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Chapter 1

Introduction

Consider the following regularities that we observe in our universe:

1) Apples do not spontaneously jump up from the ground onto the tree.

2) Rocks thrown on earth fly along (roughly) parabolic trajectories.

3) The relative frequency of heads in a long series of fair coin tosses comes out (ap-
proximately) 1/2.

These regularities are all of a different kind. 3) is a statistical pattern. 2) is a mechan-
ical phenomenon. 1) turns out to be an instance of the second law of thermodynamics.
All three regularities strike us a law-like; arguably, they are even among the more basic
experiences founding our belief in a lawful cosmos. However, it turns out that none of
them is nomologically necessary under the fundamental microscopic laws that we take
to hold in our universe. In fact, given the huge number of microscopic constituents
of macroscopic objects and the chaotic nature of the microscopic dynamics, the fun-
damental laws put very few constraints on what is physically possible on macroscopic
scales.

It is possible that particles in the ground move in such a coordinated way as to push
an apple up in the air (we know that because the time-reversed process is common
and the microscopic laws are time-reversal invariant). It is possible for a balanced
coin to land on heads every single time it is tossed. And it is possible, as Albert
(2015, p. 1) so vividly points out, that a flying rock is “suddenly ejecting one of its
trillions of elementary particulate constituents at enormous speed and careening off
in an altogether different direction, or (for that matter) spontaneously disassembling
itself into statuettes of the British royal family, or (come to think of it) reciting the
Gettysburg Address.”

Assuming deterministic laws, a physical event or phenomenon is (nomologically)
possible if and only if there exist micro-conditions of the universe that evolve under
the dynamics such that the event or phenomenon obtains. Given our limited epistemic
access to the micro-state of the universe (or any complex system, for that matter)
we thus need some inferential procedure from the fundamental dynamics to the salient
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regularities, other than finding the exact solution trajectory that describes our universe.
In fact, even if we did know the exact initial conditions and could predict the entire
history of the universe deterministically, it would seem odd if law-like regularities such
as the ones stated above turned out to be merely accidental, contingent on the very
particular micro-configuration of our universe. That is, even if we were Laplacian
demons and could verify that dynamical laws + initial conditions make (let’s say) the
second law of thermodynamics true in our universe, we should care for some additional
fact or principle that makes it counterfactually robust and gives it more nomological
authority.

The answer proposed in this thesis is a rather simple one. Regularities like those
mentioned above (and many others) do not hold for all initial conditions – i.e., in all
nomologically possible worlds – but the overwhelming majority of them. They are, as
we shall say, typical.1

Typicality

The basic definition of typicality is the following:

Definition. Let Ω be a reference set and Π a set of predicates on Ω.
A property P ∈ Π is typical within Ω if nearly all members of Ω instantiate P .
The property is atypical within Ω if ¬P is typical, i.e., if nearly none of the members
of Ω instantiate P .

For example: The property of being irrational is typical within the set of real numbers.
Being a rational number is atypical.

Often, one will hear statements like “a typical real number is irrational.” We will
adopt this convenient way of speaking from time to time, but be aware that it is a slight
abuse of language. No element of a reference class Ω can be typical or atypical per
se; it can only be typical or atypical with respect to a certain feature or property (cf.
Maudlin (2020)). For instance, the real number

√
2 instantiates the typical property

of irrationality but the atypical property of being algebraic.
When applied to a reference class of possible worlds, typicality figures in a way of

reasoning about contingency. If a fact about the world is contingent, it means that
it could have been different. But not all contingent facts are equally surprising or
counterfactually robust or deserving of an explanation. Some facts stand out in that
they make our world very special. Some facts could have been different, but only if
God – metaphorically speaking – had meticulously arranged things in the world to
make it so. Recently, several papers have explored how typicality facts can ground
explanations, predictions, and rational belief, both in everyday life and in the context

1Other recent publications discussing this concept typicality include Goldstein (2001, 2012);
Maudlin (2007b); Volchan (2007); Dürr et al. (2017); Wilhelm (2019); Hubert (2019).
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of fundamental physics and statistical mechanics. We will expand on this in detail in
the course of this thesis.

Going back to the definition of typicality, one may ask: how do we determine if a
subset of Ω (the extension of some predicate P ) contains “nearly all” or “nearly none”
of the elements? Well, if Ω is finite, then by simple counting. If Ω is an infinite or even
continuous set, we usually employ some natural measure in the sense of mathematical
measure theory:

Typ(P ) :⇐⇒ µ (x ∈ Ω : P (x)) ≈ µ(Ω). (1.1)

What makes a measure “natural,” what ≈ means more precisely, and what other ways
there are to distinguish “very large” and “very small” sets are some of the questions
that will be addressed in later chapters. For now, the most helpful answer is that we
don’t need to worry too much. In general, all reasonable measures will agree on what
is typical or atypical.

Tim Maudlin (private communication) provides the following instructive example:
The Sahara desert is nearly all sand. One may ask back: “Nearly all by what measure?
In terms of area, or volume, or metric tons, ...?” But this means that one didn’t really
get the point. The answer is: All of them. Or any of them. By any reasonable
standard, the Sahara is nearly all sand. The typical is so overwhelming in number
that it leaves little room for ambiguity.

Remark. Following the suggestion of an anonymous referee, I am using the locution
nearly all for “all except for a set of very small measure” in distinction to almost
all which usually means “all except for a set of measure zero” in the mathematical
literature. The statement almost all real numbers are irrational would thus be correct
(with respect to the Lebesgue measure and, more generally, any non-discrete measure)
but this standard of typicality is too strong in most contexts, in particular for statistical
mechanics (unless one considers the idealized limit of an infinite particle number).

From our everyday lives, we are familiar with typicality facts referring to an actual
ensemble of entities or events: It is typical for ravens to be black. It is typical for
lottery tickets to be a loser. It is typical for calender days not to be a leap-day (though
today, at the time of writing, happens to be one).

Such examples convey the right intuition but are of subsidiary interest for our
further discussion. The applications of typicality that we will focus on for the most
part have a decidedly modal character. In particular, the relevant typicality statements
in physics refer, in general, to what obtains in most nomologically possible worlds, not
to what obtains most of the time in the actual universe. For example: In nearly
all possible worlds (consistent with the low-entropy initial boundary condition of our
universe), entropy increases on relevant time scales.

The concept of typicality is the same in both cases, but misunderstandings are
possible when the relevant reference set is left implicit. For instance, the statement
“The 11:45 train from Lausanne to Geneva is typically on time” is arguably true when
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referring to what happens on most days, but false when referring to what happens (on
a particular day) in most possible worlds.2

Typicality, in this modal sense, is weaker than necessity and stronger than possi-
bility. We can, in fact, understand it as a modal operator Typ such that

�p ` Typ(p) ` ♦p. (1.2)

However, �p ` p, i.e., what is necessarily true must be true in our world, while
something being typical doesn’t logically imply that it actually obtains. Typicality
reasoning, as a way of grounding explanations and predictions of actual phenomena,
is thus a non-deductive reasoning. It is instead based on the following rationality
principle3:

Suppose we accept a theory T and we come to believe that our world
has the salient property P (expressing, for instance, a physical regularity
or phenomenon). If P is typical according to T , there is nothing left to
explain. If it turns out that P is atypical according to T , we have to look
for additional explanation or, in the last resort, revise or reject our theory.

There is some debate among advocates of typicality whether typicality facts are pre-
dictive, that is, whether we should endorse a rationality principle like:

If P is typical according to our theory, we should expect P to be instantiated
in our world.

I hold that typicality facts are predictive, but the difference between a phenomenon
that is predicted by our theory and a phenomenon that is explained when actually
observed strikes me as slim, to begin with. The reason for the debate will be addressed
in Section 1.2 below.

While the truth of a formal typicality statement depends, strictly speaking, on the
measure used to explicate “typical” and “atypical,” most of the explanatory work is
done by the reference class of possibilities determined by the theory and the laws it
postulates – not by any specific measure (a great many choices will make the typicality
statement true) and definitely not by any one particular initial condition. Typicality
thus figures in a way of reasoning about the laws, and it is the laws that ultimately
ground (or fail to ground) explanations.

Such typicality explanations are unifying and reductive as scientific explanations
are supposed to be: A small set of relatively simple laws and theoretical postulates
makes a great number of complex phenomena and regularities typical. However, I
won’t try to convince the reader that typicality explanations are just a subspecies of a
more familiar kind. I rather regard typicality as an elementary way of reasoning, and

2Although people who are very fond of both metaphysics and the train service in Switzerland might
argue that punctuality is an essential property of Swiss trains.

3For this particular formulation, I am drawing a lot from Tim Maudlin (private communication).
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in Chapter 10, we will discuss how, in particular, causal explanations turn out to be a
form of typicality explanation.

Remark (Conditional typicality versus typicality tout court). Many typicality facts
refer not to the reference set of all nomologically possible worlds but a subset restricted
by pertinent macroscopic boundary conditions. Sometimes, this is quite banal. If we
are interested in a physical regularity concerning apples, we consider only possible
worlds in which apples exist. But when the boundary conditions are part of the
explanans rather then explanandum, it raises questions about their own status. We will
have to face this issue in particular when we discuss the need for a special cosmological
boundary condition to account for the low-entropy past of our universe (Ch. 11).

