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Background: Tenofovir alafenamide is gradually replacing tenofovir disoproxil fumarate, both prodrugs of teno-
fovir, in HIV prevention and treatment. There is thus an interest in describing tenofovir pharmacokinetics (PK) 
and its variability in people living with HIV (PLWH) under tenofovir alafenamide in a real-life setting. 

Objectives: To characterize the usual range of tenofovir exposure in PLWH receiving tenofovir alafenamide, 
while assessing the impact of chronic kidney disease (CKD). 

Methods: We conducted a population PK analysis (NONMEM®) on 877 tenofovir and 100 tenofovir alafenamide 
concentrations measured in 569 PLWH. Model-based simulations allowed prediction of tenofovir trough con-
centrations (Cmin) in patients having various levels of renal function. 

Results: Tenofovir PK was best described using a one-compartment model with linear absorption and elimin-
ation. Creatinine clearance (CLCR, estimated according to Cockcroft and Gault), age, ethnicity and potent 
P-glycoprotein inhibitors were statistically significantly associated with tenofovir clearance. However, only 
CLCR appeared clinically relevant. Model-based simulations revealed 294% and 515% increases of median teno-
fovir Cmin in patients with CLCR of 15–29 mL/min (CKD stage 3), and less than 15 mL/min (stage 4), respectively, 
compared with normal renal function (CLCR = 90–149 mL/min). Conversely, patients with augmented renal func-
tion (CLCR > 149 mL/min) had a 36% decrease of median tenofovir Cmin. 

Conclusions: Kidney function markedly affects circulating tenofovir exposure after tenofovir alafenamide ad-
ministration in PLWH. However, considering its rapid uptake into target cells, we suggest only a cautious increase 
of tenofovir alafenamide dosage intervals to 2 or 3 days only in case of moderate or severe CKD, respectively.

© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// 
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the 
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Background
Tenofovir is an NRTI active in preventing and treating HIV-1 infec-
tion, and treating hepatitis B virus infection. It is commercially 
available as two prodrugs, tenofovir disoproxil fumarate and te-
nofovir alafenamide. Tenofovir alafenamide was developed 
more recently and appears to be 10 times more potent than 

tenofovir disoproxil fumarate, as an indirect consequence of an 
enhanced stability in plasma provided by the presence of a phe-
nol and an alanine isopropyl ester. Unlike tenofovir disoproxil fu-
marate, which readily releases free tenofovir in the circulation, 
tenofovir alafenamide is taken up directly into PBMCs, where 
it is hydrolysed to tenofovir by intracellular cathepsin A, and 
then phosphorylated to produce intracellular diphosphate, the 
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molecule active against HIV reverse transcriptase (Figure 1).1,2

This preferential uptake by PBMCs results in significantly higher 
intracellular levels of tenofovir diphosphate despite 90% lower 
plasma levels of tenofovir observed under standard tenofovir ala-
fenamide versus tenofovir disoproxil fumarate dosage.3–5

Because plasma levels of tenofovir are associated with kidney 
tubular damage and, in the long term, bone demineralization, 
this systemic toxicity is significantly reduced with tenofovir 
alafenamide.1,6

In HIV-1 treatment, tenofovir alafenamide is administered or-
ally at the standard dosage of 25 mg q24h, or 10 mg q24h when 
coadministered with a booster such as cobicistat, able to 
increase tenofovir alafenamide exposure by inhibiting intestinal 
P-glycoprotein (P-gp).7–9 Significant interactions with cyto-
chromes P450 are not reported. However, because tenofovir ala-
fenamide is a substrate of P-gp, breast cancer resistance protein 
(BCRP) and organic anion transporting polypeptides (OATPs), po-
tent P-gp, BCRP and/or OATP inducers or inhibitors may lead to 
under- or overexposure, respectively, with potential HIV-1 treat-
ment failure or increased toxicity. In addition, due to kidney elim-
ination of tenofovir by both glomerular filtration and active 
tubular secretion, renal diseases or comedication with nephro-
toxic drugs may increase the plasma concentrations of tenofo-
vir.2,10,11 No dosage adjustment of tenofovir alafenamide is 
currently recommended as long as creatinine clearance (CLCR) 
exceeds 30 mL/min, nor in patients receiving haemodialysis.12

Even if not universally recommended as first-line treatment,13

tenofovir alafenamide is progressively preferred to tenofovir dis-
oproxil fumarate due to its better tolerability, and is now pro-
posed as a component of first-line antiretroviral combinations 
for HIV treatment.14 Yet, although population pharmacokinetic 

