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 27 

ABSTRACT 28 

Monocarboxylates have been implicated in the control of energy homeostasis. Among them, 29 

the putative role of ketone bodies produced notably during high fat diet (HFD) has not been 30 

thoroughly explored. In this study, we aimed to determine the impact of a specific rise in 31 

cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion 32 

of ketone bodies was performed on mice to stimulate sensitive brain areas during 6 or 12 33 

hours. At each time point, food intake and different markers of energy homeostasis were 34 

analyzed to reveal the consequences of cerebral increase in ketone bodies level detection. 35 

First, an increase in food intake appeared over a 12-hour period of brain ketone bodies 36 

perfusion. This stimulated food intake was associated with an increased expression of the 37 

hypothalamic neuropeptides NPY and AgRP as well as of phosphorylated AMPK and is due 38 

to ketone bodies sensed by the brain as blood ketone bodies levels did not change at that time. 39 

In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a 40 

dysregulation of glucose production and insulin secretion was observed after 6 hours of 41 

ketone bodies perfusion which reversed to normal at 12 hours of perfusion. Altogether, these 42 

results suggest that an increase in brain ketone bodies concentration leads to hyperphagia and 43 

a transient perturbation of peripheral metabolic homeostasis. 44 

Keywords: Energy homeostasis, Monocarboxylate transporters, β-hydroxybutyrate, Obesity, 45 

Glucose homeostasis 46 
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INTRODUCTION 49 

Dysfunction in both cerebral detection of nutrients and integration of circulating 50 

signals has been implicated in the pathogenesis of obesity and associated disorders (11). For 51 

this reason, numerous studies have explored the possible role of nutrient and endocrine 52 

sensing of hypothalamic brain areas and their involvement in energy homeostasis regulation 53 

(34). The most studied circulating energy substrate is glucose which represents a critical 54 

nutrient monitored by the brain. As the main energy source for brain cells, glucose also plays 55 

an important role in brain energy homeostasis (33). However, evidence have been provided 56 

showing that the brain can use alternative energy substrates. For instance, fatty acids and 57 

ketone bodies significantly contribute to fulfill brain energy needs under specific conditions 58 

(6, 13, 36). Despite the fact that it has been known for decades that cerebral ketone bodies 59 

utilization increases under particular metabolic conditions (13), central ketone bodies 60 

detection has been poorly studied.  61 

Under basal conditions, blood ketone bodies concentrations are low (< 0.3mmol/L) 62 

and their cerebral utilization is considered of little significance. However, ketone bodies 63 

levels are increased under conditions such as fasting, type I diabetes or obesity (13). The brain 64 

can use ketone bodies when their blood concentration reach ≈ 4 mmol/L, a value close to the 65 

Km of the monocarboxylate transporter MCT1 expressed on endothelial cells of cerebral blood 66 

vessels for ketone bodies (24, 31, 44). The brain ability to use ketone bodies varies from one 67 

brain area to another (12). Interestingly, the hypothalamus, which is a key player in brain 68 

sensing of metabolic signals, presents a higher ketone bodies metabolism than other brain 69 

areas (12). Thus, ketone bodies could be considered as a metabolic signal putatively sensed in 70 

the hypothalamus and participating in energy homeostasis control. Considering their 71 

importance for brain energetics in such circumstances, detection of their circulating levels by 72 

the brain might be quite important for homeostatic purposes, and putative defects could be 73 

involved in some metabolic disorders including obesity. 74 

So far, different approaches including direct ketone bodies infusion into the brain parenchyma 75 

(32), subcutaneous injection of ketone bodies (9, 32) or ketogenic diets (5, 16, 39, 45) have 76 

been used to try to uncover the role of ketone bodies in the regulation of food intake. 77 

However, these strategies bear some caveats as they either bypass the natural supply route, 78 

thus possibly affecting primarily other brain areas (intraparenchymal injection) or they act on 79 

other key organs for the regulation of whole body metabolism (liver, adipose tissue) and not 80 



exclusively on the brain (subcutaneous injection, ketogenic diets). Indeed, since ketone bodies 81 

are mainly produced in the liver, they must cross the blood-brain barrier in order to reach the 82 

brain and exert their central effects. ICV administration bypasses this physiological route. In 83 

addition, intraperitoneal injections or ketogenic diets affect peripheral organs as well. Finally, 84 

the direct central effect of ketone bodies sensing alone could not be investigated through these 85 

strategies, as ketone bodies are certainly sensed by other tissues. Altogether, these previous 86 

studies suggest an important role of ketone bodies detection (both at central and peripheral 87 

levels) in the regulation of energy homeostasis. However, they were not intended to decipher 88 

specifically the role of ketone bodies themselves in food intake control as many other 89 

parameters were modified in parallel such as fatty acid levels or blood glucose for instance. 90 

Consequently, as described in a recent review from Paoli et al., these different studies gave 91 

rise to contradictory results regarding orexigenic vs. anorexigenic effects (30). On one hand, a 92 

majority of the studies were performed through exposure to a ketogenic diet and seem to 93 

indicate that such diets are associated with decreased hunger and appetite reduction (16, 17, 94 

28, 29, 41, 42). Moreover, a recent study described a role of astrocytic ketone bodies and fatty 95 

acids as inhibitors of food intake during short-term high energy diet (23). In contrast, 96 

ketogenic diets have been shown to induce the activation of AMPK in brain which is 97 

associated with an increased food intake suggesting that brain sensing of ketone bodies could 98 

have a positive action on food intake behavior (27). Notwithstanding, ketogenic diets cause 99 

numerous peripheral effects and alter levels of other nutrients, making it impossible to reveal 100 

the unique role of ketone bodies in brain control of food intake.  101 

For these reasons, we investigated in this study the effect of a rise in central ketone 102 

bodies on body energy homeostasis. But in contrast to previous studies, we used for this 103 

purpose carotid-catheterized animals that were infused with ketone bodies toward the brain to 104 

mimic the normal passage via the circulation without significant changes in their 105 

concentration in the rest of the circulation and we recorded some of their behavioral and 106 

metabolic responses. 107 

MATERIAL and METHODS 108 

Animals 109 

C57BL6 male mice (8-weeks-old; Janvier) were individually housed in a controlled 110 

environment (12 h light/dark cycle, light on at 7:00 am, 22°C), with ad libitum access to food 111 

(Kliba Nafag standard diet # 3336, Kaiseraugst, Switzerland) and water. Ketone bodies 112 



infusion in unrestrained mice was done as described previously in rat and adapted for mice 113 

(26). Briefly, after pentobarbital anesthesia (50 mg/kg), a silicone tubing (internal diameter 114 

