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Abstract—Multi-player online games are inherently dis-
tributed applications, and a wide range of distributed archi-
tectures have been proposed. However, only few successful
commercial systems follow such approaches, even given their
benefits, due to one main hurdle: the easiness with which
cheaters can disrupt the game state computation and dis-
semination, perform illegal actions, or unduly gain access to
sensitive information. The challenge is that any measures used
to address cheating must meet the heavy scalability and tight
latency requirements of fast paced games.

We propose Watchmen, the first distributed scalable protocol
designed with cheat detection and prevention in mind that
supports fast paced games. It is based on a randomized dy-
namic proxy scheme for both the dissemination and verification
of actions. Furthermore, Watchmen reduces the information
exposed to players close to the minimum required to render
the game. We build our proof-of-concept prototype on top
of Quake III. We show that Watchmen, while scaling to
hundreds of players and meeting the tight latency requirements
of first person shooter games, is able to significantly reduce
opportunities to cheat, even in the presence of collusion.

I. INTRODUCTION

While massively multi-player games such as World of

Warcraft are the best known genre of large-scale gaming

environments, fast-paced multi-player games, mostly First-
Person Shooter (FPS) games such as Quake and Halo, have

been popular for decades. In the traditional setting, a small

number of players (e.g, up to 16) play relatively short

instances of the game on a local area network following a

client/server architecture, where one of the player machines

hosts the server, which controls all game actions and com-

munication. In such a case, the players are typically friends

and thus, cheating is not a critical issue. However, this genre

of games has evolved quickly over the years. Popular game

networks (e.g., XBox Live, PSN) and the concept of game

lobbies [1, 2] allows players across the world to connect and

participate together in such games. Thus, there is no more

a homogeneous local area network that would connect the

players, and the trust and solidarity that used to exist among

players has vanished. Furthermore, as it has become so easy

to find a large set of players that want to play together at

the same time, the desire arises to develop a new generation

of this genre where hundreds of players can play within

the same game instance. Therefore, hosting the server on

one of the client machines has become infeasible: such a

client would have many powerful options for cheating and

the client machines are unlikely to handle the game server

load in terms of processing power and upload bandwidth.

One approach to support such games would be to transfer

the game server into the cloud. This is cheaper for the

gaming company than hosting large and expensive custom

built server farms themselves, because the system can scale

dynamically with the number of isolated concurrent game

instances. However, several problems arise: (1) the costs

are still non-negligible, (2) single cloud instances may not

scale to hundreds of players in the same game world, thus,

requiring distributed solutions that incur higher costs and

complexity, (3) these solutions do not support spontaneous,

short-lived, and locally run gaming sessions particularly by

third parties or gamenets. Thus, the question arises why

not keep the game execution with the clients and develop a

decentralized solution.

Over the last years, several decentralized solutions have

been developed (e.g. [3–5]). They distribute the load among

the players, and gain scalability by introducing new re-

sources with every joining player. However, many of them

ignore cheating, which is a serious threat as players have

access to and can manipulate sensitive game data [6]. The

decentralized approaches that address cheating have typi-

cally been developed for strategy games (e.g., lockstep [7])

and are usually not efficient enough for fast-paced games.

Cheating essentially consists of gaining an unfair ad-

vantage and comes mostly in the following three forms:

disrupting the game state computation and dissemination,

performing illegal actions, and gaining access to sensitive in-

formation [8]. In server-based game engines, cheat detection

and prevention can be achieved by making the server verify

the players’ actions, ensure synchronization, and reduce the

information sent to players to the minimal amount required

to render the game world [7]. Nevertheless, even server-

based systems are vulnerable to cheats, particularly when a

player becomes the server. In decentralized games, detecting

cheating is even more difficult and natural trade-offs between

responsiveness, scalability, verification and information dis-

closure have to be made. One has to be aware that while

security is important in games, it often comes second to

performance. While millions of players currently play games
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that provide no or low security measures1,2, only a few

would play a very secure but low-performance game.

Motivated by these developments, this paper presents

Watchmen, a distributed, scalable, and cheat-resistant archi-

tecture designed for FPS games. Our goal is to design a

platform that is reasonably secure and able to handle fast

paced FPS games. Specifically, we aim to (1) provide a low-

latency distributed infrastructure; (2) not rely on a central

server or trusted third parties but be able to take advantage

of them should they be present; (3) limit the opportunities

for cheating even in the presence of collusion; (4) detect

cheaters during game play. To achieve this Watchmen uses

a combination of both novel and well-established techniques:

• Randomization: player connections are randomized

and frequently changed to avoid unfairness, collusion,

and other forms of cheating.

• Cross verification: requests and updates are cross

verified by players to ensure validity and correctness.

• Information hiding: information available to players is

kept close to the minimum required to render the game.

• Multi resolution: players request and receive updates

at different rates depending on the current situation.

A major challenge addressed by Watchmen is finding the

right balance between the following contradictory goals:

meet the tight scalability and latency constraints, provide

enough information to players about each other to allow

efficient mutual verifications, and at the same time limit this

information to the minimum to limit cheating opportunities.

We chose the popular open-source FPS game Quake III

to implement and evaluate our system, and have extended

the platform to support up to 48 players in a decentralized

setting. The reason for using Quake III is the game’s popu-

larity and the extensive past research conducted on it, which

makes it easier to determine the base game requirements and

to compare our results. We show that Watchmen scales far

beyond the standard number of players supported by Quake.

