𝑀𝑀𝑀𝑂𝑂2 + 2 𝐾𝐾𝐾𝐾𝐾𝐾 + 4 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 6 𝐻𝐻2𝑂𝑂  (1) 

where NaOH is used to neutralize the acid formed during the reaction and to enhance the 

kinetics of Mn(II) oxidation. 

The minerals obtained through this synthesis protocol were characterized with respect to 

specific surface area, Average Mn oxidation number (AMON), Mn(III) content, Na:Mn ratio as 

described in Chapter 3. The specific surface area, as calculated by Brunauer Emmet Teller (BET) 

theory on a standard 5-point N2 sorption isotherm, was 163 ± 8 m2/g; the average Mn oxidation 

number, determined by potentiometric titration (initially described in (Gaillot et al., 2003)) was 

4.03 ± 0.01; the Mn(III) content was 2.07 ± 0.52 and the Na:Mn ratio was 0.3. 

Geometric constraints on the migration of Mn(III) out of the octahedral layer. To help 

evaluate which octahedral site is the most favorable for the transient Mn(III) to stabilize into, we 

rationalized the possible sites present in a δ-MnO2 model and evaluated what structural 

requirements would be needed for Mn octahedrons in each singular site to accommodate an 

interlayer Mn(III). In the following hypotheses, we attempted to consider the effect of the Jahn 

teller distortion in Mn(III), which elongates the Mn-O bonds in the axial direction (z) and shrinks 

the Mn-O bonds on the equatorial plane (x-y) to accommodate the orbital degeneracy (Burns, 

1993). We only considered sites that had oxygen atoms which were undersaturated, which are 

those that are likely to bind water molecules or protons. We excluded sites around an octahedral 

vacancy, since it is unlikely that Mn(III) will move out of the plane close to a vacancy, because 

this would be equivalent to forming two adjacent octahedral vacancies. With these conditions, 

there are 3 sites that were considered, all on the edges of the mineral (Figure S4): 

• Site A, where the Mn octahedron is bound to the remaining sheet only thorugh one edge, 

sharing one axial oxygen and one equatorial oxagen with the adjacent octahedron. 
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• Site B1 is an isolated corner site, which is bound to the remaining mineral in a double edge 

sharing configuration, sharing two equatorial and one axial oxygen atoms with the adjacent 

octahedrons. 

• Site B2 is an edge site that is bound to the remaining mineral by sharing two edges and one 

corner (3 equatorial oxygens and one axial oxygen) with the remaining mineral. 

• Site C is an edge site that has most of its coordinated oxygen atoms shared with adjacent 

octahedrons. Only one oxygen atom, an equatorial oxygen, is not shared with another 

octahedron and is the most undersaturated. 

We then assumed that the stabilization of Mn(III) in the interlayer does not involve a 

complete detachment of the latter, but a rotation of the octahedron around one oxygen atom and 

detachment from the remaining oxygen atoms. The oxygen that is the most likely to remain bound 

to the mineral is the one that is the furthest away from the protons and the surface/edge of the 

mineral, being that it’s charge is the least undersaturated by coordinating to the adjacent 

octahedrons. Below, we will describe how the 3 sites can possibly stabilize in the interlayer with 

a rotation around this oxygen out of the plane (rotation around an axis parallel to the mineral edge 

along the ab plane – Figure S4): 

• Site A: The octahedron on site A may move out of the plane through the detachment of the 

equatorial oxygen, rotation around the axial oxygen, then binding through the equatorial 

oxygen. In this case, since the number of dangling oxygens does not change, the change in 

shape of the octahedron from the JT distortion would require a distortion of the adjacent 

octahedra to bind either along an edge or in a double corner sharing complex. 

• Site B1: This Mn octahedron is bound by 3 oxygen atoms to the sheet. The octahedron 

remains bound through the axial oxygen, whereas the equatorial oxygens detach (they are 

singly undersaturated, so could be bound to protons or Na+). One of these oxygens then 

binds to the adjacent Mn octahedron, once the Mn(III) octahedron rotates around an axis 

parallel to the crystallographic c plane. The resulting octahedron now shares two edges 

with the remaining lattice, and has one less oxygen bound with respect to the previous 

configuration. It is likely that this vertex of the octahedron is now coordinated by a water 

molecule (either on the remaining surface or on the migrated octahedron). The dangling 

oxygen may become protonated from the proton that is released upon the hypothesized 
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formation of OH• from H2O. Furthermore, the protonation of the oxygen atom may permit 

a reduction in rigidity, accomodating the Jahn-teller distortion of the Mn(III) octahedron. 

The out-of-plane Mn(III) octahedron results bound to the remaining surface in a double 

corner sharing configuration. 

• Site B2: The Mn octahedron on this site is bound to the bulk by 4 oxygen atoms. Because 

of the JT distortion, it is likely that two oxygen atoms detach as a result of the steric strain 

as well as the reduction of Mn-O bond strength from protonation and reduction in ionic 

potential of Mn(III). The out-of-plane rotation is a combination of an ab rotation as in site 

A and an additional rotation around the c direction as for site B1. The resulting 

configuration has two dangling oxygens/coordinated water molecules, and is bound to the 

structure by a double corner sharing configuration. One of the remaining dangling oxygen 

atoms may protonate with the H+ atom deriving from the OH• generation.   

• Site C: The octahedron on this site is bound to the remaining bulk by sharing 5 oxygen 

atoms. An out-of-plane re-orientation of this octahedron would require the breaking of 4 

Mn-O bonds and a rotation aroung the remaining axial oxygen atom. It would then bind in 

a double corner sharing configuration on either of the two adjacent octahedrons through 

the equatorial oxygen sites.  

Among the different options described above, the one with least bonds breaking will likely 

be the most favourable. Furthermore, from the rate expressions described in the main text the 

photoreduction of Mn upon partial water oxydation to form a hydroxyl radical involves the release 

of a proton. Therefore, the B1 or B2 sites are favoured with respect to the other sites, since they 

involve the least amount of bonds broken and require an additional proton to balance the negative 

charge arising from the lowered saturation of the oxygen atom that remains unbound.  

Additionally, the B1 and B2 sites are also the most abundant on the surface, even more so with 

smaller particles, compared to the other sites.  
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7.8. SI Figures and tables 

 
Figure S1: Release of Mn(III) in the dark as a function of pH. Lines are linear interpolations with free intercept. 
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Figure S2. Comparison between the photoreduction rates on δ-MnO2 suspensions with PP added before irradiation 
(empty symbols) and PP added after irradiation (full symbols) at pH 4.0 and pH 8.0. The pH was kept constant with 
a pH stat automatic titrator during irradiation. Fits are only shown for the pH STAT experiments, and were carried out 
only up to 2.2 days of irradiation, because of aggregation issues at longer timescales. 

Table S1: experimental conditions for the flow-through photoreactor experiments 
Reactor Mn total [µM] pH/conditions Duration Date 

3 221 4.0 STAT 4 days May 16 

3 223 4.0 STAT 2 days May 16 

2 218 8.0 STAT 4 days May 16 

1 255 6.5 PP 2 days May 16 

3 243 6.5 PP 2 days May 16 

1 239 6.5 PP 4 days May 16 

1 249 6.5 PP 4 days May 16 

3 252 4.0 PP 4 days June 16 

2 245 4.0 PP 4 days June 16 

1 249 4.0 PP 4 days June 16 

1 249 8.0 PP 4 days June 16 

2 252 8.0 PP 4 days June 16 

2 254 8.0 PP 4 days June 16 
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Figure S3: left – residuals of the linear interpolation without forcing through the origin, interpolations are superposed 
on the zero line; right – residuals of the linear interpolation forcing it through the origin. The homoscedasticity in the 
first plot is evident, whereas the second plot shows a trend, especially in the pH 4.0 data.  
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Figure S4: Visual representation of the edge sites that were chosen for the Mn(III) sites described in the SI text. The 
chosen cluster for the representation is much smaller than the actual mineral crystallite, for simplicity. 
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ANNEX 5. Supporting Information to Chapter 6 
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SI Text 

Interaction between Ni and PP The photoreduction experiments carried out in the current work 

were different from our previous work in that the addition of sodium pyrophosphate (PP) was done 

after irradiation, to avoid interactions between PP and the adsorption of Ni on the mineral. 

Although the presence or absence of PP during Ni sorption did not lead to major differences in the 

surface loading of Ni in the dark (Figure S1a), the presence of PP during the irradiation experiment 

would have complexed any Mn(III) formed, preventing us to evaluate the effect of Mn(III) on the 

surface speciation of Ni. Additionally, the complexation between Ni and PP, which was observed 

measuring the UV-Vis spectrum of a filtered suspension of δ-MnO2  with 5% Ni in excess PP, led 

to a broad shoulder between 300 nm and 500 nm, absent in a similar suspension without Ni (Figure 

S1b). The presence of this shoulder may have introduced artifacts during the irradiation of the 

suspension under 400 nm irradiation, therefore warranting experiments without PP during 

irradiation.  

  

194



  ANNEX 5 

 

SI Figures 

 

Figure S1 : A) q value for Ni sorbed on δ-MnO2  in the presence of PP (red circles) compared to in the presence of 
NaCl (Blue circles) ; B) UV-Vis spectra of Mn(III)-PP (red line) and Mn(III)-PP with 5% Ni. It can be seen that with 
5% Ni there is a broad absorption peak at 400 nm. 
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Figure S2 : Comparison between the fit of the pH 4 dark data under scenario 1 with a dK value of 1 (above) vs a dK 
value of 3 (below). As can be seen, the data is mismatched by the fit especially for the shoulder between an R value 
of 2 and 3 when a dK value of 3 is used. 
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Figure S3: Comparison between the chi data for the pH 4 dark sample with an overlay of the FT transformation 
window with a dK of 1 (black dashed lines) and a dK of 3 (red dashed lines), respectively. 
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Figure S4. a -  left) Plots of the different fit scenarios for the Ni-laden δ-MnO2 pH 4 dark data; b - right) Plots of the 
different fit scenarios for the Ni-laden δ-MnO2 pH 4 light data. The summary of the fit parameters are reported in 
Tables S1 and S2 for the Ni-laden δ-MnO2 pH 4 dark and light data, respectively. 
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Table S1: Fit scenarios for the Ni-laden δ-MnO2 pH 4 dark sample with the simplified 2-shell model (R range 1-4.1 
Å) shown in Figure S3. A dK value of 0.96 was applied based on the work published by Pena et al. (2010). The 
amplitude (A) for the different shells is defined by the product of the CN and a scaling parameter (f), where f refers to 
the fraction of Ni in TCS complexes above vacancies and (1-f) refers to the fraction of Ni as incorporated in the 
nanosheet or in a double edge sharing complex at the particle edges. 