0.31 mm, external diameter 0.64 mm) was inserted in the right carotid and pushed 5 mm in 115 

the cranial direction. The catheter was led subcutaneously in the middle of the neck between 116 

the 2 blades and externalized for further connection to the infusion pump. Mice were then 117 

housed 1 week for surgical recovery, before starting the infusion experiments. During the 118 

experiments mice were connected to an external infusion pump and NaCl or BHB (adjusted 119 

pH at 7.4) was infused at 30 μL/h for either 6 or 12h. All procedures involving mice followed 120 

the European Communities Council Directive (86/609/EEC) and were approved by a local 121 

committee. 122 

 123 

Immunohistochemistry 124 

Anesthetized NPY-GFP mice were intra-cardiacally perfused with 10ml heparin-PBS 125 

(50U/ml) and 10ml of 4% paraformaldehyde. Brains were then removed and preserved in 126 

30% sucrose at 4°C, embedded in Tissue freezing medium (Jung, Nussloch, Germany) and 127 

frozen in dry ice before sectioning. Three sets of coronal sections (30µm thick) were cut on a 128 

cryostat (Leica Biosystems CM 3050S, Dusseldorf, Germany). After three PBS rinses 129 

sections were incubated 20 minutes at room temperature (RT) in 2% donkey normal serum 130 

(Sigma, Buchs, Switzerland) in PBS 0.3% Triton X-100. Sections were incubated with rabbit 131 

anti-MCT1 (1:500)(38) and goat anti-GFP (1:1000, SicGen, Carcavelos, Portugal) two days at 132 

4°C. After three PBS rinses, sections were incubated with secondary antibodies (Jackson 133 

ImmunoResaearch, Sulffolk, UK) anti-goat IgG(H+L) Cy3 (1:500) and anti-rabbit IgG Fab 134 

Alexa594 (1:500) for 150 minutes at room temperature. Sections were incubated two minutes 135 

in 1 µg/ml Hoechst 33342 (Invitrogen, Lucerne, Switzerland)) to label nuclei, mounted onto 136 

gelatin-coated glass slides and coverslip with Fluoromount (Sigma). Acquisitions and 137 

quantifications were performed on a laser confocal microscope (Zeiss LSM 700, Zeiss, 138 

Feldbach, Switzerland) with x40 and x63 objectives and using ZEN software.  139 

Feeding test 140 

Unrestrained mice were infused for either 6 or 12 hours with a solution of 50 mM DL-β-141 

Hydroxybutyric acid (BHB; Sigma, Buchs, Switzerland) at 30μL/h (Figure 1A). Such a 142 

concentration and rate allowed the animals to receive a dose of 20μg/h of BHB. This 143 

concentration represents the lowest concentration tested showing an impact on food intake but 144 



without inducing mouse sickness (determined by observing breathing difficulties and 145 

activity). The infusion started 5 hours after the beginning of the dark period to avoid the 146 

increased blood ketone bodies level normally induced during fasting periods and thus that 147 

could cause an increased ketone bodies concentration response during feeding periods as it 148 

likely occurs in obesity or type 1 diabetes. At 6 hours and 12 hours after the beginning of the 149 

perfusion, food intake was measured. At each time point, mice were sacrificed and 150 

hypothalamus, cortex, liver and blood were removed for further analysis. 151 

Pyruvate and Insulin tolerance tests 152 

Mice received an intraperitoneal pyruvate (2 mg/g) or insulin (0.5mU/g for Insulin Tolerance 153 

Test (ITT) or 2mU/g for Counter regulatory response) injection after 6h and 12h of ketone 154 

bodies infusion. Blood was collected from the tail vein at - 30, 0, 15, 30, 45, 60, 90, and 120 155 

min for determination of glucose levels. 156 

RNA extraction, reverse transcription and quantitative real time PCR 157 



Tissues were lysed and homogenized in 300μl of lysis buffer (RLT Buffer, Qiagen, Basel, 158 

Switzerland) using the Fast prep 24 lyzer (MPbio, Luzern, Switzerland) according to the 159 

manufacturer’s instructions. Total RNA was isolated on spin columns with silica-based 160 

membranes (RNeasy Mini Kit, Qiagen), following the manufacturer’s instructions. RNA was 161 

eluted with 30μl of H2O.  A small amount of purified RNA (200ng) was reverse transcribed in 162 

a volume of 50μl using the RT High Capacity RNA-to-cDNA Kit (Applied Biosystems, 163 

Rotkreuz, Switzerland). Synthesized cDNA was then stored at -20°C. Quantitative real-time 164 

PCR analysis was performed with the Applied Biosystems 7900 (Applied Biosystems) Real-165 

Time PCR System. The Taq polymerase master mix employed was the Power SYBR Green 166 

(Applied Biosystems). Primer sequences used for mRNA quantification were directed against 167 

NPY (Neuropeptide Y), AgRP (Agouti Related Protein), POMC (Pro-Opio MelanoCortin), 168 

CART (Cocaine and Amphetamine Related Transcript), BHBDH (β-Hydroxybutyrate 169 

Deshydrogenase), HMGcs2 (3-hydroxy-3-methylglutaryl-CoA synthase 2), PEPCK 170 

(Phosphoenolpyruvate CarboxyKinase), G6Pase (Glucose-6Phosphatase), as well as β−2-171 

microglobulin mRNA used as an endogenous control (primer sequences in Supplementary 172 

Table 1). Data were then analyzed with RQManager 1.2 software (Applied Biosystems) for 173 

relative quantitation. Relative quantitation (RQ) of gene expression was based on the 174 

comparative Ct method using the 2-ΔΔCT method. 175 

Blood analysis 176 

Insulin, (ultra-sensitive Elisa Kit, Millipore, Zug, Switzerland), glucagon (Glucagon RIA, 177 

Millipore), plasma lactate (The Edge analyser, Hasselt, Belgique), glucose (Benecheck plus 178 

Multi-monitoring system, Hasselt, Belgique) and ketone bodies concentration (D-β-179 

Hydroxybutyrate) (Free Style precision, Abbott, Baar, Switzerland) were measured after the 180 

injection at several time points using the indicated kit. Ketone bodies, lactate and glucose 181 

were measured at the end of the perfusion from blood taken from the tail vein. Insulin and 182 

glucagon were measured in blood taken from cardiac blood withdrawal, 183 

Liver glycogen measurement 184 

Briefly, 100mg of tissue stored at -80°C were homogenized in citrate buffer (NaF 50mM, 185 

Citric acid 100mM, pH 4.2) and then centrifuged at 5000g for 10 min at 4°C. Supernatant was 186 

removed, and 460μl were incubated with 40μl of a solution of amyloglucosidase 50U/ml 187 

(Sigma) diluted in sodium citrate buffer, while 460 μl were incubated with 40μl of sodium 188 

citrate buffer only. The tubes were shaken for 30min at 55°C. Then, 10μl of each sample were 189 



deposited in 96-well plates with 200μl of a RTU (Ready to Use) buffer (BioMerieux, Geneve, 190 

Switzerland), incubated at room temperature for 20min. The optical density was read at 191 

