
 JANUARY 2024 CANCER DISCOVERY | OF1 

REVIEW

Cancer Evolution: A Multifaceted Affair 
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ABSTRACT Cancer cells adapt and survive through the acquisition and selection of molecular modi-
fications. This process defines cancer evolution. Building on a theoretical framework 

based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution. 
However, cancer hallmarks also emerge via heritable nongenetic mechanisms, including epigenetic and chro-
matin topological changes, and interactions between tumor cells and the tumor microenvironment. Recent 
findings on tumor evolutionary mechanisms draw a multifaceted picture where heterogeneous forces 
interact and influence each other while shaping tumor progression. A comprehensive characterization of the 
cancer evolutionary toolkit is required to improve personalized medicine and biomarker discovery.

Significance: Tumor evolution is fueled by multiple enabling mechanisms. Importantly, genetic instability, 
epigenetic reprogramming, and interactions with the tumor microenvironment are neither alternative 
nor independent evolutionary mechanisms. As demonstrated by findings highlighted in this perspective, 
experimental and theoretical approaches must account for multiple evolutionary mechanisms and their 
interactions to ultimately understand, predict, and steer tumor evolution.
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INTRODUCTION
Tumorigenesis and malignant progression embody a Dar-

winian process of dynamic evolution, involving selective pres-
sures encountered by proliferatively expansive “outlaw cells” 

facing barriers and limitations intended to preserve tissue 
homeostasis and prevent the emergence of inappropriate phe-
notypes. The stepwise evolution that ultimately circumvents 
these protective mechanisms is apparent in the epidemiology 
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and histopathology characteristics of human cancer, and in 
the realization that distinctive capabilities dubbed the hall-
marks of cancer (1, 2) underlay the process of tumor pro-
gression. The appearance of such hallmarks can be seen as 
the result of an evolutionary process: Tumor phenotypes 
that can be considered as “enabling characteristics,” such as 
genomic instability or epigenetic reprogramming, facilitate 
tumor cell diversification and the Darwinian selection of the 
set of hallmark traits instrumental for tumorigenesis and 
malignant progression. At the DNA level, genome instability 
leads to driver (and passenger) mutations, here intended as 
changes in the DNA sequence, that convey functional capa-
bilities that are fundamental to the disease. Beyond mutations 
altering the activities of classic oncogenes and tumor sup-
pressors, mutations in chromatin remodeling factors mecha-
nistically contribute to tumor evolution by broadly affecting 
gene expression, contributing to the variation among which 
hallmark-enabling changes can be phenotypically selected 
during tumor evolution. Even in the absence of mutated 
chromatin remodeling factors, nonmutational epigenetic 
reprogramming can diversify the cancer cell populations (3). 
We should note that whereas epigenetic alterations broadly 
encompass any heritable molecular alteration that leads to 
a phenotypic change without modifying the DNA sequence, 
in this review, the term will largely refer to chromatin-based 
changes including modifications of DNA methylation, histone 
posttranslational modifications, and chromatin accessibility, 
which are directly associated with altered transcriptional pro-
grams. Cellular plasticity and epigenetic reprogramming guide 
the ordered phenotypical events underlying embryogenesis, 

organogenesis, mammalian development, and tissue homeo-
stasis. As such, these processes are expected to play a role in 
cancer, by promoting lineage plasticity and adaptive responses 
to external stimuli. Nongenetic triggers of cellular plasticity 
can often be found in cell–cell interactions, in particular, those 
among cancer cells and the tumor microenvironment (TME). 
Cancer evolution is indeed also enabled by interactions with 
surrounding and infiltrating stromal and immune cells, which 
themselves change and evolve in response to tumor–TME 
interactions. Genetic mutations, epigenetic reprogramming, 
and cell interactions within the TME are general promoters 
of change, although arguably not the only ones that enable 
tumor evolution (Fig.  1). Herein we review recent findings 
illuminating the role of these enabling characteristics in tumo-
rigenesis, malignant progression, and adaptive resistance to 
therapy, and the mechanisms through which alterations con-
fer selective advantages to the tumors they create.

Mutagenesis and Genetic Cancer Drivers
Dividing cells accumulate mutations throughout a lifetime. 

Whereas most somatic mutations have neutral phenotypic 
effects, occasionally, mutations confer a selective advantage 
to the cell, potentially leading to clonal expansion of the 
mutated lineage and, eventually, mutated cells may develop 
into a tumor. The interplay between mutagenesis and selec-
tion has allowed us to model cancer evolution according to 
neo-Darwinian principles of species evolution.

Mutations emerge and are distributed across the genome 
as the result of DNA damage and inaccuracies in replication 
and repair processes. DNA lesions induced by damaging 