We also show that opportunities to cheat are significantly

reduced, even in the presence of collusion (often ignored),

while keeping good performance with respect to scalability

and responsiveness. Although the paper focuses on first

person shooter games, we believe that the concepts and

mechanisms used in Watchmen can be applied to a broad

range of games including role playing and real-time strategy

games, as they have lower networking requirements [4].

II. BACKGROUND

A. Multi-player on-line games

In multi-player on-line games, players experience the

action through a character they control, referred to as avatar.

Avatars evolve in a virtual game world and can interact

1Bungie resets credits of 15,000 Halo Reach players: http://www.bungie.
net/Forums/posts.aspx?postID=49997802

2Blizzard bans 5,000 cheaters: http://us.battle.net/sc2/en/blog/882508

with objects and other avatars, controlled by other players

or by artificial intelligence. The state of an avatar typically

includes its position, aim, objects it owns, health, etc. and

is modified by the instructions of the player (e.g., move

or shoot) and the interactions with other avatars or objects

(e.g., collision). To visualize the game world on the screen,

a player needs (at least partial) replicas of other avatars and

game objects that are in its own avatar’s vision field. If the

state of an avatar changes, update messages must be sent

to those players that need this information. State updates

account for the largest part of the bandwidth needs of MOGs.

Games usually run in a discrete event-loop, meaning

that in each frame the states of the entities are updated

and updates may be sent. The frame rate is crucial in

the design of MOGs. In Quake III, each frame is 50 ms.

Given the short duration of each frame, updates show high

temporal similarities and can be delta-coded, only including

the differences between updates.

Latency Requirements: Games have tight latency require-

ments and lag, here defined as the difference between the

games state at the player and the actual state, has an adverse

effect on the game-play. In Quake III and similar games,

latencies and lags of up to 150 ms are tolerable [9–12].

To meet these requirements, games limit the geographic

location of players to the same country or continent [2, 13].

In addition, they rely on UDP for faster communication.

Decentralization: In a centralized game, players send all

their updates to the server that controls all game entities.

The server verifies each update and sends it, given its global

knowledge, to only those players who need it (if designed

well). In a decentralized system, players typically control

their own avatars. Bots and game items can be distributed

across the players as well or be controlled by the company’s

servers. In small to medium sized games (e.g., FPS games

such as Quake III), players are usually aware of all entities

of the game. In large-scale RPGs (e.g., World of Warcraft)

decentralization is achieved by dividing the game world

into zones (e.g., [14]). A simple peer-to-peer game lets

each player send all changes directly to all other players.

However, as players have limited bandwidth, P2P MOGs

use a range of techniques to increase scalability, which we

describe in the following section.

Bandwidth Requirements: Most broadband connections

are asymmetric, with upload bandwidth being the limitation.

In a distributed scenario where players all send updates to

each other, the growth in overall bandwidth requirements is

quadratic. Average bandwidth requirements in centralized

Quake III is 12n kbps where n is the number of players [5].

B. Interest Filtering

Interest filtering is designed to limit the updates a player

sends; for example, only to entities inside a fixed-radius

sphere around the avatar. In Quake III, this is done via
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Figure 1. Heatmap of player positions in a Quake III deathmatch game
in the q3dm17 map. Darker colors show higher presence in a region.

potentially visible sets (PVS) that determine which players

are visible and hence should receive an update. However, us-

ing a fixed geographical area as Area-of-Interest (AOI) does

not necessarily bound the actual number of players inside

the area. As Figure 1 shows, players show an exponential

presence in some area of the game, due to their strategic

location or presence of important game items, rendering AOI

filtering unusable (color intensity is normalized logarithmic

values of presence in each region). Non-player characters

(NPC), i.e., bots, further worsen the situation as they tend

to use predetermined paths and locations.

Variable object fidelity: To address this issue games use a

multi-resolution schemes where updates are sent at different

rates to players. Multi-resolution selective dissemination

schemes have been used in distributed simulations as well

as virtual environments and games. Gaming engines exist,

e.g., BigWorld [15], where players receive different Level of
Details (LoD) based on a metric determined by the games.

Donnybrook, designed for FPS games, instead uses the set

of the top 5 avatars with respect to an attention metric

based on proximity, aim and interaction recency, called

interest set (IS). A player typically receives frequent updates

only about avatars in his IS and infrequent so-called dead-
reckoning updates (see below) about other avatars which

contain information to simulate the expected motion of the

avatar for several frames.

Dead reckoning: Is the process of predicting the state of an

avatar based on past observations, thus allowing to reduce

the frequency of position updates while keeping the display

smooth [16]. Players who do not send frequent position

updates rely on infrequent dead-reckoning messages contain-

ing the avatar’s expected next position and aim (computed

locally) and its current position, aim, rate of fire, etc.

III. THE WATCHMEN ARCHITECTURE

Watchmen aims to provide security measures while being

able to handle large-scale fast-paced games. The goal is

to substantially reduce the potential for cheating. In gen-

eral, cheating can be roughly divided into three categories:

(1) Disruption of information flow covers actions that stop or

change the normal pace of information flow (e.g., dropping

messages), (2) Invalid updates cover actions that are invalid

according to game rules (e.g., too fast moves), repetitions, or

spoofing, (3) Unauthorized access includes any action (e.g.,

sniffing) that enables access to unauthorized information. In

Table I, we describe a range of cheating types within each

category (for details see [14]).

As we discuss our architecture, we describe how Watch-

men detects or prevents these cheat types. Note that there

is a range of cheat detection and prevention techniques that

can be applied to any game architecture including Watchmen

(e.g., code tampering detection software or hardware, aimbot

detection tools, CAPTCHAs, tamper-resistant logging). In

our discussion, we focus on security mechanisms that are

based on the specific architecture of Watchmen. Moreover,

while our focus is on gaming, techniques presented can be

used in fault detection and dealing with selfish and malicious

nodes in other similar distributed systems.