505nm by spectrophotometry. The difference between conditions with amyloglucosidase and 192 

conditions with buffer only represented the glycogen content of the liver sample. Glycogen 193 

was expressed as milligrams of glucose resulting from glycogen hydrolysis per gram of tissue. 194 

Western Blot analysis 195 

Proteins were separated with 10% SDS-PAGE. Antibodies against MCT1, MCT2, MCT4, 196 

and β-Tubulin were used. After transfer and blocking, membranes were probed in 1% nonfat 197 

milk prepared in TBS-T with 1/1,000 rabbit anti-MCT1, anti-MCT2 (38), 1/500 anti-MCT4 198 

(Santa Cruz, Heidelberg, Germany), 1/1000 for AMPK and pAMPK (Cell Signaling, 199 

Berverly, MA, USA) and 1/10000 rabbit anti-β-Tubulin (Cell Signaling, Berverly, MA, USA) 200 

overnight at 4°C. Specific band for each protein was detected using a goat anti-rabbit 201 

(1/10,000 in TBST-1X) peroxidase-conjugated secondary antibody (GE Healthcare, 202 

Piscataway, NJ, USA) incubated for 1 hour at room temperature. Bands were revealed with a 203 

chemiluminescence kit (BioRad, Reinach, Switzerland) and processed with a ChemiDoc XRS 204 

+ system (BioRad, Reinach, Switzerland) for densitometry analysis. 205 

Electrophysiology 206 

Brain slices (250μm) were prepared from adult NPY-GFP mice (6-8 weeks old) as previously 207 

described (7). Slices were incubated at room temperature (RT), in oxygenated extracellular 208 

medium containing (in mM): 118 NaCl, 3 KCl, 1 MgCl2, 25 NaHCO3, 1.2 NaH2PO4, 1.5 209 

CaCl2, 5 Hepes, 2.5 D-glucose (osmolarity adjusted to 310mOsM with sucrose, pH 7.3) for a 210 

recovery period (at least 60minutes). Once in the recording chamber, slices were perfused at 211 

2-3 ml/min with the same extracellular medium. Slices were viewed with a Nikon microscope 212 

(EF600) outfitted for fluorescence (fluorescein filter) and IR-DIC (Infrared-Differemcial 213 

interference contrast) videomicroscopy. Viable arcuate NPY neurons were visualized using a 214 

X60 water immersion objective (Nikon) with a fluorescence video camera (Nikon). 215 

Borosilicate pipettes (4-6MΩ; 1.5mm OD, Sutter Instrument) were filled with filtered 216 

extracellular medium. Cell-attached recordings were made using a Multiclamp 700B 217 

amplifier, digitized using the Digidata 1440A interface and acquired at 3kHz using pClamp 218 

10.3 software (Axon Instruments). Pipettes and cell capacitances were fully compensated. 219 

After a stable baseline was established, BHB (5mM) was perfused for 10minutes. The firing 220 



activity was measured over the last minute of the BHB perfusion and compared with the firing 221 

rate measured 1 min before the perfusion. 222 

Statistical analysis 223 

Results are presented as mean ± SEM. Statistical analysis was performed using Prism 6.01. 224 

Normality was tested with the Kolmogorov-Smirnov test. Depending of the result of the 225 

normality test, an unpaired Student t-test or an unpaired t-test with Welch’s correction (when 226 

equal variance was not assumed) was used. Significant differences are indicated as *, **, or 227 

*** on graphic representations for p values < 0.05, 0.01, or 0.001, respectively. 228 

RESULTS 229 

Food intake and hypothalamic neuropeptide mRNA expression in mice with intracarotid 230 

infusion of β-hydroxybutyrate (BHB).  231 

Food intake measurement shows a significant increase in the amount of pellets ingested after 232 

6 and 12 hours of intracarotid infusion in mice receiving β-hydroxybutyrate compared to 233 

those receiving NaCl (1.06 ± 0.07g for the NaCl group vs. 1.32 ± 0.08g for the BHB group at 234 

6h, p=0.016; 1.40 ± 0.09g for the NaCl group vs 1.62 ± 0.10g for the BHB group at 12h, 235 

p=0.047) (Figure 1B). Moreover, a closer analysis of the first 6 hours of infusion reveals that 236 

food intake began to be significantly stimulated only after 4 hours of infusion in the BHB 237 

group compared to NaCl infused mice (0.47 ± 0.04g for the NaCl group vs. 0.70 ± 0.09g for 238 

the BHB group at 4h, p=0.025; 0.77 ± 0.05g for the NaCl group vs. 1.04 ± 0.10g for the BHB 239 

group at 5h, p=0.020) (Figure 1C). Interestingly, circulating ketone bodies levels remained 240 

unchanged at 6 hours (0.33 ± 0.03mM in NaCl group vs 0.42 ± 0.03mM in BHB group, n=15 241 

in each group, p=0.026) while it increased at 12 hours, demonstrating that the effect observed 242 

at 6 hours can be due only to ketone bodies acting at the cerebral level (Figure 1E). In 243 

accordance with food intake stimulation, the measurement of the pAMPK/AMPK ratio shows 244 

an increased activation at 6 hours only (0.11 ± 0.03 a.u. for the NaCl group vs.  0.29 ± 0.05 245 

for the BHB group at 6h, p = 0.009) (Figure 1D. Analysis of the mRNA levels of the 246 

hypothalamic neuropeptides involved in food intake regulation revealed an increase for the 247 

orexigenic neuropeptide NPY (1.0 ± 0.07 a.u. for the NaCl group vs. 1.46 ± 0.18 a.u. for the 248 

BHB group at 6h, p = 0.029; 1.0 ± 0.08 a.u. for the NaCl group vs. 1.71 ± 0.21 a.u. for the 249 

BHB group at 12h, p = 0.012) (Figure 1F) and AgRP (1.0 ± 0.09 a.u. for the NaCl group vs 250 

2.12 ± 0.33 a.u. for the BHB group at 6h, p = 0.005; 1.0 ± 0.08 a.u. for the NaCl group vs. 251 



1.63 ± 0.20 a.u. for the BHB group at 12h, p = 0.005) (Figure 1G). In contrast, mRNA 252 

expression of the antagonistic (and thus anorexigenic) neuropeptides POMC and CART were 253 

not altered during BHB infusion (Figure 1H and 1I, respectively). 254 

MCT1 expression in hypothalamic orexigenic NPY neurons and their acute 255 

electrophysiological response to BHB exposure in vitro. 256 

Interestingly, the presence of MCT1 on some hypothalamic neurons had been reported 257 

previously (1). However, the precise identity of these neurons (e.g. orexigenic vs. 258 

anorexigenic) was not provided in that study. Given our aforementioned results, it was 259 

hypothesized that hypothalamic NPY neurons could express MCT1. Immunohistochemistry 260 

performed on brain sections of NPY-GFP mice shows that almost 50 % of NPY neurons were 261 