Ni-laden δ-MnO2 pH 
4 dark 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 
Ni-O1 

    

CN 6.05 ± 0.88 5.97 ± 0.80 6.10 ± 2.88 6.16 ± 1.44 
R (Å) 2.05 ± 0.01 2.06 ± 0.01 2.05 ± 0.02 2.05 ± 0.01 
σ2 (Å2) 0.003 ± 0.001 0.003 ± 0.001 0.003 ± 0.004 0.003 ± 0.002 

 
Ni-O2 

  

Ni-MnES 

 

A 6 3 6 2 
R (Å) 3.54 3.45 2.86 2.86 
σ2 (Å2) 0.05 ± 0.09 σ2 Ni-O1 σ2 Ni-Mn TCS σ2 Ni-Mn TCS 

 
Ni-MnTCS1 

    

A 8.00 ± 1.79 6.62 ± 1.60 22.46 ± 11.50 11.93 ± 3.16 
R (Å) 3.49 ± 0.01 3.49 ± 0.01 3.50 ± 0.03 3.48 ± 0.01 
σ2 (Å2) 0.005 ± 0.002 0.005 ± 0.002 0.015 ± 0.005 0.008 ± 0.002 

     
E0 (eV) -1.44 ± 1.31 -0.98 ± 1.11 -1.81 ± 2.53 -2.25 ± 1.60 

Red Chi2 4.37 3.74 44.86 11.31 
R-factor 0.02 0.02 0.18 0.04 

N vars/IDP 8/14 7/14 7/14 7/14 
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Table S2: Fit scenarios for the Ni-laden δ-MnO2 pH 4 light sample with the simplified 2-shell model (R range 1-4.1 
Å), shown in Figure S3. A dK value of 0.96 was applied based on the work published by Pena et al. (2010). The 
amplitude (A) for the different shells is defined by the product of the CN and a scaling parameter (f), where f refers to 
the fraction of Ni in TCS complexes above vacancies and (1-f) refers to the fraction of Ni as incorporated in the 
nanosheet or in a double edge sharing complex at the particle edges. 

 

Ni-laden δ-MnO2 
pH 4 light 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 
Ni-O1 

    

CN 6.15 ± 0.87 6.11 ± 0.83 5.95 ± 2.07 6.17 ± 1.23 
R (Å) 2.05 ± 0.01 2.05 ± 0.01 2.05 ± 0.02 2.05 ± 0.01 
σ2 (Å2) 0.004 ± 0.001 0.004 ± 0.001 0.004 ± 0.003 0.004 ± 0.002 

 
Ni-O2 

  
Ni-MnES 

 

A 6 3 6 2 
R (Å) 3.54 3.45 2.86 2.86 
σ2 (Å2) 0.08 ± 0.18 σ2 Ni-O1 σ2 Ni-Mn TCS σ2 Ni-Mn TCS 

 
Ni-MnTCS1 

    

A 4.59 ± 1.69 3.22 ± 1.52 20.20 ± 19.34 8.31 ± 2.94 
R (Å) 3.48 ± 0.01 3.48 ± 0.02 3.51 ± 0.05 3.48 ± 0.02 
σ2 (Å2) 0.006 ± 0.003 0.005 ± 0.004 0.03 ± 0.01 0.01 ± 0.003 

 
  

  
E0 (eV) -1.82 ± 1.40 -1.44 ± 1.33 -2.04 ± 2.69 -2.26 ± 1.60 

Red Chi2 10.46 9.78 61.61 21.03 
R-factor 0.02 0.02 0.13 0.05 

N vars/IDP 8/14 7/14 7/14 7/14 
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Figure S5: Plot of the fitted Ni-laden δ-MnO2 pH 8 dark data without a multiple scattering path (above) and with a 
multiple scattering path (below).  
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ANNEX 6. Chapter 4 as published in PNAS without 
modifications 

203



204



Rate and mechanism of the photoreduction of
birnessite (MnO2) nanosheets
Francesco Femi Marafattoa, Matthew L. Straderb,1, Julia Gonzalez-Holgueraa, Adam Schwartzbergc, Benjamin Gilbertd,2,
and Jasquelin Peñaa,2

aInstitute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland; and bChemical Sciences Division, cMolecular Foundry, and
dEarth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Edited by François M. M. Morel, Princeton University, Princeton, NJ, and approved March 10, 2015 (received for review November 3, 2014)

The photoreductive dissolution of Mn(IV) oxide minerals in sunlit
aquatic environments couples the Mn cycle to the oxidation of
organic matter and fate of trace elements associated with Mn
oxides, but the intrinsic rate and mechanism of mineral dissolu-
tion in the absence of organic electron donors is unknown. We
investigated the photoreduction of δ-MnO2 nanosheets at pH 6.5
with Na or Ca as the interlayer cation under 400-nm light irradia-
tion and quantified the yield and timescales of Mn(III) production.
Our study of transient intermediate states using time-resolved
optical and X-ray absorption spectroscopy showed key roles for
chemically distinct Mn(III) species. The reaction pathway involves
(i) formation of Jahn–Teller distorted Mn(III) sites in the octahedral
sheet within 0.6 ps of photoexcitation; (ii) Mn(III) migration into
the interlayer within 600 ps; and (iii) increased nanosheet stacking.
We propose that irreversible Mn reduction is coupled to hole-scav-
enging by surface water molecules or hydroxyl groups, with asso-
ciated radical formation. This work demonstrates the importance
of direct MnO2 photoreduction in environmental processes and
provides a framework to test new hypotheses regarding the role
of organic molecules and metal species in photochemical reactions
with Mn oxide phases. The timescales for the production and evo-
lution of Mn(III) species and a catalytic role for interlayer Ca2+

identified here from spectroscopic measurements can also guide
the design of efficient Mn-based catalysts for water oxidation.

manganese oxide | photoreduction | band-gap excitation | pump–probe
spectroscopy | water oxidation

Manganese is a key element in environmental processes,
catalytic materials, and biological systems due to its rich

redox chemistry and ability to form species with a high oxidizing
potential. Photochemical processes can enhance significantly the
cycling of Mn between the +4, +3, and +2 valence states (1–3).
Photoreduction of Mn(IV) is the first step in the reductive dis-
solution of birnessite minerals in the euphotic zone of marine
and lacustrine environments (4–6). This process couples the
biogeochemical cycle of Mn to the redox cycling of carbon and
trace metals associated with Mn oxide phases. In addition, the
greater role of Mn(IV) photoreduction relative to microbial
Mn(II) oxidation leads to the predominance of dissolved over
particulate Mn in the photic zone of natural waters (1). Ther-
modynamic calculations predict that direct photoexcitation of
Mn oxides in water by visible light will lead to net metal re-
duction over a wide range of environmentally relevant pH values
(7). However, experimental evidence of direct photoexcitation of
MnO2 and subsequent photoreduction of Mn(IV) in the absence
of organic electron donors is currently lacking. Experimental
studies on the photochemical cycling of Mn have incorporated
natural organic ligands that can enhance metal reduction via
multiple pathways (5, 8, 9). These studies have identified aque-
ous Mn(II) as a reaction end product but have not investigated
the fate of Mn(III) in the dissolution process, even though
Mn(III) is a necessary intermediate in the reduction of Mn(IV)
to Mn(II) (10) and an important component of environmental
systems (11).

The photochemistry of Mn also enables solar energy harvest-
ing (12) and water oxidation catalysis in synthetic and biological
systems (3, 13, 14). Mn-based cluster compounds (15, 16) and
disordered birnessite nanoparticles (2) can exhibit analogous
reactivity to the water-oxidizing center of photosystem II. Metal
reduction is a key step in water oxidation using Mn oxide cata-
lysts (2, 15, 17, 18) with evidence that Mn(III) plays an important
role in O2 generation (19). However, no information on the in-
trinsic kinetics or efficiency of Mn(IV) reduction has been
reported to date. The structural and chemical constraints on
the mechanism of Mn photoreduction are not known for any Mn
phase (17, 18), although a recent study of MnO2-based water
oxidation showed that the substitution of Na with Ca in the in-
terlayer of MnO2 greatly enhances reactivity (15). The mineral-
ogy literature suggests that the interlayer cations, which balance
the excess charge in the MnO2 sheet, may influence its photo-
reactivity because the interlayer cations are known to bind water
molecules to the neighboring MnO2 octahedral sheets via hy-
drogen bonding, with the strength of the interactions dependent
on the cation valence (20–22). However, the specific role of Ca
in the photoreduction process is unknown (15).
The current work combines laboratory-based experiments and

ultrafast pump–probe spectroscopy to investigate the photore-
duction of δ-MnO2, a fully oxidized synthetic analog of natural
birnessites, which is comprised of randomly stacked MnO2 nano-
sheets that extend only a few nanometers in the ab plane. The first
objective was to measure the photoreduction efficiency of δ-MnO2
in flow-through experiments by 400-nm illumination of aqueous
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suspensions of δ-MnO2, with Na (Na-MnO2) or Ca (Ca-MnO2) as
the interlayer cation. The second objective was to elucidate the
mechanism of photoreduction by following the coupled changes
in Mn valence and coordination that follow photon absorption
over picosecond-to-microsecond timescales using time-resolved
optical (23) and X-ray (24) absorption spectroscopy. Pyrophos-
phate was used in the flow-through experiments to quantitate
Mn(III) but was not added during spectroscopic experiments
because the timescale for Mn(III) production could be deter-
mined directly from the transient X-ray absorption data.