Vision – Spherical cone

Interest – Top-5 in vision

Other Vision field (ext.)

Vision field

+

Figure 2. Subscription-types and corresponding areas: Vision set (VS) is
composed of avatars inside a fixed-radius (±60 degrees) and angle spherical
cone directed along the player’s aim; Interest set (IS) is composed of the
5 avatars inside VS which catch the player’s attention the most.

Watchmen achieves its goal through three main tech-

niques (we justify our choices in the security analysis): (1)

with vision-based information filtering (Figure 2), players

receive updates at different rates and containing different

information depending on the players’ location in the game

and his surroundings. To do this, players subscribe only

to the information they should receive. (2) Proxy-based
indirect communication (Figure 3), where each player is

periodically assigned a new random proxy responsible for

a player’s update dissemination and subscription messages.

(3) Mutual verification verifying players’ updates, actions,

and subscriptions.

A. Subscription Model

Watchmen uses the notion of interest. Players receive up-

dates at different rates and containing different information

according to the details required to render the game (their

interests). This concept has been successfully used in game

engines and has been shown to greatly increase scalabil-

ity [5] while maintaining game experience. However, in our

context it helps us to reduce the chances for unauthorized

access to sensitive information as we limit the information

available to a player as much as possible.
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Table I
POPULAR CHEATING MECHANISMS IN DISTRIBUTED MULTI-PLAYER GAMES

Type Name Description Watchmen

Disruption of
information
flow

Escaping Terminating the connection in order to escape imminent loss Detected by proxy and others
Time cheating (look ahead) Delaying the updates to base one’s actions on those received from others Detected by proxy and others

Network flooding Overflowing the game server to create lags and disrupt game play Prevented through distribution
Fast rate cheat Mimicking a rate of game event generation that is faster than the real one Detected by proxy and others

Suppress-correct cheat Dropping consecutive updates, then sending an invalid update afterwards Detected by proxy and others
Replay cheat Resend signed & encrypted updates of a different player Prevented/Detected by proxy and others

Blind opponent Dropping updates to opponents, blinding them about the cheater’s actions Detected by proxy and others

Invalid
updates

Client-side code tampering Modifying the client-side code to get an unfair advantage Detected by sanity checks & action repetition
Aimbots Using an intelligent program to provide it with automatic weapon aiming Detection by proxy (statistical analysis)
Spoofing Sending messages, pretending to be a different player Detected by players

Consistency cheat Sending different updates to different players Prevented by proxy and others

Unauthorized
access

Sniffing Logging & accessing different information sent across the network Prevented by minimizing information exposure
Maphack Hacking to see through walls and obstacles Prevented by minimizing information exposure

Rate Analysis Analyzing the updates rates to detect players attention and escape Prevented by proxy and subscription model

The technique works as follows: each player partitions the

other players in the game into 3 different sets as shown in

Figure 2. The player sends subscription requests to the other

players according to what set they belong to and receive 3

types of updates according to their subscription:

Vision Set (VS): this set contains all the avatars visible to

the player. In FPS games, it corresponds to a spherical cone,

defined by a given radius and angle (e.g., ±60 degrees in

Quake III) and centered on the avatar. In practice, the cone is

made slightly larger than the actual avatar’s vision field (see

Figure 2) in order to handle fast avatar movement (typically

rapid spin). Furthermore, beyond the avatar’s vision field, the

vision set takes into account the features of the game world,

known by all players. For instance, the avatars that are in

a player’s vision range, but behind a wall do not appear in

his vision set. This greatly reduces information available to

players for map-hacks and sniffing.

Information Dissemination: The player receives infre-

quent (one per second in our implementation) dead reck-

oning messages (guidance messages) from players in its

VS, which contain information such as the current velocity,

future position predictions, and AI guidance instructions that

enable the player to simulate the avatar’s near-future actions.

We have described how accuracy of such predictions can be

greatly improved [16].

Interest Set (IS): it is composed of visible avatars that catch

the player’s attention the most (measured by a combination

of proximity, aim and interaction recency). These are the

avatars the player is most likely to interact with, therefore,

requiring detailed information. Given the limited attention

span of human players [5], the size of the IS can be fixed

(e.g., 5). Only avatars in a player’s vision set are considered

as candidates, thus preventing the player to obtain frequent

and accurate information about avatars he cannot see.

Information Dissemination: the player receives frequent

(i.e., every 50 ms) state updates from players in the IS,

including the avatars position, aim, ammunition, weapons,

health, etc. Avatars in a player’s interest set are automatically

removed from its vision set to prevent him from receiving

information about future actions he could exploit to cheat,

as he is likely to interact with these avatars in a near-future.

Others: any player outside the VS and IS belongs to the

others set. While players do not actually need information

about the players outside their vision sets for rendering

the game world, they still need a minimum amount of

information to determine whether a given player does or

does not enter their vision sets.

Information Dissemination: to allow players to decide on

the type of subscription they need, they receive infrequent

(i.e., typically every second) partial state updates containing

only the position of the avatars, sufficient to determine

the subscription type. This subscription type is assigned by

default and thus it does not require explicit subscription.

B. Proxy architecture

Typical to most games, our solution assumes that the game

runs in a discrete event-loop, dividing time into fixed-length

frames. At any frame, a player has a single designated proxy

(another player), responsible for managing subscriptions,

forwarding messages, and for verifying the player’s actions.

As such, the proxy has tasks similar to a server.

