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Abstract

Lithospheric stresses play a crucial role in geological processes at various spatial and tem-

poral scales. However, the distribution and magnitudes of these stresses are poorly con-

strained in diverse geodynamic settings.

The objective of this thesis is to enhance our understanding of stress distribution and

magnitudes surrounding two distinct geological features and their implications. The first

part of the thesis focuses on diapirism, a process where a less dense body rises into a

denser material, playing a major role in the Earth’s heat and mass transfer. Quantifying

the upward velocity of buoyant bodies is essential, as it determines the significance of

diapirism in different geological contexts. To achieve this, we developed a 3-D numerical

algorithm in spherical coordinates using the Julia programming language. The algorithm

solves the Stokes equations under the influence of gravity, with rheology incorporating

a combination of linear and power-law viscous flow laws. Employing finite difference and

pseudo-transient methods, the algorithm calculates instantaneous stress and velocity fields.

In the first study, the model consists of a buoyant sphere ascending in a denser medium

under strike-slip shearing. Results indicate that the diapir’s ascent velocity depends on two

stress ratios: (a) regional stress to characteristic stress, and (b) buoyancy stress to char-

acteristic stress. Regional stress arises from far-field deformation, while buoyancy stress

originates from the diapir itself as it attempts to move upwards. The characteristic stress

is a material property, marking the stress level at which deformation behavior transitions

from diffusion creep (linear flow law) to dislocation creep (power-law flow law). Indeed

the stress ratios generate stress weakening which significantly impacts the rising veloc-

ity of the diapir. Furthermore, we compared our results with existing analytical estimates,
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demonstrating their accuracy and applicability across a wide range of geodynamic settings.

Additionally, we were able to improve these estimates by introducing a shape factor and

an extra term accounting for the impact of the regional stresses.

The second part of the thesis focuses on continental plateaus. It is well-established that

stress states around significant topography cannot be lithostatic to maintain their geometry

over extended periods of time. Depth-averaged stress and strength estimations exist, but

the spatial distribution of these quantities throughout the lithosphere remains unclear. The

goal of the second part of the thesis is to provide constraints on their spatial distribution.

To accomplish this, we employed the same numerical algorithm as in the first part of the

thesis, with a predefined geometry of a continental plateau. We calculated stress and

velocity fields generated only by gravity and tested the impact of various parameters and

characteristics on these fields. Results reveal that curvature has a minor impact on the

stress field, while the corner region significantly influences stress distribution, particularly

shear stresses. Varying viscosities of the crust and lithospheric mantle strongly affect stress

distribution and plateau spreading velocities. Our results show that lithospheric strength is

mainly located in the crust rather than the lithospheric mantle. Also, our findings indicate

that stress cannot serve as a proxy for strength. Additionally, we derive simple analytical

estimates for horizontal deviatoric stress and spreading velocities of a continental plateau.



Résumé

Les contraintes lithosphériques jouent un rôle crucial dans les processus géologiques à

différentes échelles spatiales et temporelles. Cependant, la distribution et l’amplitude de

ces contraintes sont mal connues dans divers contextes géodynamiques. L’objectif de cette

thèse est ainsi d’améliorer notre compréhension des contraintes et de leur implication au

sein de deux caractéristiques géologiques distinctes.

La première partie de cette thèse est dédiée à l’étude du diapirisme : ce processus con-

siste en l’élévation d’un corps moins dense au sein d’un milieu plus dense. Il joue un

rôle majeur quant au transfert de chaleur et de masse dans la Terre. C’est pourquoi

quantifier la vitesse d’ascension de ces corps est essentiel. Une telle chose permettrait de

déterminer l’importance du diapirisme dans divers contextes géologiques. Pour ce faire,

nous avons développé un algorithme numérique 3D en coordonnées sphériques ; nous y

avons utilisé le langage de programmation Julia. Cet algorithme résout les équations de

Stokes sous l’influence de la gravité, avec une rhéologie combinant des lois d’écoulement

visqueux linéaire et non-linéaire. En utilisant les méthodes des différences finies et pseudo-

transiente, il calcule les champs de contraintes et de vitesses instantanées. L’étude du

diapirisme est menée au moyen d’une modélisation numérique. Ce modèle consiste en

une sphère s’élevant dans un milieu plus dense, le tout dans une zone de cisaillement. Les

résultats indiquent que la vitesse d’ascension du diapir dépend de deux ratios de contraintes

: (a) la contrainte régionale par rapport à une contrainte caractéristique, et (b) la contrainte

de flottabilité par rapport à la même contrainte caractéristique. La contrainte régionale

provient de la déformation à grande échelle, tandis que la contrainte de flottabilité prend

son origine du diapir lui-même alors qu’il tente de s’élever. La contrainte caractéristique
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est une propriété du matériau, marquant le niveau de contrainte auquel la déformation

passe de diffusion (loi d’écoulement linéaire) à dislocation (loi d’écoulement non-linéaire).

En effet, les ratios de contraintes génèrent une modification de la viscosité, ce qui impacte

grandement la vitesse de remontée du diapir. De plus, nous avons comparé nos résultats

avec des estimations analytiques existantes, démontrant leur précision et leur applicabilité

dans beaucoup de contextes géodynamiques. De plus, nous avons comparé nos résultats

avec des estimations analytiques existantes, ce qui nous a permis de les améliorer en y

ajoutant un terme prenant en compte l’effet des contraintes régionales. Les estimations

analytiques démontrent une grande précision et une bonne applicabilité dans beaucoup de

contextes géodynamiques.

La deuxième partie de la thèse se concentre sur les plateaux continentaux. Il est bien

établi que les états de contrainte autour d’une topographie significative ne peuvent pas

être lithostatiques pour maintenir la géométrie sur de longues périodes. Des estimations

de contraintes et de résistance moyennées sur la profondeur existent, mais la distribu-

tion spatiale de ces quantités à travers la lithosphère demeure floue. L’objectif de la

deuxième partie de la thèse est, ainsi, de mieux définir leur distribution spatiale. Pour

ce faire, nous avons utilisé le même algorithme numérique que dans la première partie

de la thèse, avec une géométrie prédéfinie de plateau continental. Nous avons alors cal-

culé les champs de contraintes et de vitesses générés uniquement par la gravité et testé

l’impact de divers paramètres et caractéristiques sur ces champs. Les résultats révèlent

que la courbure a un impact mineur sur le champ des contraintes, tandis que les vari-

ations latérales de l’épaisseur de la croûte influent significativement la distribution des

contraintes, en particulier les contraintes de cisaillement. La variation des viscosités de

la croûte et du manteau lithosphérique montre une forte influence sur la distribution des

contraintes et des vitesses de propagation du plateau. Nos résultats montrent également

que la résistance lithosphérique se trouve principalement dans la croûte plutôt que dans le
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manteau lithosphérique. De plus, nos conclusions indiquent que les contraintes ne peuvent

pas être utilisées comme indicateur de la résistance. Finallement, nous avons développé

des estimations analytiques simples afin d’évaluer les contraintes horizontales ainsi que la

vitesse d’écoulement d’un plateau continental.





CHAPTER 1

General Introduction

1



2 CHAPTER 1.

1.1 Outline of the Thesis

This thesis is structured in four chapters and an appendix section. Chapters 2 and 3 are

written in the form of scientific articles supported by a general introduction (this chapter).

It presents the motivation of this thesis, followed by the geological contexts of both studies,

and finally the approach and method employed. Chapter 4 is a general conclusion that

summarizes the main results of this thesis and provides future perspectives for this study.

- Chapter 2: Quantifying Diapir Ascent Velocities in Power-Law Viscous Rock Under

Far-Field Stress: Integrating Analytical Estimates, 3D Numerical Calculations and

Geodynamic Applications.

This chapter is a scientific article accepted for publication in the journal Geochem-

istry, Geophysics, Geosystems. The co-authors are Yury Podladchikov, Ludovic Räss

and Stefan M. Schmalholz.

In this part of the thesis, we present a 3D numerical model that calculates the stress

and velocity fields around a diapir rising in a strike-slip environment. We investigate

the effects of two stress ratios on the rising velocity of the diapir. This velocity of

ascent is essential to measure the importance of diapirism in different geodynamic

settings. Furthermore, we compare our results with existing analytical estimates.

- Chapter 3: 3D Stresses and Gravitational Spreading Velocities in Continental

Plateaus: Analytical Estimates, Numerical Calculations With Earth’s Curvature and

Application to the Tibetan Plateau.

This chapter is a scientific article submitted in the journal Geochemistry, Geophysics,

Geosystems. The co-authors are Ludovic Räss and Stefan M. Schmalholz.

This chapter aims to better constrain the stress distribution and magnitudes in and

around continental plateaus. We use the same numerical model as Chapter 2 and
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we test the impact of different parameters on the resulting stress field. This study

allows us to better understand the relative contribution of the continental crust and

of the lithospheric mantle in holding the stresses supporting the plateau over long

time scales. Also, we derive simple analytical estimates for the crustal horizontal

deviatoric stress and spreading velocities of continental plateaus.

1.2 Motivation

The motivation for this PhD thesis is to provide a better understanding of the stress

distribution and magnitudes in the case of two full 3D geological applications, namely

diapirism and continental plateaus. The focus is on the lithospheric stresses because they

control many major processes, such as seismicity, volcanism, mountain formation, etc.

(e.g., Turcotte and Schubert, 2021). The following paragraphs present why stresses are

crucial to quantify the different types of lithospheric stresses and their impact, followed

by a general context of diapirism and continental plateaus in Section 1.3. Finally, the

approach and method employed in this thesis are introduced in Section 1.4.

Stresses are a force per unit surface, with the unit Pascal (Pa) (Turcotte and Schubert,

2021). They act on each surface of an object at the same time but with various intensities

(Figure 1.1a). They are essential to evaluate how materials react to external or internal

forces, which is fundamental to understand rock mechanics. Stresses can be generated by

different geological processes, such as plate tectonic movements, temperature variations,

or metamorphic reactions. There exist three main types of stress (Turcotte and Schu-

bert, 2021). The first type is normal stresses. They act perpendicular to the surface of

a material and can be compressive or extensive (Figure 1.1b and c). The second type is

shearing stresses. They occur when the force is applied parallel to the surface of a ma-

terial, leading to relative sliding (Figure 1.1d). Finally, the third type is hydrostatic (or
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lithostatic) stresses (Figure 1.1e). In this case, stresses are identical in all directions, and

their magnitude results from the pressure exerted by the rock column above a given posi-

tion. These stresses increase with depth. Deformation arises when the stress state differs

from the lithostatic in one or more directions. Indeed, stresses are a 3D feature that can

trigger complex deformations. Hence, understanding their three-dimensional distribution

is a challenge and is necessary to better interpret and apprehend geological processes.

Figure 1.1: (a) Stresses acting on a cube in 3D (Turcotte and Schubert, 2021). The
other panels display the different types of stresses acting on a volume (Nelson, 2015):
(b) compressive stress, (c) extensive stress, (d) shear stress, and (e) confining stress
(when in a lithostatic stress state).

Stresses can be represented in the Mohr circle (Figure 1.2). Mean stress is defined at the

centre of the circle. Maximum and minimum normal stresses, σ1 and σ3 respectively, are

indicated where the circle crosses the x-axis. Hence, deviatoric stresses are defined by the

radius of the circle, and differential stress (σ1 − σ3) is represented by the diameter of the

circle.
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Figure 1.2: Schematic representation of Mohr’s circle.

Stresses induce deformations at all scales. At the microscopic scale, they act on individual

grains, leading to folding, stretching, or even breaking of minerals (Figure 1.3a) (Plümper

et al., 2022). At a local scale, they are responsible for different geological structures

such as faults, shear zones, or folds (Figure 1.3b) (Gay and Weiss, 1974; Rutter, 1999;

Gudmundsson et al., 2010). At a regional scale, stresses have a major impact on the

geography, geomorphology and the geology of large areas as they control the formation of,

for example, mountain belts, sedimentary basins, and major faults (Figure 1.3c) (Turcotte

and Schubert, 2021).

Over geological time scales, deformations, and the accompanying stresses are inherently

linked with motion. Motion implies velocity, and these three elements interact to form a

complex system. In this thesis, we try to understand it better through two different appli-

cations occurring at different time and spatial scales, diapirism and continental plateaus.

Furthermore, these two applications represent full 3D geological features that cannot be
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Figure 1.3: Examples of stress-induced deformations at (a) microscopic scale
(Plümper et al., 2022), (b) local scale (Fossen, 2016), and (c) regional scale (Web-
site of Eastern Connecticut University).

simplified in 2D. Hence, we perform full 3D numerical calculations to ensure a better

understanding of these phenomenons.

1.3 Objectives and Geological Contexts

In the previous section, we have seen that lithospheric stresses are essential to understand

the dynamics of many geological processes. However, in the case of the two geological

features studied in this thesis, diapirism and continental plateaus, stresses are poorly un-

derstood and constrained. The following sections present their geological contexts and the

objectives of each study.
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1.3.1 Chapter 2: Stress State Around a Diapir

Diapirism is an important mechanism of mass and heat transportation in Earth. It is the

mechanism by which less dense material moves upwards through the denser surrounding

rocks (Figure 1.4) (Turcotte and Schubert, 2021). The rising material can be, for exemple,

magma (e.g., Marsh, 1982; Weinberg and Podladchikov, 1994; Michail et al., 2021), rock

salt (e.g., Jackson et al., 1990; Poliakov et al., 1993), mud (e.g., Mazzini et al., 2009) and

sediments buried at subduction zones (e.g., Behn et al., 2011; Klein and Behn, 2021; Smye

and England, 2023). Hence, diapirism can occur at various spatial and temporal scales.

One of the main questions around diapirism is the velocity of ascent, which is essential to

understand the importance of this process in various geological settings. However, a major

difficulty in estimating the velocity of ascent lies in the fact that diapirs form and rise at

large depths, where it is impossible to directly measure the velocity. Hence, much research

is performed based on mineral dating, studies of the surrounding rocks, observation of

current volcanic activity (e.g., Skinner and Tanaka, 2006; Fossen, 2016; Burton-Johnson

et al., 2022; Copley et al., 2023) and numerical modeling (e.g., Polyansky et al., 2016;

Louis-Napoléon et al., 2020).

Simplest estimates of rising velocities of a diapir concern the movement of a rigid sphere in

a weaker linear viscous surrounding medium. The displacement is triggered by the density

difference between the sphere and the medium. This estimate is called the Stokes law

(Stokes, 1850). However, in geology, diapirs are generally weaker than surrounding rocks.

In early 20th century, Hadamard (1911) and Rybczynski (1911) presented an analytical

estimation to predict the velocity of ascent of a diapir, knowing only its size, the density

difference between the diapir and the surrounding rocks and their respective viscosities.

Their analytical estimation is based on many simplifications.



8 CHAPTER 1.

Figure 1.4: Sketches of diapirism process (Vendeville, 2002) from the present-day
post-diapir stage (a) to initial situation (d). The black layer is less dense than the
upper layers, hence it wants to move upwards.

First, they suppose that rocks behave like a Newtonian fluid. This means that the viscosity

of rocks is constant, it does not depend on external parameters such as stresses, temper-

ature, or chemical composition variations. In other words, it is linear viscous. Also, they

suppose that diapir material properties, such as density, viscosity, and velocity are constant

in time. They also consider an idealized geometry of the diapir, a sphere or a cylinder.

Furthermore, they neglect the thermal effects and the complex interactions between the

diapir and the surrounding rocks.
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This analytical estimation has been further developed by many researchers (e.g., Dazhi

and Tanner, 1985; Kawase and Moo-Young, 1986) to obtain better evaluation of the ascent

velocity of diapirs. One in particular was made by Weinberg and Podladchikov (1994).

They introduced a viscosity dependence on temperature and stresses and studied the ascent

mechanism in a porous medium. Their solution is still very simplified and only provides

the rising velocity of a buoyant body, without knowing the stress distribution around the

diapir. Their solution is used in current studies (e.g., Vynnycky and O’Brien, 2013; Klein

and Behn, 2021; Copley et al., 2023), but it was never tested with a full 3D numerical

algorithm.

The aims of this study are (a) to quantify the velocity of ascent of a weak diapir, represented

by a sphere, in a medium under strike-slip shearing. This allows to better understand the

impact of buoyancy and regional stresses on the rising velocity by systematically varying

the density difference between the diapir and the surrounding medium, ∆ρ, and the char-

acteristic stress, τC , marking the stress at which the deformation behavior changes from

linear to power-law viscous (see Section 1.4.2). (b) To compare our numerical results with

the analytical estimates of Weinberg and Podladchikov (1994).

1.3.2 Chapter 3: Stress State Around a Continental Plateau

The second part of this thesis is focusing on continental plateaus. Examples of such

geological features are the Tibetan plateau (Figure 1.5a), located at the limit between

the Indian and the Eurasian plates, and the Altiplano (Figure 1.5b) associated with the

subduction of the Nazca plate beneath the South American plate. They are characterized

by large areas located high above sea level (average of 5′000 m altitude for the Tibetan

plateau) and a thick crust that may be in isostatic equilibrium. Also, they are mostly

associated with convergent plate boundaries and mountain formation.



10 CHAPTER 1.

Figure 1.5: Examples of continental plateaus: (a) Tibetan plateau (Lechmann et al.,
2014), and (b) Altiplano (Prezzi et al., 2014)

It is well known that the presence of large topography and crustal thickness variations

implies that the stress state within the lithosphere is not lithostatic (Darwin, 1882; Jeffreys,

1932; Turcotte and Schubert, 2021). Otherwise, such large features would flow apart

instantaneously, like honey on a plate (Molnar, 2015).

There exist different models that allow to estimate the depth-integrated, or averaged,

lithospheric strength and stresses, such as thin viscous sheet models (England and McKen-

zie, 1982; England and Houseman, 1986, 1988; England and Molnar, 1997; Medvedev and

Podladchikov, 1999; Flesch et al., 2001) and evaluations based on lateral variations of

gravitational potential energy (GPE) (Parsons and Richter, 1980; Molnar and Lyon-Caen,

1988; Molnar et al., 1993; Schmalholz et al., 2014), or more generally on lateral variations

of topography and crustal thickness (Artyushkov, 1973).
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Strength, together with stresses, control lithospheric deformations (Schmalholz et al.,

2019). Yet, the relative contributions of the crust and the lithospheric mantle remain

debated. Some studies suggest that the crust is weak, but the plateau can hold because

the lithospheric mantle is strong (e.g., England and Molnar, 2015), others, on the opposite,

consider that the crust has to be strong in order to maintain large topographic features on

Earth through geological time periods (e.g., Flesch et al., 2001).

Figure 1.6: Map view of GPE values around continental plateau (Schmalholz et al.,
2019). Other panels represent 3 horizontal profiles for (a) GPE values, (b) topography,
and (c) depth of the Moho.
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Gravitational potential energy (GPE) is defined by the depth-integrated lithostatic pres-

sure. This calculation is reliable because it requires knowledge of topography, crustal

thickness, and crustal and lithospheric mantle densities that are well-constrained. As a

result, GPE is larger where crustal thickness and topography are important. Figure 1.6

displays the lateral variations of GPE around the Tibetan plateau. These lateral variations

of GPE characterize an instability of the crust (England and Molnar, 2022). As a con-

sequence, stresses are expected to show horizontal extension and vertical compression of

the plateau, triggering a horizontal compression of the surrounding lowland. This gravity-

driven flow is called gravitational collapse (Rey et al., 2001). Also, the fact that features

like the Tibetan plateau exist and are maintained over geologic time scales implies that

spreading velocities are small, hence rocks inside, around, or under the plateau need to be

strong enough to support the stresses. However, the strength and stress magnitude and

distribution within the lithosphere remain unclear.

This leads to the first aim of this study, that is to quantify the stresses inside and around

a continental plateau exhibiting a corner region representing a lateral geometry variation.

Second, continental plateaus cover very large areas (thousands to millions of km2) and

previous studies have shown that a small bending can significantly impact the mechanical

stability of a thin sheet (Pini et al., 2016). Hence, we investigate the effect of the Earth’s

double curvature on the stress field by increasing the curvature of the model domain. Third,

the relative contribution of the crust and of the lithospheric mantle to the strength of the

lithosphere is still debated. In this study, we vary their respective viscosity to quantify

their relative impact on the lithospheric strength. Furthermore, we test the impact of a

non-linear rheology (power-law viscous flow law) inducing stress-weakening on the stress

field and horizontal velocities.
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1.4 Approach and Method

1.4.1 Mathematical Model

In this thesis, we use continuum mechanics to describe deformations and stress occurring

around rising diapirs and continental plateaus. This is feasible because at macro-scale

material appears to be continuous. In other words, material properties, such as density

or temperature for example, vary gradually in space. To apply continuum mechanics, the

studied closed system has to conserve mass, momentum and energy (Burg and Schmalholz,

2015). In this study, we focus on the mechanics, ignoring energy variations to understand

the first order mechanical processes. Furthermore, we consider that material is incompress-

ible.

These conditions lead to a system of equations including conservation of mass:

0 =
∂Vi

∂xi

(1.1)

and conservation of momentum (force balance equation):

0 =
∂τij
∂xj

− ∂P

∂xi

+ ρgi (1.2)

where Vi is the component of the velocity vector in direction xi, τij is the (i, j)
th component

of the deviatoric stress tensor, P is the pressure, ρ the density and gi the gravitational

acceleration in direction xi. The total stress tensor is decomposed into a mean stress

(pressure) and a deviatoric stress tensor: σij = −δijP + τij, δij being the Kronecker delta.

To this system are added constitutive equations, that are material dependant:

τij = 2ηE ˙ϵij = 2ηE

(
1

2

(
∂Vi

∂xj

+
∂Vj

∂xi

))
(1.3)
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where ηE is the effective viscosity, depending on the rheology, and ˙ϵij is the (i, j)th com-

ponent of the strain rate tensor. In the end, this system is a closed system of equations,

composed by 10 equations and 10 unknowns (P , V1, V2, V3, τ11, τ22, τ33, τ12, τ13, τ23, the

stress tensor being symetric).

1.4.2 Viscous Deformation Behaviors

A reasonable assumption is that rocks deform like a fluid over geological time scales. In

other words, the deformation behavior is viscous, that is when a material acts like a fluid

when exposed to stresses. Material has a certain viscosity, which means that it resists

the deformation by opposing the movement of inner particles. Also, deformation occurs

gradually in time. This time dependence implies that if the deformation is slow, stresses

will be small, and if the deformation is fast, stresses will be large. In a viscous material,

the relation between stress and strain can be linear or non-linear. This leads to different

types of viscous deformations (i.e., creep).

Diffusion creep (represented by a linear flow law) is a mechanism of viscous deformation

based on atomic or vacancy movement inside of a solid material (Kohlstedt, 2007). When a

stress is applied, atoms or vacancies start to move in the direction of the stress. If material

is compressed (Figure 1.7), atoms move in the direction of the least compressive stress,

which contributes to the thinning of the material in the direction of the largest stress.

This mechanism is slow and can happen under relatively small stresses. Another viscous

deformation mechanism is dislocation creep (represented by a power-law flow law). In this

type of deformation, dislocations, that is a group or a line of atoms, are moving together

inside of a crystal in response to stress (Figure 1.8) (Kohlstedt, 2007). This deformation

is faster than diffusion creep and needs larger stresses to occur.
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Figure 1.7: Diffusion creep : schematic view (Passchier and Trouw, 2005)

Figure 1.8: Dislocation creep : Schematic view (Passchier and Trouw, 2005)
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In nature, different types of deformation mechanisms can occur simultaneously. In this

thesis, we focus on viscous deformation because we want to understand the impact of

diffusion creep and dislocation creep on the geological processes occuring around rising

diapirs and continental plateaus. Hence, we use a combined flow law to define the rheology

of the material (more explanations in Section 2.2.1). Practically, the effect of that combined

flow law is that in regions where stresses are large (above a predefined stress threshold

named characteristic stress), the effective viscosity decrease locally representing dislocation

creep. On the opposite, in regions where stresses are small, the material behaves linearly

and diffusion creep is dominant.

1.4.3 Numerical Method

Continuum mechanics provides a closed system of equations (same number of unknowns

and equations), but no analytical solutions of the partial differential equations exist for

complex geometries. Hence, we built a numerical algorithm capable of solving this system

of equations.

To achieve this, one has to first discretize the equations on a numerical grid, here we use the

finite difference method on a staggered grid with constant spacing (Gerya, 2019; Räss et al.,

2022). Second, one has to decide on a numerical method to solve the equations. We use the

pseudo-transient method to obtain a steady-state solution of the governing equations. This

method is iterative and allows to solve the equations in a matrix-free way (Räss et al., 2022).

The concept of the method is to add a pseudo-time derivative to the governing equations

and give the model an initial guess of the stress and velocity fields. Because the initial

guess does not satisfy the steady-state equations, the pseudo-transient method iterates

until the pseudo-time derivatives become smaller than a predefined tolerance value. When

this happens, a steady-state solution is found.
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In this thesis, we built three different numerical algorithms solving the same system of

equations in different coordinates systems (Cartesian, cylindrical and spherical coordi-

nates), using the Julia language. The developped numerical codes are displayed in the

Appendix section.
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Abstract

Diapirism is crucial for heat and mass transfer in many geodynamic processes. Under-

standing diapir ascent velocity is vital for assessing its significance in various geodynamic

settings. Although analytical estimates exist for ascent velocities of diapirs in power-law

viscous, stress weakening fluids, they lack validation through 3D numerical calculations.

Here, we improve these estimates by incorporating combined linear and power-law viscous

flow and validate them using 3D numerical calculations. We focus on a weak, buoyant

sphere in a stress weakening fluid subjected to far-field horizontal simple shear. The as-

cent velocity depends on two stress ratios: (a) the ratio of buoyancy stress to characteristic

stress, controlling the transition from linear to power-law viscous flow, and (b) the ratio

of regional stress associated with far-field shearing to characteristic stress. Comparing an-

alytical estimates with numerical calculations, we find analytical estimates are accurate

within a factor of two. However, discrepancies arise due to the analytical assumption

that deviatoric stresses around the diapir are comparable to buoyancy stresses. Numerical

results reveal significantly smaller deviatoric stresses. As deviatoric stresses govern stress-

dependent, power-law viscosity, analytical estimates tend to overestimate stress weakening.

We introduce a shape factor to improve accuracy. Additionally, we determine character-

istic stresses for representative mantle and lower crustal flow laws and discuss practical

implications in natural diapirism, such as sediment diapirs in subduction zones, magmatic

plutons or exhumation of ultra-high-pressure rocks. Our study enhances understanding

of diapir ascent velocities and associated stress conditions, contributing to a thorough

comprehension of diapiric processes in geology.
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Plain Language Summary

A diapir is a volume of rock that rises within a larger, denser rock mass due to its lower

density and the force of gravity. Understanding the speed at which diapirs ascend is crucial

for determining their significance in specific geologic settings, such as subduction zones.

In this study, we use advanced computer simulations to calculate the ascent velocity of a

spherical diapir within a denser surrounding material. The surrounding material is sub-

jected to horizontal shearing, and its behavior resembles that of a nonlinear fluid, where

its resistance to shear, known as viscosity, depends on the applied stress. By conducting

three-dimensional computer simulations, we not only test the accuracy of existing mathe-

matical equations commonly used to estimate diapir velocity but also make improvements

to enhance their precision. These equations help us estimate how quickly diapirs rise in

different geodynamic environments. By advancing our understanding of diapir ascent ve-

locities, we gain valuable insights into the processes that shape our planet’s geological

features.

Keypoints

• 3D GPU-based numerical calculations of diapir velocities in power-law viscous fluid

under far-field stress

• New analytical velocity estimates are controlled by two stress ratios and agree with

numerical results

• Stress weakening in tectonically active regions can increase diapir velocity by several

orders of magnitudes
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2.1 Introduction

Diapirism is an important mechanism of heat and mass transport in the Earth (e.g., Ram-

berg, 1968; Whitehead et al., 1975; Schubert et al., 2001; Turcotte and Schubert, 2021). It

mainly occurs in viscously deforming rock (e.g., Turcotte and Schubert, 2021), but can also

be initiated in settings with frictional overburden (e.g., Poliakov et al., 1993, 1996). Di-

apirism can occur on various temporal and spatial scales and is a mechanism for the ascent

of, for example, magma (e.g., Marsh, 1982; Rabinowicz et al., 1987; Cruden, 1988; Weinberg

and Podladchikov, 1994, 1995; Miller and Paterson, 1999; Burov et al., 2003; Cruden and

Weinberg, 2018; Michail et al., 2021), rock salt (e.g., Jackson et al., 1990; Poliakov et al.,

1993; Schultz-Ela et al., 1993; Jackson and Vendeville, 1994), mud (e.g., Mazzini et al.,

2009) or sediments buried at subduction zones (e.g., Gerya and Yuen, 2003; Behn et al.,

2011; Marschall and Schumacher, 2012; Klein and Behn, 2021; Smye and England, 2023).

Magma ascent by diapirism is, for example, an important mechanism contributing to the

volcanic and igneous plumbing systems (e.g., Cruden and Weinberg, 2018). At subduction

zones, for example, sediment diapirs, which detach from subducting slabs and rise into the

above, hotter mantle wedge, are presumably the reason for the so-called sediment melt

signature in arc lavas (e.g., Plank and Langmuir, 1993; Behn et al., 2011). Furthermore,

diapirism was suggested as potential mechanism for the exhumation of some high- and

ultra-high-pressure, (U)HP, terranes, for which very fast, > 1 cm/yr, exhumation veloci-

ties have been estimated (e.g., Burov et al., 2001, 2014; Little et al., 2011; Schmalholz and

Schenker, 2016; Schwarzenbach et al., 2021). For all the various forms of diapirism, the

ascent velocity of the diapir is the essential quantity to assess the importance of diapirism

for specific geodynamic settings.

The simplest estimate for the ascent velocity of a diapir is given by the so-called Stokes

law which is applicable for the ascent, or fall, of a rigid sphere in a denser, or lighter,
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linear viscous fluid (Stokes, 1850). However, diapirs in geodynamics are mostly not rigid

and are commonly mechanically weaker than the surrounding rocks (e.g., Weinberg and

Podladchikov, 1994). Furthermore, viscous deformation of natural rock surrounding a

rising diapir can occur by dislocation creep, which is described by a non-linear, power-

law viscous flow flaw (e.g., Weinberg and Podladchikov, 1994). In a power-law viscous

fluid, the effective viscosity depends on the stress, or alternatively the strain rate, in the

fluid (e.g., Fletcher, 1974; Schmalholz and Fletcher, 2011; Turcotte and Schubert, 2021).

For rocks, higher stresses cause smaller effective viscosities (e.g., Hirth and Kohlstedt,

2003; Karato, 2008). Here, we refer to the decrease of the effective viscosity caused by an

increase in stress as stress weakening (e.g., Christensen, 1983). For diapirism, there are two

fundamental mechanisms by which the stress, and hence the effective viscosity, in rocks

surrounding a diapir can change (Figure 2.1): (a) The rock unit in which the diapir is rising

undergoes a far-field deformation, for example, due to horizontal simple shear in a strike-

slip environment (e.g., Michail et al., 2021; Nahas et al., 2023) or corner flow in a mantle

wedge (e.g., Klein and Behn, 2021). The far-field, or regional, stresses associated with the

regional deformation can modify the effective viscosity of the rocks surrounding the diaper.

(b) The deformation in the surrounding rocks, caused by the rising diapir, generates stress

variations around the diapir (e.g., Weinberg and Podladchikov, 1994). Such local stress

variations around the diapir are related to the diapir’s buoyancy stress and cause variations

in the effective viscosity of the surrounding rock.

Analytical estimates of the ascent velocity of a diapir in a power-law viscous fluid have been

presented by Weinberg and Podladchikov (1994). Weinberg and Podladchikov (1994) show

that the reduction of the effective viscosity due to local stress weakening is essential for

magma diapirs to be able to ascent with velocities of 10 to 100 m/yr. Such high velocities

are needed so that magma diapirs can reach the upper crust before solidification. Similar

high velocities have been suggested for the rise of sediment diapirs across the mantle wedge,
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Figure 2.1: Sketch of two geodynamic settings in which diapirism can occur in
deforming and stressed rock: (a) Sediment diapirs rising in a mantle wedge (after Klein
and Behn, 2021). (b) Pluton rising in a crustal strike-slip zone (after Michail et al.,
2021)
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also enabled by stress weakening in power-law viscous mantle rocks (Klein and Behn, 2021).

High velocities due to stress weakening in power-law viscous material are supported by

two-dimensional (2D) numerical simulations of mantle convection (e.g., Larsen and Yeun,

1997). However, the analytical estimates derived by Weinberg and Podladchikov (1994)

have never been tested and compared to results of full 3D numerical calculations.

Here, we perform full 3D numerical calculations to quantify the ascent velocity of a weak

diapir in a stronger and deforming fluid. The flow law of the surrounding fluid is a com-

bination of linear and power-law viscous flow. Such combined flow law can describe rock

deformation by a combination of diffusion and dislocation creep (e.g., Karato, 2008). Our

numerical algorithm is based on the staggered finite difference method and employs an

iterative solution strategy. We programmed the algorithm in the Julia language and use

GPUs for the numerical solution. In the numerical calculations, we consider effective vis-

cosity variations in the surrounding fluid due to both regional stresses and local stress

variations around the diaper. The regional stresses are caused by strike-slip shearing and

the local stresses are caused by the upward movement of the diaper. We further elaborate

the analytical estimates of Weinberg and Podladchikov (1994) by (a) implementing a com-

bined linear and power-law viscous flow law, and (b) considering both regional tectonic

stress and local buoyancy stress. We then compare the analytical estimates with the 3D

numerical calculations.

The aims of our study are to (a) elaborate, test and improve analytical estimates for

diapiric ascent velocities in a deforming power-law viscous fluid, (b) make a systematic

quantification of the ascent velocity based on two dimensionless stress ratios, and (c)

discuss the applicability of the results to typical crustal and mantle flow laws as well as to

various diapir scenarios.
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2.2 Model

2.2.1 Flow Law and Effective Viscosity

We consider a non-linear, power-law viscous flow law of the general form (Fletcher, 1974;

Karato, 2008):

ϵ̇ =
1

2
Bτn , (2.1)

with ϵ̇ being the deviatoric strain rate, τ being the deviatoric stress, n being the power-law

stress exponent and B being a material parameter. All symbols used in the text are listed

in Table 2.1.

We reformulate Equation 2.1 to:

τ = 2B−1τ (1−n)ϵ̇ . (2.2)

Next, we multiply the right-hand side of Equation 2.2 by τ
(1−n)
C /τ

(1−n)
C , with τC being a

characteristic stress magnitude that marks the stress at which the deformation behavior

changes from diffusion to dislocation creep, and rearrange Equation 2.2 to:

τ = 2η

(
τ

τC

)(1−n)

ϵ̇ , (2.3)

where η = B−1τ
(1−n)
C . Introducing the characteristic stress τC has two benefits: (a) The

parameter η has units of a viscosity, i.e. Pa·s, and (b) the impact of τ on the flow law is

normalized by the magnitude of τC. The additional usefulness of introducing τC is presented

further below. Equation 2.3 reduces to a linear viscous flow law for n = 1. A linear

flow law typically describes diffusion creep (e.g., Karato, 2008; Turcotte and Schubert,

2021). A power-law viscous flow law typically describes dislocation creep (e.g., Karato,
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Table 2.1: Mathematical Symbols Used in the Text.

Symbol Name or Definition Unit
L Width, height and length of the model domain [m]
R Radius of the spherical diapir [m]
d Distance of ascent [m]
η, ηm Linear viscosity, Viscosity of the surrounding medium [Pa·s]
ηE, ηEL Effective viscosity, Effective viscosity for local stress [Pa·s]
τPT Pseudo-time [s]
ta, tc Magmatic diapir: time of ascent, cooling time [s]
ϵ̇ Deviatoric strain rate [1/s]
g Gravity acceleration [m/s2]
ρ Density [kg/m3]
∆ρ Density difference (ρmedium − ρsphere) [kg/m3]
ρ̃ Pseudo-density [kg/m3]
VS Far-field shearing velocity [m/s]
V, Vvert Velocity of ascent [m/s]
V0 Reference velocity [m/s]
VR, VL, VD Velocity estimates considering regional, local, and combined stresses [m/s]
VC Critical velocity [m/s]
P Pressure (mean stress) [Pa]
τ, τvert Deviatoric stress, Vertical deviatoric stress [Pa]
τII Square root of second invariant of deviatoric stress tensor [Pa]
τC Characteristic stress [Pa]
τR, τL Regional stress, Local stress [Pa]
σ, σvert Total stress, Vertical total stress [Pa]

K̃, G̃ Pseudo-bulk and pseudo-shear modulus [Pa]
Ω Viscosity ratio (ηmedium/ηsphere) [−]
n Power-law stress exponent [−]
m 1/n, inverse power-law stress exponent [−]
B Material parameter [−]
CR, CL Model parameters [−]
G,M,Xsol Model parameters depending on the parameter m [−]
S Shape factor [−]
δij Kronecker delta [−]
∆ρgR/τR Argand number [−]
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2008; Turcotte and Schubert, 2021) but can also effectively describe exponential flow laws

describing, for example, low temperature plasticity (e.g., Schmalholz and Fletcher, 2011).

In nature, both creep mechanisms can occur simultaneously and, hence, a combination of

a linear and a power-law viscous flow law is often applied in geodynamic applications (e.g.,

Karato, 2008). The effective viscosity, ηE, for such combined flow law is represented by the

pseudo-harmonic mean of the linear (Equation 2.3 with n = 1) and power-law (Equation

2.3 with n > 1) viscosities and is given by (e.g., Schmalholz and Podladchikov, 2013; Gerya,

2019):

ηE =
η

1 +
(

τ
τC

)(n−1)
. (2.4)

The general flow law we use in this study reads (e.g., Schmalholz and Podladchikov, 2013;

Gerya, 2019):

τ = 2ηEϵ̇ . (2.5)

In the combined linear and power-law viscous flow law, the magnitude of τC determines the

transition from a linear viscous flow to a power-law viscous flow. Examples of magnitudes

of τC for crustal and mantle flow laws, determined by rock deformation experiments, are

presented in the Discussion (Section 2.4).