MCT1 positive (Figure 2A-E). Surprisingly however, measurements of the 262 

electrophysiological activity of arcuate NPY neurons did not reveal any direct modulation in 263 

response to short-term BHB exposure (Figure 2F and 2G). 264 

Metabolic characteristics after 6 hours of BHB infusion 265 

First, different blood parameters were measured and a twofold increase in insulin level was 266 

evidenced (2.20 ± 1.20 ng/mL for the NaCl group vs 5.02 ± 2.39 ng/mL for the BHB group, p 267 

= 0.01, n = 8 NaCl and 6 BHB infused mice) (Figure 3A). Despite such an increase in insulin 268 

levels, blood glucose concentration remained unaffected in the BHB group (Figure 3B) while 269 

blood lactate level was enhanced (Figure 3C). To test whether this apparent normoglycemia 270 

despite an increased insulin level could be due to decreased insulin sensitivity, an insulin 271 

tolerance test was performed. However, the results shows that BHB infused mice exhibited 272 

instead a higher sensitivity to insulin as shown by the lower glucose concentration induced by 273 

insulin injection (Figure 3D) (Area Under Curve (AUC) of 38.76 ± 2.86 for the NaCl group 274 

vs 29.19 ± 1.80 for the BHB group, n = 7 for each group, p = 0.02, (Figure 3D, upper panel)). 275 

These results rather suggested a putative defect in the counter-regulatory response to 276 

hypoglycemia, i.e. of the glucagon release in response to hypoglycemia induced by an insulin 277 

load. Indeed, glucagon concentrations were found to be much lower in BHB infused mice 278 

compared to the control group at 60 minutes after the insulin induced hypoglycemia (532 ± 88 279 

ng/L for the NaCl group vs 134 ± 50 ng/L for the BHB group, n=6 for each group, p = 0.003) 280 

(Figure 3E). 281 



As blood glucose level could also be influenced by neoglucogenesis, a pyruvate tolerance test 282 

was performed and results showed it was reduced in BHB infused mice (Figure 3F) (AUC  of 283 

54.50 ± 3.34 for the NaCl group vs 44.27 ± 2.82 for the BHB group, n=5 for each group, 284 

p=0.047, (Figure 3F, upper panel)). In accordance, mRNAs of the main enzymes involved in 285 

neoglucogenesis, PEPCK and G6Pase, were both decreased in the liver, one of the major sites 286 

of neoglucogenesis (1.00 ± 0.27a.u for the NaCl group vs 0.29 ± 0.03 for the BHB group, 287 

n=10 for each group, p=0.017 for PEPCK and 1.00 ± 0.19 a.u for the NaCl group vs 0.50 ± 288 

0.08a.u for the BHB group, n=10 for each group, p=0.026 for G6Pase, (Figure 3G and H)). 289 

Moreover, the observed increase in lactate level (47.67 ± 3.49 mg/dL for the NaCl group vs 290 

59.50 ± 4.25 mg/dL for the BHB group, n=27 NaCl and 28 BHB mice, p=0.037) could be a 291 

consequence of decreased gluconeogenesis (Figure 3C). Another possible contributor to blood 292 

glucose level is hepatic glycogen. Indeed, reduced glycogen levels were found in the BHB 293 

group compared to the control group  (14.60 ± 1.39 µg/mg tissue for the NaCl group vs 9.59 ± 294 

1.11 µg/mg tissue for the BHB group, n=11 for each group, p=0.011), suggesting the putative 295 

involvement of hepatic glycogenolysis in the maintenance of glucose homeostasis for BHB 296 

infused animals (Figure 3I). 297 

Metabolic characteristics after 12 hours of BHB infusion 298 

The same metabolic evaluation was performed after 12 hours of BHB infusion. Interestingly, 299 

it was found that all the parameters measured at 12 hours of BHB infusion were normalized in 300 

BHB infused mice to the levels of the control group. Thus, glycemia, insulinemia and 301 

lactatemia were not significantly different, and the same was true for the insulin tolerance 302 

(Figure 4A-D). As expected, the counter-regulatory response to hypoglycemia shows a 303 

normal glucagon release in response to hypoglycemia (Figure 4E). Finally, the pyruvate 304 

injection led to a similar neoglucogenic response in BHB and NaCl infused mice (Figure 4F). 305 

In accordance, G6Pase and PEPCK mRNA levels were similar, suggesting a normalized 306 

endogenous glucose production, which is confirmed by a similar liver glycogen content 307 

(Figure 4G-I) and a normalized blood lactate level (Figure 4C). 308 

Hypothalamic and cortical MCT expression as well as hepatic and hypothalamic ketogenesis 309 

after BHB infusion 310 

To verify if exposure to BHB alters the capacity of brain cells to take up and use ketone 311 

bodies, the expression of the three main cerebral MCTs (MCT1, MCT2 and MCT4) was 312 

assessed after either 6 or 12 hours of BHB infusion in both the hypothalamus and cortex. 313 



Expression levels of MCTs remained unchanged in both hypothalamic and cortical areas at 6 314 

and 12 hours of infusion (Figure 5). Then, the impact of cerebral BHB infusion on 315 

ketogenesis was evaluated. The expression levels of enzymes involved in ketogenesis (HMG 316 

Cs2) or ketone bodies utilization (BHBDH) in both liver and hypothalamus were determined, 317 

no significant changes were detected after 6 hours of BHB infusion (Figure 6A-D). At 12 318 

hours of BHB infusion, hypothalamic HMG Cs2 mRNA levels were increased (1.00 ± 0.10 319 

a.u for the NaCl group vs 1.87 ± 0.29a.u for the BHB group, n=9 for each group, p=0.013), 320 

without any other significant modification in the liver or for BHBDH mRNA in either the 321 

hypothalamus or the liver (Figure 6A-D). 322 

DISCUSSION 323 

Monocarboxylates which include short chain fatty acids and ketone bodies have been 324 

shown to undergo some alterations during obesity development (4, 22, 23, 43). However, 325 

mechanisms by which they could be implicated in the pathophysiology of obesity have 326 

remained elusive. Nonetheless, it was postulated that ketone bodies could be involved in the 327 

regulation of food intake and in the control of energy homeostasis. Thus, in this study β-328 

Hydroxybutyrate was infused via the carotid to examine the specific role of this 329 

monocarboxylate through its direct and limited action within the central nervous system in the 330 

regulation of food intake and energy homeostasis control. 331 

Cerebral ketone bodies perfusion enhances food intake and hypothalamic orexigenic 332 

peptide expression 333 

To test this hypothesis, β-Hydroxybutyrate (BHB; 20μg/h) was infused through the 334 

carotid for either 6 or 12 hours in order to stimulate brain areas involved in the control of 335 

energy homeostasis located primarily in the hypothalamus. The dose chosen (20μg/h) was 336 

determined after different concentrations were tested ranging from 2 to 200 μg/h. A dose of 337 