Results
Efficiency of MnO2 Photoreduction. Flow-through experiments were
carried out to evaluate the irreversibility of MnO2 photoreduc-
tion, to identify the reduced Mn species, and to quantify the
efficiency of the process. The irradiation of 500 μM δ-MnO2
suspensions at pH 6.5 ± 0.2 in 1-cm path length flow-through
cuvettes showed irreversible Mn(III) generation upon 400 nm
irradiation under a photon flux of 0.77 μE s−1, which is compa-
rable to that of sunlight between 400 and 600 nm (calculations
in SI Text). We measured the steady formation of Mn(III) at a
rate of 2.20 ± 0.27 μmol Mn(III)·d−1 (95% confidence interval)
in Ca-MnO2 suspensions and 1.50 ± 0.19 μmol Mn(III)·d−1 in
Na-MnO2 suspensions containing pyrophosphate (PP) as a
Mn(III) trapping agent (Fig. S1). These rates were corrected for
any release of Mn(III) in dark controls (0.2–0.9 μmol Mn(III)·d−1).
The nonzero dark release is attributed to the extraction of re-
sidual Mn(III) not detectable by the method used to determine
average Mn oxidation number (AMON). Apparent quantum
yields of 8.2 ± 0.1 × 10−4 and 3.1 ± 0.3 × 10−4 (95% confi-
dence interval) were calculated for Ca-MnO2 and Na-MnO2, re-
spectively. Similar rates measured in suspensions where PP was
added after irradiation (Fig. S1) indicate that PP does not influence
photoreduction. Further evidence that PP and Mn(III)-PP do not
influence Mn photoreduction comes from their UV-visible (UV-vis)
spectra, which show no absorption at 400 nm (25).

Optical Transient Absorption Spectroscopy. Figs. 1 and 2 present
optical transient absorption (TA) spectra and kinetics, respectively,
for Ca-MnO2 acquired at subpicosecond-to-microsecond time-
scales. Equivalent data for Na-MnO2 are presented in Figs. S2
and S3. All samples were resuspended in 1.5% (mass/vol) Nafion
to reduce particle aggregation. Following photoexcitation at 400
nm, the TA spectra acquired at a few picoseconds exhibited a
broad excited-state absorption (ESA) feature with maximum
intensity at 538 nm (Ca-MnO2; Fig. 1) or 570 nm (Na-MnO2; Fig.
S2A). The TA spectra also showed a ground-state bleach
extending from the laser wavelength to the lowest wavelength
measureable (∼335 nm); the bleach reflects the decrease in the
population of valence band electrons that remain in the ground
state. After correcting for the laser chirp, the comparison of the
TA kinetics at 345 and 550 nm showed a rise in ESA intensity
that was delayed relative to the prompt bleach signal. The
maximum ESA intensity occurred at ∼0.3 ps for Ca-MnO2 (Fig.
2A) and ∼0.6 ps for Na-MnO2 (Fig. S3A). The ESA and bleach
signals decayed with similar dynamics up to ∼10 ps (Fig. 2B). The
ESA then decayed completely within 1 ns, but the bleach signal
remained detectable on the microsecond timescale. The decay
kinetics of the bleach differed for Ca- vs. Na-MnO2 (Fig. 1C),
although both samples exhibited short (submicrosecond, τ1) and
long (10–30 μs, τ2) decay timescales (Table 1).
Direct comparison of the fitted first-order decay constants for

Ca-MnO2 and Na-MnO2 in Nafion-stabilized suspensions reveals
that the recombination rates are three- to fourfold slower in the
presence of interlayer Ca. In particular, the τ2 values indicate
that the bleach returns to baseline within 50 μs for Na-MnO2
(five half-lives elapsed, 0.02% of initial signal remains), whereas
for Ca-MnO2 the bleach does not return to the baseline within

the resolution of the experiment (two half-lives elapsed, 8% of
initial signal remains). Slightly slower decays were observed for
samples prepared without Nafion, possibly indicating an effect of
aggregation upon recombination rates. Slower decay could occur
if recombination involved diffusion of soluble species, but this
effect is impossible to explain confidently and is smaller than the
influence of the interlayer cation (SI Text). The addition of the
anionic hydroxyl radical scavenger, terephthalic acid (TPA), had
no detectable effect on the decay kinetics for Na-MnO2.

Light-Initiated Time-Resolved X-Ray Absorption Spectroscopy. Se-
lected ground-state Mn K-edge spectra collected during a single
4-h light-initiated time-resolved X-ray absorption spectroscopy
(LITR-XAS) experiment with Ca-MnO2 are displayed in Fig. 3.
The increase in the absorption intensity at 6,550 eV (Fig. 3, Inset)
shows a shift of the Mn K-edge to lower energies, which is consis-
tent with a decrease in the average oxidation state of Mn (26). Thus,
400-nm laser excitation causes the accumulation of reduced Mn.
A difference X-ray absorption (ΔXA) spectrum, obtained by sub-
tracting the initial ground-state spectrum from the 3-h ground-state
spectrum, is included in Fig. 3 to emphasize the irreversible change
in Mn valence and bonding environment after 3 h of irradiation.
Transient ΔXA spectra were obtained by subtracting the

ground-state spectrum from the excited-state spectra at delay
times of up to 10 ns (Fig. 4A). The first oscillation between 6,540
and 6,570 eV in the transient ΔXA spectrum at a 50-ps delay
indicates a shift in the absorption edge position to lower energies
that is consistent with the formation of reduced Mn (Fig. 3).
The feature is approximately constant from 50 ps (the temporal
resolution of the experiment) to 10 ns (the latest time point
studied). As shown in Fig. 4B, transient kinetic data at 6,550 eV
confirmed the prompt formation and negligible decay of the
signal for reduced Mn. Within 600 ps, we observed modulations
at energies above 6,570 eV, the fine-structure portion of the tran-
sient ΔXA spectrum, which reflect changes in the coordination
environment of Mn. Finally, the close agreement between the
transient ΔXA data at 10 ns and the ΔXA data associated with
permanent photoreduction at 3 h indicates that at least a fraction of
the reduced Mn species observed at 10 ns persists indefinitely.
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The long-term effect of Mn(III) accumulation on the irradi-
ated Mn oxide was assessed by characterization of the mineral
structure. Powder X-ray diffraction (XRD) patterns acquired
from samples before laser irradiation show broad hk0 peaks at
2.4 and 1.4 Å and no stacking peak at 7.2 Å (in d-spacing). This
pattern is characteristic of δ-MnO2 nanosheets with hexagonal
sheet symmetry and fewer than three randomly stacked sheets
(26). Following laser irradiation, the XRD patterns showed ad-
ditional 001 and 002 Bragg reflections (Fig. S4) consistent with
increased ordered stacking of the MnO2 sheets (26).

Discussion
Efficiency of Mn(IV) Oxide Photoreduction. Our flow-through ex-
periments show that the irreversible photoreduction of δ-MnO2

to form Mn(III) occurs readily under environmentally relevant
conditions in the absence of any electron donor other than water.
In addition, our measurements show no production of Mn(II).
The apparent quantum yield of the process at pH 6.5 is up to two
orders of magnitude larger than the apparent quantum yield
measured for γ-Fe2O3(s) at pH 3.0, ∼10−5 (27), and comparable
to the value measured for γ-FeOOH(s) at pH 3.0, ∼10−3 (28).
Furthermore, Fe photoreduction in water has only been ob-
served at pH values below 5. These results emphasize the im-
portance of photoreduction in the redox cycling of Mn oxides
relative to Fe oxides and support the thermodynamic calculations
presented by Sherman (7), which indicate that photoreduction may
occur at higher pH values for Mn oxides than for Fe oxides.
Environmental Mn cycling is frequently coupled to the oxi-

dation of dissolved organic matter (DOM). Manganese oxide
photodissolution in the presence of 10–40 mg/L DOM has been
reported to have a 5–10 times greater efficiency (9) than mea-
sured here for MnO2 photoreduction without organics. DOM
can increase the accumulation of reduced Mn by acting as
the chromophore that either initiates electron transfer to the
mineral (9) or photolyzes to generate reactive oxygen species (5);
by acting as an electron donor to the photoexcited mineral; or
by providing ligands that can complex intermediate Mn3+ as
Mn(III)(aq) species (11). Due to the optical properties of DOM,
the first mechanism is only important under UV light, which is
a minor component of the sun’s irradiance spectrum on the
Earth’s surface and has a lower penetration depth (up to ∼25 m)
in natural waters than visible wavelengths (∼100 m) (29). The
complexation of reduced manganese by DOM is likely to occur
independently from the photoreduction mechanism. Thus, our
results indicate that Mn photoreduction in which water serves as
electron donor must be a significant contributor to any overall
environmental rate.

Manganese Redox Dynamics. We used the time-resolved optical
and X-ray data to construct a model for the photoexcitation and
evolution of Mn(III) states in δ-MnO2 as visualized in Fig. 5.
A transient Jahn–Teller-distorted Mn(III) intermediate forms in the nano-
sheet.We interpret the transient optical ESA that appears within
0.3–0.6 ps, and that has a lifetime less than 1 ns, as a transient
intermediate Mn(III) state that is formed by ligand-to-metal
charge-transfer that excites an oxygen-centered valence electron
into the metal 3d state (7). This interpretation requires justifi-
cation because transient electronic excitations observed in TA
spectroscopy of metal oxides could be associated with either
electrons (e.g., the transitions of electrons promoted to the
conduction band) or holes (i.e., new excitations within the va-
lence band). For example, band-gap excitation of hematite
(α-Fe2O3) generates a prompt optical ESA centered at 580 nm
attributed to hole excitations based on UV-vis spectra of a thin-
film hematite electrode under oxidizing vs. reducing conditions
(30). In the present case, however, the delayed onset of the ESA
is consistent with electronic relaxation into a polaronic state, as
observed for photoexcitation of manganites (31). Polaron for-
mation would be expected for the creation of a Mn(III) state, for
which Jahn–Teller (JT) distortion of the octahedron can lower
the ground-state energy by adopting high-spin d4 electron con-
figuration and splitting of the eg and t2g orbitals (32). In this
depiction, the ESA is caused by low-energy excitations of the
extra electron localized in the JT state. Additionally, UV-vis
spectra from well-characterized MnOx phases show that Mn(III)
located in the MnO2 sheets confers absorption features in the
visible range between 400 and 600 nm (Fig. S5).
The line shape of the ESA reported here closely matches a

feature in the UV-vis spectrum reported for a birnessite anode
poised at sufficiently positive potentials to oxidize water (19).
Takashima et al. (19) assigned the optical feature between 400
and 600 nm to adsorbed Mn(III) based on pyrophosphate extrac-
tions. However, any Mn(III) extracted by pyrophosphate after the
electrochemical oxidation of water reflects only the final Mn(III)
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Table 1. Time constants obtained from fitting the EOS data
with exponential decay functions (Fig. S8)