One thing we can learn from examples such as black ravens are typical is that an
instance of a typical property (one particular raven being black) does not warrant any
additional explanation that pertains specifically to that instance. We may seek an
explanation for the fact that nearly all ravens are black, but once this is explained,
there is no interesting story left to tell about why the raven sitting just above my
chamber door is black. (A non-black raven, in contrast, would prompt us to explain
the deviation from the norm.) In physics, explanations end with the laws. The laws
constrain the possibility space of the world. And if a feature of the actual world is
typical within this set of possibilities, there is nothing left to explain. To ask further
why it is that our world is typical in that particular respect is not only in vain but
irrational. One might try to determine the actual micro-history of our universe, but
why would that be more explanatory? The actual micro-history is a) unnecessarily
detailed and specific to account for the phenomenon and b) contingent on the particular
initial conditions of the universe, which are themselves unexplained and most likely
unexplainable. So at best, one would establish that P because the history of the world
is such that P , which is almost tautological.

What is typical need not necessarily happen, and what is atypical is not impossible.
But assuming our world to be a typical “model” of our theory is basically a necessity of
thought. We do it routinely and all the time, if only implicitly. When we are confident
not to suffocate because all the air molecules might happen to assemble on the opposite
side of the room, we assume typical behavior. When we infer the existence of a tree
from our observation of a tree, we neglect the possibility of atypical fluctuations in the
electromagnetic field creating an illusion. When we conclude that classical mechanics
is falsified by quantum phenomena, we refuse to accept that special initial conditions
of a Newtonian universe lead to the observed interference patterns in a double-slit
experiment or the violations of Bell’s inequality.

On the one hand, it’s a condition imposed by us on our theories that they must
make the relevant phenomena typical (or at least not atypical). But to the extent that
we believe in our theories as (approximately) true descriptions of the world, the fact
that we actually observe typical phenomena may fill us with a sense of meaning and
gratitude.

5



1.1. TYPICALITY VERSUS PROBABILITY

1.1 Typicality versus Probability

The previous examples may already suggest that the concept of typicality is related
to (and often conflated with) that of probability, and large parts of this thesis will be
concerned with clarifying the distinction and interrelation between the two. Let me
start here with two observations:

1. Contrary to probability, typicality doesn’t come in numerical degrees. With
respect to a reference class Ω and a set of propositions Π, a property P can be
typical, atypical, or neither, but it cannot be more or less typical than some other
property P ′. In this sense, typicality is a qualitative rather than a quantitative
concept. Even if we use a normalized measure – technically a probability measure
– to explicate the locutions “nearly all” or “nearly none,” we are not committing
to giving meaning to the exact number that this measure assigns to a subset of
Ω. The only values that are relevant for a typicality statement are ≈ 1 and ≈ 0.

2. Typicality facts don’t presuppose any sort of randomness or indeterminism, nor
do they refer to (or depend on) anyone’s knowledge or degrees of belief. And
as we have seen, typicality facts need not refer to actual frequencies either. In
the context of fundamental physics and statistical mechanics, typicality state-
ments express objective facts about the modal structure of the laws, namely
which events or phenomena or regularities are instantiated in the vast major-
ity of nomologically possible worlds. These modal facts then come with certain
normative implications for which theories can be accepted or which phenomena
require further explanation.

To summarize in a more catchy motto: When you hear “typical” or “atypical”
think, in the first place, of very large and very small sets. When you hear “probable”
or “improbable,” consult 400 years of debate about what it could mean. That said,
the basic – yet at the time revolutionary – idea of predicting what will happen by
“counting” possibilities stood at the beginning of probability theory and is also the
archetype of typicality reasoning.

It is sometimes criticized that by being content with a typicality explanation or
“puzzled” about atypical facts (insisting on additional explanation), we are making
an unwarranted inference from typicality to probability, as if, let’s say, the fact that
a subset of initial conditions is small implies that it is unlikely for one of them to be
picked out. Counterexamples to such an inference are readily produced. The bulls-eye
makes out a small fraction of a dart board’s area, but how likely it is to be hit depends
on the skills (and intentions) of the player throwing the darts. Almost all real numbers
are irrational, but if we ask a person on the street to name a real number, we would not
be surprised if she picked a rational one as those are more familiar to people. When
it comes to initial conditions of the universe, there is no one making the pick, no God
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1.1. TYPICALITY VERSUS PROBABILITY

throwing darts onto the universe’s phase space. Thus, some authors argue, we should
have no a priori expectations about what our universe is like.

One might point out that in the previous examples, we are already beginning to
invoke additional explanations (an agent’s dexterity with darts or familiarity with
numbers) to account for what seems like a biased distribution of outcomes. And one
might further argue that physics is guided by the belief that nature is not biased,
that if God did play darts, he would put on a blindfold. I wouldn’t even reject such
intuitions, but it is easy to dismiss them as meaningless or overly romantic.

The more pertinent response is that typicality rather than probability is the right
concept for reasoning about the world precisely because it has no connotations of
randomness. If a feature of our world is atypical according to a physical theory, it
means that our world is – in that particular respect – unlike the vast majority of
worlds instantiating the respective laws, the vast majority of models of the theory.
It is this fact alone that challenges the theory and creates explanatory pressure. No
further inference to probability is made, needed, or even meaningful. And no “a priori
expectations” are smuggled in either. The laws determine the set of nomologically
possible worlds and thereby typical and atypical properties. And the laws are not a
priori, but their empirical (and explanatory) adequacy must be judged in conjunction
with typicality. Since special initial conditions could account for virtually anything,
a candidate theory can hardly do worse than make the relevant phenomena of our
world atypical. Probabilities, on the other hand, are ill-suited for judging a dynamical
hypothesis precisely because no initial condition of the universe is “likely” or “unlikely.”

In contrast, it can make sense to speak about probabilities associated with throwing
a dart or picking a number “at random.” But those are physical processes (leaving aside
the issue of human consciousness and free will) whose outcome probabilities have to
be explained on the basis of the physical laws. In this thesis, we will argue that such
explanations are based on typicality. Even though the universe exists only once, and
is what it is, the fundamental laws make certain statistical regularities typical. In this
sense, the objection that “typicality does not imply probability” has it upside down.
Typicality is the more fundamental concept, and probabilistic intuitions are based on
typicality reasoning.

The dualistic nature of typicality

Many authors have observed the “dualistic nature” of probability which is often de-
scribed as epistemic or doxastic on the one hand (referring to incomplete knowledge
and/or degrees of belief) and ontic or aleatic on the other (referring to statistical reg-
ularities or frequencies). Typicality in physics has a similarly dualistic nature that we
could describe as physical and normative. The first refers to the status of typicality
facts as objective facts about the modal structure of the physical laws, the latter to
the way of reasoning, i.e., the rationality principles, associated with typicality facts.

Another dualism (so to speak) concerns the pragmatic and nomological aspects of
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typicality. On the one hand, there are many practical reasons for resorting to typicality
in situations of incomplete knowledge and/or high complexity. We will expound on
them in more detail in Ch. 8, but the arguments should be familiar from various
introductions to statistical mechanics, which departs from the deterministic description
of classical mechanics in favor of an effective description of macroscopic phenomena.
However, an important (and rarely appreciated) lesson from statistical mechanics is
that even the “deterministic” mechanical phenomena which we describe in classical
mechanics, and which form the empirical basis of the theory, are, in fact, typical
phenomena. (Whenever we assume that a macro-object can be described as a rigid
body or that certain environmental influences can be neglected in a specific situation,
we presuppose typical micro-conditions.) This should prevent us from understanding
typicality too naively as a concession we make, maybe begrudgingly, to our epistemic
and computational limits.

The nomological aspects of typicality concern the issue that stood at the very
beginning of our discussion: Typicality clarifies the relation between the fundamental
laws and actual phenomena or regularities (falling short of strict necessity), and can
ground the nomological status of the latter as typical regularities. This issue has
nothing to do with epistemic or computational limits. Even the before-mentioned
Laplacian demon would learn a new and eminently important fact if he found out that
a certain regularity obtains not only for the exact initial conditions of our universe but
for nearly all possible ones.

1.2 Atypical versus brute facts

Typicality reasoning applies in a “context” characterized by a reference class Ω and a
set Π of relevant predicates. In physics, Ω will generally be determined by the theory
and its laws. What determines Π is less clear-cut.

In stating the rationality principle associated with typicality, I spoke, somewhat
evasively, of “salient” features of the world, without giving a precise definition of
salience. The problem is that, at least as soon as we go to a more fine-grained descrip-
tion, every world is atypical with respect to some properties.

Our universe is certainly atypical with respect to its exact microstate, or the exact
number of stars in our galaxy, or the exact position at which the final dart hit the
board in this year’s world championship. That last week’s lottery numbers came out
as they did is atypical. And that you, dear reader, are reading this very sentence
at this particular time and place is also an atypical event. So why do some atypical
features of our world cry out for explanation (or even falsify established theories) while
others seem unproblematic and acceptably brute?

The question, what it is that makes a feature of our world salient, a valid target
of scientific explanation, strikes me as a very difficult one, and I don’t believe that a
complete answer can be given in purely physical terms, let alone in terms of abstract
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measure theory.
Part of the answer is that science is generally concerned with the explanation

of robust, usually reproducible phenomena, not individual data points. (Although,
across different scientific disciplines, one person’s data point may be another one’s
phenomenon.) For instance, if we shoot electrons through a double-slit onto a pho-
tographic screen, the formation of an interference pattern on the screen is a typical
phenomenon predicted by quantum mechanics. The exact configuration of impact
points in a particular experiment would always be atypical. But it is also not re-
producible, not the explanatory target of physicists, and different quantum theories
which are considered empirically equivalent disagree on whether the individual impact
positions are even in principle determined by physical laws. Of course, I have now
merely described a status quo rather than justifying it, and I did not provide a precise
characterization of “robust phenomena” as opposed to “data points,” so these remarks
carry us only so far.

Another observation worth making is that many of our previous examples for atyp-
ical events would allow, in principle, for further explanation were we interested in one.
The reader might be able to provide reasons for deciding to read this thesis today. And
a detailed description of the history of star formation in our galaxy would account for
the exact number of stars found today. The drawback of such accounts is that they
often trace one atypical event back to other atypical events. But it lies in the nature of
causal explanations that they are only shifting the issue to “what caused the cause?”
and philosophers rarely complain about them.