Proxy assignment is done in a random, but verifiable way

in order to prevent collusion from happening. To achieve

this, Watchmen utilizes pseudo-random number generators:

each player maintains a pseudo-random number genera-

tor for each player, including himself, initialized with the

player’s id and a common seed. This means each player can

determine both its own proxy and the other players’ proxies,

in any given frame, without the need for communication. All

players act as proxies for other players (unless performance

or the security mechanism by design favor some nodes,

see Section VI). Moreover, there is no need for explicit

subscription by the players to their proxies as both parties are

aware of their assignment to each other. Proxies are renewed

every couple of seconds. At the time of this renewal, old

and new proxies go through a hand-off mechanism that

exchanges player state information for verification purposes.

Figure 3 shows how messages flow through the proxy

architecture. Basically, all messages sent by the player are

sent to his proxy: subscriptions, guidance messages, frequent
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player
publishes updates
through its proxy

p

p’s proxy
manages subscriptions

to p
verifies and forwards

p’s updates

state up., pos. up.,
dead reckoning

Interest (IS)
· · ·p3

p3’s proxy
verifies and forwards
p3’s subscriptions

IS-sub.

IS-sub. from
p
3

state up.

Vision (VS)
· · ·p1

p1’s proxy
verifies and forwards
p1’s subscriptions

VS-sub.

VS-sub. from p1

dead reckoning

Other
· · ·p2pos. up.

players
subscribe through
their proxies

Figure 3. Proxies (1) manage incoming subscriptions and (2) verify and
forward outgoing subscriptions and updates. Players p1 and p3 respectively
IS-subscribe and VS-subscribe to p by sending a subscription message to
p’s proxy through their own proxies. By default, p2 receives infrequent
position updates.

state updates and infrequent position updates. A player’s

proxy relays subscriptions to the proxy of the target player

to which the player wants to subscribe. That proxy has a list

of all players that are interested in its player, and the player

itself does not know who it interested in him: a subscription

flows from the player to his proxy and from there to the

proxy of the target player. In contrast, the proxy sends update

messages directly to the players that have subscribed, no

redirection through their proxy is needed. That is, an update

message flows from the player to his proxy and then copies

are sent to the players in the proxy’s subscription list

IV. SECURITY ASPECTS OF THE PROXY ARCHITECTURE

While it is quite straightforward to see how the subscrip-

tion model enables the prevention of unauthorized access, it

is less clear how the proxy architecture contributes to cheat

detection and prevention. In fact, our proxy architecture has

been built from ground up with the goals of (1) preventing

as many security flaws as possible, (2) provide sufficient

means for verification of player’s information and action,

and (3) meeting performance requirements. Here we list

some of the main architectural security advantages of the

proxy architecture:

Verification Potential: The proxy is in a unique position to

verify subscriptions and updates. It enables the detection of

flow cheats such as escaping, look ahead, fast-rate, suppress-

correct, replay, and blind opponents cheats, since proxies

know exactly the required updates and the correct rate.

Verification is discussed in more detail in the next section.

Consistency Cheat Avoidance: As a player only sends up-

dates to the proxy who relays them, players cannot perform

consistency cheats, i.e., send different updates to different

players. If a player sends direct updates, it is detected.

Secured Subscriptions: Multi-resolution schemes are nec-

essary for achieving the desired scalability. However, these

approaches create an easy and yet very important oppor-

tunity for cheating: by sending subscriptions for high fre-

quency updates, a cheating player is directly informed of

interested players that are likely to target him. This infor-

mation can be easily extracted, even without tampering with

the game code, by using a simple network rate analysis tool

during the game play. Watchmen’s proxy scheme ensures

that players are not informed about subscriptions to them.

Random, Verifiable, & Dynamic Proxies: In all distributed

gaming architectures, part or all of the players’ traffic goes

through other players. This can be easily exploited by

cheaters. In Watchmen, proxies are random meaning have

no control over who they are a proxy for or who is their

proxy. They are verifiable, meaning all players in the game

can verify each other’s proxy and automatically send to

the correct proxy. And finally, they are dynamic, meaning

the proxies are rearranged after a predetermined period of

time (40 frames in our implementation). This is done by

each player using the same random number generator to

determine its own and other players new proxies. Thus,

a cheating proxy can only disrupt a single other player’s

updates, only for a very limited period, with no direct

benefit to his own avatar, and with high possibility of

detection, therefore, greatly reducing his motives to do so.

Furthermore, the dynamism of our approach makes any form

of collusion very difficult.

Collusion Resistance & Verifiability: While most gam-

ing architectures and even security mechanisms completely

ignore collusion between players due to the difficulties in

dealing with it, it is a present problem. In order to address

this, Watchmen greatly reduces the information available to

colluding cheaters. Proxy renewal is designed to limit the

cheating and collusion opportunities available to cheating or

malicious proxies. The proxy period is chosen long enough

to be able to cross-check updates, but not long enough for

colluding cheaters to cooperate in their actions.

Encryption & Signatures: To prevent proxies from tam-

pering with the messages they forward – namely up-

dates, subscriptions and handoff messages – Watchmen uses

lightweight (i.e., ∼100 bits while state update messages are

700 bits on average) digital signatures [17], and each player

verifies the digital signature of the messages it receives. This

also prevents replaying and spoofing.

Handoff: is performed between a player’s successive prox-

ies to allow longer-term follow-up: before a player’s proxy

is renewed, it sends a summary of the player’s state to the

player’s next proxy, i.e., its own successor. In addition, to

limit the impact of player-proxy collusion, a proxy also

embeds the summary it has received from its predecessor

(follow up on two previous proxies).