2.2.2 Analytical Estimates for Diapir Ascent Velocity in Deform-

ing Power-Law Viscous Medium

The ascent velocity of a diapir is controlled mostly by the effective viscosity of the sur-

rounding medium and not by the effective viscosity of the material forming the diapir (e.g.,

Weinberg and Podladchikov, 1994). We assume that the effective viscosity of the surround-

ing medium, ηE, is given by Equation 2.4. We also assume that the effective viscosity of

the diapir is smaller than the effective viscosity of the surrounding medium by a factor Ω,
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which is termed the viscosity ratio. For a spherical diapir with an effective viscosity that is

smaller than the effective viscosity of the surrounding medium, the velocity of ascent, V ,

is given by (e.g., Hadamard, 1911; Rybczynski, 1911; Weinberg and Podladchikov, 1994):

V =
1

3

∆ρgR2

ηE
CR , (2.6)

where ∆ρ is the density difference between the surrounding medium and the rising diapir,

g is the gravitational acceleration, R is the radius of the sphere and the constant CR is

defined as (e.g., Weinberg and Podladchikov, 1994)

CR =
ηE + ηE/Ω

ηE + 3
2
ηE/Ω

=
1 + 1/Ω

1 + 3/(2Ω)
. (2.7)

If τ/τC = 0, then ηE = η (see Equation 2.4) and the velocity V corresponds to the ascent

velocity of a linear viscous diapir rising in a linear viscous medium. We will use further

below this velocity for linear viscous flow as reference velocity, V0, to normalize the ascent

velocities for power-law viscous flow. The reference velocity is

V0 =
1

3

∆ρgR2

η
CR . (2.8)

Since for a power-law viscous flow law ηE depends on τ , the value of τ has to be estimated

to calculate V . We consider two scenarios to estimate V : (a) There is a homogeneous

regional deformation in the surrounding medium, for example, a shear deformation in a

strike-slip environment, which generates a regional stress τR. This value of τR is used to

calculate the effective viscosity of the surrounding medium, ηE(τ = τR), and to calculate

the rising velocity under a regional stress field, VR, with Equations 2.6 and 2.7, so that

VR = V (τ = τR) . (2.9)
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(b) Local stress variations around the diapir are caused by the diapir rising in a deformable

medium. We assume that these local stress magnitudes, τL, have the same magnitude as

the buoyancy stress of the diapir, ∆ρgR (Weinberg and Podladchikov, 1994). The rising

velocity for which the impact of local stress variations in the surrounding medium are

considered, VL, has been derived by Weinberg and Podladchikov (1994) for a power-law

viscous flow law and is given by:

VL =
1

3

∆ρgR2

ηEL
CL , (2.10)

where

CL =

(
G+ 1/Ω

Xsol(GM + 3/(2Ω))

)n

, (2.11)

with

G = 2.39− 5.15m+ 3.77m2

M = 0.76 + 0.24m (2.12)

Xsol = 1.3(1−m2) +m ,

where m = 1/n. The parameter CL is only a function of the two dimensionless parameters

n and Ω. The effective viscosity ηEL for local stress variations is:

ηEL = 2Sη

(
6τC

∆ρgR

)(n−1)

, (2.13)

where η is the viscosity parameter inside the effective viscosity (Equation 2.4) of the sur-

rounding medium and S is a shape factor. The shape factor S is a fitting parameter that

can be adapted to better fit the numerical results. The value of S will be discussed in Sec-
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tion 2.3.3. Finally, the velocity estimate for a weak diapir rising in a deforming medium

under a regional stress with a flow law combining diffusion and dislocation creep is:

VD = VR + VL . (2.14)

We normalize VD by V0 which yields

VD

V0

=
VR

V0

+
VL

V0

= 1 +

(
τR
τC

)(n−1)

+
3

6nS

CL

CR

(
∆ρgR

τC

)(n−1)

. (2.15)

We will test the analytical estimate for VD with 3D numerical calculations which are de-

scribed below.

2.2.3 3D Mathematical Model

We assume incompressible flow under gravity. The components of the total stress ten-

sor, σij, are decomposed into a pressure (mean stress), P , and deviatoric stress tensor

components, τij, so that σij = −δijP + τij, whereby indexes i and j run from 1 to 3 and

indicate the three spatial directions, and δij is the Kronecker delta (Turcotte and Schubert,

2021). The equations for the conservation of mass for an incompressible fluid and for the

conservation of linear momentum are:

0 =
∂Vi

∂xi

(2.16)

0 =
∂τij
∂xj

− ∂P

∂xi

+ ρgi , (2.17)
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where Vi is the component of the velocity vector in direction xi, ρ the density and gi the

gravity vector component. Components of the deviatoric stress tensor are defined as:

τij = 2ηEϵ̇ij = 2ηE

(
1

2

(
∂Vi

∂xj

+
∂Vj

∂xi

))
, (2.18)

where ϵ̇ij are the components of the deviatoric strain rate tensor and ηE is defined in

Equation 2.4. For the studied 3D flow, the value of τ used in Equation 2.4 is quantified by

the square root of the second stress invariant

τII =
√

1/2 ∗ (τ 2xx + τ 2yy + τ 2zz) + τ 2xy + τ 2xz + τ 2yz , (2.19)

which is independent of the coordinates system.

2.2.4 Numerical Method

To numerically solve the system of governing equations (Equations 2.16 and 2.17) we

discretize the differential equations using the finite difference method on a staggered grid

with constant spacing (e.g., Gerya, 2019; Räss et al., 2022). We apply the pseudo-transient

(PT) method to solve the discretized, non-linear equations in a matrix free fashion (e.g.,

Räss et al., 2022; Wang et al., 2022). The PT method is one of many iterative methods

that exist since the 1950’s (Frankel, 1950) and is used to solve stationary problems. The

concept of the PT method is to add a pseudo-time derivative to the steady-state governing

equations (e.g., Räss et al., 2022):

1

K̃

∂P

∂τPT
=

∂Vi

∂xi

ρ̃
∂Vi

∂τPT
=

∂τij
∂xj

− ∂P

∂xi

+ ρgi (2.20)
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1

2G̃

∂τij
∂τPT

= − τij
2ηE

+
1

2
(∇iVj +∇jVi) ,

where K̃, ρ̃ and G̃ are numerical parameters and τPT is a pseudo-time. K̃ and G̃ can be con-

sidered as pseudo-bulk and pseudo-shear modulus respectively, and ρ̃ is a pseudo-density.

With the pseudo-time derivatives, Equations 2.20 can be considered as pseudo-acoustic

and inertial approximations of the mass and momentum balance equations, respectively.

The initial guess of the pressure and velocity fields do not satisfy the steady state equa-

tions, hence the PT method consists in iterating until the imbalance is sufficiently small,

that is when the PT time derivatives (Equations 2.20) are sufficiently small and have all

reached a specific tolerance value. A detailed description of the applied PT method with

examples of 3D calculations is given in Räss et al. (2022). For completeness, we present a

numerical resolution and tolerance test in Appendix D. For the presented results, we used

a numerical resolution of 207×207×207 and a tolerance for the iterative solver of 5×10−7.

The results of the resolution and tolerance test show that these values provide velocities

which do not change significantly anymore for higher resolution or smaller tolerance.

We have also numerical algorithms for the studied 3D power-law viscous flow which are

based on the governing equations formulated in cylindrical and spherical coordinates.

These equations are given in Appendices A and B. To test our numerical implementa-

tion, we will perform numerical calculations for the same model configuration based on

the governing equations in Cartesian, cylindrical and spherical coordinates. In the limit of

negligible curvature and for the same boundary and initial conditions the numerical results

based on cylindrical and spherical coordinates must be identical to the results based on

Cartesian coordinates. The model configuration for cylindrical and spherical coordinates

is described in Appendix C.
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2.2.5 Model Configuration

The model configuration is a cube of dimension [−L/2, L/2]× [−L/2, L/2]× [−L/2, L/2]

containing a sphere of diameter L/3 at its center, with L indicating the model width,

length and height (Figure 2.2). The viscosity parameter, η, of the sphere is always 100

times smaller than the one of the surrounding fluid (Ω = 100). The applied flow law is

the combined flow law given in Equation 2.4 and the power-law exponent is always 5.

The sphere is always less dense than the surrounding fluid and we vary ∆ρ for different

calculations.

We apply horizontal far-field simple shearing parallel to the horizontal x-direction (Figure

2.2). The boundary conditions are (a) free slip on the top and bottom faces of the cube, (b)

on the lateral sides parallel to the shearing the velocities in y- and z-direction are zero and

in the x-direction they correspond to the applied far-field shearing velocity Vs (Vx = −Vs

for y = −L/2 and Vx = Vs for y = L/2), and (c) on the lateral sides orthogonal to the

shearing the velocities in y- and z-direction are zero and the velocities in the x-direction

vary linearly in the y-direction from −Vs to Vs.

The model is configured in dimensionless form and also results will be displayed in di-

mensionless form. For the non-dimensionalization, we use three characteristic scales: one

scale for length, which is the radius of the sphere R; one scale for stress, which is the

buoyancy stress of the sphere ∆ρgR; and one scale for viscosity, which is the applied value

of η in the surrounding medium, termed ηm. To describe the results, we will further use

two dimensionless ratios, namely the ratio of the applied regional stress to characteristic

stress, τR/τC, and the ratio of buoyancy stress to characteristic stress, ∆ρgR/τC. τR is the

magnitude of the homogeneous shear stress in the model when the sphere has the same

material properties as the surrounding material. Hence, τR represents the far-field stress

which is not affected by the weak sphere.
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The aims of the simulations are (a) to compare magnitudes of buoyancy stress and devia-

toric stress around the sphere, (b) to perform systematic simulations to quantify the ascent

velocity of the sphere in a strike-slip environment, by varying ∆ρ and τC (Equation 2.15),

and (c) to compare the numerically calculated velocities with the analytical estimates from

Equation 2.15 and to improve these estimates if possible.

Figure 2.2: Model configuration: cube of size [−L/2;L/2]×[−L/2;L/2]×[−L/2;L/2],
with a less dense and weaker spherical inclusion of diameter L/3 at the model center.
The entire model cube is sheared horizontally, parallel to the x-direction, and gravity
acts in the vertical, z-direction.
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2.3 Results

2.3.1 Distribution of Stress, Pressure and Effective Viscosity

For each presented simulation, we have calculated one time step to obtain the full 3D

velocity and stress field. First, we show the distribution of the resulting effective viscosity,

ηE, the second stress invariant, τII, and the pressure, P , for a representative simulation

(Figure 2.3). In Figure 2.3, 1/8th of the cubic model domain is presented. The sphere is

less dense than its surrounding and, hence, moves upwards as indicated by the velocity

arrows in Figure 2.3b. In the following, we refer to the sphere as diapir. The applied

simple shear is visible on the horizontal slice through the model domain (Figure 2.3b).

The effective viscosity shows a decrease of about one order of magnitude directly above

the diapir (Figure 2.3b). There are two regions on the sides of the diapir where the effective

viscosity is even larger than the ambient viscosity. The variations in ηE can be explained

by the distribution of τII (Figure 2.3c). Values of ηE are directly linked to τII (Equation

2.4): where the stresses are large, such as above the diapir, the effective viscosity decreases

and where stresses are smaller, the effective viscosity does not change or even increases.

The large stresses above the diapir are due to its upwards movement.

Figure 2.3d depicts the pressure field. We only consider the dynamic part of the pressure,

which means that we subtract the lithostatic pressure, because only deviations from the

static pressure field can cause movement. An interesting feature is the strong pressure

gradient inside the diapir, because the pressure is decreasing with depth which is opposite

to the lithostatic pressure. Similar to the deviatoric stress, the pressure in the surrounding

medium is largest directly above the diapir.
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Figure 2.3: Representative numerical results for τR/τC = 1 and ∆ρgR/τC = 10:
(a) Location of 1/8th of the model shown in panels (b-d). (b) Effective viscosity ηE
normalized by ηm, the linear viscosity of the surrounding medium. Arrows indicate
the velocity field and white contours highlight log10(ηE/ηm) = 0. (c) Second invariant
of deviatoric stress, τII, normalized by the buoyancy stress ∆ρgR. (d) Pressure, P ,
normalized by buoyancy stress ∆ρgR.
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2.3.2 Stress Decomposition and Magnitudes

The total vertical stress is decomposed into the pressure and the vertical deviatoric stress,

σvert = −P + τvert. We quantify σvert, P , and τvert and compare the magnitudes with

the buoyancy stress (Figure 2.4). This quantification is important because the analytical

estimates for the diapir velocity use the buoyancy stress as proxy for the deviatoric stress

which is used in the power-law flow law.

The vertical continuity of σvert across the diapir boundary in the horizontal middle of the

model (at Y = 0, Figure 2.4d) results from the requirement of the vertical force balance.

In contrast, both P and τvert can be discontinuous across the diapir boundary (Figure 2.4e

and f). Indeed, P and τvert show a discrete jump across the boundary of the diapir. The

absolute maximal values of σvert are close to the value of ∆ρgR, since the maximal value of

their ratio is approximately one (Figure 2.4a). τvert is essentially zero inside the diapir since

the effective viscosity inside the diapir is 100 times smaller than the one of the surrounding

medium. Consequently, the absolute magnitudes of P are high inside the diapir at the top

and bottom, in order to generate a continuous σvert required by the vertical force balance.

Maximal values of P inside the diapir are, hence, close to the magnitudes of ∆ρgR.

Outside the diapir, directly above and below, maximal magnitudes of τvert are significantly

smaller than magnitudes of σvert at the same positions. The effective viscosity in the analyt-

ical estimate is calculated with the magnitude of ∆ρgR while in the numerical simulation

it is controlled by the correct magnitude of τII. The magnitude of τII is smaller than ∆ρgR

(Figure 2.3c) and τII is also strongly variable around the diaper. We, therefore, expect that

the analytical estimates for the diapir velocity will be different to the numerically calcu-

lated ones, because the stress magnitude which controls the effective viscosity is different

in the analytical estimates compared to the numerical simulation.
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The results presented in Figure 2.4 are reproduced by the numerical calculations based

on cylindrical and spherical coordinates and are presented in Appendix C. The agreement

between results calculated by three different numerical algorithms indicates the correct

numerical implementation of the governing equations.

Figure 2.4: Numerical results for τR/τC = 1 and ∆ρgR/τC = 10. (a-c) Vertical cross
sections at position X/R = 0 (see Figure 2.3a), and (d-f) vertical profiles at position
X/R = 0 and Y/R = 0. (a, d) display vertical total stress, (b, e) pressure, and (c, f)
vertical deviatoric stress. The dashed line in panels (a-c) marks the position of profiles
(d-f). All stresses are normalized by the buoyancy stress ∆ρgR.



46 CHAPTER 2.

2.3.3 Comparison of Analytical and Numerical Ascent Velocities

We compare the analytical estimates for the ascent velocity of a weak and less dense

sphere, Equation 2.15, with our numerical results. The analytical estimates (details in

Section 2.2.2) only provide the vertical velocity of the raising sphere and do not provide

the spatial distribution of stresses. Hence, for each numerical simulation, we select the

maximum vertical velocity obtained for the diapir and consider this velocity as the ascent

velocity of the diaper. We normalize the vertical velocities by the corresponding values of

V0 which is the velocity of a linear viscous diapir rising in a linear viscous medium (see

Equation 2.8).

Figure 2.5: Comparison of numerical results (symbols, see legend) with analytical
estimates from Equation 2.15 (lines, see legend). Analytical estimates are presented
in Section 2.2.2. Vertical axis is the ascent velocity normalized by V0 (see Equation
2.8). Horizontal axis is in (a) ∆ρgR/τC for a value of τR/τC = 1, and in (b) τR/τC for
∆ρgR/τC = 10.
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Figure 2.6: Analytical and numerical ascent velocities for a systematic variation of
∆ρgR/τC and τR/τC. Ascent velocities are normalized by V0 (see Equation 2.8). (a)
Analytical estimates and (b) numerically calculated velocities. The stars represent the
values of ∆ρgR/τC and τR/τC for which numerical calculations were performed.

The ascent velocity depends on the two stress ratios τR/τC and ∆ρgR/τC (Equation 2.15).

Figure 2.5 presents the comparison between analytical estimates and the numerical results.

Figure 2.5a displays vertical velocities of the diapir for various values of ∆ρgR/τC and a

fixed value τR/τC = 1. For ∆ρgR/τC < ∼10 the velocity is controlled by VR, for which the

regional stress controls the effective viscosity, while for ∆ρgR/τC > ∼10 it is controlled

by VL, for which the buoyancy stress controls the effective viscosity (see Section 2.2.2).

The velocity is constant in the domain dominated by the regional stress and increases

significantly in the buoyancy dominated domain. The numerical results agree with VR and

they capture the change in slope of the velocity with increasing ∆ρgR/τC. However, for

∆ρgR/τC > ∼10 the numerical velocities are smaller than the analytically estimated ones.
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For ∆ρgR/τC > ∼10, the ascent velocities vary by approximately two orders of magnitude

while applied values of ∆ρgR/τC vary by a factor of approximately 4 only.

Figure 2.5b displays the vertical velocity for various values of τR/τC and a fixed value of

∆ρgR/τC = 10. For τR/τC < ∼1 the velocity is controlled by VL while for τR/τC > ∼1 it is

controlled by VR. For τR/τC > ∼1 the velocities strongly increase with increasing τR/τC.

Figure 2.7: Comparison of numerically and analytically calculated ascent velocities
for different shape factors S (see Equation 2.13 and legend). X-axis displays ∆ρgR/τC
and the vertical axis the ascent velocity normalized by V0 (see Equation 2.8). Results
are obtained for τR/τC = 1. Only VL depends on the shape factor.

We also performed a systematic comparison between the analytically estimated and the

numerically calculated velocities by varying ∆ρgR/τC and τR/τC (Figure 2.6). Figure 2.6a

and b display the vertical velocities of the diapir obtained with the analytical estimates

and the numerical simulations, respectively. The numerical results show the same trend

of the velocity with varying values of ∆ρgR/τC and τR/τC as the analytical estimates.
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For normalized velocities > ∼104, the numerical algorithm did not converge anymore due

to the significant nonlinearities and the associated significant variations of the effective

viscosity around the diapir.

Figure 2.8: Comparison of analytically estimated velocities on the horizontal axis
and the numerically calculated velocities on the vertical axis for different shape factors.
(a) S = 1, (b) S = 2.5, and (c) S = 5. The solid line represent the equivalence
between analytical and numerical results. (d) The average relative error of the analytical
estimates compared to the numerical results for values of S between 0.25 and 10. The
vertical red dashed line indicates the minimum relative error of ≈18 % for S = 1.6.

Figure 2.7 is similar to Figure 2.5a, but shows analytical estimates for different shape

factors, S (see Equation 2.13). The value S = 1 was used in the original derivation of

Weinberg and Podladchikov (1994). Increasing S allows to better predict the ascent veloc-
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ity in the buoyancy dominated deformation regime, that is for ∆ρgR/τC > 10. However,

too large values of S lead to an underestimation of the velocities. For three values of S we

present the correspondence between the numerical and the analytical results. For S = 1,

analytical estimates tend to overestimate the large velocities, for S = 2.5 the estimations fit

better and for S = 5 the analytical estimates generally underestimate the ascent velocity.

A plot of all the numerically calculated velocities versus the corresponding analytical esti-

mates, for the same parameters, shows that the analytical estimates capture well the first

order trend of the numerical results (Figure 2.8a to c). The maximal relative error between

the analytical estimate and an individual numerical result is only 72% for S = 1. Hence,

all analytical estimates deviate by less than a factor of 2 from the numerical results. The

relative error is calculated by (|Vnum − Vana|)/Vnum ∗ 100, hence an error of 100% means

a deviation by a factor of 2. We varied S between 0.25 and 10 in the analytical estimate

and calculated for each value of S the average relative error between the estimates and the

numerical results (Figure 2.8d). The smallest average error occurs for S = 1.6 and is 18%.

2.4 Discussion

2.4.1 Characteristic Stresses for Experimentally Derived Flow

Laws

The characteristic stress, τC, is the stress at which the deformation behavior changes from

linear viscous flow, such as diffusion creep, to power-law viscous flow, such as dislocation

creep. Hence, τC has a significant impact on the ascent velocity of a diapir.

To estimate values of τC in the mantle, we use the flow laws of olivine from Hirth and

Kohlstedt (2003), their Table 1, for diffusion creep (wet olivine with constant COH and
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10 mm grain size) and dislocation creep (wet olivine with constant COH) (Figure 2.9a).

The values we used are listed in Appendix E. We vary systematically pressure, P , and

temperature, T , and determine the stress for which the effective viscosities for diffusion

and dislocation creep are equal. For P between 1 and 10 GPa and T between 500 and 1650

◦C, values of τC are approximately between 0.1 and 100 MPa (Figure 2.9a).

To estimate values of τC in the lower crust, we use the flow laws for diffusion and dislocation

creep of wet anorthite from Rybacki and Dresen (2000), their Table 2 (Figure 2.9b), the

used values are listed in Appendix E. These flow laws are insensitive to P so we vary

systematically T and the grain size to determine τC. For T between 500 and 1000 ◦C and

grain size between 10 µm and 10 mm, values of τC are between 1 and 500 MPa.

Figure 2.9: Color plots of characteristic stress, τC in Equation 2.4. (a) τC as function
of pressure and temperature for upper mantle flow laws. The flow laws for diffusion
(wet with constant COH and 10 mm grainsize) and dislocation (wet with constant COH)
creep of olivine from Hirth and Kohlstedt (2003) (their Table 1) were used. (b) τC as
function of grain size and temperature for lower crustal flow laws. The flow laws for
diffusion and dislocation creep of wet anorthite from Rybacki and Dresen (2000) (their
Table 2) were used.
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Quartz is a representative mineral to estimate the effective flow law for upper crustal rocks.

Many studies indicate that a power-law viscous flow law describes well the deformation of

quartz under upper crustal conditions (e.g., Hirth et al., 2001). For extremely small grain

sizes (≈20 µm), such as observed in ultramylonites, quartz can also deform by diffusion

creep (Kilian et al., 2011). We did here not estimate τC for quartz since most studies

suggest a power-law viscous flow law for quartz.

Assuming that the flow laws considered above are representative for the mantle lithosphere

and the lower crust and assuming that typical regional flow stresses, representing τR, in

the mantle are between 0.1 and 10 MPa (Hirth and Kohlstedt, 2003; Karato, 2008) and

in the lower crust between 1 and 100 MPa (Bürgmann and Dresen, 2008), ratios of τR/τC

between 0.1 and 100 seem feasible.

Furthermore, assuming that typical values of ∆ρ for diapirs vary between 20 and 200

kg/m3 and values of R between 1 and 100 km (see next Section), provides values of ∆ρgR

between 0.2 and 200 MPa. Therefore, stress ratios of ∆ρgR/τC between 0.05 and 50 seem

also feasible.

2.4.2 Increase of Diapir Ascent Velocity by Two Types of Stress

Weakening

In our model, the nonlinear fluid surrounding the diapir is a stress weakening fluid for

n > 1 because the effective viscosity decreases when the stress magnitude, quantified by

τII, in the fluid increases. The applied, combined linear and power-law viscous flow law can

describe diffusion and dislocation creep in crustal and mantle rocks (e.g., Karato, 2008;

Kohlstedt and Hansen, 2015). Furthermore, the applied power-law viscous flow law can

also describe low temperature plasticity for which apparent stress exponents can be much
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larger than 3 (e.g., Dayem et al., 2009; Schmalholz and Fletcher, 2011). Hence, the applied

combined flow law is applicable to a wide range of rocks and deformation mechanisms.

In the analytical estimate for the ascent velocity we consider the impact of two types

of stresses: regional stresses, τR, associated with far-field tectonic deformation in the

rocks surrounding the diapir and buoyancy stresses, ∆ρgR, causing deformation locally

around the rising diapir. Both stresses can cause stress weakening. If τR/τC > 1 and/or

∆ρgR/τC > 1 both stresses can increase the ascent velocity significantly (Figure 2.10a).

For values of n = 3 and Ω = 100, values of ∆ρgR/τC > ∼10 are required to generate

values of VD/V0 > 1 and, hence, an increase in ascent velocity with respect to the velocity

for linear viscous flow. The reason is the pre-factor of 3CL/6
n/S/CR in front of the term

(∆ρgR/τC)
n−1 in the analytical velocity estimate (Equation 2.9). This pre-factor is 0.007

for n = 3 and Ω = 100 and, hence, reduces the impact of the factor ∆ρgR/τC on the

velocity increase (Figure 2.10a). Since there is no pre-factor in front of τR/τC, values of

τR/τC > 1 cause values of VD/V0 > 1 (Figure 2.10a).

In the velocity estimate of Weinberg and Podladchikov (1994) only the impact of ∆ρgR is

considered. Hence, diapirs with small R or small ∆ρ can have values of small ∆ρgR which

might not cause a significant velocity increase. Our solution shows that also diapirs associ-

ated with small values of ∆ρgR can have fast ascent velocities if they rise in a tectonically

active region with regional stresses τR/τC > 1. Hence, the onset of tectonic deformation,

such as strike-slip shearing, transpression or transtension can trigger a faster ascent of

diapirs which had insignificant ascent velocities before the onset of tectonic activity and

associated stresses. Indeed, for example, many plutons have been emplaced in tectonically

active regions suggesting a potential causal link between pluton ascent and tectonic stress

(e.g., Hutton and Reavy, 1992; Berger et al., 1996; Berdiel et al., 1997; Brown and Solar,

1999; Michail et al., 2021). We discuss the potential application of our velocity estimate

to the ascent of plutons in the next Section.
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Figure 2.10: Color plots of analytical ascent velocities. (a) Velocities (normalized
by V0) as function of ∆ρgR/τC and τR/τC for n = 3 and Ω = 100. (b) Velocities
(normalized by V0) as function of R and τR for n = 3, Ω = 100, ∆ρg = 2000 Pa/m and
τC = 1 MPa. Black contour lines in both subplots indicate the corresponding values of
∆ρgR/τR.
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For the numerical calculations, we consider a scenario with horizontal far-field simple shear.

We do not model finite deformations but calculate the instantaneous velocity field. Hence,

for our calculations mainly the magnitude of τR is important and not the orientation of

the stress field. Therefore, our instantaneous solution for the far-field horizontal simple

shear is approximately applicable to any scenario for which the far-field deformation causes

deviatoric stresses in rocks surrounding a diapir. For example, for the ascent of diapirs

within a deforming mantle wedge (e.g., Klein and Behn, 2021).

To illustrate the results with dimensional numbers, we further assume ∆ρg = 2000 Pa/m

and τC = 1 MPa (Figure 2.10b). For τR increasing above 1 MPa, the diapir velocity, VD,

increases with respect to the velocity for linear viscous flow, V0. Concerning buoyancy

stresses, values of R > ∼ 5 km are required to obtain a velocity increase (Figure 2.10b).

For τR = 100 MPa the velocity would increase by four orders of magnitude and for R ≈ 15

km the velocity would increase by one order of magnitude.

2.4.3 Applications to Sediment Diapirs, Mantle Plumes, (U)HP

Terranes and Plutons

We discuss next some applications of our velocity estimate to different geodynamic settings

involving diapirism. A dimensionless stress ratio which is frequently used in applications of

analytical solutions to geodynamic processes is the so-called Argand number (e.g., England

and McKenzie, 1982; Schmalholz et al., 2002). The Argand number is the ratio of gravity

stress to stress caused by tectonic deformation (e.g., England and McKenzie, 1982; Schmal-

holz et al., 2002). For the considered scenario of diapirism in tectonically active regions

the Argand number corresponds to the ratio ∆ρgR/τR (black contours in Figure 2.10).
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The analytical estimate of Equation 2.15 can be modified so that the velocity becomes an

explicit function of ∆ρgR/τR:

VD

V0

= 1 +

(
τR
τC

)(n−1)
(
1 +

3

6nS

CL

CR

(
∆ρgR

τR

)(n−1)
)

. (2.21)

Values of ∆ρgR/τR for specific geodynamic settings may be more reliably estimated than

values of ∆ρgR/τC because they do not require knowledge of the rheology.

We apply the formula for the ascent velocity, Equation 2.21, to sediment diapirs in sub-

duction zones (e.g., Klein and Behn, 2021), mantle plumes (e.g., Schubert et al., 2001),

exhumed (U)HP units (e.g., Burov et al., 2014) and magmatic plutons associated with

crustal deformation (e.g., Michail et al., 2021) (Figure 2.11). For all scenarios, the values

of the required parameters, such as ∆ρ, R or τR/τC, are uncertain and we chose represen-

tative values to illustrate particular applications of Equation 2.21. We plot VD versus R

and versus the corresponding value of the Argand number for different values of the linear

viscosity of the rocks surrounding the diapir, ηm (Figure 2.11). For the presented velocity

calculations, we assume τR = 10 MPa, n = 3, τC = 1 or 10 MPa, and ∆ρ = 20 or 200

kg/m3 (Figure 2.11).

For sediment diapirs in subduction zones, representative values of R range between 1 and

4 km and we assume ∆ρ = 200 kg/m3 as feasible value (example 4.1.1 in Klein and Behn,

2021). Klein and Behn (2021) combined the solution of Weinberg and Podladchikov (1994)

with heat transfer calculations and a melting thermodynamic model. They show that their

calculated velocities for rising sediment diapirs, or relamination, can be between 10 and

100 m/yr (Figure 2.11a and c). To obtain such velocities, values of ηm must be significantly

smaller than 1017 Pa·s, if τC = 10 MPa and, hence, τR/τC = 1 (Figure 2.11a). However,

if τC = 1 MPa, values of ηm can be in the order of 1018 Pa·s to obtain the same velocities

(Figure 2.11c). The plots in Figure 2.11 show that for a specific velocity a decrease of τC
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Figure 2.11: Analytical ascent velocities versus diapir radius and corresponding
Argand number (∆ρgR/τR) for different values of the linear viscosity, ηm, of the fluid
surrounding the diapir. Applied values of τR, τC and ∆ρ are indicated in the figure. For
all calculations n=3 and Ω=100 was used. Rectangles indicate range of data reported in
literature for different geodynamic settings (see Section 2.4.3). The dotted line indicates
the critical ascent velocity of plutons (Equation 2.22) for which the diapir rises as fast
as it cools. The black line segment indicates the range of typical radii estimated for
plutons (see Section 2.4.3).
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by one order of magnitude increases the corresponding values of ηm by approximately two

orders of magnitude. In other words, for the same ηm, a decrease of τC by one order of

magnitude decreases the ηE by two orders of magnitude and, hence, increases the velocity

by two orders of magnitude. For n > 3 (e.g., Klein and Behn (2021) used a flow law

with n = 3.5), the stress weakening and velocity increase would be larger. The above

example can of course be done with smaller values of τR and τC. The results suggest that

to achieve the high velocities for sediment diapirs, stress weakening in the surrounding

rock is essential. Flow stresses in the mantle wedge, for example due to corner flow, likely

contribute to the stress weakening.

For the application to mantle plumes, we assume R between 100 and 200 km and ∆ρ

= 20 kg/m3 Schubert et al. (2001) (Figure 2.11b and d). The ascent velocity of plumes

may range between few cm/yr up to 1 m/yr (Schubert et al., 2001). To achieve such

velocities, ηm needs to be between 1020 and 1021 Pa·s which agrees with viscosity estimates

for the mantle (Table 11.3 in Schubert et al., 2001). Deviatoric stresses due to mantle

convection may range between 0.1 and 1 MPa (e.g., Hirth and Kohlstedt, 2003) and τC for

olivine ranges between 0.1 and 0.5 MPa for pressures between 4 and 10 GPa (Figure 2.9a).

Therefore, values of τR/τC could be >1 which would increase the corresponding ascent

velocities. However, the velocities estimated for mantle plumes can be obtained without

stress weakening so that for mantle plumes stress weakening seems not essential.

(U)HP crustal units, or terranes, have been exhumed in many places worldwide (e.g.,

Kylander-Clark et al., 2012; Burov et al., 2014). The mechanisms of exhumation are still

disputed and may vary for different geodynamic settings (e.g., Hacker and Gerya, 2013;

Warren, 2013). Exhumation by diapirism has been suggested as potential exhumation

mechanism (e.g., Burov et al., 2001, 2014; Little et al., 2011; Schmalholz and Schenker,

2016; Schwarzenbach et al., 2021) because diapirism is able to explain the sometimes high

estimates for ascent velocities of > 1 cm/yr (e.g., Hermann and Rubatto, 2014), sometimes
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even > 10 cm/yr (e.g., Schwarzenbach et al., 2021). Such high exhumation velocities are

typically estimated for the deeper part of the exhumation path, where ambient rock pres-

sures are >≈ 1 GPa. Estimates for ∆ρ for the exhumation of (U)HP units are commonly

between 20 and 200 kg/m3 and representative spherical radii, which would generate the

same spherical volume as the observed (U)HP rock volume, are between 4 and 20 km (e.g.,

Kylander-Clark et al., 2012; Schwarzenbach et al., 2021). Stress weakening as mechanism

to significantly increase ascent velocities has also been suggested as explanation for po-

tentially fast exhumation velocities (e.g., Burov et al., 2014; Schmalholz and Schenker,

2016). For example, Schmalholz and Schenker (2016) proposed that oblique subduction

and associated strike-slip shearing could have caused stress weakening along the subduc-

tion interface which might explain the high exhumation velocity, along the subduction

interface, of a small UHP unit, namely the Brossasco-Isasca sub-unit in the Dora Maira

massif, Western Alps.

The mechanisms of pluton ascent in the continental crust are still disputed and velocities

of pluton ascent are less constrained than exhumation velocities of (U)HP units. Two

commonly proposed mechanisms are diapirism and dike intrusion associated with fracture

propagation (e.g., Clemens and Mawer, 1992; Rubin, 1993; Petford, 1996; Miller and Pa-

terson, 1999). A main argument against diapirism is that estimated ascent velocities are

so slow that the pluton would lose significant heat during ascent, consequently solidify and

stop ascending (e.g., Marsh, 1982; Clemens and Mawer, 1992; Petford, 1996). However,

Weinberg and Podladchikov (1994) suggested that stress weakening due to buoyancy stress

can increase the ascent velocity sufficiently to avoid significant heat loss during ascent. Fur-

thermore, many plutons ascended in tectonically active regions exhibiting some component

of strike-slip, transpression or transtension (e.g., Hutton and Reavy, 1992; Berger et al.,

1996; Berdiel et al., 1997; Brown and Solar, 1999; Michail et al., 2021). The regional stresses
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associated with these tectonic activities could have also contributed to stress weakening

and velocity increase.

To evaluate whether stress weakening can enable a pluton to rise a significant distance

without significant cooling, say 10 times its radius, we estimate the critical velocity, VC,

required for such rise, taking into account the heat loss during ascent. We perform here

a very simple, back-of-the-envelope, calculation to estimate VC. The time, or duration, of

ascent of a diapir can be calculated by ta = d/VD whereby d is the distance of ascent. To

avoid thermal cooling during ascent, the diapir must essentially rise faster than it cools.

Assuming first cooling by heat conduction only, the time of cooling of a diapir with radius

R is tc = R2/κ, whereby κ is the thermal diffusivity. Considering also enhancement of

cooling by advection, tc can be modified by using the Nusselt number, Nu (e.g., Marsh,

1982), to get tc = R2/κ/Nu. Solving tc = ta for the velocity provides a critical velocity,

VC, for which the pluton rises as fast as it cools:

VC = Nu
dκ

R2
. (2.22)

The pluton velocity, VD, must be faster than VC to avoid large heat loss during ascent.

Assuming here that a pluton should be able to rise at least a distance of 10 times its

radius, d = 10R, yields as condition for pluton ascent by diapirism:

VD > Nu
10κ

R
. (2.23)

To plot also VC versus R in Figure 2.11 we assume typical values Nu = 2 and κ = 10−6

m2/s (e.g., Marsh, 1982). We further assume R between 2 and 10 km and ∆ρ = 200 kg/m3

as feasible values for crustal plutons (e.g., Miller and Paterson, 1999; Michail et al., 2021).

Based on the above calculation, the velocity for plutons must be larger than approximately
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10 cm/yr (black segment on dotted lines in Figure 2.11). For linear viscous flow, ηm of

the surrounding rocks must then be smaller than approximately 1019 Pa·s (Figure 2.11a).

For stress weakening due to tectonic deformation with τR/τC = 10, ηm must be smaller

than approximately 1021 Pa·s (Figure 2.11c). If ηm is 1021 Pa·s and τR/τC = 100, then VD

is approximately 100 times faster than VC and pluton ascent by diapirism seems possible.

Our simple calculations suggest that pluton ascent by diapirism is possible if τR is high,

say between 10 and 100 MPa, and τC is low, say between 0.1 and 1 MPa. More generally,

tectonic activity may cause regional stresses which are significantly larger than critical

stresses so that stress weakening can significantly decrease the effective viscosity of the

surrounding rock. This viscosity decrease can be large enough so that plutons can rise as

diapirs considerably faster than they cool.

2.4.4 Simplifications

Our study focuses on creating and testing analytical estimates for the velocity at which

diapirs rise in a ductile rock under far-field stress. To achieve this, we have simplified the

geodynamic scenario and numerical model configuration compared to natural situations.

We calculate only one numerical time step to determine the instantaneous ascent velocity

for a spherical diapir. As a diapir rises, it may change its geometry. For example, when it

rises to areas with higher viscosity, it can flatten vertically and become elliptical, with its

long axis being perpendicular to the direction of ascent (e.g., Weinberg and Podladchikov,

1994). The ascent velocity of a diapir with such an elliptical shape is smaller than the

velocity for spherical geometry. For elliptical aspect ratios of 2 and power-law stress expo-

nents of 3, the ascent velocity of an elliptical diapir is a factor of 2 slower compared to a

spherical diapir, and for a power-law stress exponent of 5, it is a factor of 4 slower (e.g.,

Weinberg and Podladchikov, 1994). Given our focus on order-of-magnitude variations in
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ascent velocity resulting from stress weakening, the variation in ascent velocity due to di-

apir shape changes, falling within a range of two to fourfold, has a minor impact on our

primary findings.

We employ a combination of linear and power-law viscous flow laws, that is applicable

to a range of deformation mechanisms, including diffusion creep, dislocation creep, and

exponential creep, commonly known as low-temperature plasticity (e.g., Karato, 2008).

The power-law viscous flow law is also well-suited for describing diffusion creep involving

grain size evolution, where grain size dynamically responds to flow stress (e.g., Montési and

Zuber, 2002). Additionally, a power-law viscous flow law with a high stress exponent effec-

tively captures pressure-insensitive plastic deformation, such as deformation governed by a

von Mises yield stress (e.g., Fletcher and Hallet, 1983). Consequently, the chosen flow law

encompasses a broad range of ductile deformation mechanisms. Potential enhancements

to our analytical and numerical models could include (a) more sophisticated models for

grain size evolution, such as the paleo-wattmeter model (e.g., Austin and Evans, 2007), (b)

the incorporation of frictional-plastic deformation, which involves pressure-sensitive yield

stress (e.g., Poliakov et al., 1993), or (c) the consideration of fluid and reaction-induced

weakening linked to (de)hydration reactions and melting (e.g., White and Knipe, 1978;

Jamieson et al., 2011; Schmalholz et al., 2020).

2.5 Conclusions

In this study, we investigated the ascent velocity of a weak and buoyant spherical inclusion

within a nonlinear viscous fluid under far-field stress, which is relevant to a wide range of

natural diapirism in tectonically active regions. By deriving analytical estimates for the

diapir ascent velocity in dimensionless form, we scaled the velocity with the corresponding

velocity for linear viscous flow. The ascent velocity is controlled by two stress ratios: (a)
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the ratio of the diapir’s buoyancy stress, ∆ρgR, to the characteristic stress, τC, at the

transition from linear to power-law viscous flow, and (b) the ratio of regional stress, τR,

to τC, whereby τR is caused by the far-field tectonic deformation. The equation for the

analytical estimates shows that both stress ratios can significantly increase the velocity

because the stress ratios are added and both ratios exhibit the same power-law stress

exponent of (n − 1). The stress ratios start to considerably increase the ascent velocity

once they become larger than one. Hence, both local buoyancy and regional tectonic

stresses can increase the ascent velocity because they can cause stress weakening in the

rocks surrounding the diapir.