(popPK) studies of tenofovir alafenamide have been pub-
lished,15–17 there is, to the best of our knowledge, no popPK ana-
lysis of tenofovir after tenofovir alafenamide administration 
assessing the impact of chronic kidney disease (CKD) on tenofovir 
plasma exposure. Clearly, monitoring intracellular levels (i.e. te-
nofovir diphosphate) would correlate more reliably with clinical 
response. However, PBMC assays require more infrastructure 
and resources than standard blood samples,18,19 which hinders 
their clinical implementation. The characterization of the con-
centration–time profile of tenofovir and its associated variability 
in people living with HIV (PLWH) under tenofovir alafenamide in 
a real-life setting is therefore relevant because of the availability 
of therapeutic drug monitoring (TDM) for tenofovir.20,21 Bayesian 
calculations based on real-life popPK data would then help to es-
tablish reference percentile curves, facilitating the interpretation 
of drug concentration measurements as part of a clinical TDM 
programme, as offered in our institution among others.

Methods
Study population
This study is an extension of project #815 of the Swiss HIV Cohort Study 
(SHCS; http://www.shcs.ch), which aimed to assess clinically significant 
drug–drug interactions between antiretrovirals and frequently prescribed 
comedications.22

Plasma samples were obtained from patients enrolled in the 
SHCS#815 project and receiving tenofovir as tenofovir alafenamide on 
a daily basis (either 25 mg or 10 mg plus cobicistat). The analysis was 
complemented with anonymized data obtained from SHCS patients fol-
lowed in the routine TDM programme of the Service of Clinical 
Pharmacology in Lausanne (Switzerland) between January 2017 and 

Figure 1. Comparison of HIV-target cell loading mechanisms by tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). Bold arrows 
illustrate major routes, whereas dashed arrows illustrate minor routes. This figure appears in colour in the online version of JAC and in black and white 
in the print version of JAC.
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January 2021. The sparse samples obtained from SHCS#815 project and 
the routine TDM programme were supplemented with detailed sampling 
data. The detailed sampling plan in SHCS#815 included blood sampling 
right before dose intake and then at 0.5, 1, 2, 3, 4, 6, 8, 10, 12 and 24 h 
(trough level) post dose. Exclusion criteria were undetectable tenofovir 

plasma concentration, considered specific for absolute non-adherence 
to treatment, and non-reliable information on time and/or date of last 
drug intake and/or blood collection. Demographic factors, clinical infor-
mation and comedications were recorded during the routine SHCS visits 
(every 3–6 months).

Table 1. Characteristics of the PLWH enrolled in the study for population PK model development and validation

Baseline characteristic

Model-building dataset 
(n = 486)

Validation dataset 
(n = 83)

Value % or range Value % or range

Demographic characteristics
Sex (no.):

Male 339 70 48 58
Female 147 30 28 34
Unknown — — 7 8

Ethnicity (no.):
White 347 71 45 54
Black 109 23 23 28
Hispanic American 19 4 5 6
Asian 11 2 1 1
Other — — 1 1
Unknown — — 8 10

Median age (years) 51 19–79 53 29–76
Median body weight (kg) 74 42–142 72 37–103
Median height (cm) 173 145–195 172 151–194
Median BMI (kg/m2) 24 15–51 25 13–38

Physiological characteristics
Serum creatinine (μmol/L) 85 42–256 88 51–136
CLCR (mL/min)a 93 33–203 88 38–167
eGFR (mL/min/1.73 m2)b 87 23–153 83 46–134

Antiretroviral therapyc

Bictegravir 85 17 29 35
Cobicistat 277 43 22 27
Darunavir 34 7 7 8
Dolutegravir 50 10 6 7
Doravirine 3 0.5 8 10
Elvitegravir 141 29 7 8
Emtricitabine 403 83 51 61
Raltegravir 10 2 1 1
Rilpivirine 16 3 4 5

Co-administered drugsd

Potent P-gp inhibitors 45 9 9 11
Moderate P-gp inhibitors 9 2 1 1
P-gp inducers 4 1 — —
OATP (1B1 or 1B3) inhibitors 14 3 2 2
Nephrotoxic drugs 47 10 6 7

CLCR, creatinine clearance; eGFR, estimated glomerular filtration rate; OATP, organic-anion-transporting polypeptides; P-gp, P-glycoprotein. 
aCLCR calculated according to the Cockcroft and Gault equation.27

beGFR calculated according to the equations reported by Levey et al. (CKD-EPI).28

