
 

  

 

 
 

 

Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript
Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher
proof-corrections or journal pagination.

Published in final edited form as:

Title: Investigating the theoretical structure of the DAS-II core battery at

school age using Bayesian structural equation modeling

Authors: fan C. Dombrowski, Philippe Golay, Ryan J. McGill, Gary L.

Canivez

Journal: Psychology in the schools

Year: 2018

Issue: 55

Volume: 2

Pages: 190-207

DOI: 10.1002/pits.22096

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains
an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

http://dx.doi.org/10.1002/pits.22096


Running head:  BSEM OF THE DAS-II  1 

This is the peer reviewed version of the following article: Dombrowski, S. C., Golay, P., McGill, 
R. J., & Canivez, G. L. (2017). Investigating the theoretical structure of the DAS-II core battery at 
school age using Bayesian structural equation modeling. Psychology in the Schools. Advance 
online publication. doi: 10.1002/pits.22096, which has been published in final form at 
http://onlinelibrary.wiley.com/doi/10.1002/pits.22096/full. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. 

Investigating the Theoretical Structure of the DAS-II Core Battery at School Age using 

Bayesian Structural Equation Modeling 

 

Stefan C. Dombrowski 

Rider University 

 

Philippe Golay 

Lausanne University Hospital 

 

Ryan J. McGill 

College of William & Mary 

 

Gary L. Canivez 

Eastern Illinois University 

 

 

 

 

 

Correspondence: Stefan C. Dombrowski, Ph.D., Professor & Director, School Psychology 
Program, Department of Graduate Education, Leadership & Counseling. Rider University, 2083 
Lawrenceville Road, Lawrenceville, NJ 08648. sdombrowski@rider.edu 

 



BSEM OF THE DAS-II  2 
 

Abstract 

Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the 

DAS–II core battery using the standardization sample normative data for ages 7 to 17.  Results 

revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either 

a higher-order (HO) or a bifactor (BF) model.  The results also revealed an alternative structure 

with the best model fit, a two-factor bifactor model with Matrices (MA) and Sequential & 

Quantitative Reasoning (SQ) loading on g only with no respective group factor loading.  This 

was only the second study to use BSEM to investigate the structure of a commercial ability test 

and the first to use a large normative sample and the specification of both approximate zero 

cross-loadings and correlated residuals terms.  

Keywords: Bayesian structural equation modeling; Differential Abilities Scales, 
Second Edition; confirmatory factor analysis, bifactor model, Structural Validity, intelligence 
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Investigating the Theoretical Structure of the DAS-II Core Battery at School Age  

using Bayesian Structural Equation Modeling 

The Differential Ability Scales-Second Edition (DAS–II; Elliott, 2007a) is an 

individually administered battery of cognitive tests for children and adolescents ages 2-17 years. 

The DAS–II is a complex instrument that can be divided into three levels: Lower Early Years 

(ages 2:6 through 3:5), Upper Early Years (3:6 through 6:11), and School Age (7:0 through 

7:11). At school age, the DAS-II contains six core subtests that combine to yield three first-order 

composite scores referred to as cluster scores (Verbal Ability, Nonverbal Reasoning Ability, and 

Spatial Ability) as well as an omnibus full scale General Conceptual Ability (GCA) score 

thought to reflect psychometric g (Spearman, 1927). There are also 10 diagnostic subtests which 

contribute the measurement of two additional cluster scores (Working Memory and Processing 

Speed) which can be used by examiners to supplement the core battery. However, none of these 

supplemental measures contribute to the measurement of the GCA or the three primary clusters, 

nor can they be exchanged for any of the core battery measures. It should also be noted that the 

Early Years battery features different core and diagnostic subtest configurations and not all 

school-age clusters are available1. According to the Introductory and Technical Handbook 

(Elliott, 2007b; hereafter referred to as the ‘Technical Handbook’), this is the result of not being 

able to measure certain constructs well (e.g., Processing Speed, Working Memory) at younger 

ages. 

 

  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"
!Several Early Years measures have restricted age bands that preclude them from being 

administered at school-age. However, both batteries are co-normed at ages 5:0 through 8:11, 
permitting “out of level” testing for examinees in that age bracket.  
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Factor Structure of the DAS–II 

 To validate the DAS–II at school-age, the test publisher relied exclusively on 

confirmatory factor analysis (CFA) using maximum likelihood (ML) estimation to appraise the 

six subtest core battery and structure for normative participants ages 7 to 172. Four oblique 

(correlated) factors models ranging from 1-3 factors (one model was a variant of the two-factors 

model with cross-loading permitted) were specified and evaluated for adequacy. Fit statistics 

reported in the Technical Handbook indicate that a three-factors model consistent with publisher 

theory fit the standardization sample data well though the factor loadings for this model were not 

presented. 

Similar analyses were also conducted to evaluate different configurations of the core and 

diagnostic measures at school-age. For these analyses, the normative sample was split into two 

groups (6:0-12:11 and 6:0-17:11) with a 14 subtest configuration used at ages 6-12 and a 12 

subtest configuration used at ages 6-17. Whereas a seven-factors model was retained for ages 6-

12, it was suggested that a six-factors model best fit the normative data for ages 6-17. Although 

the Technical Handbook indicates that both structural models are likely consistent with the 

Cattell-Horn-Carroll theory of cognitive abilities (CHC; Schneider & McGrew, 2012), several 

first-order factors not available in the actual DAS–II were specified (e.g., Auditory Processing, 

Visual–Verbal Memory, and Verbal Short-Term Memory). In addition, the Auditory Processing 

and Visual-Verbal Memory factors in the final validation models for ages 6-17 were each 

produced from a single indicator reflecting variables that are underidentified. Although the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#
!It appears additional exploratory analyses were conducted by the project team (see p. 157, 

Elliot, 2007b); however, description and results of these procedures are not presented in the 
Technical Handbook. 
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inclusion of singlet variables is possible in CFA, they should not be interpreted as latent factors 

became they do not contain any shared common variance (Brown, 2015).  