Comparing the analytical estimates with full 3D numerical calculations, we found that the

analytical estimates are accurate within a factor of less than two, with a relative error

smaller than 80%, across a wide range of stress ratios. This highlights the usefulness of

the analytical estimates in assessing the importance and impact of diapirism in diverse

geodynamic settings. However, the analytical estimates deviate the most from the nu-

merical results when buoyancy stresses dominate the ascent velocity. This discrepancy

arises because the analytical estimates use the diapir’s buoyancy stress as a proxy for the

deviatoric stress, which is required to calculate the effective, stress-dependent viscosity in

the surrounding fluid. Numerical calculations demonstrate that deviatoric stresses around

the diapir can be significantly smaller than buoyancy stresses, leading to less intense stress

weakening in the surrounding fluid than predicted by the analytical estimates. Introducing

a shape factor improves the accuracy of the analytical estimates. The numerical results

further show that the pressure inside the weak diapir deviates from the lithostatic pressure

and the deviation is on the order of ∆ρgR.

We calculated τC for typical mantle and lower crustal flow laws and estimated ranges of

magnitudes for τR and ∆ρgR. Both ratios of τR/τC and ∆ρgR/τC could vary between 0.1

and 100 in nature. For the applied parameters, a significant increase of the ascent velocity
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caused by stress weakening starts for τR/τC > 1 and ∆ρgR/τC > 10. Our calculations show

that stress weakening can cause ascent velocities of diapirs that are up to four orders of

magnitude faster compared to ascent velocities calculated for linear viscous flow. Therefore,

lithospheric and mantle stresses as well as temporal and spatial changes of these stresses

can have a dramatic effect on diapir ascent velocities. Similarly, changes in rock rheology,

due to for example fluid infiltration or grain size variation, can change magnitudes of τC

and, consequently, strongly affect ascent velocities. The presented analytical estimates

facilitate the quantification of such stress-induced changes in diapir ascent velocities.
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Macherel, E., Räss, L., Schmalholz, S. M., 2023. PTsolvers/SphericalStokes: Spherical-

Stokes.jl 1.0.1.

Marschall, H. R., Schumacher, J. C., 2012. Arc magmas sourced from mélange diapirs in

subduction zones. Nature Geoscience 5 (12), 862–867.

Marsh, B. D., 1982. On the mechanics of igneous diapirism, stoping, and zone melting.

American Journal of Science 282 (6), 808–855.

Mazzini, A., Nermoen, A., Krotkiewski, M., Podladchikov, Y., Planke, S., Svensen, H.,

2009. Strike-slip faulting as a trigger mechanism for overpressure release through pierce-

ment structures. Implications for the Lusi mud volcano, Indonesia. Marine and Petroleum

Geology 26 (9), 1751–1765.

Michail, M., Rudolf, M., Rosenau, M., Riva, A., Gianolla, P., Coltorti, M., 2021. Shape

of plutons in crustal shear zones: A tectono-magmatic guide based on analogue models.

Journal of Structural Geology 150, 104417.

Miller, R., Paterson, S., 1999. In defense of magmatic diapirs. Journal of Structural Geology

21 (8), 1161–1173.

Montési, L. G., Zuber, M. T., 2002. A unified description of localization for application to

large-scale tectonics. Journal of Geophysical Research: Solid Earth 107 (B3), ECV–1.
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Appendix A. Cylindrical Coordinates System

The equations for conservation of mass and linear momentum for an incompressible fluid

under gravity in cylindrical coordinates are:
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with Vr, Vθ, and Vz being the components of the velocity vector in direction r, θ, and z

respectively. τij are the (i, j)
th components of the deviatoric stress tensor, P is the pressure,

ρ is the density and g the gravitational acceleration. Components of the deviatoric stress

tensor are defined as:
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where ϵ̇ij are the (i, j)th components of the strain rate tensor, and ηE is the effective

viscosity used in the numerical calculations (see Section 2.2.3, Equation 2.4).

The numerical implementation used is the same as for the Cartesian coordinates (see

Section 2.2.4):
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where K̃, ρ̃, and G̃ are numerical parameters and τPT is a pseudo-time. K̃ and G̃ can

be considered as pseudo-bulk and pseudo-shear modulus, respectively, and ρ̃ as a pseudo-

density. With these parameters, Equation 2.26 can be considered as acoustic and inertial

approximations of the mass and momentum balance equations respectively.



BIBLIOGRAPHY 75

Appendix B. Spherical Coordinates System

The equations for conservation of mass and linear momentum for an incompressible fluid

under gravity in spherical coordinates are:
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with Vr, Vθ, and Vφ being the components of the velocity vector in direction r, θ, and φ

respectively. τij are the (i, j)
th components of the deviatoric stress tensor, P is the pressure,

σij = −P + τij is the total stress, ρ is the density and g the gravitational acceleration.

Components of the deviatoric stress tensor are defined as:
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where ϵ̇ij are the (i, j)th components of the strain rate tensor, and ηE is the effective

viscosity used in the numerical calculations (see Section 2.2.3, Equation 2.4).

The numerical implementation used is the same as for the Cartesian coordinates (see

Section 2.2.4):
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where K̃, ρ̃, and G̃ are numerical parameters, τPT is a pseudo-time. K̃ and G̃ can be

considered as pseudo-bulk and pseudo-shear modulus respectively, and ρ̃ as a pseudo-

density. With these parameters, Equation 2.29 can be considered as acoustic and inertial

approximations of the mass and momentum balance equations respectively.
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Appendix C. Comparison of Cartesian, Cylindrical,

and Spherical Coordinates Systems

Model Configuration

The model configuration in Cartesian coordinates is displayed in Figure 2.2. In cylindrical

coordinates, the r-axis is the radial component, the θ-axis is the angular coordinate (θ ∈

[0, 2π]) and the z-axis is the height of the cylinder (Figure 2.12a). Gravity acts in the

radial direction pointing towards the central axis of the cylinder and shearing occurs along

direction Z, parallel to the cylinder axis. The model configuration is essentially the same as

in Cartesian coordinates (Figure 2.2), and a pseudo-cube, representing the model domain,

is taken at the rim of the cylinder (Figure 2.12a). This method allows to decrease the

curvature of the model domain by increasing the radius of the cylinder. In spherical

coordinates, r is the radial distance, θ ∈ [0, π] is the polar angle and φ ∈ [0, 2π] is the

azimuthal angle (Figure 2.12b). In the spherical model, gravity acts along the radial axis,

pointing toward the center of the sphere. Shearing occurs along the azimuthal axis φ. The

model configuration is again essentially the same as in Cartesian coordinates (Figure 2.2),

and a pseudo-cube is taken at the surface of the sphere. As in cylindrical coordinates, this

method allows to decrease the curvature of the model domain by increasing the radius of

the sphere.

As a first step of comparison of the results of the three different coordinate systems, we

consider a large radius defining the curvature in the cylindrical and spherical coordinate

systems. Hence, the geometry of the employed model domain for the cylindrical and

spherical coordinates is essentially the same cube as for the Cartesian coordinate system.

Consequently, also the applied boundary conditions are essentially identical for the three

coordinates systems. The aim of these simulations is to compare the results obtained for
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Cartesian, cylindrical and spherical coordinates, which represents a test of three different

numerical algorithms employing different system of equations. If the results from the

three algorithms are equal, then the numerical implementation of the employed system of

equations is correct.

Figure 2.12: Model domain in (a) cylindrical and, (b) spherical coordinates systems.
(a) Cylinder is rotated so the Z-axis becomes a horizontal coordinate and gravity acts
in the radial direction. The cylindrical coordinates (r, θ, Z) are displayed in orange.
Model domain of size L × L × L is taken at the rim of the cylinder (blue area) and
shearing occurs in direction Z (yellow arrows). (b) For the spherical coordinates, axis
(r, θ, φ) are displayed in orange and gravity points toward the center of the sphere. The
model domain of size L × L × L is at the surface of the sphere (blue area) and the
shearing occurs along the φ-direction (yellow arrows). In both coordinates systems, the
diapir is of size L/3 and is located at the center of the domain (see Figure 2.2).

Results

We performed the stress quantification with three different numerical algorithms for dif-

ferent governing equations that are formulated for Cartesian, cylindrical and spherical

coordinates (compare Section 2.2.3, Appendices A and B). Figure 2.13 displays the com-

parison between the three algorithms for the total vertical stress, pressure and vertical
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Figure 2.13: Numerical results for τR/τC = 1 and ∆ρgR/τC = 10. Vertical cross
sections at position X/R = 0 and θ/R = 0 (see Figure 2.3a) of vertical total stress (a,
d, g), pressure (b, e, h) and vertical deviatoric stress (c, f, i) in Cartesian (a, b, c),
cylindrical (d, e, f) and spherical (g, h, i) coordinates. All stresses are normalized by
the buoyancy stress ∆ρgR. For comparison, the curvature used in the cylindrical and
spherical coordinates is so small that it is not visible.

deviatoric stress (for a detailed explanation of these stresses and their relationship, see

Section 2.3.2). The numerical results of the three algorithms are identical. This agreement

suggests that the three algorithms and the three systems of equations are correct (Figure

2.13). This agreement is further confirmed by Figure 2.5, which shows that the maximum

vertical velocities calculated by the three algorithms are equal.
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Appendix D. Numerical Performances

Evaluating the performance of an algorithm is a challenging task, especially if one seeks at

employing some absolute instead of relative metrics. In the present study, we are relying on

iterative and matrix-free stencil-based solvers. In that particular configuration, we identify

three criteria to evaluate performance, namely: (a) the effective memory throughput, (b)

the scalability of iteration count with resolution, and (c) the parallel efficiency.

First, the effective memory throughput (Figure 2.14b) is used to evaluate the amount of

non-redundant memory transfer that leads to saturating the memory bandwidth, which

is the limiting factor in our configuration since we are memory-bound (further details in

Räss et al., 2022). This means that in our implementation, data transfers between com-

puter units and main GPU memory are the bottleneck, and not the arithmetic operations

themselves. The effective memory throughput is defined as Teff = Aeff/tit, where Aeff is the

effective memory access in GB and tit is the time per iteration in seconds. Evaluating Teff

as function of resolution, we reach a plateau for resolutions larger 255 (Figure 2.14b). This

means that passed this resolution the memory bandwidth is saturated, hence the maximal

performance is reached. Also, the peak value of Teff , here about 200GB/s for an Nvidia

A100 GPU, means that we are about 6x below memory copy only rates (if not doing any

actual computations). Further optimisations such as using shared memory to reduce cache

misses could lead to bridge most of this gap, especially for 3D computations.

Second, we assess the scalability of the iteration count as function of numerical resolution

(Figure 2.14a). The iteration count per time step normalized by the numerical grid res-

olution in one of the spatial direction, iter/nr, remains constant and even slightly drops

while resolution increases, confirming the (super-)linear scaling of the accelerated pseudo-

transient (PT) method.
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Figure 2.14: Performance evaluation. (a) Scaling of the normalized iteration count as
function of the spatial resolution nr, (b) effective memory throughput Teff as function
of numerical grid resolution nr evaluated on two different GPUs (Nvidia Tesla P100
and Tesla V100), and (c) the parallel efficiency E evaluated on two different GPUs.

Third, we evaluate the parallel efficiency of our multi-GPU implementation (Figure 2.14c).

Multi-GPU configuration is required if the problem we solve is larger than the optimal

problem size we can fit onto a single GPU. In this case, we use a weak scaling approach

to increase the computational resources proportionally to the global problem size. In this

configuration, the parallel efficiency of the solver is important as no time should be lost

in communication overhead given the distributed memory setup. Our results show that

increasing the number of GPUs has almost no effect on the time per iteration. We achieve

this ideal scaling by overlapping MPI communication behind the physics calculations. Our

algorithm scales ideally up to 2197 GPUs, on the Piz Daint supercomputer at the Swiss

National Supercomputing Center (CSCS). Hence it can be used to solve larger problems.

Finally, we also evaluate the sensitivity of the physical results on the numerical resolution

and exit criteria (tolerance) for our iterative solver. The exit criteria represents the non-

linear tolerance value we converge the residuals to using the PT scheme (Equation 2.20).

Figure 2.15 shows that a spatial resolution of minimum 207 grid points in one of the spatial

directions (total resolution is 2073) and an exit criteria of maximum 10−6 are necessary to

deliver accurate results.
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Figure 2.15: Numerical convergence test. (a) Numerical resolution, and (b) nonlinear
tolerance required to obtain accurate results. Convergence is achieved when values of
Vvert/V0 reach a constant value.

Appendix E. Parameters Used in Figure 2.9

In this section, we provide the parameters used to calculate the flow laws in Figure 2.9

(Table 2.2).

Table 2.2: Parameters Used in Flow Laws.

Flow law for olivine (Hirth and Kohlstedt, 2003): ϵ̇ = A ∗ σn ∗D−p ∗ Cr
OH ∗ exp(−E+P∗V

R∗T ).
D = 10 mm and COH = 1000H/106 Si.
Parameters A [MPa−nµmps−1] n p r E [kJ/mol] V [10−6m3/mol]
Wet diffusion 106 1 3 1 335 4
Wet dislocation 90 3.5 0 1.2 480 11

Flow law for anorthite (Rybacki and Dresen, 2000): ϵ̇ = A ∗ σn ∗D−p ∗ exp(− E
R∗T ).

Parameters A [MPa−nµmps−1] n p E [kJ/mol]
Wet diffusion 101.7 1 3 170
Wet dislocation 102.6 3 0 356
D is grain size and R is gas constant.
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Abstract

Understanding stresses is crucial for geodynamics since they govern rock deformation and

metamorphic reactions. However, the magnitudes and distribution of crustal stresses are

still uncertain. Here, we use a 3D numerical model to investigate stress magnitudes and

distributions around continental plateaus that result from lateral crustal thickness varia-

tions like those observed for the Tibetan plateau. We consider a scenario of gravitational

collapse and do not consider any far-field deformation such as plate convergence. We as-

sume viscous creep, a simplified plateau geometry, and simplified viscosity and density

distributions to focus on the main features of the 3D stress field. Specifically, we study the

impact of Earth’s double curvature, the plateau’s corner, the viscosity ratio between the

crust and lithospheric mantle, and a stress-dependent power-law flow law, on the crustal

stress field. Our results show that Earth’s curvature has a minor impact on the stress

distribution. Conversely, the corner strongly affects the stress distribution, particularly

the shear stresses, which increase nonlinearly toward the corner. Two orders of magnitude

variation in crustal and lithospheric mantle viscosities change the maximum crustal stress

only by a factor of ≈2. We derive simple analytical estimates for the crustal deviatoric

stress and spreading velocity. These estimates agree to first order with 3D numerical calcu-

lations. We apply these estimates to calculate the average crustal viscosity in the eastern

Tibetan plateau as ≈1022 Pa·s. We further discuss potential implications of our results to

strike-slip faulting and fast exhumation around the Tibetan plateau’s syntaxes.

Plain Language Summary

This study focuses on understanding the stresses in the Earth’s lithosphere, which is crucial

for understanding how rocks deform and undergo metamorphic reactions. However, there



85

is still uncertainty about the exact magnitudes and distribution of these stresses, especially

in three dimensions (3D). To estimate long-term stresses in the lithosphere, scientists often

use observed variations in the thickness of the Earth’s crust around continental plateaus,

like the Tibetan plateau which has an average altitude of approximately 5 km. Here, a

3D numerical model is used to explore the magnitudes and distribution of stress around

these plateaus. The study considers factors like the Earth’s curvature, variations in crustal

thickness, and the viscosity (a measure of a material’s resistance to flow) of different parts

of the lithosphere. The results show that Earth’s curvature has a minor impact on the

stress distribution. However, the corner regions of plateaus strongly influence the stress

distribution. The plateaus we study will flow apart under gravity on geological time scales

which is a process often termed gravitational collapse. We derive simple mathematical

equations to estimate the crustal stress and the gravitational spreading velocity and we

test these estimates with the results of the performed 3D numerical calculations.

Keypoints

• The double curvature of the Earth has a minor impact on the 3D stress distribution

around the Tibetan plateau

• Shear stresses are largest around the plateau’s corner region and increase nonlinearly

toward the corner region

• Simple analytical estimates for crustal deviatoric stress and spreading velocity agree

with 3D numerical results
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3.1 Introduction

Stress is a crucial quantity for geodynamic processes since it governs rock deformation (e.g.,

Karato, 2008; Turcotte and Schubert, 2021) and metamorphic reactions (e.g., Philpotts and

Ague, 2022). Many studies have focused on various aspects of stresses in the lithosphere,

such as their sources, magnitude, distribution, or orientation (e.g., Turcotte and Oxburgh,

1976; McGarr and Gay, 1978; Bott and Kusznir, 1984; Zoback, 1992; Engelder, 2014).

Differential stresses quantify the deviation from the hydrostatic, or lithostatic, state of

stress for which all principal stresses are equal (e.g., Turcotte and Schubert, 2021). It

has been known for more than a hundred years that the existence of dry land and any

differences in height on the Earth’s surface is decisive evidence that the stress in the Earth

is not hydrostatic, or lithostatic (e.g., Darwin, 1882; Jeffreys, 1932). Therefore, mountain

ranges, continental plateaus, and continental tectonic plates cannot be in a lithostatic state

of stress and must exhibit differential stresses, even if they do not deform significantly (e.g.,

Jeffreys, 1932; Turcotte and Schubert, 2021).

The magnitudes of these differential stresses in the lithosphere, especially in the continental

crust, remain still debated (e.g., Kanamori, 1980; Hardebeck and Okada, 2018). The

median value of stress drop from earthquakes is approximately 4 MPa for all fault types

and this value is approximately constant with depth (e.g., Allmann and Shearer, 2009).

Some studies propose that such stress drops in earthquakes measure a quantity that is

close to the total shear stress on the faults because of, for example, observations of the

reversal of slip (e.g., England and Molnar, 2015) or the rotation of the principal stress axes

following earthquakes (e.g., Hardebeck and Okada, 2018). Such studies based on stress

drops imply that the continental crust is mechanically weak and that differential stresses

in the crust are ≤20 MPa (e.g., Hardebeck and Okada, 2018). In contrast, stress estimates

for naturally deformed rock associated with pseudotachylyte formation, representing paleo-
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earthquakes, often range between 400 and 1000 MPa. (e.g., Andersen et al., 2008; Brückner

and Trepmann, 2021; Campbell and Menegon, 2022), suggesting that shear stresses can be

significantly larger than median stress drop magnitudes of 4 MPa. The assumption that low

magnitudes of stress drops are close to total stress magnitudes in the crust also disagrees

with stress estimates from boreholes which provide differential stresses of ≈150 MPa at a

depth of 8 km, in agreement with a friction coefficient of ≈0.6 (Townend and Zoback, 2000).

Additionally, significant stresses can also be generated by volumetric rock deformation.

For example, deviations from lithostatic pressure can be up to 1.5 GPa for host-inclusion

systems, for example, when coesite enclosed in garnet is exhumed and should transform

back to quartz (e.g., Angel et al., 2015). Also, the hydration of periclase, enclosed in calcite,

causes the reaction from periclase to brucite which generates a volumetric expansion (e.g.,

Plümper et al., 2022). This volumetric deformation can cause differential stresses of several

hundreds of MPa in the calcite surrounding the brucite (Plümper et al., 2022).

The various stress estimates mentioned above are representative of spatial scales signif-

icantly smaller than the crustal thickness and/or of short-term, or transient, processes.

Hence, the contribution of such local and transient stresses to the long-term, say >1 Myr,

strength and state of stress of the entire crust and lithosphere remains unclear. A common

method to estimate lithospheric stress magnitudes that are representative of its long-term

stress and strength is based on vertical integrals of the two-dimensional (2D) force bal-

ance equations (e.g., Dalmayrac and Molnar, 1981; Fleitout and Froidevaux, 1982; Molnar

and Lyon-Caen, 1988). With this method, the vertical integral of the horizontal differ-

ential stress across the lithosphere can be estimated from the lateral variations of crustal

thickness and topography (e.g., Jeffreys, 1932; Artyushkov, 1973) or, more generally, from

lateral variations of the gravitational potential energy per unit area, GPE (e.g., Parsons

and Richter, 1980; Molnar and Lyon-Caen, 1988; Molnar et al., 1993; Schmalholz et al.,

2014). These integrated stress estimates are robust because they are independent of con-
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stitutive equations, such as creep flow laws, and require only representative values for

topography, crustal thickness, and densities of the crust and lithospheric mantle, which are

well constrained.

The Tibetan plateau is the largest continental plateau on Earth, exhibiting an average

topography of ≈5 km and a crustal thickness of ≈70 km (e.g., Kind et al., 2002; Royden

et al., 2008; Nábělek et al., 2009)(Figure 3.1). Therefore, it has been the focus of many

theoretical studies on lithospheric stress (e.g., Jeffreys, 1932; England and Houseman, 1988;

Molnar and Lyon-Caen, 1988; Molnar et al., 1993; Liu and Yang, 2003; Ghosh et al., 2006;

Warners-Ruckstuhl et al., 2013). For the Tibetan plateau, GPE-based estimates for the

vertically integrated stress differences vary between 0.7×1013 and 1013 N/m (Figure 3.1c),

and the corresponding vertically averaged stresses are between 70 and 100 MPa for a 100

km thick lithosphere (e.g., Molnar and Lyon-Caen, 1988; Molnar et al., 1993; Schmalholz

et al., 2014, 2019). To study 3D aspects of the formation of the Tibetan plateau, so-called

thin viscous sheet models have been applied that are based on vertical integrals of the 3D

force balance equations (e.g., Bird and Piper, 1980; England and McKenzie, 1982; England

and Houseman, 1986, 1988; Medvedev and Podladchikov, 1999). Based on the comparison

between observations and model predictions, studies employing thin viscous sheet models

could, for example, estimate that the vertically averaged effective lithospheric viscosity of

the Tibetan plateau is in the order of 1022 Pa·s (e.g., England and Molnar, 1997; Flesch

et al., 2001).

Models that are based on vertical integrals of the force balance equations, such as thin

viscous sheet models, cannot estimate the vertical distribution of stress across the litho-

sphere. Therefore, the relative contributions of the continental crust and the lithospheric

mantle to the long-term stress and strength of the lithosphere remain unclear. For example,

some studies argue that a significant part of the lithospheric strength, required to support

the Tibetan plateau, resides in the seismogenic upper crust (e.g., Flesch et al., 2001). In
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Figure 3.1: Map view of the (a) topography, (b) crustal thickness, and
(c) lateral variations of gravitational potential energy per unit area (∆GPE)
of the Tibetan plateau and its surroundings using the CRUST 1.0 dataset
(http://igppweb.ucsd.edu/∼gabi/rem.html; Laske et al., 2013). The black rectangle
indicates the region in which the Longmen Shan is located and the two dashed rectan-
gles indicate the regions in which the two syntaxes are located. (see Discussion 3.4.8).
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contrast, other studies on the neighbouring Tien Shan propose that the major part (up to

90 %) of the lithospheric strength resides in the ductile lithospheric mantle (e.g., England

and Molnar, 2015). One argument for a weak continental crust is that typical stress drop

magnitudes are on the order of a few MPas (e.g., Allmann and Shearer, 2009) so that the

vertically integrated crustal stress does not contribute significantly to the stress integrated

across the lithosphere (e.g., England and Molnar, 2015). However, 2D numerical models

considering vertical viscosity and stress variations show that the Tibetan plateau collapses

within less than 1 Myr if shear stresses in the crust are limited to 5 MPa (Schmalholz

et al., 2019).

2D models can consider the impact of vertical viscosity variations on the lithospheric

stress distribution, but they cannot evaluate the impact of lateral topography and crustal

thickness variations on the stresses, for example, around the corner of the plateau. To

evaluate the impact of both vertical strength variations and lateral geometry variations on

the lithospheric stress field, 3D numerical models are required (e.g., Lechmann et al., 2014;

Pusok and Kaus, 2015; Bischoff and Flesch, 2019; Chen et al., 2020; Yang et al., 2020;

Zhang et al., 2022). However, essentially all 3D numerical models focusing on the Tibetan

plateau employ a rectangular model geometry and do not consider the potential impact of

Earth’s double curvature on the stress field around the Tibetan plateau (e.g., Lechmann

et al., 2014; Chen et al., 2020; Yang et al., 2020; Zhang et al., 2022). The double curvature

of the Earth’s lithosphere could potentially have an impact on its mechanical strength

and stress state because mechanical studies demonstrate that small amounts of bending

of plates reinforce the mechanical stability of thin sheets (e.g., Pini et al., 2016). Several

numerical studies investigated the impact of a locally curved and geometrically-stiffened

plate on the India-Asia collision and related exhumation (e.g., Bendick and Ehlers, 2014;

Koptev et al., 2019). Amongst others, these studies show that the geometrical stiffening

effect might be important for localized regions with fast exhumation such as syntaxes.
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Furthermore, several theoretical studies investigated the impact of a spherical geometry

on free subduction. Chamolly and Ribe (2021) found that the Earth’s sphericity has a

modest impact on the sinking speed of a slab but a much larger impact on the stress

field in the slab which is important for the along-strike buckling of slabs. Chen et al.

(2022) compared results of free subduction simulations in 3D Cartesian and spherical shell

domains. They found differences between the simulations that are related, for example, to

the reduction of space with depth in spherical shells which enhances along-strike buckling

and trench curvature. The differences between Cartesian and spherical models increase for

wider slabs. Therefore, both the Earth’s curvature and lateral geometry variations around

corners likely have an impact on the magnitude and distribution of the lithospheric stress

field around continental plateaus, but the magnitude of this impact remains unclear.

Here, we apply a 3D numerical model for viscous flow under gravity to investigate the

stress field around continental plateaus. We employ typical values for topography, crustal

thickness, and densities for the Tibetan plateau. We do not consider any far-field defor-

mation, such as convergence, and, hence, we study a continental plateau that will undergo

a gravitational collapse (e.g., Rey et al., 2001). In our study, we quantify (a) the impact of

increasing curvature on the crustal stress field around continental plateaus, (b) the mag-

nitudes of differential stresses in the crust required to support the Tibetan plateau, (c)

the impact of corners on normal and shear stresses in the crust, (d) the impact of viscos-

ity differences between the crust and lithospheric mantle and (e) the impact of a stress-

dependent, power-law flow law on the crustal stress field and horizontal velocities resulting

from gravitational spreading of the plateau. Furthermore, we derive simple analytical es-

timates for the horizontal deviatoric stress in the crust and the horizontal gravitational

spreading velocity. We test these estimates with the results of the performed 3D numerical

calculations.
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3.2 Model

3.2.1 Analytical Estimates for Stress and Spreading Velocity

Stress magnitudes in the lithosphere around continental plateaus and mountains can be

estimated from lateral variations, or differences, of the gravitational potential energy per

unit area, GPE, (e.g., Jeffreys, 1932; Dalmayrac and Molnar, 1981; Molnar and Lyon-Caen,

1988). The GPE is the vertical integral of the lithostatic pressure (e.g., Molnar and Lyon-

Caen, 1988). The difference in GPE, ∆GPE, between plateau and surrounding lowland is

given by (e.g., Molnar and Lyon-Caen, 1988; Schmalholz et al., 2014)

∆GPE = ρcgha

(
hc +

ρm
ρm − ρc

ha

2

)
(3.1)

where ρc, ρm, hc, ha and g are the crustal density, the mantle density, the crustal thickness

of the lowland, the altitude of the plateau and the gravitational acceleration, respectively

(Figure 3.2b). Schmalholz et al. (2014) provide an estimate for the magnitude of the

horizontal deviatoric stress in the crust, τe, given by

τe ≈
∆GPE

2 (2hc + ha + hr)
(3.2)

where hr is the thickness of the crustal root under the plateau (Figure 3.2b). Using the

isostatic relation

hr =
ρcha

ρm − ρc
(3.3)

and the expression for ∆GPE from Equation 3.1 yields an expression for τe in the form of

τe ≈
ρcgha

4
. (3.4)
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This stress estimate is independent of rheological parameters such as viscosity.

The ∆GPE between plateau and lowland will cause a gravitational collapse of the continen-

tal plateau which was defined by Rey et al. (2001) as ”the gravity-driven ductile flow that

effectively reduces lateral contrasts in gravitational potential energy”. We assume that the

crust behaves during gravitational collapse like a linear viscous fluid. The deviatoric stress,

τe, in the crust generates a strain rate, ϵ̇, which depends on the crustal viscosity, ηc, and

is given by the linear viscous flow law

ϵ̇ =
τe
2ηc

. (3.5)

During gravitational collapse, the thick crust of the plateau will thin and the plateau will

spread horizontally. We assume that ϵ̇ can be approximated by the ratio of the horizontal

spreading velocity, Ve, to a characteristic length, L, over which the spreading occurs:

ϵ̇ ≈ Ve

L
. (3.6)

Using Equations 3.4, 3.5 and 3.6, we obtain an estimate for Ve:

Ve ≈
ρcghaL

8ηc
. (3.7)

We will use the results of 3D numerical calculations to test the applicability of the estimate

for the stress, Equation 3.4, to determine the characteristic length, L, and to test the

estimate for the spreading velocity, Equation 3.7.
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To assess the impact of more complicated viscous flow laws, we consider also a stress-

dependent viscosity (e.g., Karato, 2008). We apply a combination of a linear and power-law

viscous flow law for which the effective crustal viscosity, ηcE, is

ηcE =
2ηc

1 +
(

τe
τC

)(n−1)
(3.8)

where n is the power-law stress exponent. For the analytical estimate, we assume that the

effective viscosity is controlled by the deviatoric stress estimate, τe. τC defines the stress

magnitude at which the deformation behavior changes from a linear viscous flow law to a

power-law viscous flow law (Schmalholz and Podladchikov, 2013). If n = 1, then ηcE = ηc,

and the flow is linear viscous. For n > 1, ηcE < ηc if τe > τC, an effect often referred to

as stress weakening. There is no limit for the decrease of ηcE if τe becomes infinitely large.

Conversely, for n > 1, ηcE > ηc if τe < τC. The maximal value of ηcE = 2ηc if τe would be

zero. The applied stress-dependent flow law, Equation 3.8, is useful to asses the impact

of both weakening and hardening compared to a linear viscosity, ηc, for n = 1. The flow

law of Equation 3.8 is also frequently applied without the factor of 2 in the numerator to

mimic a combined flow law with diffusion and dislocation creep. The difference compared

to ηcE in Equation 3.8 is that for n = 1 the effective viscosity does not correspond to the

linear viscosity.

Replacing ηc with ηcE, Equation 3.8, in Equation 3.7 provides a velocity estimate of the

form

VePL ≈ ρcghaL

16ηc

(
1 +

(
ρcgha

4τC

)(n−1)
)
. (3.9)
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We normalize VePL by the velocity estimate for linear viscous flow for n = 1, Ve, to obtain

a dimensionless velocity of the form

VePL

Ve

≈ 1

2

(
1 +

(
ρcgha

4τC

)(n−1)
)
. (3.10)

We will compare the analytical estimates for spreading velocities for stress-dependent vis-

cosities with the results of 3D numerical calculations.

3.2.2 Mathematical Model

We apply the so-called Stokes equations for slow, incompressible viscous flow under gravity

in 3D (e.g., Malvern, 1969; Turcotte and Schubert, 2021). We consider a spherical coor-

dinates system. The corresponding equations of mass conservation and linear momentum

conservation are displayed in Appendix A1. As for the analytical estimate, we employ a

combination of a linear and power-law viscous flow law for which the effective viscosity,

ηE, is (e.g., Schmalholz and Podladchikov, 2013; Gerya, 2019):

ηE =
2η

1 +
(

τII
τC

)(n−1)
(3.11)

where η is the linear viscosity for n = 1, n is again the stress exponent and τC is again the

characteristic stress controlling the transition from linear to power-law viscous flow. For

the simulated 3D viscous flow, the stress magnitude that controls the effective viscosity is

quantified by τII which is the square root of the second invariant of the deviatoric stress

tensor and given by

τII =
√
0.5 τ 2ij (3.12)



96 CHAPTER 3.

where symbols τij represent the components of the deviatoric stress tensor, indices i and

j represent the spherical coordinates r, θ and φ, and the Einstein summation convention

applies (Appendix A1 and Figure 3.2a). We apply the effective viscosity, ηE, in a flow law

for the 3D viscous flow calculations:

τij = 2ηEϵ̇ij (3.13)

where ϵ̇ij are the components of the devatoric strain rate tensor component. The applied

flow law for the individual stress tensor and strain rate tensor components are given in

Appendix A1.

3.2.3 Numerical Method

The numerical algorithm to solve the governing system of equations is programmed for

spherical coordinates. To solve the governing equations, we discretize them on a staggered

grid with constant spacing using the finite difference method (e.g., Virieux, 1986; Gerya,

2019; Räss et al., 2022). The numerical method we use to solve the discretized equations is

the pseudo-transient method, which is an iterative solution strategy for stationary problems

that allows solving the equations in a matrix-free way (e.g., Räss et al., 2022; Wang et al.,

2022). The pseudo-transient method consists of adding a pseudo-time derivative to the

governing equations. The initial values for the pressure and velocity fields do not solve the

discretized equations. Hence, the idea of the pseudo-transient method is to iterate over the

pseudo-time until the pseudo-time derivatives become smaller than a specified tolerance

value for all numerical grid points, and a numerical solution is reached. More details on

the applied pseudo-transient method are presented in Appendix A2.
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3.2.4 Model Configuration

In the applied spherical coordinates system, r is the radial direction, θ is the polar angle

(θ ∈ [0; π/2]) and φ is the azimuthal angle (φ ∈ [0; 2π]; see Figure 3.2a). The geometry

of the model domain represents a small 3D region from a sphere and its shape is like

a rectangular cuboid that is deformed to adapt to the spherical geometry (Figure 3.2a).

The model domain has a size of 1400 km × 1400 km horizontally and 565 km vertically,

measured at the surface of the sphere (Figure 3.2a). A continental plateau is configured on

a quarter of the model domain with a horizontal size of 600 km × 600 km and a transition

zone between the plateau and the surrounding lowland with a width of 100 km (Figure

3.2b). The model domain represents a quarter of a larger, quadratic (in map view) plateau

that is entirely surrounded by lowland. The lateral model sides at Y = −700 km and

X = −700 km, bounding the plateau in our model domain (see Figure 3.2b), represent

symmetry planes for the deformation of the larger plateau that is entirely surrounded by

lowland.

Figure 3.2: (a) Spherical coordinates system. The model domain (blue box) is
defined at the surface of a sphere of various radii (for example the Earth’s radius). (b)
Model configuration, for simplicity sketched in Cartesian coordinates: a cube of size 565
km vertically and 1400 km × 1400 km horizontally, composed by four different layers
representing the mantle, the lithospheric mantle, the continental crust, and sticky-air,
from bottom to top. A continental plateau in isostatic equilibrium is defined on a
quarter of the domain. Gravity acts in the vertical, r-direction.
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Vertically, the model domain is divided into four different layers, or model units, represent-

ing, from bottom to top, the mantle, the lithospheric mantle, the continental crust, and a

zero-density, weak layer that represents air, sometimes referred to as sticky-air layer (e.g.,

Crameri et al., 2012). The bottom layer has a constant thickness of 360 km, a density of

3300 kg/m3 and a linear viscosity of 1020 Pa·s. The lithospheric mantle has a thickness of

115 km below the lowland and 87 km below the plateau. It has a density of 3300 kg/m3

and we apply linear viscosities of 1020 Pa·s, 1021 Pa·s and 1022 Pa·s in different simulations.

The continental crust in the lowland is 35 km thick, to which are added 5 km of elevation

and 28 km of root to form a plateau in isostatic equilibrium (e.g., Schmalholz et al., 2014).

It has a density of 2800 kg/m3 and we vary its viscosity between 1020 Pa·s and 1022 Pa·s

in different simulations.

The sticky-air layer is applied to allow the surface of the crust to behave essentially as a

free surface. It has a thickness of 55 km over the lowland and of 50 km over the plateau. Its

density is 0 kg/m3 and its linear viscosity is 5× 1018 Pa·s. The thickness and the viscosity

of the sticky-air layer have been chosen following a criterion defined by Crameri et al.

(2012). This criterion guarantees that the sticky-air layer is sufficiently weak and thick to

mimic a free surface boundary condition. The ratio (ηst/ηch)/(hst/L)
3 has to be significantly

smaller than one, where ηst and ηch are the viscosity of the sticky-air and a characteristic

viscosity value, respectively, hst is the sticky-air thickness and L is a characteristic length

of the model. For the values used in this study, ηst = 5× 1018 Pa·s and hst = 50 km, and

we consider ηch = 1020 to 1022 Pa·s and the order of magnitude of L ∼ 100 km, the ratio

(ηst/ηch)/(hst/L)
3 ranges then between 0.004 and 0.4. The applied sticky-air layer is, hence,

suitable to mimic a free surface boundary condition. The boundary conditions applied in

this study are free slip on each lateral side and at the top and bottom of the model domain.

We do not prescribe any boundary velocity so that gravity, pointing towards the center

of the coordinates system along direction r, is the only driving force acting in the model
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domain. The applied numerical resolution is 804 m vertically and 7.07 km horizontally,

resulting from a numerical mesh with 703× 199× 199 grid points.

The applied model geometry and densities generate a ∆GPE between the plateau and

the lowlands of ≈7 × 1012 N/m. A ∆GPE of ≈7 × 1012 N/m has been typically used

in theoretical GPE studies applied to the Tibetan plateau (e.g., Molnar and Lyon-Caen,

1988; Schmalholz et al., 2014) and is a representative value of ∆GPE between the Tibetan

plateau and its surrounding lowlands resulting from the CRUST1.0 dataset (Laske et al.,

2013) (Figure 3.1c).

Parameters related to the power-law flow law are the power-law exponent, n, and the

characteristic stress, τC. In this study, we test three different values for the power-law

exponent, n = 1 (linear viscous), n = 3 and n = 6. The values of n > 1 are only tested

for a crustal linear viscosity η = 1022 Pa·s in the equation for the effective viscosity, ηE

(Equation 3.11). We apply a characteristic stress τC of 24 MPa. The exact value of τC

is not important, but it is important to choose a value that represents average values of

crustal stress so that some crustal regions exhibit stresses > τC and some exhibit stresses

< τC.

The calculations are done with values in dimensionless form. Three characteristic scales

are used to scale the results back to real physical units: one characteristic scale for length,

which is the total height of the model domain; one scale for viscosity, which is the linear

mantle viscosity; and one scale for density, which is the mantle density.
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3.3 Results

3.3.1 Overview

We begin by presenting the 3D stress field for two representative simulations: A simu-

lation with a mechanically strong crust (1022 Pa·s) and a weak lithospheric mantle (1020

Pa·s), referred to as model SC WL in the following, and another simulation with a strong

lithospheric mantle (1022 Pa·s) and crust with intermediate strength (1021 Pa·s), referred

to as IC SL. Next, we present results that show the impact of lithospheric curvature on

the stress field and then results that present the impact of a corner on the stress field.

