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Abstract

Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food
preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To
help optimize the design of future genome-wide-association studies on human taste perception we have used the well-
known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and
data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a
very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these
results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in
addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP
and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our
study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-
values for all SNPs genotyped in the current study.
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Introduction

An identical taste stimulus may elicit substantially different

perceptions in different individuals. Some individuals may detect

the same stimulus at a lower concentration than others. And, at

concentrations above the detection threshold, the perceived

intensity of the stimulus may vary between individuals. This

variation in taste sensitivity may affect food liking as well as food

choice [1–6] and may ultimately impact health outcomes.

Variations in taste sensitivity are driven both by genetic and by

environmental factors (e.g. dietary habits or childhood experi-

ences). Traditionally the study of environmental factors has

garnered much of the attention. But, with the help of high-

throughput genotyping arrays and genome-wide-association

studies (GWAS) [7] it is now possible to investigate the genetic

contribution to variation in human chemosensory perception

systematically [8,9].

In the current study we investigate how the choice of

phenotyping strategy influences the chances of success for such

genome-wide association studies on chemosensory perception,

with a particular focus on taste perception.

Measuring chemosensory phenotypes
In comparison to most of the phenotypes targeted in medically-

oriented GWASs (e.g. body height, weight, BMI, blood pressure

etc.) chemosensory phenotypes are relatively difficult to measure

precisely. While simple phenotyping approaches for chemosensory

perception exist - for example subjects may simply be asked to rate

the intensity of a single tastant solution on an intensity scale – these

simple measurements are prone to be diluted by substantial

measurement uncertainties. Potential sources of these uncertainties

have been identified and increasingly powerful - but also

increasingly complex - procedures to account for these uncertain-

ties have been identified [10–12]. Other phenotyping methods

that are independent of subjective ratings exist [13]. For example

the staircase method [14] determines detection thresholds by

testing, in blind taste tests, the subjects’ ability to distinguish

samples containing the compound of interest from reference

samples. The greater accuracy expected from such objective

methods comes with a substantial increase in experimental effort.

Similarly, replicate measurements may help to improve the

phenotypic data by averaging out day-to-day variations in taste

sensitivity, but, again, come at the cost of increased experimental
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effort. Which of these different phenotyping options will perform

best in a GWAS scenario?

Here we report on a study that uses the well-known genotype-

phenotype association between the detection thresholds for the

bitter compound PROP and a specific variation in the TAS2R38

bitter taste receptor (HGNC:9584) as a benchmark to compare the

relative power of different taste phenotyping strategies for GWAS

applications.

Genetic variation in the TAS2R38 bitter receptor and
perception of PROP

In 1932 Arthur Fox [15] reported a striking inter-subject

variability in the perception of the bitter compound Phenylthio-

carbamide (PTC). While some individuals, including Fox himself,

were essentially unable to detect the compound’s bitterness, others

were much more sensitive. Those individuals who could perceive

the compound even at low concentrations are often referred to as

‘‘tasters’’ while those who perceive the compound only at much

higher concentrations are called ‘‘non-tasters’’.

The availability of a simple test - placing a PTC-soaked paper-

strip on subjects’ tongues and recording if they perceived its bitter

taste – allowed the taster phenotype to be determined quickly, on

large panels and with reasonable accuracy. Based on these tests, it

soon became clear that the ability to taste PTC at low

concentrations was a genetic trait that was inherited in near-

mendelian fashion [16].

Using classical linkage surveys the genetic variation underlying

PTC sensitivity was initially mapped to a region on chromosome

7q3 [17,18]. Later Dennis Drayna and colleagues [19] used

linkage analysis and large-scale DNA sequencing to pinpoint the

TAS2R38 bitter taste receptor gene as the site of the responsible

genetic variations. Single nucleotide polymorphisms (SNPs) at

basepairs 145, 785 and 886 (C-.G, C-.T and C-.T) within the

coding region of the TAS2R38 receptor gene lead to three amino-

acid changes (proline-.alanine, alanine-.valine and valine-.

isoleucine) at amino acids 49, 262 and 296 respectively [20]. As it

turns out, these three variations in the receptor tend to be co-

inherited such that for the vast majority of cases the TAS2R38

receptor exists either in the proline,alanine,valine taster version

(PAV in the single letter amino acid code) or in the alanine,va-

line,isoleucine (AVI) non-taster version.

In more recent studies PTC is often replaced by propylthio-

uracil (PROP). PROP displays nearly the same sensory properties

as PTC and, due to its status as an approved drug, PROP poses

fewer safety concerns.

Results

Psychophysics Data
To characterize the taste sensitivity of the study’s subjects to

PROP we determined both detection thresholds and supra-

threshold intensity ratings for aqueous solutions of this compound.

Figure 1 shows a histogram of the log-transformed detection

thresholds with its familiar bi-modal distribution. The range of

observed thresholds is comparable to those reported by others

[13,21,22]. Replication of results on separate days allowed the

determination of day-to-day, intra-subject variability. The mean

difference of the two thresholds determined per subject (d =

|log10[thresh1] – log10[thresh2]|) equals 0.32 log units.

Determinations of generalized labeled magnitude (gLMS)

intensity ratings were performed in triplicate. Figure 2 shows

distributions for the intensity ratings for test solutions containing

0.032, 0.1, 0.32, 1 and 3.2 mM PROP respectively as well as for

the control sample containing only water.