V. VERIFICATIONS, REPUTATION AND PUNISHMENT

Not all cheating types can be prevented, therefore, most

architectures rely on detection to deter players from cheat-

ing. For successful cheat detection we need to make sure:

(1) enough information is available to perform efficient
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verification, (2) verification methods are successful in find-

ing cheaters, and (3) detection results are useful for a

blame/punishment system.

A. Verification

Each player can perform verifications of each other player.

The types of verifications and their accuracy depend on

whether he is the other player’s proxy and/or whether he

has the other player in his IS or VS.

The verifications done by the players are as follows:

Subscriptions: The proxy of a player p can verify whether a

subscription of p to player q is justified based on p’s position,

aim, and movement history. This information is available at

the proxy. A VS subscription is only valid if q is in p’s

vision cone. For incorrect VS subscriptions, the distance

between the q and p’s vision cone is used as a metric of the

deviation. For IS-subscriptions, a proxy computes interest
with sufficient accuracy based on the attention metric.

Position Changes: of a player p can be verified depending

on the information available by the verifying player. As

the proxy and players that have p in their IS receive the

exact frequent position updates, they can easily compare suc-

cessive updates and control whether the movements follow

game physics (e.g., gravity, limited velocity, angular speed,

permitted position). Proxies and players that have p in their

VS range can a posteriori verify if the actual movements of

a player are consistent with the predictions included in dead

reckoning messages. We use the area between the simulated

and the actual trajectory of the avatar as a metric of the

deviation. Players that do not have p in their IS or VS

can also do verifications as they receive infrequent update

messages, but the accuracy is obviously reduced.

Actions: Similar to position changes, the proxy and the

players that have p in their IS are able to verify that p’s

actions follow game rules (e.g., decreasing health after a

fall) comparing successive state updates.

Dissemination Frequency: Proxies can control whether a

player sends timely updates and other players verify that

proxies forward them.

Interactions: such as hit and kill-claims are verified by

proxies and by players acting as witnesses. The verification

consists of checking that, e.g., a rocket was effectively fired

and the distance between the position of the rocket and that

of the target is used as a metric of the deviation.

Players are in charge of the short-lived objects they create,

in addition to their avatars. Hence, such objects are checked

by proxies and other players as well.

For efficiency reasons, we perform sanity checks [18]

to detect cheating. However, action repetition checks (e.g.,

tamper-resistant logging mechanisms [19]) that would pro-

vide more accuracy but incur higher costs are also possible.

As most of these sanity checks are not exact (some

information may be slightly outdated or be an estima-

tion/prediction), each action is rated from 10 to 1 with

regards to cheating probability (10 most likely cheating,

1 most likely normal). To determine the cheating rating,

the verifying player checks whether the observed behavior

(movement, dissemination frequency, subscription, etc.) falls

within the expected behavior. If yes, the cheating rating is set

to one. Otherwise, the higher the deviation from a expected

behavior, the higher the cheating score for the action. What

it means for an action to fall within the acceptable range

depends on the action types. A simple example is: when

a player receives two position updates, it can calculate the

speed and determine the movement to be acceptable if the

speed is lower than the maximum allowed velocity. As

another example, when comparing previous dead reckoning

messages with a current position update, the action is

acceptable if the area a between the predicted trajectory and

the actual trajectory of an avatar is smaller than the average

value ā observed for honest players plus a certain tolerance

(typically the observed standard deviation σa to keep the

false positive rate acceptable). That is (a− (ā + σa)) < 0
indicates a valid dead reckoning message–position update

pair and everything above is suspected.

These ratings are further modulated by a confidence factor,

taking into account the confidence of the player in his rating.

Confidence depends on the accuracy of the information

available at the player: proxies are assigned high confidence

cP , players that have the concerned avatar in their IS or

VS have medium high cIS and medium low confidence cVS

respectively, and other players have a low confidence cO
(cP < cIS < cVS < cO). In addition, it takes into account the

staleness of updates: discrepancy of a new update with a very

old guidance message is assigned a very low confidence.

B. Reputation & Punishment

Because the detection system has false positives (due to

e.g., message loss), a single detection of cheating does not

result in banning of players. Instead, each player tags the

interactions he has with other players as successful (if no

cheat was detected) or as failed, and this information is fed

to a reputation system. Such information can be collected

by either (1) a centralized game lobby that manages access

and logins and can thus ban the players or (2) a distributed

reputation system. In its simplest form, a reputation system

decides to ban a node, if the proportion of acceptable

interactions of a player drops below a given threshold. This

threshold is set, based on the success and false positive

rates of the detection system. More elaborate reputation

systems (e.g., [20]) incorporate the notions of confidence

and credibility to modulate the nodes’ reports, prevent bad

mouthing, and deal with collusion by analyzing relationships

between nodes (e.g., the game’s social network), resulting in

an improved robustness. The Watchmen detection algorithm

can be plugged into any reputation system. The design of

such systems is out of the scope of this paper.
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VI. PERFORMANCE CHARACTERISTICS & COMPARISON

The performance of the architecture is of utmost impor-

tance. Measuring Quality of Experience (QoE) [21], quanti-

tatively, has always been hard. However, factors that directly

impact the user experience have been well documented,

specifically in a well-studied game such as Quake III (and

similar games) [9]. The main factors are latency and band-
width requirements which in turn, combined with network

loss, translate to loss of timely updates. We will show

our architecture meets and exceeds these requirements and

compares favorably with similar distributed architectures.

Latency: Most distributed architectures proposed for games

rely on multicast trees [22] or routing hubs [4] who need

several hops to get a message to the destination. The best

case scenario is represented in a direct subscription sys-

tems [5] that relies on forwarding pools. These forwarders

relay traffic for nodes with worse connectivity, resulting

in two hops (from publisher to forwarder to subscriber).