Afterward, we show simulations that evaluate the impact of the viscosity ratio between

the crust and lithospheric mantle on the stress field and finally simulations that show the

impact of a stress-weakening power-law flow law. Furthermore, we compare the analytical

estimates presented in Section 3.2.1 with the numerical results.

For each model configuration, we have calculated a single time step to obtain the instan-

taneous 3D stress and velocity fields. For visualization reasons, we display the results for

the spherical coordinates in a Cartesian coordinate system.

3.3.2 General Stress State Around a Continental Plateau

Figure 3.3 shows for two simulations (Figure 3.3a to d: SC WL and Figure 3.3e to h:

IC SL) the deviatoric normal stresses in the three spatial directions and the differential

stress (σ1 − σ3), that is the difference between the largest and the smallest principal stress

at each numerical grid point of the model domain.

For the model SC WL, high stress magnitudes are inside the crust and are essentially

zero in the mantle (Figure 3.3a to d). Conversely, for the model IC SL, stress magni-

tudes are larger in the lithospheric mantle compared to the crust (Figure 3.3e to h). In
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Figure 3.3: 3D visualization of deviatoric normal stresses in the direction parallel to
the X-direction (panels a, e), parallel to Y (b, f), and parallel to Z (c, g). Panels (d, h)
display the differential stress (σ1 − σ3). Panels (a-d) show results for a simulation with
a strong crust (1022 Pa·s) and a weak lithospheric mantle (1020 Pa·s), model SC WL,
and panels (e-h) for a simulation with an intermediate crust (1021 Pa·s) and a strong
lithospheric mantle (1022 Pa·s), model IC SL. Positive and negative deviatoric stress
values indicate extensional and compressive stresses, respectively. These simulations
are performed with the Earth’s curvature and for linear viscous flow.
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general, in both horizontal directions, the same stress pattern is visible: an extension of

the plateau (positive deviatoric stresses) and a compression of the surrounding lowland

(negative deviatoric stresses). This pattern represents the lateral, gravitational spreading

of the continental plateau. This spreading is further confirmed by the vertical deviatoric

stress (Figure 3.3c and g). The negative stress values located inside the plateau indicate

a vertical thinning of the crust. Furthermore, the magnitudes of the vertical deviatoric

stresses are twice larger than the ones of the horizontal deviatoric stresses. The relation

between the deviatoric normal stresses is constrained by their definition that requires that

the sum of these deviatoric normal stresses is zero (e.g., Turcotte and Schubert, 2021).

Figure 3.3d shows that the largest differential stresses are located inside the plateau and

that the surrounding lowlands are under less stress. The largest differential stresses for

the simulation with the model IC SL are located below the plateau at the top of the

lithospheric mantle (Figure 3.3h). Differential stresses are also high below the lowlands at

the top of the lithospheric mantle (Figure 3.3h).

In summary, the ratio of crustal viscosity to the lithospheric mantle viscosity has a major

impact on the distribution and magnitude of stresses in the crust and lithospheric mantle.

3.3.3 Impact of the Curvature

To quantify the impact of curvature on the stresses in and around the continental plateau,

we modify the radius of the spherical coordinates system without changing the geometry

of the model domain. In other words, the arc length of the crust stays constant, and as

the radius of the sphere decreases the inner angle increases. Hence, the curvature of the

domain increases.

Figure 3.4 displays the differential stress (σ1 − σ3) for four different curvatures using a

radius of curvature corresponding to an infinite radius (no curvature), the radius of the
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Figure 3.4: Cross-sections at 500 km from the edge of the plateau (Y = −600 km)
showing the differential stress. Different curvatures corresponding to (a, b) negligible
curvature, (c, d) the Earth, (e, f) Mars, and (g, h) the Moon are displayed. Panels (a, c,
e, g) display results for model SC WL, and panels (b, d, f, h) display results for model
IC SL. The contours mark horizontal velocities of 2 cm/yr (red) and 1 cm/yr (blue).
The power-law exponent is always 1.



104 CHAPTER 3.

Earth (6371 km), of Mars (3390 km), and of the Moon (1737 km). We use these radii for

Mars and the Moon simply as examples to test the impact of increasing curvature. All four

curvatures have been tested with model SC WL and model IC SL. To first order, we do

not see any significant effect of curvature on the stresses and on the horizontal velocities.

Representative horizontal velocity magnitudes are indicated by the contour lines. For all

curvatures, larger differential stresses are located inside the strong layer of the model, that

is inside the crust for model SC WL and inside the lithospheric mantle for model IC SL.

Eight vertical profiles of differential stresses, from two horizontal sections, are compared in

Figure 3.5 for model SC WL and in Figure 3.6 for model IC SL. The different curvatures

are displayed for each vertical profile. There are two sets with four vertical profiles each.

The two sets show vertical profiles that belong to two horizontal profiles: Profile HP1

(Figure 3.5a to d, and Figure 3.6a to d) is located far away from the corner region and its

location is displayed in Figure 3.7d. Profile HP2 (Figure 3.5e to h, and Figure 3.6e to h)

is located inside the transition zone between the plateau and the lowland and displayed in

Figure 3.7d. For model SC WL, the impact of the different curvatures on the differential

stress profile is generally minor. There is an average difference of 0.15 MPa between the

flat simulation and the one with the Earth radius and a maximum difference of less than

10 MPa. Hence, for the case of a 3D model applied to Earth, a flat (Cartesian) model

provides stresses that are close to stresses resulting from a model considering the Earth’s

curvature. For a curvature corresponding to the radius of the Moon, some vertical profiles

show opposite trends of stress profiles compared to models with a radius corresponding to

Earth (Figure 3.5d, g and h). For example, in the vertical profile in the lowland close to

the transition zone and the plateau corner, the differential stresses in the crust increase

with depth for the radius of the Moon, but decrease with depth for all other models with

larger radii (Figure 3.5g). However, the magnitudes of the differential stresses are similar.
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Figure 3.5: Representative vertical profiles of differential stress for model SC WL
with different curvatures. Differential stress, (σ1−σ3), on the horizontal axis and depth
on the vertical axis. In panels (a-d) the profiles are taken at 500 km from the edge of
the plateau along the Y -axis (Profile HP1 in Figure 3.7) and their position in direction
X are (a) 500 km from the edge of the plateau, (b) 5 km from the edge, (c) 5 km after
lowland started, and (d) 500 km after the end of the transition between the plateau
and the lowland (positions are indicated in the top panel). In panels (e-h), profiles
are taken in the middle of the transition zone between the plateau and its surrounding
lowlands (Profile HP2 in Figure 3.7) and are distributed the same way as the left side
along direction X (positions displayed in the top panel). The different lines represent
different curvatures (see legend) and the dashed line marks the limit between the crust
and the lithospheric mantle. All of these simulations are done with the model SC WL.
The power-law exponent is 1.
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Figure 3.6: Representative vertical profiles of differential stress for model IC SL with
different curvatures. Differential stress, (σ1 − σ3), on the horizontal axis and depth on
the vertical axis. In panels (a-d) the profiles are taken at 500 km from the edge of the
plateau along the Y -axis (Profile HP1 in Figure 3.7) and their position in direction X
are (a) 500 km from the edge of the plateau, (b) 5 km from the edge, (c) 5 km after
lowland started, and (d) 500 km after the end of the transition between the plateau
and the lowland (positions are indicated in the top panel). In panels (e-h), profiles
are taken in the middle of the transition zone between the plateau and its surrounding
lowlands (Profile HP2 in Figure 3.7) and are distributed the same way as the left side
along direction X (positions displayed in the top panel). The different lines represent
different curvatures (see legend) and the dashed line marks the limit between the crust,
the lithospheric mantle and the mantle. All of these simulations are done with the
model IC SL. The power-law exponent is 1.
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For model IC SM, there are only minor differences between the differential stress profiles

for a model with flat geometry and with Earth’s, Mars’ and Moon’s curvature (Figure 3.6).

3.3.4 Impact of the Corner

For model SC WL, Figure 3.7a displays the devatoric normal stress at 15 km depth in map

view. Horizontal velocities indicate that the plateau flows apart and the velocity direction

changes by 90 degrees around the corner (Figure 3.7a). The horizontal deviatoric normal

stresses away from the corner and orthogonal to the plateau boundary are highest around

the plateau boundary, for example, for τφφ along profile HP1 (Figure 3.7b). Magnitudes

of τφφ decrease toward the corner (profile HP2 in Figure 3.7a). This is visible in Figure

3.7b which shows about 10 MPa difference in absolute stress magnitudes between the two

profiles. Away from the transition zone, the deviatoric normal stresses are essentially

constant. For comparison, we show two profiles for two stress magnitudes: a profile of the

stress at 15 km depth (solid line in Figure 3.7b and e) and a profile for the corresponding

stress that is vertically averaged across the crust (dashed lines). Both stress profiles are

similar (Figure 3.7b).

Figure 3.7d displays the horizontal shear stress at 15 km depth in map view. Shear stresses

are significant only in the corner region with magnitudes of up to more than 30 MPa. The

shear stresses increase nonlinearly toward the corner, indicated by the concave-upward

curve of shear stress versus distance (Figure 3.7e). Away from the corner region, shear

stresses become negligible (Figure 3.7d and e).

We also present representative vertical profiles of normal deviatoric stress and vertical

shear stress (Figure 3.7c and f). Both stresses show a significant vertical variation across

the crust. Vertical shear stresses are essentially zero at the top and bottom of the crust
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Figure 3.7: Stress distributions for model SC WL with Earth’s curvature and linear
viscous flow. (a, d) Map views. Projection on a flat plane of stresses following the
curvature at 15 km depth. (b, e) Horizontal profiles of stresses at 15 km depth and
vertically averaged across the crust. Blue line (Profile HP1) is a profile 500 km away
from the edge of the plateau and red line (Profile HP2) is inside of the transition
between the plateau and the lowland. Panels (a, b) display the horizontal deviatoric
stress τφφ and panels (d, e) display the horizontal shear stress τθφ. Panels (c, f) display
vertical profiles of horizontal deviatoric stress and vertical shear stress, respectively.
The location of the profiles are indicated in panel (d) by VP1 and VP2. The black lines
on panels (a, d) represent the position of the plateau at the surface and the arrows are
the velocity field.
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Figure 3.8: Stress distributions for model IC SL with Earth’s curvature and linear
viscous flow. (a, d) Map views. Projection on a flat plane of stresses following the
curvature at 15 km depth. (b, e) Horizontal profiles of stresses at 15 km depth and
vertically averaged across the crust. Blue line (Profile HP1) is a profile 500 km away
from the edge of the plateau and red line (Profile HP2) is inside of the transition
between the plateau and the lowland. Panels (a, b) display the horizontal deviatoric
stress τφφ and panels (d, e) display the horizontal shear stress τθφ. Panels (c, f) display
vertical profiles of horizontal deviatoric stress and vertical shear stress, respectively.
The location of the profiles are indicated in panel (d) by VP1 and VP2. The black lines
on panels (a, d) represent the position of the plateau at the surface and the arrows are
the velocity field.
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but vary considerably vertically (Figure 3.7f). Maximum values of vertical shear stresses

reach ≈10 MPa.

As for model SC WL (Figure 3.7), we present the same map views and stress profiles

for model IC SL (Figure 3.8). Compared to model SC WL, in model IC SL the crustal

stress magnitudes are smaller, normal deviatoric stresses reach up to only 20 MPa along

profile HP1 and shear stresses reach 30 MPa in the corner region (profile HP2). However,

the general crustal stress pattern is the same in both models, with decreasing normal

deviatoric stresses and larger shear stresses toward the corner. The vertical profile of the

vertical shear stresses shows that shear stresses are largest at the crust-mantle boundary

and that maximum values are ≈35 MPa (Figure 3.8f).

Figure 3.9 displays map views of the maximum crustal differential stress and horizontal

crustal velocities at each horizontal position. For each horizontal location, we select the

largest crustal value along the vertical profile at this location. For model SC WL (Figure

3.9a and b), differential stresses are highest in the plateau and maximum values are ≈100

MPa (Figure 3.9a). Conversely, for model IC SL (Figure 3.9c and d), differential stresses

are largest along the transition zone (Figure 3.9c). Inside the plateau, differential stresses

are smaller than ca. 40 MPa. The comparison of model SC WL with IC SL shows that

the viscosity ratio between the crust and lithospheric mantle has a major impact on the

magnitude and distribution of crustal differential stress.

The distribution of maximum crustal horizontal spreading velocities is also different for

models SC WL and IC SL (Figure 3.9b and d). For model SC WL, the velocity magni-

tudes vary less across the model domain compared to model IC SL for which maximum

magnitudes are localized along the transition zone. The magnitudes of the spreading ve-

locities are lager for model IC SL compared to SC WL.
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Figure 3.9: Map views showing lateral distribution of differential stress and spreading
velocities for models SC WL and IC SL. Maximum value in the crust at every horizontal
position of differential stress (a, c), and spreading velocity (b, d). Panels (a, b) display
the simulation with the model SC WL, and panels (c, d) show the simulation with the
model IC SL. The white lines represent the position of the plateau at the surface and
the arrows are the velocity field. These simulations are done using the Earth’s curvature
and linear viscous flow.
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In map view, the magnitudes of differential stress and horizontal velocities do not vary

significantly along the transition zone for both simulations with strong and intermediate

crust (Figure 3.9). In other words, only the directions change along the transition zone,

but the magnitudes of stress and horizontal velocity change insignificantly. Far away from

the corner region, the magnitude contours of normal deviatoric stresses run parallel to the

plateau edge, and shear stresses are negligible. This suggests that far away from the corner

region there are no significant 3D features in the stress field in that area. However, it is

important to take into account the 3D characteristics of the plateau close to the corner

region where horizontal shear stresses are significant.

3.3.5 Impact of the Crust and Mantle Strength

We present the results of 18 simulations with various viscosities for the crust and litho-

spheric mantle to determine what crustal viscosities are required to prevent the continental

plateau from gravitational collapse with unrealistically fast velocities. In our viscous model,

the plateau will always flow apart as long as there are lateral variations in GPE, but the

horizontal velocities will be negligible if the viscosities are sufficiently large. We consider

a model unrealistic if the maximum horizontal velocity exceeds 4 cm/yr. The 4 cm/yr

corresponds approximately to the current indentation velocity of India (e.g., Liang et al.,

2013). Such indentation velocity could theoretically balance a spreading velocity of the

same magnitude. However, spreading velocities along the northern limit of the Tibetan

plateau are smaller than 4 cm/yr (e.g., Liang et al., 2013), so that 4 cm/yr represents a

maximal value of acceptable velocities.

Figure 3.10 displays the differential stress distribution in cross-sections at 500 km from the

edge of the plateau (profile location HP1). Contours represent spreading velocities of 4, 10

and 20 cm/yr (black, blue and red contours, respectively). In the case of a weak crust (1020
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Figure 3.10: Vertical cross sections at profile location HP1 for different models
showing differential stress. Differential stress for crustal viscosities of 1020 Pa·s (a-c),
1021 Pa·s (d-f) and 1022 Pa·s (g-i) and lithospheric mantle viscosities of 1020 Pa·s (a, d,
g), 1021 Pa·s (b, e, h) and 1022 Pa·s (c, f, i). The contours mark horizontal velocities
of black: 4 cm/yr, blue: 10 cm/yr, and red: 20 cm/yr. The black lines display the
limits between the continental crust, the lithospheric mantle, and the mantle. These
simulations are done using the Earth’s curvature and linear viscous flow.

Pa·s) and a weak lithospheric mantle (1020 Pa·s), stresses are small and spreading velocities

are unrealistically large (up to 70 cm/yr). An increase of viscosity of either the crust or the

lithospheric mantle leads to smaller velocities (Figure 3.10). A strong lithospheric mantle

associated with a weak crust still allows the plateau to spread with unrealistic velocities

> 20 cm/yr (Figure 3.10c). On the other hand, a strong crust (1022 Pa·s) overlying a weak

lithospheric mantle (1020 Pa·s) exhibits a maximum spreading velocity < 4 cm/yr (Figure

3.10g). Moreover, stresses are focusing in the strong layer, which leads to different stress

distribution and magnitudes in the crust above a strong lithospheric mantle. Stresses are

focused in the transition zone between plateau and lowland, where most of the deformation

occurs.

Figure 3.11 displays the maximum spreading velocity in the entire crust as a function of

the crustal viscosity. It shows more clearly the tendency observed in Figure 3.10, that the
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larger the crustal viscosity, the slower the spreading of the plateau. For the same crustal

viscosities, larger viscosities of the lithospheric mantle cause smaller spreading velocities.

Five of our 18 simulations provided velocities smaller than 4 cm/yr, all for a crustal viscosity

of at least 3× 1021 Pa·s.

Figure 3.11: Maximum values of the spreading velocity in the entire crust for models
with varying viscosities of the crust and lithospheric mantle. The horizontal axis in-
dicates the crustal viscosity and the color the viscosity of the lithospheric mantle. All
results are for models with Earth’s curvature and linear viscous flow.

In addition, Figure 3.12 presents the relation between the maximum differential stress in

the crust and the maximum spreading velocity (Figure 3.12a) and the maximum strain

rate invariant (ϵ̇II =
√

1/2 ∗ (ϵ̇2rr + ϵ̇2θθ + ϵ̇2φφ) + ϵ̇2rθ + ϵ̇2rφ + ϵ̇2θφ; Figure 3.12b) in the crust.

There is no clear correlation between these quantities. Similar stress magnitudes can lead

to considerably different velocities or strain rates. For a strong lithospheric mantle, the

crustal stress magnitudes do not systematically decrease with decreasing crustal viscosities
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Figure 3.12: Relation between the maximum crustal differential stress and (a) the
maximum spreading velocity, and (b) the maximum strain rate invariant for models
with varying viscosities of the crust and lithospheric mantle. Different crustal (size
of markers) and lithospheric mantle (color of markers) viscosities are indicated in the
legend in panel (b). All simulations are performed with Earth’s curvature and linear
viscous flow.

(Figure 3.12a). The reason is that a weaker crust flows faster and hence generates higher

strain rates (Figure 3.12). These higher strain rates cause higher stresses and can balance

the decrease in viscosity to maintain similar stress magnitudes. Magnitudes of stress are

hence not a reliable proxy for lithospheric strength which is governed by the effective

viscosity.

3.3.6 Impact of a Stress-Dependent Power-Law Flow Law

In our combined linear and power-law viscous flow law, we need to specify the characteristic

stress that controls the transition from linear viscous (e.g., diffusion creep) to power-law

viscous flow (e.g., dislocation creep). We define τC at 24 MPa. As a consequence, effective

viscosity decreases when stresses are larger than the characteristic stress and increases

when stresses are smaller. If we refer in this section, with results for power-law viscous
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flow, to a viscosity value applied in a model, then we refer to the linear viscosity, η, used

in the Equation 3.11 for the effective viscosity, ηE.

Figure 3.13 displays map views of differential stress and effective viscosity. For both quan-

tities, we plot the maximum value of the crust at each horizontal position. Results for a

strong crust (1022 Pa·s) and a weak lithospheric mantle (1020 Pa·s), model SC WL, show

that stress magnitudes decrease and the stress distribution gets smoother as the power-law

exponent increases (Figure 3.13a to f). Also, the effective viscosity varies from a constant

value (linear viscous) to more and more variable values (Figure 3.13b, d and f). Differences

in effective viscosity reach up to one order of magnitude for n = 6 (Figure 3.13f). In the

plateau, where stresses are high, the effective viscosity for n = 3 and 6 is smaller compared

to the linear viscous one. However, far away from the plateau the stresses are smaller than

the characteristic stress what leads to an increase in effective viscosity.

Results for a strong crust (1022 Pa·s) and a strong lithospheric mantle (1022 Pa·s) show

small differences in the differential stress distribution for increasing values of n (Figure

3.13g, i and k). The reason is that crustal deviatoric stresses do not significantly exceed

the characteristic stress. Hence, the effective viscosity increases nearly everywhere, except

in the transition zone between plateau and lowlands (Figure 3.13h, j and l).

Figure 3.14 presents the maximal differential stress and spreading velocity of the entire

crust as a function of the power-law exponent. For all lithospheric mantle viscosities, the

maximum differential stress decreases as the power-law exponent increases (Figure 3.14a).

For example, for the model with a lithospheric mantle viscosity of ηl = 1021 Pa·s, the

maximum differential stress decreases from ≈100 MPa to ≈67 MPa when n increases from

1 to 6 (red curve in Figure 3.14a). For lithospheric mantle viscosities between ηl = 1021

Pa·s and ηl = 1022 Pa·s, the maximum spreading velocities vary little when n increaseas

(Figure 3.14b). The spreading velocity increases with increasing n for a lithospheric mantle
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Figure 3.13: Map views of crustal maximum values of differential stress and effective
viscosity for two simulations with power-law viscous flow with different stress exponents
n. Panels (a-f) display results for a simulation with a strong crust (1022 Pa·s) and a
weak lithospheric mantle (1020 Pa·s). Panels (g-l) display results for a simulation with
a strong crust (1022 Pa·s) and a strong lithospheric mantle (1022 Pa·s). Panels (a, c, e),
and panels (g, i, k) display the differential stress. Panels (b, d, f), and panels (h, j, l)
display the effective viscosity. The corresponding stress exponent n is indicated on the
left of each of the three rows of panels. All models are with the Earth’s curvature.
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Figure 3.14: Variation of the maximum (a) differential stress and (b) spreading
velocity of the entire crust with increasing power-law stress exponent n. All simulations
are with the Earth’s curvature, a crustal viscosity value of η = 1022 Pa·s and with
τC = 24 MPa.

viscosity of ηl = 1020 Pa·s because in this model the crustal stresses are largest and the

stress weakening effect due to power-law flow is largest.

The presented results show the general impacts of a power-law viscous flow on the magni-

tudes of stress and spreading velocities. Specific results depend on the applied value of τC

but a systematic analysis of the impact of different values of τC is beyond the scope of our

study.

3.3.7 Estimates of Stress and Spreading Velocity

For all the numerical calculations with linear viscous flow, we compare the maximum nu-

merical value of τII in the crust with the analytical estimate τe since both stress magnitudes

represent deviatoric stresses (Figure 3.15a). The value of τe ≈34 MPa for the applied model

configuration and predicts the numerical values of τII accurately within a factor of ≈2. The

comparison shows that τe tends to provide a lower bound for the numerical stress mag-
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nitudes (Figure 3.15a). The numerical results also show that stress magnitudes depend

only slightly on the crustal viscosity. While the viscosity of both the crust and lithospheric

mantle varies by two orders of magnitude, the stress magnitudes only vary within a factor

of less than ≈2 which supports the analytical estimate of τe that is estimated independently

on the viscosity.

The numerical results show that there is an approximately linear correlation between the

maximum horizontal spreading velocity, Vs, and the maximum strain rate invariant, ˙ϵII

(Figure 3.15b). We have assumed such linear relation in Equation 3.6 to derive an analytical

estimate for the spreading velocity. A length scale, L, that captures the observed relation

between the numerical spreading velocities and strain rates is ≈200 km. The 200 km

corresponds to twice the width of the transition zone. For the analytical estimate of the

spreading velocity, Ve, we hence use L = 200 km (see Equation 3.7).

The comparison between the maximum value of the numerical spreading velocity, Vs, and

the corresponding analytical estimate, Ve, shows that Ve can accurately predict the spread-

ing velocities within a factor of ≈3 (Figure 3.15c). Such accuracy of Ve is remarkable

because in the numerical calculations both ηc and ηl vary between 1020 and 1022 Pa·s, and

the numerical calculations consider all end-member combinations of ηc and ηl (Figure 3.10).

We made calculations with a stress-dependent viscosity only for a crustal linear viscosity

of 1022 Pa·s. The applied value of τC is 24 MPa. The estimated value of τe/τC ≈1.4

(Figure 3.15d). For simulations with n = 6, estimated values of τe/τC are closest to the

numerical values of max(τII)/τC while for simulations with n = 1 the value of τe/τC under-

estimates the numerical values (Figure 3.15d). Simulations with n = 6 show the smallest

variation in max(τII)/τC (from ≈1.2 to ≈1.6) but the largest variation in max(Vs)/Ve (from

≈0.9 to ≈4.2) which is consistent with the analytical estimate (Figure 3.15d). Conversely,

simulations with n = 1 show the largest variation in max(τII)/τC (from ≈1.6 to ≈2.4)
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Figure 3.15: Comparison of analytical estimates with numerical results. The legend
at the bottom of the figure indicates the values used in the numerical calculation. (a)
Maximum value of τII in the crust from numerical calculation versus crustal viscosity,
ηc. The horizontal black line indicates the analytical estimate for the deviatoric stress,
τe. (b) Maximum value of crustal horizontal spreading velocity, Vs, versus the maximum
value of ˙ϵII. The black line indicates the applied analytical estimate for the relation be-
tween spreading velocity, Ve, and strain rate, ϵ̇. (c) Comparison of numerical spreading
velocity, Vs, with analytical estimate, Ve. The black line indicates the equivalence be-
tween numerical and analytical velocities. (d) Dimensionless spreading velocity versus
the stress ratio that controls the stress-dependent effective viscosity. The solid lines
indicate the analytical velocity estimate for different values of n (see Equation 3.10).
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but the smallest variation in max(Vs)/Ve (from ≈1.3 to ≈2.6). Simulations with n = 1

should theoretically not vary with varying max(τII)/τC and the velocity variations are due

to differences between max(τII) and τe causing the inaccuracy in the velocity prediction.

3.4 Discussion

3.4.1 Viscous Deformation of the Lithosphere

For simplicity, we consider only a linear and a power-law viscous deformation of the litho-

sphere and neglect elastic and frictional-plastic deformation. We use viscosities between

1020 and 1022 Pa·s. Typical values of the elastic shear modulus for lithospheric rocks are

≈3× 1010 Pa (e.g., Turcotte and Schubert, 2021). The characteristic Maxwell viscoelastic

stress relaxation time is given by the ratio of viscosity to shear modulus (e.g., Turcotte and

Schubert, 2021). The duration of the relaxation of elastic stresses in a viscoelastic material

is approximated by the Maxwell time. For the applied viscosities between 1020 and 1022

Pa·s, and a typical shear modulus of ≈3× 1010 Pa, the Maxwell time is between 100 and

10’000 years. Since we are interested in the long-term stability of continental plateaus, say

>1 Myr, it is justifiable to neglect elastic effects in our application because elastic stresses

are relaxed after ≈10′000 years for our model configuration.

The maximum differential stresses in our model are≈110 MPa (Figure 3.12), and maximum

differential stresses close to the surface are <80 MPa (Figure 3.5). Frictional-plastic yield

stresses in the continental crust are >80 MPa already below a few kilometers of depth

(e.g., Kohlstedt et al., 1995; Townend and Zoback, 2000). Therefore, in our model, only

the uppermost few kilometers of the continental crust would be affected by frictional-

plastic deformation, because most of the continental crust deeper than a few kilometers

exhibits differential stresses below typical yield stresses. Furthermore, differential stresses
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in the lithospheric mantle in all the performed models are also <100 MPa, and stresses

are, hence, below the yield stress in the lithospheric mantle (Figure 3.10). The application

of an effectively viscous deformation behavior of the lithosphere is, hence, justifiable for

our model and our modelling objectives.

3.4.2 Curvature

Most 3D models investigating the deformation of the lithosphere around continental

plateaus are considering a flat rectangular plate. However, the Earth’s lithosphere has

a double curvature and is mechanically a shell. A shell is a plate that has a curvature in its

undeformed state (e.g., Bower, 2009). One could expect a lithospheric plate and shell to

generate different stress fields around continental plateaus due to, for example, geometrical

stiffening effects (e.g., Pini et al., 2016). Another effect of the curvature is the opposite

reaction of a plate and a shell to lateral, that is orthogonal to the plate’s surface, loading

(e.g., von Karman et al., 1940). A plate deflects in response to a lateral load, hence its

length, or arc length, increases, and the plate’s middle line is under extension. A shell

with a convex upward curvature is shortened and compressed if the lateral loading is in

the direction opposite to the upward convexity.

Our results show that the impact of the Earth’s curvature on the stress field around conti-

nental plateaus is minor. The absolute magnitudes of stresses are slightly smaller in models

considering the Earth’s curvature compared to flat models (Figure 3.5). If the curvature

becomes larger, then differences between stresses for a rectangular and spherical geometry

increase. However, the differences are not large (Figure 3.5). We suggest that the reason

for this minor impact of curvature is likely the isostatic state of the plateau. Despite the

high topography, the plateau does not generate a vertical load and vertical displacement

on the lithospheric plate. Conversely, the lateral GPE variations cause mainly stresses that
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are parallel to the curved lithosphere. Therefore, the stress distribution around plateaus

is similar for flat and curved geometries.

3.4.3 Crustal and Lithospheric Mantle Viscosities

We use in our model a simple plateau geometry and simple distributions of densities and

effective viscosities. The main reasons for the simplified model configuration are to keep

the results transparent and to focus on first-order processes. Nevertheless, our model is

considerably more elaborated than thin viscous sheet models, because, for example, it cap-

tures the full 3D stress field and considers different viscosities of the crust and lithospheric

mantle. Our results show that the ratio of crustal to lithospheric mantle viscosity has a sig-

nificant impact on the magnitude of crustal stresses. For the estimation of crustal stresses

in regions with significant lateral variation of GPE, it is therefore essential to apply models

that can consider different viscosities in the crust and lithospheric mantle. Thin viscous

sheet models and models based on lateral variations of GPE are not suitable to estimate

crustal stress magnitudes in such regions because they consider effective viscosities that

are vertically averaged across the entire lithosphere.

Our results show that a strong lithospheric mantle alone is not sufficient to support the

Tibetan plateau. The crust must also have significant strength to prohibit an unrealistically

fast gravitational collapse of the plateau. For the strongest lithospheric mantle in our model

we apply a viscosity of 1022 Pa·s. Below the crust-mantle boundary (Moho), effective

viscosities of the lithospheric mantle may be slightly higher than 1022 Pa·s, especially

below the lowland due to colder Moho temperatures compared to the thicker plateau

(e.g., Hirth and Kohlstedt, 2003; England and Molnar, 2015). However, since we apply a

constant viscosity in the lithospheric mantle, this viscosity represents a vertically averaged

viscosity. We apply the viscosity of 1022 Pa·s for the lithospheric mantle down to a depth
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of 150 km. In such depth, and for the correspondingly hotter temperatures, the viscosity of

the lithospheric mantle is smaller than 1022 Pa·s (e.g., Hirth and Kohlstedt, 2003; England

and Molnar, 2015). Therefore, the modelled lithospheric mantle with a constant viscosity

of 1022 Pa·s represents a strong lithospheric mantle compared to more realistic vertical

viscosity variations based on experimentally derived flow laws.

Here, we consider a crust that causes spreading velocities larger than 4 cm/yr as mechani-

cally too weak to support the Tibetan plateau. We chose 4 cm/yr because this value is like

the present-day indentation velocity of India (e.g., Liang et al., 2013). Our results show

that the vertically averaged viscosity of the crust must be at least 3× 1021 Pa·s or larger so

that spreading velocities in the crust are everywhere smaller than 4 cm/yr. This average

viscosity value is quite large considering the larger-than-normal thickness of the crust form-

ing continental plateaus (≈70 km in the Tibetan plateau) and its associated large vertical

temperature variation. For example, the upper limit for lower crustal viscosities, resulting

from geodetic estimates (e.g., Thatcher and Pollitz, 2008), is ≈3× 1021 Pa·s, and many

studies suggest lower crustal viscosities to range between 1018 Pa·s and 3× 1020 Pa·s (e.g.,

England et al., 2013; Doin et al., 2015; Shi et al., 2015). If such low-viscosity estimates for

the continental lower crust are accurate, then our results imply that the average, effective

viscosity of the upper crust must be considerably larger than 3× 1021 Pa·s in order to

support the topographic variation between the Tibetan plateau and surrounding lowland

for geological time scales >≈1 Myr.

3.4.4 Shear Stresses

The crustal shear stresses vary significantly in both the horizontal and vertical directions

(Figures 3.7 and 3.8). In the corner region of the plateau, the magnitudes of the horizontal

shear stresses are even larger than the absolute magnitudes of the horizontal deviatoric nor-
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mal stresses (Figures 3.7 and 3.8). Conversely, away from the corner region, the horizontal

shear stresses are essentially negligible (Figures 3.7 and 3.8).

The vertical shear stresses vary significantly in the vertical direction at the transition zone.

For a strong crust and weak lithospheric mantle (SC WL), the shear stresses have a max-

imum absolute value of ≈10 MPa (Figures 3.7c and f). For an intermediate strong crust

and strong lithospheric mantle (IC SL), the shear stresses reach a maximum absolute value

of ≈30 MPa at the base of the crust (Figure 3.8f). The existence of such shear stresses has

important implications for thin viscous sheet models because in these models the vertical

shear stresses are considered to be zero (e.g., England and McKenzie, 1982; Schmalholz

et al., 2014). Such thin viscous sheet approximations, that neglect vertical shear stresses,

are often applied to quantify the global lithospheric stress field (e.g., Coblentz et al., 1994;

Lithgow-Bertelloni and Guynn, 2004; Ghosh et al., 2009) or the stresses and forces asso-

ciated with large-scale tectonic plate motion (e.g., Ghosh et al., 2006; Warners-Ruckstuhl

et al., 2012, 2013). These models provide first-order accurate magnitudes of large-scale

lithospheric stresses. Our results indicate that care should be taken when interpreting

such stress fields in regions with significant lateral GPE variations because in these re-

gions vertical shear stresses can be significant and can have a first-order impact on stress

magnitudes. The vertical variation of the vertical shear stress is associated with a vertical

variation of the horizontal deviatoric normal stresses (Figures 3.7c and f, and 3.8c and f).

The horizontal deviatoric normal stress changes its sign with depth (Figures 3.7c and 3.8c)

which is typically resulting from bending of the lithosphere around the transition zone

Schmalholz et al. (2019).

2D lithospheric models configured for vertical cross sections provide accurate stress fields

if the cross section has a distance from a corner region of at least a few hundred kilometers.

If the modelled cross section is closer, then horizontal shear stresses are significant (Figures
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3.7 and 3.8). The modelled 2D stress field can be, hence, considerably inaccurate because

it does not take into account these horizontal shear stresses.

3.4.5 Stress Versus Strength Relationship

The viscosity controls the strength of the different model units, such as the crust. The

maximum magnitudes of the differential stress in the crust do not vary significantly for a

strong lithospheric mantle and different crustal viscosities (Figure 3.12a). Conversely, the

maximum magnitudes of the spreading velocities and strain rates in the crust vary between

one and two orders of magnitude, respectively. The minor variation of maximum crustal

differential stresses, despite two orders of magnitude variation in crustal viscosities, shows

that crustal stress magnitudes are not a good proxy for crustal strength (e.g., Schmalholz

et al., 2009). Smaller crustal viscosities result in faster spreading velocities and higher strain

rates. Therefore, stress magnitudes, which are proportional to the product of viscosity and

strain rate, remain more or less constant for decreasing crustal viscosities.

3.4.6 Simplifications

We make several simplifications in our model to study first-order features of the 3D stress

field around continental plateaus and to keep the results transparent. We consider a simple

and idealized geometry of a continental plateau and only the instantaneous stress field. We

do not apply a far-field velocity field in order to isolate the impact of topography and lateral

crustal thickness variation on the stress field. For the Tibetan plateau, the indentation of

the Indian plate affects the deformation field around the Himalayan range. Therefore, we

consider a spreading velocity of >4 cm/yr as unrealistic.

Another limitation of our model is the simplified density and viscosity structure. 2D

numerical models that consider a more realistic yield strength envelope exhibit significant
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vertical viscosity variations due to the temperature dependence of viscosity. These viscosity

variations cause stronger vertical stress variations compared to our model because high

stresses are focused in the high-viscosity levels of the crust and lithospheric mantle (e.g.,

Schmalholz et al., 2019). Also, several studies have proposed the existence of a low-

viscosity middle or lower crustal layer in which significant crustal flow could take place (e.g.,

Clark and Royden, 2000; Beaumont et al., 2004). The existence of such a widespread and

continuous low-viscosity crustal layer remains disputed (e.g., Nábělek et al., 2009). If such

a low-viscosity layer existed, then the magnitudes of crustal differential stresses would likely

be larger as predicted by our model because the vertically integrated stresses supporting the

plateau would be focused on a thinner upper crustal, high-viscosity layer. Therefore, more

realistic vertical viscosity variations likely result in larger maximum differential stresses

compared to our model with constant viscosity in the model units.

Furthermore, the temperature dependence of viscosity will result in lateral variations of

crustal and lithospheric mantle viscosites along the Moho between plateau and lowland

because of different temperatures at different depths (e.g., Schmalholz et al., 2019). How-

ever, these lateral viscosity variations might be not dramatic in the lithospheric mantle

because the potentially active low-temperature plasticity is significantly less sensitive to

temperature than dislocation creep (e.g., England and Molnar, 2015).
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3.4.7 Dimensionless Stress Ratio and Analytical Estimate for

Spreading Velocity

To derive the analytical estimate Ve, we assume that the estimated deviatoric stress in the

crust, τe, causes gravitational spreading. In other words, we assume that the gravitational

stress is equal to the viscous flow stress and, hence, we assume

ρcghaL

8ηcVe

≈ 1. (3.14)

The above dimensionless stress ratio is similar to the Ramberg (Ramberg, 1981; Weijermars

and Schmeling, 1986) and Argand numbers (England and McKenzie, 1982). The Ramberg

and Argand numbers scale the gravitational stress to a viscous stress. In the Ramberg

number, the strain rate is usually expressed by the ratio of a velocity to a length scale (e.g.,

Medvedev, 2002). Conversely, in the Argand number the strain rate is typically assumed

to be the large-scale lithospheric shortening rate during crustal thicknening (England and

McKenzie, 1982) or crustal and lithospheric folding (Schmalholz et al., 2002).

To quantify the Ramberg number, one commonly assumes L = ha (Ramberg, 1981; Weijer-

mars and Schmeling, 1986). Medvedev (2002) applied the Ramberg number to a two-sided

wedge of total width λ with a basal shear velocity Vbs. They estimated the strain rate with

the ratio Vbs/λ. In our model, a crosssection orthogonal across the transition zone with a

linear change of topography corresponds to a geometry similar to one-half of the double-

sided wedge considered by Medvedev (2002). In our analytical velocity estimate, we used

a length scale of L = 200 km which is equivalent to twice the width of the transition zone.

This length scale is similar to the one used in the analytical model for two-sided wedges by

Medvedev (2002) to estimate strain rates. Hence, we expect that our velocity estimate is

also applicable to plateau geometries with transition widths different from the ones of our
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model if in the analytical estimate twice the width of the transition zone is used as length

scale L.