Effect of gender, age, body mass index and ethnicity on
PROP detection threshold

As part of the preparation for the GWAS analysis we assessed

how the PROP detection threshold is affected by the key

demographic parameters gender, age, body mass index and

ethnicity. To assess the effect of ethnicity we performed linear

regression against the first two principal components from a

principal-component analysis of the entire genotyping data set.

These principal components have been shown to be highly

effective in describing and correcting for ethnic origin [23,24].

The results, shown in figure 3, indicate that these demographic

parameters have only a very modest influence on PROP detection

thresholds. Among them, only age (Figure 3a) showed a

statistically significant, positive association with detection threshold

(p = 0.0018, r-square = 3.8%).

GWAS of PROP detection threshold
The results of genome-wide association studies are commonly

displayed in ‘‘Manhattan plots’’. These plots show, for each of the

,800,000 probed SNPs, the strength of the statistical association

between the subjects’ genotype and phenotype. The strength of the

association is plotted as the negative decadic logarithm (-log10 (p))

of the probability p that an association of the observed strength

could have occurred by chance.

Figure 4a shows the Manhattan plot for the GWAS on the detection

threshold of PROP. The plot shows that the genotype for a small group

of single-nucleotide polymorphisms on chromosome 7 is strongly

associated with the PROP detection threshold. In perfect agreement

with the results reported by Kim and colleagues [19] the strongest

associations are to SNPs rs713598 (C-.G) and rs10246939(C-.T)

which cause the well-known amino-acid substitutions (P-.A at aa49

and V-. I at aa296) in the bitter taste receptor TAS2R38.

The profound statistical strength of the association (p =

1.2610252 and 1.5610252 respectively for the top two SNPs) is a

reflection of the near Mendelian inheritance of the PROP taster

phenotype.

Figure 4b shows the QQ- plot for the GWAS of the PROP

detection threshold. The vast majority of SNPs follow the p-value

distribution expected for random association – i.e. they lie on the

plot’s diagonal. Only a small handful of SNPs, those located within

or near to the TAS2R38 gene, show a significant deviation from

this diagonal. Therefore the plot indicates that phenotype

distributions conform to statistical expectation and that population

structure effects, if they existed, have been corrected efficiently.

Figure 1. Inter-subject variability of PROP detection thresh-
olds. Distribution of detection thresholds for the bitter compound
PROP. Thresholds were measured by the staircase method. Concentra-
tions are represented on a logarithmic scale.
doi:10.1371/journal.pone.0027745.g001

Taste GWAS: Effect of Phenotyping Strategy
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Effect of TAS2R38 genotype on PROP detection threshold
The regression plot (figure 4c) of subjects’ PROP detection

thresholds vs. the subjects’ genotypes at SNP rs10246939

underlines the strength of the association between TAS2R38

genotype and PROP detection threshold. The genotype at this

SNP accounts for approximately half (49%) of the observed

variability in detection thresholds. Distribution of PROP detection

thresholds according to SNP rs10246939 genotype (figure 4d)

show that, as a population, subjects who carry two copies of the C

allele are least sensitive to PROP (log-averaged threshold =

0.37 mM) followed by subjects who carry one C and one T allele

(0.113 mM) and by subjects with two T alleles (0.047 mM).

Optimal choice of taste phenotype representation
The input phenotype for the GWAS on the PROP detection

threshold was the average of the two log-transformed replicate

measurements of the detection threshold. This specific treatment

of the threshold data was chosen to take into account the well-

known, near-logarithmic response of humans to taste stimuli. Still,

the decision for this particular treatment of the data represented a

discreet choice. To investigate, if this choice was indeed optimal,

or if there may be different phenotype representations that would

increase the statistical power of the sensory data, we tested the

performance of four other parameter representations in separate

GWA analyses: i. the average of the raw (i.e. non log-transformed)

detection threshold, ii. the log-transform of the average of the raw

detection thresholds, iii. a scenario where the two observations of

the detection threshold were both log-transformed but then treated

as if they were independent observations on two separate, but

genetically identical, subjects and finally iv. classification of

subjects into tasters and non-tasters with the resulting binary

phenotype analyzed by logistic regression (see next section). In this

context the p-value of association serves as a measure of the

statistical power provided by a particular phenotype representa-

tion. The lower the p-value achieved by a particular phenotype

representation in this analysis, the greater is the statistical power

afforded by it and the better it is suited to identify associated SNPs

in future studies.

Figure 5 shows the QQ- plots resulting from this analysis. The

top four SNPs in each of the plots are identical to those identified

by the initial GWA analysis described above. In other words,

choosing a different representation for the phenotype parameter

did not change the SNPs that were associated with the phenotype.

But, the choice had a very dramatic impact on the strength of the

association. For example, the average of the raw (i.e. non-log-

transformed) detection thresholds (Figure 5a), which might a priori

seem to be a reasonable choice for the input phenotype, performs

rather poorly (pmin = 1.4610225). Also, averaging the detection

thresholds before log-transformation noticeably weakens the

association (pmin = 4.4610249) (Figure 5b).

The result for the third option, i.e. the treatment of the replicate

threshold measurements as independent observations, is rather

interesting. While this choice of parameter representation results

in a very strong association (pmin = 6.6610269) prior to genomic

control, the uncorrected QQ-plot (not shown) indicates substantial

non-specific inflation of p-values for all SNPs. After genomic

control [25] correction that adjusts for such non-specific inflation

the p-value of the top SNP decreases to 7.3610245 (Figure 5c) well

below the p-value obtained with the log-averaged representation of

the detection threshold. The cause of these p-value inflations

appears to be that, despite the large intra-subject variability, the

repeat measurements of the detection thresholds from the same

subjects are sufficiently correlated to violate the independence

assumption of normal linear regression.