cPrincipal HIV medications retrieved from the SHCS database. Cobicistat is co-administered with 10 mg dose of tenofovir alafenamide. 
dPotent P-gp inhibitors (amiodarone, carvedilol, clarithromycin, fluoxetine, itraconazole, methadone, quetiapine, rilpivirine, risperidone, ritonavir and 
sertraline), moderate P-gp inhibitors (atazanavir, diltiazem, duloxetine and efavirenz), P-gp inducers (rifabutine, nevirapine), OATP inhibitors (atazana-
vir, clarithromycin, ritonavir)29–32 and nephrotoxic drugs (antihypertensive drugs: candesartan, captopril, hydrochlorothiazide, lisinopril, olmesartan, 
valsartan; antiviral: aciclovir, valaciclovir, valganciclovir; immunosuppressor: tacrolimus; NSAIDs: acetylsalicylic acid, ibuprofen, naproxen)33–35

retrieved from the SHCS database.
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Notably, because of the very short half-life of tenofovir alafenamide in 
plasma (i.e. 0.5 h),23 only samples with a reported time after administra-
tion of less than 6 h were selected for the determination of tenofovir ala-
fenamide concentration in plasma, resulting in 100 samples analysed.

Analytical method
The MS assay used for the analysis of plasma samples was adapted from 
a previously published validated multiplex method (details are provided 
in Supplementary Methods, available as Supplementary data at JAC 
Online).20 The limit of quantification of the method was 1 ng/mL for 
both tenofovir and tenofovir alafenamide.

PopPK analysis
The non-linear mixed effects modelling software NONMEM® (v7.4.3, ICON 
Development Solutions, Ellicott City, MD, USA), assisted by PsN v4.8.024

and Pirana v2.9.2,25 was used for popPK analyses. Data management, 
graphical exploration and statistical analyses were performed with R 
(v4.0.2; R Development Core Team, http://www.r-project.org/).

The popPK analyses were performed converting tenofovir alafena-
mide doses into nanomoles, and the measured concentrations of tenofo-
vir alafenamide and tenofovir into nanomoles per millilitre. Steady state 
was assumed in all individuals. The data were split into model develop-
ment and validation datasets, with patients having complete informa-
tion, including tenofovir alafenamide concentration measurements, 
assigned to the first one with priority. Subsequently, the remaining data 
were randomly assigned to one or the other data set.

Structural model
A stepwise procedure allowed identifying the models that best fit tenofo-
vir alafenamide and tenofovir simultaneously (ADVAN 5 in NONMEM), and 
then exclusively tenofovir data (ADVAN2), by comparing various compart-
mental models with linear elimination and absorption processes. 
Because of the small number of samples collected right after drug intake, 
the first-order absorption rate (k12) of tenofovir alafenamide could not be 
correctly estimated and was thus fixed to 2 h−1 based on early model de-
velopment (i.e. preliminary tests on our data), and in accordance with 
published values.12,26 During the subsequent analysis neglecting tenofo-
vir alafenamide concentrations, the first-order absorption rate of tenofo-
vir (ka) was also fixed to 2 h−1 owing to the flip-flop kinetics that appears 
to characterize tenofovir alafenamide disposition.16 The coadministra-
tion of cobicistat was forced as covariate into the model to estimate 
the relative bioavailability (F ) of tenofovir alafenamide administered daily 
at 10 mg with cobicistat compared with 25 mg alone (F = 1) to account 
for dose variation. Because tenofovir alafenamide is rapidly and almost 
completely metabolized into tenofovir, a complete and irreversible 
conversion of tenofovir alafenamide into tenofovir was assumed. 
Parametrization was performed in terms of apparent clearances (CLTAF 
for tenofovir alafenamide and CLTFV for tenofovir) and volumes of distri-
bution (VTAF for tenofovir alafenamide and VTFV for tenofovir), in addition 
to F and k12 or ka. All the parameters were assumed to follow a log- 
normal distribution, and between-subject variability (BSV) was sequen-
tially tested for all of them. Because tenofovir alafenamide is only 
administered orally, all clearance and volume estimates represent appar-
ent values (i.e. relative to F). Finally, proportional, additive and mixed error 
models were compared to evaluate tenofovir alafenamide and tenofovir 
residual unexplained variability (RUV), with distinct RUVs per compound 
and a correlation term (i.e. L2 item in NONMEM®) evaluated when teno-
fovir alafenamide and tenofovir were modelled simultaneously.