3.4.8 Applications to the Tibetan Plateau

We can use our model result that indicates that the Ramberg number is ≈1 (Equation

3.14) to estimate the crustal viscosity in particular regions of the Tibetan plateau. For

example, in the eastern Tibetan plateau the Longmen Shan orogenic belt represents the

boundary between the Tibetan plateau and the Sichuan Basin (e.g., Sun et al., 2019). In

the southern segment of the Longmen Shan, the altitude decreases ≈4 km over a distance

of ≈50 km and in the northern segment the altitude decreases ≈3.5 km over a distance of

≈200 km (e.g., Sun et al., 2019). The crustal thickness around the Longmen Shan with

≈4 km topography is ≈60 km indicating a situation close to isostatic equilibrium (Zhang

et al., 2009). The GPS velocities indicate a spreading velocity in the direction from the

high to the low topographic region of ≈1 cm/yr (Gan et al., 2007; Zheng et al., 2017;

Penney and Copley, 2021). We solve Equation 3.14 for the crustal viscosity which yields

ηc ≈
ρcghaL

8Ve

. (3.15)

Applying Ve = 1 cm/yr, ρc = 2800 kg·m−3, ha = 4 km and L = 100 km provides an

estimate for the average crustal viscosity of ≈5× 1021 Pa·s. Changing ha to 3.5 km and L

to 400 km provides ηc ≈1.5×1022 Pa·s. Given the uncertainties of the measured quantities

such as velocities and topography as well as of the simple mathematical model, our model

predicts effective average crustal viscosities of ≈1022 Pa·s. This viscosity value estimated

with our simple Equation 3.15 agrees with viscosity estimates of other studies that applied

more elaborated thin viscous sheet models (e.g., England and Molnar, 1997; Flesch et al.,

2001).
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The India-Asia collision and the formation of the Tibetan plateau have generated a variety

of large-scale strike-slip faults, particularly around the two syntaxes regions (e.g., Molnar

and Tapponnier, 1975; Harrison et al., 1992; Royden et al., 1997; Tapponnier et al., 2001).

The syntaxes regions are characterized by significant horizontal changes in the direction

of the transition zone between high- and low-altitude regions. In our model, the corner

represents such regions in which the transition zone between high- and low-altitude regions

significantly changes its horizontal direction. The modelled, strongly increased horizontal

shear stresses around the plateau’s corner region (Figures 3.7 and 3.8) suggest that ongoing

strike-slip faulting around the Tibetan syntaxes regions might be supported, in addition

to indentation and convergence, by horizontal shear stresses resulting from the significant

lateral changes in topography and crustal thickness.

A stronger continental crust exhibits larger and more homogeneously distributed differen-

tial stresses compared to a weaker crust above a strong lithospheric mantle (Figure 3.9a

and c). For a weak, low-viscosity crust, large differential stresses occur only along the tran-

sition zone and differential stresses significantly decrease toward the plateau center (Figure

3.9c). Earthquakes are relatively equally distributed across the Tibetan plateau (e.g., Bai

et al., 2017; Li and Hou, 2019; Hetényi et al., 2023). There is no systematic trend that

shows, for example, a decreasing density of earthquakes toward the center of the Tibetan

plateau. Consequently, the crust of the Tibetan plateau should be at least strong enough

to prohibit a considerable decrease of differential stress toward the plateau center.

Some of the most active orogenic processes on Earth occur within the syntaxes of the

Himalayan chain, at the southern termination of the Tibetan plateau (e.g., Zeitler et al.,

2001). These syntaxial regions are characterized by strong lateral variations in topography

and crustal thickness. The applied power-law viscous flow law can locally decrease crustal

viscosities in regions with stresses that are larger than those in the surroundings, due to its

stress-weakening effect. Our results show that such relative stress weakening can occur in
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the transition zone around the corner region (Figure 3.13f). The decreased viscosity in the

transition at the corner of the plateau could locally weaken the crust, focus the deformation

and contribute to locally increased exhumation. Several mechanisms have been proposed

to explain the localized exhumation and deformation in the syntaxes, such as crustal-scale

buckle folding (Burg et al., 1997), diverted crustal flow resulting from localized river incision

and erosion (Zeitler et al., 2001) or crustal deformation over a geometrically stiffened

subducting plate (Bendick and Ehlers, 2014). Whatever the mechanism, a local stress-

weakening of the crust in the syntaxes region due to stresses resulting from strong lateral

topography and crustal thickness variations could support the localization of deformation

and ongoing rapid exhumation.

3.5 Conclusions

We investigated with 3D numerical calculations the interplay of various factors governing

the crustal stress distribution and magnitudes in and around continental plateaus. In our

model, the stresses are caused by lateral variations in gravitational potential energy only

and we do not consider any tectonic far-field deformation such as plate convergence.

For our model, we have demonstrated that Earth’s curvature exerts a minor influence on

stress magnitudes and distribution within the continental crust. Consequently, for spatial

scales smaller than a few thousand kilometers, it is justifiable to omit the Earth’s curvature

in numerical models of stress distribution around continental plateaus.

Our study has emphasized the critical role played by corner regions in shaping the crustal

stress field. Notably, horizontal deviatoric normal stresses consistently decrease toward

the plateau’s corner regions, while horizontal shear stresses significantly intensify. These
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corner regions exhibit elevated horizontal shear stresses, reaching approximately 30 MPa,

underscoring their importance in understanding crustal stress patterns.

Varying the viscosity of both the continental crust and lithospheric mantle has unveiled

several key insights. First, the stress distribution is primarily controlled by the viscosity

ratio between the crust and lithospheric mantle. The highest and lowest differential stresses

in the crust occur in configurations featuring a weak lithospheric mantle and a strong crust,

and vice versa. Second, reducing the crustal viscosity does not automatically reduce stress

magnitudes; instead, it can lead to faster crustal flow, higher strain rates, and subsequently,

higher stresses. Hence, crustal stress magnitudes are not a reliable proxy for the effective

crustal viscosity, and hence crustal strength. Lastly, the incorporation of a stress-weakening

power-law flow law generally results in decreased stress magnitudes.

We defined a critical velocity threshold for assessing the continental crust’s effective

strength. For instance, modelled Tibetan plateau spreading velocities exceeding 4 cm/yr

suggest an unrealistically weak continental crust. Our simulations have revealed that a

lithospheric mantle with an effective viscosity of 1020 Pa·s necessitates a maximum dif-

ferential stress in the crust exceeding 100 MPa to achieve velocities below this threshold.

Similarly, a stronger lithospheric mantle with an average viscosity of 1022 Pa·s requires

crustal differential stresses on the order of 60 to 80 MPa to maintain slower spreading

velocities. In all scenarios explored, an average crustal viscosity of at least 3 × 1021 Pa·s

is essential to ensure velocities below 4 cm/yr. This underscores the importance of a me-

chanically strong crust to sustain large topographic features and lateral crustal thickness

variations over extended geological time scales.

We derived simple analytical estimates for the crustal horizontal deviatoric stress and

spreading velocities of continental plateaus. These estimates can be used to estimate av-

erage crustal viscosities for natural plateaus. For the eastern Tibetan plateau we estimate
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a crustal viscosity of ≈1022 Pa·s which is in agreement with previous estimates. Further-

more, we suggest that the 3D stress field in the syntaxes regions of the Tibetan plateau,

which is caused by the lateral variations in gravitational potential energy, can support on-

going strike-slip faulting and fast exhumation because of locally increased horizontal shear

stresses and locally increased stress weakening, respectively.
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Appendix A. Method

Mathematical Model

In this study, we use a numerical algorithm to solve the Stokes equations in spherical

coordinates. In this coordinates system, r is the radial direction, θ is the polar angle and

φ is the azimuthal angle (see Figure 3.2a). The total stress tensor σij is decomposed into a

pressure P (or mean stress) and a deviatoric stress τij as σij = −δijP + τij. The indexes i

and j vary between 1 and 3 and indicate the three spatial directions (r, θ, φ). Components

of the deviatoric stress tensor are defined as:
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(3.16)

where ηE is the effective viscosity, ϵ̇ij are the strain rate tensor components and Vi are the

components of the velocity vector. The square root of the second invariant of the deviatoric

stress tensor, τII, which is used in equation (3.11) for the stress-dependent viscosity, is
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τII =
√

0.5 τ 2ij =
√

0.5(τ 2rr + τ 2θθ + τ 2φφ) + τ 2rθ + τ 2rφ + τ 2θφ. (3.17)

The equations for the conservation of mass and the conservation of the linear momentum

in an incompressible fluid under gravity are:
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where ρ is the density and gi is the gravitational acceleration in the direction i.

Numerical Method

To solve the governing equations, we discretize them on a staggered grid with constant

spacing using the finite difference method. The numerical method used to solve the equa-

tions is the pseudo-transient method, which is an iterative solution strategy for stationary

problems that allows solving the equations in a matrix-free way. The pseudo-transient

method consists in adding a pseudo-time derivative to the Equations 3.16 and 3.18:
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where K̃, ρ̃ and G̃ are numerical parameters, τPT is a pseudo-time. K̃ and G̃ can be con-

sidered as pseudo-bulk and pseudo-shear modulus respectively, and ρ̃ as a pseudo-density.

With these parameters, Equation 3.19 can be considered as acoustic and inertial approx-

imations of the mass and momentum balance equations respectively. The initial guess of

pressure and velocity fields do not fulfill Equation 3.19. After a number of iterations, the

pseudo-time derivatives become smaller than a specified tolerance, here 5 × 10−7, and a

numerical solution is reached.
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Stresses are important because they control many major geological processes, such as

seismicity, volcanism, folding, faulting and formation of large features such as mountain

belts (Turcotte and Schubert, 2021). The aim of this thesis is to quantify and evaluate

the 3D distribution and magnitude of stresses around specific geological settings, namely

diapirism and continental plateaus.

In the first study (Chapter 2), the focus is on diapirism. This process is an important

mechanism for mass and heat transportation (Turcotte and Schubert, 2021) and it occurs

in many different geodynamic settings, time and spatial scales. Thus, quantifying the

velocity of ascent is central as it determines the importance of diapirism. In this study, we

investigate the rising velocity of a weak and buoyant sphere in a non-linear viscous fluid

under far-field deformation. We calculated everything in dimensionless form so that our

results are applicable to a wide range of geological settings.

Our results show that the rising velocity of a diapir depends on two stress ratios: (a)

regional stress over characteristic stress, where regional stress is generated by far-field

deformation, in this study a strike-slip shearing. The characteristic stress is a material

parameter, marking the stress at which the deformation behavior changes from linear

(diffusion creep) to power-law viscous flow law (dislocation creep). (b) Buoyancy stress

over characteristic stress, where buoyancy stress (∆ρgR) is induced by the diapir itself.

Hence, it depends on the size R of the buoyant inclusion and on the density difference

(∆ρ) between the diapir and its surrounding medium. Because of the non-linear rheology

of the rocks, both stress ratios provoke stress weakening around the diapir, which allows

it to rise faster than it would in a linear medium. Also, the effects of each stress ratio add

up to increase the velocity of ascent up to 4 orders of magnitude faster than the calculated

velocity in a linear viscous medium. We performed a systematic quantification of the rising

velocity by varying both stress ratios.
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Also, we compare our results with the analytical estimates of Weinberg and Podladchikov

(1994). We modify them by adding a term considering the effect of the regional stresses

and find that for a wide range of stress ratios, analytical estimates are accurate within a

factor of 2. However, the largest discrepancies arise when buoyancy stresses are large. This

can be explained by the fact that the analytical estimates consider buoyancy stresses as

a proxy for deviatoric stresses. Yet, numerical results show that deviatoric stresses, used

in the calculation of the effective viscosity, can be much smaller than buoyancy stresses.

Therefore, we could improve the analytical estimates by adding a “shape factor”. We also

compared our results with studies of sediment diapirs in subduction zones (e.g., Klein and

Behn, 2021), mantle plumes (e.g., Schubert et al., 2001), (U)HP terranes (e.g., Burov et al.,

2014) and plutons (Michail et al., 2021). In summary, the analytical estimates are very

useful to evaluate the importance of diapirism in a wide range of geological settings.

The second study (Chapter 3) focuses on stresses inside and around continental plateaus,

such as the Tibetan plateau. It is well known that stresses deviate from the lithostatic state

to generate horizontal forces supporting large thickness regions (Darwin, 1882; Jeffreys,

1932). Stress and strength estimates established by lateral variations of gravitational

potential energy (GPE), and thin viscous sheet models are robust, however, these methods

provide depth-averaged estimations and not the vertical distribution of these quantities

across the lithosphere. In this study, we calculated the 3D stress distribution inside and

around an ideal geometry of a continental plateau in isostatic equilibrium. This allowed

us to quantify the impact of different parameters and characteristics on the stress field.

First, curvature does not significantly impact the lithospheric stress field at this spatial

scale. As a consequence, one can neglect the curvature if the area of interest is smaller

than a few thousands of km.
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Second, the corner region of the plateau exposes a significant effect on the stress distri-

bution. Shear stresses are negligible far away from that area but increase, in a non-linear

manner, up to about 30 MPa at the corner. Normal stresses, on the opposite, decrease to-

wards the corner region. Our results show that velocity and stress directions rotate around

the corner region.

Also, we tested different viscosities of the crust and of the lithospheric mantle. Our results

show that varying these viscosities strongly affects the spreading velocities magnitude and

stress distibution. Indeed, a weak crust (1020 Pa·s) associated with a weak lithospheric

mantle (1020 Pa·s) presents horizontal velocities of nearly 70 cm/yr, which means the

plateau would flow apart very quickly and no topography variations could be sustained

on Earth. Another case, a strong lithospheric mantle (1022 Pa·s) associated with a weak

crust (1020 Pa·s), also produces velocities that are unreasonably large (∼ 25 cm/yr). As a

consequence, our results would not fit with studies stating that the lithospheric strength lies

in the lithospheric mantle exclusively (i.e., England and Molnar, 2015). On the opposite,

a strong continental crust (1022 Pa·s) with a weak lithospheric mantle (1020 Pa·s) displays

velocities smaller than 4 cm/yr, supporting the results of Flesch et al. (2001) stating that

the lithospheric strength is mostly located inside the crust. Furthermore, comparing all

simulations we performed, it appears the crustal viscosity must be at least 3 × 1021 Pa·s

for a large topographic feature, such as a continental plateau, to be supported over long

time scales. Our results also show that similar stress magnitudes can be associated with

a wide range of horizontal velocities and strain rates. Hence, effective strength cannot be

estimated based on differential stress magnitudes.

Furthermore, we derive simple analytical estimates for horizontal deviatoric stress and

spreading velocities of a continental plateau. These estimates also allow to evaluate a

vertically averaged viscosity of the lithosphere.
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Our studies allow a better understanding of the stress distribution around diapirs and

continental plateaus. However, I propose the following points to improve our model:

1. The numerical model we created can be developed by many different aspects. How-

ever, two of them are a priority:

(a) Evolution with time: for now, the model calculates the instantaneous stress

and velocity fields. Being able to calculate their time evolution would allow, for

example, to model the rise of the diapir and the lateral spreading of the plateau.

(b) Thermal coupling: currently, our model only calculates the mechanic part of

geological processes. Coupling our solver with temperature dependent density

and viscosity would allow to model the cooling of the diapir and its impact

on the surrounding rocks. It would also improve the rheology structure of the

lithosphere (Schmalholz et al., 2019).

2. Our simulations use very idealized geometries, which allow to understand the first-

order processes acting on the stresses. It is necessary to apply the model to real

geological settings.

Many more improvements and applications can be envisioned for this model to study more

complex geological processes.
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158 APPENDIX A. NUMERICAL GRIDS

The finite difference method is used to discretize the equations in the numerical algorithms.

Figure A.1 displays the employed staggered grids. For better readability, the grids are

shown in 2D.

Figure A.1: Staggered grid in a) Cartesian coordinates, and b) polar coordinates.
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# DIAPIR - CARTESIAN COORDINATES SYSTEM
const USE_GPU = true
const GPU_ID = 0

saveflag = true

using ParallelStencil
using ParallelStencil.FiniteDifferences3D
@static if USE_GPU

@init_parallel_stencil(CUDA, Float64, 3)
CUDA.device!(GPU_ID) # select GPU

else
@init_parallel_stencil(Threads, Float64, 3)

end
using Plots, Printf, Statistics, LinearAlgebra

# SAVING FUNCTIONS ==========================================================================================
function Save_infos(num, lx, ly, lz, nx, ny, nz, εnonl, runtime; out="./output")

fid=open(out * "/$(num)_infos.inf", "w")
@printf(fid,"%d %f %f %f %d %d %d %d %d", num, lx, ly, lz, nx, ny, nz, εnonl, runtime); close(fid)

end

function Save_phys(num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g, sh, radius, dmp; out="./output")
fid=open(out * "/$(num)_phys.inf", "w")
@printf(fid,"%d %f %f %f %f %f %f %f %f %f %f",

num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g , sh, radius, dmp); close(fid)
end

@static if USE_GPU
function SaveArray(Aname, A; out="./output")

A_tmp = Array(A)
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A_tmp); close(fid)

end
else

function SaveArray(Aname, A; out="./output")
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A); close(fid)

end
end

# ===========================================================================================================
@parallel_indices (ix,iy,iz) function equal!(A::Data.Array, B::Data.Array)

if (ix<=size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = B[ix,iy,iz] end
return

end

@parallel_indices (ix,iy,iz) function multiply!(A::Data.Array, B::Data.Array, fact::Data.Number)
if (ix<=size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = B[ix,iy,iz]*fact end
return

end

# BOUNDARY CONDITIONS =======================================================================================
@parallel_indices (ix,iy,iz) function bc_x_lin!(A::Data.Array, COORD::Data.Array, fact::Data.Number)

if (ix==1 && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = 2*COORD[ix ,iy,iz]*fact -
A[ix+1,iy,iz] end

if (ix==size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = 2*COORD[ix ,iy,iz]*fact -
A[ix-1,iy,iz] end

return
end

@parallel_indices (ix,iy,iz) function bc_x_0!(A::Data.Array)
if (ix==1 && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = 0.0 end
if (ix==size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = 0.0 end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_x!(A::Data.Array)
if (ix==1 && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix+1,iy,iz] end
if (ix==size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix-1,iy,iz] end
return

end
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@parallel_indices (ix,iy,iz) function bc_y_fact!(A::Data.Array, COORD::Data.Array, fact::Data.Number)
if (ix<=size(A,1) && iy==1 && iz<=size(A,3)) A[ix,iy,iz] = fact*COORD[ix,iy,iz] end
if (ix<=size(A,1) && iy==size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = fact*COORD[ix,iy,iz] end
return

end

@parallel_indices (ix,iy,iz) function bc_y_0!(A::Data.Array)
if (ix<=size(A,1) && iy==1 && iz<=size(A,3)) A[ix,iy,iz] = -A[ix,iy+1,iz] end
if (ix<=size(A,1) && iy==size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = -A[ix,iy-1,iz] end
return

end

@parallel_indices (ix,iy,iz) function bc_z_0!(A::Data.Array)
if (ix<=size(A,1) && iy<=size(A,2) && iz==1 ) A[ix,iy,iz] = -A[ix,iy,iz+1] end
if (ix<=size(A,1) && iy<=size(A,2) && iz==size(A,3)) A[ix,iy,iz] = -A[ix,iy,iz-1] end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_z!(A::Data.Array)
if (ix<=size(A,1) && iy<=size(A,2) && iz==1 ) A[ix,iy,iz] = A[ix,iy,iz+1] end
if (ix<=size(A,1) && iy<=size(A,2) && iz==size(A,3)) A[ix,iy,iz] = A[ix,iy,iz-1] end
return

end

# COPY BOUNDARIES ===========================================================================================
@parallel_indices (ix,iy,iz) function copy_boundary!(A::Data.Array)

if (ix==1 && iy<=size(A,2)-2 && iz<=size(A,3)-2) A[ix ,iy+1,iz+1] = A[ix+1,iy+1,iz+1] end
if (ix==size(A,1) && iy<=size(A,2)-2 && iz<=size(A,3)-2) A[ix ,iy+1,iz+1] = A[ix-1,iy+1,iz+1] end
if (ix<=size(A,1)-2 && iy==1 && iz<=size(A,3)-2) A[ix+1,iy ,iz+1] = A[ix+1,iy+1,iz+1] end
if (ix<=size(A,1)-2 && iy==size(A,2) && iz<=size(A,3)-2) A[ix+1,iy ,iz+1] = A[ix+1,iy-1,iz+1] end
if (ix<=size(A,1)-2 && iy<=size(A,2)-2 && iz==1 ) A[ix+1,iy+1,iz ] = A[ix+1,iy+1,iz+1] end
if (ix<=size(A,1)-2 && iy<=size(A,2)-2 && iz==size(A,3) ) A[ix+1,iy+1,iz ] = A[ix+1,iy+1,iz-1] end
return

end

# INITIALIZATION ============================================================================================
@parallel_indices (ix,iy,iz) function initialize_inclusion!( A::Data.Array , X3D::Data.Array,

Y3D::Data.Array , Z3D::Data.Array,
radius::Data.Number, in::Data.Number)

if (ix<=size(A,1) && iy<=size(A,2) && iz<=size(A,3))
if ((X3D[ix,iy,iz]^2 + Y3D[ix,iy,iz]^2 + Z3D[ix,iy,iz]^2) < radius) A[ix,iy,iz] = in end

end
return

end

@parallel_indices (ix,iy,iz) function initialize_velocity!( V::Data.Array, COORD::Data.Array,
fact::Data.Number)

if (ix<=size(V,1)-1 && iy<=size(V,2) && iz<=size(V,3)) V[ix,iy,iz] = COORD[ix ,iy,iz]*fact end
if (ix==size(V,1) && iy<=size(V,2) && iz<=size(V,3)) V[ix,iy,iz] = COORD[ix-1,iy,iz]*fact end
return

end

# ITERATION STRATEGY ========================================================================================
@parallel function maxloc!(η_Max::Data.Array, η::Data.Array)

@inn(η_Max) = @maxloc(η)
return

end

macro KBDT(ix,iy,iz) esc(:( dmp * 2.0 * pi * vpdt / lx * ηSM[$ix,$iy,$iz] )) end
macro GSDT(ix,iy,iz) esc(:( 4.0 * pi * vpdt / lx * ηSM[$ix,$iy,$iz] )) end
@parallel_indices (ix,iy,iz) function timesteps!(DT_R::Data.Array , η::Data.Array , ηSM::Data.Array,

vpdt::Data.Number, dmp::Data.Number, lx::Data.Number)
if (ix<=size(DT_R,1) && iy<=size(DT_R,2) && iz<=size(DT_R,3))

DT_R[ix,iy,iz] = vpdt^2 / (@KBDT(ix,iy,iz) + @GSDT(ix,iy,iz)/(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz]))
end
return

end
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# SOLVER ====================================================================================================
macro avxyi_η(ix,iy,iz) esc(:( 0.25*( η[$ix ,$iy ,$iz+1] + η[$ix ,$iy+1,$iz+1] +

η[$ix+1,$iy ,$iz+1] + η[$ix+1,$iy+1,$iz+1]) )) end
macro avxzi_η(ix,iy,iz) esc(:( 0.25*( η[$ix ,$iy+1,$iz ] + η[$ix ,$iy+1,$iz+1] +

η[$ix+1,$iy+1,$iz ] + η[$ix+1,$iy+1,$iz+1]) )) end
macro avyzi_η(ix,iy,iz) esc(:( 0.25*( η[$ix+1,$iy ,$iz ] + η[$ix+1,$iy ,$iz+1] +

η[$ix+1,$iy+1,$iz ] + η[$ix+1,$iy+1,$iz+1]) )) end
macro avxyi_ηSM(ix,iy,iz) esc(:( 0.25*(ηSM[$ix ,$iy ,$iz+1] + ηSM[$ix ,$iy+1,$iz+1] +

ηSM[$ix+1,$iy ,$iz+1] + ηSM[$ix+1,$iy+1,$iz+1]) )) end
macro avxzi_ηSM(ix,iy,iz) esc(:( 0.25*(ηSM[$ix ,$iy+1,$iz ] + ηSM[$ix ,$iy+1,$iz+1] +

ηSM[$ix+1,$iy+1,$iz ] + ηSM[$ix+1,$iy+1,$iz+1]) )) end
macro avyzi_ηSM(ix,iy,iz) esc(:( 0.25*(ηSM[$ix+1,$iy ,$iz ] + ηSM[$ix+1,$iy ,$iz+1] +

ηSM[$ix+1,$iy+1,$iz ] + ηSM[$ix+1,$iy+1,$iz+1]) )) end
macro avxyi_GSDT(ix,iy,iz) esc(:( 4.0 * pi * vpdt / lx * @avxyi_ηSM(ix,iy,iz) )) end
macro avxzi_GSDT(ix,iy,iz) esc(:( 4.0 * pi * vpdt / lx * @avxzi_ηSM(ix,iy,iz) )) end
macro avyzi_GSDT(ix,iy,iz) esc(:( 4.0 * pi * vpdt / lx * @avyzi_ηSM(ix,iy,iz) )) end
macro D_XX(ix,iy,iz) esc(:( (VX[$ix+1,$iy ,$iz ]-VX[$ix,$iy,$iz])*_dx )) end
macro D_YY(ix,iy,iz) esc(:( (VY[$ix ,$iy+1,$iz ]-VY[$ix,$iy,$iz])*_dy )) end
macro D_ZZ(ix,iy,iz) esc(:( (VZ[$ix ,$iy ,$iz+1]-VZ[$ix,$iy,$iz])*_dz )) end
macro D_XY(ix,iy,iz) esc(:( (VX[$ix+1,$iy+1,$iz+1]-VX[$ix+1,$iy ,$iz+1])*_dy +

(VY[$ix+1,$iy+1,$iz+1]-VY[$ix ,$iy+1,$iz+1])*_dx )) end
macro D_XZ(ix,iy,iz) esc(:( (VX[$ix+1,$iy+1,$iz+1]-VX[$ix+1,$iy+1,$iz ])*_dz +

(VZ[$ix+1,$iy+1,$iz+1]-VZ[$ix ,$iy+1,$iz+1])*_dx )) end
macro D_YZ(ix,iy,iz) esc(:( (VY[$ix+1,$iy+1,$iz+1]-VY[$ix+1,$iy+1,$iz ])*_dz +

(VZ[$ix+1,$iy+1,$iz+1]-VZ[$ix+1,$iy ,$iz+1])*_dy )) end
@parallel_indices (ix,iy,iz) function compute_P!( P::Data.Array , τ_XX::Data.Array , τ_YY::Data.Array ,

τ_ZZ::Data.Array , τ_XY::Data.Array , τ_XZ::Data.Array ,
τ_YZ::Data.Array , VX::Data.Array , VY::Data.Array ,

VZ::Data.Array , η::Data.Array , ηSM::Data.Array ,
dmp::Data.Number, vpdt::Data.Number, lx::Data.Number,
_dx::Data.Number, _dy::Data.Number, _dz::Data.Number)

if (ix<=size(P ,1) && iy<=size(P ,2) && iz<=size(P ,3))
P[ix,iy,iz] = P[ix,iy,iz] - @KBDT(ix,iy,iz) * (@D_XX(ix,iy,iz) + @D_YY(ix,iy,iz) +

@D_ZZ(ix,iy,iz)) end
if (ix<=size(τ_XX,1) && iy<=size(τ_XX,2) && iz<=size(τ_XX,3))

τ_XX[ix,iy,iz] = (τ_XX[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@D_XX(ix,iy,iz))/
(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz]) end

if (ix<=size(τ_YY,1) && iy<=size(τ_YY,2) && iz<=size(τ_YY,3))
τ_YY[ix,iy,iz] = (τ_YY[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@D_YY(ix,iy,iz))/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz]) end
if (ix<=size(τ_ZZ,1) && iy<=size(τ_ZZ,2) && iz<=size(τ_ZZ,3))

τ_ZZ[ix,iy,iz] = (τ_ZZ[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@D_ZZ(ix,iy,iz))/
(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz]) end

if (ix<=size(τ_XY,1) && iy<=size(τ_XY,2) && iz<=size(τ_XY,3))
τ_XY[ix,iy,iz] = (τ_XY[ix,iy,iz] + @avxyi_GSDT(ix,iy,iz)*@D_XY(ix,iy,iz))/

(1.0 + @avxyi_GSDT(ix,iy,iz)/@avxyi_η(ix,iy,iz)) end
if (ix<=size(τ_XZ,1) && iy<=size(τ_XZ,2) && iz<=size(τ_XZ,3))

τ_XZ[ix,iy,iz] = (τ_XZ[ix,iy,iz] + @avxzi_GSDT(ix,iy,iz)*@D_XZ(ix,iy,iz))/
(1.0 + @avxzi_GSDT(ix,iy,iz)/@avxzi_η(ix,iy,iz)) end

if (ix<=size(τ_YZ,1) && iy<=size(τ_YZ,2) && iz<=size(τ_YZ,3))
τ_YZ[ix,iy,iz] = (τ_YZ[ix,iy,iz] + @avyzi_GSDT(ix,iy,iz)*@D_YZ(ix,iy,iz))/

(1.0 + @avyzi_GSDT(ix,iy,iz)/@avyzi_η(ix,iy,iz)) end
return

end

@parallel_indices (ix,iy,iz) function compute_TII!( τII::Data.Array, τ_XX::Data.Array, τ_YY::Data.Array,
τ_ZZ::Data.Array, τ_XY::Data.Array, τ_XZ::Data.Array,
τ_YZ::Data.Array)

if (ix<=size(τII,1)-2 && iy<=size(τII,2)-2 && iz<=size(τII,3)-2)
τII[ix+1,iy+1,iz+1] = sqrt(1.0/2.0 * (τ_XX[ix+1,iy+1,iz+1]^2 + τ_YY[ix+1,iy+1,iz+1]^2 +

τ_ZZ[ix+1,iy+1,iz+1]^2) +
(0.25*(τ_XY[ix ,iy ,iz ] + τ_XY[ix ,iy+1,iz ] +

τ_XY[ix+1,iy ,iz ] + τ_XY[ix+1,iy+1,iz ]))^2 +
(0.25*(τ_XZ[ix ,iy ,iz ] + τ_XZ[ix ,iy, iz+1] +

τ_XZ[ix+1,iy ,iz ] + τ_XZ[ix+1,iy ,iz+1]))^2 +
(0.25*(τ_YZ[ix ,iy ,iz ] + τ_YZ[ix ,iy ,iz+1] +

τ_YZ[ix ,iy+1,iz ] + τ_YZ[ix ,iy+1,iz+1]))^2) end
return

end
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@parallel_indices (ix,iy,iz) function power_law!(η_PL::Data.Array , η::Data.Array ,
τII::Data.Array , η_PL_OLD::Data.Array ,

η_INI::Data.Array , τ_C::Data.Number,
n_exp::Data.Number, relax::Data.Number)

if (ix<=size(η_PL,1) && iy<=size(η_PL,2) && iz<=size(η_PL,3))
η_PL[ix,iy,iz] = η_INI[ix,iy,iz] * (τII[ix,iy,iz]/τ_C)^(1.0-n_exp) end

if (ix<=size(η_PL,1) && iy<=size(η_PL,2) && iz<=size(η_PL,3))
η_PL[ix,iy,iz] = exp(log(η_PL[ix,iy,iz])*relax + log(η_PL_OLD[ix,iy,iz])*(1.0-relax)) end

if (ix<=size(η ,1) && iy<=size(η ,2) && iz<=size(η ,3))
η[ix,iy,iz] = 2.0/(1.0/η_INI[ix,iy,iz] + 1.0/η_PL[ix,iy,iz]) end

return
end

macro dVX(ix,iy,iz) esc(:(-( P[$ix+1,$iy+1,$iz+1]- P[$ix,$iy+1,$iz+1])*_dx +
(τ_XX[$ix+1,$iy+1,$iz+1]-τ_XX[$ix,$iy+1,$iz+1])*_dx +
(τ_XY[$ix ,$iy+1,$iz ]-τ_XY[$ix ,$iy,$iz ])*_dy +
(τ_XZ[$ix ,$iy ,$iz+1]-τ_XZ[$ix ,$iy ,$iz])*_dz )) end

macro dVY(ix,iy,iz) esc(:( (τ_XY[$ix+1,$iy ,$iz ]-τ_XY[$ix,$iy ,$iz ])*_dx -
( P[$ix+1,$iy+1,$iz+1]- P[$ix+1,$iy,$iz+1])*_dy +
(τ_YY[$ix+1,$iy+1,$iz+1]-τ_YY[$ix+1,$iy,$iz+1])*_dy +
(τ_YZ[$ix ,$iy ,$iz+1]-τ_YZ[$ix ,$iy ,$iz])*_dz )) end

macro dVZ(ix,iy,iz) esc(:( (τ_XZ[$ix+1,$iy ,$iz ]-τ_XZ[$ix,$iy ,$iz ])*_dx +
(τ_YZ[$ix ,$iy+1,$iz ]-τ_YZ[$ix ,$iy,$iz ])*_dy -
( P[$ix+1,$iy+1,$iz+1]- P[$ix+1,$iy+1,$iz])*_dz +
(τ_ZZ[$ix+1,$iy+1,$iz+1]-τ_ZZ[$ix+1,$iy+1,$iz])*_dz -
g*(0.5*(ρ[$ix+1,$iy+1,$iz] + ρ[$ix+1,$iy+1,$iz+1])) )) end

macro avxi_DT_R(ix,iy,iz) esc(:(0.5*(DT_R[$ix ,$iy+1,$iz+1] + DT_R[$ix+1,$iy+1,$iz+1]) )) end
macro avyi_DT_R(ix,iy,iz) esc(:(0.5*(DT_R[$ix+1,$iy ,$iz+1] + DT_R[$ix+1,$iy+1,$iz+1]) )) end
macro avzi_DT_R(ix,iy,iz) esc(:(0.5*(DT_R[$ix+1,$iy+1,$iz ] + DT_R[$ix+1,$iy+1,$iz+1]) )) end
@parallel_indices (ix,iy,iz) function compute_V!( VX::Data.Array , VY::Data.Array , VZ::Data.Array ,

τ_XX::Data.Array , τ_YY::Data.Array , τ_ZZ::Data.Array,
τ_XY::Data.Array , τ_XZ::Data.Array , τ_YZ::Data.Array ,
DT_R::Data.Array , P::Data.Array , ρ::Data.Array,

η::Data.Array , ηSM::Data.Array , vpdt::Data.Number,
dmp::Data.Number, lx::Data.Number,
_dx::Data.Number, _dy::Data.Number, _dz::Data.Number,

g::Data.Number)
if (ix<=size(VX,1)-2 && iy<=size(VX,2)-2 && iz<=size(VX,3)-2)

VX[ix+1,iy+1,iz+1] = VX[ix+1,iy+1,iz+1] + @dVX(ix,iy,iz) * @avxi_DT_R(ix,iy,iz) end
if (ix<=size(VY,1)-2 && iy<=size(VY,2)-2 && iz<=size(VY,3)-2)

VY[ix+1,iy+1,iz+1] = VY[ix+1,iy+1,iz+1] + @dVY(ix,iy,iz) * @avyi_DT_R(ix,iy,iz) end
if (ix<=size(VZ,1)-2 && iy<=size(VZ,2)-2 && iz<=size(VZ,3)-2)

VZ[ix+1,iy+1,iz+1] = VZ[ix+1,iy+1,iz+1] + @dVZ(ix,iy,iz) * @avzi_DT_R(ix,iy,iz) end
return

end

# CHECK ERROR ===============================================================================================
@parallel_indices (ix,iy,iz) function error!(A::Data.Array, B::Data.Array)

if (ix<=size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = abs(A[ix,iy,iz] - B[ix,iy,iz]) end
return

end
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# ===========================================================================================================
@views function CART_3D_Diapir()

num = 1
runtime = 0.0
# physical parameters –––––––––––––––––––––––––––––––––––––––––-
η0 = 1.0 # Pas , media viscosity
vr = 1e2 # viscosity ratio out/in
ρ0 = 0.0 # kg/m^3, media density
ρ_in = ρ0 - 10.0 # kg/m^3, inclusion density
g = 1.0 # m/s^2 , gravitational acceleration
n_exp = 5.0 # power-law exponent
τ_C = 1.0 # Pa , characteristic stress
relax = 1e-3 # relaxation parameter (power-law)
lx = 6.0 # m , model dimension in x
ly = 1.0*lx # m , model dimension in y
lz = 1.0*lx # m , model dimension in z
radius = 1.0 # m , radius of the inclusion
sh = 1.0 # m/s , shearing velocity
# numerics –––––––––––––––––––––––––––––––––––––––––––––––
nx = 208 - 1 # number of grid cells in direction x
ny = 208 - 1 # number of grid cells in direction y
nz = 208 - 1 # number of grid cells in direction z
εnonl = 5e-7 # pseudo-transient loop exit criteria
nt = 1 # number of time steps
maxiter = 1e5 # maximum number of pseudo-transient iterations
nout = 1e2 # pseudo-transient plotting frequency
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
dmp = 4.5 # damping parameter
# preprocessing ––––––––––––––––––––––––––––––––––––––––––––-
dx = lx/(nx-1) # size of cell in direction x
dy = ly/(ny-1) # size of cell in direction y
dz = lz/(nz-1) # size of cell in direction z
_dx, _dy, _dz = 1.0/dx, 1.0/dy, 1.0/dz # 1/size of cells
X_i = range(-lx/2.0, lx/2.0, length=nx) # coordinates of grid points in x
Y_i = range(-ly/2.0, ly/2.0, length=ny) # coordinates of grid points in y
Z_i = range(-lz/2.0, lz/2.0, length=nz) # coordinates of grid points in z
X_i_vx = range(-(lx+dx)/2.0, (lx+dx)/2.0, length=nx+1) # coordinates of grid points in r_vr
Z_i_vz = range(-(lz+dz)/2.0, (lz+dz)/2.0, length=nz+1) # coordinates of grid points in z_vz
(X3D ,Y3D ,Z3D ) = ([xc for xc = X_i ,yc = Y_i,zc = Z_i ],[yc for xc = X_i ,yc = Y_i,zc = Z_i ],

[zc for xc = X_i ,yc = Y_i,zc = Z_i ]) # grid of coordinates
(X_VX,Y_VX,Z_VX) = ([xc for xc = X_i_vx,yc = Y_i,zc = Z_i ],[yc for xc = X_i_vx,yc = Y_i,zc = Z_i ],

[zc for xc = X_i_vx,yc = Y_i,zc = Z_i ]) # grid of coordinates
(X_VZ,Y_VZ,Z_VZ) = ([xc for xc = X_i ,yc = Y_i,zc = Z_i_vz],[yc for xc = X_i ,yc = Y_i,zc = Z_i_vz],

[zc for xc = X_i ,yc = Y_i,zc = Z_i_vz]) # grid of coordinates
X3D = Data.Array(X3D)
Y3D = Data.Array(Y3D)
Z3D = Data.Array(Z3D)
X_VX = Data.Array(X_VX)
Y_VX = Data.Array(Y_VX)
Z_VX = Data.Array(Z_VX)
X_VZ = Data.Array(X_VZ)
Y_VZ = Data.Array(Y_VZ)
Z_VZ = Data.Array(Z_VZ)