Figure 1. The many faces of cancer 
evolution. Enabling characteristics such 
as genetic instability, epigenetic repro-
gramming, and interactions between 
tumor cells and the TME enable cancer 
evolutionary mechanisms such as the 
emergence and selection of genetic 
variants, cancer cell plasticity, and re-
education of the TME.
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agents or defective endogenous processes are for the most 
part efficiently removed or repaired. However, occasionally 
damage leads to mutations, such as single-base substitu-
tions (SBS). SBS may not be resolved within a single-cell 
cycle. Consequently, DNA lesions in individual DNA strands 
can segregate unrepaired into daughter cells for multiple 
cellular generations, resulting in chromosome-scale strand 
asymmetry, termed lesion segregation (ref.  4; Fig.  2A). This 
novel mechanism has recently been shown to be a feature of 
DNA-damaging agents and shed new light into the mecha-
nisms of action of known mutagens (4–6), including ultra-
violet radiation and chemotherapy agents, and the etiology 
of multiple tumor types. The propagation of strand-specific 
lesions through multiple cell generations provides an engine 
for genetic diversity. Pervasive lesions can act as a template 
in successive rounds of replication, meaning that different 
incorrectly (or correctly) paired nucleotides can be incorpo-
rated opposite an individual lesion. This results in the obser-
vation of multiple alleles at the same position in the resultant 
cell population. For example, diethylnitrosamine (DEN) is 
known to produce the long-lived thymine adduct O4-ethyl-
deoxythymidine on the sugar-phosphate backbone of DNA. 
These small mutagenic ethyl-adducts most commonly result 
in T>A SBS, but T>C and T>G SBS are also observed. This 
phenomenon is referred to as multiallelic variation (ref.  4; 
Fig.  2A). Multiallelic sites, which are often and mistakenly 
filtered out during variant calling, provide the opportunity to 
disentangle DNA damage and DNA repair mechanisms, and 
reveal, for example, that DNA substitution patterns across 
the genome are largely shaped by the influence of DNA acces-
sibility and repair efficiency, rather than gradients of DNA 
damage (bioRxiv: 2022.06.10.495644). From an evolutionary 
perspective, multiallelic sites violate the infinite site assump-
tion, a commonly held assumption in genetics and evolution-
ary models that forbids recurrent mutations at the same site 
(7), and, thus, require to rethink of traditional cancer evolu-
tionary models that rely on such assumption.

DNA damage and, therefore, mutagenesis are fostered by 
endogenous mutational processes, for example, associated 
with aging and faulty DNA-repair mechanisms, and by exog-
enous mutagens, such as UV radiation, tobacco consump-
tion, or dietary habits. In cancer cells, the resulting mutations 
accumulate over time, sometimes gradually, and others in a 
more punctuated or even catastrophic manner (8, 9), espe-
cially in stress responses (10, 11). Mutagens often act on spe-
cific nucleotide contexts, thus generating specific mutational 
signatures. It is therefore possible to infer the causes of DNA 
mutations from mutational signatures, which has become a 
powerful tool in the investigation of human cancers. Somatic 
mutations can also be used as a “barcode” to trace the devel-
opmental history of a cell and, in the case of cancer, to trace 
cancer evolution to its origins (ref. 8; Fig. 2B). By extending 
this search from cancer cells to surrounding normal tissues, 
one may be able to trace the earliest origin of cancers and its 
relationship to human development. This approach has been 
applied to some childhood cancers, revealing, for example, 
that the commonest childhood kidney cancer, Wilms tumor, 
often originates in clonal expansions residing in normal 
kidney tissue (12). This discovery, replicated in other tumor 
types (13–16), indicates that there may be a window of oppor-
tunity for preventing tumor formation, by interfering with 
the process that connects the earliest clonal expansion with 
malignant transformation. Ultimately, to faithfully recapitu-
late the series of multistep clonal expansions that led to the 
tumor and intervene in this dynamic process, it is critical to 
understand what triggered a clonal expansion, i.e., determine 
which mutations provided a selective advantage (Fig. 2C).

Mutations providing a selective advantage to the tumor 
cell are typically referred to as “driver mutations” or “cancer 
drivers.” Cancer driver mutations not only alter the function 
of the corresponding protein, but they do so in a way that 
promotes cancer-enabling features such as tumor initiation, 
progression, invasion, or resistance to therapy. Whereas the 
identification of cancer drivers requires the possibility of 
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Figure 2. Emergence and selection of somatic mutations. A, The propagation of DNA lesions that are not resolved into mutations within one cell cycle 
leads to lesion segregation and multiallelic variation. B, Initiating genetic mutations observed in cancer cells can be found in normal cells at the tumor site 
allowing us to trace the origin of the tumor. C, Genetic instability during tumor progression leads to the acquisition and selection of tumor-advantageous 
variants. Variant selection can be studied by modeling the recurrence of somatic mutations across large tumor cohorts, developing machine learning 
approaches to predict variant oncogenicity, and investigating whether the selection of specific variants depends on either preexisting alterations or the 
cell of origin of the tumor.
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monitoring the dynamics of an evolutionary process, the 
initial discoveries of driver mutations and cancer genes relied 
on targeted functional approaches. In the past two decades, 
significant advances in genomics technologies have allowed 
us to unbiasedly assess the mutational status of the entire 
genome of thousands of tumors, and with that came the 
challenge of disentangling between driver mutations and 
mutations that do not contribute to tumor phenotypes, 
so-called neutral or “passengers.” When analyzing mutation 
occurrences across multiple tumors, the task is to determine 
whether the mutational pattern observed in a gene or DNA 
region can be explained by neutral mutagenesis; hence, the 
mutation would be classified as passenger, or if, by con-
trast, it constitutes a signal of positive selection, as would 
be expected by a driver mutation (17). Approaches based 
on this principle largely relied on estimating the expected 
frequency of a given mutation or mutated gene under the 
hypothesis of neutral evolution, to then statistically assess 
when observed frequencies exceed expectation (Fig.  2C). A 
critical challenge for these approaches is the correct estima-
tion of the mutational probability of each nucleotide under 
neutral mutagenesis (17–19). As already mentioned, DNA 
accessibility and repair efficiency have been shown to be key 
determinants of local mutation rates in our genome (refs. 20, 
21; bioRxiv: 2022.09.14.507952), but additional studies are 
required to improve our models of the background mutation 
rate under neutrality, especially in the noncoding genome 
(22). That notwithstanding, a general approach, even without 
using prior knowledge, can effectively rediscover well-known 
cancer genes, and it has been adopted to identify new cancer 
genes in several large-scale cancer genomics studies, eventu-
ally leading to the generation of multiple catalogs of cancer 
drivers (17, 22, 23). Recently, with increasing data availability, 
new machine-learning approaches have emerged to predict 
the pathogenicity of individual mutations independently of 
their actual occurrence (refs. 24, 25; Fig.  2C). Overall, these 
approaches have shown that only a minor fraction of the 
mutations observed in a tumor can be classified as driv-
ers, typically less than 10 per tumor (18). However, these 
estimates should be taken with caution, as the phenotypic 
consequences of a mutation are unlikely to be binary (driver 
or passenger), but they rather describe a gradient, and they 
may be transient and/or dependent on the emergence of 
specific conditions.