Since its publication, independent factor analytic investigations of the DAS–II structure 

have been scarce. In one of the two studies that could be located, Keith et al. (2010) used CFA to 

investigate the age invariance of the DAS–II full test battery (20 subtests). The measurement 

model was derived from the normative data from participants ages 5-8. As previously mentioned, 

this is the only age-bracket at which the Early Years and School-Age batteries are co-normed. 

Rival models were evaluated, containing different mixtures of correlated errors (n =10), cross-

loadings (n = 10), and additional post-hoc modifications with a separate validation sample (n = 

5). In spite of these modifications, the fit statistics for many of the models were 

indistinguishable. Nevertheless, a measurement model was selected and tested. The subtests not 

administered in other age groups were treated as latent variables using the “reference variable” 

approach suggested by McArdle (1994). As described by Keith et al. (2010), “This method 

allows the researcher to keep the full model as the comparison model,” (p. 688). In this 

procedure, subtests that are not administered at an age level, are treated as latent variables, while 

constraining their parameters and loadings to be equal to the values obtained for the age group at 

which they are administered (ages 5-8). Ultimately, a six-factor, CHC-based, higher-order model 

(Crystallized Ability, Fluid Reasoning, Visual Processing, Long-Term Retrieval, Short-Term 

Memory, and Processing Speed) was found to be invariant across the instrument. Although it 

should be noted that the final validation model for ages 4-17 required the specification of 

additional parameters, including correlated residual terms for both subtests (Copying and Recall 

of Designs) and group-factors (Visual Processing [Spatial Ability] and Fluid Reasoning 

[Nonverbal Reasoning]), and a theoretically inconsistent cross-loading (Verbal Comprehension 
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was found to loading on Crystallized Ability and Fluid Reasoning). Given these departures from 

desired simple structure and the incorporation of “out of range” measures across the age span, 

the practical implications of these findings are unclear.  

 Given the fact that the models produced from the core battery CFA analyses were not 

presented in the Technical Handbook, users of the DAS–II electing to administer and interpret 

the core battery may be tempted to extrapolate from the CFA analyses from the full DAS–II 

battery. However, results furnished by a recent exploratory factor analytic (EFA) of the DAS–II 

core battery structure suggest this practice may be problematic. Canivez and McGill (2016) used 

principal axis factoring with promax rotation followed by the Schmid-Leiman Orthogonalization 

(Schmid & Leiman, 1957) to disclose an approximate exploratory bifactor structure of the DAS–

II core battery. Whereas empirical extraction criteria suggested that DAS–II was a one-factor 

test, a forced three-factors extraction produced subtest alignment consistent with that proposed 

within the Technical Handbook. Nevertheless, the reliable variance accounted for by the three 

group factors (Verbal, Nonverbal, and Spatial) was consistently small suggesting the DAS–II 

may be overfactored (Frazier & Youngstrom, 2007). Specifically, once variance was apportioned 

to higher- and lower-order constructs, as recommended by Carroll (1993, 1995), most of the 

reliable variance in the DAS–II subtests was sourced to g, rendering the Nonverbal factor ill-

defined (i.e., contained less than two salient subtest loadings).  

Historically, two basic factor analytic techniques have been used to evaluate the internal 

structure of intelligence tests: EFA and CFA. Although, EFA and CFA have been used to shed 

insight on the DAS–II structure, the results of these investigations have not clarified what the 

DAS–II core battery measures. Whereas, EFA results suggest that the core battery may be 

overfactored and mostly reflects general intelligence, CFA investigations using various 
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combinations of the core and diagnostic subtests, have provided evidence to support the three 

group-factors posited for the core battery model. The invariance results produced by Keith et al. 

(2010) suggest that the relationships between DAS–II variables may be more complex than the 

simple structure portrayed in the CFAs reported in the Technical Handbook (i.e., no cross-

loading or correlated residuals). Gorsuch (1983) and others (Carroll, 1985) suggest that when 

different methods of factor analysis converge upon the same solution then greater confidence 

may be engendered in the instrument’s factor structure. These discrepant results suggest that 

additional analyses of the DAS–II factor structure may be worthwhile. 

 It is worth pointing out that there are important differences between EFA and CFA. 

Whereas EFA models are weakly specified, CFA models are more flexible, requiring the 

research to specify all relevant aspects of the model a priori. Within the factor analytic literature, 

it is frequently suggested that EFA is preferred when the relations between variables is less 

understood and CFA is a better method for formal model testing3. Nevertheless, both methods 

have limitations. Although EFA procedures are easier to implement, those methods can 

underestimate the number of factors and may produce solutions that oversimplify data (Mulaik, 

2010). On the other hand, CFA may be able to detect previously omitted variance however, as 

models become more complex, there is a threat of capitalizing on chance and retaining a model 

that may not generalize to other samples (MacCallum, Roznowski, & Necowitz, 1992). As a 

result, “researchers are often left with the dilemma of whether to keep meaningful alternatives 

untested or to risk overfitting their model to the data” (Golay, Reverte, Favez, & Lecerf, 2012, p. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
$
!In practice, the line between EFA and CFA is less clear. For instance, one can use EFA in a 

confirmatory context and CFA in an exploratory fashion. Thus, it is better to think of EFA and 
CFA more generally as techniques for conducting factor analysis. Whether an approach is 
exploratory or confirmatory depends on its application. 
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498). Bayesian Structural Equation Modeling (BSEM) can be a useful solution for researchers 

faced with this dilemma.   

Bayesian Structural Equation Modeling  

BSEM is based upon Bayes’ Theorem, a mathematical proof created by Thomas Bayes, 

an 18th century cleric, that has been recently re-discovered by applied measurement researchers 

following the arrival of microcomputers with sufficient processing capabilities, the creation of 

statistical software capable of performing complex Bayesian modeling, and greater confidence in 

Bayesian estimation which challenges many assumptions of traditional frequentist statistics 

(Brown, 2015; Kaplan & Depaoli, 2013).  One of the most famous–but until recently, secret–uses 

of Bayesian methodology was to decipher the German enigma code during the Second World 

War (Stone, 2013).  However, the application of Bayesian methodology to understand applied 

cognitive measurement issues is in its infancy.  To date, within the fields of psychometrics and 

intelligence research there has been only one application of Bayesian estimation.  Golay, 

Reverte, Rossier, Favez, and Lecerf (2013) used the procedure to acquire further insight into the 

French WISC–IV theoretical structure. Application of BSEM revealed that a five-factor CHC-

based direct hierarchical (bifactor) model best fit the data produced from a clinical sample (N = 

249) of French-speaking Swiss children. However, in their application of BSEM, Golay et al. 