This is in essence similar to our model in which traffic is

forwarded by players’ proxies (we’ll discuss low bandwidth

support further below). Furthermore, we use the following

optimizations to even further improve latency:

(1) In each frame players calculate their subscriptions

for the coming frame and send the subscriptions ahead of

time. In our experience [16], given small differences between

frames, using current angular and physical momentum,

subscriptions can be calculated. (2) Subscriber retention,

in which subscriptions are maintained for several frames,

eliminates subscription latency after the initial subscription.

To decide on the retention period, one must calculate the av-

erage change frequency in subscriptions. In our experiments,

nearly 50% of the players in the IS change after 4 frames,

less than 10% last more than 30 frames. While this value

can be slightly different for different maps, we found it to be

fairly accurate for most gaming sessions. This value can be

used in a timeout mechanism for subscriptions: subscriptions

are kept for a predetermined number of frames. Only new

subscriptions are sent out explicitly. In addition, note that

it normally (∼ 83% in our analysis) takes at least one or

two frames to become the center of attention after entering

the IS. (3) In extreme cases, one can relax the first hop

requirement, if bandwidth allows it, and remove forwarding

proxy requirement at the cost of lower security. Note that the

subscriptions will remain anonymous as they are handled by

target’s proxy (the receiver’s proxy also requires concurrent

but less verifiable copies to be sent to it).

Upload capacity & Fairness: Not all peers in a distributed

system may have similar bandwidth capacities available to

them. This is usually solved by using forwarding through

more powerful nodes. However, if only low bandwidth

players use forwarding, they will be at a disadvantage as they

send and receive updates later than others. In our system

all players’ traffic is processed through proxies, therefore,

it is fair to the players. In addition, the selection process

can be refined, if necessary, to take into account resource

heterogeneity. This means that using the same verifiable

random generator players’ with low resources are removed

from the proxy pool and more powerful can become proxies

for more than one player. In such a case a player with

low resources needs to send a single copy of updates to its

proxy. The disadvantage, however, is that this will increase

proxies access to information and should be avoided unless

necessary. Similar to most current systems a feasibility test

can be run at the beginning of gaming session to determine

if players meet the minimum requirements. Changes in

the available bandwidth can be advertised (infrequently)

piggybacked on the updates sent.

Churn & NAT: Most architectures have to deal with churn.

In our case, updates sent between players also act as a

heartbeat mechanism that easily identifies the players that

have been disconnected or left. These nodes are removed

in the next round, through an agreement protocol, from

the proxy pool. For NAT support, Internet Gateway Device

Protocol (using the MiniUPnP [23] library) is used to add

translation rules at the router. If the protocol is not supported

by the router (or disabled), NAT traversal through “hole

punching” is employed using the STUN(T) library [24].

Hybrid architecture: One of the advantages of Watchmen is

that if game servers exist they can be easily incorporated by

providing the game lobby, extra bandwidth, and becoming

the proxy for some or all players. Tasks can be delegated to

players as soon as they are determined to be trustworthy.

VII. EVALUATION

No game research framework can realistically emulate

commercial multi-player games, which take years and mil-

lions of dollars to develop. To best showcase the abilities

of our architecture, we have therefore chosen to run exper-

iments with the popular Quake III game. It is currently the

best studied open-source game, and its requirements have

been well documented, and therefore can be used to validate

the experimental results. Our evaluations are based on the

following: (1) Our enhanced Quake III (Written in C) can

support up to a maximum of 48 players (instead of 16).

Given inherent Quake III limitations, the game cannot be

scaled to more players. We compute the different sets (IS,

VS, Others) inside the game. In addition, a tracing module

has been added to the game that records in a trace file

all important game information, e.g., different sets, players’

position, aim, weapons, ammo, health, and speed, as well

as items location, item pickups, shootings, and killing of

players. (2) A replay engine (in Python) has been built

that can replay game traces and generate the same network

traffic repeatedly and under different networking and proxy

architectures to measure different aspects of the performance

(e.g., latency). It helps with repeatable experiments by
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Figure 4. Information about players available to players (potentially cheaters). 48-player game in q3dm17 map.

replaying the same game session over the network, exactly

as Quake III would, using the collected traces (with various

number of machines up to the maximum players) and is re-

motely deployable (e.g., over PlanetLab). Given availability

of traces to all machines, each one can accurately measure

which messages should have arrived and at what frame.

(3) A trace-based simulation environment (in Python), that

aims to measure the information exposure, scalability of

the game, and the quality of verifications performed, using

multiple traces and under different configuration settings.

The goal of our experiments is to show that Watchmen:

(1) limits the effects of collusion and the information avail-

able to cheaters; (2) can detect cheaters using different types

of verifications; (3) meets the latency and loss requirements

already established for Quake III and similar games while

keeping the scalability properties obtained by the distributed

multi-resolution scheme3. We use the following for compar-

ison: Donnybrook as a sample of a good multi-resolution

system, where players receive frequent updates for players in

their interest set and dead reckoning messages for others; and

an optimal Client-Server case where players receive frequent

updates for avatars in their PVS and nothing for the rest; and

Watchmen as described in Section III.

Information Disclosure & Collusion: We evaluate how

well Watchmen minimizes information disclosure through

messages, even in the presence of collusion: Players can

obtain several types of information about other players:

complete information (i.e., proxies about the players they

are in charge of), frequent state update (about avatars in

the interest set), guidance (dead reckoning) messages (about

avatars in the vision set), and infrequent position update.