Even with a well-annotated map of mutational processes 
and cancer drivers, the route to tumor initiation and pro-
gression remains sometimes elusive. Indeed, the discovery of 
ubiquitous clonal selection of cancer drivers in normal tis-
sue mosaicism (26–28) confirmed that human tumorigenesis 
requires specific combinations of genetic and, possibly, non-
genetic alterations (29). Analyses of large tumor cohorts have 
shown that these combinations are often nonrandom (30, 
31): certain sets of mutations are more frequently observed 
in the same tumor than expected by chance (cooccurring 
mutations), while others are rarely or never found together 
(mutually exclusive mutations). Nonrandom comutation 
patterns could help draw evolutionary trajectories, from the 
emergence and accumulation of mutations in normal cells 
to tumor initiation, progression, and metastatic invasion 
(Fig.  2C). Intriguingly, comutation patterns only emerged 

among driver mutations, whereas no significant cooccurrence 
or mutual exclusivity was observed among synonymous SBS 
or mutations of unknown significance (32). These results 
indicated that comutation patterns provide evidence of selec-
tion. Importantly, such evidence is independent of individual 
mutation frequencies and, thus, could be used as orthogonal 
features in the search for new cancer drivers.

Overall, mutagenesis and selection are not only key mecha-
nisms of cancer evolution but have become critical ingredients 
in modern cancer therapy. The discovery of driver mutations 
has fueled the development of targeted treatments to selec-
tively kill only cells harboring specific oncogenic mutations 
and, as a consequence, introduced the need for accurate DNA 
mutation sequencing in the clinic. In this context, unrave-
ling tumor evolutionary dynamics will be critical to predict 
treatment response based on the combination of mutations 
observed in a patient, and anticipate and monitor the emer-
gence of new mutations leading to treatment resistance.

Lineage Identity: Hardwired Constrains on 
Tumor Evolution

Somatic mutations in most cancer-driver genes are detected 
only in a small fraction of tumor types (23), and inherited 
genetic cancer predisposition variants typically affect only a 
limited set of tissues (33). Hence, cell identity, defined by tis-
sue-specific transcriptional programs, has a profound impact 
on the phenotypic output of oncogenic mutations (Fig. 2C). 
For example, the transcription factor SOX10 specifies a devel-
opmental stage in the neural crest–melanoblast–melanocyte 
trajectory in which BRAF, an oncogene mutated in 50% of 
cutaneous melanomas, is capable of cellular transformation 
and tumor initiation (34). Interestingly, acral melanomas, 
which develop on the palms and feet, depend on a different 
set of lineage transcription factors and mutations (35). Line-
age factors can thus establish a permissive cellular state that 
facilitates oncogenesis by some genetically activated pathways 
but not others. In line with this, the renal lineage factor PAX8 
is required for oncogenic signaling by common kidney cancer-
associated genetic alterations (36). Inactivation of the VHL 
tumor suppressor is the initiating genetic event in 90% of clear 
cell renal cell carcinomas (ccRCC). VHL loss leads to HIF2A 
stabilization, which supports tumor development and meta-
static progression through tissue-specific expression of onco-
genic drivers, such as the cell-cycle regulator CCND1 (37, 38). 
The ability of the VHL–HIF2A pathway to regulate CCND1 
mRNA expression is dependent on PAX8, suggesting a pos-
sible explanation for the tissue-restricted tumor-suppressive 
role of VHL. A PAX8-dependent lineage factor program is also 
required for MYC expression from ccRCC metastasis-associ-
ated genetic amplicons (36). This functional convergence of 
lineage factors and oncogenic programs in the regulation of 
universally important cancer driver genes such as CCND1 and 
MYC may open opportunities for inhibiting canonical onco-
genic programs in a tissue- and cancer type–specific manner.

Indeed, cancer cells are often exquisitely sensitive to the 
inhibition of lineage transcription factors (39). Although tran-
scription factors have long been viewed as “undruggable,” 
their gene-regulatory activities typically depend on specific 
cofactor interactions that can be exploited for drug develop-
ment (40, 41). In addition, pathways controlling the dynamic 
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transcriptional, posttranscriptional, and posttranslational 
regulation of transcription factors provide alternative entry 
points for pharmacologic interference. For example, the tran-
scription of MYC is exquisitely sensitive to BET bromodo-
main inhibition in various hematopoietic malignancies (42, 
43), while PROTACs and molecular glues enable the rapid 
elimination of specific transcription factors through protea-
somal degradation (44, 45). To systematically explore such 
alternative molecular targets, a more detailed understanding 
of the pathways that control the expression and turnover of 
specific transcription factors is highly desirable. Time-resolved 
FACS-based CRISPR/Cas9 mutagenesis screens have recently 
been used to systematically characterize regulators of the 
essential transcription factor MYC in diverse cellular contexts 
(46). Besides context-specific regulators of MYC, these screens 
uncovered a conserved pathway that controls the nuclear 
import of proteasomes, and thereby the proteasomal turnover 
of transcription factors and other nuclear proteins. Extend-
ing this screening approach to other oncogenic transcription 
factors will further help to distinguish broadly relevant from 
factor- and context-specific regulators and cofactors.