τ1 (μs) ± SD τ2 (μs) ± SD χ2

Na-MnO2

Water 0.36 ± 0.03 15.31 ± 0.96 11.03
TPA 0.36 ± 0.04 14.38 ± 1.32 18.68
Nafion 0.24 ± 0.02 10.14 ± 0.63 12.68
Ca-MnO2

Nafion 0.81 ± 0.06 27.35 ± 1.75 6.53

A time offset of 0.047 μs was used for all data.
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state. Our kinetic measurements demonstrate that the visible
ESA is due to a transient state.
A long-lived interlayer Mn(III) adsorbate between the nanosheets. We
propose that the loss of the optical ESA signal (i.e., the JT state)
is caused by two processes occurring on different timescales.
Within the first 10 ps, the ESA decay and that of the bleach were
closely coupled, indicating electron–hole recombination. Further
decay of the ESA signal, however, was not matched by further loss
of the bleach. The LITR-XAS also showed that within ∼600 ps
there was a change in the Mn bonding environment but no loss
of the reduced Mn state. We explain these trends by the dis-
placement of Mn(III) from the nanosheet layer into the hydrated
interlayer region, with the formation of a vacancy site beneath
(Fig. 5C). Prior studies have established that Mn(III) cations can
reside stably within the interlayer of birnessite nanosheets to
reduce the sheet steric strain (33, 34). The JT distortion at the
Mn(III) site could drive its migration into the interlayer, where it
can act as an adsorbed cation that enhances the stacking of the
negatively charged sheets (Fig. 5D). In addition, JT-distorted
Mn(III) sites have been reported as key species for water oxi-
dation (17). The migration of JT distorted Mn(III) from the
MnO2 sheet into the interlayer and change in Mn(III) bonding
environment may decrease the overall reactivity of the material
for multielectron water oxidation. Thus, our finding has impli-
cations regarding the mechanistic constraints on Mn oxide
photocatalysis. The formation of new vacancy sites likely also
alters the optical absorption properties of the modified nano-
sheet (35). Our model, however, requires that the putative
interlayer Mn(III) ion lack an optical absorption signature in
the 335- to 800-nm range; this could not be verified through
published studies of the UV-vis absorption spectra of Mn3+ be-
cause this species is unstable in aqueous solution (11, 25).
Hole dynamics: Recombination vs. water oxidation chemistry. Photoex-
citation of δ-MnO2 and the generation of Mn(III) must be ac-
companied by the formation of valence band holes. Hole states
in transition metal oxides are typically localized at oxygen sites,
but holes that form close to surface sites may participate in re-
actions with water, including steps in the four-electron oxygen
evolution reaction (36) or with aqueous ions such as Cl− (37).
The bleach signal in the TA data shows complete return to the

ground state after 50 μs or longer, indicating that most of the
hole states are able to recombine with the photoexcited electrons

in Mn(III) even after migration of the metal ion into the in-
terlayer. Although we proved that net photoreduction occurs, the
apparent quantum yield is too low for the irreversible fraction to
be detectable above the statistical noise in the TA data. Re-
combination may involve exclusively solid-phase species, or the
formation of chemical intermediates. Borer et al. (28) used a
hydroxyl radical scavenger to demonstrate the generation of
hydroxyl radicals (OH•) through hole reaction with surface hy-
droxyls on γ-FeOOH, but in that case only an anionic scavenger
was able to react with the net positively charged surface of iron
oxyhydroxides. In the present case, we were unable to identify a
cationic hydroxyl scavenger that was stable against dark reaction
with Mn(IV), and the anionic TPA may have been unable to
interact with the net negatively charged δ-MnO2 surface. Nev-
ertheless, surface-bound hydroxyl groups on birnessite have
been identified in a synthetic Mn(III)-bearing microcrystalline
birnessite phase from the interpretation of thermogravimetric
data (33). Reactions between OH• species could yield H2O2 or
other reactive oxygen species that could oxidize Mn(III) back to
Mn(IV) and thus reduce the net quantum yield of direct photore-
duction by band-gap excitations. Our efforts are currently dedi-
cated to identifying these radical species, which can also enhance
microbial Mn oxidation (38) and induce cellular oxidative stress.

Influence of Interlayer Cation on MnO2 Photoreduction.We observed
that the interlayer cations, which balance the negative layer
charge, influence the optical properties and photochemistry of
layer-type MnO2, as observed previously in water oxidation
studies (15). The slower microsecond timescale kinetics for Ca-
vs. Na-MnO2 and greater apparent quantum yield, which cannot
be explained by aggregation (SI Text), suggest a catalytic role for
this ion that reduces the rate at which interlayer Mn(III) species
and photoexcited hole states can recombine. Because Ca2+ has a
greater hydration enthalpy (22) and slower water exchange rate
than Na+ (108 s−1 vs. 109 s−1) (39), its catalytic role may reduce
the mobility of water and other species in the interlayer. How-
ever, Ca also caused redshifts in both ground-state and transient
UV-vis spectra (Figs. S3B and S6A), indicating that this ion has
significant chemical interactions with the Mn oxide nanosheets.
Further work will be required to fully determine the role of Ca,
but the model proposed here provides a basis for future studies.

Environmental Implications
This work provides insight into the mechanism, rates, and chemical
controls on the photoreduction of fully oxidized Mn oxide phases
that are the initial products of biological manganese oxidation (6)
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and that may have been precursors to biological water oxidation
catalysts (14). The evidence we provide for δ-MnO2 photore-
duction in the absence of organic electron donors establishes this
pathway as an important component of the Mn cycle. That this
reaction occurs at 400 nm indicates that it is important at all
depths of the water column to which visible light penetrates,
including depths where dissolved organic matter is not photo-
active. The broad absorbance of MnO2 suggests that photore-
duction can occur across a wide spectrum of solar irradiation,
although further experiments will be required to establish the
wavelength dependence. Photoreduction creates Mn(III) states
that are stabilized by adsorption at interlayer sites and increase
nanosheet stacking. Our results also suggest that Mn(IV) photo-
reduction in sunlit environments may cause initial biogenic Mn(IV)
oxides to transform to a phase with varying amounts of Mn(III) (6).
We cannot generalize our conclusions to the many other phases
of birnessites that can be found in nature, but we anticipate that
photochemical transformations of these phases will retain similar
mechanistic aspects, although the net rates may be influenced by
Mn(III) content.

Materials and Methods
American Chemical Society-grade chemicals were purchased from Sigma-
Aldrich or Merck; Nafion was purchased from Fuel Cell Earth LLC. All solu-
tions were prepared with ultrapure water (18 MΩ · cm). The δ-MnO2 phase
used in flow-through photodissolution experiments and pump–probe ex-
periments was synthesized according to Villalobos et al. (26). Synthesis and
characterization of the mineral phase are described in SI Text. All experi-
ments were carried out at ambient temperature, on suspensions under aerated
conditions or purged with N2(g) or He2(g).

Efficiency of MnO2 Photoreduction. Flow-through experiments were carried
out to verify whether δ-MnO2 photoreduction by band-gap excitation gen-
erated reduced Mn ions irreversibly and to measure the rates and efficiency
of the process. We prepared oxide suspensions containing 500 μM Mn and
25 mM sodium pyrophosphate (PP) to trap Mn(III) with a final pH of 6.5 (no
pH-adjustment was required). The Ca-MnO2 suspensions were prepared by
equilibrating the oxide with CaCl2(aq) in a 3:1 molar ratio. All suspensions
were equilibrated in the dark for 3 d before irradiation. The suspensions
were then divided into two aliquots: one was used as a dark control and the
second was recirculated through a flow-through quartz cuvette. Irradiation
for 72 h was provided by an array of three 1-W light-emitting diodes at 400 nm
(3.1 eV), close to the maximum UV-vis absorbance of a Na-MnO2 suspension in
water (Fig. S5A). The photoreactor was screened from ambient light.

Every 24 h, a sample aliquot was collected for inductively coupled plasma
optical emission spectrometry (ICP-OES) measurement of [MnTOT] after
digestion with 0.05 M H2C2O4 and 3% (vol/vol) HNO3 and another was
filtered through a 0.2-μm polyethersulfone syringe filter for ICP-OES
measurement of [Mn(aq)] and [Mn(III)-PP] quantification by UV-vis spec-
trophotometry (e254 nm = 6,562 L·mol−1·cm−1) with 1-cm path-length quartz
cuvettes using a 25-mM PP solution as a blank. Measurements of [Mn(aq)] and
[Mn(III)-PP] were within 10%, with concentrations ranging from 10 to 50 μM.
Experiments were conducted in duplicate; suspension pH was 6.5 ± 0.2 before
and after irradiation.

Complementary experiments were carried out to confirm that PP did not
influence Mn photoreduction. Experiments were conducted as described

above but in the absence of PP and with Na-MnO2 supplementedwith 10mM
NaCl. After 0, 24, 48, and 72 h of irradiation, 10-mL sample aliquots were
collected, mixed with 2 mL of a 100 mM PP stock solution (pH 6.5), and
placed on an end-to-end shaker for 24 h in the dark. Measurements of
[MnTOT], [Mn(aq)], and [Mn(III)-PP(aq)] were made as described above; sus-
pension pH was 6.5 ± 0.2 before and after irradiation.

The rate of Mn(III) production was determined from linear regression of
Mn(III)-PP against time, after correction for any Mn(III) released in dark
control experiments. We then calculated the apparent quantum yield for
Mn(III) generation, which is defined as the amount of photoproduced Mn(III)
per photon absorbed by the MnO2 suspension. To calculate the number of
photons absorbed, we measured the photon flux to the photoreactor by
chemical actinometry using potassium ferrioxalate and then scaled the
photon flux to the ratio of the absorbance of MnO2 to ferrioxalate (SI Text).

Optical Transient Absorption Spectroscopy. Optical TA spectroscopy can be
used to follow excited-state valence electron dynamics in semiconducting
metal oxides (23). Optical TA experiments were carried out on a HELIOS
femtosecond transient absorption spectrometer and on an EOS subnano-
second transient absorption spectrometer from Ultrafast Systems installed at
the Molecular Foundry, Lawrence Berkeley National Laboratory. The laser
source for both instruments was a Coherent Libra Amplified Femtosecond
Laser System operating at 1 kHz with 45-fs pulse duration. The laser output
was split, one arm passing through a Coherent OPerA optical parametric
amplifier (OPA) to produce pump pulses at 400 nm, the other arm delivered
to the transient absorption system where a white-light probe pulse was
generated in a sapphire plate or by a fiber white-light source (Leukos-STM)
for the HELIOS and EOS spectrometers, respectively. The intensity of the
pump beam was measured to be 800 nJ·pulse−1. Time delay was provided by
a mechanical delay stage on the HELIOS setup and by instrument electronics
on the EOS setup. Spectra were collected between 335 and 900 nm.