Linear regression vs. logistic regression based on taster/
non-taster classification

To compare the relative power of the linear-regression-based

GWAS described above to a GWAS based on classifying subjects

into tasters and non-tasters we performed the following analysis.

We classified subjects into tasters and non-tasters using the

standard detection threshold cutoff of 0.2mM [2]. We then

Figure 2. Inter-subject variability of PROP taste intensities. Distributions of gLMS intensity ratings (average of 3 measurements) for solutions
containing 0.032, 0.1, 0.32, 1 and 3.2 mM PROP as well as pure water (panel a). Gaussians fits to the data are shown as dashed lines.
doi:10.1371/journal.pone.0027745.g002
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performed a GWAS using logistic regression for the binary taster/

non-taster phenotype. To ensure consistency with the linear-

regression GWAS we used the same covariates and genomic

corrections in both analyses.

While the logistic approach was able to identify the TAS2R38

SNPs, the association is dramatically weakened (pmin = 2.54610212)

compared to the linear regression analysis (pmin = 1.2610252). To

ensure this weak association was not due to the choice of the cutoff

concentration used for taster-vs.-non-taster classification we repeat-

ed the analysis by varying the cutoff from 0.1mM to 0.3mM in

0.025 mM steps. Still this ‘‘optimization’’ of the cutoff value could

not enhance the association (pmin = 2.25610212 with a 0.175 mM

cutoff). These results illustrate the very substantial loss of statistical

power that results when noisy quantitative phenotypes are

converted into binary phenotypes.

Trade-offs between phenotype quality and panel size
The results described in the previous section answer the question

of how best to treat replicated measurements of detection thresholds

for use as input phenotypes in a GWAS. But, is the collection of

repeat measurements useful? More precisely, is it better to perform

replicate measurements on a smaller number of subjects, thus

increasing phenotype quality, or, is it better to perform just a single

measurement on as many subjects as possible? This latter option

may, for example, be attractive when phenotyping is performed as

an add-on to an existing genotype-phenotype association study. In

such a scenario recruitment and genotyping costs are not a factor

and the only question is how to best use the available phenotyping

resources. To address this question we performed a GWAS analysis

on all 225 subjects of our study but used only the first measurement

of the detection threshold. We then compared the result from that

GWAS to results from GWASs performed by randomly selecting

sub-panels of half the number of subjects (i.e.113) and using the

average of the two detection threshold replicates as the phenotype.

To avoid sampling bias, we repeated the sub-panel selection 1000

times and averaged the results. The comparison shows that the

GWAS using a single threshold determination on 225 subjects

(pmin = 9.4610241) clearly outperformed that on the log-averaged

detection threshold of 113 subjects (log-averaged pmin = 8610227).

These results are fully in line with the general rule that replicate

measurements add less power to an association study than the

addition of an equivalent number of new subjects.

GWAS on supra-threshold intensity ratings
To compare the relative power of objective taste sensitivity

measurements (see above) to measurements obtained by subjective

methods we performed GWAS on the supra-threshold intensity

ratings obtained with the gLMS method. Specifically, we

performed separate GWAS’s for the intensity ratings for each of

the five concentrations of PROP included in our gLMS tests as

Figure 3. Influence of demographics on PROP detection threshold. Dependence of PROP detection thresholds on age (a), body mass index
(b), gender (c) and principal components 1 and 2 (d,e) of a genetic ancestry analysis. A linear regression line and the corresponding r-square and p-
values are indicated on each plot.
doi:10.1371/journal.pone.0027745.g003
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well as for the water control. As input phenotype we used the

average of the three intensity ratings for each of the concentrations

(Figure 2). As the gLMS scale used to record intensity ratings is de

facto a log-based scale we did not log-transform the intensity

ratings. The QQ-plots from the GWA analyses are shown in

figure 6. As might be expected, the gLMS ratings for water and for

the two PROP concentrations (0.032 and 0.1 mM) that fall below

the average detection threshold (0.12mM) of the panelists did not

produce genome-wide significant associations. By contrast, the

three concentrations above the average detection threshold

produce clean and robust associations. With a pmin of

1.6610234 and an r-square of 38% the gLMS intensity rating

for the 1mM PROP solution turns out to be nearly as powerful a

phenotype as the detection threshold measured by the staircase

method (see above). For each of the three concentrations where

genome-wide significant associations were obtained the two most

strongly associated SNPs are the same SNPs in the TAS2R38

receptor (rs713598 and rs10246939) that were identified in the

GWAS with the PROP detection threshold.

Figure 7 shows the average gLMS response curves according to

TAS2R38 genotype. Subjects carrying two copies of the non-taster

version of TAS2R38 give the lowest intensity ratings across all

sample concentrations while subjects with two taster versions give

the highest ratings and heterozygotes display an intermediary

phenotype. Note that subjects who carry two copies of the non-

taster allele rate PROP solutions of concentrations below that

group’s average detection threshold (0.37mM) with the same

intensity as they rate water. This result indicates the consistency

between our threshold and intensity rating data and also indicates

that gLMS intensity rating data may be used to derive -indirectly-

detection threshold information.