(2013) did not include estimation of small variance correlated residuals, potentially important 

features of the BSEM technology (Muthén & Asparouhov, 2012).  The present study seeks to 

extend use of BSEM to a different measure of cognitive ability to help understand its factor 

structure and apply other aspects of the BSEM model not included in previous analyses (e.g., 

simultaneous estimation of approximate zero cross-loadings and approximate zero correlated 

error terms).   
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BSEM holds promise for the understanding of the latent structure of assessment 

instruments used within many fields including psychology, health, business, and education 

(Muthén & Asparouhov, 2012).  It portends to better reflect substantive theory and overcome 

some of the limitations of traditional (i.e., termed frequentist) exploratory and confirmatory 

factor analytic procedures (Brown, 2015).  In many ways BSEM attempts to strike a balance 

between exploratory and confirmatory factor analytic methods (Golay et al., 2013) but is still 

more confirmatory in nature. 

Purpose of the Current Study 

The present investigation sought to apply BSEM to the DAS–II standardization sample 

data to understand better the core battery factor structure for ages 7-17. The application of BSEM 

to the DAS–II factor structure presents an opportunity to compare the procedure across different 

types of structural models (oblique, higher-order, bifactor). The present study will also serve as a 

comparative test of BSEM relative to results produced from frequentist exploratory (i.e., Canivez 

& McGill, 2016) and confirmatory factor analytic methods (i.e., Technical Handbook, Elliot, 

2007b; Keith et al., 2010) for the measurement instrument. This is also the first BSEM study of a 

cognitive ability test taking advantage of a large sample size and the use of correlated residuals; 

thus, it is believed that the results produced from the current study will be instructive for 

advancing the field’s understanding of not only the factor structure of the DAS-II core battery 

but also the potential utility of BSEM in psychometric investigations of intelligence test 

structures. 
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Method 

Participants 

Participants were drawn from the DAS–II standardization sample and included a total of 

2,188 individuals ranging in age from 7 to 17:11 years. The standardization sample was obtained 

using stratified proportional sampling across demographic variables of age, sex, race/ethnicity, 

parent educational level, and geographic region. Details of demographic characteristics and close 

approximation to population characteristics are provided in the Technical Handbook (Elliott, 

2007b). 

Instrument 

The DAS–II is an individually administered test of intelligence that includes 6 core 

subtests across the 7 to 17:11 age range and a mixture of 10 supplemental diagnostic subtests.  At 

this age range the DAS–II core subtests combine to form a General Conceptual Ability (GCA) 

score as well as three primary cognitive clusters at the first-order level, each composed of two 

subtests. The clusters include Verbal, Nonverbal, and Spatial. Supplemental diagnostic subtests 

are also available, which can be combined to form additional first-order clusters (e.g., working 

memory, processing speed) but these measures are not utilized to calculate the higher-order GCA 

or the three primary cognitive clusters. As previously noted, the Early Years battery contains 

different combinations of core subtests and cluster scores. For the sake of parsimony, the present 

study is focused specifically on the core battery at school-age as it is at that age that the DAS–II 

structure is most consistent.  

Procedure and Analyses 

The DAS–II standardization sample participant raw data for the 6 core, age 7 to 17:11 

subtests were obtained from the test publisher. Bayesian structural equation modeling was used 
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to investigate two- and three-factor (oblique, higher-order, bifactor) models from the DAS–II, 

which included a test of the three-factor higher-order structure furnished in the Technical 

Handbook.  Additionally, a derivation of a two-factor bifactor structure was investigated where 

the two nonverbal subtests (Matrices [MA] and Sequential and Quantitative Reasoning [SQ]) 

loaded only on g.  This model was tested post hoc and after observing that the two- and three-

bifactor structures had subtests (MA and SQ) with approximate zero loadings on the nonverbal 

group factor.  

Mplus 8.0 (Muthén and Muthén, 1998-2017) was used for Bayesian estimation.  The 

code for undertaking BSEM with explanation is offered in the appendix.  Three different BSEM 

procedures were invoked to test each of the models: (1) an analysis without cross-loadings or 

correlated residuals; (2) an analysis where all cross-loading are simultaneously estimated; and (3) 

and an analysis where all cross-loadings and correlated residuals are simultaneously estimated.   

A prior mean of 0 and variance of .01 was established for cross-loadings.   For the cross-

loadings this resulted in a range of -.20 to .20 for the resulting cross-loading estimates.  If the 

model failed to converge then a prior cross loading variance of .001 was specified. This reduced 

the range of the cross loadings estimates from -.06 to .06.  An Inverse-Wishart prior variance of 

.01 was selected for specification of residual prior variance (Asparouhov & Muthén, 2010).  

Three Markov Chain Monte Carlo (MCMC) chains were utilized and iterations were 

established at 150,000 with the first 75,000 being discarded as the burn-in phase.  A model was 

determined to have attained convergence under two conditions: (1) a potential scale reduction 

(PSR) value stabilizing on a value less than 1.10; and (2) a satisfactory Kolmogorov-Smirnov 

Distribution (i.e., no discrepant posterior distributions in the different MCMC chains; Muthén & 

Muthén, 1998-2017).  In cases where the model failed to converge using 150,000 iterations then 
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the number of iterations was increased to 250,000.  Generally, it is appropriate to increase 

iterations (I) by a factor of two (i.e., I, I2, then I4; Muthén & Muthén, 2017) but this is dependent 

upon computing power.  If the model converged then the next step was to investigate the 

Posterior Predictive p-value (PPp).  As previously noted, a perfect fit of the model to the data is a 

PPp of .50 with values < .10 or > .90 considered poor model fit meriting model rejection.  