Samples of Ca-MnO2 and Na-MnO2 were either kept in their original
aqueous suspension or resuspended in an aqueous solution of 1.5%
(mass/vol) Nafion in 3% (vol/vol) isopropanol. The Nafion polymer reduced
particle aggregation and there is no evidence that it influences the photo-
chemical behavior of birnessite-based photocatalysts (2, 40). Furthermore, the
comparison of TA data of Na-MnO2 in water vs. in an aqueous Nafion solution
showed no detectable differences on picosecond-to-nanosecond timescales
(Fig. S9). The 3% (vol/vol) isopropanol was evaporated in air from the Nafion
solution for 12 h before starting the measurements to ensure complete
isopropanol evaporation. Additional Na-MnO2 samples were resuspended in
0.1 M TPA, a hydroxyl radical trap (41), and measured on the EOS setup. The
samples were measured in 1-mm path-length quartz cuvettes and stirred
with a magnetic stir bar or recirculated in a flow-through cuvette. The op-
timumMnO2 concentration for TA measurements ranged from 3 to 6 mM on
a Mn molar basis, corresponding to an OD at 400 nm between 0.8 and 1.6
absorption units on 0.5-mm path-length quartz cuvettes. Spectra were col-
lected from −10 ps to 8 ns (relative to laser pulse) on the HELIOS system and
from 1 ns to 50 μs on the EOS system. Custom user routines developed in the
IGOR Pro software (WaveMetrics Inc.) were used to process the data, in-
cluding correction of the time-dependent frequency modulation of the laser
(laser chirp) on the signal to within ∼0.15 ps and to extract transient kinetic
data at 354 and 550 nm from 2D plots of spectra vs. time. IGOR Pro was also
used to fit first-order exponential decay kinetics to the extracted data. Decay
kinetics for all samples were adequately reproduced by fitting two expo-
nential time constants (SI Text).

Laser-Initiated Time-Resolved X-Ray Absorption Spectroscopy. LITR-XAS excites
core electrons and yields information on the oxidation state and local
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Fig. 5. Proposed model for the evolution of metal redox chemistry during δ-MnO2 photoreduction. (A) Absorption of a photon (hv) by a single Mn(IV) oxide
nanosheet that includes metal vacancy sites (V). (B) Formation within 600 fs of a Jahn–Teller distorted Mn(III) state within the nanosheet (dark red octa-
hedron). (C) Migration within 1 ns of Mn(III) from the nanosheet to an adsorption site above a new vacancy. (D) Increased nanosheet stacking due to in-
creased compensation of sheet negative charge by interlayer Mn(III). Water molecules are omitted for clarity.

4604 | www.pnas.org/cgi/doi/10.1073/pnas.1421018112 Marafatto et al.

 
209

ANNEX 6



bonding environment of the probed atoms following light excitation (24).
LITR-XAS experiments were carried out at Beamline 6.0.1 at Advanced Light
Source. At this beamline, the X-ray beam pulses are isolated with an X-ray
chopper and combined with the output of a femtosecond Ti:Sapphire laser
system with a power output of 800 mW measured at the sample position.
The X-ray energy was scanned across the Mn K-edge (6,530–6,595 eV).
Ground-state and transient X-ray absorption spectra were collected in
fluorescence mode with an avalanche photodiode fitted with Soller slits and
a Cr filter. The 400-nm laser pulse was obtained by converting the 800-nm
output from the 4-kHz Ti:Sapphire laser system with an OPA. The laser pulse
was synchronized to a single electron bunch by locking the 62.5-MHz
repetition rate of the laser system oscillator to the 499.64-MHz of the
synchrotron’s radiofrequency cavity to an accuracy of less than 20 ps. The
FWHM of the laser and X-ray pulses were 0.1 and 70 ps, respectively. Fi-
nally, the time 0 delay between X-ray and laser pulses was determined
using an iron(II) Tris(2,2′-bipyridine) solution, which exhibits distinct
changes in absorption at the Fe K-edge upon laser excitation.

The laser and X-ray beams intersected the sample in a closed He2(g) purged
chamber. Samples were recirculated from a bottle on a stir plate through a
nozzle forming a 600-μm diameter liquid jet. The size of the X-ray beam on
the sample was 60 × 60 μm. To begin an experiment, 250-mL suspensions of
∼10 mM Ca- and Na-MnO2 were prepared. Before data acquisition, the
chamber and sample were purged with He2(g). Each experimental condition
was repeated in duplicate on suspensions recirculated for up to 4 h to obtain
transient and kinetic data. For transient X-ray absorption experiments,
spectra were collected at a fixed time delay and the monochromator was

scanned from 40 eV below to 70 eV above the Mn K-edge (6,539 eV). The
transient spectra were three-point smoothed for plotting. Kinetic data were
acquired by setting the monochromator at a fixed energy position and
varying the time delay between laser and X-ray pulses. In both acquisition
modes, data were collected before and after laser irradiation at the chosen
time delay to extract ground-state and excited-state spectra. Following each
LITR-XAS experiment, the samples were retained for analysis by X-ray dif-
fraction. To assess the possibility of X-ray radiation damage, a conservative
Mn:photon ratio was calculated. We estimated that 1014 X-ray photons are
delivered to the sample over the 4-h timespan of the experiment, compared
with ∼1021 Mn atoms in the sample (SI Text). The Mn:photon ratio was
thus estimated to be 106:1, strongly suggesting that X-ray beam damage
is negligible.
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SI Materials and Methods
Mineral Synthesis and Characterization. The Mn oxide phase,
δ-MnO2, was synthesized by combining stoichiometric amounts
of MnCl2 with KMnO4 in excess NaOH under vigorous mixing
(1). The solids were rinsed with water until the electrical conduc-
tivity of the supernatant was less than 30 μs·cm−1. The washing
procedure required seven cycles of centrifuging the slurry (20 min
at 27,500 relative centrifugal force and 25 °C) and resuspending the
mineral paste in Milli-Q (MQ) water. After the final rinsing step,
the mineral paste was resuspended in MQ water and stored in the
dark at 4 °C. Mineral composition was characterized with respect
to average Mn oxidation number and Na:Mn content. The AMON
was characterized by potentiometric titration (2) with a Metrohm
888 Titrando automatic titrator. Briefly, 15 mg of δ-MnO2 were
dissolved in a 0.01 M Mohr’s salt [(NH4)Fe(SO4)2·6H2O] solution
and residual Fe(II) was titrated with 0.01 M KMnO4. The amount
of Mn(II) generated was back-titrated with 0.02 M KMnO4 and all
Mn(III) produced was trapped by complexation with excess PP
(Na4P2O7) (3–5). A detailed description of the titration protocol is
provided by Grangeon et al. (2). The Na:Mn ratio was measured by
ICP-OES on a Perkin-Elmer Optima 8300 spectrometer on sam-
ples digested in 3% (vol/vol) HNO3 and 0.05 M H2C2O4.
Structural characterization of δ-MnO2 was carried out to de-

termine specific surface area, mineral phase, and intermediate-
range structure (within 2 nm). Additionally, the light absorption
spectrum of the mineral was measured by UV-vis spectropho-
tometry. Specific surface area was determined by a five-point
Brunauer–Emmett–Teller (BET) N2 adsorption isotherm at
77 K on a Micromeritics Gemini 2375 instrument. Powder XRD
patterns were collected on a Thermo Electron ARL X’TRA dif-
fractometer with Cu Kα radiation (λ = 1.5418 Å) and a Peltier-
cooled Si(Li) solid-state detector, with a speed of 0.5° min−1, a step
size of 0.02°, and an integration time of 2,400 s. Both for XRD and
BET, powders were obtained by oven-drying at 45° for 1 d pastes
obtained by vacuum-filtering an aliquot of the stock suspension.
UV-vis absorption spectra from 200 to 800 nm were obtained

on a Shimadzu UV-2600 spectrophotometer with 1-cm path-
length cuvettes or an Ocean Optics spectrophotometer with 0.5-mm
path-length cuvettes. High-energy X-ray scattering data were col-
lected at beamline 11-ID-B at the Advanced Photon Source. Atomic
pair distribution functions [i.e., G(r)] (Fig. S7B) were obtained with
the PDFgetX2 GUI utility following standard procedures (6), which
involve Fourier transformation of the reduced structure func-
tion, [F(Q) = Q[S(Q) − 1] (Fig. S7A). The reduced structure
function is the total scattering pattern multiplied by the magni-
tude of the scattering vector, Q, and divided by the square of the
atomic form factor, jfij2.
Powder XRD patterns, high-energy X-ray scattering data,

and UV-vis spectra were collected from both Na-MnO2 and
Ca-MnO2, where Ca-MnO2 was obtained by equilibrating a
suspension of ∼90 mM Na-MnO2 with CaCl2(aq) in a 3:1 Ca:Mn
molar ratio from 12 h (LITR-XAS) to 2 mo (optical TA). The
effect of oxygen on the chemical composition of δ-MnO2 upon
the exchange of interlayer Na with Ca was evaluated by equili-
brating an aliquot of Na-MnO2 with Ca under N2(g) purge. After
equilibration, aliquots were filtered and digested for measure-
ment of [MnTOT] and [Mn(aq)] by ICP-OES; filtered pastes were
oven-dried at 40 °C before collecting powder XRD patterns.