Covariate model
Available covariates were age, sex, ethnicity, bodyweight, height, BMI, 
serum creatinine, CLCR (calculated by the Cockcroft and Gault equation27), 

estimated glomerular filtration rate (eGFR, CKD-EPI equation28) and co-
medications. The concomitant drugs covariate analysis focused on po-
tent P-gp inhibitors, moderate P-gp inhibitors, P-gp inducers and OATP 
inhibitors29–32 found in patients’ treatment (Table 1). Of note and as pre-
viously explained, cobicistat was not included in the analysis of P-gp inhi-
bitors. However, a ‘ceiling effect’ due to cobicistat inhibition, which would 
result in a reduced magnitude of the effect of P-gp inhibitors, was inves-
tigated comparing patients receiving cobicistat or not. Nephrotoxic 
drugs33–35 identified in the patient’s record (Table 1) were not tested, be-
cause their impact was considered as taken into account by the biomar-
kers of kidney failure (i.e. CLCR and eGFR). Correlations between individual 
PK parameter estimates and biologically plausible covariates were first 
explored graphically to identify possible relationships. A stepwise forward 
insertion/backward deletion approach was then conducted to identify 
statistically significant covariates using appropriate linear or non-linear 
functions. Ethnicity was first modelled assigning a separate PK parameter 
per group (rich model), and then per regrouped ethnicities (reduced mod-
el). Lastly, the statistically significant parameters were combined in a 
multivariate approach to build up an intermediate model, from which 
backward deletion was applied for final model identification.

Model selection and parameter estimation
Tenofovir and tenofovir alafenamide data were fitted using a first-order 
conditional estimation method with interaction, with a Laplacian option 
when the M3 method was tested to handle tenofovir alafenamide BQL 
data. These data were alternatively modelled with the M6 approach.36

Variation of the NONMEM® objective function value (ΔOFV) allowed 
discriminating between hierarchical models (P = 0.05 and P = 0.01 for for-
ward and backward steps, respectively), whereas Akaike’s information 
criterion was used for non-nested models. In addition to statistical cri-
teria, the final covariate model was chosen according to the principle of 
parsimony,37 clinical considerations, and the quantification of BSV ex-
plained by the introduction of covariates, which brings valuable informa-
tion for assessing the importance of covariates on the dependent 
outcomes.38,39 Finally, the precision of PK parameter estimates and mod-
el shrinkages, as well as diagnostic plots, helped model selection and as-
sessment of results reliability.

Model evaluation and assessment
Prediction- and variability-corrected visual predictive checks (pvcVPCs) 
were performed on the final PK models to compare the observed concen-
trations with the 5th, 50th and 95th prediction percentiles.24,40,41 In add-
ition, the bootstrap method (n = 2000) assisted model evaluation by 
comparing the original model estimates with the bootstrap median par-
ameter values and their 95% CIs. The external validation of the tenofovir 
model alone was performed using the validation dataset and comparing 
log-transformed concentrations and predictions with mean prediction er-
ror (MPE) and root mean square error, which quantify final model accur-
acy and precision, respectively.42

Model-based simulations
Simulations were performed to assess the clinical significance of all the 
covariates by simulating 1000 individuals in each group with the factor 
of interest (or a combination of factors) to derive the corresponding teno-
fovir and tenofovir alafenamide PK profiles and AUC, as well as the me-
dian tenofovir trough concentration (Cmin). In particular, the impact of 
kidney function on tenofovir exposure was evaluated by simulating 
1000 individuals with different CKD stages (i.e. augmented kidney func-
tion: 200–150 mL/min; normal kidney function: 90–149 mL/min; stage 
1: 60–89 mL/min; stage 2: 30–59 mL/min; stage 3: 15–29 mL/min; stage 
4: <15 mL/min) using a reduced model containing only CLCR as covariate. 
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Uniform distributions of CLCR were assumed to generate individual renal 
function values in each range.

Results
Overall, 569 PLWH contributed to 877 tenofovir and 100 tenofovir 
alafenamide concentrations (Figure S1). A total of 793 tenofovir 
(44 from four patients undergoing detailed PK sampling), and 
100 tenofovir alafenamide (15 non-BQL concentrations from de-
tailed PK sampling) concentrations, collected in 486 PLWH, were 
available for the development of popPK models. The external val-
idation of the tenofovir model alone was carried out on 84 data of 
83 PLWH. None of the tenofovir concentrations were BQL but 47 
tenofovir alafenamide were. Apart from the patients of the SHCS 
#815 undergoing detailed PK sampling, one to two samples per 
patient were available. Table 1 summarizes the characteristics 
of the study population, whereas Table S1 shows the character-
istics of the reduced dataset of PLWH with tenofovir alafenamide 
measurements.