20μg/h most likely represents a high concentration compared to the concentration measured in 338 

fasting conditions. However, as the infusion is performed through the right carotid, the final 339 

concentration actually permeating the brain will be diluted by the blood coming from the left 340 

carotid and the vertebral arteries. In addition, as the rate of infusion is very low (30 µl/h) 341 

compared to the carotidic blood flow (0.75 mL/min), the real BHB concentration reaching the 342 

targeted brain areas should be much lower than the concentration perfused, although it can not 343 

be estimated precisely. As ketogenesis occurs during the fasting period, experiments begun 344 



during the dark period 5 hours after light off to prevent the physiological increased in ketone 345 

bodies level (10).  346 

Our main goal was to study the effect of ketone bodies detection by the brain, 347 

independently of possible peripheral effects. Furthermore, ketone bodies concentration 348 

increases during high fat diet as well as during fasting. These two metabolic conditions are in 349 

opposition in regard to the energy needs, but both are associated with increased food intake. 350 

Thus, ketone bodies could be an important signal involved in food intake stimulation. To test 351 

this hypothesis a constant cerebral infusion of ketone bodies was administered to determine 352 

their direct involvement in food intake control. Mice infused with BHB exhibited a significant 353 

increase in food intake after 6 hours. However, the stimulation of food intake only appears 354 

between 3 and 6 hours. Thereafter, Control and BHB mice ate the same amount of food 355 

without compensation which led to the significant difference in food intake observed at 12 356 

hours. (Figure 1B). The enhancement in food intake becomes significant only after 4 hours of 357 

BHB infusion, indicating a delayed effect (Figure 1C). A similar delay in the effect of ketone 358 

bodies was previously described in an hypothalamic cell line in which AMPK and mTOR 359 

phosphorylation increased only after 4 hours of incubation with BHB (20), thus providing a 360 

putative molecular mechanism for the BHB effect on food intake. Moreover, these authors 361 

reported that activation of these cells by BHB only occurs in high glucose conditions (20). 362 

Thus, increased glucose oxidation induces an increase in ATP production that in turn leads 363 

first to a decrease in AMPK phosphorylation (AMPKp). This would be consistent with our in 364 

vivo model since the experiments were performed 5 hours after the start of the mouse feeding 365 

period which represents the period when mice eat the most (and thus should have the highest 366 

circulating blood glucose levels). Indeed, analysis of the phosphorylated/nonphosphorylated  367 

AMPK ratio shows such a cyclic activation at 6h which is reversed at 12h (Figure 1D). 368 

Subsequently, as BHB is shown to decrease glucose uptake, a resulting decrease of ATP 369 

production would ensue and lead to a delayed increase in AMPKp only after the 4 hours 370 

infusion (35). Finally, the normalized levels of pAMPK observed at 12h could participate to 371 

the normalized food intake during the 6-12h period of measurements confirming a putative 372 

biphasic effect. 373 

These results contrast with those recently reported by Le Foll et al. (23). Indeed, in this 374 

study, the authors described an inhibition of food intake attributed to ketone bodies. However, 375 

as they used a different model involving rats on a high fat diet, the increase in circulating fatty 376 

acids associated with such a diet (in addition to ketone bodies) could contribute to the 377 



differential observation. In addition, as presented by the authors, the results described seem to 378 

be due to central astrocytic ketogenesis induced by fatty acid oxidation. In our case, mice 379 

were used as an animal model and we can not exclude a species difference. In addition, as we 380 

chose to directly infuse ketone bodies at a high concentration, the concentration reached in the 381 

brain could be too elevated to reflect a physiological effect. Moreover, our results mostly 382 

suggest that peripheral ketone bodies supply alone could lead to increased food intake but the 383 

concomitant presence of elevated circulating fatty acids (as would occur physiologically on a 384 

high fat diet) could modulate the response to elevated ketone bodies alone. Another aspect is 385 

that the origin of ketone bodies production (central astrocytes vs. peripheral hepatocytes) may 386 

make a difference as astrocytes, which can modulate neuronal functions, could have seen such 387 

a modulatory role influenced by exposure to high ketone bodies levels. Thus, further 388 

investigations are needed to clarify the role of central vs. peripheral ketogenesis. Finally, the 389 

differences found in the previous study from Le Foll et al. and ours could also be due to 390 

differences in exposure timescales As we investigated short-term (12 hours) infusion of 391 

ketone bodies alone to determine the single effect of ketone bodies vs. three days of a high fat 392 

diet inducing an increase in both ketone bodies and fatty acids for the study of Le Foll et al., 393 

the different results obtained could reflect biphasic effects of ketone bodies on food intake 394 

regulation and/or a role of fatty acids overriding the ketone bodies effect. Notably, our results 395 

would be consistent with a rapid, short-term effect as food intake stimulation mostly take 396 

place within the first six hours of perfusion. A more prolonged cerebral infusion should be 397 

performed in the future to clearly determine if such a biphasic effect occurs. 398 

Since the carotid infusion of BHB most likely affects, among others, brain regions 399 

such as the hypothalamus, a well-known center for energy homeostasis regulation (2), the 400 

mRNA levels of the main neuropeptides involved in food intake control were assessed. An 401 

increase in the expression of the orexigenic neuropeptides NPY and AgRP was observed 402 

(Figure 1F and 1G), without any significant modification in the anorexigenic neuropeptides 403 

POMC and CART (Figure 1H and 1I) after both 6 and 12 hours of BHB infusion. Such an 404 

overexpression of orexigenic neuropeptides induced by ketone bodies had been previously 405 

described both in vitro in the hypothalamic GT1-7 cell line and in vivo in diabetic rats (14, 406 

20). However, it is demonstrated here that ketone bodies stimulate orexigenic neuropeptide 407 

mRNA expression also under physiological conditions in vivo. This result confirms that 408 

ketone bodies can stimulate directly the orexigenic neurocircuits in vivo.  409 



A large subpopulation of hypothalamic NPY neurons expresses the transporter 410 

MCT1 411 

Ketone bodies are transported in and out of cells by a small group of proteins known 412 

as monocarboxylate transporters or MCTs. MCT1 is the first identified member of this group 413 

and exhibits a large distribution in the body as well as among brain cells (37). Interestingly, 414 

the presence of MCT1 on some hypothalamic neurons had been reported previously (1). 415 

However, the precise identity of these neurons (e.g. orexigenic vs. anorexigenic) was not 416 

provided in that study. Given our aforementioned results, it was hypothesized that 417 

hypothalamic NPY neurons could express MCT1. Immunohistochemistry performed on brain 418 

sections of NPY-GFP mice shows that almost 50% of NPY neurons were MCT1 positive 419 