Quantum Yield Calculation.The photon flux, φ, to the photoreactor
was characterized by ferrioxalate actinometry (7–9). Briefly,
20 mL of 0.012 M potassium ferrioxalate (K3[Fe(C2O4)3]) were

circulated through the photoreactor. Samples (0.4 mL) collected
after 10, 25, 50, 75, and 100 s were added to BrandTech plastic
UV-cuvettes previously filled with 0.8 mL 0.1% buffered 1.10-
phenanthroline solution and 1.4 mL of ultrapure water, shaken,
and left in the dark for 30 min. The extinction coefficient of the
Fe(II)-phenanthroline complex was measured at 510 nm in a
dark room (e510 = 11,100 L·mol−1·cm−1). The photon flux was
then calculated according to

φ=
Nhν
t

=
moles  of   FeðIIÞ-phenanthroline

Φ400  nm × t×F
,

where Φ400 nm is the quantum yield of the ferrioxalate at 400 nm
(equal to 1.14) (9), t is the irradiation time, and F is the fraction
of light absorbed by the ferrioxalate solution, which in this case
was equal to unity (9).
The apparent quantum yield for Mn(III) generation was cal-

culated according to

Φ=
fMnðIIIÞ,  t ×moles  of  Mn

φ p t×
A400  nm,   MnO2

A400  nm,    ferrioxalate

,

where fMn(III), t, the fraction of photoreduced Mn after time, t, is
multiplied by the total number of moles of Mn in the system; φ is
the photon flux measured for the photoreactor; and A400 nm MnO2
and A400 nm ferrioxalate are the absorbances (in OD units) of Ca- or
Na-MnO2 and ferrioxalate at 400 nm measured in 1-cm path-
length quartz cuvettes with water as a blank. Due to the possible
effect of birnessite aggregation on the measurement of optical
extinction coefficients of the samples (see below), we use the
term “apparent quantum yield.” The fraction of photoreduced
Mn was calculated according to ([Mn(III)-PPlight] – [Mn(III)-
PPdark])/[MnTOT]. The ratio of the absorbance values in the de-
nominator accounts for the different absorptivity of δ-MnO2
relative to ferrioxalate, where eNa-MnO2 = 4,111 L·mol−1·cm−1,
eCa-MnO2 2,300 L·mol−1·cm−1, and eferrioxalate = 110 L·mol−1·cm−1.
The molar absorptivity of ferrioxalate was calculated from
serial dilutions of a stock solution calibrated with ICP-OES
measurements.

Optical Transient Absorption Kinetic Fits. A bleach signal on the
microsecond timescale between 550 and 580 nm with the EOS
spectrometer was observed for Ca-MnO2 and Na-MnO2 samples
in Nafion, and Na-MnO2 samples in water or terephthalic acid.
The trends extracted at 580 nm were fitted by exponential decay
functions with two time constants. The bleach appeared to return
to baseline (ΔOD ∼0); however, this could not be judged from
the data due to the noise level inherent to the data acquisition.
To evaluate whether the signal returned to baseline within
subsecond timescales, the data were refitted using a third de-
cay constant fixed to 106 μs (i.e., no decay to baseline within
the 50-μs resolution of the experiment). An F-test showed only
67% confidence that the model with three time constants re-
turned a significantly better fit than the model with two time
constants. Thus, we do not have 95% confidence that the
bleach persists over long time scales (106 μs).

SI Results and Discussion
Mineral Characterization. The δ-MnO2 powder had a BET-specific
surface area of 141 ± 3 m2·g−1, an AMON of 4.05 ± 0.05, and a
Na:Mn ratio of 0.24. The XRD patterns collected from Na-MnO2
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and Ca-MnO2, with a 5-d equilibration period under aerated and
N2(g)-purged conditions for Ca-MnO2, were consistent with
those reported for δ-MnO2 (1). The UV-vis absorption spectra
of Na-MnO2 and Ca-MnO2 are shown in Fig. S6A. The UV-vis
absorption spectrum of Ca-MnO2 exhibits a significant redshift
relative to that for Na-MnO2. This redshift is accompanied by a
change in line shape. Therefore, the redshift cannot be attrib-
uted simply to scattering from aggregated particles. Additional
UV-vis spectra were acquired to test the effect of the back-
ground electrolyte and ionic strength on the observed redshift.
Only the CaCl2-equilibrated sample showed a redshift (Fig. S6B)
that persisted after removing any excess CaCl2(aq) electrolyte
by rinsing the particles with MQ water. In addition, similar av-
erage Mn oxidation numbers were measured for Na-MnO2 and
Ca-MnO2, indicating that the redshift cannot be explained by a
change in Mn valence. Thus, the UV-vis spectra confirm that the
redshift is caused by the presence of Ca as the interlayer cation,
which may influence the ordering of interlayer water molecules
(10). The pair distribution functions (PDFs; Fig. S7) match those
reported for Mn(IV)-rich birnessite nanoparticles with hex-
agonal sheet symmetry (11). The PDFs show identical peak
positions, whereas the amplitude of the first Mn-O (1.91 Å) and
Mn-Mn (2.85 Å) distances are lower for Ca-MnO2 than Na-MnO2.
However, there is no difference in the intermediate-range order
(within 2 nm) of these two samples.

Photon Flux Comparison with Natural Environments. Our flow-
through experiments were done using a photon flux of 0.77 μE/s.
This photon flux can be compared with the photon flux delivered
to the Earth’s surface by integrating the area under the irradi-
ance spectrum of natural sunlight. First, we converted solar ir-
radiance from units of W·m−2·s−1 to μE·m−2·s−1 by normalizing
the irradiance at each wavelength by the energy of the photons at
that wavelength. Integration of the ASTM G173-03 reference
solar irradiance spectrum between 280 and 900 nm yielded a
photon flux equal to 3,195 μE·m−2·s−1. Once corrected to the
surface area of the cuvette irradiated in our experiments (i.e.,
0.0004 m2), we obtain a photon flux of 1.3 μE·s−1 with photons of
wavelengths ranging from 280 to 900 nm, which include the UV-
vis wavelengths of the light spectrum. However, because 42% of
the irradiance spectrum of sunlight is between 400 and 600 nm,
the photon flux delivered by the LED array to our photoreactor
at 400 nm is comparable to the photon flux that would be de-
livered by sunlight between 400 and 600 nm.

Nature of Redshift in Optical Absorption Spectra. Our optical tran-
sient absorption spectra show a new absorption feature upon
laser excitation that we assigned to a Mn(III) excited state in the
MnO2 sheet. This feature is located at longer wavelengths than
the ground-state absorption of the initial birnessite (i.e., it is
redshifted). A similar redshift was observed in the ground-state
UV-vis spectra from triclinic birnessite and c-disordered H+

birnessite (Fig. S5), with triclinic birnessite showing a greater red-
shift relative to c-disordered H+ birnessite. These Mn(III)-bearing
minerals contain significant proportions of Mn(III), but vary with
respect to the distribution of Mn(III) within the octahedral layer
and interlayer region and the extent of sheet stacking (1).
We expect that sheet stacking does not modify significantly

the UV-vis absorption properties of birnessite. In their com-
parison between monolayer and multilayer MnO2, Sakai et al. (12)
found that only the topmost layer was photosensitive and that the
band gap was nearly identical between the two materials. Because
the band gap can be correlated to the UV-vis absorption, in-
creased sheet stacking would not justify the observed redshift in
our UV-vis absorption spectra.
Instead, we conclude that the redshift in the UV-vis spectra

arises from the presence of Mn(III) in the octahedral layer. Based
on solid-phase characterization (i.e., pyrophosphate extraction,

potentiometric titration, and XRD), our triclinic birnessite con-
tains up to 16%Mn (III) located in the octahedral sheets, whereas
c-disordered H+ birnessite contains ∼19% Mn(III) (13). Based
on the synthesis protocol for c-disordered H+ birnessite (1, 13)
and structural characterization of the material synthesized ac-
cording to this method (1, 14), we conclude that approximately
half of the Mn(III) is situated in interlayer positions. Thus, our
transient UV-vis spectra that reveal an absorption feature be-
tween 500 and 600 nm are consistent with the formation of
Mn(III) located in the octahedral sheets.

Effects of Aggregation on Photoexcitation of Birnessite. Light scat-
tering due to particle aggregation may introduce Rayleigh scat-
tering, which increases the observed optical extinction coefficient.
If present and not accounted for, this effect could lead to an
erroneousmeasurement of the true optical absorption coefficient,
and hence an underestimation of the quantum yield. To minimize
this potential source of error, we measured the UV-vis spectra of
the samples prepared in water at the lowest possible concen-
trations (0.1 mM) at which we obtained visibly transparent sus-
pensions with no noticeable aggregation. To investigate the
consequences of aggregation, we added 10 mM of NaCl or CaCl2
(Fig. S6). At the higher concentrations used for the flow-through
studies (0.5 mM), we also did not observe signs of aggregation.
Only at the highest concentrations used for the transient ab-
sorption spectroscopy (3–6 mM) did we observe aggregation in
all samples (with and without added electrolyte), leading us to
add Nafion (see below).
Consequently, we do not believe that aggregation substantially

altered our reported rate constants or quantum yield for pho-
toreduction. However, because we do not have distinct mea-
surements of scattering vs. absorption, we now report the values
as apparent quantum yield. If our reported absorbance at 400 nm
of Ca-MnO2 is an overestimate due to the presence of scattering,
this would increase the effect of Ca vs. Na, and would not change
any of the conclusions in the manuscript concerning the role of
the counterions. We also note that while aggregation, when it
occurs, can affect the apparent absorption coefficient, it does
not alter peak position. We demonstrate this in Fig. S6, which
compares UV-vis spectra for our samples in water and in elec-
trolytes sufficiently concentrated as to cause aggregation. Thus,
aggregation does not affect the intrinsic strength of the absorption
of 400-nm photons by either Na- or Ca-equilibrated birnessite.

Effects of Aggregation on Transient Optical Absorption Kinetics.
Aggregation interferes particularly strongly with the acquisition
of kinetics data in time-resolved spectroscopy because it in-
troduces nonstatistical noise at each time point. Nafion reduced
particle aggregation in time-resolved optical experiments, but the
comparison of Figs. S8 A and C and S9 for Na-MnO2 show that
Nafion had a small effect on the observations. Slightly slower
decays were observed for samples prepared without Nafion
(Table 1), possibly indicating an effect of aggregation upon
recombination rates; this could occur if recombination in-
volved diffusion of soluble species, but the effect is impossible
to explain confidently and is smaller than the influence of
interlayer cations.