Structural, statistical and covariate models
A one compartment model with first order-absorption and elim-
ination through complete conversion into tenofovir for tenofovir 
alafenamide, and an additional compartment with linear elimin-
ation for tenofovir best captured joint tenofovir alafenamide and 
tenofovir disposition (Figure 2, upper panel). This model, detailed 
in Supplementary Methods, showed that tenofovir alafenamide 
is characterized by ‘flip-flop’ kinetics (i.e. k12 < elimination rate 
constant k23), indicating almost instantaneous tenofovir 

alafenamide conversion into tenofovir. Consequently, it provided 
exactly the same description and parameter values for tenofovir 
as the model developed from the tenofovir data alone. Because 
only tenofovir is quantified in routine clinical practice, and be-
cause of the small number of tenofovir alafenamide concentra-
tions available, this section focuses on the description of 
tenofovir alone analysis. These data were best described by a 
one-compartment model with linear absorption and elimination 
(Figure 2, lower panel). The assignment of BSV on F significantly 
improved data description (ΔOFV = −16, P < 0.001), but no further 
changes were observed when adding BSV on ka, CLTFV or VTFV 
(ΔOFV > −1). An additive error model best described tenofovir 
RUV. Base model parameter estimates were a VTFV of 2660 L 
and a CLTFV of 39.9 L/h, while fixing ka to 2 h−1 and F to 1 for pa-
tients under tenofovir alafenamide 25 mg with a BSV of 34%. In 
addition, cobicistat increased F by 115%, consistent with the rec-
ommendation of reducing tenofovir alafenamide dose to 10 mg 
in case of co-administration with cobicistat. Univariate analyses 
revealed clear effects of CLCR (ΔOFV = −285, P < 0.001), eGFR 
(ΔOFV = −242, P < 0.001), age (ΔOFV = −150, P < 0.001), ethnicity 
(full covariate model ΔOFV = −37, P < 0.001), bodyweight 
(ΔOFV = −15, P < 0.001) and co-administration of potent P-gp in-
hibitors (ΔOFV = −11, P < 0.001) on CLTFV. A reduced covariate 
model with White and Asian patients, set as the reference group, 
versus Black and Hispanic American patients was used for ethni-
city (ΔOFV = + 2, compared with the full covariate model, 
P > 0.05). After backward deletion and application of the principle 
of parsimony,37 a full model incorporating the effect of CLCR, age, 
ethnicity and potent P-gp inhibitors on CLTFV was retained. The re-
sults showed that Black and Hispano American patients had a 
12% increased CLTFV compared with White and Asian patients, 
and that co-administration of potent P-gp inhibitors (namely car-
vedilol and sertraline) reduced CLTFV by 12%, independently of 
the presence of cobicistat. In addition, individuals with a CLCR of 
20 mL/min (stage 3 CKD) would have a CLTFV of 18 L/h, which is 
57% lower than the CLTFV of 42 L/h obtained for those with nor-
mal kidney function. On the other hand, 80-year-olds, for ex-
ample, would have a CLTFV reduced to 36 L/h compared with 
younger PLWH (i.e. median age 51 years, CLTFV of 42 L/h).

The covariates included in the full popPK model explained al-
together 59% of the BSV on F, with 53% resulting from the inclu-
sion of CLCR alone. Retaining only the effect of CLCR on CLTFV 
(reduced model) would thus be appropriate for a model aimed 
at supporting TDM in routine clinical care. Table 2 and Table S2
present the parameter estimates with their bootstrap evalua-
tions of the full and reduced popPK models, respectively, and 
Figure S2 shows the diagnostic plots of the latter. Population par-
ameter estimates of tenofovir alafenamide and tenofovir with 
their bootstrap evaluations, and diagnostic plots, are presented 
in Table S3 and Figure S3, respectively.

Model evaluation
The bootstrap results demonstrate reliability of both full final and 
reduced models, and the pvcVPCs (Figure 3) confirm their good 
performance (see Figure S4 for the model incorporating tenofovir 
alafenamide and tenofovir). Lastly, a similar non-significant bias 
(MPE = 3.6%, 95% CI = 0.2%–7.1%) with a precision of 17% was 

Figure 2. Compartmental models used to describe simultaneously teno-
fovir and tenofovir alafenamide (TAF) (Model 1) and tenofovir alone 
(Model 2) concentration–time profiles. CLTAF, apparent clearance of TAF; 
CLTFV, apparent clearance of tenofovir; ka, first-order absorption rate con-
stant of tenofovir; ke, tenofovir elimination rate constant; k12, absorption 
rate constant from depot to the TAF compartment; k23, rate constant 
from TAF compartment to the tenofovir compartment; VTAF, apparent vol-
ume of distribution of TAF; VTFV, apparent volume of distribution of teno-
fovir. This figure appears in colour in the online version of JAC and in black 
and white in the print version of JAC.
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Table 2. Final population PK parameter estimates of tenofovir with their bootstrap evaluations

Parameters

Final model Bootstrap (n = 2000 samples)