(Figure 2A-E). As reported previously(34), brain capillaries (like here in the hypothalamus) 420 

strongly express MCT1, a situation which would facilitate the entry of ketone bodies in the 421 

brain parenchyma, notably for use as alternative energy fuel by brain cells. In the 422 

hypothalamus, NPY neurons expressing MCT1 could be responsible for the enhanced 423 

orexigenic activity following BHB infusion by exhibiting a direct sensitivity to circulating 424 

ketone bodies. Recently, a mouse model haploinsufficient for MCT1 displaying a resistance 425 

to diet-induced obesity and altered food intake has been described, suggesting an important 426 

role for monocarboxylates in the regulation of body weight and energy homeostasis regulation 427 

(25). Based on the immunocytochemical data presented here, it is postulated that a 428 

subpopulation of hypothalamic neurons would be sensitive to circulating ketone bodies and 429 

could be responsible for the regulation of food intake which appears altered in 430 

haploinsufficient MCT1 mice. 431 

Surprisingly, measurements of the electrophysiological activity of arcuate NPY 432 

neurons did not reveal any direct modulation in response to BHB (Figure 2F and 2G). In 433 

contrast, a recent study showed using calcium imaging that hypothalamic neurons are 434 

activated by an increase in BHB concentration (23). However, in this study the authors did not 435 

characterize the specific phenotype of these neurons. In our study, BHB failed to alter the 436 

electrophysiological activity of all NPY neurons tested. Such an absence of 437 

electrophysiological response from these neurons to ketone bodies could be due to the short 438 

duration of exposure and measurement used in our experiment (10 minutes). Indeed, as 439 

described above, the stimulatory effect of BHB on food intake only appears after 4 hours of 440 

treatment. The same time course was also described for the response in vitro (20). Thus, an 441 

acute exposure of brain slices to BHB might not be sufficient to observe any long-term 442 



changes in electrophysiological activity. In addition, the denervation of NPY neurons in slices 443 

could also explain the lack of response observed upon application of BHB.  Removal of 444 

inhibition of this population would lead to such a high spontaneous firing rate that it would 445 

make BHB-induced changes undetectable. Nevertheless, despite the orexigenic effect of 446 

ketone bodies observed here and the lack of effect on POMC mRNA expression, we can not 447 

exclude a putative action on POMC neurons that needs to be further explored. 448 

Cerebral ketone bodies perfusion causes a transient rise in insulin level and a 449 

decrease in hepatic gluconeogenesis 450 

Circulating insulin levels were significantly elevated after 6 hours of cerebral BHB 451 

perfusion (Figure 3A) while blood glucose was not altered in such a condition compared to 452 

control mice (Figure 3B). As insulin is known to inhibit food intake when infused in the 453 

hypothalamus (40), an eventual brain response to insulin seems counterbalanced by the direct 454 

central action of ketone bodies. Ketone bodies, by inducing insulin secretion and stimulating 455 

food intake at the same time, appear to have an antagonistic role in central energy 456 

homeostasis regulation. A possible explanation could be through a redox signaling 457 

mechanism. Indeed, food intake inhibition by insulin was shown to involve an increase of 458 

reactive oxygen species production in the hypothalamus (15). In contrast, ketone bodies were 459 

shown to reduce reactive oxygen species production in neurons by acting on mitochondrial 460 

function (18). Thus, cerebral infusion of ketone bodies could interfere with insulin signaling 461 

leading to food intake inhibition by preventing reactive oxygen species production in 462 

hypothalamic neurons. 463 

As these observations suggested the possible early development of an insulin 464 

resistance, an insulin tolerance test was performed on mice after 6 hours of BHB perfusion. 465 

Surprisingly, results rather revealed a more sensitive response to insulin in these animals 466 

(Figure 3D). One possible explanation for the enhanced reduction in glucose concentration 467 

obtained during the insulin tolerance test is an alteration of counter-regulatory responses to 468 

hypoglycemia. Indeed, when the counter-regulation was evaluated following an important 469 

insulin injection, lower levels of glucagon were observed after 6 hours of cerebral BHB 470 

perfusion compared to control animals (Figure 3E). Interestingly, this reduced glucagon 471 

release is observed at 60 minutes after insulin injection, a time when glucose concentration 472 

rises to normal values in control animals. Such an observation strongly suggests that insulin 473 

sensitivity is not altered but that counter-regulatory response is missing. This response 474 



obtained with BHB is similar to the inhibited counter-regulation observed with central 475 

application of lactate (also carried by the MCTs) (3). It is important to notice, as a counter-476 

regulatory response normally occurs in a decreased energy availability condition, that results 477 

here seems contradictory with the food intake stimulation observed in parallel. However, it is 478 

likely that different neuronal populations are involved in these responses. Indeed, if food 479 

intake control is regulated by NPY neurons in the arcuate nucleus, the counter-regulatory 480 

response is suggested to be regulated at the level of the ventromedial nucleus, another 481 

hypothalamic nucleus (8). However, in view of such contradictory observations, further 482 

investigations will be required to determine the precise mechanisms involved. 483 

To further explore the impact of counter-regulation, a pyruvate tolerance test was 484 

performed on mice after 6 hours of BHB perfusion. A reduced hepatic gluconeogenesis was 485 

revealed in animals after 6 hours of BHB perfusion compared to control animals as evidenced 486 

by lower circulating glucose levels obtained following pyruvate injection (Figure 3F). In 487 

accordance with reduced hepatic gluconeogenesis, a reduction in the mRNA expression of 488 

Glucose-6-Phosphatase (G6Pase; Figure 3H) and Phosphoenolpyruvate carboxykinase 489 

(PEPCK; Figure 3G) was evidenced in the liver of animals perfused with BHB compared to 490 

controls. In parallel, it was observed that blood lactate level was enhanced while liver 491 

glycogen levels were reduced in mice perfused with BHB. As G6Pase is common to 492 

gluconeogenesis and glycogenolysis, which classically leads to glucose release, it appears in 493 

our case that the observed glycogen breakdown would not lead to glucose release but rather to 494 

a glycolytic processing of glucose residues arising from glycogen. In other words, the 495 

observed glycogen degradation would lead to a hepatic lactate production, thus explaining the 496 

increased lactate level, reinforced by the decreased gluconeogenesis which would prevent 497 

hepatic lactate utilization and rather promote circulating lactate accumulation. Such an effect 498 

could be the consequence of elevated insulin levels and sensitivity as hyperinsulinemia was 499 

previously shown to inhibit hepatic gluconeogenesis (19) 500 

In contrast to the observation made after 6 hours, insulin level was no longer altered 501 

after 12 hours of BHB perfusion (Figure 4A) while blood glucose level was still normal 502 

(Figure 4B). Similarly, the insulin tolerance test showed that insulin sensitivity was not 503 

different between BHB infused animals and control animals (Figure 4D). When the counter-504 

regulatory response was evaluated, again no difference in glucagon levels (Figure 4E) was 505 

detected. The pyruvate tolerance test did not reveal any difference in gluconeogenesis (Figure 506 