To evaluate the usefulness of phenotyping strategies that

integrate all six data points from an individual’s gLMS curve into

a single parameter we calculated an ‘‘area-under-the-curve’’

phenotype (i.e. the sum of the six gLMS ratings that make up

an individual’s gLMS curve). It could be reasoned that this

phenotype effectively pools the signal across all six sample

concentrations and might therefore increase the strength of the

association signal. At the same time, not all concentrations add an

equal amount of signal, but all of them add noise. Along this line of

thinking pooling of the signal across different concentrations might

actually lead to a loss of power in the phenotype. The results of a

GWAS with the area-under-the-curve phenotype show that, while

this phenotype also correctly identifies rs713598 and rs10246939

as the top SNPs the overall strength of the association

pmin = 8.2610228 is weaker than for the straight gLMS rating of

the 1mM solution alone (see above) indicating that pooling of

intensity ratings across different concentrations does not necessar-

ily result in a increased association signal.

Relative power of detection and minimal number of
subjects for achieving genome-wide significance

To compare the relative power of detection-threshold and

supra-threshold measurements as input phenotypes for GWA

studies we calculated power-to-detect curves for the two

phenotypes. For these calculations we used a p-value cutoff of

Figure 4. GWAS on PROP detection threshold. Results of the GWAS analysis for PROP detection threshold. The Manhattan plot (a) shows for
each of ,800,000 SNPs the –log10 (p) value of linear regression between the genotype at that SNP and the PROP detection threshold. The x-axis
indicates the location of each SNP according to chromosome and position within the chromosome. Note the cluster of highly significant SNPs located
on chromosome 7. The strongest associations correspond to TAS2R38 SNPs rs713598 and rs10246939. Due to their close proximity in the TAS2R38
gene and their similar p-values the markers for these two top SNPs overlap in this figure. The QQ-plot (b) is a scatter plot in which all ,800,000 SNPs
are ranked by their observed p-value (y-axis) and plotted against a rank-sorted p-value distribution (x-axis) representing the null hypothesis of
random association. The very clear off-diagonal location of the top SNPs rs713598 and rs10246939 indicate the high statistical significance of the
genotype-phenotype association. Panel (c) shows a linear regression of the subject’s PROP detection threshold vs. their genotype at SNP rs10246939.
The PROP detection threshold is represented on a logarithmic scale. Panel (d) shows distributions of the PROP detection thresholds according to
subjects’ genotype, the vertical axis indicates the number of subjects whose detection thresholds fall in the corresponding concentration bins.
doi:10.1371/journal.pone.0027745.g004
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Figure 5. Effect of phenotype representation on GWAS signal. QQ-plots resulting from the GWAS analysis using different representations of
the PROP detection threshold. (a) average of the raw (i.e. non-log transformed) detection thresholds (b) averaged, then log-transformed, thresholds
(c) repeat measurements treated as independent observations. Panel (d) shows the QQ-plot resulting from a logistic-regression GWAS after classifying
subjects into tasters and non-tasters based on a PROP detection threshold cutoff of 0.2mM.
doi:10.1371/journal.pone.0027745.g005

Figure 6. Effect of PROP concentration on strength of GWAS signal. QQ-plots for the GWAS analysis of the gLMS intensity ratings of a water
control (a) and PROP solutions at 0.032 mM (b), 0.1 mM (c), 0.32 mM (d), 1 mM (e) and 3.2mM (f).
doi:10.1371/journal.pone.0027745.g006

Taste GWAS: Effect of Phenotyping Strategy
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561028 to denote genome-wide significance and r-square values

for PROP detection thresholds (49%) and the supra-threshold

intensity ratings of the 1mM PROP solution (38%) as determined

in our study (see above). The resulting power-to-detect curves

(figure 8) show the exceptional power of both the threshold and

intensity rating parameters. For the detection threshold, well

below 100 subjects are sufficient to obtain a robust association (p-

value ,561028) with greater than 90% probability. To provide

an indication for the number of subjects that would have been

required to detect additional genetic factors with weaker influence

on PROP sensitivity we also computed power to detect curves for

a number of smaller r-square values. As can be seen from these

curves, our panel size of 225 subjects would not be sufficient to

detect genetic factors that explain less than ,15% of overall

phenotype variance.

Discussion

Psychophysics Measurements
The results of the psychophysics measurements reported here,

both in their average values and in the observed distribution of

values are in agreement with recent observations by others

[13,21,22]. One feature that distinguishes our study from most

recent studies is the replication of the psychophysics test on the

same panel of subjects within a relatively brief period of just two

weeks. Over this period, threshold determination was performed

in duplicate and supra-threshold intensity curves were recorded in

triplicate.

The intra-subject variability between those repeat measure-

ments is substantial – both for the detection thresholds and for the

supra-threshold intensity ratings. In the case of the detection

thresholds the average difference between the two measurements is

0.32 log10 units, which corresponds to a greater than two-fold

change in the detection threshold. And, for 17% of subjects the

variability between replicate measurements was .0.62 log10 units

corresponding to a greater than four-fold change in detection

threshold. As a consequence, some subjects that would have been

classified as tasters based on the first measurement later displayed

detection thresholds that would classify them as non-tasters and

vice versa.

This intra-subject variation in phenotype far exceeds the

nominal resolution of the stair-case method that was used to

measure this phenotype. Therefore it is unlikely that this

variation is simply the result of measurement error. Instead,

other factors which are not easily controlled do appear to

have a substantial effect on day-to-day variations in taste

sensitivity.

The intra-subject variability we observed in our study over a

rather short period of just a few days is comparable in magnitude

to the intra-subject variability reported in studies with substantially

longer time periods of weeks to months between repeat

measurements [26–28].