Following acceptable model fit with these data via the PPp, the Deviance Information Criterion 

(DIC) was referenced as the main index to compare competing models.  The DIC was used in a 

similar fashion to other frequentist fit indices with lower values generally considered better 

values.  Finally, models were examined in relation to theoretical plausibility as guided by the 

prevailing literature base.   

Omega–hierarchical (ωH) and omega–hierarchical subscale (ωHS) coefficients (Reise, 

2012; Rodriguez et al., 2015) were estimated as model–based reliability estimates of the latent 

factors (Gignac & Watkins, 2013) for both the bifactor and higher-order models. The ωH 

coefficient is the model–based reliability estimate for the hierarchical general intelligence factor 

independent of the variance of group factors. The ωHS coefficient is the model–based reliability 

estimate of a group factor with all other group and general factors removed (Reise, 2012; 

Rodriguez et al., 2015). Although omega coefficients have been referred to as model-based 

reliability estimates they may also be conceived of as validity estimates as they present data 

regarding the plausibility of interpreting general and group factors (Gustafsson & Aberg-

Bengtsson, 2010). Omega coefficients should at a minimum exceed .50, but .75 would be 

preferred (Reise, 2012; Reise, Bonifay, & Haviland, 2013). Additionally, Hancock and Mueller 

(2001) suggested use of an index of construct reliability or replicability (called H) that reflects 

the proportion of variability in the construct that is explained by its own indicators and furnishes 
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an estimate of the reliability of the underlying factor. High H-values (> .80) suggest a well-

defined latent variable which portends to be stable across studies.  Rodriquez et al. (2016a) 

indicated that it is difficult to specify group factors within a single instrument and it should only 

be done when H-values are higher than .70. Further, when H-values are large it might be useful 

to utilize a weighted composite score instead of unit-weighted composite score. The percentage 

of uncontaminated correlations (PUC) was also referenced. PUC determines the potential bias 

associated with forcing multidimensional data into a unidimensional model. When explained 

common variance (ECV) and PUC are both greater than .70 then the relative bias will be slight 

and the common variance might best be considered unidimensional (Rodriquez et al., 2016a). 

Omega–hierarchical and omega–hierarchical subscale coefficients, PUC, and H were estimated 

using Watkin’s (2013) Omega program. To estimate these values in the higher-order models, the 

group factors needed to be residualized of general factor variance.  This was accomplished 

through the following formula from Reynolds and Keith (2013): 

!" # $%&'()*+,%-"!

Results 

Table 2 presents the results of BSEM of the DAS–II investigating the two- and three-

factor oblique, higher-order, and bifactor models under three conditions: 1) without small 

variance priors as identified by the ‘a’ model versions; 2) with small variance priors for cross 

loadings only, as identified by the ‘b’ model versions; and 3) with small variance priors for cross 

loadings and correlated residuals, as identified by the ‘c’ model versions. A single factor (g) 

model was also investigated. When BSEM does not utilize small variance, informative priors for 

cross loadings or correlated residuals (i.e., all ‘a’ models from Table 1) then the model is said to 

be akin to a frequentist maximum likelihood CFA.   
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All of the models examined, except for models 1 (single factor), 2a, and 2b (two-factor 

oblique), and 3a and 3b (two-factor higher-order), fit these data well according to an examination 

of the posterior predictive p-value (PPp) (PPp > .10). When investigating the PPp, it is further 

noted that several of the models displayed near perfect fit with these data (0.500; see models 2c, 

3c, 5c, 6c, and 7c). This was most commonly found when both cross-loadings and correlated 

residuals were specified [two exceptions were the bifactor models (i.e., 5b and 8b) in which only 

cross-loadings were specified]. These latter two models failed to converge when correlated 

residuals were estimated.   

While the PPp value should be used to determine how well the data fit the model, DIC 

along with theoretical considerations should be used to compare models and determine which 

model is preferred (Asparouhov et al., 2015; Brown, 2015). Improvements in model fit both 

within (i.e. models ‘a’ to ‘c’) and between (i.e., 1 through 8) models was determined by 

examining the DIC (with models that had a PPp > .10). All models with PPp > .10 demonstrated 

a slightly lower DIC when cross-loadings were incorporated, except for models 3b and 5b.  In 

those two cases the ‘a’ version (that did not incorporate cross-loadings or correlated residuals) 

was preferred to the models that incorporated small variance cross-loadings.   

When correlated residuals, along with cross-loadings, were incorporated, five of the 

models (2c, two-factor oblique; 3c, two-factor HO; 5c, two-factor BF with MA & SQ on g only; 

6c, three-factor oblique; 7c three-factor HO) then demonstrated perfect fit with these data (PPp = 

.499 or .500).  However, the two- and three-factor bifactor (BF) models (4c and 8c) failed to 

converge when specifying correlated residuals. Additionally, the three-factor HO (model 7c) 

demonstrated a slightly higher DIC when all residuals were correlated. The three remaining 

models [2 oblique (2c); 3 HO (3c); 2 BF plus MA and SQ on g only (5c); and 3 factor oblique 
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(6c)] demonstrated a lower DIC, indicative of improved model fit, when both correlated 

residuals and cross-loadings were specified. Additionally, examining the publisher’s proposed 

three-factor higher-order model versus a three-factor bifactor model revealed nearly identical 

DIC when no cross-loadings (model ‘a’ versions) or when cross-loadings (model ‘b’ versions) 

were specified. This is consistent with ML CFA research that suggests that just identified models 

have nearly identical fit whether a higher-order or bifactor model is specified (Brown, 2015; also 

see McGill & Dombrowski, 2017 for an applied example).   