Estimate RSE (%)a BSV (%) RSE (%)a Median 95% CI BSV (%) 95% CI

ka (h−1) 2 FIX — 2 FIX —
VTFV (L) 2390 9 2397 2037–2891
CLTFV (L/h) 42.2 2 42.3 40.1–44.3
θCLCR 0.707 10 0.703 0.549–0.837
θAge −0.244 30 −0.242 −0.398 to −0.099
θBlack or Hispano American 0.119 23 0.120 0.068–0.175
θPotent P-gp inhibitors −0.121 39 −0.119 −0.202 to 0
F (%) 1 FIX — 21.1 6 1 FIX — 20.9 18.4–23.5
θCobicistat 1.15 6 1.16 1.02–1.28
σadd (nmol/mL) 0.0099 5 0.0099 0.0088–0.0110

Final model:

TVCLTFV = CLTFV × 1 + θCLCR ×
(CLCR − CLCR−ref )

CLCR−ref

 

× 1 + θAge ×
(Age − Agemedian)

Agemedian

 

× (1 + θBlack or Hispano American) × (1 + θPotent P−gp inhibitors) 

TVF = 1 + θCobicistat 

BSV, between-subject variability; CLCR, creatinine clearance; CLTFV, apparent clearance of tenofovir; F, relative bioavailability; ka, first-order absorption 
rate constant; RSE, relative standard error; TVCLTFV, typical value of CLTFV; TVF, typical value of F; VTFV, apparent volume of distribution of tenofovir; θCLCR, 
creatinine clearance (CLCR) effect on CLTFV and CLCR-ref = 100 mL/min; θAge, age effect on CLTFV and Agemedian = 51 years old, median age value in the 
study population; θBlack or Hispano American, Black or Hispano American ethnicity effect on CLTFV; θPotent P-gp inhibitors, potent P-gp inhibitors effect on CLTFV; 
θCobicistat, effect of cobicistat on F; σadd, additive residual error. 
aRelative standard error (RSE) of the estimate defined as standard error (SE) of the estimate/estimate, expressed as a percentage, with SE estimate 
retrieved directly from the NONMEM output file.

Figure 3. Visual predictive check of the full final model (left panel) and reduced model (right panel) for tenofovir. Open circles represent the observed 
plasma concentrations; solid and dashed lines represent the median and PI90% of the observed data, respectively; shaded surfaces represent the 
model-predicted 90% CI of the simulated median and PI90%. Note: concentrations with time after dose beyond 30 h (7 out of the 790) are not dis-
played. PI90%, 90% prediction intervals.
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observed for both the full final and the reduced models with the 
external validation.

Simulations
Tenofovir exposures following administration of 25 mg tenofovir 
alafenamide or 10 mg tenofovir alafenamide plus cobicistat 
were judged equivalent. No clinically relevant differences in me-
dian Cmin between ethnic groups, or with or without the presence 
of potent P-gp inhibitors were predicted. In addition, the effect of 
age on tenofovir Cmin within the different CKD stages was consid-
ered minor (Figure S5). These results further support the use of 
the reduced model to describe the impact of CKD on circulating 
tenofovir exposure.

The median Cmin calculated for patients with normal kidney 
function using the reduced model was 9.7 ng/mL, and thus in ac-
cordance with the usual target used in routine TDM.4,43,44

Simulations obtained with the reduced model showed 59%, 
143%, 294% and 515% increases of median tenofovir Cmin in pa-
tients with stage 1, 2, 3 and 4 CKD, respectively, compared with 
patients with normal kidney function. Conversely, patients with 
augmented kidney function had a 36% decrease of median teno-
fovir Cmin. No difference was predicted regarding tenofovir alafe-
namide concentrations in patients with CKD compared with 
normal renal function. Figure 4 presents the simulated PK profiles 
of tenofovir for different CKD stages, and Table 3 the derived PK 
exposure metrics. Lastly, Figure S6 shows the simulated PK pro-
files for tenofovir along the concentrations measured in 
individuals.

Discussion
The present study describes the popPK profile of tenofovir ob-
served among PLWH in a real-life setting, while revealing the 

Figure 4. Simulated PK profiles for tenofovir after 25 mg tenofovir alafenamide administration in individuals with different CKD stages obtained with 
the reduced model. Solid lines represent the 2.5%, 25%, 50% (median), 75% and 97.5% percentiles. The dark surfaces thus encompass the corre-
sponding 50% prediction intervals of the simulated data, and the light surfaces the 95% prediction intervals. This figure appears in colour in the online 
version of JAC and in black and white in the print version of JAC.