The first type is the most informative, the second and third

complement each other, even though frequent updates are

more detailed they are not directly comparable (as guidance

includes extra player statistics and predictions for game

rendering), and the fourth is the least informative. We

measured the joint information obtained by a coalition of

colluding cheaters about other players using a 48-player

trace from a Quake III game in the q3dm17 map. This

3We do not evaluate distributed reputation schemes, since well estab-
lished methods that cope with wrongful blames and collusion exist [20].

is a worst case scenario as we assume all colluding players

work together and any information available to one cheating

player is immediately available to all colluding partners.

We consider three infrastructures: Client-Server gives the

minimum necessary information and thus serves as a base-

line, Donnybrook as a sample multi resolution system (our

implementation of interest sets according to Donnybrook,

since the code was not available), and Watchmen.

We compiled the results under the forms of stacked

histograms, shown in Figure 4, as follows. Consider a simple

example of a coalition of two cheaters for a game with

eight players: player 1 with IS {4, 5}, VS {2, 6} and other

{3, 7, 8}, who acts as a proxy for player {3}; player 2 with

IS {1, 6}, VS {7} and other {3, 4, 5, 8}, who acts as a

proxy for player {1}. The coalition therefore has: complete

information about 1 honest player ({3}), frequent update

and dead reckoning for 1 honest player ({6}), frequent

update only for 2 honest players ({4, 5}), dead reckoning

only for 1 honest player ({7}) and infrequent update for 1

honest player ({8}). It can be observed in Figure 4 that de-

spite the information leakage caused by proxies, Watchmen

significantly reduces the information disclosed when com-

pared to Donnybrook. Our trace-driven simulations shows

that Watchmen, a coalition of four cheaters has minimum

information (i.e., infrequent position update only) for about

31% of the honest players and partial information (i.e.,

dead reckoning or frequent state update) for about 48% of

them. In Donnybrook, the same coalition has dead reckoning

information only for about 65% of the honest players and

precise information (i.e., dead reckoning and frequent state

update) for the rest. Since in Donnybrook players receive

dead reckoning messages about all the players not in their

interest set, the proportion of honest players about whom

a coalition has frequent state updates alone is very low

(<1%). In practice, Donnybrook makes use of forwarders

(i.e., clients with high bandwidth multicasting updates for

of clients with low bandwidth), which constitute a large and

additional source of information exposure. Therefore, the

results presented above are a lower bound of Donnybrook’s

information exposure. Note that these benefits are in addition

to the subscription hiding gained by the architecture.

Effectiveness of Verifications: To showcase Watchmen’s
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ability for verifications (1) we measure useful information

about a player that is available to players (and in particular

to proxies) that can be exploited to effectively implement

most forms of verifications suggested in the literature. Fur-

thermore, (2) we measure how often colluding cheaters are

assigned to honest players, and (3) we measure effectiveness

of several of these verifications in the form of sanity checks.

Note that more complicated and rigorous action repetition

verifications would only improve the results presented here.
In Watchmen, verifications rely on proxies and witnesses

(i.e., players having sufficient information to assess the va-

lidity of actions). To evaluate the potential for effectiveness,

we measure, for a given cheater, the average number of

honest players that: act as proxy for him, have him in their

IS, or have him in their VS. The results, shown in Figure 5,

show great potential for verifications: even when a player

colludes with 3 other cheaters (out of 48 players), he is

assigned an honest proxy in 94% of the cases (1−3/47) and

10 players on average witness his actions (4 through frequent

state updates and 6 through dead reckoning messages).
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To further show the effectiveness of the information avail-

able, we set up an experiment where a cheater sends up to

10% invalid cheat messages. We measure the overall success

ratio (high confidence detection by one of the honest players)

of different verifications, where false positives (honest mes-

sages wrongly identified as cheats) are limited to a maximum

of ∼ 5%. Note that this is regulated by the confidence

factor of the players and how much deviation the update

has from expected behavior and is very system and cheat

specific. In practice, we manually and through experiments

configured these values for different cheat types. However,

these values can be properly obtained and configured by the

reputation system used. The encouraging results are shown

in Figure 6 for the following verifications performed by an

honest player (other verifications would also be possible):

Position Updates: Updates are verified to adhere to the

game rules. For example, a player cannot move faster than

allowed in the game. In our system, cheaters move randomly

at 1.5–3 times the acceptable speed; Kills: One trivial

opportunity to cheat in FPS is to unduly claim kills. We

address this by verifying the type of weapon, the distance,
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Figure 6. Success rates of the different verification mechanisms executed.

the visibility, and how long the attacker had the target in

his IS (Typically 4 ∼ 10% of the kills had their target in

the IS for less than 2 out of 5 frames, depending on the

map); Guidance: Guidance messages are compared against

future frequent updates by the proxies as well as dead

reckoning computed by proxies; IS and VS Subscriptions:
Subscriptions are checked from the accurate information

available to proxies.

Responsiveness: To ensure that our architecture meets the

official latency requirements of Quake III, we performed

experiments on a LAN as well as preliminary tests on Plan-

etLab. Furthermore, we simulated latency in our networking

module using latencies available from the King [25] and

PeerWise [26] datasets, filtered using a Geo-IP location

dataset that limits the locations of IP addresses to the United

States (with mean latencies of 62 and 68 ms respectively).

Our latencies are consistent with Halo’s [12]. Message loss

is simulated with a rate of 1%. Note that FPS games that

receive updates within 150 ms latency with loss of under

10% deliver a good gameplay to users [10].
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Figure 7. Distribution of the age of received updates (all three types) from
the frame they should have been received.