164



# initialization and boundary conditions ––––––––––––––––––––––––––––––––
print("Starting initialization ... ")
P = @zeros(nx , ny , nz )
VX = @zeros(nx+1, ny , nz )
VY = @zeros(nx , ny+1, nz )
VZ = @zeros(nx , ny , nz+1)
ERR_VX = @ones(nx+1, ny , nz )
ERR_VY = @ones(nx , ny+1, nz )
ERR_VZ = @ones(nx , ny , nz+1)
τ_XX = @zeros(nx , ny , nz )
τ_YY = @zeros(nx , ny , nz )
τ_ZZ = @zeros(nx , ny , nz )
τ_XY = @zeros(nx-1, ny-1, nz-2)
τ_XZ = @zeros(nx-1, ny-2, nz-1)
τ_YZ = @zeros(nx-2, ny-1, nz-1)
ρ = ρ0*@ones(nx , ny , nz )
η = η0*@ones(nx , ny , nz )
η_INI = @zeros(nx , ny , nz )
η_PL = @zeros(nx , ny , nz )
η_PL_OLD = @zeros(nx , ny , nz )
ηSM = @zeros(nx , ny , nz )
DT_R = @zeros(nx , ny , nz )
τII = @zeros(nx , ny , nz )
err_evo = []; iter_evo = []
iters = 0.0
@parallel initialize_inclusion!(ρ, X3D, Y3D, Z3D, radius, ρ_in)
@parallel initialize_inclusion!(η, X3D, Y3D, Z3D, radius, η0/vr)
@parallel initialize_velocity!(VX, Y3D, sh)
vpdt = dx*CFL
@parallel equal!(η_INI, η)
@parallel equal!(η_PL , η)
# action ––––––––––––––––––––––––––––––––––––––––––––––––
print("Starting calculation ... \n")
runtime = @elapsed for it = 1:nt # time loop

for iter = 1:maxiter # pseudo-transient loop
# iteration strategy ––––––––––––––––––––––––––––––––––––––
@parallel equal!(ηSM, η)
@parallel maxloc!(ηSM, η)
@parallel copy_boundary!(ηSM)
@parallel timesteps!(DT_R, η, ηSM, vpdt, dmp, lx)
# SOLVER ––––––––––––––––––––––––––––––––––––––––––––
@parallel compute_P!(P , τ_XX, τ_YY, τ_ZZ, τ_XY, τ_XZ, τ_YZ, VX, VY, VZ, η, ηSM, dmp, vpdt,

lx, _dx , _dy , _dz )
if n_exp > 1

@parallel compute_TII!(τII, τ_XX, τ_YY, τ_ZZ, τ_XY, τ_XZ, τ_YZ)
@parallel copy_boundary!(τII)
@parallel equal!(η_PL_OLD, η_PL)
@parallel power_law!(η_PL, η, τII, η_PL_OLD, η_INI, τ_C, n_exp, relax)

end
if mod(iter,nout) == 0

@parallel equal!(ERR_VX, VX)
@parallel equal!(ERR_VY, VY)
@parallel equal!(ERR_VZ, VZ)

end
@parallel compute_V!(VX , VY, VZ , τ_XX, τ_YY, τ_ZZ, τ_XY, τ_XZ, τ_YZ, DT_R, P, ρ, η, ηSM, vpdt,

dmp, lx, _dx, _dy , _dz , g)
@parallel bc_x_lin!(VX,Y_VX,sh)
@parallel bc_x_0!(VY)
@parallel bc_x_0!(VZ)
@parallel bc_y_fact!(VX,Y_VX,sh)
@parallel bc_y_0!(VY)
@parallel bc_y_fact!(VZ,Y_VZ,0.0)
@parallel copy_bc_z!(VX)
@parallel copy_bc_z!(VY)
@parallel bc_z_0!(VZ)
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# pseudo-transient loop exit criteria –––––––––––––––––––––––––––––-
if mod(iter,nout) == 0

@parallel error!(ERR_VX, VX)
@parallel error!(ERR_VY, VY)
@parallel error!(ERR_VZ, VZ)
err_vx = maximum(ERR_VX[:])./maximum(abs.(VX[:]))
err_vy = maximum(ERR_VY[:])./maximum(abs.(VY[:]))
err_vz = maximum(ERR_VZ[:])./maximum(abs.(VZ[:]))
err = max(err_vx, err_vy, err_vz)
if err<εnonl && iter>20

iters = iter
break

end
# postprocessing
push!(err_evo, err)
push!(iter_evo,iter)
@printf("iter %d, err=%1.3e \n", iter, err)

end
end

end
# SAVING ––––––––––––––––––––––––––––––––––––––––––––––––
if saveflag

!ispath("./output") && mkdir("./output")
err_evo = Data.Array(err_evo)
iter_evo = Data.Array(iter_evo)
Save_phys(num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g, sh, radius, dmp)
Save_infos(num, lx, ly, lz, nx, ny, nz, εnonl, runtime)
SaveArray("X3D" , X3D )
SaveArray("Y3D" , Y3D )
SaveArray("Z3D" , Z3D )
SaveArray("ETAS" , η )
SaveArray("RHO" , ρ )
SaveArray("P" , P )
SaveArray("VX" , VX )
SaveArray("VY" , VY )
SaveArray("VZ" , VZ )
SaveArray("TAU_XX" , τ_XX )
SaveArray("TAU_YY" , τ_YY )
SaveArray("TAU_ZZ" , τ_ZZ )
SaveArray("TAU_XY" , τ_XY )
SaveArray("TAU_XZ" , τ_XZ )
SaveArray("TAU_YZ" , τ_YZ )
SaveArray("TII" , τII )
SaveArray("err_evo" , err_evo )
SaveArray("iter_evo", iter_evo)

end
return

end

@time CART_3D_Diapir()
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APPENDIX C

Code for the Diapir in Cylindrical Coordinates
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# DIAPIR - CYLINDRICAL COORDINATES SYSTEM
const USE_GPU = true
const GPU_ID = 0

saveflag = true

using ParallelStencil
using ParallelStencil.FiniteDifferences3D
@static if USE_GPU

@init_parallel_stencil(CUDA, Float64, 3)
CUDA.device!(GPU_ID) # select GPU

else
@init_parallel_stencil(Threads, Float64, 3)

end
using Plots, Printf, Statistics, LinearAlgebra

# SAVING FUNCTIONS ==========================================================================================
function Save_infos(num, lr, lθ, lz, nr, nθ, nz, εnonl, runtime; out="./output")

fid=open(out * "/$(num)_infos.inf", "w")
@printf(fid,"%d %f %f %f %d %d %d %d %d", num, lr, lθ, lz, nr, nθ, nz, εnonl, runtime); close(fid)

end

function Save_phys(num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g, sh, r, radius, dmp; out="./output")
fid=open(out * "/$(num)_phys.inf", "w")
@printf(fid,"%d %f %f %f %f %f %f %f %f %f %f %f",

num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g , sh, r , radius, dmp); close(fid)
end

@static if USE_GPU
function SaveArray(Aname, A; out="./output")

A_tmp = Array(A)
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A_tmp); close(fid)

end
else

function SaveArray(Aname, A; out="./output")
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A); close(fid)

end
end

# ===========================================================================================================
@parallel function equal!(A::Data.Array, B::Data.Array)

@all(A) = @all(B)
return

end

@parallel function multiply!(A::Data.Array, B::Data.Array, fact::Data.Number)
@all(A) = @all(B)*fact
return

end

# BOUNDARY CONDITIONS =======================================================================================
@parallel_indices (ix,iy,iz) function bc_r_0!(A::Data.Array)

if (ix==1 && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = -A[ix+1,iy,iz] end
if (ix==size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = -A[ix-1,iy,iz] end
return

end

@parallel_indices (ix,iy,iz) function bc_θ_fact!( A::Data.Array , COORD::Data.Array,
fact::Data.Number, r::Data.Number)

if (ix<=size(A,1) && iy==1 && iz<=size(A,3)) A[ix,iy,iz] = fact*COORD[ix,iy,iz]*r end
if (ix<=size(A,1) && iy==size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = fact*COORD[ix,iy,iz]*r end
return

end

@parallel_indices (ix,iy,iz) function bc_θ_0!(A::Data.Array)
if (ix<=size(A,1) && iy==1 && iz<=size(A,3)) A[ix,iy,iz] = -A[ix,iy+1,iz] end
if (ix<=size(A,1) && iy==size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = -A[ix,iy-1,iz] end
return

end

@parallel_indices (ix,iy,iz) function bc_z_0!(A::Data.Array)
if (ix<=size(A,1) && iy<=size(A,2) && iz==1 ) A[ix,iy,iz] = 0.0 end
if (ix<=size(A,1) && iy<=size(A,2) && iz==size(A,3)) A[ix,iy,iz] = 0.0 end
return

end
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@parallel_indices (ix,iy,iz) function bc_z_lin!( A::Data.Array , COORD::Data.Array,
fact::Data.Number, r::Data.Number)

if (ix<=size(A,1) && iy<=size(A,2) && iz==1 ) A[ix,iy,iz] = 2*COORD[ix,iy,iz ]*r*fact -
A[ix,iy,iz+1] end

if (ix<=size(A,1) && iy<=size(A,2) && iz==size(A,3)) A[ix,iy,iz] = 2*COORD[ix,iy,iz ]*r*fact -
A[ix,iy,iz-1] end

return
end

# COPY BOUNDARIES ===========================================================================================
@parallel_indices (ix,iy,iz) function copy_bc_r!(A::Data.Array)

if (ix==1 && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix+1,iy,iz] end
if (ix==size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix-1,iy,iz] end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_θ!(A::Data.Array)
if (ix<=size(A,1) && iy==1 && iz<=size(A,3)) A[ix,iy,iz] = A[ix,iy+1,iz] end
if (ix<=size(A,1) && iy==size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix,iy-1,iz] end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_z!(A::Data.Array)
if (ix<=size(A,1) && iy<=size(A,2) && iz==1 ) A[ix,iy,iz] = A[ix,iy,iz+1] end
if (ix<=size(A,1) && iy<=size(A,2) && iz==size(A,3)) A[ix,iy,iz] = A[ix,iy,iz-1] end
return

end

# INITIALIZATION ============================================================================================
@parallel_indices (ix,iy,iz) function initialize_inclusion!( A::Data.Array , R::Data.Array,

θ::Data.Array , Z::Data.Array,
r::Data.Number, radius::Data.Number,

in::Data.Number)
if (ix<=size(A,1) && iy<=size(A,2) && iz<=size(A,3))

if (((R[ix,iy,iz]-r)^2 + (θ[ix,iy,iz]*r)^2 + Z[ix,iy,iz]^2) < radius) A[ix,iy,iz] = in end
end
return

end

@parallel_indices (ix,iy,iz) function initialize_velocity!( V::Data.Array , COORD::Data.Array,
fact::Data.Number, r::Data.Number)

if (ix<=size(V,1) && iy==1 && iz<=size(V,3)) V[ix,iy,iz] = COORD[ix,iy,iz]*r*fact end
if (ix<=size(V,1) && iy==size(V,2) && iz<=size(V,3)) V[ix,iy,iz] = COORD[ix,iy,iz]*r*fact end
if (ix<=size(V,1) && iy<=size(V,2) && iz==1 ) V[ix,iy,iz] = COORD[ix,iy,iz]*r*fact end
if (ix<=size(V,1) && iy<=size(V,2) && iz==size(V,3)) V[ix,iy,iz] = COORD[ix,iy,iz]*r*fact end
return

end

# ITERATION STRATEGY ========================================================================================
@parallel function maxloc!(η_Max::Data.Array, η::Data.Array)

@inn(η_Max) = @maxloc(η)
return

end

@parallel function timesteps!(KBDT::Data.Array , GSDT::Data.Array , η_M::Data.Array,
dmp::Data.Number, vpdt::Data.Number, lr::Data.Number)

@all(KBDT) = dmp * 2.0 * pi * vpdt / lr * @all(η_M)
@all(GSDT) = 4.0 * pi * vpdt / lr * @all(η_M)
return

end

@parallel function timesteps2!(DT_R::Data.Array, KBDT::Data.Array, GSDT::Data.Array,
η::Data.Array, vpdt::Data.Number)

@all(DT_R) = vpdt^2 / (@all(KBDT) + @all(GSDT)/(1.0 + @all(GSDT)/@all(η)))
return

end
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# SOLVER ====================================================================================================
@parallel function compute_P!(D_RR::Data.Array , D_θθ::Data.Array , D_ZZ::Data.Array,

D_Rθ::Data.Array , D_RZ::Data.Array , D_θZ::Data.Array,
DIVV::Data.Array , P::Data.Array , R::Data.Array,
τ_RR::Data.Array , τ_θθ::Data.Array , τ_ZZ::Data.Array,
τ_Rθ::Data.Array , τ_RZ::Data.Array , τ_θZ::Data.Array,

VR::Data.Array , Vθ::Data.Array , VZ::Data.Array,
KBDT::Data.Array , GSDT::Data.Array , η::Data.Array,

dr::Data.Number, dθ::Data.Number, dz::Data.Number)
@all(DIVV) = @d_xa(VR)/dr + 1/@all(R) * @d_ya(Vθ)/dθ + @av_xa(VR)/@all(R) + @d_za(VZ)/dz
@all(D_RR) = @d_xa(VR)/dr - 1.0/3.0 * @all(DIVV)
@all(D_θθ) = 1/@all(R) * @d_ya(Vθ)/dθ + @av_xa(VR)/@all(R) - 1.0/3.0 * @all(DIVV)
@all(D_ZZ) = @d_za(VZ)/dz - 1.0/3.0 * @all(DIVV)
@all(D_Rθ) = @d_xi(Vθ)/dr + 1/@av_xyi(R) * @d_yi(VR)/dθ - @av_xi(Vθ)/@av_xyi(R)
@all(D_RZ) = @d_xi(VZ)/dr + @d_zi(VR)/dz
@all(D_θZ) = 1/@av_yzi(R) * @d_yi(VZ)/dθ + @d_zi(Vθ)/dz
@all(P) = @all(P) - @all(KBDT) * @all(DIVV)
@all(τ_RR) = (@all(τ_RR) + @all(GSDT) * 2.0 * @all(D_RR))/(1.0 + @all(GSDT) / @all(η))
@all(τ_θθ) = (@all(τ_θθ) + @all(GSDT) * 2.0 * @all(D_θθ))/(1.0 + @all(GSDT) / @all(η))
@all(τ_ZZ) = (@all(τ_ZZ) + @all(GSDT) * 2.0 * @all(D_ZZ))/(1.0 + @all(GSDT) / @all(η))
@all(τ_Rθ) = (@all(τ_Rθ) + @av_xyi(GSDT) * @all(D_Rθ))/(1.0 + @av_xyi(GSDT) / @av_xyi(η))
@all(τ_RZ) = (@all(τ_RZ) + @av_xzi(GSDT) * @all(D_RZ))/(1.0 + @av_xzi(GSDT) / @av_xzi(η))
@all(τ_θZ) = (@all(τ_θZ) + @av_yzi(GSDT) * @all(D_θZ))/(1.0 + @av_yzi(GSDT) / @av_yzi(η))
return

end

@parallel function compute_sigma!(σ_RR::Data.Array, σ_θθ::Data.Array, σ_ZZ::Data.Array, P::Data.Array,
τ_RR::Data.Array, τ_θθ::Data.Array, τ_ZZ::Data.Array)

@all(σ_RR) = -@all(P) + @all(τ_RR)
@all(σ_θθ) = -@all(P) + @all(τ_θθ)
@all(σ_ZZ) = -@all(P) + @all(τ_ZZ)
return

end

@parallel function compute_TII!( τII::Data.Array, τ_RR::Data.Array, τ_θθ::Data.Array, τ_ZZ::Data.Array,
τ_Rθ::Data.Array, τ_RZ::Data.Array, τ_θZ::Data.Array)

@inn(τII) = sqrt(1.0/2.0 * (@inn(τ_RR)^2 + @inn(τ_θθ)^2 + @inn(τ_ZZ)^2) +
@av_xya(τ_Rθ)^2 + @av_xza(τ_RZ)^2 + @av_yza(τ_θZ)^2)

return
end

@parallel function power_law!( η_PL::Data.Array , η::Data.Array , τII::Data.Array ,
η_PL_OLD::Data.Array , η_INI::Data.Array , τ_C::Data.Number,

n_exp::Data.Number, relax::Data.Number)
@all(η_PL) = @all(η_INI) * (@all(τII)/τ_C)^(1.0-n_exp)
@all(η_PL) = exp(log(@all(η_PL))*relax + log(@all(η_PL_OLD))*(1.0-relax))
@all(η) = 2.0/(1.0/@all(η_INI) + 1.0/@all(η_PL))
return

end

@parallel function compute_dV!( dVR::Data.Array , dVθ::Data.Array , dVZ::Data.Array ,
σ_RR::Data.Array , σ_θθ::Data.Array , σ_ZZ::Data.Array ,
τ_Rθ::Data.Array , τ_RZ::Data.Array , τ_θZ::Data.Array ,

R::Data.Array , ρG::Data.Array ,
dr::Data.Number, dθ::Data.Number, dz::Data.Number)

@all(dVR) = @d_xi(σ_RR)/dr + 1/@av_xi(R) * @d_ya(τ_Rθ)/dθ + @d_za(τ_RZ)/dz +
@av_xi(σ_RR)/@av_xi(R) - @av_xi(σ_θθ)/@av_xi(R) - @av_xi(ρG)

@all(dVθ) = @d_xa(τ_Rθ)/dr + 1/@av_yi(R) * @d_yi(σ_θθ)/dθ + @d_za(τ_θZ)/dz +
2 * @av_xa(τ_Rθ)/@av_yi(R)

@all(dVZ) = @d_xa(τ_RZ)/dr + 1/@av_zi(R) * @d_ya(τ_θZ)/dθ + @d_zi(σ_ZZ)/dz +
@av_xa(τ_RZ)/@av_zi(R)

return
end

@parallel function compute_V!( VR::Data.Array, Vθ::Data.Array, VZ::Data.Array,
dVR::Data.Array, dVθ::Data.Array, dVZ::Data.Array, DT_R::Data.Array)

@inn(VR) = @inn(VR) + @all(dVR)*@av_xi(DT_R)
@inn(Vθ) = @inn(Vθ) + @all(dVθ)*@av_yi(DT_R)
@inn(VZ) = @inn(VZ) + @all(dVZ)*@av_zi(DT_R)
return

end
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# CHECK ERROR ===============================================================================================
@parallel function err_rθ!(err_rθ::Data.Array, τ_Rθ::Data.Array, D_Rθ::Data.Array, η::Data.Array)

@all(err_rθ) = @all(τ_Rθ) - @all(D_Rθ)*@av_xyi(η)
return

end

# ===========================================================================================================
@views function CYL_3D_Diapir()

num = 1
runtime = 0.0
# physical parameters –––––––––––––––––––––––––––––––––––––––––-
η0 = 1.0 # Pa*s , media viscosity
vr = 1e2 # viscosity ratio out/in
ρ0 = 0.0 # kg/m^3, media density
ρ_in = ρ0 - 10.0 # kg/m^3, inclusion density
g = 1.0 # m/s^2 , gravity acceleration
n_exp = 1.0 # power law exponent
n_exp_PL = 5.0 # power-law exponent
τ_C = 1.0 # Pa , xharacteristic stress
relax = 1e-3 # relaxation parameter (power law)
r = 1000.0 # m , radius of the total cylinder
lr = 6.0 # m , model dimension in r
lθ = lr/r # m , model dimension in θ
lz = 1.0*lr # m , model dimension in z
radius = 1.0 # m , radius of the inclusion
sh = 1.0 # m/s , shearing velocity
# numerics –––––––––––––––––––––––––––––––––––––––––––––––
nr = 208 - 1 # number of grid cells in direction r
nθ = 208 - 1 # number of grid cells in direction θ
nz = 208 - 1 # number of grid cells in direction z
εnonl = 5e-7 # pseudo-transient loop exit criteria
nt = 1 # number of time steps
maxiter = 1e5 # maximum number of pseudo-transient iterations
nout = 1e2 # pseudo-transient plotting frequency
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
dmp = 4.5 # damping parameter
# preprocessing ––––––––––––––––––––––––––––––––––––––––––––-
dr = lr/(nr-1) # size of cell in direction r
dθ = lθ/(nθ-1) # size of cell in direction θ
dz = lz/(nz-1) # size of cell in direction z
R_i = range(r- lr /2.0, r+ lr /2.0, length=nr ) # coordinates of grid points in r
θ_i = range( - lθ /2.0, lθ /2.0, length=nθ ) # coordinates of grid points in θ
Z_i = range( - lz /2.0, lz /2.0, length=nz ) # coordinates of grid points in z
R_i_vr = range(r-(lr+dr)/2.0, r+(lr+dr)/2.0, length=nr+1) # coordinates of grid points in r_vr
Z_i_vz = range( -(lz+dz)/2.0, (lz+dz)/2.0, length=nz+1) # coordinates of grid points in z_vz
(R ,θ ,Z ) = ([xc for xc = R_i ,yc = θ_i,zc = Z_i ],[yc for xc = R_i ,yc = θ_i,zc = Z_i ],

[zc for xc = R_i ,yc = θ_i,zc = Z_i ]) # grid of coordinates
(R_VR,θ_VR,Z_VR) = ([xc for xc = R_i_vr,yc = θ_i,zc = Z_i ],[yc for xc = R_i_vr,yc = θ_i,zc = Z_i ],

[zc for xc = R_i_vr,yc = θ_i,zc = Z_i ]) # grid of coordinates
(R_VZ,θ_VZ,Z_VZ) = ([xc for xc = R_i ,yc = θ_i,zc = Z_i_vz],[yc for xc = R_i ,yc = θ_i,zc = Z_i_vz],

[zc for xc = R_i ,yc = θ_i,zc = Z_i_vz]) # grid of coordinates
R = Data.Array(R )
θ = Data.Array(θ )
Z = Data.Array(Z )
R_VR = Data.Array(R_VR)
θ_VR = Data.Array(θ_VR)
Z_VR = Data.Array(Z_VR)
R_VZ = Data.Array(R_VZ)
θ_VZ = Data.Array(θ_VZ)
Z_VZ = Data.Array(Z_VZ)
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# initialization and boundary conditions ––––––––––––––––––––––––––––––––
print("Starting initialization ... ")
P = @zeros(nr , nθ , nz )
DIVV = @zeros(nr , nθ , nz )
VR = @zeros(nr+1, nθ , nz )
Vθ = @zeros(nr , nθ+1, nz )
VZ = @zeros(nr , nθ , nz+1)
dVR = @zeros(nr-1, nθ-2, nz-2)
dVθ = @zeros(nr-2, nθ-1, nz-2)
dVZ = @zeros(nr-2, nθ-2, nz-1)
VR_OLD = @zeros(nr+1, nθ , nz )
Vθ_OLD = @zeros(nr , nθ+1, nz )
VZ_OLD = @zeros(nr , nθ , nz+1)
D_RR = @zeros(nr , nθ , nz )
D_θθ = @zeros(nr , nθ , nz )
D_ZZ = @zeros(nr , nθ , nz )
D_Rθ = @zeros(nr-1, nθ-1, nz-2)
D_RZ = @zeros(nr-1, nθ-2, nz-1)
D_θZ = @zeros(nr-2, nθ-1, nz-1)
τ_RR = @zeros(nr , nθ , nz )
τ_θθ = @zeros(nr , nθ , nz )
τ_ZZ = @zeros(nr , nθ , nz )
τ_Rθ = @zeros(nr-1, nθ-1, nz-2)
τ_RZ = @zeros(nr-1, nθ-2, nz-1)
τ_θZ = @zeros(nr-2, nθ-1, nz-1)
σ_RR = @zeros(nr , nθ , nz )
σ_θθ = @zeros(nr , nθ , nz )
σ_ZZ = @zeros(nr , nθ , nz )
ρ = ρ0*@ones(nr , nθ , nz )
ρG = @zeros(nr , nθ , nz )
η = η0*@ones(nr , nθ , nz )
η_INI = @zeros(nr , nθ , nz )
η_PL = @zeros(nr , nθ , nz )
η_PL_OLD = @zeros(nr , nθ , nz )
ηSM = @zeros(nr , nθ , nz )
KBDT = @zeros(nr , nθ , nz )
GSDT = @zeros(nr , nθ , nz )
DT_R = @zeros(nr , nθ , nz )
τII = @zeros(nr , nθ , nz )
err_evo = []; iter_evo = []
iters = 0.0
ERR_Rθ = @zeros(nr-1, nθ-1, nz-2)
@parallel initialize_inclusion!(ρ, R, θ, Z, r, radius, ρ_in)
@parallel initialize_inclusion!(η, R, θ, Z, r, radius, η0/vr)
@parallel multiply!(ρG, ρ, g)
@parallel initialize_velocity!(VZ, θ_VZ, sh, r)
vpdt = dr*CFL
err = 1.0
@parallel equal!(η_INI, η)
@parallel equal!(η_PL , η)
# action ––––––––––––––––––––––––––––––––––––––––––––––––
print("Starting calculation ... \n")
runtime = @elapsed for it = 1:nt # time loop

for iter = 1:maxiter # pseudo-transient loop
# iteration strategy ––––––––––––––––––––––––––––––––––––––
@parallel equal!(ηSM, η)
@parallel maxloc!(ηSM, η)
@parallel copy_bc_r!(ηSM)
@parallel copy_bc_θ!(ηSM)
@parallel copy_bc_z!(ηSM)
@parallel timesteps!(KBDT, GSDT, ηSM, dmp, vpdt, lr)
@parallel timesteps2!(DT_R, KBDT, GSDT, η, vpdt)
# SOLVER ––––––––––––––––––––––––––––––––––––––––––––
@parallel compute_P!(D_RR, D_θθ, D_ZZ, D_Rθ, D_RZ, D_θZ, DIVV, P , R, τ_RR, τ_θθ, τ_ZZ,

τ_Rθ, τ_RZ, τ_θZ, VR , Vθ , VZ , KBDT, GSDT, η, dr , dθ , dz )
@parallel compute_sigma!(σ_RR, σ_θθ, σ_ZZ, P, τ_RR, τ_θθ, τ_ZZ)
if err < 1e-5

n_exp = n_exp_PL
end
if n_exp > 1

@parallel compute_TII!(τII, τ_RR, τ_θθ, τ_ZZ, τ_Rθ, τ_RZ, τ_θZ)
@parallel copy_bc_r!(τII)
@parallel copy_bc_θ!(τII)
@parallel copy_bc_z!(τII)
@parallel equal!(η_PL_OLD, η_PL)

172



@parallel power_law!(η_PL, η, τII, η_PL_OLD, η_INI, τ_C, n_exp, relax)
end
@parallel equal!(VR_OLD, VR)
@parallel equal!(Vθ_OLD, Vθ)
@parallel equal!(VZ_OLD, VZ)
@parallel compute_dV!(dVR, dVθ, dVZ, σ_RR, σ_θθ, σ_ZZ, τ_Rθ, τ_RZ, τ_θZ, R, ρG, dr, dθ, dz)
@parallel compute_V!(VR, Vθ, VZ, dVR, dVθ, dVZ, DT_R)
@parallel copy_bc_r!(VZ)
@parallel copy_bc_r!(Vθ)
@parallel bc_r_0!(VR)
@parallel bc_θ_fact!(VZ,θ_VZ,sh,r)
@parallel bc_θ_fact!(VR,θ_VR,0.0,r)
@parallel bc_θ_0!(Vθ)
@parallel bc_z_0!(Vθ)
@parallel bc_z_0!(VR)
@parallel bc_z_lin!(VZ,θ_VZ,sh,r)
# pseudo-transient loop exit criteria –––––––––––––––––––––––––––––-
if mod(iter,nout) == 0

err_vr = maximum(abs.(VR[:].-VR_OLD[:]))./maximum(abs.(VR[:]))
err_vθ = maximum(abs.(Vθ[:].-Vθ_OLD[:]))./maximum(abs.(Vθ[:]))
err_vz = maximum(abs.(VZ[:].-VZ_OLD[:]))./maximum(abs.(VZ[:]))
err = max(err_vr, err_vθ, err_vz)
@parallel err_rθ!(ERR_Rθ, τ_Rθ, D_Rθ, η)
err_rθ = maximum(abs.(ERR_Rθ[:]))
if err<εnonl && iter>20

iters = iter
break

end
# post-processing
push!(err_evo, err)
push!(iter_evo,iter)
@printf("iter %d, err=%1.3e, err_rθ=%1.3e \n", iter, err, err_rθ)

end
end

end
# SAVING ––––––––––––––––––––––––––––––––––––––––––––––––
if saveflag

!ispath("./output") && mkdir("./output")
err_evo = Data.Array(err_evo)
iter_evo = Data.Array(iter_evo)
Save_phys(num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g, sh, r, radius, dmp)
Save_infos(num, lr, lθ, lz, nr, nθ, nz, εnonl, runtime)
SaveArray("R" , R )
SaveArray("TH" , θ )
SaveArray("Z" , Z )
SaveArray("ETAS" , η )
SaveArray("RHO" , ρ )
SaveArray("RHOG" , ρG )
SaveArray("P" , P )
SaveArray("DIVV" , DIVV )
SaveArray("VR" , VR )
SaveArray("VTH" , Vθ )
SaveArray("VZ" , VZ )
SaveArray("D_RR" , D_RR )
SaveArray("D_THTH" , D_θθ )
SaveArray("D_ZZ" , D_ZZ )
SaveArray("D_RTH" , D_Rθ )
SaveArray("D_RZ" , D_RZ )
SaveArray("D_THZ" , D_θZ )
SaveArray("TAU_RR" , τ_RR )
SaveArray("TAU_THTH", τ_θθ )
SaveArray("TAU_ZZ" , τ_ZZ )
SaveArray("TAU_RTH" , τ_Rθ )
SaveArray("TAU_RZ" , τ_RZ )
SaveArray("TAU_THZ" , τ_θZ )
SaveArray("TII" , τII )
SaveArray("err_evo" , err_evo )
SaveArray("iter_evo", iter_evo)

end
return

end

@time CYL_3D_Diapir()
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# DIAPIR - SPHERICAL COORDINATES SYSTEM
const USE_GPU = haskey(ENV, "USE_GPU" ) ? parse(Bool, ENV["USE_GPU"] ) : true #false
const do_viz = haskey(ENV, "DO_VIZ" ) ? parse(Bool, ENV["DO_VIZ"] ) : false
const do_save = haskey(ENV, "DO_SAVE" ) ? parse(Bool, ENV["DO_SAVE"] ) : true
const do_save_p = haskey(ENV, "DO_SAVE_P") ? parse(Bool, ENV["DO_SAVE_P"]) : false
const nr = haskey(ENV, "NR" ) ? parse(Int , ENV["NR"] ) : 208 - 1
const nθ = haskey(ENV, "NTH" ) ? parse(Int , ENV["NTH"] ) : 208 - 1
const nϕ = haskey(ENV, "NPH" ) ? parse(Int , ENV["NPH"] ) : 208 - 1
const GPU_ID = haskey(ENV, "GPU_ID" ) ? parse(Int , ENV["GPU_ID"] ) : 0
const dmp = haskey(ENV, "DMP" ) ? parse(Float64, ENV["DMP"] ) : 4.5

using ParallelStencil
using ParallelStencil.FiniteDifferences3D
@static if USE_GPU

@init_parallel_stencil(CUDA, Float64, 3)
CUDA.device!(GPU_ID) # select GPU

else
@init_parallel_stencil(Threads, Float64, 3)

end
using Plots, Printf, Statistics, LinearAlgebra

# SAVING FUNCTIONS ==========================================================================================
function Save_infos(num, lr, lθ, lz, nr, nθ, nz, εnonl, runtime; out="./output")

fid=open(out * "/$(num)_infos.inf", "w")
@printf(fid,"%d %f %f %f %d %d %d %d %d", num, lr, lθ, lz, nr, nθ, nz, εnonl, runtime); close(fid)

end

function Save_phys(num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g, sh, r, radius, dmp; out="./output")
fid=open(out * "/$(num)_phys.inf", "w")
@printf(fid,"%d %f %f %f %f %f %f %f, %f, %f, %f , %f" ,

num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g , sh, r , radius, dmp); close(fid)
end

@static if USE_GPU
function SaveArray(Aname, A; out="./output")

A_tmp = Array(A)
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A_tmp); close(fid)

end
else

function SaveArray(Aname, A; out="./output")
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A); close(fid)

end
end

# ===========================================================================================================
@parallel_indices (ix,iy,iz) function equal3!(VR_err::Data.Array, Vθ_err::Data.Array, Vϕ_err::Data.Array,

VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)
if (ix<=size(VR_err,1) && iy<=size(VR_err,2) && iz<=size(VR_err,3))

VR_err[ix,iy,iz] = VR[ix,iy,iz]
end
if (ix<=size(Vθ_err,1) && iy<=size(Vθ_err,2) && iz<=size(Vθ_err,3))

Vθ_err[ix,iy,iz] = Vθ[ix,iy,iz]
end
if (ix<=size(Vϕ_err,1) && iy<=size(Vϕ_err,2) && iz<=size(Vϕ_err,3))

Vϕ_err[ix,iy,iz] = Vϕ[ix,iy,iz]
end
return

end

# BOUNDARY CONDITIONS =======================================================================================
@parallel_indices (ix,iy,iz) function BC_R!(VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)

if (ix==1 && iy<=size(VR,2) && iz<=size(VR,3)) VR[ix,iy,iz] = -VR[ix+1,iy,iz] end
if (ix==size(VR,1) && iy<=size(VR,2) && iz<=size(VR,3)) VR[ix,iy,iz] = -VR[ix-1,iy,iz] end
if (ix==1 && iy<=size(Vθ,2) && iz<=size(Vθ,3)) Vθ[ix,iy,iz] = Vθ[ix+1,iy,iz] end
if (ix==size(Vθ,1) && iy<=size(Vθ,2) && iz<=size(Vθ,3)) Vθ[ix,iy,iz] = Vθ[ix-1,iy,iz] end
if (ix==1 && iy<=size(Vϕ,2) && iz<=size(Vϕ,3)) Vϕ[ix,iy,iz] = Vϕ[ix+1,iy,iz] end
if (ix==size(Vϕ,1) && iy<=size(Vϕ,2) && iz<=size(Vϕ,3)) Vϕ[ix,iy,iz] = Vϕ[ix-1,iy,iz] end
return

end
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@parallel_indices (ix,iy,iz) function BC_θ!(VR::Data.Array, Vθ::Data.Array , Vϕ::Data.Array,
θ::Data.Array, r::Data.Number, sh::Data.Number)

if (ix<=size(VR,1) && iy==1 && iz<=size(VR,3) ) VR[ix,iy,iz] = 0.0 end
if (ix<=size(VR,1) && iy==size(VR,2) && iz<=size(VR,3) ) VR[ix,iy,iz] = 0.0 end
if (ix<=size(Vθ,1) && iy==1 && iz<=size(Vθ,3) ) Vθ[ix,iy,iz] = -Vθ[ix,iy+1,iz] end
if (ix<=size(Vθ,1) && iy==size(Vθ,2) && iz<=size(Vθ,3) ) Vθ[ix,iy,iz] = -Vθ[ix,iy-1,iz] end
if (ix<=size(Vϕ,1) && iy==1 && iz<=size(Vϕ,3)-1) Vϕ[ix,iy,iz] = ( θ[ix,iy,iz ] -

pi/2.0)*r*sh end
if (ix<=size(Vϕ,1) && iy==1 && iz==size(Vϕ,3) ) Vϕ[ix,iy,iz] = ( θ[ix,iy,iz-1] -

pi/2.0)*r*sh end
if (ix<=size(Vϕ,1) && iy==size(Vϕ,2) && iz<=size(Vϕ,3)-1) Vϕ[ix,iy,iz] = ( θ[ix,iy,iz ] -

pi/2.0)*r*sh end
if (ix<=size(Vϕ,1) && iy==size(Vϕ,2) && iz==size(Vϕ,3) ) Vϕ[ix,iy,iz] = ( θ[ix,iy,iz-1] -

pi/2.0)*r*sh end
return

end

@parallel_indices (ix,iy,iz) function BC_ϕ!(VR::Data.Array, Vθ::Data.Array , Vϕ::Data.Array,
θ::Data.Array, r::Data.Number, sh::Data.Number)

if (ix<=size(VR,1) && iy<=size(VR,2) && iz==1 ) VR[ix,iy,iz] = 0.0 end
if (ix<=size(VR,1) && iy<=size(VR,2) && iz==size(VR,3)) VR[ix,iy,iz] = 0.0 end
if (ix<=size(Vθ,1) && iy<=size(Vθ,2) && iz==1 ) Vθ[ix,iy,iz] = 0.0 end
if (ix<=size(Vθ,1) && iy<=size(Vθ,2) && iz==size(Vθ,3)) Vθ[ix,iy,iz] = 0.0 end
if (ix<=size(Vϕ,1) && iy<=size(Vϕ,2) && iz==1 ) Vϕ[ix,iy,iz] = 2*(θ[ix,iy,iz ] -

pi/2.0)*r*sh - Vϕ[ix,iy,iz+1] end
if (ix<=size(Vϕ,1) && iy<=size(Vϕ,2) && iz==size(Vϕ,3)) Vϕ[ix,iy,iz] = 2*(θ[ix,iy,iz-1] -

pi/2.0)*r*sh - Vϕ[ix,iy,iz-1] end
return

end

# COPY BOUNDARIES ===========================================================================================
@parallel_indices (ix,iy,iz) function copy_bc_r!(A::Data.Array)

if (ix==1 && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix+1,iy,iz] end
if (ix==size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix-1,iy,iz] end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_θ!(A::Data.Array)
if (ix<=size(A,1) && iy==1 && iz<=size(A,3)) A[ix,iy,iz] = A[ix,iy+1,iz] end
if (ix<=size(A,1) && iy==size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix,iy-1,iz] end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_ϕ!(A::Data.Array)
if (ix<=size(A,1) && iy<=size(A,2) && iz==1 ) A[ix,iy,iz] = A[ix,iy,iz+1] end
if (ix<=size(A,1) && iy<=size(A,2) && iz==size(A,3)) A[ix,iy,iz] = A[ix,iy,iz-1] end
return

end

function copy_BC!(A::Data.Array)
@parallel copy_bc_r!(A)
@parallel copy_bc_θ!(A)
@parallel copy_bc_ϕ!(A)

end

# INITIALIZATION ============================================================================================
@parallel_indices (ix,iy,iz) function initialize_inclusion!( A::Data.Array , R::Data.Array ,

θ::Data.Array , ϕ::Data.Array,
r::Data.Number, radius::Data.Number,

in::Data.Number)
if (ix<=size(A,1) && iy<=size(A,2) && iz<=size(A,3))

if (((R[ix,iy,iz]-r)^2 + ((θ[ix,iy,iz]-pi/2.0)*r)^2 + (ϕ[ix,iy,iz]*r)^2) < radius)
A[ix,iy,iz] = in

end
end
return

end

177



@parallel_indices (ix,iy,iz) function initialize_velocity!( V::Data.Array, COORD::Data.Array,
fact::Data.Number, r::Data.Number)

if (ix<=size(V,1) && iy<=size(V,2) && iz<=size(V,3)-1) V[ix,iy,iz] = (COORD[ix,iy,iz ] -
pi/2.0)*r*fact end

if (ix<=size(V,1) && iy<=size(V,2) && iz==size(V,3) ) V[ix,iy,iz] = (COORD[ix,iy,iz-1] -
pi/2.0)*r*fact end

return
end

# ===========================================================================================================
@parallel function maxloc!(ηSM::Data.Array, η::Data.Array)