4F) after 12 hours of BHB perfusion. In the liver, both G6Pase and PEPCK mRNA levels 507 



were the same between control and BHB infused mice (Figure 4G and H). In parallel, both 508 

circulating lactate concentration and hepatic glycogen levels were similar for control and 509 

BHB infused mice, thus confirming that after 12 hours of BHB perfusion, all parameters 510 

returned to normal levels. These data underline the transient nature of the changes induced by 511 

central ketone bodies infusion, despite a constant exposure to them, suggesting some forms of 512 

central desensitization or habituation. Since it was previously shown that the level of 513 

expression of all three cerebral MCT isoforms was modified as a consequence of obesity (36), 514 

a possible effect of cerebral BHB perfusion on MCT expression either in the hypothalamus or 515 

in the cortex was investigated. The results obtained at the protein level for MCT1, 2 and 4 did 516 

not reveal any modification of expression following the infusion of BHB neither in the 517 

hypothalamus nor in the cortex (Figure 5). This result is not surprising when considering that 518 

it took several weeks of high fat diet to observe a significant enhancement in the cerebral 519 

expression of MCTs (25). Nevertheless, our results suggest that hypothalamic (and cortical) 520 

ketone bodies transport is not altered during this relatively short cerebral exposure to ketone 521 

bodies, although we can not exclude a hypothetic posttranslational modification of the 522 

transporters. 523 

As the hypothalamus represents a key brain region for the regulation of body energy 524 

homeostasis, several peripheral metabolic markers were analyzed to further determine the 525 

impact of cerebral BHB infusion on peripheral metabolism. Hence, the concentration of 526 

several circulating metabolites and hormones was measured. First of all, ketone bodies 527 

concentration measured after 6 hours of central BHB perfusion was not modified compared to 528 

controls, indicating that the observed effects are due to the exogenous cerebral BHB infusion 529 

(Figure 1E). At 12 hours of BHB infusion, an increase in ketone bodies concentration was 530 

detected (Figure 1E). However, mRNA expression levels for HMG CoA synthase, the rate 531 

limiting enzyme involved in ketogenesis, did not show any alteration in the liver (the main 532 

ketogenic organ (21)) (Figure 6B). Thus, the elevated circulating ketone bodies level observed 533 

after 12 hours of BHB infusion is most likely due to BHB accumulation in the systemic 534 

circulation following carotid infusion for such an extended period. More surprisingly, HMG 535 

CoA synthase mRNA levels increased in the hypothalamus after 12 hours but not after 6 536 

hours of cerebral BHB perfusion (Figure 6C). In parallel, mRNA expression levels for 537 

BHBDH (the essential enzyme for ketone bodies utilization) were analyzed but no 538 

modification was observed at any time point neither in the liver nor in the hypothalamus 539 

(Figure 6D and 6E). Since the rate-limiting enzyme for ketone bodies synthesis is not affected 540 



at 6 hours, it suggests that the increased food intake (which is significant already at 6 hours) is 541 

dependent on the exogenous ketone bodies infusion and not on hypothalamic ketogenesis. In 542 

addition, these results do not support a local or global decrease in ketone bodies utilization. 543 

Thus, the most likely explanation for the measured increased ketone bodies concentration 544 

remains a consequence of the carotid-infused BHB on the global blood concentration. Brain 545 

ketogenesis can only produce low concentrations of ketone bodies as measured in a recent 546 

study in the VMH in which the authors measured a concentration of ~ 20 μM when the blood 547 

concentration can be up to 300 μM(23). It can be concluded that such a small local VMH 548 

production is unlikely to contribute significantly to the increased circulating ketone bodies 549 

observed in mice after 12 hours of BHB perfusion.   550 

To summarize, this study provides evidence that the simulated elevated cerebral 551 

ketone bodies concentration induces specific brain responses that lead to a transient increase 552 

in food intake and peripheral energy metabolism alterations. These modifications include 553 

decreased hepatic glucose production after glycogen hydrolysis. Thus, ketone bodies sensed 554 

by the brain seem to represent an energetic stress signal that leads to energy intake in order to 555 

maintain physiological functions. It is accompanied by transient peripheral metabolic 556 

responses triggered via the hypothalamus since the observed phenotype is reversed if the BHB 557 

infusion lasts up to 12 hours (Figure 7). In conclusion, we demonstrate here that ketone bodies 558 

represent an important signal that leads to energy preservation and supply as they stimulate 559 

adaptive responses to compensate for a perceived energy deficit. 560 
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 698 

FIGURE LEGENDS 699 

Figure 1. Effect of intracarotid BHB infusion on food intake as well as on orexigenic and 700 

anorexigenic hypothalamic neuropeptide mRNA expression. (A) Schematic representation 701 

of time course procedures for experiments. (B) Food intake determined at 6h and 12h of NaCl 702 

or BHB infusion by substracting the weight of food pellet remaining at that time from the 703 

weight of food provided at the start of the experiment. (C) Food intake determined each hour 704 

during the 6 first hours of NaCl or BHB infusion by substracting the weight of food pellet 705 

remaining at that time from the weight of food provided at the start of the experiment. (D) 706 



Hypothalamic AMPKp/AMPK protein expression ratio at 6h and 12h in mice infused with 707 

either NaCl or BHB. Upper panels show bands from representative samples chosen from the 708 

western blots of all samples run in parallel and rearranged to appear side-by-side. Lower panel 709 

provides the quantification of AMPKp/AMPK ratio. (E) Blood Ketone bodies concentration 710 

at 6h and 12h in mice infused with either NaCl or BHB (F) NPY mRNA expression at 6h and 711 

12h in mice infused with either NaCl or BHB (G) AgRP mRNA expression at 6h and 12h in 712 

mice infused with either NaCl or BHB (H) POMC mRNA expression at 6h and 12h in mice 713 

infused with either NaCl or BHB (I) CART mRNA expression at 6h and 12h in mice infused 714 

with either NaCl or BHB. mRNA expression for each hypothalamic peptide was determined 715 

by quantitative reverse transcriptase–PCR at 6h, 12h and 24h of NaCl or BHB infusion. n = 8-716 

24 animals per condition and were statistically analyzed with unpaired Student t-test (with 717 

Welch’s correction for NPY 6h and 12h, as well as for AgRP 6h and 12h). a.u., arbitrary 718 

units.  719 

Figure 2. Immunocolocalization of the MCT1 transporter on NPY neurons and 720 

electrophysiological response of NPY neurons to BHB (A) Immunohistochemistry in 721 

hypothalamic arcuate nucleus for MCT1 (red) and NPY neurons (green). (B) (C) and (D) 722 

Higher magnification of the selection in panel A. NPY neurons are in green (B), MCT1 723 

appears in red (C) and colocalization is indicated by arrows in panel D. (E) Representative 724 

orthogonal projection of an NPY neuron expressing MCT1. NPY-GFP mice were used for the 725 

labeling of the NPY neurons. N=3 mice analyzed (4slices per mice). (F) Whole-cell current-726 

clamp recordings of ARC NPY neurons as extracellular BHB concentration is altered. 727 