Table 3. Tenofovir model-predicted secondary PK exposure levels for the different CKD stages obtained using the reduced model

Dosage Exposure metric

Kidney functiona

Augmented Normal Stage 1 Stage 2 Stage 3 Stage 4

TAF 
25 mg q.d. without cobicistat

AUC0–24 (ng•h/mL) 218 
[139–337]

298 
[187–519]

444 
[277–720]

660 
[402–1100]

1000 
[633–1589]

1610 
[981–2574]

Cmin (ng/mL) 6.4 
[4.0–9.9]

9.7 
[6.0–17.2]

15.7 
[9.6–25.5]

24.5 
[14.9–41.6]

38.9 
[24.3–61.8]

64.1 
[38.8–102.9]

TAF 
10 mg q.d. 
with cobicistat

AUC0–24 (ng•h/mL) 183 
[116–293]

257 
[155–422]

374 
[243–580]

555 
[327–928]

854 
[522–1368]

1325 
[783–2217]

Cmin (ng/mL) 5.3 
[3.3–8.7]

8.3 
[4.9–14.2]

13.2 
[8.4–20.6]

20.7 
[12.0–35.2]

33.1 
[20.1–53.4]

52.7 
[30.9–88.9]

CLCR, creatinine clearance; q.d., once daily; TAF, tenofovir alafenamide. 
aAugmented kidney function: CLCR = 200–150 mL/min; normal kidney function: CLCR = 90–149 mL/min; stage 1: CLCR = 60–89 mL/min; stage 2: CLCR =  
30–59 mL/min; stage 3: CLCR = 15–29 mL/min; stage 4: CLCR < 15 mL/min. Median derived predictions [95% prediction intervals].
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important impact of CKD on tenofovir exposure after tenofovir 
alafenamide administration. The absorption process of tenofovir 
in the model reflects the intracellular uptake of tenofovir alafena-
mide and its conversion into tenofovir in the cell, and entry into 
the systemic circulation. Here, tenofovir displays flip-flop kinetics 
relative to tenofovir PK following tenofovir disoproxil fumarate 
dosing, implying that the combined rate of absorption, conver-
sion and re-entry is the rate-limiting factor in tenofovir PK.16

Cobicistat increases by 115% the absorption of tenofovir alafena-
mide and consequently the production of tenofovir. Because of 
the lack of very early tenofovir alafenamide measurements, the 
effect of cobicistat was incorporated into the overall bioavailabil-
ity, F, which corrects for tenofovir alafenamide dose and also ac-
counts for BSV on tenofovir production (i.e. the complex multistep 
biotransformation of tenofovir alafenamide to tenofovir). It is 
conceivable that BSV also affects other PK parameters such as 
CL and V. However, in the absence of intravenous data, precise 
discrimination of the amount of BSV affecting the different PK 
parameters is impossible. It is common in popPK modelling to 
see the main source of variability lumping together all less im-
portant BSV components affecting other parameters. Cobicistat 
could also differently affect tenofovir alafenamide absorption 
and cellular uptake, involving processes that our model could 
not individually capture. Indeed, because tenofovir alafenamide 
is a substrate of P-gp, cobicistat should theoretically affect teno-
fovir alafenamide entry into PBMCs by reducing tenofovir alafe-
namide efflux from the cells, thus increasing tenofovir 
production. Tenofovir Tmax derived using the base model was 

2.4 h, which corresponds to the value reported in the litera-
ture.3,43,45 In addition, the half-life of 46 h is roughly in accord-
ance with the value of approximately 32 h reported in the 
official monography, probably observed in healthy volunteers 
with normal renal function.12

Overall, the simulated tenofovir exposures for different kidney 
function levels are consistent with the currently available 
data.12,46 Our simulations performed using the reduced model 
showed that patients with stage 3 or 4 CKD reach plasma teno-
fovir concentrations similar to those seen after tenofovir diso-
proxil fumarate administration in patients with normal kidney 
function.3,47,48 Adjustment of the frequency of tenofovir diso-
proxil fumarate administration to every 48–96 h is currently re-
commended in patients with a CLCR less than 50 mL/min.10,49

However, tenofovir alafenamide and tenofovir disoproxil fumar-
ate have distinct pathways to their site of action: tenofovir alafe-
namide is almost completely internalized into PBMCs and then 
converted into tenofovir diphosphate, in contrast to tenofovir dis-
oproxil fumarate, which is predominantly hydrolysed into tenofo-
vir in plasma prior to uptake by PBMCs and conversion into 
tenofovir diphosphate (Figure 1). Therefore, a similar adjustment 
of tenofovir alafenamide dosage according to kidney function 
would certainly drive plasma tenofovir concentrations close to le-
vels observed in patients with fully functional kidneys, but may 
theoretically result in a lower PBMC load and therefore insuffi-
cient intracellular tenofovir diphosphate exposure. By a thorough 
literature review we have identified five clinical studies that com-
pared plasma tenofovir and PBMC tenofovir diphosphate levels 

Figure 5. Simulated PK profiles for tenofovir after 25 mg tenofovir alafenamide administration in stage 3 and 4 CKD individuals, before (light-grey sur-
faces) and after (dark-red surfaces) the proposed dosage adjustment for stage 3 and stage 4 kidney insufficiency. The less-than-proportional adjust-
ment results in higher plasma exposure but should ensure sufficient intracellular exposure. Solid lines represent the 2.5%, 50% (median) and 97.5% 
percentiles. The surfaces encompass the 95% prediction intervals of the simulated data. This figure appears in colour in the online version of JAC and in 
black and white in the print version of JAC.