Somatic Mutations Through the Lens of Chromatin 
3D Structures

The development of chromosome conformation capture 
technologies has allowed us to study cancer somatic point 
mutations and structural variants in a new light, by exploring 
their effect on the three-dimensional (3D) structure of the 
chromatin in the nucleus as well as the impact of 3D organi-
zation on the functional consequences of the mutation. 
Chromosome conformation capture technologies determine 
the frequency with which two genomic loci are found in close 
3D proximity, also referred to as contact or interaction fre-
quency. Using high-throughput chromosome conformation 
capture (Hi-C), it is possible to derive genome-wide maps of 
contact frequencies to estimate features of chromatin folding 

and segregation (47). These approaches have revealed that, 
during the interphase, chromatin is organized into a hierar-
chy of structural elements, ranging from a few kilobase-long 
loops to submegabase topologically associating domains 
(TAD) and compartment domains, which, at a broader scale, 
cluster into a handful of compartments, each characterized 
by specific epigenetic features (48–51).

The potential for chromatin 3D structures to explain or 
even determine the oncogenic capacity of genetic altera-
tions is probably most evident in TADs. TADs represent 
genomic regions that display increased interaction frequen-
cies and where loops between cis-regulatory elements (CRE) 
and their target genes are usually contained (52). As such, 
TADs facilitate proper CRE–promoter and promoter–pro-
moter interactions, and insulation between adjacent TADs 
reduces improper or disease-promoting interactions. In their 
role of scaffolds for regulatory interactions, TADs shed new 
light on the impact of hotspot mutations of the PRC2 cata-
lytic unit EZH2, which generally lead to increased histone-3 
lysine 27 trimethylation (H3K27me3) genome wide. Inter-
estingly, the spreading of H3K27me3 in tumors with EZH2 
gain-of-function mutations was found frequently confined 
within the boundaries of selected TADs, resulting in the 
downregulation of all genes in the domain. When multi-
ple tumor suppressors were contained in the same domain, 
this downregulation synergistically drove tumorigenesis (53). 
Structural variants affecting TAD boundaries can induce 
novel interactions between CREs and genes that were previ-
ously isolated (refs. 54, 55; Fig.  3A). Such aberrant interac-
tions have been associated with developmental disorders 
(56, 57) and cancer (58–61). Additionally, alteration of TAD 
boundaries may occur by preventing or reducing the binding 
of the chromatin architectural protein CTCF, which is essen-
tial for TAD formation and maintenance (62, 63). Indeed, 
high-density CTCF binding at TAD boundaries ensures insu-
lations between adjacent TADs. DNA hypermethylation of 

Figure 3. From somatic mutations to epigenetic reprogramming. A, Somatic mutations targeting CTCF binding sites can impair CTCF binding and insu-
lation between chromatin loops or topologically associating domains (TAD). Loss of insulation leads to aberrant interactions between gene promoters 
and cis-regulatory elements (CRE). B, Somatic mutations of histone modifiers may lead to altered histone modification (e.g., methylation and acetylation). 
Aberrant histone marks have been associated with missegregated chromatin compartments and compartment repositioning, as well as the emergence of 
a state of “phenotypic inertia,” which allows tumor cells to tolerate oncogenic stress and ultimately adapt.
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CTCF binding sites in IDH-mutant gliomas or SDH-mutant 
gastrointestinal stromal tumors reduced protein binding and 
TAD insulation leading to spurious activation of oncogene 
expression (64, 65). Similarly, lower levels of CTCF in child-
hood acute lymphoblastic leukemia (ALL) led to reduced 
TAD insulation and consequent gene misregulation (66), 
consistent with CTCF being a quantitative modulator of gene 
activation across TADs (67).

More recently, CTCF levels were shown to be significantly 
reduced in cells undergoing whole-genome doubling (WGD), 
causing loss of insulation at TAD boundaries (68). Interest-
ingly, CTCF downregulation was a result of a more general 
inability of upscale protein synthesis in WGD cells (69). 
Indeed, beyond CTCF, WGD cells exhibited reduced histone-3 
lysine 9 trimethylation (H3K9me3), a marker of heterochro-
matin and a driver of chromatin compartmentalization. Lower 
H3K9me3 led to reduced segregation of chromatin compart-
ments in WGD cells and longitudinal analyses of tumors 
originating from WGD cells showed that regions losing 
compartment segregation ultimately were ultimately found 
associated with a different compartment, having altered their 
overall spectrum of chromatin contacts, and exhibiting new 
histone posttranslational modifications and CRE–promoter 
loops associated with oncogene activation (68). Compart-
ment repositioning of genomic regions has been more fre-
quently observed across cell types and cell states than changes 
in TAD boundaries (70, 71) and has been reported in cancer 
in association with altered histone modifications (refs. 72, 
73; Fig.  3B). Given the high prevalence of cancer mutations 
targeting chromatin remodeling factors (74), it will be inter-
esting to explore the dynamic interplay between mutated 
histone modifiers, epigenetic changes, and subcompartment 
repositioning, and whether it can further explain the selective 
advantage provided by these mutations. Overall, these results 
suggest that modifications of chromatin 3D features are not 
simple bystanders or consequences of epigenetic alterations 
but could themselves initiate epigenetic and transcriptional 
reprogramming. Longitudinal analyses tracing chromatin 
structural changes in single cells will shed new light on the 
role of chromatin plasticity in tumor evolution.