Together the data underline that neither a subject’s detection

threshold nor its taster/non-taster status should be viewed as a

single, fixed parameter that can be ascertained in a single

measurement session. Instead, a subject’s detection threshold

appears to be a dynamic parameter that is subject to substantial

variation over the period of just a few days.

The same caveat applies to the supra-threshold intensity

ratings. In fact, intra-subject variability of the supra-threshold

ratings was even greater than that of the detection thresholds.

Intensity ratings involve a larger degree of subjectivity than do

the threshold determinations via the staircase method. Corre-

spondingly, the gLMS scores were somewhat less powerful in

identifying TAS2R38-PROP association in our GWA studies.

Still, the GWA studies based on the gLMS scores easily

identified the correct SNPs. And gLMS scores do have key

advantages that, despite this reduced power, may make them

attractive phenotyping parameters for future GWA studies in the

field of psychophysics. First, after an initial training of

participants, gLMS intensity curves can be recorded much

faster and with lower personnel effort than detection thresholds.

In cases where the costs of genotyping and subject recruitment

are not limiting, but testing time is at a premium, gLMS

intensity measurements may be particularly attractive. Such a

situation may be encountered, for example, when psychophysics

measurements are performed as an ‘‘add on’’ to another study.

Also, gLMS intensity curves provide both a rough estimate of a

compound’s detection threshold as well as supra-threshold

intensity ratings. In cases where variations in detection

thresholds and variations in the perceived intensity of supra-

threshold stimuli are driven by two distinct genetic variations,

gLMS intensity curves may then allow the identification of both

of these genetic variations.

Figure 7. PROP taste intensity as function of TAS2R38
genotype: Average PROP intensity ratings as a function of PROP
concentration shown according to subjects’ genotype at TAS2R38 SNP
rs10246939. Error bars show the standard error of the ratings.
doi:10.1371/journal.pone.0027745.g007

Figure 8. Power-to-detect curves. Curves were calculated for r-
square values of 49% corresponding to the variance in PROP detection
threshold explained by the top TAS2R38 SNP and 38% corresponding to
the explained variance for gLMS intensity rating for a 1mM solution of
PROP. Calculations were based on a genome-wide significance
threshold of p = 561028. For comparison power to detect curves for
30, 20, 15, 5, 2, and 1% variance explained are also shown.
doi:10.1371/journal.pone.0027745.g008

Taste GWAS: Effect of Phenotyping Strategy
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Other genetic factors of PROP taste perception
Past studies have suggested that genetic factors, other than

TAS2R38, may also play a role in driving the observed natural

variation in the bitter taste perception of PTC and PROP. In

table 1 we show the list of all 34 SNPs that generated genome-wide

significant or ‘‘suggestive’’ p-values (,1025) in the GWAS on the

PROP detection threshold phenotype. Only four of these SNPs

have genome-wide significant associations (p,561028) and all

four of these SNPs are located within the TAS2R38 gene itself or

within its immediate vicinity. Incidentally the same four SNPs

(rs713598, rs10246939, rs4726481 and rs1726866) were the only

SNPs that achieved genome-wide significance for any of our

studied phenotype representation.

An additional 14 SNPs are located very near TAS2R38. To test,

if these SNPs are simply in linkage disequilibrium with the causal

TAS2R38 SNPs, or if they make an independent functional

contribution, we corrected each subject’s phenotype for their

genotype at the top TAS2R38 SNP and then used this corrected

phenotype in an additional GWAS. In this second GWAS the p-

value for these 14 SNPs decreased to well below statistical

significance indicating that they do not make an independent

contribution to the PROP detection phenotype.

The remaining 16 SNPs with suggestive p-values of ,1025 are

distributed throughout the genome with 13 of them within less

than 100kb of an annotated gene. None of these genes suggested a

mechanistic link to taste perception.

Previous studies had specifically implicated loci on chromosome

16p [29] and chromosome 5p15 [30]. With 10165 and 6330

quality controlled SNPs respectively these two chromosomal

regions are well covered by the SNP chip used in our experiment.

We generated local Manhattan and qq-plots for both of these

regions (data not shown). In both cases the distribution of p-values

is fully consistent with purely random associations.

On the p-arm of chromosome 16 the minimal p-value of

2.861024 is observed for rs9933117 which is located in an intron

of XYLT1, a xylosyltransferase gene. After Bonferroni correction

for the large number of SNPs in this region the p-value is non-

significant (pcorr = 1). A similar situation is observed for the 5p15

region. Here the minimum p-value of 3.661024 is observed for

SNP rs1395093. This SNP falls into a gene-free region and after

Bonferroni correction the p-value also drops to a non-significant

level (pcorr = 1).

We further find that variations in both detection threshold and

supra-threshold intensities are dominated by the same genetic

variations in the TAS2R38 receptor. These observations are

entirely consistent with recent results from in vitro experiments on

functionalized bitter receptors [31] that indicate that both PROP

and PTC activate only TAS2R38 and no other bitter taste

receptor.

At the same time we like to make clear that failure of our study

to detect additional genetic variants that impact PROP perception

in no way precludes the existence of such genetic variants. It is

very well possible that more powerful studies (e.g. studies on larger

panels or different cohorts) may identify such associations in the

future. Still, we can use the data from the current study to get a

rough idea about the likely upper limit for the impact that such

genetic variants could have. Using power-to-detect calculations we

can see that with a panel of 225 subjects and a genome-wide-

significance cutoff of log(p) = 561028 a genetic variation that

explains more than 11.5% of overall phenotype variance would

have been detected in our GWAS with greater than 50%

probability. In other words, failure to find additional genetic

factors in our study makes the existence of multiple genetic factors

with substantial impact on PROP taste perception (r-square ..