@inn(ηSM) = @maxloc(η)
return

end

# SOLVER ====================================================================================================
macro KBDT(ix,iy,iz) esc(:( dmp * 2.0 * pi * vpdt / lr * ηSM[$ix,$iy,$iz] )) end
macro GSDT(ix,iy,iz) esc(:( 4.0 * pi * vpdt / lr * ηSM[$ix,$iy,$iz] )) end
macro avxa_VR(ix,iy,iz) esc(:( (( VR[$ix ,$iy ,$iz ] + VR[$ix+1,$iy ,$iz ])*0.5) )) end
macro avxi_Vθ(ix,iy,iz) esc(:( (( Vθ[$ix ,$iy+1,$iz+1] + Vθ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avya_Vθ(ix,iy,iz) esc(:( (( Vθ[$ix ,$iy ,$iz ] + Vθ[$ix ,$iy+1,$iz ])*0.5) )) end
macro avxi_Vϕ(ix,iy,iz) esc(:( (( Vϕ[$ix ,$iy+1,$iz+1] + Vϕ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avyi_Vϕ(ix,iy,iz) esc(:( (( Vϕ[$ix+1,$iy ,$iz+1] + Vϕ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avxyi_R(ix,iy,iz) esc(:( (( R[$ix ,$iy ,$iz+1] + R[$ix ,$iy+1,$iz+1] +

R[$ix+1,$iy ,$iz+1] + R[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxzi_R(ix,iy,iz) esc(:( (( R[$ix ,$iy+1,$iz ] + R[$ix ,$iy+1,$iz+1] +

R[$ix+1,$iy+1,$iz ] + R[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avyzi_R(ix,iy,iz) esc(:( (( R[$ix+1,$iy ,$iz ] + R[$ix+1,$iy ,$iz+1] +

R[$ix+1,$iy+1,$iz ] + R[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxzi_θ(ix,iy,iz) esc(:( (( θ[$ix ,$iy+1,$iz ] + θ[$ix ,$iy+1,$iz+1] +

θ[$ix+1,$iy+1,$iz ] + θ[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avyzi_θ(ix,iy,iz) esc(:( (( θ[$ix+1,$iy ,$iz ] + θ[$ix+1,$iy ,$iz+1] +

θ[$ix+1,$iy+1,$iz ] + θ[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxyi_GSDT(ix,iy,iz) esc(:( ((@GSDT($ix ,$iy ,$iz+1) + @GSDT($ix ,$iy+1,$iz+1) +

@GSDT($ix+1,$iy ,$iz+1) + @GSDT($ix+1,$iy+1,$iz+1))*0.25) )) end
macro avxzi_GSDT(ix,iy,iz) esc(:( ((@GSDT($ix ,$iy+1,$iz ) + @GSDT($ix ,$iy+1,$iz+1) +

@GSDT($ix+1,$iy+1,$iz ) + @GSDT($ix+1,$iy+1,$iz+1))*0.25) )) end
macro avyzi_GSDT(ix,iy,iz) esc(:( ((@GSDT($ix+1,$iy ,$iz ) + @GSDT($ix+1,$iy ,$iz+1) +

@GSDT($ix+1,$iy+1,$iz ) + @GSDT($ix+1,$iy+1,$iz+1))*0.25) )) end
macro avxyi_η(ix,iy,iz) esc(:( (( η[$ix ,$iy ,$iz+1] + η[$ix ,$iy+1,$iz+1] +

η[$ix+1,$iy ,$iz+1] + η[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxzi_η(ix,iy,iz) esc(:( (( η[$ix ,$iy+1,$iz ] + η[$ix ,$iy+1,$iz+1] +

η[$ix+1,$iy+1,$iz ] + η[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avyzi_η(ix,iy,iz) esc(:( (( η[$ix+1,$iy ,$iz ] + η[$ix+1,$iy ,$iz+1] +

η[$ix+1,$iy+1,$iz ] + η[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro DIVV(ix,iy,iz) esc(:(( VR[$ix+1,$iy,$iz] - VR[$ix,$iy,$iz])*_dr +

1.0/R[$ix,$iy,$iz]*(Vθ[$ix,$iy+1,$iz] - Vθ[$ix,$iy,$iz])*_dθ +
1.0/R[$ix,$iy,$iz]/sin(θ[$ix,$iy,$iz])*

(Vϕ[$ix,$iy,$iz+1] - Vϕ[$ix,$iy,$iz])*_dϕ +
2.0*@avxa_VR(ix,iy,iz)/R[$ix,$iy,$iz] +
@avya_Vθ(ix,iy,iz)/R[$ix,$iy,$iz]*cot(θ[$ix,$iy,$iz]) )) end

macro DRR(ix,iy,iz) esc(:( (VR[$ix+1,$iy,$iz] - VR[$ix,$iy,$iz])*_dr - 1.0/3.0*@DIVV(ix,iy,iz) )) end
macro Dθθ(ix,iy,iz) esc(:( 1.0/R[$ix,$iy,$iz]*(Vθ[$ix,$iy+1,$iz] - Vθ[$ix,$iy,$iz])*_dθ +

@avxa_VR(ix,iy,iz)/R[$ix,$iy,$iz] - 1.0/3.0*@DIVV(ix,iy,iz) )) end
macro Dϕϕ(ix,iy,iz) esc(:( 1.0/R[$ix,$iy,$iz]/sin(θ[$ix,$iy,$iz])*

(Vϕ[$ix,$iy,$iz+1] - Vϕ[$ix,$iy,$iz])*_dϕ +
@avxa_VR(ix,iy,iz)/R[$ix,$iy,$iz] +
@avya_Vθ($ix,$iy,$iz)/R[$ix,$iy,$iz]*cot(θ[$ix,$iy,$iz]) -
1.0/3.0*@DIVV(ix,iy,iz) )) end

macro DRθ(ix,iy,iz) esc(:( (Vθ[$ix+1,$iy+1,$iz+1] - Vθ[$ix,$iy+1,$iz+1])*_dr +
1.0/@avxyi_R(ix,iy,iz)*(VR[$ix+1,$iy+1,$iz+1] - VR[$ix+1,$iy,$iz+1])*_dθ -
@avxi_Vθ(ix,iy,iz)/@avxyi_R(ix,iy,iz) )) end

macro DRϕ(ix,iy,iz) esc(:( (Vϕ[$ix+1,$iy+1,$iz+1] - Vϕ[$ix,$iy+1,$iz+1])*_dr +
1.0/@avxzi_R(ix,iy,iz)/sin(@avxzi_θ(ix,iy,iz))*
(VR[$ix+1,$iy+1,$iz+1] - VR[$ix+1,$iy+1,$iz])*_dϕ -
@avxi_Vϕ(ix,iy,iz)/@avxzi_R(ix,iy,iz) )) end

macro Dθϕ(ix,iy,iz) esc(:( 1.0/@avyzi_R(ix,iy,iz)*(Vϕ[$ix+1,$iy+1,$iz+1] - Vϕ[$ix+1,$iy,$iz+1])*_dθ+
1.0/@avyzi_R(ix,iy,iz)/sin(@avyzi_θ(ix,iy,iz))*
(Vθ[$ix+1,$iy+1,$iz+1] - Vθ[$ix+1,$iy+1,$iz])*_dϕ -
@avyi_Vϕ(ix,iy,iz)/@avyzi_R(ix,iy,iz)*cot(@avyzi_θ(ix,iy,iz)) )) end
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@parallel_indices (ix,iy,iz) function compute_P!( P::Data.Array , DT_R::Data.Array ,
τ_RR::Data.Array , τ_θθ::Data.Array , τ_ϕϕ::Data.Array ,
τ_Rθ::Data.Array , τ_Rϕ::Data.Array , τ_θϕ::Data.Array ,

VR::Data.Array , Vθ::Data.Array , Vϕ::Data.Array ,
R::Data.Array , θ::Data.Array , η::Data.Array ,

ηSM::Data.Array,
_dr::Data.Number, _dθ::Data.Number, _dϕ::Data.Number,
dmp::Data.Number, vpdt::Data.Number, lr::Data.Number)

if (ix<=size(P,1) && iy<=size(P,2) && iz<=size(P,3))
P[ix,iy,iz] = P[ix,iy,iz] - @KBDT(ix,iy,iz) * @DIVV(ix,iy,iz)
τ_RR[ix,iy,iz] = (τ_RR[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@DRR(ix,iy,iz))/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz])
τ_θθ[ix,iy,iz] = (τ_θθ[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@Dθθ(ix,iy,iz))/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz])
τ_ϕϕ[ix,iy,iz] = (τ_ϕϕ[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@Dϕϕ(ix,iy,iz))/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz])
DT_R[ix,iy,iz] = vpdt^2 / (@KBDT(ix,iy,iz) + @GSDT(ix,iy,iz)/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz]))
end
if (ix<=size(τ_Rθ,1) && iy<=size(τ_Rθ,2) && iz<=size(τ_Rθ,3))

τ_Rθ[ix,iy,iz] = (τ_Rθ[ix,iy,iz] + @avxyi_GSDT(ix,iy,iz)*@DRθ(ix,iy,iz))/
(1.0 + @avxyi_GSDT(ix,iy,iz)/@avxyi_η(ix,iy,iz))

end
if (ix<=size(τ_Rϕ,1) && iy<=size(τ_Rϕ,2) && iz<=size(τ_Rϕ,3))

τ_Rϕ[ix,iy,iz] = (τ_Rϕ[ix,iy,iz] + @avxzi_GSDT(ix,iy,iz)*@DRϕ(ix,iy,iz))/
(1.0 + @avxzi_GSDT(ix,iy,iz)/@avxzi_η(ix,iy,iz))

end
if (ix<=size(τ_θϕ,1) && iy<=size(τ_θϕ,2) && iz<=size(τ_θϕ,3))

τ_θϕ[ix,iy,iz] = (τ_θϕ[ix,iy,iz] + @avyzi_GSDT(ix,iy,iz)*@Dθϕ(ix,iy,iz))/
(1.0 + @avyzi_GSDT(ix,iy,iz)/@avyzi_η(ix,iy,iz))

end
return

end

@parallel_indices (ix,iy,iz) function compute_TII!( τII::Data.Array,
τ_RR::Data.Array, τ_θθ::Data.Array, τ_ϕϕ::Data.Array,
τ_Rθ::Data.Array, τ_Rϕ::Data.Array, τ_θϕ::Data.Array)

if (ix<=size(τII,1)-2 && iy<=size(τII,2)-2 && iz<=size(τII,3)-2)
τII[ix+1,iy+1,iz+1] = sqrt(1.0/2.0 * (τ_RR[ix+1,iy+1,iz+1]^2.0 + τ_θθ[ix+1,iy+1,iz+1]^2.0 +

τ_ϕϕ[ix+1,iy+1,iz+1]^2.0) +
((τ_Rθ[ix ,iy ,iz ] + τ_Rθ[ix ,iy+1,iz ] +
τ_Rθ[ix+1,iy ,iz ] + τ_Rθ[ix+1,iy+1,iz ])*0.25)^2.0 +

((τ_Rϕ[ix ,iy ,iz ] + τ_Rϕ[ix ,iy ,iz+1] +
τ_Rϕ[ix+1,iy ,iz ] + τ_Rϕ[ix+1,iy ,iz+1])*0.25)^2.0 +

((τ_θϕ[ix ,iy ,iz ] + τ_θϕ[ix ,iy ,iz+1] +
τ_θϕ[ix ,iy+1,iz ] + τ_θϕ[ix ,iy+1,iz+1])*0.25)^2.0)

end
return

end

@parallel_indices (ix,iy,iz) function power_law!( η::Data.Array , τII::Data.Array , η_ini::Data.Array,
τ_C::Data.Number, n_exp::Data.Number)

if (ix<=size(η,1) && iy<=size(η,2) && iz<=size(η,3))
η[ix,iy,iz] = 2.0/(1.0/η_ini[ix,iy,iz] + 1.0/(η_ini[ix,iy,iz] * (τII[ix,iy,iz]/τ_C)^(1.0-n_exp)))

end
return

end
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macro σRR(ix,iy,iz) esc(:( -P[$ix,$iy,$iz] + τ_RR[$ix,$iy,$iz] )) end
macro σθθ(ix,iy,iz) esc(:( -P[$ix,$iy,$iz] + τ_θθ[$ix,$iy,$iz] )) end
macro σϕϕ(ix,iy,iz) esc(:( -P[$ix,$iy,$iz] + τ_ϕϕ[$ix,$iy,$iz] )) end
macro ρG(ix,iy,iz) esc(:( ρ[$ix,$iy,$iz]*g )) end
macro avxi_R(ix,iy,iz) esc(:( (( R[$ix ,$iy+1,$iz+1] + R[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avyi_R(ix,iy,iz) esc(:( (( R[$ix+1,$iy ,$iz+1] + R[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avzi_R(ix,iy,iz) esc(:( (( R[$ix+1,$iy+1,$iz ] + R[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avxi_θ(ix,iy,iz) esc(:( (( θ[$ix ,$iy+1,$iz+1] + θ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avyi_θ(ix,iy,iz) esc(:( (( θ[$ix+1,$iy ,$iz+1] + θ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avzi_θ(ix,iy,iz) esc(:( (( θ[$ix+1,$iy+1,$iz ] + θ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avxi_σRR(ix,iy,iz) esc(:( ((@σRR( ix , iy+1, iz+1) + @σRR( ix+1, iy+1, iz+1))*0.5) )) end
macro avxi_σθθ(ix,iy,iz) esc(:( ((@σθθ( ix , iy+1, iz+1) + @σθθ( ix+1, iy+1, iz+1))*0.5) )) end
macro avyi_σθθ(ix,iy,iz) esc(:( ((@σθθ( ix+1, iy , iz+1) + @σθθ( ix+1, iy+1, iz+1))*0.5) )) end
macro avxi_σϕϕ(ix,iy,iz) esc(:( ((@σϕϕ( ix , iy+1, iz+1) + @σϕϕ( ix+1, iy+1, iz+1))*0.5) )) end
macro avyi_σϕϕ(ix,iy,iz) esc(:( ((@σϕϕ( ix+1, iy , iz+1) + @σϕϕ( ix+1, iy+1, iz+1))*0.5) )) end
macro avxa_τRθ(ix,iy,iz) esc(:( ((τ_Rθ[$ix ,$iy ,$iz ] + τ_Rθ[$ix+1,$iy ,$iz ])*0.5) )) end
macro avya_τRθ(ix,iy,iz) esc(:( ((τ_Rθ[$ix ,$iy ,$iz ] + τ_Rθ[$ix ,$iy+1,$iz ])*0.5) )) end
macro avxa_τRϕ(ix,iy,iz) esc(:( ((τ_Rϕ[$ix ,$iy ,$iz ] + τ_Rϕ[$ix+1,$iy ,$iz ])*0.5) )) end
macro avya_τθϕ(ix,iy,iz) esc(:( ((τ_θϕ[$ix ,$iy ,$iz ] + τ_θϕ[$ix ,$iy+1,$iz ])*0.5) )) end
macro avxi_ρG(ix,iy,iz) esc(:( (( @ρG( ix , iy+1, iz+1) + @ρG( ix+1, iy+1, iz+1))*0.5) )) end
macro dVR(ix,iy,iz) esc(:( (@σRR(ix+1,iy+1,iz+1) - @σRR(ix,iy+1,iz+1))*_dr +

1.0/@avxi_R(ix,iy,iz)*(τ_Rθ[ix ,iy+1,iz ] - τ_Rθ[ix,iy ,iz ])*_dθ +
1.0/@avxi_R(ix,iy,iz)/sin(@avxi_θ(ix,iy,iz))*

(τ_Rϕ[ix ,iy ,iz+1] - τ_Rϕ[ix,iy ,iz ])*_dϕ +
2.0*@avxi_σRR(ix,iy,iz) /@avxi_R(ix,iy,iz) -

(@avxi_σθθ(ix,iy,iz)+@avxi_σϕϕ(ix,iy,iz))/@avxi_R(ix,iy,iz) +
@avya_τRθ(ix,iy,iz)/@avxi_R(ix,iy,iz)*cot(@avxi_θ(ix,iy,iz)) -
@avxi_ρG(ix,iy,iz) )) end

macro dVθ(ix,iy,iz) esc(:( ( τ_Rθ[ix+1,iy ,iz ] - τ_Rθ[ix ,iy,iz ])*_dr +
1.0/@avyi_R(ix,iy,iz)*( @σθθ(ix+1,iy+1,iz+1) - @σθθ(ix+1,iy,iz+1))*_dθ +
1.0/@avyi_R(ix,iy,iz)/sin(@avyi_θ(ix,iy,iz))*

( τ_θϕ[ix ,iy ,iz+1] - τ_θϕ[ix ,iy,iz ])*_dϕ +
3.0*@avxa_τRθ(ix,iy,iz) /@avyi_R(ix ,iy ,iz ) +

(@avyi_σθθ(ix,iy,iz) - @avyi_σϕϕ(ix,iy,iz))/
@avyi_R(ix ,iy ,iz )*cot(@avyi_θ(ix,iy,iz)) )) end

macro dVϕ(ix,iy,iz) esc(:( (τ_Rϕ[ix+1,iy ,iz ] - τ_Rϕ[ix ,iy ,iz])*_dr +
1.0/@avzi_R(ix,iy,iz)*(τ_θϕ[ix ,iy+1,iz ] - τ_θϕ[ix ,iy ,iz])*_dθ +
1.0/@avzi_R(ix,iy,iz)/sin(@avzi_θ(ix,iy,iz))*

(@σϕϕ(ix+1,iy+1,iz+1) - @σϕϕ(ix+1,iy+1,iz))*_dϕ +
3.0*@avxa_τRϕ(ix,iy,iz)/@avzi_R(ix,iy,iz) +
2.0*@avya_τθϕ(ix,iy,iz)/@avzi_R(ix,iy,iz)*cot(@avzi_θ(ix,iy,iz)) )) end

@parallel_indices (ix,iy,iz) function compute_V!( VR::Data.Array , Vθ::Data.Array , Vϕ::Data.Array ,
DT_R::Data.Array ,
τ_RR::Data.Array , τ_θθ::Data.Array , τ_ϕϕ::Data.Array ,
τ_Rθ::Data.Array , τ_Rϕ::Data.Array , τ_θϕ::Data.Array ,

P::Data.Array , R::Data.Array , θ::Data.Array ,
ρ::Data.Array ,

_dr::Data.Number, _dθ::Data.Number, _dϕ::Data.Number,
g::Data.Number)

if (ix<=size(VR,1)-2 && iy<=size(VR,2)-2 && iz<=size(VR,3)-2)
VR[ix+1,iy+1,iz+1] = VR[ix+1,iy+1,iz+1] + @dVR(ix,iy,iz)*

((DT_R[ix,iy+1,iz+1] + DT_R[ix+1,iy+1,iz+1])*0.5)
end
if (ix<=size(Vθ,1)-2 && iy<=size(Vθ,2)-2 && iz<=size(Vθ,3)-2)

Vθ[ix+1,iy+1,iz+1] = Vθ[ix+1,iy+1,iz+1] + @dVθ(ix,iy,iz)*
((DT_R[ix+1,iy,iz+1] + DT_R[ix+1,iy+1,iz+1])*0.5)

end
if (ix<=size(Vϕ,1)-2 && iy<=size(Vϕ,2)-2 && iz<=size(Vϕ,3)-2)

Vϕ[ix+1,iy+1,iz+1] = Vϕ[ix+1,iy+1,iz+1] + @dVϕ(ix,iy,iz)*
((DT_R[ix+1,iy+1,iz] + DT_R[ix+1,iy+1,iz+1])*0.5)

end
return

end
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# CHECK ERROR ===============================================================================================
@parallel_indices (ix,iy,iz) function check_err!(VR_err::Data.Array, Vθ_err::Data.Array, Vϕ_err::Data.Array,

VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)
if (ix<=size(VR,1) && iy<=size(VR,2) && iz<=size(VR,3))

VR_err[ix,iy,iz] = VR[ix,iy,iz] - VR_err[ix,iy,iz]
end
if (ix<=size(Vθ,1) && iy<=size(Vθ,2) && iz<=size(Vθ,3))

Vθ_err[ix,iy,iz] = Vθ[ix,iy,iz] - Vθ_err[ix,iy,iz]
end
if (ix<=size(Vϕ,1) && iy<=size(Vϕ,2) && iz<=size(Vϕ,3))

Vϕ_err[ix,iy,iz] = Vϕ[ix,iy,iz] - Vϕ_err[ix,iy,iz]
end
return

end
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# ===========================================================================================================
@views function SPH_3D_Diapir()

num = 1
# physical parameters –––––––––––––––––––––––––––––––––––––––––-
η0 = 1.0 # Pa*s , media viscosity
vr = 1e2 # viscosity ratio out/in
ρ0 = 0.0 # kg/m^3, media density
ρ_in = ρ0 - 10.0 # kg/m^3, inclusion density
g = 1.0 # m/s^2 , gravity acceleration
n_exp = 5.0 # power law exponent
τ_C = 1.0 # Pa , characteristic stress
r = 1000.0 # m , radius of the total sphere
lr = 6.0 # m , model dimension in r
lθ, lϕ = lr/r, lr/r # m , model dimension in θ and ϕ
radius = 1.0 # m , radius of the inclusion
sh = 1.0 # m/s , shearing velocity
# numerics –––––––––––––––––––––––––––––––––––––––––––––––
εnonl = 5e-7 # pseudo-transient loop exit criteria
nt = 1 # number of time steps
maxiter = 1e5 # maximum number of pseudo-transient iterations
nout = 1e2 # pseudo-transient plotting frequency
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
# preprocessing ––––––––––––––––––––––––––––––––––––––––––––-
dr = lr/(nr-1)

_dr, _dθ, _dϕ = (nr-1)/lr, (nθ-1)/lθ, (nϕ-1)/lϕ
R_i = range( r - lr/2.0, r + lr/2.0, length=nr) # coordinates of grid points in r
θ_i = range(pi/2.0 - lθ/2.0, pi/2.0 + lθ/2.0, length=nθ) # coordinates of grid points in θ
ϕ_i = range( - lϕ/2.0, lϕ/2.0, length=nϕ) # coordinates of grid points in z
(R,θ,ϕ) = ([xc for xc = R_i, yc = θ_i, zc = ϕ_i],[yc for xc = R_i, yc = θ_i, zc = ϕ_i],

[zc for xc = R_i, yc = θ_i, zc = ϕ_i]) # grid of coordinates
R = Data.Array(R)
θ = Data.Array(θ)
ϕ = Data.Array(ϕ)
# initialization and boundary conditions ––––––––––––––––––––––––––––––––
print("Starting initialization ... ")
P = @zeros(nr , nθ , nϕ )
VR = @zeros(nr+1, nθ , nϕ )
Vθ = @zeros(nr , nθ+1, nϕ )
Vϕ = @zeros(nr , nθ , nϕ+1)
VR_err = @zeros(nr+1, nθ , nϕ )
Vθ_err = @zeros(nr , nθ+1, nϕ )
Vϕ_err = @zeros(nr , nθ , nϕ+1)
τ_RR = @zeros(nr , nθ , nϕ )
τ_θθ = @zeros(nr , nθ , nϕ )
τ_ϕϕ = @zeros(nr , nθ , nϕ )
τ_Rθ = @zeros(nr-1, nθ-1, nϕ-2)
τ_Rϕ = @zeros(nr-1, nθ-2, nϕ-1)
τ_θϕ = @zeros(nr-2, nθ-1, nϕ-1)
ρ = ρ0*@ones(nr , nθ , nϕ )
η = η0*@ones(nr , nθ , nϕ )
η_ini = @zeros(nr , nθ , nϕ )
ηSM = @zeros(nr , nθ , nϕ )
DT_R = @zeros(nr , nθ , nϕ )
τII = @zeros(nr , nθ , nϕ )
vpdt = dr*CFL
@parallel initialize_inclusion!(ρ, R, θ, ϕ, r, radius, ρ_in)
@parallel initialize_inclusion!(η, R, θ, ϕ, r, radius, η0/vr)
@parallel initialize_velocity!(Vϕ, θ, sh, r)
η_ini .= η
println("done.")
# action ––––––––––––––––––––––––––––––––––––––––––––––––
println("Starting calculation (nr=$nr, nθ=$nθ , nϕ=$nϕ)")
err_evo = []; iter_evo = []; t_tic = 0.0; ittot = 0
for it = 1:nt # time loop

for iter = 1:maxiter # pseudo-transient loop
if (it==1 && iter==11) GC.gc(); t_tic = Base.time() end
# SOLVER ––––––––––––––––––––––––––––––––––––––––––––
@parallel equal3!(VR_err, Vθ_err, Vϕ_err, VR, Vθ, Vϕ)
@parallel maxloc!(ηSM, η)
copy_BC!(ηSM)
@parallel compute_P!(P, DT_R, τ_RR, τ_θθ, τ_ϕϕ, τ_Rθ, τ_Rϕ, τ_θϕ, VR, Vθ, Vϕ, R, θ,

η, ηSM , _dr , _dθ , _dϕ , dmp , vpdt, lr)
@parallel compute_TII!(τII, τ_RR, τ_θθ, τ_ϕϕ, τ_Rθ, τ_Rϕ, τ_θϕ)
copy_BC!(τII)
@parallel power_law!(η, τII, η_ini, τ_C, n_exp)
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@parallel compute_V!(VR , Vθ , Vϕ , DT_R, τ_RR, τ_θθ, τ_ϕϕ, τ_Rθ, τ_Rϕ, τ_θϕ, P, R, θ, ρ,
_dr, _dθ, _dϕ, g)

@parallel BC_R!(VR, Vθ, Vϕ)
@parallel BC_θ!(VR, Vθ, Vϕ, θ, r, sh)
@parallel BC_ϕ!(VR, Vθ, Vϕ, θ, r, sh)
# pseudo-transient loop exit criteria –––––––––––––––––––––––––––––-
if iter % nout == 0

@parallel check_err!(VR_err, Vθ_err, Vϕ_err, VR, Vθ, Vϕ)
err_vr = maximum(abs.(VR_err))./maximum(abs.(VR))
err_vθ = maximum(abs.(Vθ_err))./maximum(abs.(Vθ))
err_vϕ = maximum(abs.(Vϕ_err))./maximum(abs.(Vϕ))
err = max(err_vr, err_vθ, err_vϕ)
# post-processing
push!(err_evo, err)
push!(iter_evo,iter)
if do_viz display(scatter(iter_evo, err_evo, xaxis=:log,yaxis=:log,legend=false )) end
@printf("iter %d, err=%1.3e \n", iter, err)
# pseudo-transient loop exit criteria
if (err<εnonl && iter>20) iter_end = iter; break; end

end
ittot = iter

end
end
# Performance –––––––––––––––––––––––––––––––––––––––––––––-
wtime = Base.time() - t_tic
# Effective main memory access per iteration [GB]
A_eff = (4*2 + 6*2 + 2 + 2*2)/1e9*nr*nθ*nϕ*sizeof(Data.Number)
# (Lower bound of required memory access: Te has to be read and written: 2 whole-array memaccess;
# Ci has to be read : 1 whole-array memaccess)
wtime_it = wtime/(ittot-10) # Execution time per iteration [s]
T_eff = A_eff/wtime_it # Effective memory throughput [GB/s]
@printf("Total iters = %d (%d steps), time = %1.3e sec (@ T_eff = %1.2f GB/s) \n",

ittot, nt, wtime, round(T_eff, sigdigits=3))
if do_save_p

!ispath("./out_perf") && mkdir("./out_perf")
open("./out_perf/out_SPH_3D_PERF.txt","a") do io

println(io, "$(nr) $(nθ) $(nϕ) $(dmp) $(ittot) $(wtime) $(A_eff) $(wtime_it) $(T_eff)")
end

end
# SAVING ––––––––––––––––––––––––––––––––––––––––––––––––
if do_save

!ispath("./output") && mkdir("./output")
err_evo = Data.Array(err_evo)
iter_evo = Data.Array(iter_evo)
Save_phys(num, η0, ρ0, ρ_in, n_exp, τ_C, vr, g, sh, r, radius, dmp)
Save_infos(num, lr, lθ, lϕ, nr, nθ, nϕ, εnonl, wtime)
SaveArray("err_evo" , err_evo )
SaveArray("iter_evo", iter_evo)
SaveArray("R" , R )
SaveArray("TH" , θ )
SaveArray("PH" , ϕ )
SaveArray("ETAS" , η )
SaveArray("RHO" , ρ )
SaveArray("P" , P )
SaveArray("VR" , VR )
SaveArray("VTH" , Vθ )
SaveArray("VPH" , Vϕ )
SaveArray("TAU_RR" , τ_RR )
SaveArray("TAU_THTH", τ_θθ )
SaveArray("TAU_PHPH", τ_ϕϕ )
SaveArray("TAU_RTH" , τ_Rθ )
SaveArray("TAU_RPH" , τ_Rϕ )
SaveArray("TAU_THPH", τ_θϕ )
SaveArray("TII" , τII )

end
return

end

@time SPH_3D_Diapir()
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APPENDIX E

Code for the Continental Plateau in Spherical Coordinates
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# PLATEAU - SPHERICAL COORDINATES
const USE_GPU = haskey(ENV, "USE_GPU" ) ? parse(Bool, ENV["USE_GPU"] ) : true #false
const do_viz = haskey(ENV, "DO_VIZ" ) ? parse(Bool, ENV["DO_VIZ"] ) : false
const do_save = haskey(ENV, "DO_SAVE" ) ? parse(Bool, ENV["DO_SAVE"] ) : true
const do_save_p = haskey(ENV, "DO_SAVE_P") ? parse(Bool, ENV["DO_SAVE_P"]) : false
const nr = haskey(ENV, "NR" ) ? parse(Int , ENV["NR"] ) : 703
const nθ = haskey(ENV, "NTH" ) ? parse(Int , ENV["NTH"] ) : 199
const nϕ = haskey(ENV, "NPH" ) ? parse(Int , ENV["NPH"] ) : 199
const GPU_ID = haskey(ENV, "GPU_ID" ) ? parse(Int , ENV["GPU_ID"] ) : 0
const dmp = haskey(ENV, "DMP" ) ? parse(Float64, ENV["DMP"] ) : 4.5

using ParallelStencil
using ParallelStencil.FiniteDifferences3D
@static if USE_GPU

@init_parallel_stencil(CUDA, Float64, 3)
CUDA.device!(GPU_ID) # select GPU

else
@init_parallel_stencil(Threads, Float64, 3)

end
using Plots, Printf, Statistics, LinearAlgebra

# SAVING FUNCTIONS ==========================================================================================
function Save_infos(num, it, lr_d, lθ_d, lϕ_d, nr, nθ, nϕ, εnonl, runtime; out="./output_$(it)")

fid=open(out * "/$(num)_infos.inf", "w")
@printf(fid,"%d %f %f %f %d %d %d %d %d", num, lr_d, lθ_d, lϕ_d, nr, nθ, nϕ, εnonl, runtime); close(fid)

end

function Save_phys(num , it , sl , sη , sρ , ηm_d , ηl_d, ηc_d, ηa_d, ρm_d, ρl_d, ρc_d, ρa_d,
hm_d, hl_d, hr_d, hc_d, ha_d, n_exp, τ_C , vr , g , r , dmp ; out="./output_$(it)")

fid=open(out * "/$(num)_phys.inf", "w")
@printf(fid,"%d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f",

num, sl, sη, sρ, ηm_d, ηl_d, ηc_d, ηa_d, ρm_d, ρl_d, ρc_d, ρa_d, hm_d, hl_d, hr_d, hc_d, ha_d,
n_exp, τ_C, vr, g, r, dmp);

close(fid)
end

@static if USE_GPU
function SaveArray(Aname, A, it; out="./output_$(it)")

A_tmp = Array(A)
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A_tmp); close(fid)

end
else

function SaveArray(Aname, A, it; out="./output_$(it)")
fname = string(out, "/A_", Aname, ".bin"); fid = open(fname,"w"); write(fid, A); close(fid)

end
end

# ===========================================================================================================
@parallel_indices (ix,iy,iz) function equal3!(VR_err::Data.Array, Vθ_err::Data.Array, Vϕ_err::Data.Array,

VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)
if (ix<=size(VR_err,1) && iy<=size(VR_err,2) && iz<=size(VR_err,3))

VR_err[ix,iy,iz] = VR[ix,iy,iz]
end
if (ix<=size(Vθ_err,1) && iy<=size(Vθ_err,2) && iz<=size(Vθ_err,3))

Vθ_err[ix,iy,iz] = Vθ[ix,iy,iz]
end
if (ix<=size(Vϕ_err,1) && iy<=size(Vϕ_err,2) && iz<=size(Vϕ_err,3))

Vϕ_err[ix,iy,iz] = Vϕ[ix,iy,iz]
end
return

end

# BOUNDARY CONDITIONS =======================================================================================
@parallel_indices (ix,iy,iz) function BC_R!(VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)

if (ix==1 && iy<=size(VR,2) && iz<=size(VR,3)) VR[ix,iy,iz] = -VR[ix+1,iy,iz] end
if (ix==size(VR,1) && iy<=size(VR,2) && iz<=size(VR,3)) VR[ix,iy,iz] = -VR[ix-1,iy,iz] end
if (ix==1 && iy<=size(Vθ,2) && iz<=size(Vθ,3)) Vθ[ix,iy,iz] = Vθ[ix+1,iy,iz] end
if (ix==size(Vθ,1) && iy<=size(Vθ,2) && iz<=size(Vθ,3)) Vθ[ix,iy,iz] = Vθ[ix-1,iy,iz] end
if (ix==1 && iy<=size(Vϕ,2) && iz<=size(Vϕ,3)) Vϕ[ix,iy,iz] = Vϕ[ix+1,iy,iz] end
if (ix==size(Vϕ,1) && iy<=size(Vϕ,2) && iz<=size(Vϕ,3)) Vϕ[ix,iy,iz] = Vϕ[ix-1,iy,iz] end
return

end
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@parallel_indices (ix,iy,iz) function BC_θ!(VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)
if (ix<=size(VR,1) && iy==1 && iz<=size(VR,3)) VR[ix,iy,iz] = VR[ix,iy+1,iz] end
if (ix<=size(VR,1) && iy==size(VR,2) && iz<=size(VR,3)) VR[ix,iy,iz] = VR[ix,iy-1,iz] end
if (ix<=size(Vθ,1) && iy==1 && iz<=size(Vθ,3)) Vθ[ix,iy,iz] = -Vθ[ix,iy+1,iz] end
if (ix<=size(Vθ,1) && iy==size(Vθ,2) && iz<=size(Vθ,3)) Vθ[ix,iy,iz] = -Vθ[ix,iy-1,iz] end
if (ix<=size(Vϕ,1) && iy==1 && iz<=size(Vϕ,3)) Vϕ[ix,iy,iz] = Vϕ[ix,iy+1,iz] end
if (ix<=size(Vϕ,1) && iy==size(Vϕ,2) && iz<=size(Vϕ,3)) Vϕ[ix,iy,iz] = Vϕ[ix,iy-1,iz] end
return

end

@parallel_indices (ix,iy,iz) function BC_ϕ!(VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)
if (ix<=size(VR,1) && iy<=size(VR,2) && iz==1 ) VR[ix,iy,iz] = VR[ix,iy,iz+1] end
if (ix<=size(VR,1) && iy<=size(VR,2) && iz==size(VR,3)) VR[ix,iy,iz] = VR[ix,iy,iz-1] end
if (ix<=size(Vθ,1) && iy<=size(Vθ,2) && iz==1 ) Vθ[ix,iy,iz] = Vθ[ix,iy,iz+1] end
if (ix<=size(Vθ,1) && iy<=size(Vθ,2) && iz==size(Vθ,3)) Vθ[ix,iy,iz] = Vθ[ix,iy,iz-1] end
if (ix<=size(Vϕ,1) && iy<=size(Vϕ,2) && iz==1 ) Vϕ[ix,iy,iz] = -Vϕ[ix,iy,iz+1] end
if (ix<=size(Vϕ,1) && iy<=size(Vϕ,2) && iz==size(Vϕ,3)) Vϕ[ix,iy,iz] = -Vϕ[ix,iy,iz-1] end
return

end

# COPY BOUNDARIES ===========================================================================================
@parallel_indices (ix,iy,iz) function copy_bc_r!(A::Data.Array)

if (ix==1 && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix+1,iy,iz] end
if (ix==size(A,1) && iy<=size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix-1,iy,iz] end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_θ!(A::Data.Array)
if (ix<=size(A,1) && iy==1 && iz<=size(A,3)) A[ix,iy,iz] = A[ix,iy+1,iz] end
if (ix<=size(A,1) && iy==size(A,2) && iz<=size(A,3)) A[ix,iy,iz] = A[ix,iy-1,iz] end
return

end

@parallel_indices (ix,iy,iz) function copy_bc_ϕ!(A::Data.Array)
if (ix<=size(A,1) && iy<=size(A,2) && iz==1 ) A[ix,iy,iz] = A[ix,iy,iz+1] end
if (ix<=size(A,1) && iy<=size(A,2) && iz==size(A,3)) A[ix,iy,iz] = A[ix,iy,iz-1] end
return

end

function copy_BC!(A::Data.Array)
@parallel copy_bc_r!(A)
@parallel copy_bc_θ!(A)
@parallel copy_bc_ϕ!(A)

end
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# INITIALIZATION ============================================================================================
@parallel_indices (ix,iy,iz) function initialize_geometry!( A::Data.Array , R::Data.Array ,

θ::Data.Array , ϕ::Data.Array ,
r::Data.Number, ha::Data.Number,

hc::Data.Number, hr::Data.Number,
hl::Data.Number, dl::Data.Number,
dh::Data.Number, dt::Data.Number,
gl::Data.Number, gc::Data.Number,
ga::Data.Number)

if (ix<=size(A,1) && iy<=size(A,2) && iz<=size(A,3))
if (R[ix,iy,iz]-r > -hc-hr-hl )

A[ix,iy,iz] = gl end
if (R[ix,iy,iz]-r > -hc && (θ[ix,iy,iz]-pi/2.0)*r< 0 )

A[ix,iy,iz] = gc end
if (R[ix,iy,iz]-r > -hc && ϕ[ix,iy,iz]*r > 0 )

A[ix,iy,iz] = gc end
if (R[ix,iy,iz]-r > -hc-hr && (θ[ix,iy,iz]-pi/2.0)*r>= dt &&