Things stand somewhat differently if one wonders why the initial microstate of
our universe was exactly X (when there is a continuum of other possibilities all of
which are not X). Here, no explanation seems possible and there is something about
the question itself that strikes me as deeply irrational. It is the same unease that one
might feel about the question of last week’s lottery numbers or the count of stars in our
galaxy, as well. It had to be something, after all, and any outcome would be atypical.

Sidney Morgenbesser famously responded to the ontological question: Why is there
something rather than nothing with: “If there was nothing, you’d be still complaining!”
What we want to avoid are such Morgenbesser cases: Why is F (@) = X in our
universe? If it were anything else, you’d still be complaining!

So the following addendum to the previously formulated rationality principle seems
both necessary and compelling: The atypicality of a state of affairs creates explanatory
pressure only if a typical state of affairs would have been possible. Otherwise, the fact
is acceptably brute. More precisely, predicates that do not allow for typicality should
not be admitted into Π in the first place.

We need to be more precise, however. The initial microstate of our universe being
not X is typical; so what makes the predicate P : . . . has the initial state X inadmissible
according to the criterion just stated? My point becomes clear if we readX as a variable
over possible worlds rather than a rigid designation of one point in phase space. The
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initial conditions being X is atypical for any value of X.
More generally: Let F : Ω→ Rk, k ≥ 1 be some function on the fundamental state

space of the universe (∼ the set of possible worlds). Then, a predicate of the form

Py(ω) : F (ω) = y (1.3)

is inadmissible for typicality reasoning if Typ(¬Py) for all y ∈ Rk (note that an impos-
sible value of F is a forteori atypical). In this case, any true proposition of the form
Py(@) would express a brute fact that doesn’t require further explanation, at least not
based on typicality reasoning.

Consider, in contrast, the predicate Q(ω): The second law of thermodynamics holds
at ω. We can restate it (ignoring some subtleties to be later discussed) as the y = 0
case in the family of predicates

Qy : inf
{dS

dt

}
≥ y,

so that Q0 states that the entropy S is non-decreasing. These predicates are admissible
because Typ(Q0) (whereas Typ(¬Qy) for y < 0). The failure of the second law of
thermodynamics would thus not be an acceptably brute fact but severely challenge
our theories, arguably to the point of falsifying them.

This analysis also highlights the importance of proper coarse-graining. If F is a
continuous (or very fine-grained) variable, we are generally interested in predicates
that are not quite of the form (1.3) but rather

Py(ω) : F (ω) ∈ (y − ε, y + ε), (1.4)

where ε must be large enough that a range of typical values exists. For instance, we do
not seek to explain why the relative frequency of heads in a coin-tossing experiment is
exactly y but why it is approximately 1/2. (Typically, ε ∝ 1√

N
for a series of N trials.)

Similarly, that the number of stars in the Milky Way is exactly N (whatever N may
be) is a brute fact, but that the number is somewhere between 109 and 1014 is, very
plausibly, typical for a galaxy of its diameter.
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Chapter 2

Typicality in Probability Theory

2.1 Expectation Value and Typical Values
In questions of a practical nature we may be forced to consider events whose probability is
more or less close to unity as certain, and events whose probability is small as impossible.
Accordingly, one of the most important tasks of probability theory is to identify those
events whose probabilities are close to unity or zero.

— Andrey Markov, Wahrscheinlichkeitsrechnung (1912, p. 12)1

While an important goal of this thesis is to clarify the formal, conceptual, and
metaphysical differences between typicality and probability, we shall first discuss the
notion of typicality in the context of standard probability theory. This use of typicality
is quite appropriate as long as philosophical subtleties and deeper questions about
the interpretation of probabilities are left aside. Probability can be a very subtle,
controversial, and downright mysterious concept, but the mathematical theory is a
rather sober business. In the axiomatic tradition of Kolmogorov, probability theory is
nothing but the theory of normalized measures.

Definition. A probability space is a triple (Ω,A,P) consisting of a set Ω of elementary
events, a sigma-algebra A ⊂ P(Ω) of measurable sets, and a non-negative, countably
additive set function P on A – a measure – normalized to P(Ω) = 1. The measure
P(A) ∈ [0, 1] of a set A ∈ A is then called “the probability of A.”

In our discussion, the elements in Ω will usually describe mere possibilities and
P theoretical probabilities, but a probability space can also be used to describe the
actual distribution in a statistical ensemble. Sometimes, hypothetical ensembles are
used as a crutch for understanding theoretical probabilities.

Given a measurable function (a so-called “random variable”) X : Ω→ Rn, mapping
the elementary events to some numerical value(s), the integral

E(X) =
∫

Ω
X(ω)dP(ω) (2.1)

1Translation from German by D.L.
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with respect to the probability measure is called the expectation value of X. When
referring to an actual statistical distribution, it is called statistical mean or average.

As the name suggests, the expectation value is generally considered to have a
predictive quality even though it need not correspond to the most likely value or even
a possible one. As a matter of fact, the expectation value is only a good prediction if
significant deviations from it are unlikely, that is, if

P (|X − E(X)| > ε) ≤ δ (2.2)

for reasonably small values of ε and δ. In other words, the expectation value cor-
responds to a sensible probabilistic prediction only in so far as it provides a good
approximation to the typical values. We can readily see from (2.2) that there is in
general a trade-off between the smallness of ε and δ, which, moreover, express inher-
ently vague notions of “significant” deviations and “low” probability. In probability
theory and statistical mechanics, this vagueness pops up in different forms and places
and becomes a popular point of criticism in philosophical discussions. Therefore, it is
important to emphasize from the onset that there is just no way around it. Probabilis-
tic reasoning always involves some degree of vagueness and pragmatism. We’ll have to
deal with it, no matter what.

A mathematical quantity expressing how much a random variable X fluctuates
around the expectation value is the variance

V(X) = E
(
(X − E(X))2

)
. (2.3)

The square root of the variance is the standard deviation, commonly denoted by σ.
The relevance of the variance can be seen from a simple application of the so-called
Chebyshev inequality:

P (|X − E(X)| > ε) ≤ 1
ε2

∫
|X − E(X)|2 dP(X) = V(X)

ε2
(2.4)

In other words, a small variance ensures a reasonable narrow and thus predictive range
of typical values.

2.2 Laws of Large Numbers

The law of large numbers – the central result in probability theory – should be
understood in exactly this manner. If we consider a family X1, . . . , XN of uncor-
related and identically distributed variables together with their “empirical mean”

memp := 1
N

N∑
i=1

Xi, the variance of the sum is additive (order N) while the pre-factor
1
N enters quadratically (as N−2). Hence, (2.4) becomes

P
(
|memp − E(memp)| > ε

)
≤ σ2

Nε2
, (2.5)
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where we call the expectation E(memp) = E
(

1
N

∑N
i=1Xi

)
the theoretical mean.

Again, the trade-off between ε (characterizing a small range of values around the
theoretical mean) and δ(ε,N) ∝ 1

Nε2 (the bound on the probability of larger deviations)
is evident. The eponymous “large number” is the ensemble size N . In view of (2.5),
it must be large to ensure not that the result is correct, but that it is relevant.

For Bernoulli variables Xi ∈ {0, 1} (each outcome either obtains or not) memp

is the relative frequency. The law of large numbers then states that typical relative
frequencies lie in a small range of values around the theoretical mean.

Remark (The
√
N law). The standard deviation of a sum

∑N
i=1Xi of N indepen-

dent variables (not normalized) is of order
√
N . This characterizes very generally the

range of typical fluctuations around the mean. Typical relative fluctuations are thus
of order 1√

N
.

The reason why statistical mechanics works so well is that it deals with extremely
largeN , usually the number of microscopic degrees of freedom in a macroscopic system.
In fact, the most important constant in statistical mechanics is not Boltzmann’s but
Avogadro’s constant, NA = 6.02214076×1023mol−1, which is the number of molecules
in one mole of a given substance, e.g., in 18g of water (H2O) or 32g of oxygen (O2).
Hence, the number of microscopic constituents in a macroscopic system is typically of
the order of N ∼ 1024. This huge number manifests the separation of scales between
the microscopic and the macroscopic regime, which makes the inherent vagueness em-
phasized above – the trade-off between ε and δ(ε,N) – unproblematic in practice.
Simply put, huge N gives us enough wiggle room to choose both ε and δ small enough
that typical fluctuations are empirically irrelevant, while atypical large fluctuations
are truly negligible on the relevant time scales. (Indeed, time scales are an additional
factor to be considered in the trade-off.) On the other hand, when some publications
discuss statistical mechanical models with N = 20 or N = 10 or in some cases even
N = 1, those have to be regarded with suspicion, to say the least.

Remark (Stronger LLN estimates). Assuming statistical independence, stronger LLN
estimates than (2.5) can be obtained from the general form of the Chebyshev inequality

P (|Z − E(Z)| > ε) ≤ E [(Z − E(Z))m]
εm

, m ∈ N (2.6)

with Z = 1
N

∑N
i=1Xi depending on the regularity of the random variables, i.e., in

particular, up to which m the m’th moments E(Xm) remain bounded. Exponential
bounds, e.g., of the form

P (|Z − E(Z)| > ε) ≤ e−
Nε2
const. (2.7)

for Bernoulli variables are sometimes called Chernoff bounds.
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Another fundamental result in probability theory is the central limit theorem which
states that if (Xi)i≥1 is an independent and identically distributed family of random
variables with expectation m and variance σ2, the distribution of

√
N
( 1
N

N∑
i=1

Xi −m
)

(2.8)

converges to a normal distribution with mean 0 and variance σ2 for N →∞. Morally,

this means that, for large N , the distribution of ρemp = 1
N

N∑
i=1

Xi is approximately a

Gaussian centered around m with standard deviation σ√
N
. The relevant observation

here is that the distribution becomes more and more peaked with growing sample size
N , its weight being concentrated within a few standard deviations of order 1√

N
.