Pattern of Subtest Loadings 

An investigation of the pattern of subtest loadings was informative. Within the two- and 

three-factor BF models (4b & 8b) the group nonverbal factor loadings were near zero for all BF 

models (Tables A1 and 2) suggesting that once the two subtests were residualized of their 

general factor variance the two subtests had negligible group factor variance. This finding 

similarly occurred when the ‘a’ model versions without informative cross-loadings or correlated 

residuals were included with the bifactor models, although the ‘a’ model version had lower g 

loadings for MA and SQ compared to the ‘b’ model version. Thus, the decision was made to test 

a derivation of the two-factor BF model where MA and SQ loaded only on g [2 BF plus MA and 

SQ on g only (model 5 (a to c); Tables 3 and A2))].  With the exception of the 3 oblique factors 

model (6c; Table A3), the 2 BF plus SQ and MA on g only model (model 5c; Table 3) had the 

lowest DIC when both cross-loadings and correlated errors were specified. Although the oblique 

model (Table A3) had a lower DIC it was deemed to be theoretically inferior as tests of cognitive 

ability are generally presumed to have a hierarchical latent ability factor, presumably general 

intelligence (Carroll, 1993; Gorsuch, 1983). An examination of the three-factor higher-order 

model (Table 4), which included cross-loadings, suggested that all subtests were aligned with 
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theoretically proposed factors. This did not occur with its three-factor bifactor counterpart (Table 

2) wherein MA and SQ had approximate zero loadings on the nonverbal group factor once 

general ability was residualized. The two-factor higher-order model (Table A4) with both cross-

loadings and correlated residuals produced loadings consistent with theoretically proposed 

factors.      

Examination of variance apportionment along with omega statistics, H and PUC—

presented at the bottom of Tables 2 through 4 and A1 to A4— all converge to suggest that the 

general factor absorbed a considerable proportion of both total and common variance across all 

higher-order and bifactor models. Across all BF and HO models investigated, the ECV of the 

general factor ranged from .663 to .823. Individual group ECV ranged from .000 to .218. The 

general factor similarly accounted for a considerably higher proportion of total variance ranging 

from .442 to .508 than did the group factors. Group factor total variance ranged from .000 to 

.145.  

Omega hierarchical and omega hierarchical subscale coefficients suggested that 

interpretation of the DAS–II should reside primarily at the higher-order or general (GCA) level, 

whether a BF or HO was referenced, with omega hierarchical ranging from .711 to .838. Omega 

hierarchical subscale ranged from .000 to .274, again supporting primary emphasis on general 

factor interpretation. When looking at PUC in combination with the ECV of the general factor, it 

is evident that the DAS–II is dominated by a general factor. Similarly, the high H values (>.80) 

also suggests a dominant general factor that portends to be stable across studies. Thus, consistent 

with other frequentist EFA and CFA studies (e.g., Bodin, Pardini, Burns & Stevens, 2009; Canivez, 

2014; Canivez & McGill, 2016; Canivez, Watkins & Dombrowski, 2016, 2017; DiStefano & 

Dombrowski, 2006; Dombrowski, 2013, 2014a, 2014b; Dombrowski, Brogan & Watkins, 2009; 

Dombrowski, Canivez, Watkins & Beaujean, 2015; Dombrowski, McGill & Canivez, 2016;  Watkins & 
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Beaujean, 2014) and consistent with Frazier and Youngstrom (2007), the DAS–II appears to be an 

instrument dominated by a general factor. 

Discussion 

The present study permitted a comparison of BSEM across different types of structural 

models (oblique, higher-order, bifactor). It also furnished information about possible alternative 

structures (i.e., 2 BF plus MA and SQ on g only; Model 5, Tables 3 and A2) for the DAS–II 

which were not described in the Technical Handbook nor observed within Canivez and McGill’s 

(2016) EFA-SL study.   

One of the more potentially useful capabilities of BSEM (Muthén & Muthén, 2015; 

Asparouhov et al., 2015) is that it permits the simultaneous estimation of cross-loadings and 

correlated error terms using small variance priors. This would not be possible on a six subtest 

instrument, such as the DAS–II, using classical ML CFA estimation. The attempt to estimate this 

many parameters in frequentist CFA would simply lead to an unidentified model. With ML CFA 

most cross-loadings have to be fixed at zero to achieve model identification and most error terms 

remain uncorrelated for that same reason. But, this may not reflect the researcher’s hypothesis or 

even the structural reality of a cognitive ability instrument that often has overlapping, highly 

correlated constructs (Carroll, 1993; Gorsuch, 1983). Unnecessarily strict models and 

inappropriate zero cross-loadings could contribute to poor model fit, distorted factors, inflated 

loadings, and biased correlations (Asparouhov & Muthén, 2009; Brown, 2015; Marsh et al., 

2009). McCrae et al. (2008) recognized this concern within the personality structural validity 

research literature and posited that ML CFA was overly restrictive (i.e., independent cluster 

assumption requiring an indicator to load only one factor and disregard cross-loadings) leading 

to correlations among the factors that tend to be overestimated.   
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BSEM offers the potential of an elegant solution to this problem that accounts for both 

cross-loadings and correlated residuals through simultaneous estimation.  It may also be 

considered a hybrid estimation procedure in between EFA and CFA.  It is noted, however, that 

the use of correlated residual terms represents a novel approach to structural modeling that is not 

yet fully embraced by the statistical community (Rindskopf, 2012; Stromeyer et al., 2015). The 

incorporation of all correlated residuals terms within BSEM deserves further study and debate 

but has potential to help clarify more complex elements of an instrument’s internal structure 

(Asparouhov et al. 2015).        

Within this study, the inclusion of correlated residuals improved model fit in some cases, 

(e.g., models 2c, 3c & 5c) as determined by PPp values suggesting that the model nearly 

perfectly fit these data, and produced lower DIC scores. However, there were also cases where 

incorporation of correlated errors produced models that failed to converge (the two- and three-

factor BF models, 4c & 8c; Tables 2 and A1), failed to yield a lower DIC (model 7c, three factor 

HO), or did not enhance structural clarity based on the patterns of loadings, as the loadings were 

essentially the same whether or not correlated residuals were incorporated. In those cases, the 

more parsimonious model (cross-loadings only or no incorporation of cross-loadings) may be 

favored. For instance, model (5c; Table 3) produced a DIC that was lower than all models except 

model 6c (three-factor oblique model; Table A3) but it is unknown whether any structural clarity 

or theoretical gains could be made by choosing the correlated errors version (Model 5c; Table 3) 

over its cross-loading only counterpart (Model 5b).  