Calculation of Mn:Photon Ratio. We evaluated the likelihood that
the LITR-XAS data were influenced by X-ray beam damage by
estimating the number of X-ray photons that can interact with the
sample. First, we assumed that amaximum of 5,000X-ray photons
are delivered per camshaft (electron bunch) to the beamline end
station at 5 keV, with two consecutive camshafts separated by a
period of 656 ns. Therefore, ∼7.6 × 109 camshaft photons may
interact with the sample each second. However, the camshaft
photons represent only 1% of the total photons available from
the storage ring (i.e., camshaft current is 5 mA and total storage
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ring current is 500 mA). Thus, a total of 7.6 × 1011 camshaft and
noncamshaft photons are delivered to the end station per sec-
ond. This total photon flux is attenuated 30 times by the X-ray
chopper, a device designed to exclude noncamshaft photons,
leading to a total exposure of 3.7 × 1014 photons to the sample
during a 4-h experiment. Finally, a 250-mL suspension of 10 mM
δ-MnO2 contains ∼1.5 × 1021 Mn atoms; thus the Mn:X-ray
photon ratio is 1.5 × 1021:3.7 × 1014 or 106:1.
A better estimate of the Mn:photon ratio can be obtained by

modifying the above calculation to include more realistic esti-
mates of photon flux and photon absorption by the sample. First,
fewer X-ray photons are actually delivered per camshaft to the

beamline end station at 5 keV: 3,500 vs. 5,000 photons. Second,
the photon flux drops anywhere from 10–90% when the mono-
chromator is in motion because the motors move at different
rates. Thus, the sample exposure time is closer to 25% of the
total experiment time. Third, about 50% of the photons are
transmitted through the 600-μm jet. Of the photons that are
absorbed by the sample, most are not absorbed by MnO2 (<2%
for Mn and O combined). With these assumptions, a less con-
servative estimate of the Mn:X-ray photon ratio would be 1.5 ×
1021:6.4 × 1011 or on the order of 109:1, lending strong support to
our assumption that any long-term changes to the sample are not
caused by X-ray exposure.
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 Na PP before, fit
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Fig. S1. Time course plot showing Mn(III) generation upon 400-nm irradiation in flow-through experiments at pH 6.5. Blue for Ca-MnO2 and red for Na-MnO2,
filled symbols and solid lines for samples with PP added before irradiation; dashed lines and empty symbols for samples with PP added after irradiation.
Aqueous Mn determined by ICP-OES is within 10% of Mn(III)-PP determined colorimetrically. No Mn was released to solution in experiments without PP.
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A. B.

Fig. S2. (A) Transient optical absorption spectra acquired on Na-MnO2 in aqueous suspension with Nafion. Transient absorption difference spectra at 0.75 ps,
3.6 ps, and 2 ns (ΔOD units; left axis) compared with the ground-state UV-vis absorption (OD units; right axis). The maximum intensity of the ESA is 550 nm. The
data from 390–410 nm are affected by scattering of the pump beam. (B) Comparison between the transient absorption spectrum of Ca-MnO2 and Na-MnO2 in
Nafion 0.75 ps after laser excitation show that the Ca-MnO2 sample is redshifted relative to the Na-MnO2 sample (Fig. S6A).

A. B. C.

Fig. S3. Summary of transient optical absorption kinetics acquired on Na-MnO2 in aqueous suspension with Nafion. (A) Transient kinetic traces show that the
onset of the ESA at 550 nm is slightly delayed relative to the bleach at 345 nm. (B) Decay kinetics of the ESA and bleach up to 8 ns. The time 0 was shifted by
0.2 ps to enable plotting on a logarithmic axis. (C) The decay of the bleach at 550 nm was recorded for up to 50 μs.

Fig. S4. Powder X-ray diffraction patterns for selected samples before and after the light-initiated time-resolved XAS experiment. Samples after the LITR-XAS
experiment show reflections of the 001 and 002 planes (reflection at ∼14° and ∼25° 2θ, respectively) due to increased stacking of MnO2 sheets along the
crystallographic c-axis.
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Fig. S5. UV-vis absorption spectrum of Na-MnO2, triclinic birnessite (∼16% Mn(III) in the octahedral sheet), and c-disordered H+ birnessite (∼19% Mn(III)
distributed between the layer and interlayer positions in similar proportions).

A. B.

Fig. S6. (A) UV-vis absorption spectra of Na-MnO2 in water without background electrolyte (blue line) and Ca-MnO2 with 10 mM background electrolyte (Cl−,
red line). (B) UV-vis absorption spectra of Na-MnO2 with and without 10 mM NaCl and NaNO3 as background electrolytes compared with Ca-MnO2 with and
without 10 mM CaCl2 as the background electrolyte.
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A.

B.

Fig. S7. (A) Reduced structure function, F(Q) = Q[S(Q) − 1], for Ca-MnO2 and Na-MnO2, respectively. (B) PDF data, obtained by Fourier transformation of the
F(Q), for Na-MnO2 (blue line) and Ca-MnO2 (red line), as well as difference PDF between the samples.
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A. B.

C. D.

Fig. S8. Comparison of the transient optical absorption kinetic data on the microsecond timescale extracted at 580 nm for Na-MnO2 and Ca-MnO2 in different
aqueous solutions, overlain with the fits using two time constants (Table 1): (A) Na-MnO2 resuspended in water; (B) Na-MnO2 resuspended in an 0.1 M ter-
ephthalic acid solution to trap any hydroxyl radical species formed during photoreduction; (C) Na-MnO2 resuspended in an aqueous solution with Nafion to
reduce particle aggregation; and (D) Ca-MnO2 resuspended in an aqueous solution with Nafion to reduce particle aggregation.

A. B.

Fig. S9. (A) Transient absorption spectra at different delay times for Na-MnO2 in water. (B) Transient absorption kinetic traces for Na-MnO2 on picosecond-
to-nanosecond timescales extracted at 345 nm (blue) and 550 nm (red). The transient spectra and decay kinetics do not show differences on the picosecond-
to-nanosecond timescale with respect to Na-MnO2 resuspended in Nafion.
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ANNEX 7. Raw data from the flow through photoreduction 
experiments in Chapters 3 through 6 
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Table 1: Raw data for the time course plots shown in Chapter 4. 

 

time [days] tot dk [uM] %  Mn(III) 
dark 

tot lt 
[uM] 

%  Mn(III) 
light 

Reduced 
µmol  

(light – 
dark) 

CaMnO2 pH 6.5 0.00 577.00 0.03 577.00 0.03 0.00 
 1.00 593.28 0.04 533.34 0.05 1.14 
 1.00 589.36 0.04 512.44 0.06 2.74 
 2.00 637.16 0.04 635.24 0.05 3.58 
 2.00 652.24 0.04 626.08 0.06 4.95 
 3.00 746.70 0.04 654.98 0.07 7.85 
 3.00 739.86 0.04 669.52 0.06 6.40 
       

CaMnO2 pH 6.5 
rpt 0.00 460.07 0.02 463.47 0.01 -0.30 

 1.00 473.93 0.02 377.40 0.04 3.25 
 2.00 472.60 0.01 368.40 0.05 5.05 
 3.01 470.13 0.01 354.13 0.07 8.88 
 4.00 486.60 0.01 346.67 0.08 10.23 
       

       
CaMnO2 pH 6.5 
N2 purge 0.00 710.63 0.02 671.67 0.02 -0.52 

 1.00 752.17 0.02 535.40 0.03 1.86 
 2.00 685.50 0.02 620.77 0.04 2.95 
       

CaMnO2 pH 6.5 
N2 purge rpt 0.00 623.33 0.01 638.33 0.01 -0.30 

 0.99 504.73 0.02 605.07 0.01 1.57 
 2.00 570.77 0.04 613.60 0.02 5.41 
 2.96 578.57 0.05 641.60 0.02 6.73 
       

NaMnO2 pH 6.5 0.00 765.60 0.03 779.13 0.02 -0.50 
 1.00 832.40 0.02 666.60 0.04 1.65 
 2.04 801.20 0.03 642.90 0.05 3.15 
 3.05 791.33 0.02 598.10 0.07 5.03 
 3.61 769.70 0.02 595.00 0.08 6.02 
 5.00 805.27 0.03 560.00 0.12 8.69 
       

NaMnO2 pH 6.5 1.00 592.30 0.03 438.30 0.06 2.08 
 2.00 591.40 0.03 390.10 0.08 3.54 
 3.00 589.80 0.03 378.00 0.10 4.63 
 4.00 562.70 0.03 359.73 0.12 5.22 
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Table 2: Data for the time-course plots of the pH study, described in Chapter 5. 

 
time 

[days] tot dk [uM] % Mn(III) 
dark 

tot lt 
[uM] 

% Mn(III) 
light 

Reduced µmol 
(light – dark 

pH 4 stat 0.00 219.68 0.09 223.02 0.10 0.26 
 0.10 216.80 0.10 222.50 0.10 0.41 
 0.27 206.80 0.10 211.34 0.11 0.63 
 0.42 214.92 0.12 193.82 0.15 0.62 
 0.98 218.98 0.14 208.28 0.17 0.25 
 1.07 208.84 0.13 194.40 0.16 1.74 
 1.23 213.80 0.14 193.00 0.21 2.44 
 2.01 218.24 0.14 206.52 0.18 1.02 
 2.15 205.40 0.14 215.22 0.18 1.45 
 2.42 258.70 0.14 134.36 0.21 1.87 
 3.01 226.32 0.15 108.42 0.37 3.08 
 3.22 233.18 0.15 158.12 0.55 4.76 
 3.36 210.92 0.16 102.82 0.49 7.89 
 3.99 231.60 0.25 241.92 0.58 0.36 
 4.05 295.84 0.14 107.72 0.28 4.07 
       

pH 4 stat rpt 0.00 223.50 0.07 223.35 0.07 -0.02 
 0.08 141.18 0.08 176.40 0.08 -0.16 
 0.67 178.77 0.07 175.02 0.09 0.95 
 0.79 180.66 0.07 164.22 0.10 0.96 
 0.96 154.35 0.08 143.40 0.12 1.25 
 1.08 158.01 0.08 334.89 0.09 0.93 
 1.71 178.14 0.02 130.50 0.11 2.51 
       

pH 8 stat 0.00 229.08 0.01 222.88 0.01 0.16 
 0.10 215.22 0.01 219.28 0.01 0.17 
 0.27 220.58 0.01 211.78 0.01 0.16 

       
NaMnO2 pH 6.5 0.00 460.10 0.03 481.10 0.03 0.30 

 1.01 457.10 0.04 409.60 0.06 1.76 
 2.06 466.90 0.04 384.20 0.07 2.38 
 3.02 459.50 0.04 369.20 0.10 4.38 
 0.00 460.10 0.03 481.10 0.03 0.30 
 1.01 457.10 0.04 409.60 0.06 1.76 
 2.06 466.90 0.04 384.20 0.07 2.38 
 3.02 459.50 0.04 369.20 0.10 4.38 

       