Let’s consider the standard coin-toss model, viz. Xi ∈ {0, 1} with P(0) = P(1) = 1
2 .

(Let’s say that 0 stands for the outcome tails and 1 for heads.) The theoretical expec-
tation value for the individual trials is then E(Xi) = 1

2 , which is rather meaningless as
a prediction for a single coin toss. In fact, for a single coin toss, we can say nothing
more than that the outcome will be either heads or tails – which is not saying much
at all. Figure 2.1, however, shows the cumulative distribution for the total number of
heads in a sequence of N coin tosses, for N = 40 and N = 400, respectively. We can
see the Gaussian shape emerging. More importantly, we can see that the distribution
is essentially concentrated on outcomes for which the total number of heads deviates
by at most

√
N from N/2. Correspondingly, a range of typical values for the relative

frequency of heads and tails is [1
2 ±

1√
N

].

Figure 2.1: Bernoulli distribution with p = 1/2 and N = 40 (left) N = 400 (right).

One of the central claims of this thesis (which may or be may not be controversial)
is that the empirical and epistemic import of probabilities in physics comes only from
such cases dealing with statistical regularities in reasonably large ensembles. A deeper
and more forward-looking observation is that we didn’t need to refer to “probability”
at all in the coin-toss example. The relevant result is simply that we find a roughly
equal number of 0’s and 1’s in the great majority of possible sequences. This is a
genuine typicality fact.
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Remark (Kolmogorov’s zero-one law). It is a general feature of large families of mu-
tually independent random variables that they partition Ω into very large/small sets
corresponding to typical/atypical properties. In a somewhat idealized form (since re-
ferring to infinite families), this is manifested in Kolmogorov’s zero-one law:

Let (Xn)n≥1 a family of independent random variables on (Ω,A,P). An event
A ∈ A is called tail event for the family (Xn)n≥1 if for all k ∈ N, its occurence depends
only on (Xn)n≥k. Informally speaking, tail events are not sensitive to the values of
individual Xn (more precisely, finite subsets of the infinite family of variables) but
express “asymptotic properties.”

Let σ(Xn : n ≥ 1) be the smallest sigma-algebra containing all such tail events.
Then

P(A) = 0 or P(A) = 1, for all A ∈ σ(Xn : n ≥ 1). (2.9)

A prominent instance of this general result is the strong law of large numbers for
asymptotic frequencies in the limit of infinitely many trials. Since the strong LLN
concerns such (hypothetical) limits, its relevance is more theoretical than practical.

Let us return, for now, to the probabilistic language and emphasize again: What
should be taken as the “prediction” of a probabilistic model is not the expectation value
but the typical values. When we say “typical values,” we mean that the possibility
of atypical events – those lying outside the predicated range – can be considered as
negligible. An atypical event occurring after all (for instance 900 times heads in a
series of 1000 tosses) would be the kind of event that compels us to revise or reject our
model (e.g., conclude that the coin is biased) rather than shrugging our shoulders and
say: “Well, I guess anything is possible.” In practice, of course, one may choose to be
a more aggressive predictor and report a smaller range of predictions for the price of
greater uncertainty. Whether this is a reasonable thing to do depends not only on the
rarity or improbability of the neglected outcomes but also on their potential impact.

Note that what we refer to as the range of typical values (specified above by ε)
reflects an “intrinsic uncertainty” of the probabilistic model that comes, ideally, with
rigorous estimates as those provided by the (weak) law of large numbers. It would
be misleading to call it a “margin of error” in so far as this suggests something faulty
with the input data or the mathematical derivation. In practice, limited measure-
ment accuracy, error propagation in numerical simulations, etc. would rather come
in as additional sources of uncertainty (unless, of course, they are precisely what the
probabilistic model is supposed to model). Needless to say, nothing is as mislead-
ing as predicting some exact value without any estimate of potential errors or typical
fluctuations (this omission is usually a good indicator of a “soft science”).

In any case, a probabilistic model always yields a range of predictions or prediction
interval (though not necessarily a single connected one). In some unfortunate cases,
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this range may be so large that the model is not very predictive at all. In particularly
nice cases, the range of typical values will be narrow and centered around the expec-
tation value so that the latter becomes a good representative of the predicted range.
This applies, in particular, in the regime of the law of large numbers or the central
limit theorem (that is, when we can assume a reasonably narrow Gaussian distribu-
tion) but it can fail spectacularly for systems with strong correlations or variables with
large, or even unbounded, variance. In fact, it has been argued that many catastrophic
prediction failures in finance and other socio-economic domains arise from unjustified
assumptions of Gaussianity, which lead to underestimating the likelihood of extreme
events (Taleb, 2010). For instance, a severe market crash appears to be less improbable
than assumed in established risk models, and even if it occurs only once every couple
of decades or so, it may wipe out all the cumulative profits that a bank has generated
in the meantime. On time scales relevant to a financial institution, it is thus a rare
but by no means negligible event.

An analogous observation applies to actual statistical distributions. If we consider
a sample consisting of 1000 nurses and Warren Buffett, the average income and the
typical income will differ significantly. (The median income would be a better approx-
imation to the latter, but that need not be true in general.) In such cases, it seems
evident that (2.1) is not necessarily a good guide-post for practical decisions.

The following is a textbook example2 of a game with positive expectation value
in which the player typically loses money in the long run. It is also known as the
St. Petersburg paradox. In the limit of n → ∞ rounds, the expectation value is even
infinite, while the risk of ruin is 100%. Would you take the bet if you had to commit
to a game of (let’s say) n = 1000 rounds? If we agreed that you should not, we would
seem to agree that rational decisions/expectations are based on typical outcomes rather
than expectation values.

Example (A game with infinite expectation value in which you will typically go
bankrupt). Consider a biased coin for which the probability of heads is p ∈ (1/3, 1/2).
You start with a positive capital of X0 dollars. In each round, you double your cap-
ital if the outcome is heads and lose half of your capital if the outcome is tails. The
expectation value for the (n+ 1)’st round is thus

E(Xn+1) = p(2Xn) + (1− p)
(1

2Xn

)
=
(1

2 + 3p
2

)
Xn =

(1
2 + 3p

2

)n+1
X0

n→∞−−−→ +∞.

However, the probability of obtaining m times tails on n trials is
(n
m

)
pn−m(1 − p)m,

resulting in a capital of 2(n−m) 1
2mX0 = 2n−2mX0. The typical values of m for large

n are m
n ≈ (1 − p) =: 1+δ

2 and thus Xn ≈ 2−δnX0
n→∞−−−→ 0. Indeed, a rigorous proof

2Figuratively and literally, see, e.g., Georgii (2004, Ex. 5.8); for a recent philosophical discussion
in the context of typicality, see Maudlin (2020).
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using the strong LLN shows that limn→∞Xn = 0 almost surely.

2.3 Interpretations of Probability

We have taken for granted that probabilities are somehow related to (rational) ex-
pectations, but omitted the question, what they are actually referring to. This is a
famously difficult and controversial topic. I believe that different concepts of proba-
bility – when clearly distinguished – can peacefully coexist in separate contexts. This
thesis, however, is mostly concerned with probabilities in the natural sciences, in par-
ticular physics, which must be somehow connected with natural laws on one side and
empirical phenomena on the other. I shall start by addressing two possible meanings
of probability that will not be the focus of our further discussions.

Subjective Probabilities

Objective and subjective concepts of probability have existed in parallel and opposition
since the early days of probability theory (see, e.g., Hacking (1975)). The notion of
probability that we are going to discuss in this thesis will fall on the objective side.

Surely, subjective probabilities have their place in everyday reasoning, maybe even
in some special sciences and certain areas of philosophy. When I say: “There is a 30%
chance that my ex will respond to my text message,” I really mean: “My credence
that my ex will respond to my text message is (roughly) 30%.” Such an estimate may
be based on objective factors or prior experience but ultimately expresses a personal
degree of belief. (Hopefully, at least, I’m not as desperate as to produce a statistically
relevant sample of text messages.)

Probabilities in physics do certainly have an epistemic and behavior-guiding func-
tion, as well. But first and foremost, physics should seek to explain why as a matter
of fact certain statistical regularities obtain, be it in a series of coin tosses or a parti-
cle scattering experiment. If our theory is able to explain and predict such objective
regularities, I begin to see how one could justify the rationality of assigning credences
about individual instances – e.g., the outcome of the next coin toss – accordingly. I fail
to see, however, how the dispersion of heat or the creation of an interference pattern in
a double-slit experiment could depend on anyone’s knowledge or degree of belief. We
have already remarked on the “dualistic nature” of probability, and as Myrvold (2016)
points out, we really need both the epistemic and the ontic (I’d rather say “factual”)
aspects. My skepticism towards epistemic probabilities in physics concerns precisely
their ability to bridge the gap to the factual level.

I remember how once, as a young student, I argued: “When I say that the proba-
bility of the coin landing on heads is 1/2, I do so because I don’t know the exact initial
conditions that would allow me to predict the outcome deterministically.” One of my
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former colleagues, Christian Beck, replied: “Even if you did know the exact micro-
conditions, it wouldn’t change the fact that if you throw the coin multiple times, it
will land on heads and tails roughly equally often.” This was an eye-opener for me. In-
deed, it is such facts that physics is tasked with explaining and for which a probabilistic
language is appropriate even when a deterministic account is available, in principle.
Here, I should alert the reader that in the view to be developed in this thesis, proba-
bility will appear rather on the side of the explanandum than the explanans – which
makes its objective character only more evident.