1440

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/article/78/6/1433/7115733 by U

niversité de Lausanne user on 17 January 2024



Tenofovir population pharmacokinetics                                                                                                           

under tenofovir disoproxil fumarate and tenofovir alafenamide 
(Table S4).4,44,50–52 On average, a standard dosage of tenofovir 
alafenamide produces plasma tenofovir levels representing 
only 15% of those observed under usual tenofovir disoproxil fu-
marate doses (10%–22% according to the studies under consid-
eration), for a six-fold higher intracellular exposure in tenofovir 
diphosphate (2.7- to 10-fold across the studies). Considering, 
for example, a patient with stage 3 CKD, a literal interpretation 
of our model might lead to the suggestion of adjusting the dos-
age of tenofovir alafenamide down to one-quarter of the stand-
ard dosage, which could be conveniently achieved by giving one 
dose every 4 days considering the prolonged half-life of tenofovir 
in this condition. Even though intracellular tenofovir diphosphate 
exposure is expected to be reduced by the same ratio, it would 
still remain 50% higher than the exposure observed under con-
ventional tenofovir disoproxil fumarate treatment, considered 
clinically effective (Table S4). Thus, the preferential loading of te-
nofovir alafenamide by PBMCs challenges the premise of a drastic 
dosage adjustment based on renal function. A dosage adjust-
ment to one-half of the standard dosage is probably sufficient, 
because the expected circulating tenofovir levels would remain 
one-third of those associated with conventional tenofovir diso-
proxil fumarate treatment, thus having little chance to result in 
clinically significant toxicity. Simultaneously, twice higher circu-
lating levels would increase the intracellular passage of plasma 
tenofovir. A similar logic would lead to propose an adjustment 
to one-third of the tenofovir alafenamide standard dosage in 
stage 4 CKD patients, in which our model predicts a six-fold in-
crease of tenofovir levels. Figure 5 illustrates these recommenda-
tions for dosage adjustments. In a study addressing the 
consequences of incomplete therapeutic adherence, Yager 
et al.50 reported that levels of tenofovir diphosphate were still 
2.6 times higher in patients taking tenofovir alafenamide doses 
only once every 3 days than in patients receiving tenofovir diso-
proxil fumarate every day. This evidence indicates that tenofovir 
alafenamide is more permissive than tenofovir disoproxil fumar-
ate with respect to missed doses or longer dosing intervals. Put 
simply, based on those considerations, patients with stage 3 or 
4 CKD should ideally receive tenofovir alafenamide once every 
2 or 3 days, respectively, in order to maintain safe circulating le-
vels of tenofovir while preserving sufficient tenofovir diphosphate 
exposure in target HIV-infected cells.

Limitations of the present work should be acknowledged. 
Tenofovir concentrations in plasma are currently used in routine 
TDM as reference for treatment exposure, although the relation-
ship between plasma and intracellular levels is at best indir-
ect.53,54 Because tenofovir alafenamide is rapidly and largely 
internalized in the target cells, monitoring of plasma tenofovir le-
vels appears to be mainly based on the measurement of tenofo-
vir released into the bloodstream, prior to its elimination by the 
kidneys. However, although it is clear that monitoring intracellu-
lar levels would probably be more reliably related to clinical re-
sponse, it is more difficult to implement in clinical practice 
because PBMC assays demand more infrastructure and re-
sources.18,19 In this case, monitoring of plasma tenofovir concen-
tration remains a surrogate for intracellular concentrations and a 
convenient tool available to assess treatment exposure, along 
with monitoring viral suppression and CD4 counts. Lastly, despite 
similar expected PK,23 further studies need to be performed in 

patients with hepatitis B to verify whether our observations apply 
as well to this population.

In conclusion, our study demonstrates that CLCR is the main 
factor affecting circulating tenofovir exposure after tenofovir ala-
fenamide administration. Our model reveals that patients with 
stage 3 and stage 4 CKD reach plasma tenofovir exposure of 
the same order as patients with normal kidney function receiving 
tenofovir disoproxil fumarate. A dosage adaptation to 
one-half and one-third of the standard tenofovir alafenamide 
regimen seems reasonable in patients with stage 3 and 4 CKD, re-
spectively. A prospective validation of these suggestions regard-
ing tenofovir alafenamide dosing intervals as a function of CKD 
remains warranted.
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