Beyond their effect on chromatin 3D structures, recurrent 
mutations of chromatin remodeling factors induce genome-
wide epigenetic changes that could favor cancer cell plasticity. 
This hypothesis was recently functionally tested via large-scale 
CRISPR-based mutagenesis (75). Inactivation of over 100 epige-
netic regulators of diverse functions converged into a common 
phenotype characterized by increased tolerance to environ-
mental stress, which is selected during tumor growth. In this 
particular case, disruption of epigenetic control does not appear 
to enhance the phenotypic plasticity of cancer cells but rather 
prevents cells from mounting an efficient stress response at the 
transcriptional level. The resulting cell state was thus character-
ized by phenotypic inertia (ref. 75; Fig. 3B), defined as the inabil-
ity of the cell to halt proliferation and activate an apoptotic 
program in response to unfavorable environments.

Overall, cell epigenetic features, such as DNA methylation 
and histone posttranslational modifications, characterize 
physiologic states during normal cell differentiation and can 
be co-opted to promote malignant cell transformation (76). 
Interestingly, the oncogenic capacity of somatic mutations 

has been shown to depend on such cell states, as exemplified 
by differential oncogenic competence of melanocytes, neural 
crest, and melanoblasts in melanoma development (34, 77). 
Whether driven by genetic variants or nongenetic mecha-
nisms, the emergence of heterogeneous phenotypes in a cell 
population enables tumor adaptation and evolution.

From Genetic Mutations to Cancer Cell States
Intratumor heterogeneity and its relationship with cancer 

evolution have been often investigated in terms of genetic 
mutations, which can be ubiquitously observed across all 
cancer cells or present only on a subset of them, determin-
ing distinct subpopulations. In recent years, the notion of 
heterogeneous “cancer cell states” in otherwise genetically 
identical cells has gained traction. Evolving cancer cell 
states characterize the progression of several tumor types 
and can emerge independently of specific genetic muta-
tions through cancer cell plasticity. Cell plasticity often 
ensues in response to epigenetic and transcriptional repro-
gramming associated with the progression of the disease, 
tumor–TME interactions, micro-RNA (miRNA) regulation, 
and treatment administration (Fig. 4A). In contrast to lin-
eage-defined cell states, which characterize developmental 
stages of normal cell lineages, cancer cell states have been 
associated with phenotypic properties of cancer cells, which 
can be transient, induced, and reversible (78). Investigating 
functional diversity within transformed cells is a complex 
and possibly unfeasible endeavor. Therefore, the existence 
of heterogeneous states is routinely inferred from the tran-
scriptional and/or epigenetic diversity of individual cells 
within a tumor, with different “states” potentially inte-
grating static (genetic) and dynamic and reversible (epige-
netic and transcriptional) determinants (79–81). Cancer cell 
states have been largely inferred algorithmically from single-
cell RNA-sequencing (scRNA-seq) data sets by describing 
mRNA expression of ∼20,000 genes through a much smaller 
number of nonredundant transcriptional programs (82, 
83). Such transcriptional programs were either themselves 
defined as cell states, or clustered into cell states, consistent 
with the notion that cell phenotypes are the result of concur-
rent activation of different biological processes. The notion 
that cancer phenotypes are encoded by combinations of 
genetic and nongenetic modifications motivated the further 
deve lopment of new single-cell multiomics technologies 
that integrate genotypes, transcriptomes, and epigenetic 
profiling (refs. 84–87; Fig.  4A). The integration of tran-
scriptional activity and chromatin states and accessibility 
in single cells provide a more comprehensive description of 
cell states allowing to infer a fingerprint for transcription 
factor activity and cell state transitions (88–90). Joint 
high-throughput capture of genotypes and transcriptomes 
revealed a complex interplay between somatic mutations 
and cell states (91) with somatic mutations associated with 
cell progenitor-type specific aberrations, years before malig-
nant transformation (92, 93). Stochastic, heritable DNA 
methylation changes can also be leveraged as native lineage 
barcoding marks for high-resolution phylogenetic recon-
struction of single cells in primary human cancer samples 
(86). Excitingly, the ability to obtain high-resolution evolu-
tionary trees together with the concomitant transcriptional 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-23-0530/3388224/cd-23-0530.pdf by U

niversity of Lausanne user on 12 D
ecem

ber 2023



Cancer Evolution: A Multifaceted Affair REVIEW

 JANUARY 2024 CANCER DISCOVERY | OF7 

annotation of leaves allowed the direct measurement in 
human tissues of the heritability of cell states (94).

Cancer Cell States in Tumor Progression 
and Treatment

The existence of cancer cell states has many implications: 
(i) genetically identical cells may be phenotypically heteroge-
neous and thus implement different functions to foster dis-
ease progression and treatment resistance; (ii) treatment and 
microenvironmental conditions are likely to impact cancer 
cell properties and, thus, drive state transitions; (iii) opportu-
nities exist to reprogram cells to a therapy-sensitive state. To 
test these hypotheses, there is a need to develop models that 
recapitulate not only genetic diversity in the tumor but also 
the presence and transitions of dynamic states.