Also, theoretical considerations must be accounted for. Although model 6c (three factor 

oblique) produced the lowest DIC, and one could indeed offer a statistical defense for an oblique 

model, but, at present, oblique models do not reflect the consensual theoretical conceptualization 
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for measures of cognitive abilities (Carroll, 1993; Gignac, 2016; Gignac & Watkins, 2013; 

Dombrowski, 2015). Therefore, oblique models were incorporated for pedagogical reasons since 

BSEM has only been used once before in the professional literature to understand cognitive 

ability instruments (i.e., Golay et al., 2013).   

Moving next to an understanding of the three factor structure posited in the Technical 

Handbook, the three-factor HO (cross-loadings only; Table A4) and the three-factor BF (cross-

loadings only; Table 2) models demonstrated a nearly identical DIC. This is not surprising.  As 

occurs with ML CFA estimation, in BSEM estimation when a just identified model is 

investigated, fit indices are virtually identical (Brown, 2015). When correlated residuals where 

incorporated both the two- and three-factor bifactor models failed to converge. When correlated 

residuals were specified for the higher-order models, the two-factor HO model saw improved 

model fit while the three-factor HO model evidenced a reduced model fit as noted by an increase 

in DIC. In the case of model 5c (Two BF plus MA & SQ on g only; Table 3) the incorporation of 

correlated residuals improved model fit with these data and lowered DIC. However, the pattern 

of subtest loadings was essentially the same as when cross-loadings only approach was specified 

(see Tables A2 and 3). Across all models investigated, parameter estimates for correlated 

residuals were not statistically significant. This information is important in its own right and 

along with inclusion of cross-loadings (all were non-significant) suggested that the subtests may 

be statistically homogenous.  

The results of this study indicate that the DAS–II six core subtest battery may be 

conceptualized not only as a three-factor higher-order model, as indicated in the Technical 

Handbook (although the standardized loadings associated with this model were not reported), but 

also as a three-factor bifactor model. With both models, the incorporation of cross-loadings 



BSEM OF THE DAS-II  20 
 

improved model fit with these data.  However, the incorporation of correlated residuals caused 

the three-factor bifactor model (and two-factor BF model) to fail to converge.   

In addition to being conceptualized as a three-factor higher-order model (Table 4) or 

three-factor bifactor model (Table 2), the DAS–II may be conceptualized as a two-factor bifactor 

model with two of its subtests (Matrices and Sequential and Quantitative Reasoning; Tables A2 

and 4) loading on g only.  If one ascribes to a bifactor conceptualization of intelligence then this 

hybrid bifactor model appears plausible: the three-factor bifactor model produced loadings (MA 

and SQ close to zero on their theoretically posited group factor. Whether a two- (Tables A2 & 3) 

or three-factor BF (Table 2) model is investigated MA and SQ load on their respective group 

factors at close to zero, but have high general ability loadings. If the choice is for a BF model 

then the hybrid approach (i.e., Model 5a-c; Tables A2 and 3) is viable as having MA and SQ 

load on g only improves structural clarity. When correlated residuals were included, this model 

produced the lowest DIC and affirmed a lack of relationship among the error terms for the DAS–

II, a finding that is important in its own right. 

  Regardless of whether a BF or HO model is adopted omega statistics suggest that the 

DAS–II is an instrument dominated by general ability. This was similarly supported by H and 

PUC. The finding is also consistent with prior findings from Canivez and McGill (2016) who 

cautioned about moving beyond interpretation of the general factor even though they found 

evidence for three group factors consistent with that posited in the Technical Handbook when 

force extracting that model in their EFA analyses.     

Similar to Golay et al. (2013), the present results suggest the use of BSEM appears to be 

a viable option for the investigation of the structure of cognitive ability instruments. With the 

DAS–II it produced results that appear theoretically plausible and in fact offered an alternative 
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structure (2 BF plus MA and SQ on g only; Model 5 a-c) that was not described within the 

Technical Handbook nor described within the extant DAS-II factor analytic research (Canivez & 

McGill, 2016; Keith, Low, Reynolds, Patel & Ridley, 2010). Within the present study, the 

inclusion of small variance cross-loadings appeared to aide in theoretical interpretation of the 

DAS–II structure. The inclusion of correlated residuals did not necessarily improve the structural 

clarity of the model beyond the use of cross-loadings, lowered DIC in some cases, and failed to 

permit the model to converge in others. But, it did offer additional insight into the DAS–II 

structure by demonstrating that subtests were not confounded by error terms that were correlated 

and that cross-loadings do not detract from the core battery’s structural clarity as none were 

statistically significant.   

Whereas cross-loadings are familiar to the structural validity researcher who encounters 

them when using exploratory factor analysis, the use of correlated residuals may well be a 

procedure that requires further explication, scrutiny, and debate.  Questions remain about 

whether it improves structural clarity, whether it introduces statistical noise, or whether it may be 

exploited for the sole purpose of improving model fit. Because of this it is suggested that 

guidelines be established. However, the specification of correlated residuals may be of benefit. 

Unlike with ML CFA which permits only the specification of just a few correlated residuals 

often guided by theory, with BSEM the model identification issues are less of a concern and 

portend to uncover relationships that were not specified. Keep in mind, however, that BSEM is 

not a panacea for model identification issues, and is not the only option to the structural validity 

mountain top. This study demonstrated that bifactor models still experience identification 

problems when correlated residuals were specified quite possibility due to the inclusion of 

additional parameters that had to be estimated. This study’s findings regarding the DAS–II 
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support either a three-factor higher-order or three-factor bifactor structure. This study also lends 

support for an alternative two factor BF structure where MA and SQ load only on the general 

factor.   

Limitations include the need for further research on the use of BSEM. There has only 

been one prior study using BSEM for cognitive ability and just a handful investigating 

psychology, health, and management (De Bondt, Van Petegem, 2015; Fong & Ho, 2013, 2014; 

Stromeyer et al., 2015; Zyphur & Oswald, 2015). Although proponents of BSEM may claim that 

BSEM is devoid of statistical fishing expeditions, this is not entirely true. One still needs to 

specify in advance the selection of a prior and avoid the temptation to search for improved model 

fit just for its own sake. The results of this study showed that it was indeed possible to 

simultaneously estimate all cross-loadings to evaluate the nature of the constructs measured by 

each subtest scores. Thus BSEM avoided resorting to many comparisons and potentially biasing 

the estimation of the model parameters. The most controversial aspect of BSEM is the use of 

correlated residuals. There are researchers who raise concerns about their use (Stromeyer et al., 

2015). On the other hand, Muthén and Asparouhov (2012) and Asparouhov et al. (2015) contend 

that if used appropriately then the specification of correlated residuals may enhance the 

understanding of an instrument’s structure. Additional discussion and debate into this topic is 

necessary.  