11.5%) seem unlikely.

Correspondingly, we can conclude that our current data set is

not powerful enough to detect genetic variations with subtle

impacts (r-square ,11.5%) on PROP perception via the

hypothesis-free GWAS approach. Still, this data set may enable

other researchers to study such subtle genotype-PROP-taste

associations using a target-gene approach. The complete set of

the association p-values for the PROP detection threshold

phenotype for all genotyped SNPs is included in Supporting

Information S1. The SNPs contained in this data set have passed

Table 1. PROP detection threshold-associated SNPs with
p,1025.

SNP_name Chr pos gene MAF{ p-value

rs713598 7 141319814 TAS2R38* 48% 1.21610252

rs10246939 7 141319073 TAS2R38* 46% 1.49610252

rs4726481 7 141314872 TAS2R38* 47% 3.04610236

rs1726866 7 141319174 TAS2R38* 41% 3.95610236

rs17162635 7 141324432 TAS2R38* 10% 1.17610207

rs11767947 7 141259090 OR9A4* 23% 1.53610207

rs12539499 7 141276736 CLEC5A* 23% 1.90610207

rs11767119 7 141258585 CLEC5A* 23% 2.55610207

rs6976028 7 141259186 OR9A4* 24% 3.37610207

rs4725559 7 140934121 AGK* 37% 5.38610207

rs4726463 7 141013108 KIAA1147* 36% 6.10610207

rs11762634 7 141302956 TAS2R38* 20% 8.11610207

rs10464444 7 141178656 LOC136242* 26% 1.03610206

rs11773340 7 140963303 AGK* 39% 2.44610206

rs12944462 17 38391027 RUNDC1 39% 2.47610206

rs1374825 3 141047747 CLSTN2 28% 2.60610206

rs3774700 3 62291434 C3orf14 12% 3.23610206

rs2273549 11 33036156 TCP11L1 13% 4.26610206

rs12365818 11 33059853 CSTF3 12% 4.63610206

rs2570407 7 141301361 CLEC5A* 22% 5.04610206

rs455055 17 38421483 VAT1 38% 5.54610206

rs12703413 7 141193316 LOC136242* 23% 5.87610206

rs3912601 3 73494377 PDZRN3 39% 5.9461006

rs1052990 7 115935606 CAV2 34% 6.00610206

rs7717550 5 151856950 # 14% 6.83610206

rs10261374 7 141045057 KIAA1147* 36% 6.94610206

rs2851758 18 23570812 # 32% 7.30610206

rs9978374 21 14741592 SAMSN1 44% 7.36610206

rs7218454 17 38359611 AARSD1 40% 7.41610206

rs7717092 5 151856655 NMUR2 13% 8.08610206

rs13231650 7 141045411 KIAA1147* 40% 8.27610206

rs12373190 18 23596043 # 17% 8.52610206

rs7969452 12 18578000 PIK3C2G 21% 9.10610206

rs3768812 2 210264021 MAP2 48% 9.37610206

*These SNPs are located within or within the immediate vicinity of the TAS2R38
gene.
# These SNPs are not located within the vicinity of a known gene (.100kb
form the closest annotated gene)
{Minor Allele Frequency.
doi:10.1371/journal.pone.0027745.t001
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our quality control criteria, were calculated based on phenotype

scores corrected for covariates and have undergone genomic

control as described in the methods section.

Effect of genetic ancestry on PROP taste perception
Given the very substantial differences in the frequency of the

relevant TAS2R38 genotypes in different ethnic groups (see

HapMap data base [32]) one might have expected an association

between genetic ancestry principal components and PROP taste

sensitivity. But, no such association was observed. We attribute this

lack of association to the population structure of our panel. The

ancestry principal component plot of our panel (data not shown)

indicates a continuous admixture of genotypes from different

ethnic origins. As a result of this admixture the link between the

specific TAS2R38 genotype, which drives PROP taste sensitivity,

and the overall genetic ancestry, which represents ethnicity, will be

weakened – apparently to the point where a statistical association

can no longer be observed.

Non-genetic factors influencing PROP taste perception
Approximately 50% of the observed variation in PROP

detection thresholds is accounted for by genetic variation in the

TAS2R38 gene. From replicate measurements we can estimate

that the measurement error accounts for another 20% of the

observed phenotype variability. This leaves approximately 30% of

the phenotypic variation we observed to be explained by other

factors. Consistent with reports in the literature [33–35] neither

gender nor body mass index explain a significant portion of these

remaining 30% of variation. Even age (Figure 3a), which is known

to influence both overall [34] and PROP-specific [26] taste

sensitivity explains only 3.8% of the overall variation in PROP

detection thresholds.

Conclusions for GWAS studies on other chemosensory
phenotypes

The results of the current study, together with the fact that

common genetic variations with strong impact on sensory

phenotype seem to exist [8,9] beyond the PROP-TAS2R38

association, indicate that GWAS studies have the potential to yield

important discoveries in the field of human chemosensory

perception. Specifically, given a sufficiently strong influence of

the genotype on the sensory phenotype, the large, and as we think

inherent, uncertainty in the measurement of chemosensory

phenotypes will not pose a fundamental obstacle to the success

of the GWAS strategy.