Examples of cell plasticity transitions have been recently 
reported in several tumor types. In this context, micro-RNA 
regulation of gene expression has been shown to determine 
extensive transcriptional reprogramming in the develop-
ment and progression of pancreatic neuroendocrine tumors 
(PNET; Fig.  4A). The RIP-Tag mouse models undergo ste-
reotypic development of PNET through distinctive histologic 
stages, arising from the insulin-producing beta cells of the 
pancreatic islets in response to the targeted expression of 
the SV40 large T antigen (Tag) oncoprotein, which abro-
gates the functions of the RB and TP53 tumor suppressor 
protein (95). Leveraging the possibility to physically isolate 
and individually molecularly profile premalignant lesions 
as well as solid tumors and liver metastases, the micro-RNA 
transcriptome revealed that sets of microRNAs were up- and 
downregulated during each of the stepwise transitions in this 
tumorigenesis pathway (96). Additionally, pancreatic tumors 
could be subclassified by micro-RNA (miR) signatures into 
comparatively benign (noninvasive) islets tumors (IT) and 
invasive and metastasis-like tumors (MLP). Focusing on the 
miR signature that defines malignant progression from IT to 

MLP, functional perturbation has revealed that many of the 
miRNAs in the signature of malignant progression from IT 
to MLP enable hallmark capabilities: upregulation of miR137 
stimulates invasive growth (97), whereas the miR23b cluster 
enables metastatic seeding, in part by suppressing expres-
sion of the ALK7 receptor (98). Additionally, one facet of 
cellular plasticity—dedifferentiation—has been exceptionally 
revealed to be a distinctive step, separable from increases in 
aberrant proliferation, in the course of malignant progres-
sion. Upregulation of miR181cd, a component of the MLP 
signature, instructs dedifferentiation along the pathway by 
which endocrine progenitor cells normally differentiate into 
mature insulin-producing beta cells, by altering the expres-
sion of developmental transcription factors that orchestrate a 
progenitor-like phenotype in MLP tumors (99). Although the 
mechanisms of this dynamic regulation of dozens of microR-
NAs during tumorigenesis and malignant progression remain 
to be elucidated, there is no evidence to ascribe its basis to 
mutational evolution of the cancer cell genome, which rather 
most logically involves nonmutational epigenetic reprogram-
ming, fertile ground for continuing investigation.

Similarly to PNET, lung adenocarcinoma progression also 
involves a transition through histologically defined stages, 
with the lepidic and solid histology associated with the most 
indolent and most aggressive manifestations of the disease, 
respectively (100). Histopathology-guided multiregion sam-
pling of lung adenocarcinoma has shown that histologically 
distinct regions are predominantly characterized by epigenetic 
and transcriptional differences (101). These differences trace 
a transition from a lepidic-like cell state, characterized by 
retained expression of alveolar-type 2 (AT2) lineage markers 
and transcription factors (NKX2-1 and FOXA2), toward a less 
differentiated state that no longer expresses AT2 markers and 
activating proliferation and stemness factors such as FOXM1 
and MYBL2 (Fig.  4B). When enhanced proliferation is not 
the major selective force, tumors may evolve in unexpected 
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Figure 4. Cancer cell plasticity and cancer cell states. A, Histone modifications, miRNA, and interactions with the TME induce epigenetic and tran-
scriptional reprogramming that alters cancer cell identity. This process defines cancer cell plasticity transitions among phenotypically heterogeneous 
cell states that can be inferred from single-cell molecular profiles. B, Examples of such cell state transitions have been reported in skin melanoma, where 
mesenchymal and stem-like states have been associated with metastatic and tumorigenic capacity, respectively, in lung adenocarcinoma, where disease 
progression was associated with morphologic differences and transition from an alveolar-type 2-like state (AT2-like) to a dedifferentiated and prolifera-
tive cell state; and in breast cancer, where resistance to therapy was shown associated with cell dormancy and random awakening mediated by epigenetic 
reprogramming.
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manners. This is often the case when therapeutic intervention 
leads to the formation of persister cells, a cell state character-
ized by treatment tolerance and transient inability to prolifer-
ate. In a hormone-dependent breast cancer model, dormant 
persister cells are directly induced by cytostatic treatment 
(102). A long-term evolutionary experiment has now revealed 
that the dormant persister pool is stochastically generated 
(bioRxiv: 2021.04.21.440779, 2022.02.15.480537) via the accu-
mulation of heterochromatin modifications. The epigenome 
of dormant cells is then reversed in awakening clones, leading 
to tumor relapse and overt drug resistance (Fig. 4B). In skin 
melanoma, drug-tolerant persister cells harboring a neural 
crest stem cell phenotype can emerge through drug-induced 
reprogramming (103), rather than selection of a preexisting 
cell population, and that this population promotes emergence 
of drug resistance through a nongenetic mechanism. These 
findings further support epigenetic mechanisms as major 
drivers of tumor evolution in these tumor types (104–106).

Cell states, just like mutations, are potential therapeutic 
targets (79) and may become the main targets of tumors with 
currently no actionable mutations. An interesting example is a 
high mesenchymal cell state driven by increased expression of a 
specific master regulator, ZEB1, which, on the one hand, is asso-
ciated with aggressiveness and resistance to therapy and, on the 
other, generates unique therapeutic vulnerabilities (107). Along 
the same line, the high transcriptional diversity of pancreatic 
ductal adenocarcinoma has been linked to microenvironmental 
changes, which affect sensitivity to therapy (ref.  108; bioRxiv: 
2022.12.12.520054). Because cell states are also driven by local 
microenvironmental conditions, it follows the need to inte-
grate such state diversity with spatial information within the 
tumor, a task now made possible by advances in spatial omics 
approaches (109, 110). A recent study leveraged time-resolved 
single-cell analyses and spatial transcriptomics, to establish a 
high-resolution four-dimensional (space and time) map of the 
drug-naïve melanoma ecosystem and study its evolution under 
therapy (111). This map revealed the presence of 6 evolutionar-
ily conserved melanoma transcriptional states: melanocytic, 
mesenchymal-like, neural crest-like, antigen presentation, and 
stress, associated either with a p53 or hypoxia response. These 

cell states exhibited distinctive tissue localization and their 
presence was associated with divergent responses to immune-
checkpoint blockade. Moreover, these cell states decoupled 
the proliferative and metastatic potential of melanoma cells. 
Indeed, single-cell tracing revealed that the mesenchymal popu-
lation are responsible for metastasis initiation while they do 
not support primary tumor growth, which is instead associ-
ated with a stem-like population forming a perivascular niche 
(ref. 111; bioRxiv: 2022.08.11.502598; Fig. 4B). The observation 
that oncogenic competence can depend on specific microen-
vironmental signals warrants the development of therapeutic 
strategies that could interfere with such signals and their poten-
tial for cancer cell plastic reprogramming.