222



  ANNEX 7 

 

 0.42 222.72 0.02 213.28 0.02 0.24 
 0.98 221.32 0.02 208.28 0.03 0.49 
 1.07 208.84 0.02 194.40 0.03 0.42 
 1.23 222.16 0.02 215.36 0.03 0.70 
 2.01 116.08 0.03 226.58 0.03 -0.11 
 2.15 129.62 0.03 233.04 0.03 -0.11 
 2.42 278.34 0.02 267.34 0.04 0.86 
 3.01 238.78 0.02 258.56 0.03 0.60 
 3.22 256.00 0.02 232.34 0.04 0.81 
 3.36 261.66 0.02 264.34 0.04 0.97 
 3.99 231.58 0.02 241.92 0.04 0.91 
 4.05 295.84 0.01 107.72 0.04 1.19 
       

pH 6.5 PP 0.00 255.47 0.01 255.47 0.01 0.08 
 0.05 255.47 0.01 255.47 0.01 0.11 
 0.09 255.47 0.01 255.47 0.01 0.11 
 0.15 255.47 0.01 255.47 0.01 0.07 
 0.28 255.47 0.01 255.47 0.01 0.17 
 0.51 255.47 0.02 255.47 0.02 0.07 
 0.90 255.47 0.01 255.47 0.02 0.36 
 1.00 255.47 0.01 255.47 0.02 0.42 
 1.19 255.47 0.01 255.47 0.02 0.50 
 1.40 255.47 0.02 255.47 0.03 0.43 
 1.89 255.47 0.01 255.47 0.03 0.72 
 2.05 255.47 0.02 255.47 0.03 0.70 
       

pH 6.5 PP rpt 0.00 243.03 0.01 243.03 0.02 0.15 
 0.05 243.03 0.01 243.03 0.01 0.10 
 0.09 243.03 0.01 243.03 0.01 0.06 
 0.15 243.03 0.01 243.03 0.01 0.10 
 0.28 243.03 0.01 243.03 0.01 0.09 
 0.51 243.03 0.02 243.03 0.02 0.14 
 0.90 243.03 0.01 243.03 0.02 0.20 
 1.00 243.03 0.01 243.03 0.02 0.32 
 1.19 243.03 0.01 243.03 0.02 0.38 
 1.40 243.03 0.02 243.03 0.03 0.38 
 1.89 243.03 0.02 243.03 0.03 0.55 
 2.05 243.03 0.02 243.03 0.03 0.54 
       

pH 6.5 PP trp 0.00 239.86 0.02 239.86 0.02 0.04 
 0.10 239.86 0.02 239.86 0.02 0.00 
 0.27 239.86 0.02 239.86 0.02 0.18 
 0.42 239.86 0.02 239.86 0.02 0.14 
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 0.98 239.86 0.02 239.86 0.02 0.31 
 1.07 239.86 0.02 239.86 0.02 0.24 
 1.23 239.86 0.02 239.86 0.02 0.20 
 2.01 239.86 0.02 239.86 0.03 0.45 
 2.15 239.86 0.01 239.86 0.02 0.50 
 2.42 239.86 0.02 239.86 0.04 0.58 
 3.01 239.86 0.02 239.86 0.04 0.81 
 3.22 239.86 0.02 239.86 0.04 0.73 
 3.36 239.86 0.03 239.86 0.04 0.79 
 3.99 239.86 0.02 239.86 0.05 1.01 
 4.05 239.86 0.02 239.86 0.05 1.09 
       

pH 6.5 PP rpt 0.00 249.84 0.02 249.84 0.02 0.04 
 0.08 249.84 0.02 249.84 0.02 0.00 
 0.25 249.84 0.02 249.84 0.02 0.04 
 0.45 249.84 0.02 249.84 0.02 0.00 
 1.00 249.84 0.02 249.84 0.02 0.28 
 1.14 249.84 0.02 249.84 0.03 0.34 
 1.35 249.84 0.02 249.84 0.03 0.30 
 1.97 249.84 0.02 249.84 0.03 0.45 
 2.15 249.84 0.02 249.84 0.03 0.53 
 2.37 249.84 0.02 249.84 0.03 0.55 
 3.16 249.84 0.02 249.84 0.04 0.81 
 3.28 249.84 0.02 249.84 0.04 0.87 
 4.00 249.84 0.02 249.84 0.04 0.95 
 4.06 249.84 0.02 249.84 0.04 1.01 
       

pH 4 PP 0.00 252.59 0.02 252.59 0.02 0.05 
 0.08 252.59 0.02 252.59 0.03 0.05 
 0.25 252.59 0.02 252.59 0.03 0.27 
 0.45 252.59 0.02 252.59 0.03 0.31 
 1.00 252.59 0.03 252.59 0.03 0.16 
 1.14 252.59 0.03 252.59 0.04 0.51 
 1.35 252.59 0.03 252.59 0.04 0.60 
 1.97 252.59 0.03 252.59 0.04 0.78 
 2.15 252.59 0.03 252.59 0.04 0.71 
 2.37 252.59 0.03 252.59 0.04 0.94 
 2.97 252.59 0.03 252.59 0.05 0.97 
 3.14 252.59 0.03 252.59 0.05 1.10 
 3.46 252.59 0.03 252.59 0.05 1.18 
 4.00 252.59 0.03 252.59 0.06 1.26 
 4.06 252.59 0.03 252.59 0.06 1.25 
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pH 4 PP rpt 0.00 245.53 0.02 245.53 0.02 0.13 
 0.08 245.53 0.02 245.53 0.02 0.09 
 0.20 245.53 0.02 245.53 0.02 0.12 
 0.35 245.53 0.03 245.53 0.03 0.23 
 0.99 245.53 0.02 245.53 0.03 0.41 
 1.10 245.53 0.03 245.53 0.03 0.38 
 1.25 245.53 0.03 245.53 0.04 0.48 
 1.35 245.53 0.02 245.53 0.03 0.52 
 2.00 245.53 0.03 245.53 0.04 0.71 
 2.10 245.53 0.03 245.53 0.04 0.72 
 2.28 245.53 0.03 245.53 0.04 0.76 
 2.45 245.53 0.03 245.53 0.04 0.84 
 2.99 245.53 0.03 245.53 0.05 0.95 
 3.17 245.53 0.03 245.53 0.05 0.97 
 3.35 245.53 0.03 245.53 0.05 1.03 
 4.02 245.53 0.03 245.53 0.06 1.31 
 4.08 245.53 0.03 245.53 0.06 1.22 
       

pH 4 PP trp 0.00 249.27 0.03 249.27 0.03 0.04 
 0.69 249.27 0.03 249.27 0.04 0.30 
 0.90 249.27 0.03 249.27 0.04 0.47 
 1.07 249.27 0.03 249.27 0.04 0.50 
 1.67 249.27 0.03 249.27 0.04 0.69 
 1.77 249.27 0.03 249.27 0.04 0.75 
 1.95 249.27 0.03 249.27 0.04 0.76 
 1.60 249.27 0.03 249.27 0.05 0.80 
 2.76 249.27 0.03 249.27 0.05 1.07 
 2.90 249.27 0.03 249.27 0.05 1.07 
 3.04 249.27 0.04 249.27 0.06 1.14 
 3.68 249.27 0.04 249.27 0.06 1.28 
 3.75 249.27 0.03 249.27 0.06 1.29 
       

pH 8 PP 0.00 249.32 0.01 249.32 0.01 0.00 
 0.08 249.32 0.00 249.32 0.01 0.07 
 0.20 249.32 0.00 249.32 0.00 0.07 
 0.35 249.32 0.01 249.32 0.01 0.07 
 0.99 249.32 0.01 249.32 0.01 0.07 
 1.10 249.32 0.01 249.32 0.01 0.03 
 1.25 249.32 0.01 249.32 0.01 0.10 
 1.40 249.32 0.01 249.32 0.01 0.06 
 2.00 249.32 0.01 249.32 0.01 0.13 
 2.10 249.32 0.01 249.32 0.01 0.12 
 2.28 249.32 0.01 249.32 0.01 0.12 
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 2.45 249.32 0.01 249.32 0.01 0.15 
 2.99 249.32 0.01 249.32 0.01 0.17 
 3.17 249.32 0.01 249.32 0.02 0.30 
 3.35 249.32 0.01 249.32 0.01 0.21 
 4.02 249.32 0.01 249.32 0.01 0.33 
 4.08 249.32 0.01 249.32 0.01 0.30 
       

pH 8 PP rpt 0.00 252.59 0.00 252.59 0.01 0.12 
 0.08 252.59 0.00 252.59 0.01 0.15 
 0.20 252.59 0.00 252.59 0.00 0.06 
 0.35 252.59 0.01 252.59 0.01 0.11 
 0.99 252.59 0.01 252.59 0.01 0.20 
 1.10 252.59 0.01 252.59 0.01 0.08 
 1.25 252.59 0.01 252.59 0.01 0.30 
 1.40 252.59 0.01 252.59 0.01 0.17 
 2.00 252.59 0.01 252.59 0.02 0.20 
 2.10 252.59 0.01 252.59 0.02 0.26 
 2.28 252.59 0.01 252.59 0.01 0.22 
 2.45 252.59 0.01 252.59 0.01 0.24 
 2.99 252.59 0.01 252.59 0.01 0.25 
 3.17 252.59 0.01 252.59 0.02 0.38 
 3.35 252.59 0.01 252.59 0.02 0.33 
 4.02 253.59 0.01 253.59 0.02 0.46 
 4.08 254.59 0.01 254.59 0.02 0.44 
       

pH 8 PP trp 0.00 253.72 0.01 253.72 0.01 0.07 
 0.69 253.72 0.01 253.72 0.01 0.06 
 0.90 253.72 0.01 253.72 0.01 0.06 
 1.07 253.72 0.01 253.72 0.01 0.09 
 1.67 253.72 0.01 253.72 0.01 0.11 
 1.77 253.72 0.00 253.72 0.01 0.17 
 1.95 253.72 0.00 253.72 0.01 0.13 
 2.60 253.72 0.01 253.72 0.01 0.15 
 2.76 253.72 0.01 253.72 0.01 0.17 
 2.90 253.72 0.00 253.72 0.01 0.19 
 3.04 253.72 0.01 253.72 0.02 0.25 
 3.68 253.72 0.01 253.72 0.01 0.33 
 3.75 253.72 0.01 253.72 0.01 0.22 
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