Our study shows that careful selection of the measured

phenotype and equally careful processing of the data can

significantly boost the power of an association signal. The optimal

phenotpying strategy will depend critically on a study’s setting. For

example, in our study detection thresholds determined with the

staircase method were clearly the most powerful phenotype for

identifying the PROP-TAS2R38 association. However, due to its

complexity the staircase protocol required both a greater time

commitment from panelists and a substantially greater personnel

effort than the measurement of gLMS taste intensity curves.

Taking this difference in effort into account, the gLMS phenotype,

which is slightly less powerful than the detection threshold

phenotype, is clearly the more efficient phenotyping method.

Therefore, if phenotyping is carried out on a large, already

genotyped cohort, the simpler gLMS approach would appear to

be highly attractive. In fact, recent GWASs on quinine taste

perception [8] and specific anosmias [9] have shown that even

extremely streamlined phenotyping approaches can be successful

as long as this simplicity in the phenotyping method enables access

to very large, already-genotyped subject panels.

Below are 5 points of concrete advice that summarize the

findings from our study. Taking these 5 points into account in the

design of future chemosensory GWAS studies should help boost

the genotype-phenotype association signal and with it boost the

chance to identify genome-wide significant associations:

1) Conversion of a continuous phenotype (e.g. detection

threshold) into a binary phenotype (e.g. taster/non-taster

status) generally leads to a substantial loss of statistical power

and should be avoided. While this loss of power is well-

known and well-understood from a statistical perspective,

conversion of taste thresholds into taster/non-taster status

continues to be such a common practice in the taste field

that we feel compelled to point out the resulting loss of

statistical power in this context.

2) Investing phenotyping resources into the testing of addi-

tional panelists adds substantially more power to an

association signal than replication measurements on existing

panelists. If information from replicate measurements is

desirable (e.g. to obtain information on phenotype accuracy

or on the variation of a phenotype over time), we

recommend to perform such replicate measurements only

on a subset of the panelists. Typically a rather modest

number of subjects will already be sufficient to get a reliable

estimate of intra-subject variability so that the bulk of the

phenotyping effort can be dedicated to the inclusion of

additional subjects.

3) Detection thresholds measured via the staircase method are

a more powerful phenotype than suprathreshold intensity

ratings obtained with the gLMS approach. Threshold

measurements represent an attractive phenotyping strategy

when panel size is limited.

4) Determination of suprathreshold intensity ratings using the

gLMS approach is a more cost effective phenotyping

strategy. Use gLMS-based approaches for phenotyping

when large, already genotyped subject panels are available.

5) Detection threshold data should be log-transformed and

then -if replicate measurements were obtained- averaged to

generate the input phenotype for the GWAS. This log-

transformation accounts for the log-linear relationship

between taste stimulus and taste response, leads to

normally-distributed residuals in genotype-phenotype re-

gression during GWAS and ultimately boosts the power to

find genotype-phenotype associations.

Given that taste perception of PROP bitterness follows the

prototypical stimulus-response relationship (figure 7) found across

much of psychophysics the above points will be directly

transferable to a wide range of sensory phenotypes.

In conclusion, we have used the well-known association between

variations in the TAS2R38 taste receptor gene and variations in taste

perception of the bitter compound PROP to evaluate the relative

power and efficiency of different chemosensory phenotyping

strategies for genome-wide association studies (GWAS). The

performance of the GWAS was surprisingly robust to the specific

choice of data processing procedures and both detection threshold as

well as supra-threshold intensity ratings reproduced the TAS2R38

association unequivocally. Still, careful choice of phenotyping

method and parameter representation can provide a substantial

boost in the strength of the genotype-phenotype associations. We

anticipate that the lessons learned in this study will be valuable for

future GWA studies on chemosensory phenotypes where associations
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between genotype and phenotype are less pronounced than is the

case for TAS2R38 and PROP detection.

Materials and Methods

Ethics Statement
All procedures were approved by the Institutional Review

Board of the Sı́rio Libanês Hospital, where tests were adminis-

tered, and by the National Committee of Research Ethics at the

Brazilian Ministry of Health (HSL 2007/25 Process no.

25000.114841/2007-17).

All subjects gave informed consent by signing a written

informed consent statement.

Participants
A group of 225 subjects was recruited from the general

population of the São Paulo metropolitan area of Brazil. Subjects

were aged 18-47 (mean 32.8). BMIs ranged from 16.6 to 46.1

(mean 25.5). In the panel 49% of subjects were male and 51%

female. The Sao Paulo metropolitan area is known for its high

degree of ethnic diversity and this diversity is reflected in the panel.

Subjects were required not to smoke 3 hours prior to testing. A

detailed breakdown of subject gender, age, BMI and smoking

status is provided in table 2.

Genotyping
Genotyping services were outsourced to Expression Analysis

Inc. (Durham, NC, USA). Briefly, genomic DNA was extracted

from whole blood and genotyping was performed on the Illumina

Human Omni-Quad1 platform following standard protocols.

Genotype calling was performed with Beadstudio software

(Illumina). Calls with a genotyping score below 0.2 were excluded

from further analysis. Single nucleotide polymorphisms (SNPs)

with a call rate below 90% and individuals with a call rate below

95% were also excluded.

Genotyping data was of high quality with an average call rate of

99.8% for all SNPs. 99.4% of SNPs had a call rate of greater than

the cutoff value (95%) set for the rejection of individual SNPs. The

average Q-score for all SNPs was 0.71 and for 99.6% of called

SNPs the Q-score passed the cutoff (0.2) for inclusion.