Overall, multiple mechanisms can induce epigenetic and 
transcriptional reprogramming within tumor cells, indepen-
dently of genetic mutations. Transcriptional reprogramming 
in turn leads to the emergence of heterogeneous cell states 
which may undergo Darwinian selection. This heterogene-
ity appears associated with the tumor’s spatial architecture, 
temporal progression, and resistance to therapy.

Coevolution in the TME
Detailed analyses of cancer and noncancerous cell popula-

tions that compose the tumor ecosystem revealed that hetero-
geneity and evolution are not concepts restricted to cancer cells. 
As already alluded to in the previous sections, mutation-induced 
cancer cell signaling and plastic cancer cell state transition inevi-
tably affect and are affected by the TME. Indeed, a plethora of 
factors directly modulate immune and stromal cell features and, 
with evolutionary changes occurring in tumor cells, the TME 
and interactions between the TME and cancer cells also change, 
often contributing critically to therapy resistance (112–114).

Examples of coevolving tumor cells and TME under treat-
ment have been recently shown in melanoma and glioblastoma 
(Fig.  5A). Indeed, when BRAF-mutated melanomas acquire 
resistance to MAPK pathway-targeted therapies (RAFi/MEKi), 
tumors simultaneously acquire cross-resistance to immuno-
therapy (115). This cross-resistance is surprising given the 
entirely different mode of action of these therapies. Functional 
analyses on immune-competent mouse models revealed that 
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Figure 5. Interactions with an evolving TME. A, Along with tumor cells, the surrounding TME also evolves often acquiring protumor features. Examples 
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cross-resistance was mediated by an immune-evasive TME lack-
ing antigen-presenting cells. This immune-evasive TME was 
cancer cell–instructed, and it evolved from an increased tran-
scriptional output of the reactivated MAPK pathway in tumors 
that bypassed MAPK-signaling inhibition, rather than from 
selective pressure to overcome immune response. Similarly, 
adapting cancer cells posttreatment can shape the evolution 
of subpopulations of tumor-associated macrophages (TAM; 
refs. 116–118). In treatment-resistant glioblastoma, glioma 
cells shifted their subtype toward a mesenchymal-like state 
and induced transcriptional reprogramming of TAMs, turning 
them into “food providers.” These timed and regulated altera-
tions of TAM metabolic capacities reactivated developmental 
properties of brain scavenger cells (119) leading to the coevolu-
tion of TAMs and glioblastoma cells to enable proliferation 
and immunosuppression fueling relapse posttreatment (120).

Systematic and unbiased interrogations of heterotypic cel-
lular interactions within the TME have been enabled by scRNA-
seq and, more recently, spatial transcriptomics and proteomics 
approaches. In particular, the recent application of image mass 
cytometry and other spatial proteomics or transcriptomics 
technologies has allowed to spatially resolve cell type admix-
ing within the TME and, thus, to define TME niches as mark-
ers of disease progression and response to therapy (121–126). 
Granular subclassification of cell types determined phenotypic 
heterogeneity for multiple immune cell types (127, 128). For 
instance, recent studies have shown that cancer-associated 
fibroblasts diversify into states with distinct functions, ranging 
from immunomodulatory fibroblasts (iCAF) that can suppress 
lymphocyte activation, to myofibroblasts that remodel extracel-
lular collagen matrices (129–132). Importantly, spatial “omics” 
technologies can now bridge the gap between the identification 
of cancer cell states and spatial TME niches, to determine when 
an association and interactions exist between the two (Fig. 5B). 
For example, macrophages and lymphocytes were found associ-
ated with the acquisition of an interferon-activated phenotype 
characterized by noncanonical expression of antigen presenta-
tion pathways in nearby cancer cells (83). In lung adenocarci-
noma, cancer cell states emerging with the progression of the 
disease interacted with vastly different TMEs, with transitions 
between immune cold, inflamed, and excluded environments 
being observed within the same tumor, in correspondence 
with distinct cancer cell states (101). In particular, tumor cells 
exhibiting a response-to-hypoxia and migratory phenotype 
were found colocalizing with tumor-associated neutrophils 
(bioRxiv: 2023.01.10.523386; Fig.  5A–B). Consistently, cells in 
this state with expression of neutrophil recruiting chemokines, 
such as CXCL1 and CXCL3, further indicating that interac-
tions between tumor cells and the TME shape cancer cell 
state emergence and transition (bioRxiv: 2023.01.10.523386). 
Intriguingly, the physical properties of the TME can themselves 
determine epigenetic adaption. Indeed, interstitial pressure-
driven fluid flow was shown to induce an autocrine signal-
ing circuit comprised of secreted glutamate that activates the 
NMDA receptor, stimulating invasive tumor growth (133, 134).