Of course, concepts like “explanation” and “prediction” have a psychological di-
mension. We make certain inferences based on our best available theory, from which
we conclude that some phenomenon is to be “expected” or at least “unsurprising” if
actually observed. It is thus tempting to think that such inferences take epistemic or
doxastic states as input, that we deduce knowledge or belief from prior knowledge or
belief. This view strikes me as fundamentally misguided, though. Explanations and
predictions based on physical theories should be statements about physical facts and
laws. The respective inferences will often involve pragmatic considerations, approxima-
tions and idealizations, but they should not involve mental states. The psychological
dimension comes in at a later point, and lies, strictly speaking, outside the purview
of physics. It concerns the normative implications of objective physical results, as we
will discuss at various points throughout this thesis. Note that even logical deductions
have such a normative aspect to them: we should accept the conclusion if we accept
the premises. But there is neither a natural nor man-made law compelling us to do so.

One of the most pernicious effects of subjectivist interpretations of probability
in physics is the idea that the role of probability measures is somehow to “guess”
the actual microscopic state of a system (if not the entire universe). The argument
goes something like this: If we knew the precise initial conditions of a deterministic
system, we could solve the equations of motion exactly (at least in principle). Since
we don’t know the precise initial conditions, we put a probability distribution on the
pertinent state space (or a subset thereof), which expresses our knowledge/ignorance
about the system’s actual microstate. Hence, the more concentrated this probability
distribution, the more information we have about the system. However, probabilistic
reasoning, at least in statistical mechanics, applies in general to macroscopic histories
and macroscopic regularities. If λA is the equidistribution on a phase space region A,
and λB the equidistribution on a strictly smaller region B ⊂ A it does not imply at all
that the measure λB contains “more information” because it localizes the microstate
in a smaller subset of phase space. In fact, it may give us less relevant information
by assigning significant weight to a greater number of macro-states/macro-histories or
less weight to the actual one.

Consider, for instance, the situation depicted in Fig. 2.2 where the small set A1 of
initial micro-conditions leads to macro-history 1 while the larger complement A \ A1,
containing the actual initial state, leads to the macro-history 2. Suppose a demon tells
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𝐴
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Figure 2.2: Initial conditions in A1 lead to the macro-history 1, while initial conditions
in A \ A1 lead to the macro-history 2. The x marks the actual microstate contained
in B ∩A \A1.

you that the actual microstate is contained in the set B ⊃ A1. You have learned a new
true fact about the world and significantly narrowed down the set of possible initial
conditions. Yet, the demon (being evil) has made you much less informed about the
macro-history that the system will, in fact, undergo.3

That said, I believe that the notion of “information” is even more ambiguous – and
more often abused – than the notion of probability, so that explicating the latter in
terms of the former is not helpful, in general.

To end this discussion on a more conciliatory note, we note that there are certain
parallels between the concept of typicality advocated in this thesis and the view of
Myrvold (2012, 2016, 2020) – even though the latter has a more epistemic flavor. To
draw these parallels, one could say that typicality facts correspond, for all practical
purposes, to those probabilistic predictions on which all reasonable assignments of prior
probabilities agree. The latter are what Myrvold identifies as the relevant predictions
of statistical mechanics. I believe, however, that at the end of the day, the subjectivist
connotations are doing no good, even when they are constrained by (objective) ratio-
nality principles or figure only in an intersection of beliefs. The relevant predictions
that can be derived in statistical mechanics are those which hold true for nearly all
possible microstates. These are objective nomological facts. And what all reasonable
measures agree on is the meaning of “nearly all.”

Indeterministic Laws

Throughout this thesis, I won’t say much about indeterministic theories, or, more
precisely, fundamentally stochastic laws that involve irreducible randomness. There

3Cf. also Shafer (1985) on the related problem of conditionalizing probability.
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2.3. INTERPRETATIONS OF PROBABILITY

are certainly interesting philosophical questions about such probabilities, in particular,
the question, what they are actually doing in the world, how they relate to the concrete
phenomena. These questions should be taken seriously – so seriously, in fact, that I
don’t think indeterminism is of much help in understanding probability – but they are
of a somewhat different kind than the issues at the center of this thesis.

The one important observation that I do want to make is that even if we consider
stochastic theories that assign nomic probabilities to possible events, their empiri-
cal and explanatory import is ultimately based on a form of typicality reasoning or
Cournot’s principle of the negligible event that we will introduce in the next section.
Indeed, the necessity of such a principle comes out very clearly in the indeterministic
case.
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Figure 2.3: Branching structure of possible histories after 4 coin tosses. The weights
correspond to the fundamental probabilities assigned by a stochastic law.

Let’s consider again the simple example of a series of N coin tosses (the reader may
also think of spin measurements on a spin-1/2-particle if she prefers), but conceived
as intrinsically random events. That is, for each possible trial, the laws of nature do
not determine a unique outcome given the complete initial state but assign only a
probability of 1/2 to each of the possible outcomes 0 (heads or spin down) and 1 (tails
or spin up). The possibilities for the first 4 iterations of the experiment are depicted in
Fig. 2.3. We get a branching structure of possible histories with the laws determining
the weight or probability of each branch. Each history, i.e., each conceivable sequence
of outcomes, is possible and, in fact, equally likely. So in what sense is the law even
predictive? Call this the problem of vast possibilities.

What we should take a stochastic law to predict is not any individual history but
the regularities to which it assigns a very high cumulative probability. In the present
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2.3. INTERPRETATIONS OF PROBABILITY

example, all possible branches have equal weight, but the set of branches in which the
relative frequency is approximately 1/2 sums up to a total weight that is very nearly
one (for large N). In other words, for the law to have any empirical implications at
all, we must understand it as saying that the typical frequency of 1/2 will, in fact, be
observed. Or, conversely, that atypical histories (such as 0 coming out on every single
trial), though not impossible, are not going to occur.

The problem of vast possibilities is only more pronounced when we consider more
realistic proposals for indeterministic laws since stochastic micro-dynamics will make
virtually any conceivable history of the world possible. So again, we should take the
regularities that such a law predicts or explains to be those that come out as typical,
i.e., those to which it assigns a probability close to 1. If the observed phenomena turn
out to have a very low probability, i.e., come out as atypical, it is not strictly speaking
a violation of the law. Yet, the rational consequence would be to consider the law as
falsified, that is, empirically inadequate.

As we will discuss in detail, the situation is actually pretty much the same for de-
terministic theories. Even if the initial micro-conditions determine one unique history,
these initial conditions are never known exactly. And even if they were, one should
question if they would be particularly explanatory (for why was the initial microstate
of the universe exactly what it was?). The crucial difference between stochastic and
deterministic dynamics is that the latter do not assign probabilities to possible histo-
ries. What is typical according to deterministic laws is rather what obtains for nearly
all possible initial conditions. This raises the question, what measure we should use to
quantify microstates.4 It is one of the questions that will be addressed in this thesis.

In the upshot, the central aspects of typicality reasoning that we will develop
against a deterministic backdrop apply quite analogously in the indeterministic case,
while indeterminism and fundamental randomness are of no help with the main con-
cerns of this thesis but only raise additional problems.

Some readers may object that our focus on determinism is not very naturalistic:
Aren’t our best physical theories, viz. quantum theories, indeterministic? As a matter
of fact, they probably aren’t. Standard quantum mechanics involves only one pre-
cise dynamical equation, the Schrödinger equation describing the time-evolution of
the wave function, which is perfectly deterministic. Randomness comes in only with
the measurement process and the infamous collapse postulate, according to which the
“measurement” of an “observable” produces one of the possible outcomes (eigenval-
ues of the associated operator) with probabilities given by the Born rule. But what
exactly qualifies as a “measurement”? What are the precise physical conditions for
the Schrödinger evolution to be suspended in favor of collapse? And how exactly does
the measurement process produce a definite outcome? The standard story is hope-
lessly vague, as no one pointed out more clearly than John Bell (2004) despite earlier

4In fact, this question might also arise in indeterministic theories if the stochastic laws determine
only transition probabilities between states but no probability distribution over initial states.
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complaints by Einstein and others.
More precisely, standard quantum mechanics (and, in the same vein, quantum

field theory) is plagued by the measurement problem, that is vividly illustrated by
Schrödinger’s infamous cat paradox. We will discuss it in more detail in Chap. 12.
There are essentially three precise quantum theories (or classes of theories) that solve
the measurement problem and ground the quantum formalism in an objective descrip-
tion of nature: Bohmian mechanics, spontaneous collapse theories (such as GRW),
and Many Worlds theories. Two of those – Bohmian mechanics and Many Worlds –
are fundamentally deterministic; we will study them in more detail in Chs. 8 and 12,
respectively. Collapse theories are indeed indeterministic, i.e., involve real irreducible
randomness. Somewhat ironically, however, this is also the class of theories whose pre-
dictions deviate, in principle, from what are taken to be the predictions of orthodox
quantum mechanics. Hence, one could say that if quantum mechanics is indeterminis-
tic, it is not exact, and if quantum mechanics is exact, it is not indeterministic.

24



Chapter 3

Cournot’s Principle

We are getting close to the modern concept of typicality if we understand the prob-
ability calculus in connection with Cournot’s principle. Cournot’s principle (CP) has
been somewhat forgotten in modern times (with Glenn Shafer being one of the few
famous probabilistis holding up its banner), but has a long tradition in the philosophy
of probability, with some version being endorsed by Kolmogorov, Hadamard, Fréchet,
Borel, among others (see Martin (1996); Shafer and Vovk (2006) for excellent historical
discussions).
One way to introduce CP is as a remedy to the following dilemma:

Only probabilistic facts follow from probability theory.
There are no genuinely probabilistic facts in the world (any possible event either
occurs or not).