In totality, the use of BSEM on the six core subtest DAS–II structure offered additional 

insight into the structure of the DAS–II not previously uncovered by the use of ML CFA within 

the Technical Handbook nor within the exploratory and Schmid-Leiman procedures used by 

Canivez and McGill (2016). As a result, a follow-up ML CFA study comparing the various two- 

and three-factor structures, including the 2 BF plus MA and SQ on g only, appears worthwhile. 
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Table 1 

Comparison of Model Fit for the DAS-II Core Battery Ages 7 to 17 using Bayesian Structural Equation Modeling 

Models 

Number of 

free 

parameters 

Posterior 

Predictive 

P-Value 

(PPP) 

Difference between 

observed & replicated 

χ
2
 95% CrI 

DIC pD 

Lower 

2.5% 

Upper 

2.5% 

1. Single Factor (g)  18 0.000 327.114 364.872 31902.352  18.116 

       

2a. Two Factor Oblique 19 0.000 32.459 70.882 31608.850 18.994 

2b. Two Factor Oblique (with Cross Loadings .01) 25 0.001 50.473 103.480 31635.589 20.912 

2c. Two Factor Oblique (Cross Loadings & Correlated Residuals .01) 40 0.500 -20.558 20.566 31553.384 15.302 

       

3a. Two Factor Higher Order 20 0.000 16.227 55.776 31594.712 20.354 

3b. Two Factor Higher Order ( Cross Loadings .001) 26 0.000  22.503 63.462 31601.397 19.686 

3c. Two Factor Higher Order (Xload/Corr Resd .001; I=250K; Table A4) 41 0.500 -20.702 20.445 31554.280 16.227 

       

4a. Two Factor Bifactor  23 0.475 -19.705 19.802 31557.689 19.196 

4b. Two Factor Bifactor (Xload .001) 29 0.539 -21.158 18.862 31554.227 17.146 

4c. Two Factor Bifactor (Xload/Resd Corr .001; I=250k)*  Model Did not Converge*   

       

5a. Two Factor Bifactor MA & SQ on g only 20 0.385 -16.952 21.401 31560.490 19.897 

5b. Two Factor Bifactor MA & SQ on g only (Cross Loadings .01; Table A2) 28 0.507 -20.894 19.514 31561.036 23.211 

5c. Two Factor Bifactor MA & SQ on g only (Xload & Corr Res .01; Table 3) 43 0.499 -20.532 20.655 31546.422 8.318 

       

6a. Three Factor Oblique 21 0.358 -16.651 23.073 31562.399 20.854 

6b. Three Factor Oblique (with Cross Loadings .01) 33 0.458 -19.659 20.276 31560.556 21.537 

6c. Three Factor Oblique (Xload & Corr Residual .01; Table A3)** 48 0.499 -20.620 20.289 31543.577 5.483 

       

7a. Three Factor Higher Order 21 0.353 -16.289 23.101 31562.034 20.266 

7b. Three Factor Higher Order (Cross Loadings .001; Table 4) 33 0.464 -19.530 19.080 31559.694 20.926 

7c. Three Factor Higher Order (Xload & Corr Residual .001) 48 0.501 -20.672 20.668 31561.587 23.546 

       

8a. Three Factor Bifactor 21 0.354 -16.812 22.217 31561.803 20.504 

8b. Three Factor Bifactor (with Cross Loadings .001; Table 2)  33 0.508 -20.115 18.786 31559.564 21.828 

8c. Three Factor Bifactor (Xload & Corr Resid .001; I=250k)*  Model Did not Converge*   

Note. PPP = posterior predictive p-value; CrI = credibility interval; DIC = deviance information criterion; pD = Estimated number of parameters, MA = 

Matrices, SQ = Sequential & Quantitative Reasoning, g = general intelligence. *Kolmogorov-Smirnov Distribution test indicates model noncovergence. **CI for 

individual subtests contains values >1.00 for all subtest on respective factors. I=Iterations 
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Table 2  

Three Factor Bifactor BSEM with Cross-Loadings and Small Variance (.001) Priors  

Loading estimates (median) 

General       

   g  Verbal   Nonverbal  Spatial 

Subtest 

b        S
2
 

[95% CI]  

b        S
2
 

[95% CI]  

b        S
2
 

[95% CI]  

b        S
2
 

[95% CI]  h
2
 u

2
 

Word Definitions 

 

.658    

[.621    
.433   

.694]    
 

 

.467 

[.419 

.218 

 .511] 

 .000 

[-.061 

.000 

.061] 

 -.004 

[-.056 

.000 

.047] 

 .653 .347 

               

Verbal Similarities .665 

[.628 

.442 

.701] 

 .467 

[.419 

.218 

.511] 

 .000 

[-.062 

.000 

.060] 

 -.002 

[-.054 

.000 

.049] 

 .662 .338 

               

Matrices .766 

[.731 

.587 

.796] 

 -.004 

[-.055 

.000 

.045] 

 -.020 

[-.215 

.000 

.196] 

 .014 

[-.045 

.000 

.071] 

 .601 .399 

               

Sequential & Quantitative .810 

[.777 

.656 

.840] 

 .017 

[-.036 

.000 

.067] 

 -.020 

[-.215 

.000 

.197] 

 -.007 

[-.064 

.000 

.050] 

 .671 .329 

               

Pattern Construction .714 

[.681 

.510 

.748] 

 -.027 

[-.075 

.001 

.020] 

 .000 

[-.063 

.000 

.063] 

 .302 

[.222 

.091 

.363] 

 .604 .396 

               

Recall of Designs .639 

[.602 

.408 

.676] 

 .016 

[-.032 

.000 

.063] 

 .000 

[-.060 

.000 

.062] 

 .302 

[.223 

.091 

.363] 

 .501 .499 

               

               

             .615 .385 

ECV*  .822   .118   .000   .049  .991*  

Total Variance   .506   .073   .000   .030    

 ω" / ω"#! ! .835   .263   .000   .118 ! ! !