The advent of technologies capable of probing single-cell 
spatial organization and interactions at high resolution and 
throughput will provide critical clues into TME components 
at different stages of the disease and how these can deter-
mine cancer cell plasticity. Ultimately, charting this evolving 

landscape of tumor and nontumor cells will enable the devel-
opment of therapeutic strategies targeting cellular interac-
tions and cancer–TME niches (135). The new frontier lays in 
identifying the appropriate longitudinal model, especially in 
the clinical setting, which will allow enough temporal resolu-
tion to match these technological advances.

DISCUSSION
Although cancer evolution has mainly been viewed through 

a genetic lens, mutations are just one face of the complex 
prism of forces that underpin tumor evolution (8, 136, 137). 
Nonmutational transcriptional and epigenetic reprogram-
ming and interactions among tumor cells and the TME 
equally provide numerous opportunities for diversification 
that may favor cancer phenotypes. Even more, environmen-
tal pressures and treatment can induce adaptive responses, 
establishing non-Darwinian evolutionary routes (10, 138). 
Examples reviewed in this manuscript highlight how differ-
ent evolutionary mechanisms are not acting in an independ-
ent or, even less, mutually exclusive manner. Genetic variants 
can induce and modulate cancer cell plasticity, which, in turn, 
can favor mutagenesis or determine the oncogenic impact 
of specific mutations. Similarly, interactions among stromal 
and tumor cells can induce transcriptional reprogramming, 
leading to the emergence of heterogeneous cancer cell states 
exhibiting different immunogenicity and, thus, establishing 
different immune microenvironments. To decipher the inter-
actions among biological processes that have been histori-
cally the focus of different scientific communities requires 
fostering conversations and collaborations crossing the bar-
riers among such communities. As in the old parable of “the 
blind men and the elephant,” the incomplete experience of a 
single field will not be sufficient to capture the whole picture.

Toward this goal, the increasing complexity of high-through-
put technologies and data has enabled to integrate multiple 
layers of molecular information within each cell, which could 
allow to directly measure how different evolutionary mecha-
nisms concurrently alter cell phenotypes. These data sets could 
be used to generate novel hypotheses, but they require rigorous 
statistical approaches to be correctly interpreted and need to be 
coupled with appropriate experimental models. Indeed, on the 
one hand, data-driven approaches have the power to decode 
the complexity of human tumors but provide limited mecha-
nistic insight. On the other hand, experimental models allow 
us to decipher the mechanisms generating specific observa-
tions but are often limited in the number of variables they can 
model and remain proxies of human disease.

In this review, we only touched upon some of the many 
facets of cancer evolutionary mechanisms. We have, for exam-
ple, not discussed the reprogramming of cellular metabolism 
that enables tumors to meet their nutrient requirements and 
opportunistically adapt to nutrient scarcity. Multiple meta-
bolic pathways have been implicated in tumor growth, and 
metabolic reprogramming has been associated with cell differ-
entiation and interactions with the TME (139–141). Currently, 
several trials are incorporating metabolic intervention in com-
bination with classic approaches, highlighting the patient ben-
efit of exploring this facet of tumor evolution. Analogously, 
the composition of the human gut microbiota has been shown 
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to be a critical effector of response to cancer immunotherapy 
and possibly influencing response to other treatments. Interac-
tions between cancer cells and the microbiota are mediated by 
secreted small molecules and have been further implicated in 
tumorigenesis and progression (142, 143). Metabolic repro-
gramming and microbiota interactions are just two examples 
of additional mechanisms that are likely to promote and 
influence the evolution of the disease. Along with different 
mechanisms, different evolutionary models should be evalu-
ated to explain experimental and clinical observations. A recent 
study showed that rather than the emergence and selection of 
new alterations, air pollution–driven inflammation enables the 
oncogenic potential of preexisting mutations in the lung driv-
ing lung adenocarcinoma in never smokers (144). These obser-
vations are reminiscent of genetic studies investigating the role 
of evolution of preexisting variation in a population (145, 146). 
In cancer, such “preexisting variation” could be embodied by 
somatic mutations accumulated before tumor formation, as 
well as germline variants, and their phenotypic effect being 
neutral in the absence of specific endogenous (e.g., cancer cell 
states) or exogenous (e.g., TME interactions) conditions.

As we deepen our understanding of cancer evolution from a 
fundamental scientific view, we may be able to translate some 
actionable lessons into clinical interventions. Critical questions 
in this direction are whether we can monitor, anticipate, and, 
ultimately, interfere with the evolution of the disease (147–149). 
To address these questions, large-scale clinical research studies 
have been implemented by the TRAcking Cancer Evolution 
through therapy (Rx; TRACERx) consortium, which, for exam-
ple already provided actionable classifications of renal carci-
noma based on evolutionary trajectories detected in patients 
(150, 151), and reveal unexpected genetic and nongenetic routes 
of lung cancer evolution (152, 153). A deeper understanding 
of tumor evolutionary mechanisms and trajectories offers the 
opportunity to design strategies to interfere with them and 
optimize the chances of therapeutic success (11, 154–156).

Targeted deep DNA sequencing is now routinely performed 
in most cancer hospitals and often at multiple timepoints. The 
scale and resolution of these data sets could represent a criti-
cal resource to trace recurrent cancer evolutionary trajectories. 
In particular, with the advent of modern artificial intelligence 
approaches in precision medicine, data scale and complexity 
will become an asset rather than a limitation (157). Initiatives 
toward increasing the spectrum of molecular data generated 
in the clinic, standardizing and sharing data collection, and 
creating cancer registries matching anonymized molecular 
data and clinical annotation will ultimately transform our 
ability to predict the evolution of the disease in patients.
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