No facts about the world follow from probability theory. ∴

The second premise could be denied by admitting something like propensities into
the physical ontology. But then replace “(physical) facts” by “empirical facts” in the
conclusion, and we end up with a similar problem: logically, no empirical facts follow
from probabilistic ones. To emphasize, one cannot derive from the probability calculus
that an event with probability p will occur (roughly) Np times on N independent
trials, only that it will do so with high probability.

Cournot’s principle can thus be understood as a sort of “bridge principle,” leading
from probabilistic results to physical/empirical predictions. An unfortunate historical
fact is that the formulation provided by its namesake sounds plainly wrong, at least
to modern philosophers of science:

“A physically impossible event is one whose probability is infinitely small.
This remark alone gives substance – an objective and phenomenological
value – to the mathematical theory of probability.” (Cournot, 1843)

It seems clear from his further writing that Cournot understood “physically impossible”
in more of an FAPP (for all practical purposes) sense, referring to a negligible possibility

25



(as Borel would later put it) rather than events forbidden by natural law. Undoubtedly
though, Cournot’s terminology has not helped the acceptance of his philosophy.

A more appropriate formulation of the principle can be found in the work of Kol-
mogorov (1933, Sec. 2.1) : if an event has a very low probability, “then one can be
practically certain that the event will not occur”. Equivalently (by contraposition): if
an event has a very high probability, we should expect it to occur. Other authors have
cast the principle in more decision-theoretic terms. Roughly: it is rational to act as if
very high probability outcomes will obtain.

CP can be applied both to one-shot events (limited to a particular time and place)
and complex ones, corresponding to a statistical pattern. In the latter case, it is
generally tied to a law of large numbers. We must, of course, be careful not to confuse
the relevant referent. It is very likely for a low-probability event to occur eventually on
repeated trials. Moreover, what counts as “very unlikely” in the sense of the principle
can be context-dependent, as we will discuss in more detail below.

Especially in science, when we are dealing with robust phenomena, the most per-
tinent formulation of CP is in terms of explanation:

If a phenomenon has very high probability according to our theory, we should
consider it to be conclusively explained by that theory. If we observe a phenomenon
of very low probability, we should look for further explanation and possibly (if the
phenomenon is significant enough) revise or reject our theory. The reader will have
certainly realized that this mirrors the rationality principles that we have set out for
typicality.

In the end, I believe that these various formulations of CP are just different aspects
of the same rationality principle, which may be cast in terms of expectation, belief,
acceptance, explanation, etc. – at least on the level of granularity at which these
concepts are roughly intertranslatable.

Example. Atypical events are still possible but usually the kind of events that we
would not accept as a fluke but that cry out for further explanation and thus challenge
our theoretical assumptions. It is possible to roll a six 80 times on 100 trials but the
rational conclusion is that the die is loaded. My favorite example for the application
of CP comes from Martin Scorsese’s movie Casino (1995). Ace Rothstein, played by
the great Robert DeNiro, is a gambling expert hired to manage a Las Vegas casino
controlled by the mafia. In a pivotal scene of the movie, he gets into the following
exchange with his employee (Don Ward) in charge of overseeing the slot machines. I
apologize in advance for reproducing the colorful language.

Ace Rothstein: Four reels, sevens across on three $15,000 jackpots. Do you have
any idea what the odds are?

Don Ward: Shoot, it’s gotta be in the millions, maybe more.
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A.R.: Three f***in’ jackpots in 20 minutes? Why didn’t you pull the machines?
Why didn’t you call me?

D.W.: Well, it happened so quick, 3 guys won; I didn’t have a chance...

A.R. [interrupts]: You didn’t see the scam? You didn’t see what was going on?

D.W.: Well, there’s no way to determine that...

A.R.: Yes there is! An infallible way, they won!

D.W.: Well, it’s a casino! People gotta win sometimes.

A.R. [grows more irritated]: Ward, you’re pissing me off. Now you’re insulting
my intelligence; what you think I am, a f***in’ idiot? You know goddamn well
that someone had to get into those machines and set those f***in’ reels. The
probability of one four-reel machine is a million and a half to one; the probability
of three machines in a row; it’s in the billions! It cannot happen, would not
happen, you f***in’ momo! What’s the matter with you? Didn’t you see you
were being set up on the second win?

D.W.: I really think you’re overreacting...

A.R.: Listen, you f***in’ yokel, I’ve had it with you. I’ve been carrying your ass
in this place ever since I got here. Get your ass and get your things and get out
of here.

D.W.: You’re firing me? [...] You might regret this, Mr. Rothstein.

A.R.: I’ll regret it even more if I keep you on.

D.R.: This is not the way to treat people.

A.R.: Listen, if you didn’t know you were being scammed you’re too f***in’ dumb
to keep this job, if you did know, you were in on it. Either way, YOU’RE OUT!

3.1 The Lottery Paradox and Rational Belief

One could argue that CP comes essentially for free if probabilities are understood as
credences. However, as explained before, we are less interested in deriving beliefs from
prior beliefs, and more in objective probabilities that derive from our best theories of
nature. Such predictions come with certain normative implications for which phenom-
ena require (further) explanation and which theories can be accepted. That very high
credence means FAPP certainty is basically analytic, while the rationality principle we
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are interested in derives its normative power, at least in part, from the nomological
authority of natural laws. Moreover, epistemic or doxastic theories assign the same
status to all degrees of belief, whereas it’s characteristic of the view associated with
Cournot that statements of “very high” and “very low” probability are privileged with
respect to their physical, empirical, and epistemic content. Thus Borel’s famous credo:
“The principle that an event with very small probability will not happen is the only
law of chance.” (Borel, 1948)

If one wants to conceive of Cournot’s rationality principle in doxastic terms, one
could say that it doesn’t tie objective probabilities to degrees of belief (like Lewis’ Prin-
ciple Principle to be discussed in 5) but “very high probability” to belief simpliciter.
One problem that then arises is that rational belief is generally assumed to be closed
under conjunction

Bel(A) ∧Bel(B) =⇒ Bel(A ∧B), (3.1)

while typicality statements – or statements of “high probability” – are not. (Unless one
applies CP only to events of measure 1.) Clearly, the probability of A1 ∩A2 ∩ . . .∩An
could get arbitrarily small with increasing n, even if the probability of each Ai is very
large.

The account thus faces the infamous lottery paradox (Kyburg, 1961): It is very
likely for any lottery ticket to be a loser. Hence, I should believe that ticket 1 will
lose, and that ticket 2 will lose, ..., and that ticket N will lose. But then, by (3.1), I
should also believe “ticket 1 will lose, and ticket 2 will lose,..., and ticket N will lose” –
which is certainly false if one of the tickets will be drawn for sure. Such cases in which
a conjunction of typical facts ceases to be typical, or even becomes atypical, threaten
to make Cournot’s principle inconsistent with normal doxastic logic.

A possible reaction is to concede that belief – or at least the relevant notion of
“expectation” associated with CP – is not closed under conjunction. Indeed, one may
very well read the lottery paradox not as an argument against CP but, on the contrary,
against the insistence that rational belief must satisfy (3.1).

If we think in terms of explanation, one might also be puzzled at first: Could it be
that theory T explains A and T explains B, yet T doesn’t explain A ∧B? But yes, it
easily could. According to nuclear physics, no further explanation is needed for the fact
that plutonium atom 1 hasn’t decayed within the past hour, or that plutonium atom
2 hasn’t decayed within the past hour, etc. (or, for that matter, that neither atom 1
nor atom 2 have decayed). But no atoms decaying in one 1kg of plutonium would cry
out for further explanation. We face, of course, a “sorites problem” (what threshold
amount of Pu would make it “puzzling” if no decay occurred?), but we established
from the very beginning that typicality – and probabilistic reasoning, in general, – is
vague.

A more sophisticated response was developed by Hannes Leitgeb (2014, 2017), who
tackled the problem of reconciling normal doxastic logic and degrees of belief (satisfying
the axioms of probability) with the “Lockean thesis”: there exists a threshold 1

2 < r ≤ 1
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such that any proposition A is believed if and only if the degree of belief in A is at
least r. Formally: Bel(A) ⇐⇒ C(A) ≥ r. In a nutshell, Leitgeb shows that this
can be done for the price of admitting that belief is context-sensitive, i.e., that the
threshold value r, the credence function C, and the set of relevant propositions Π can
be codependent. In his stability theory of belief, there then exists, in any context, a
unique proposition BW of stably high subjective probability (C(BW | A) > 1

2 for all
compatible propositions A) such that Bel(B) ⇐⇒ BW ⊆ B.

For instance, one may care either about the event that participant 1 wins the
lottery (Π = {{w1}, {w2, . . . , wN}}) or about the event that someone wins the lottery
(Π = {∅, {w1, . . . , wN}}), but it is hard to imagine a realistic decision problem that
would require a rational agent to represent both at once in the same logical algebra.
The first partition Π is relevant to participant 1, who better act as if her ticket is not
going to win (rather than buying a boat right away). The second is relevant to the
lottery company, which better be prepared to pay out the jackpot.