Η ! .869   .358   .001   .167 ! ! !

PUC ! .800          ! ! !

Note. b = standardized loading of subtest on factor, S
2
 = variance explained in the subtest, h

2
 = communality, u

2
 = uniqueness, ECV = 

explained common variance,!ωH = Omega-hierarchical (general factor),!ωHS = Omega-hierarchical subscale (group factors). 

BSEM=Bayesian Structural Equation Modeling, CI=Confidence Interval, g = general intelligence. *Does not total to 100% due to use 

of median parameter estimates. Loadings in bold were freely estimated. Other loadings were estimated with small (0.001) variance 

priors.!

!

! !
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Table 3  

Two Factor Bifactor BSEM MA and SQ on g only with Cross-Loadings and Correlated Residuals (.01).  

 

 

General     

   G  Verbal   Nonverbal 

Subtest 

b        S
2
 

[95% CI]  

b        S
2
 

[95% CI]  

b        S
2
 

[95% CI]  h
2
 u

2
 

Word Definitions 

 

.607    

[.441    
.368  

.733]    
 

 

.612 

[.464 

.375 

 .703] 

 .037 

[-.144 

.001 

.209] 

 .754 .246 

            

Verbal Similarities .621 

[.454 

.386 

.747] 

 .612 

[.463 

.375 

.703] 

 .028 

[-.156 

.001 

.203] 

 .771 .229 

            

Matrices .839 

[.652 

.704 

.930] 

 -.029 

[-.212 

.001 

.157] 

 -.018 

[-.200 

.000 

.161] 

 .722 .278 

            

Sequential & Quantitative .866 

[.697 

.750 

.940] 

 -.012 

[-.200 

.000 

.168] 

 -.021 

[-.209 

.003 

.161] 

 .767 .233 

            

Pattern Construction .658 

[.501 

.433 

.782] 

 .037 

[-.140 

.001 

.212] 

 .550 

[-.046 

.330 

.646] 

 .748 .252 

            

Recall of Designs .590 

[.395 

.348 

.740] 

 .042 

[-.144 

.002 

.217] 

 .550 

[-.046 

.330 

.647] 

 .664 .336 

            

ECV*  675   .170   .137  .983  

Total Variance   .498   .126   .101  .725 .275 

 ω" / ω"#   .800   .428   .358    

H  .887   .545   .464    

PUC  .800          

Note. b = standardized loading of subtest on factor, S
2
 = variance explained in the subtest, h

2
 = communality, u

2
 = 

uniqueness, ECV = explained common variance, ωH = Omega-hierarchical (general factor), ωHS = Omega-

hierarchical subscale (group factors). BSEM=Bayesian Structural Equation Modeling, CI=Confidence Interval, 

MA=Matrices, SQ= Sequential & Quantitative Reasoning, g = general intelligence. *Does not total to 100% due 

to use of median parameter estimates. Loadings in bold were freely estimated. Other loadings were estimated 

with small (0.01) variance priors.  
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Table 4  

Three Factor Higher Order BSEM with Cross Loadings and Small Variance (.001) Priors 

Loading estimates (median) 

General*    Residualized    Residualized    Residualized    

g  Verbal   Verbal  Nonverbal  Nonverbal  Spatial  Spatial    

Subtest 

b        S
2
 

[95% CI]  

b        S
2
 

[95% CI]  

b        S
2
 

  

b        S
2
 

[95% CI] 

 b        S
2
 

 

 b        S
2
 

[95% CI] 

 b        S
2
 

 

 

h
2
 u

2
 

Word Definitions 

 

.654    

 

.428  

    

 

 

.804 

[.740 

.646 

.878]  

 .470 

 

.221  .002 

[-.046 

.000 

.048] 

    -.001 

[-.048 

.000 

.045] 

    .649 .351 

Verbal Similarities .663 

 

.439  .814 

[.742 

.663 

.885] 

 .474 .225  .002 

[-.047 

.000 

.050] 

    .000 

[-.048 

.000 

.047] 

    .664 .336 

Matrices .769 

 

.591 

 

 -.006 

[-.052 

.000 

.038] 

    .774 

[.705 

.599 

.841] 

 .101 .010  .007 

[-.041 

.000 

.057] 

    .601 .399 

Sequential & Quantitative .801 

 

.642 

 

 .016 

[-.030 

.000 

.062] 

    .807 

[.739 

.651 

.875] 

 .170 .029  -.001 

[-.050 

.000 

.048] 

    .671 .329 

Pattern Construction .728 

 

.530 

 

 -.021 

[-.066 

.000 

.022] 

    .000 

[-.048 

.000 

.047] 

    .800 

[.735 

.640 

.869] 

 .293 .086  .616 .384 

Recall of Designs .625 

 

.391 

 

 .015 

[-.029 

.000 

.060] 

    .001 

[-.047 

.000 

.049] 

    .687 

[.619 

.472 

.755] 

 .312 .097  .488 .512 

ECV  .819      .121      .011      .050    

Total Variance   .504      .074      .007      .031  .615 .385 

ωH\ ωHS**  .833      .269      .005      .118    

H  .867      .364      .011      .168    

PUC  .800                      

                        

Second Order Loadings 

(median)        

 

      

Verbal .814                      

 [.776 .847]                      

Nonverbal .993                      

 [.972 1.00]                      

Spatial .910                      

 [.875 .941]                      

Note. b = standardized loading of subtest on factor, S
2
 = variance explained in the subtest, h

2
 = communality, u

2
 = uniqueness, ECV = explained common variance, ωH = Omega-

hierarchical (general factor), ωHS = Omega-hierarchical subscale (group factors), g = general intelligence. Omega estimates based on residualized group factor loadings. Loadings in bold 

were freely estimated. Other loadings were estimated with small (0.001) variance priors. Residualized using the following formula: !" # $%&'()*+,%-"  *Calculated using the path tracing 

rules. **Used residualized estimates to calculate omega. 
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