Determination of detection thresholds
Detection thresholds for PROP were determined via the

staircase method [13,14] with a four down, one up, five reversals

protocol. The detection threshold was calculated as the average of

the last four reversal concentrations. Solutions of PROP were

prepared in milli-Q water. Dilution along 1/6th log steps

(equivalent to 1.468-fold dilutions) was used to generate 25 test

solutions ranging in concentration from 3.2 mM to 0.32 microM.

Based on the results of a preliminary PTC paper-strip test, the

staircase procedure was started at a PROP concentration of

0.047 mM for PTC-tasters and 0.689 mM for non-tasters.

Between samples subjects rinsed their mouth three times with

milli-Q water. The staircase procedure was repeated after one

week to obtain a second measurement.

Determination of supra-threshold intensities
Supra-threshold taste intensities were determined using a general

labeled-magnitude scale (gLMS) procedure [36]. Prior to the first

tasting session subjects participated in a training session on the use of

the gLMS. In each of the tasting sessions subjects were presented with

solutions of PROP dissolved in milli-Q water at five concentrations

(3.2 mM, 1mM, 0.32 mM, 0.1 mM and 0.032 mM.) The five

samples, plus a control sample containing only water, were

presented in random order. Sample presentation in random order,

instead of presentation in order of increasing concentration, was

chosen to eliminate bias in intensity ratings. The sample size was

20 ml. Subjects tasted each sample separately using a sip-and-spit

protocol and rated the intensity of the taste sensation on a vertical

general labeled magnitude scale. Between samples subjects rinsed

their mouth three times with milli-Q water. Each subject performed

this gLMS test 3 times. The tests were spaced out over a period of

two weeks.

Preparation of phenotype data
The two repeats of the detection threshold determined by the

staircase method were log-transformed and then averaged. For

comparison purposes we also calculated other representations of

the detection threshold (see results section for more details).

For the gLMS data intensity ratings for a given PROP

concentrations were averaged for each subject and the averaged

rating for a specific concentration was used as the input phenotype

for GWA analysis.

Genotype-phenotype associations
Genotype-phenotype association analysis was performed with

in-house Matlab (The MathWorks, Inc., Natick, MA, USA) code

optimized for GWAS scenarios.

Population stratification and relatedness was assessed using the

ancestry principal components as previously described [23,24,37].

Input phenotypes were corrected for essential covariates via linear

regression. We used age, sex, body mass index and the first 10

principal components of the ancestry analysis as covariates. The

residuals from this regression, i.e. the corrected phenotype

parameters were then regressed against SNP allele dosage using

a linear, additive model.

Table 2. Panel Demographics.

male female total

# subj. 113 112 225

BMI avg.
/min/max

25.25/18.68/46.1 26.03/16.6/38.2 25.53/16.6/46.1

,15 0 0 0

15–20 8 7 15

20–25 55 48 103

25–30 40 34 74

30–35 6 16 22

35–40 3 7 10

.40 1 0 1

Age avg.
/min/max

30.98/18.34/45.89 34.85/20.38/46.39 32.81/18.34/46.39

,20 5 0 5

20–25 19 11 30

25–30 36 13 49

30–35 17 34 51

35–40 18 21 39

.40 18 33 51

Smoker 24 24 48

Non-smoker 89 88 177

doi:10.1371/journal.pone.0027745.t002
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Logistic regression was performed using the same set of

covariates. To determine the binary phenotype for logistic

regression, subjects were classified into PROP-tasters and non-

tasters according to their log-averaged detection threshold

determined via the staircase method.

Genomic control [25] was applied to the genome-wide p-values

to detect and correct for p-value inflation. If not noted otherwise,

the determined p-value inflation factors (lambda) indicated no

significant inflation and confirmed that possible population

stratification was sufficiently corrected via inclusion of the top 10

ancestry principal components as covariates.

A complete GWAS including, phenotype correction and

genomic control required less than 3 minutes of CPU time on

an 8 processor 2.3 GHz Xenon-based computer with 8 GB of

RAM running a RedHat implementation of Linux version 2.6.

Power-to-detect curves
Power to detect curves, for details see [38,39], were calculated

using the standard formula

power~1{W {
ffiffi
s
p : rffiffiffiffiffiffiffiffiffiffiffi

1{r2
p {W{1 !

2

� �� �

where r2 is the fraction of phenotypic variance explained by a

SNP, the normal cumulative distribution function, s the number

of subjects and a the significance threshold (set to 561028 for a

GWAS scenario).

Calculation of area under the curve phenotype from
gLMS data

To calculate the area-under-the-curve phenotype from our

gLMS data we averaged the three repeat measurements for each

concentration and then added those average scores across the 6

measured samples (i.e. 5 PROP concentrations plus water) to

obtain a representation of the ‘‘area’’ under the taste-intensity-vs.-

concentration curve. See figure 7 for an example of such a curve.

Supporting Information

Supporting Information S1 The file ‘‘genome_wide_p-value_

table’’ contains a list of p-values for associations to the PROP

detection threshold phenotype for ,7909000 SNPs that were

measured in our study. The SNPs have been quality controlled for

Hardy-Weinberg Equilibrium p-value (.1025), call rate (.95%),

q-score (.0.2) and minor allele frequency (.5%) and have

undergone correction for age, gender, BMI and genetic ancestry

principal components as well as genomic-control. Individual data

items are snp-identifier (e.g. rs number), chromosome number,

position on chromosome, and p-value. The data is organized with

one SNP per row and individual data items are separated by a

semicolon. Chromosome number and position are based on the

NCBI B36 build of the human genome.

(CSV)
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