The parallels between Cournot’s principle and Leitgeb’s stability theory of belief
are fairly obvious, but the theory doesn’t quite carry over one-to-one. It allows, in
principle, for any value r > 1

2 , which is a bit too generous for appealing to CP. And in
physics, we don’t consider measures on any odd event space, but on the microscopic
phase space of the theory. On the other hand, we are not interested in all implications
(i.e., all directions of co-dependence) of Leitgeb’s theorems, e.g., in first fixing what we
believe and then looking for a consistent assignment of probabilities. Rational beliefs
based on science should follow what the theory predicts, not the other way around. So
while we cannot rely in the full authority of Leitgeb’s proofs, his analysis carries over
in the following sense:

In general, we do not care about all possible events A ⊂ Ω (at least not all at once).
Especially in physics, when Ω is the microscopic phase space, most measurable subsets
are just arbitrary collections of possible micro-configuration that do not correspond to
any meaningful macro-event. Instead, a specific context of reasoning will be associated
with a limited set of predicates (“macro-variables”) Πj partitioning Ω. And in each
context, there can be another threshold value δj such that CP applies when

P(A) > 1− δj , A ∈ Πj . (3.2)

In general, Π and δ can be “balanced” in such a way that this condition is closed
under conjunction. And then, Cournot’s principle applied to (3.2) will cohere with the
Leitgeb’s stablity theory of belief. In particular, there will be a strongest typicality
fact entailing all others (see our Proposition 6.3.4).

Often, different contexts will be associated with different scales of time, area,
and/or sample size. The probability of an earthquake with Richter magnitude ≥ 10
occurring next week in Sacramento is negligible (absent seismic indicators, cancelling
a trip for fear of this event would be irrational); the probability of such an earth quake
hitting California within the next 100 years or so is not. In general, different scales
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will be relevant for different epistemic agents, e.g., individual people as opposed to
insurance companies or governmental regulators.

In a scientific context – when one could say that the relevant epistemic agent
is a scientific community – we usually care about robust phenomena and statistical
regularities. The class of phenomena that theories are tasked with explaining will,
however, differ across the various disciplines, and the “threshold” for typicality seems
to be different, in an interesting hierarchical way, for regularities falling under the
purview of fundamental physics or the various special sciences. We will return to this
point in Chapter 15.

Emile Borel (1939), discussing Cournot’s principle (though not by this name),
actually made a proposal for the orders of magnitude characterizing “negligible prob-
abilities”:

p < 10−6 on the individual human scale

p < 10−15 on the terrestrial scale

p < 10−50 on the cosmological scale.

He argued: “In the ordinary conduct of his life, every man usually neglects probabilities
whose order of magnitude is less than 10−6, that is, one millionth, and we will even find
that a man who would constantly take such unlikely possibilities into account would
quickly become a maniac or even a madman.” The spirit of Borel’s reflections is more
interesting here than the exact numbers.

3.2 The Rationality of Cournot’s Principle

Does nature have to obey Cournot’s principle?

We have introduced CP as a rationality principle rather than a factual claim, that is,
as a statement about what we should expect rather than what will actually happen.
Many would argue, however, that following CP can only be rational if it is successful;
if, as a matter of fact, very improbable events occur at most as rare exceptions. But
in what sense could the factual claim that a very unlikely event will not happen be
implied by the normative claim that we should act as if it won’t? In more metaphorical
terms, the question is this: Who has to abide by Cournot’s principle, rational agents or
nature itself? There it is, the usual dialectic between the epistemic and aleatic nature
of probability all over again.

Part of the synthesis lies in the process of hypothesis testing. We would not, and
should not, accept a theory of nature if it makes the relevant phenomena unlikely.
This is standard scientific practice: If the probability of an observation O under a
hypothesis H is very low, we reject the hypothesis. Somewhat oversimplified, P(O | H)
is the infamous p-value. The standard convention in special sciences sets the threshold
for rejecting a “null-hypothesis” in a single study at p = 0.05 (and it is hotly debated
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at the moment, whether this value is too large); in particle physics, it is 5σ, or roughly
3·10−7. But no matter how large the sample, or how often an experiment is reproduced,
no p-value, however small, would make it impossible that a true hypothesis is falsely
rejected (called a type I error in statistics).

The upshot is that rational scientists would never accept a theory that makes the
phenomena atypical, even if that theory were actually true. But whether we can
ultimately appeal to more than human rationality depends, to a large extent, on our
metaphysical attitude towards laws of nature. The Humean best system account, which
regards laws of nature as optimal summaries of contingent regularities in the world (see
Chs. 5 and 13), can provide a very convenient answer: A true probabilistic law can get
it wrong some of the time (i.e., assign a very low probability to an event that actually
happens) but it cannot be wrong a lot of the times, or else it wouldn’t be part of,
or deducible from, the best systematization of the world. In my (anti-Humean) view,
it is not a conceptual truth that the actual world does not correspond to an atypical
instantiation of the laws, but a foundational belief of its scientific investigation. In this
sense, I do believe that nature itself is bound by the rationality of Cournot’s principle.

In the end, every good scientist accepts the rationality of the scientific method while
also being aware of the possibility of error. For Humeans, this epistemic humility is
only due to limited data (if she knew the entire mosaic, a sensible physicist couldn’t be
wrong about the laws). In my view, it is the right attitude towards the fundamental
laws regardless of observational limitations. In practice, it won’t make much of a
difference, since we are, in fact, limited beings.

Moral certainty

Cournot’s principle stands in the long philosophical tradition of moral certainty, which
describes a degree of certainty that falls short of absolute metaphysical/logical/math-
ematical certainty but must nonetheless be considered sufficient for practical purposes
or the purposes of a particular field of inquiry. This distinction goes back at least to
Aristotle, who explains that it would be unreasonable to hold moral philosophy to the
same standard of proof as mathematics (Nicomachean Ethics 1094b). Here, we can
already see the double-meaning of moral certainty. In the more literal sense, it refers
to the degree of certainty with which moral truths can be established. In the more
relevant sense (for our purposes), it points to normative principles that compel us to
accept certain inferences on pain of irrationality. This latter aspect comes out clearly
with Leibniz, who writes:

Certainty might be taken to be knowledge of a truth such that to doubt it
in a practical way would be insane; and sometimes it is taken even more
broadly, to cover cases where doubt would be very blameworthy (N.E. 445,
quoted after Leibniz (1765/1982))

While Leibniz already invokes probabilistic notions, the connection to a mathematical
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theory of probability is first made explicit in Jakob Bernoulli’s seminal Ars Conjectandi
(1713) . Bernoulli defines something as “morally certain if its probability is so close to
certainty that the shortfall is imperceptible” and “morally impossible if its probability
is no more than the amount by which moral certainty falls short of complete certainty.”
He goes on to explain:

Because it is only rarely possible to obtain full certainty, necessity and
custom demand that what is merely morally certain be taken as certain. It
would therefore be useful if fixed limits were set for moral certainty by the
authority of the magistracy – if it were determined, that is to say, whether
99/100 certainty is sufficient or 999/1000 is required....

Both the pragmatic and the normative aspects of probability reasoning are discernible
in this statement; so is the problem of vagueness, of fixing a threshold value for moral
certainty/moral impossibility. Bernoulli wants to address this issue by appealing to
“the authority of the magistracy” while we can only appeal to the authority of reason.

Black swans and Pascal’s wager

But that there is no science of the accidental is obvious; for all science is either of that
which is always or of that which is for the most part.

— Aristotle, Metaphysics (1027a)

While philosophers are prone to worry about the possible, no matter how implau-
sible, overconfidence is the cardinal sin of the practitioner when it comes to proba-
bilistic forecasts. Thus, it has been convincingly argued (e.g., in Taleb (2010); Silver
(2012)) that many catastrophic prediction failures, in particular in economic, social,
and environmental sciences, come from neglecting the possibility of low-probability
but high-impact events (so-called “black swans”): market crashes, political revolu-
tions, environmental disasters, etc. This important lesson may seem to go against the
rationality of CP – the principle of the negligible event, as it has been called – as
applied to singular events.

We have already made two salient remarks that can be repeated here. First, that
pragmatic considerations may very well figure into choosing the threshold for “very
low probability” and thus identifying the range of typical versus negligible outcomes.
Second, that one has to identify the relevant events to begin with. Even the cunning
investors who are successfully betting on rare events that the market tends to under-
estimate are following CP: they are betting on the typical regularity that unexpected
market events happen occasionally.

I would insist on two further points. For one, that an individual acted irrationally
by buying into the lottery even if he actually won the jackpot. This is to say that
not all black swan events amount to a prediction failure challenging the rationality
of Cournot’s principle. Furthermore, the difference between a cautious forecaster and
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a paranoic is that the former will apply the principle of the negligible event at some
point. If we could never neglect the possibility of extreme events on the basis of
their minuscule probability alone, we would constantly have to buy into Pascalian
wagers of sorts, since there is basically no upper bound on the magnitude of possible
catastrophes.1

Finally, it may be interesting to note that exceptional events can seem much more
significant in human affairs than in sciences tasked with investigating the regular course
of nature. In particular, in the context of statistical mechanics, singular atypical events
(one apple spontaneously jumping off the ground, let’s say) would arguably appear like
the kind of mid-size “miracle”2 that would be dismissed as a false report or some sort
of observation error but remain inconsequential for the discipline at large. In human
affairs, on the other hand, it is the very unpredictability of “black swans” that tends
to increase their impact.

1The ultimate “paranoid” scenario may be a decay of the (false) Higg’s vacuum that would anni-
hilate all the matter in the observable universe, see Mack (2015).

2Not literally a violation of the fundamental laws, though.
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Chapter 4

A Typicality Theory of
Probability

This section will finally introduce our proposed interpretation of deterministic proba-
bilities as typical relative frequencies. In the language of typicality, this approach was
laid out by Goldstein (2012) and further developed in the textbooks of Dürr et al.
(2017) and Dürr and Lazarovici (2020, Ch. 3) that our discussion will partly follow.
In addition, many landmark works in the history of probability could be claimed as
precedents (see Ch. 3 on Cournot’s principle) – one may even argue that Kolmogorov’s
axiomatization of modern probability theory was proposed with a similar view in mind
– but it would be a matter of historical debate how far these claims can go.