Increased BHB had no effect on electrical activity of NPY neurons. (G) Quantification of 728 

action potential frequency. n = 9 NPY neurons recorded from 4 male mice and were 729 

statistically analyzed with an unpaired Student t-test.  730 

Figure 3. Effect of intracarotid BHB infusion on circulating nutrients and key metabolic 731 

hormone concentrations at 6h BHB infusion. (A) Insulin at 6h in mice infused with either 732 

NaCl or BHB (B) Blood Glucose level at 6h in mice infused with either NaCl or BHB (C) 733 

Blood Lactate level at 6h in mice infused with either NaCl or BHB (D) Intraperitoneal insulin 734 

tolerance test performed at 6h of BHB infusion, and Area under curve of plasma glucose 735 

levels during ITT. (E) Glucagon levels 60min following an insulin induced hypoglycemia. (F) 736 

Intraperitoneal pyruvate tolerance test performed at 6h of BHB infusion, and Area under 737 

curve of plasma glucose levels during the pyruvate tolerance test.  (G) Liver PEPCK mRNA 738 

expression at 6h in mice infused with either NaCl or BHB. (H) Liver G6Pase mRNA 739 



expression at 6h in mice infused with either NaCl or BHB.  (I) Liver Glycogen content 740 

determined as the glucose produced by glycogen hydrolysis at 6h in mice infused with either 741 

NaCl or BHB. n = 8-24 animals per condition and were statistically analyzed with an unpaired 742 

Student t-test. a.u., arbitrary units. 743 

Figure 4. Effect of intracarotid BHB infusion on circulating nutrients and key metabolic 744 

hormone concentrations at 12h BHB infusion. (A) Insulin at 12h in mice infused with 745 

either NaCl or BHB (B) Blood Glucose level at 12h in mice infused with either NaCl or BHB 746 

(C) Blood Lactate level at 12h in mice infused with either NaCl or BHB (D) Intraperitoneal 747 

insulin tolerance test performed at 12h of BHB infusion, and Area under curve (AUC) of 748 

plasma glucose levels during ITT. (E) Glucagon levels 60min following an insulin induced 749 

hypoglycemia. (F) Intraperitoneal pyruvate tolerance test performed at 6h of BHB infusion, 750 

and Area under curve of plasma glucose levels during the pyruvate tolerance test.  (G) Liver 751 

PEPCK mRNA expression at 12h in mice infused with either NaCl or BHB. (H) Liver 752 

G6Pase mRNA expression at 12h in mice infused with either NaCl or BHB.(I) Liver 753 

Glycogen content determined as the glucose produced by glycogen hydrolysis at 12h in mice 754 

infused with either NaCl or BHB. n = 8-24 animals per condition and were statistically 755 

analyzed with an unpaired Student t-test (with Welch’s correction for lactatemia). a.u., 756 

arbitrary units. 757 

Figure 5. MCT1, MCT2 and MCT4 protein expression in hypothalamus and cortex 758 

following intracarotid BHB infusion. (A) Hypothalamic MCT1 protein expression at 6h and 759 

12h in mice infused with either NaCl or BHB. Upper panels are representative Western Blots. 760 

Lower panel provides the quantification of MCT1 protein expression. (B) Hypothalamic 761 

MCT2 protein expression at 6h and 12h in mice infused with either NaCl or BHB. Upper 762 

panels are representative Western Blots. Lower panel provides the quantification of MCT2 763 

protein expression. (C) Hypothalamic MCT4 protein expression at 6h and 12h in mice infused 764 

with either NaCl or BHB. Upper panels are representative Western Blots. Lower panel 765 

provides the quantification of MCT4 expression. (D) Cortical MCT1 protein expression at 6h 766 

and 12h in mice infused with either NaCl or BHB. Upper panels are representative Western 767 

Blots. Lower panel provides the quantification of MCT12 protein expression. (E) Cortical 768 

MCT2 protein expression at 6h and 12h in mice infused with either NaCl or BHB. Upper 769 

panels are representative Western Blots. Lower panel provides the quantification of MCT2 770 

protein expression. (F) Cortical MCT4 protein expression at 6h and 12h in mice infused with 771 

either NaCl or BHB. Upper panels are representative Western Blots. Lower panel provides the 772 



quantification of MCT4 protein expression. MCTs protein levels in BHB groups are 773 

expressed as the percentage of the corresponding NaCl treated group (set at 100%). Β-tubulin 774 

was used as internal reference. Data represent the mean ± SEM with n = 7 animals per 775 

condition and were statistically analyzed with unpaired Student t-test. 776 

Figure 6. Effect of intracarotid BHB infusion on the mRNA expression of ketogenic 777 

enzymes in the hypothalamus and the liver. (A) Hepatic HMG CoA synthase mRNA 778 

expression at 6h and 12h in mice infused with either NaCl or BHB (B) Hypothalamic HMG 779 

CoA synthase mRNA expression at 6h and 12h in mice infused with either NaCL or BHB (C) 780 

Hepatic BHBDH mRNA expression at 6h and 12h in mice infused with either NaCl or BHB. 781 

(D) Hypothalamic BHB dehydrogenase (BHBDH) mRNA expression at 6h and 12h in mice 782 

infused with either NaCl or BHB  Data represent the mean ± SEM with n = 9-12 animals per 783 

condition and were statistically analyzed with an unpaired Student t-test (with Welch’s 784 

correction for hypothalamic HMG CoA synthase 6h). a.u., arbitrary units. 785 

Figure 7. Schematic representation of the main transient metabolic and behavioral 786 

alterations induced by intracarotid BHB infusion. 787 

 788 

 789 

Supplementary Table 1 790 

Name Forward sequence Reverse sequence 

NPY ATGCTAGGTAACAAGCGAATGG TGTCGCAGAGCGGAGTAGTAT 

AgRP ATGCTGACTGCAATGTTGCTG CAGACTTAGACCTGGGAACTCC 

CART CCCGAGCCCTGGACATCTA GCTTCGATCTGCAACATAGCG 

POMC ATGCCGAGATTCTGCTACAGT TCCAGCGAGAGGTCGAGTTT 

BHBDH TGCAACAGTGAAGAGGTGGAGAAG CAAACGTTGAGATGCCTGCGTTGT 

HMGcs2 TGGTTCAAGACAGGGACACAGAAC AGAGGAATACCAGGGCCCAACAAT

PEPCK GGCCCCGGGAGTCACCATCA TGCCGAAGTTGTAGCCGAAGAAGG

G6Pase AACGTCTGTCTGTCCCGGATCTAC ACCTCTGGAGGCTGGCATTG 

β-2 Microglobulin CCCCACTGAGACTGATACATACG CGATCCCAGTAGACGGTCTTG 

 791 
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