ϕ[ix,iy,iz]*r <=-dt )
A[ix,iy,iz] = gc end

if (R[ix,iy,iz]-r > -hc+((hr/dt)*ϕ[ix,iy,iz]*r) && (θ[ix,iy,iz]-pi/2.0)*r>= dt &&
ϕ[ix,iy,iz]*r <= 0 && ϕ[ix,iy,iz]*r >=-dt )
A[ix,iy,iz] = gc end

if (R[ix,iy,iz]-r > -hc+((hr/dt)*(pi/2.0-θ[ix,iy,iz])*r) && (θ[ix,iy,iz]-pi/2.0)*r>= 0 &&
(θ[ix,iy,iz]-pi/2.0)*r<= dt && ϕ[ix,iy,iz]*r <=-dt )
A[ix,iy,iz] = gc end

if (R[ix,iy,iz]-r > max(-hc+((hr/dt)*(pi/2.0-θ[ix,iy,iz])*r),-hc+((hr/dt)*ϕ[ix,iy,iz]*r)) &&
(θ[ix,iy,iz]-pi/2.0)*r>= 0 && (θ[ix,iy,iz]-pi/2.0)*r<= dt &&
ϕ[ix,iy,iz]*r <= 0 && ϕ[ix,iy,iz]*r >=-dt )
A[ix,iy,iz] = gc end

if (R[ix,iy,iz]-r > 0 && (θ[ix,iy,iz]-pi/2.0)*r< 0 )
A[ix,iy,iz] = ga end

if (R[ix,iy,iz]-r > 0 && ϕ[ix,iy,iz]*r > 0 )
A[ix,iy,iz] = ga end

if (R[ix,iy,iz]-r > ha && (θ[ix,iy,iz]-pi/2.0)*r>= dt &&
ϕ[ix,iy,iz]*r <=-dt )
A[ix,iy,iz] = ga end

if (R[ix,iy,iz]-r > -((ha/dt)*ϕ[ix,iy,iz]*r) && (θ[ix,iy,iz]-pi/2.0)*r>= dt &&
ϕ[ix,iy,iz]*r <= 0 && ϕ[ix,iy,iz]*r >=-dt )
A[ix,iy,iz] = ga end

if (R[ix,iy,iz]-r > -((ha/dt)*(pi/2.0-θ[ix,iy,iz])*r) && (θ[ix,iy,iz]-pi/2.0)*r>= 0 &&
(θ[ix,iy,iz]-pi/2.0)*r<= dt && ϕ[ix,iy,iz]*r <=-dt )
A[ix,iy,iz] = ga end

if (R[ix,iy,iz]-r > min(-((ha/dt)*(pi/2.0-θ[ix,iy,iz])*r),-((ha/dt)*ϕ[ix,iy,iz]*r)) &&
(θ[ix,iy,iz]-pi/2.0)*r>= 0 && (θ[ix,iy,iz]-pi/2.0)*r<= dt &&
ϕ[ix,iy,iz]*r <= 0 && ϕ[ix,iy,iz]*r >=-dt )
A[ix,iy,iz] = ga end

end
return

end

# ===========================================================================================================
@parallel function maxloc!(ηSM::Data.Array, η::Data.Array)

@inn(ηSM) = @maxloc(η)
return

end
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# SOLVER ====================================================================================================
macro KBDT(ix,iy,iz) esc(:( dmp * 2.0 * pi * vpdt / lr * ηSM[$ix,$iy,$iz] )) end
macro GSDT(ix,iy,iz) esc(:( 4.0 * pi * vpdt / lr * ηSM[$ix,$iy,$iz] )) end
macro avxa_VR(ix,iy,iz) esc(:( (( VR[$ix ,$iy ,$iz ] + VR[$ix+1,$iy ,$iz ])*0.5 ) )) end
macro avxi_Vθ(ix,iy,iz) esc(:( (( Vθ[$ix ,$iy+1,$iz+1] + Vθ[$ix+1,$iy+1,$iz+1])*0.5 ) )) end
macro avya_Vθ(ix,iy,iz) esc(:( (( Vθ[$ix ,$iy ,$iz ] + Vθ[$ix ,$iy+1,$iz ])*0.5 ) )) end
macro avxi_Vϕ(ix,iy,iz) esc(:( (( Vϕ[$ix ,$iy+1,$iz+1] + Vϕ[$ix+1,$iy+1,$iz+1])*0.5 ) )) end
macro avyi_Vϕ(ix,iy,iz) esc(:( (( Vϕ[$ix+1,$iy ,$iz+1] + Vϕ[$ix+1,$iy+1,$iz+1])*0.5 ) )) end
macro avxyi_R(ix,iy,iz) esc(:( (( R[$ix ,$iy ,$iz+1] + R[$ix ,$iy+1,$iz+1] +

R[$ix+1,$iy ,$iz+1] + R[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxzi_R(ix,iy,iz) esc(:( (( R[$ix ,$iy+1,$iz ] + R[$ix ,$iy+1,$iz+1] +

R[$ix+1,$iy+1,$iz ] + R[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avyzi_R(ix,iy,iz) esc(:( (( R[$ix+1,$iy ,$iz ] + R[$ix+1,$iy ,$iz+1] +

R[$ix+1,$iy+1,$iz ] + R[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxzi_θ(ix,iy,iz) esc(:( (( θ[$ix ,$iy+1,$iz ] + θ[$ix ,$iy+1,$iz+1] +

θ[$ix+1,$iy+1,$iz ] + θ[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avyzi_θ(ix,iy,iz) esc(:( (( θ[$ix+1,$iy ,$iz ] + θ[$ix+1,$iy ,$iz+1] +

θ[$ix+1,$iy+1,$iz ] + θ[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxyi_GSDT(ix,iy,iz) esc(:( ((@GSDT($ix ,$iy ,$iz+1) + @GSDT($ix ,$iy+1,$iz+1) +

@GSDT($ix+1,$iy ,$iz+1) + @GSDT($ix+1,$iy+1,$iz+1))*0.25) )) end
macro avxzi_GSDT(ix,iy,iz) esc(:( ((@GSDT($ix ,$iy+1,$iz ) + @GSDT($ix ,$iy+1,$iz+1) +

@GSDT($ix+1,$iy+1,$iz ) + @GSDT($ix+1,$iy+1,$iz+1))*0.25) )) end
macro avyzi_GSDT(ix,iy,iz) esc(:( ((@GSDT($ix+1,$iy ,$iz ) + @GSDT($ix+1,$iy ,$iz+1) +

@GSDT($ix+1,$iy+1,$iz ) + @GSDT($ix+1,$iy+1,$iz+1))*0.25) )) end
macro avxyi_η(ix,iy,iz) esc(:( (( η[$ix ,$iy ,$iz+1] + η[$ix ,$iy+1,$iz+1] +

η[$ix+1,$iy ,$iz+1] + η[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avxzi_η(ix,iy,iz) esc(:( (( η[$ix ,$iy+1,$iz ] + η[$ix ,$iy+1,$iz+1] +

η[$ix+1,$iy+1,$iz ] + η[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro avyzi_η(ix,iy,iz) esc(:( (( η[$ix+1,$iy ,$iz ] + η[$ix+1,$iy ,$iz+1] +

η[$ix+1,$iy+1,$iz ] + η[$ix+1,$iy+1,$iz+1])*0.25) )) end
macro DIVV(ix,iy,iz) esc(:(( VR[$ix+1,$iy,$iz] - VR[$ix,$iy,$iz])*_dr +

1.0/R[$ix,$iy,$iz] *
(Vθ[$ix,$iy+1,$iz] - Vθ[$ix,$iy,$iz])*_dθ +
1.0/R[$ix,$iy,$iz] /sin(θ[$ix,$iy ,$iz])*
(Vϕ[$ix,$iy,$iz+1] - Vϕ[$ix,$iy,$iz])*_dϕ +
2.0*@avxa_VR(ix,iy,iz)/ R[$ix,$iy ,$iz] +

@avya_Vθ(ix,iy,iz)/ R[$ix,$iy ,$iz] * cot(θ[$ix,$iy,$iz]) )) end
macro DRR(ix,iy,iz) esc(:( ( VR[$ix+1,$iy,$iz] - VR[$ix,$iy ,$iz])*_dr -

1.0/3.0*@DIVV(ix,iy,iz) )) end
macro Dθθ(ix,iy,iz) esc(:( 1.0/R[$ix,$iy,$iz] *(Vθ[$ix,$iy+1,$iz] - Vθ[$ix,$iy,$iz])*_dθ +

@avxa_VR(ix,iy,iz) / R[$ix,$iy ,$iz] -
1.0/3.0*@DIVV(ix,iy,iz) )) end

macro Dϕϕ(ix,iy,iz) esc(:( 1.0/ R[$ix,$iy,$iz ] /sin(θ[$ix,$iy,$iz])*
(Vϕ[$ix,$iy,$iz+1] - Vϕ[$ix,$iy,$iz])*_dϕ +

@avxa_VR(ix,iy,iz) / R[$ix,$iy,$iz] +
@avya_Vθ(ix,iy,iz) / R[$ix,$iy,$iz]*cot(θ[$ix,$iy,$iz]) -
1.0/3.0*@DIVV(ix,iy,iz) )) end

macro DRθ(ix,iy,iz) esc(:( (Vθ[$ix+1,$iy+1,$iz+1] - Vθ[$ix,$iy+1,$iz+1])*_dr +
1.0/@avxyi_R(ix,iy,iz)*(VR[$ix+1,$iy+1,$iz+1] - VR[$ix+1,$iy,$iz+1])*_dθ -

@avxi_Vθ(ix,iy,iz)/@avxyi_R(ix,iy,iz) )) end
macro DRϕ(ix,iy,iz) esc(:( (Vϕ[$ix+1,$iy+1,$iz+1] - Vϕ[$ix,$iy+1,$iz+1])*_dr +

1.0/@avxzi_R(ix,iy,iz)/sin(@avxzi_θ(ix,iy,iz))*
(VR[$ix+1,$iy+1,$iz+1] - VR[$ix+1,$iy+1,$iz])*_dϕ -
@avxi_Vϕ(ix,iy,iz)/@avxzi_R(ix,iy,iz) )) end

macro Dθϕ(ix,iy,iz) esc(:( 1.0/@avyzi_R(ix,iy,iz)*(Vϕ[$ix+1,$iy+1,$iz+1] - Vϕ[$ix+1,$iy,$iz+1])*_dθ +
1.0/@avyzi_R(ix,iy,iz)/sin(@avyzi_θ(ix,iy,iz))*
(Vθ[$ix+1,$iy+1,$iz+1] - Vθ[$ix+1,$iy+1,$iz])*_dϕ -
@avyi_Vϕ(ix,iy,iz)/@avyzi_R(ix,iy,iz)*cot(@avyzi_θ(ix,iy,iz)) )) end
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@parallel_indices (ix,iy,iz) function compute_P!( P::Data.Array , DT_R::Data.Array ,
τ_RR::Data.Array , τ_θθ::Data.Array , τ_ϕϕ::Data.Array ,
τ_Rθ::Data.Array , τ_Rϕ::Data.Array , τ_θϕ::Data.Array ,

VR::Data.Array , Vθ::Data.Array , Vϕ::Data.Array ,
R::Data.Array , θ::Data.Array , η::Data.Array ,

ηSM::Data.Array,
_dr::Data.Number, _dθ::Data.Number, _dϕ::Data.Number,
dmp::Data.Number, vpdt::Data.Number, lr::Data.Number)

if (ix<=size(P,1) && iy<=size(P,2) && iz<=size(P,3))
P[ix,iy,iz] = P[ix,iy,iz] - @KBDT(ix,iy,iz) * @DIVV(ix,iy,iz)
τ_RR[ix,iy,iz] = (τ_RR[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@DRR(ix,iy,iz))/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz])
τ_θθ[ix,iy,iz] = (τ_θθ[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@Dθθ(ix,iy,iz))/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz])
τ_ϕϕ[ix,iy,iz] = (τ_ϕϕ[ix,iy,iz] + @GSDT(ix,iy,iz)*2.0*@Dϕϕ(ix,iy,iz))/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz])
DT_R[ix,iy,iz] = vpdt^2 / (@KBDT(ix,iy,iz) + @GSDT(ix,iy,iz)/

(1.0 + @GSDT(ix,iy,iz)/η[ix,iy,iz]))
end
if (ix<=size(τ_Rθ,1) && iy<=size(τ_Rθ,2) && iz<=size(τ_Rθ,3))

τ_Rθ[ix,iy,iz] = (τ_Rθ[ix,iy,iz] + @avxyi_GSDT(ix,iy,iz)*@DRθ(ix,iy,iz))/
(1.0 + @avxyi_GSDT(ix,iy,iz)/@avxyi_η(ix,iy,iz))

end
if (ix<=size(τ_Rϕ,1) && iy<=size(τ_Rϕ,2) && iz<=size(τ_Rϕ,3))

τ_Rϕ[ix,iy,iz] = (τ_Rϕ[ix,iy,iz] + @avxzi_GSDT(ix,iy,iz)*@DRϕ(ix,iy,iz))/
(1.0 + @avxzi_GSDT(ix,iy,iz)/@avxzi_η(ix,iy,iz))

end
if (ix<=size(τ_θϕ,1) && iy<=size(τ_θϕ,2) && iz<=size(τ_θϕ,3))

τ_θϕ[ix,iy,iz] = (τ_θϕ[ix,iy,iz] + @avyzi_GSDT(ix,iy,iz)*@Dθϕ(ix,iy,iz))/
(1.0 + @avyzi_GSDT(ix,iy,iz)/@avyzi_η(ix,iy,iz))

end
return

end

@parallel_indices (ix,iy,iz) function compute_TII!( τII::Data.Array, τ_RR::Data.Array, τ_θθ::Data.Array,
τ_ϕϕ::Data.Array, τ_Rθ::Data.Array, τ_Rϕ::Data.Array,
τ_θϕ::Data.Array)

if (ix<=size(τII,1)-2 && iy<=size(τII,2)-2 && iz<=size(τII,3)-2)
τII[ix+1,iy+1,iz+1] = sqrt(1.0/2.0 * (τ_RR[ix+1,iy+1,iz+1]^2.0 + τ_θθ[ix+1,iy+1,iz+1]^2.0 +

τ_ϕϕ[ix+1,iy+1,iz+1]^2.0) +
((τ_Rθ[ix ,iy ,iz ] + τ_Rθ[ix ,iy+1,iz ] +
τ_Rθ[ix+1,iy ,iz ] + τ_Rθ[ix+1,iy+1,iz ])*0.25)^2.0 +

((τ_Rϕ[ix ,iy ,iz ] + τ_Rϕ[ix ,iy ,iz+1] +
τ_Rϕ[ix+1,iy ,iz ] + τ_Rϕ[ix+1,iy ,iz+1])*0.25)^2.0 +

((τ_θϕ[ix ,iy ,iz ] + τ_θϕ[ix ,iy ,iz+1] +
τ_θϕ[ix ,iy+1,iz ] + τ_θϕ[ix ,iy+1,iz+1])*0.25)^2.0)

end
return

end

@parallel_indices (ix,iy,iz) function power_law!( η::Data.Array , τII::Data.Array , η_ini::Data.Array,
τ_C::Data.Number, n_exp::Data.Number)

if (ix<=size(η,1) && iy<=size(η,2) && iz<=size(η,3))
η[ix,iy,iz] = 2.0/(1.0/η_ini[ix,iy,iz] + 1.0/(η_ini[ix,iy,iz] * (τII[ix,iy,iz]/τ_C)^(1.0-n_exp)))

end
return

end
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macro σRR(ix,iy,iz) esc(:( -P[$ix,$iy,$iz] + τ_RR[$ix,$iy,$iz] )) end
macro σθθ(ix,iy,iz) esc(:( -P[$ix,$iy,$iz] + τ_θθ[$ix,$iy,$iz] )) end
macro σϕϕ(ix,iy,iz) esc(:( -P[$ix,$iy,$iz] + τ_ϕϕ[$ix,$iy,$iz] )) end
macro ρG(ix,iy,iz) esc(:( ρ[$ix,$iy,$iz]*g )) end
macro avxi_R(ix,iy,iz) esc(:( (( R[$ix ,$iy+1,$iz+1] + R[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avyi_R(ix,iy,iz) esc(:( (( R[$ix+1,$iy ,$iz+1] + R[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avzi_R(ix,iy,iz) esc(:( (( R[$ix+1,$iy+1,$iz ] + R[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avxi_θ(ix,iy,iz) esc(:( (( θ[$ix ,$iy+1,$iz+1] + θ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avyi_θ(ix,iy,iz) esc(:( (( θ[$ix+1,$iy ,$iz+1] + θ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avzi_θ(ix,iy,iz) esc(:( (( θ[$ix+1,$iy+1,$iz ] + θ[$ix+1,$iy+1,$iz+1])*0.5) )) end
macro avxi_σRR(ix,iy,iz) esc(:( ((@σRR( ix , iy+1, iz+1) + @σRR( ix+1, iy+1, iz+1))*0.5) )) end
macro avxi_σθθ(ix,iy,iz) esc(:( ((@σθθ( ix , iy+1, iz+1) + @σθθ( ix+1, iy+1, iz+1))*0.5) )) end
macro avyi_σθθ(ix,iy,iz) esc(:( ((@σθθ( ix+1, iy , iz+1) + @σθθ( ix+1, iy+1, iz+1))*0.5) )) end
macro avxi_σϕϕ(ix,iy,iz) esc(:( ((@σϕϕ( ix , iy+1, iz+1) + @σϕϕ( ix+1, iy+1, iz+1))*0.5) )) end
macro avyi_σϕϕ(ix,iy,iz) esc(:( ((@σϕϕ( ix+1, iy , iz+1) + @σϕϕ( ix+1, iy+1, iz+1))*0.5) )) end
macro avxa_τRθ(ix,iy,iz) esc(:( ((τ_Rθ[$ix ,$iy ,$iz ] + τ_Rθ[$ix+1,$iy ,$iz ])*0.5) )) end
macro avya_τRθ(ix,iy,iz) esc(:( ((τ_Rθ[$ix ,$iy ,$iz ] + τ_Rθ[$ix ,$iy+1,$iz ])*0.5) )) end
macro avxa_τRϕ(ix,iy,iz) esc(:( ((τ_Rϕ[$ix ,$iy ,$iz ] + τ_Rϕ[$ix+1,$iy ,$iz ])*0.5) )) end
macro avya_τθϕ(ix,iy,iz) esc(:( ((τ_θϕ[$ix ,$iy ,$iz ] + τ_θϕ[$ix ,$iy+1,$iz ])*0.5) )) end
macro avxi_ρG(ix,iy,iz) esc(:( (( @ρG( ix , iy+1, iz+1) + @ρG( ix+1, iy+1, iz+1))*0.5) )) end
macro dVR(ix,iy,iz) esc(:( (@σRR(ix+1,iy+1,iz+1) - @σRR(ix,iy+1,iz+1))*_dr +

1.0/@avxi_R(ix,iy,iz)*(τ_Rθ[ix ,iy+1,iz ] - τ_Rθ[ix,iy ,iz ])*_dθ +
1.0/@avxi_R(ix,iy,iz)/sin(@avxi_θ(ix,iy,iz))*

(τ_Rϕ[ix ,iy ,iz+1] - τ_Rϕ[ix,iy ,iz ])*_dϕ +
2.0*@avxi_σRR(ix,iy,iz) / @avxi_R(ix,iy,iz) -

(@avxi_σθθ(ix,iy,iz)+@avxi_σϕϕ(ix,iy,iz))/ @avxi_R(ix,iy,iz) +
@avya_τRθ(ix,iy,iz) / @avxi_R(ix,iy,iz)*
cot(@avxi_θ(ix,iy,iz)) - @avxi_ρG(ix,iy,iz) )) end

macro dVθ(ix,iy,iz) esc(:( ( τ_Rθ[ix+1,iy ,iz ] - τ_Rθ[ix ,iy,iz ])*_dr +
1.0/@avyi_R(ix,iy,iz)*( @σθθ(ix+1,iy+1,iz+1) - @σθθ(ix+1,iy,iz+1))*_dθ +
1.0/@avyi_R(ix,iy,iz)/sin(@avyi_θ(ix,iy,iz))*

( τ_θϕ[ix ,iy ,iz+1] - τ_θϕ[ix ,iy,iz ])*_dϕ +
3.0*@avxa_τRθ(ix,iy,iz) /@avyi_R(ix ,iy ,iz ) +

(@avyi_σθθ(ix,iy,iz) - @avyi_σϕϕ(ix,iy,iz))/@avyi_R(ix ,iy ,iz )*
cot(@avyi_θ(ix,iy,iz)) )) end

macro dVϕ(ix,iy,iz) esc(:( (τ_Rϕ[ix+1,iy ,iz ] - τ_Rϕ[ix ,iy ,iz])*_dr +
1.0/@avzi_R(ix,iy,iz)*(τ_θϕ[ix ,iy+1,iz ] - τ_θϕ[ix ,iy ,iz])*_dθ +
1.0/@avzi_R(ix,iy,iz)/sin(@avzi_θ(ix,iy,iz))*

(@σϕϕ(ix+1,iy+1,iz+1) - @σϕϕ(ix+1,iy+1,iz))*_dϕ +
3.0*@avxa_τRϕ(ix,iy,iz)/@avzi_R(ix,iy,iz) +
2.0*@avya_τθϕ(ix,iy,iz)/@avzi_R(ix,iy,iz)*cot(@avzi_θ(ix,iy,iz)) )) end

@parallel_indices (ix,iy,iz) function compute_V!( VR::Data.Array , Vθ::Data.Array , Vϕ::Data.Array ,
DT_R::Data.Array , τ_RR::Data.Array , τ_θθ::Data.Array ,
τ_ϕϕ::Data.Array , τ_Rθ::Data.Array , τ_Rϕ::Data.Array ,
τ_θϕ::Data.Array , P::Data.Array , R::Data.Array ,

θ::Data.Array , ρ::Data.Array , _dr::Data.Number,
_dθ::Data.Number, _dϕ::Data.Number, g::Data.Number)

if (ix<=size(VR,1)-2 && iy<=size(VR,2)-2 && iz<=size(VR,3)-2)
VR[ix+1,iy+1,iz+1] = VR[ix+1,iy+1,iz+1] + @dVR(ix ,iy ,iz )*

((DT_R[ix ,iy+1,iz+1] + DT_R[ix+1,iy+1,iz+1])*0.5)
end
if (ix<=size(Vθ,1)-2 && iy<=size(Vθ,2)-2 && iz<=size(Vθ,3)-2)

Vθ[ix+1,iy+1,iz+1] = Vθ[ix+1,iy+1,iz+1] + @dVθ(ix ,iy ,iz )*
((DT_R[ix+1,iy ,iz+1] + DT_R[ix+1,iy+1,iz+1])*0.5)

end
if (ix<=size(Vϕ,1)-2 && iy<=size(Vϕ,2)-2 && iz<=size(Vϕ,3)-2)

Vϕ[ix+1,iy+1,iz+1] = Vϕ[ix+1,iy+1,iz+1] + @dVϕ(ix ,iy ,iz )*
((DT_R[ix+1,iy+1,iz ] + DT_R[ix+1,iy+1,iz+1])*0.5)

end
return

end
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# CHECK ERROR ===============================================================================================
@parallel_indices (ix,iy,iz) function check_err!(VR_err::Data.Array, Vθ_err::Data.Array, Vϕ_err::Data.Array,

VR::Data.Array, Vθ::Data.Array, Vϕ::Data.Array)
if (ix<=size(VR,1) && iy<=size(VR,2) && iz<=size(VR,3))

VR_err[ix,iy,iz] = VR[ix,iy,iz] - VR_err[ix,iy,iz]
end
if (ix<=size(Vθ,1) && iy<=size(Vθ,2) && iz<=size(Vθ,3))

Vθ_err[ix,iy,iz] = Vθ[ix,iy,iz] - Vθ_err[ix,iy,iz]
end
if (ix<=size(Vϕ,1) && iy<=size(Vϕ,2) && iz<=size(Vϕ,3))

Vϕ_err[ix,iy,iz] = Vϕ[ix,iy,iz] - Vϕ_err[ix,iy,iz]
end
return

end
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# ===========================================================================================================
@views function SPH_3D_Plateau()

num = 1
# physical parameters –––––––––––––––––––––––––––––––––––––––––-
ηm_d = 1e20 # Pa*s , mantle viscosity
ηl_d = 1e20 # Pa*s , lithospheric mantle viscosity
ηc_d = 1e20 # Pa*s , crust viscosity - step 1
ηc_2_d = 5e20 # Pa*s , crust viscosity - step 2
ηc_3_d = 1e21 # Pa*s , crust viscosity - step 3
ηc_4_d = 3e21 # Pa*s , crust viscosity - step 4
ηc_5_d = 6e21 # Pa*s , crust viscosity - step 5
ηc_6_d = 1e22 # Pa*s , crust viscosity - step 6
ηs_d = 5e18 # Pa*s , sticky-air viscosity
ρm_d = 3300.0 # kg/m^3, mantle density
ρl_d = 3300.0 # kg/m^3, lithospheric mantle density
ρc_d = 2800.0 # kg/m^3, crust density
ρs_d = 0.0 # kg/m^3, sticky-air density
hm_d = 360e3 # m , mantle thickness
hl_d = 87e3 # m , lithospheric mantle thickness
hr_d = 28e3 # m , root thickness
hc_d = 35e3 # m , crust thickness
ha_d = 5e3 # m , elevation thickness
hs_d = 50e3 # m , sticky-air thickness
dl_d = 700e3 # m , distance lowland
dt_d = 100e3 # m , distance transition zone
dh_d = 600e3 # m , distance highland
g_d = 9.81 # m/s^2 , gravity acceleration
n_exp = 1.0 # power law exponent - step 1-to-6
n_exp_PL = 3.0 # power law exponent - step 7
n_exp_PL2 = 6.0 # power law exponent - step 8
τC_d = 24e6 # Pa , reference stress (power law)
r_d = 6371e3 # m , radius of the total sphere
# (flat: 6371000e3 / Earth: 6371e3 / Mars: 3396e3 / Moon: 1737e3)
lr_d = hm_d+hl_d+hr_d+hc_d+ha_d+hs_d # m , model dimension in r
lθ_d = (dl_d+dt_d+dh_d)/r_d # rad , model dimension in θ
lϕ_d = (dl_d+dt_d+dh_d)/r_d # rad , model dimension in z
# scaling –––––––––––––––––––––––––––––––––––––––––––––––-
# scales
sl = lr_d # m , scale=hight of model domain
sη = ηm_d # Pas , scale=mantle viscosity
sρ = ρm_d # kg/m^3, scale=mantle density
# non-dimensionalization
lr = lr_d /sl
lθ = lθ_d
lϕ = lϕ_d
ρm = ρm_d /sρ
ρl = ρl_d /sρ
ρc = ρc_d /sρ
ρs = ρs_d /sρ
ηm = ηm_d /sη
ηl = ηl_d /sη
ηc = ηc_d /sη
ηc_2 = ηc_2_d/sη
ηc_3 = ηc_3_d/sη
ηc_4 = ηc_4_d/sη
ηc_5 = ηc_5_d/sη
ηc_6 = ηc_6_d/sη
ηs = ηs_d /sη
r = r_d /sl
hm = hm_d /sl
hl = hl_d /sl
hr = hr_d /sl
hc = hc_d /sl
ha = ha_d /sl
hs = hs_d /sl
dl = dl_d /sl
dt = dt_d /sl
dh = dh_d /sl
g = g_d /sη^2*sρ^2*sl^3
τ_C = τC_d /sη^2*sρ *sl^2
vr = max(ηm,ηl,ηc,ηs)/min(ηm,ηl,ηc,ηs) # viscosity ratio max/min
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# numerics –––––––––––––––––––––––––––––––––––––––––––––––
εnonl = 5e-7 # pseudo-transient loop exit criteria
nt = 8 # number of convergence steps
maxiter = 200e6 # maximum number of pseudo-transient iterations
nout = 1e2 # pseudo-transient error check frequency
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
# preprocessing ––––––––––––––––––––––––––––––––––––––––––––-
dr = lr/(nr-1) # grid spacing in direction r

_dr, _dθ, _dϕ = (nr-1)/lr, (nθ-1)/lθ, (nϕ-1)/lϕ # 1/grid spacing
R_i = range( r - (hc+hr+hl+hm), r + lr-(hc+hr+hl+hm),length=nr) # coordinates of grid points
θ_i = range(pi/2.0 - dl/r ,pi/2.0 + (dt+dh)/r ,length=nθ) # coordinates of grid points
ϕ_i = range( - dl/r , (dt+dh)/r ,length=nϕ) # coordinates of grid points
(R,θ,ϕ) = ([xc for xc = R_i, yc = θ_i, zc = ϕ_i],[yc for xc = R_i, yc = θ_i, zc = ϕ_i],

[zc for xc = R_i, yc = θ_i, zc = ϕ_i]) # grid of coordinates
R = Data.Array(R) # format of arrays, necessary for GPU computation
θ = Data.Array(θ) # format of arrays, necessary for GPU computation
ϕ = Data.Array(ϕ) # format of arrays, necessary for GPU computation
# initialization and boundary conditions ––––––––––––––––––––––––––––––––
print("Starting initialization ... ")
P = @zeros(nr , nθ , nϕ )
VR = @zeros(nr+1, nθ , nϕ )
Vθ = @zeros(nr , nθ+1, nϕ )
Vϕ = @zeros(nr , nθ , nϕ+1)
VR_err = @zeros(nr+1, nθ , nϕ )
Vθ_err = @zeros(nr , nθ+1, nϕ )
Vϕ_err = @zeros(nr , nθ , nϕ+1)
τ_RR = @zeros(nr , nθ , nϕ )
τ_θθ = @zeros(nr , nθ , nϕ )
τ_ϕϕ = @zeros(nr , nθ , nϕ )
τ_Rθ = @zeros(nr-1, nθ-1, nϕ-2)
τ_Rϕ = @zeros(nr-1, nθ-2, nϕ-1)
τ_θϕ = @zeros(nr-2, nθ-1, nϕ-1)
ρ = ρm*@ones(nr , nθ , nϕ )
η = ηm*@ones(nr , nθ , nϕ )
η_ini = @zeros(nr , nθ , nϕ )
ηSM = @zeros(nr , nθ , nϕ )
DT_R = @zeros(nr , nθ , nϕ )
τII = @zeros(nr , nθ , nϕ )
vpdt = dr*CFL # numerical parameter
@parallel initialize_geometry!(ρ, R, θ, ϕ, r, ha, hc, hr, hl, dl, dh, dt, ρl, ρc, ρs)
@parallel initialize_geometry!(η, R, θ, ϕ, r, ha, hc, hr, hl, dl, dh, dt, ηl, ηc, ηs)
η_ini .= η # save initial (linear) viscosity field
println("done.")
# action ––––––––––––––––––––––––––––––––––––––––––––––––
println("Starting calculation (nr=$nr, nθ=$nθ , nϕ=$nϕ)")
err_evo = []; iter_evo = []; t_tic = 0.0; ittot = 0
for it = 1:nt # time loop

if (it == 2) ηc = ηc_2 # convergence step 2
@parallel initialize_geometry!(η, R, θ, ϕ, r, ha, hc, hr, hl, dl, dh, dt, ηl, ηc_2, ηs)
η_ini .= η # save initial (linear) viscosity
vr = max(ηm,ηl,ηc,ηs)/min(ηm,ηl,ηc,ηs) # viscosity ratio max/min
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
vpdt = dr*CFL # numerical parameter

end
if (it == 3) ηc = ηc_3 # convergence step 3

@parallel initialize_geometry!(η, R, θ, ϕ, r, ha, hc, hr, hl, dl, dh, dt, ηl, ηc_3, ηs)
η_ini .= η # save initial (linear) viscosity
vr = max(ηm,ηl,ηc,ηs)/min(ηm,ηl,ηc,ηs) # viscosity ratio max/min
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
vpdt = dr*CFL # numerical parameter

end
if (it == 4) ηc = ηc_4 # convergence step 4

@parallel initialize_geometry!(η, R, θ, ϕ, r, ha, hc, hr, hl, dl, dh, dt, ηl, ηc_4, ηs)
η_ini .= η # save initial (linear) viscosity
vr = max(ηm,ηl,ηc,ηs)/min(ηm,ηl,ηc,ηs) # viscosity ratio max/min
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
vpdt = dr*CFL # numerical parameter

end
if (it == 5) ηc = ηc_5 # convergence step 5

@parallel initialize_geometry!(η, R, θ, ϕ, r, ha, hc, hr, hl, dl, dh, dt, ηl, ηc_5, ηs)
η_ini .= η # save initial (linear) viscosity
vr = max(ηm,ηl,ηc,ηs)/min(ηm,ηl,ηc,ηs) # viscosity ratio max/min
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
vpdt = dr*CFL # numerical parameter

end
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if (it == 6) ηc = ηc_6 # convergence step 6
@parallel initialize_geometry!(η, R, θ, ϕ, r, ha, hc, hr, hl, dl, dh, dt, ηl, ηc_6, ηs)
η_ini .= η # save initial (linear) viscosity
vr = max(ηm,ηl,ηc,ηs)/min(ηm,ηl,ηc,ηs) # viscosity ratio max/min
CFL = 1.0/(2.0 + 4.5*log10(vr)) # Courant-Friedrichs-Lewy condition
vpdt = dr*CFL # numerical parameter

end
if (it == 7) n_exp = n_exp_PL end # convergence step 7
if (it == 8) n_exp = n_exp_PL2 end # convergence step 8
for iter = 1:maxiter # pseudo-transient loop

if (it==1 && iter==11) GC.gc(); t_tic = Base.time() end # chronometer
# SOLVER ––––––––––––––––––––––––––––––––––––––––––––
@parallel equal3!(VR_err, Vθ_err, Vϕ_err, VR, Vθ, Vϕ)
@parallel maxloc!(ηSM, η)
copy_BC!(ηSM)
@parallel compute_P!(P , DT_R, τ_RR, τ_θθ, τ_ϕϕ, τ_Rθ, τ_Rϕ, τ_θϕ, VR, Vθ, Vϕ, R, θ, η, ηSM,

_dr, _dθ , _dϕ , dmp , vpdt, lr)
@parallel compute_TII!(τII, τ_RR, τ_θθ, τ_ϕϕ, τ_Rθ, τ_Rϕ, τ_θϕ)
copy_BC!(τII)
@parallel power_law!(η, τII, η_ini, τ_C, n_exp)
@parallel compute_V!(VR , Vθ , Vϕ , DT_R, τ_RR, τ_θθ, τ_ϕϕ, τ_Rθ, τ_Rϕ, τ_θϕ, P, R, θ, ρ,

_dr, _dθ, _dϕ, g)
@parallel BC_R!(VR, Vθ, Vϕ)
@parallel BC_θ!(VR, Vθ, Vϕ)
@parallel BC_ϕ!(VR, Vθ, Vϕ)
# pseudo-transient loop exit criteria –––––––––––––––––––––––––––––-
if iter % nout == 0

@parallel check_err!(VR_err, Vθ_err, Vϕ_err, VR, Vθ, Vϕ)
err_vr = maximum(abs.(VR_err))./maximum(abs.(VR))
err_vθ = maximum(abs.(Vθ_err))./maximum(abs.(Vθ))
err_vϕ = maximum(abs.(Vϕ_err))./maximum(abs.(Vϕ))
if isnan(err_vϕ)

err = max(err_vr, err_vθ)
else

err = max(err_vr, err_vθ, err_vϕ)
end
# post-processing
push!(err_evo, err)
push!(iter_evo,iter)
if do_viz display(scatter(iter_evo, err_evo, xaxis=:log,yaxis=:log,legend=false )) end
@printf("it %d, iter %d, err=%1.3e \n", it, iter, err)
# pseudo-transient loop exit criteria
if (err<εnonl && iter>20) iter_end = iter; break; end

end
ittot = iter

end
# SAVING ––––––––––––––––––––––––––––––––––––––––––––––
if do_save

!ispath("./output_$(it)") && mkdir("./output_$(it)")
Save_phys(num , it , sl, sη , sρ, ηm , ηl, ηc, ηs, ρm, ρl, ρc, ρs, hm, hl, hr, hc, ha,

n_exp, τ_C, vr, g*1e15, r , dmp)
Save_infos(num, it, lr, lθ, lϕ, nr, nθ, nϕ, εnonl*1e7, 0.0)
SaveArray("R" , R , it)
SaveArray("TH" , θ , it)
SaveArray("PH" , ϕ , it)
SaveArray("ETAS" , η , it)
SaveArray("RHO" , ρ , it)
SaveArray("P" , P , it)
SaveArray("VR" , VR , it)
SaveArray("VTH" , Vθ , it)
SaveArray("VPH" , Vϕ , it)
SaveArray("TAU_RR" , τ_RR , it)
SaveArray("TAU_THTH", τ_θθ , it)
SaveArray("TAU_PHPH", τ_ϕϕ , it)
SaveArray("TAU_RTH" , τ_Rθ , it)
SaveArray("TAU_RPH" , τ_Rϕ , it)
SaveArray("TAU_THPH", τ_θϕ , it)
SaveArray("TII" , τII , it)

end
end
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# Performance –––––––––––––––––––––––––––––––––––––––––––––-
wtime = Base.time() - t_tic
# Effective main memory access per iteration [GB]
A_eff = (4*2 + 6*2 + 2 + 2*2)/1e9*nr*nθ*nϕ*sizeof(Data.Number)
# (Lower bound of required memory access: Te has to be read and written: 2 whole-array memaccess;
# Ci has to be read: : 1 whole-array memaccess)
wtime_it = wtime/(ittot-10) # Execution time per iteration [s]
T_eff = A_eff/wtime_it # Effective memory throughput [GB/s]
@printf("Total iters = %d (%d steps), time = %1.3e sec (@ T_eff = %1.2f GB/s) \n",

ittot, nt, wtime, round(T_eff, sigdigits=3))
if do_save_p

!ispath("./out_perf") && mkdir("./out_perf")
open("./out_perf/out_SPH_3D_PERF.txt","a") do io

println(io, "$(nr) $(nθ) $(nϕ) $(dmp) $(ittot) $(wtime) $(A_eff) $(wtime_it) $(T_eff)")
end

end
# SAVING ––––––––––––––––––––––––––––––––––––––––––––––––
if do_save

!ispath("./output_999") && mkdir("./output_999")
err_evo = Data.Array(err_evo)
iter_evo = Data.Array(iter_evo)
Save_phys(num , 999, sl, sη , sρ, ηm , ηl, ηc, ηs, ρm, ρl, ρc, ρs, hm, hl, hr, hc, ha,

n_exp, τ_C, vr, g*1e15, r , dmp)
Save_infos(num, 999, lr, lθ, lϕ, nr, nθ, nϕ, εnonl*1e7, wtime)
SaveArray("err_evo" , err_evo , 999)
SaveArray("iter_evo", iter_evo, 999)
SaveArray("R" , R , 999)
SaveArray("TH" , θ , 999)
SaveArray("PH" , ϕ , 999)
SaveArray("ETAS" , η , 999)
SaveArray("RHO" , ρ , 999)
SaveArray("P" , P , 999)
SaveArray("VR" , VR , 999)
SaveArray("VTH" , Vθ , 999)
SaveArray("VPH" , Vϕ , 999)
SaveArray("TAU_RR" , τ_RR , 999)
SaveArray("TAU_THTH", τ_θθ , 999)
SaveArray("TAU_PHPH", τ_ϕϕ , 999)
SaveArray("TAU_RTH" , τ_Rθ , 999)
SaveArray("TAU_RPH" , τ_Rϕ , 999)
SaveArray("TAU_THPH", τ_θϕ , 999)
SaveArray("TII" , τII , 999)

end
return

end

@time SPH_3D_Plateau()
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