The performance results for Watchmen are shown in Fig-

ure 7. Given that most P2P architectures use forwarding or

multicast trees, Watchmen provides relatively low latencies

and meets the requirements of FPS games. Quake tolerates

up to 150 ms latency, therefore, only the messages that

are 3 frames old or more of Figure 7 are counted as loss.

One source of delay is when an avatar, neither in IS nor

in VF, enters IS or VF. Indeed, the movement of the avatar

should be displayed smoothly while only a possibly outdated

position update is available. This phenomenon is however

rather infrequent: in a frame, on average 88% of the players

in IS were already in IS in the previous frame, 8.5% were
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in VS and only 3.5% would suffer from a slight delay. This

can be dealt with by slightly widening the vision range

(±60 degrees in our experimentation), thus increasing the

responsiveness and the effectiveness of verifications, but also

the amount of information disclosed.

Bandwidth: The upload bandwidth needed by our system is

dependent on the IS and VS subscriber sets, i.e., on average

how many players have subscribed to a given player. The

distribution of these subscriptions is shown in Figure 8. This

distribution does not significantly change as the number of

players grows, thanks to the limited visibility and IS sizes.

Even though our goal is not to further decrease bandwidth

over existing multi-resolution schemes, Watchmen decreases

the bandwidth usage for updates sent because of the em-

ployed information filtering. On the other hand, bandwidth

is increased because of proxies, cross-verifications, and

encryption. Upload bandwidth use is highlighted (per type

of update sent) in Figure 9. Although the proxy architecture

may incur some computational and bandwidth overhead, it

does not hurt the scalability as, due to its decentralized

nature, a player is in charge of only one other player

on average, regardless of the total number of players. For

example, Watchmen is able to scale up to 900 players with

a 6 Mbps upload capacity.
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VIII. RELATED WORK

Distribution: Many distributed game architecture exist (e.g.,

[22]), however, few are designed for fast paced games like

FPS. Use of DHTs [4] or multicast trees is too slow for these

games. In addition, network overlays such as trees cannot

follow fast paced changes in the players interest. Closest to

our work is Donnybrook [5], which we use for comparison,

a multi-resolution scheme for update dissemination. All of

these architectures ignore cheating, i.e., they do not provide

any cheat prevention and detection mechanisms, and even

introduce additional cheating possibilities because messages

between players are routed through other player nodes and at

different rates. Note that there exist complementary tools that

can be used by most architectures to deal with some types

of cheating, e.g., secured client side verifications such as

PunkBuster [27] and Valve Anti Cheat (VAC) [28], prevent

the players from tampering with the game code. Pseudo-

random number generators have been successfully used in

P2P systems [29].

Mutual verification: A range of cheat detection approaches

for distributed games, including mutual verification and log

auditing, are described in [30]. Following these guidelines,

Watchmen uses mutual verification, but only short-term au-

diting for improved responsiveness. It also mitigates unnec-

essary information disclosure. RACS [31] relies on trusted

referees who simulate the game world locally to assess the

validity of the players’ action. IRS [18] considers the case

where a server delegates tasks, including sporadic audit of

other players, to one or several players, namely, proxies. One

of the few papers that consider collusion is [32], where a

referee selection algorithm optimizing both responsiveness

and the probability of player-referee collusion is proposed

for the case where (untrusted) players can be referees.

AVM [19] runs software binaries inside a virtual machine

and uses tamper-resistant logging which allows for exact

replaying of events and detection of cheaters. Technically,

AVM can be used on our platform as others for added secu-

rity. However, AVMs impose a non-negligible overhead on

the game and log recording (particularly on now ubiquitous

multi-core platforms) and exchanging them for verifications

is non-trivial. Also, such platforms require that messages

eventually be delivered, which is impractical in games, and

do not protect against some cheats such as rate analysis and

collusion. Moreover, deployment of VMs on game consoles

for current-generation games is currently not available.

Unnecessary information exposure: In [33], a set of basic

secure primitives are proposed to build cheat-proof P2P trad-

ing card games. A cheat-proof peer-to-peer implementation

of each primitive is proposed, using cryptography.

Based on the fact that knowing additional information

impacts the way players behave (e.g., a player obtaining

information about players behind walls is likely to stare

at walls), a statistical cheat detection approach has been

proposed [34] where uncommon patterns in players’ behav-

iors (e.g., movement) are identified. This is also possible

in Watchmen through verifications run by proxies to further
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improve performance. Another singular approach to cheat

detection [35] is to deliberately delay messages and analyze

players reaction thus detecting typical look-ahead cheats,

i.e., waiting for other players to declare their actions before

committing one’s own to take informed decisions (e.g.,

avoiding a rocket fired by another avatar). Other protocols

(e.g.,[7]) make use of commitment schemes to prevent

timing and look-ahead attacks, at the price of responsiveness.

SpotCheck [36] limits the information disclosed to the

client by having the clients submit view requests to obtain

information about the area that is visible to the player every

time they move. The server probabilistically checks the

validity of the view request based on position and visibility

information Moreover, the server runs basic checks (e.g.,

size of the requested area) for all requests.
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X. CONCLUSION

This paper proposed Watchmen, the first distributed pro-

tocol designed for FPS games that aims in detecting and

preventing cheating and collusion. This is done through

cross verifications and vision-based filtering facilitated by a

dynamic proxy scheme. Experimentations on Quake III show

a great reduction in the information exposed to cheaters even

in the presence of collusion. Furthermore, it shows great

potential for effective verification of player actions by other

players. Watchmen is able to scale well and can meet well-

established latency requirement for fast-paced games.
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