Understandably, people who feel comfortable with the concept of probability are
generally less sympathetic to our program, which seeks to ground it in – and in some
instances replace it with – the new concept of typicality. That’s fair. One just has to be
careful not to confuse familiarity with comprehension, the successful application of the
probability calculus with a clear understanding of what probabilities mean. The fact
that the interpretation of probability has been controversially debated for centuries
shows that there is at least no consensus, even when it comes to specific areas of
application like statistical mechanics.

We consider the paradigmatic example of a “random experiment,” which is the
repeated tossing of a fair coin. A sequence of coin tossings, let’s say of length n = 1000,
can be viewed as a 0-1-sequence: 0 stands for heads and 1 for tails (let’s say). Now
consider the following mathematical facts:

1. The total number of possible 0-1-sequences of length 1000 is 21000.

2. The number of sequences of length n = 1000 with exactly k heads is
(n
k

)
.

3. The values of this combinatorial factor for different k is shown in the following
table 4.1. We care, in particular, about the relative number of sequences with
k ≈ 500 (equal distribution of 0 and 1) versus those with k � 500 (unequal
distribution) .
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k 100 200 300 400 450 480 500

(1000
k

)
≈ 10139 10215 10263 10290 10297 10299 10299

(1000
k

)
/21000 ≈ 1

10161
1

1085
1

1037
1

1011
1

104
1

100
1
40

Table 4.1: Absolute and relative number of 0-1-sequences of length n = 1000 with k
zeros. Note that

(n
k

)
is symmetric about n/2. The given values are approximate.

We note:
(1000

300
)
differs from

(1000
500
)
by a factor of 1036 (!). More generally, the number

of sequences with a roughly equal distribution of 0’s and 1’s is overwhelmingly greater
than the number of sequences with a distinctly uneven distribution. In fact, from the
bottom line of the table we can readily estimate that sequences with k ∈ [500 ± 50]
make up nearly all possible ones; sequences with fewer than 450 1’s (or 0’s) contribute
almost nothing to the total number.

Thus, all sequences are different; some consist almost entirely of 0’s, other contain
twice as many 1’s, etc. However, among the set of possibilities, we find a typical
regularity that comes with large numbers (the “large number” here being n = 1000):
in nearly all possible sequences, 0 and 1 (heads and tails) appear with roughly equal
frequency. This equidistribution is typical.

Another typicality fact is that nearly all possible sequences are irregular. This
is to say that they look nothing like 0101010101 . . ., but that the occurrences of 0
and 1 seem unpredictable. There are different ways to make this precise (in terms
of complexity, entropy, correlations, etc.) but a relatively simple argument is the
following: Let’s say we have roughly 26 = 64 orthographical symbols at our disposal,
including mathematical symbols. Then there are

m∑
k=0

(64)k ≈ 26m possible sentences

of length m or less, compared to 2n possible 0-1-sequences of length n, which is a far
greater number if n � m. Therefore, the vast majority of sequences do not allow for
any description that would be significantly shorter than the sequence itself.

In any case, some form of irregularity or unpredictability is characteristic of what we
would call “random” behavior, and here we see that (apparently) random behavior is
itself a typical phenomenon. Notably, this is true regardless of whether the fundamental
process producing the sequence of events is deterministic or intrinsically random. A
stochastic coin-toss law can produce very regular sequences like 0101010101 . . . but
only with very low probability (for large n). And a deterministic law can typically
produce very irregular sequences that pass all statistical tests for randomness. (A
concrete example will be discussed below.) This is also why the question of whether
our world is, in fact, deterministic or indeterministic can never be settled on empirical
grounds alone.
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4.1. NORMAL NUMBERS AS A MODEL FOR COIN TOSSING

Irregular behavior in deterministic systems is closely related to the concept of chaos
or dynamical instability. For actual coin toss experiments, we intuitively know what
to do in order to produce “random” outcomes: the coin must be sent spinning and
whirling, enough to make the result unpredictable because the smallest change in the
initial (angular) momentum imparted to the coin by the throwing hand can lead to a
different outcome, from heads to tails or vice versa. The motion of the coin becomes
chaotic, in the sense that small causes can have large effects. This is very important
for the appearance of random behavior, not just because of practical unpredictability
but also because chaotic dynamics are usually linked with some notion of statistical
independence that allows the law of large numbers to take effect.

4.1 Normal Numbers as a Model for Coin Tossing

Simple counting, as we just did to determine what is typical, won’t do the job if we
want to take the coin toss seriously as a physical process whose outcome is determined
by dynamical laws and initial conditions. The initial conditions for the coin are po-
sitions and (angular) momenta, which are continuous variables, so we can no longer
actually count the possibilities. But what can tell us now what is small and what is
overwhelmingly large if there is an infinity of possibilities either way? The answer is a
measure on the continuum, a typicality measure.

In a somewhat realistic physical analysis, this would be a measure on phase space
– which is 12-dimensional if consider the coin as a Newtonian rigid body and roughly
1024-dimensional if we consider it, from a microscopic point of view, as a collection
of particles. Naturally, such an analysis is very difficult to do (virtually impossible in
the microscopic case). Instead, we shall consider a mathematical model that is highly
instructive and easy to analyze rigorously.

It is helpful for the discussion to avoid human involvement altogether and think
of the coin being tossed, not by human hand, but by a coin-tossing machine, i.e., a
mechanical device which takes a coin, tosses it, registers heads or tails, takes the coin
again, tosses it again, and so on. Each time, the machine must flip the coin with
slightly different angular momentum. But this in itself is no excuse to smuggle in
probabilities since the machine itself is a physical system obeying deterministic laws.
We shall imagine this system as isolated, that is, the machine is set up at some initial
time t0 with some initial condition x and from thereon everything runs like clockwork.

Let Ω be the physical state space of the machine together with the coin. The ma-
chine produces for each ω ∈ Ω a sequence of coin-tossing outcomes, which is completely
determined by ω. The results of each coin toss are given by coarse-graining functions
on Ω, macro-variables mapping each ω ∈ Ω to the value 0 or 1 (head or tails). To
keep things mathematically tractable, we consider a simple model with Ω = [0, 1) and
ω = x ∈ [0, 1). Hence, we look for functions that map the interval [0, 1) to the value
set {0, 1} and capture the characteristic features of coin tossing, in particular the idea
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4.1. NORMAL NUMBERS AS A MODEL FOR COIN TOSSING

of statistical independence. The coarse-graining must produce this independence in
interplay with a natural measure.

A big question when probability theory was being worked out as a mathematical
discipline was: Are there any “natural” examples of such coarse-graining functions, or
would one have to rely on contrived ad hoc constructions? The following realization,
though somewhat forgotten in modern days, proved to be a huge stepping stone:
Represent each x ∈ [0, 1) in binary form1:

x = 0.x1x2x3 . . . , xk ∈ {0, 1}, x =
∑
k≥1

xk2−k ,

so that xk ∈ {0, 1} is the k-th digit in the binary expansion of the real number x. Now
for k ∈ N, consider the functions

rk : [0, 1]→ {0, 1}; x 7→ xk, (4.1)

mapping the real number x to its k’th binary digit. These functions are called
Rademacher functions. The first three are sketched in Fig. 4.1.

We can use the Rademacher functions to model coin tossing (cf. also (Kac, 1959,
Ch. 2)). Think of x as representing the physical initial condition and of rk(x) as the
outcome of the k’th coin toss given by the respective solution of the equations of motion
plus coarse-graining (we care only about which side of the coin faces upwards). The
role of the deterministic law is thus played by the binary expansion of the numbers.

1

1

1

1

1

11/2 1/4 1/8

r1 r2 r3

Figure 4.1: Area under the graphs of the Rademacher functions rk for k = 1, 2, 3. The
preimages are half-open intervals.

Remark (On the term “random variable”). In the mathematical literature, such (mea-
surable) coarse-graining functions are called “random variables.” This terminology is
quite unfortunate (Mark Kac (1959) called it “horrible and misleading” (p. 22)), as
it suggests something intrinsically chance-like about them. Here, it should be obvious
that there is nothing chancy or indeterministic about the digits of a real number.

1With the convention that we write ...10 instead of ...01.
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4.1. NORMAL NUMBERS AS A MODEL FOR COIN TOSSING

The Rademacher functions capture our intuitive understanding of independence.
The values of rk(x) for k ≤ n, i.e., the first n binary digits of x, tell us more about x
(e.g., r1(x) = 1 ⇒ x ∈ [1/2, 1)) but imply nothing about the (n + 1)-th binary digit
or any digit after that. The precise mathematical concept of statistical independence,
however, is not a feature of the macro-variables or the dynamics alone but is defined
in terms of a measure.

Coarse-graining functions, as the name suggests, are not one-to-one: Many different
x are mapped by rk to one and the same result. Which x values those are is given by
the preimage r−1

k (δ), δ ∈ {0, 1}, for example

r−1
1 (0) := {x ∈ [0, 1) : r1(x) = 0} = [0, 1/2) .

Coarse-graining functions thus partition their domain into cells (the Boltzmannian
“macro-regions” in statistical mechanics). In this particular case, the preimage sets of
the values 0 and 1 have the same size or content. We have a pretty good intuition for
what we mean by that: the content of an interval [a, b) is its length λ([a, b)) := b− a,
the content of a rectangle is its area, the content of a three-dimensional cuboid is its
volume, etc. This leads to the construction of the Lebesgue measure λ on Rn and then
to the abstract mathematical concept of measures, in general, but the prototype of all
measures is the intuitive content.

In any case, with respect to this natural measure, it is easy to check that

λ
(
r−1
k (δk) ∩ r−1

l (δl)
)

= λ
(
r−1
k (δk)

)
· λ
(
r−1
l (δl)

)
= 1

4 , ∀k 6= l, δk, δl ∈ {0, 1}. (4.2)

This product structure (4.2) defines statistical independence. The Rademacher
functions thus give us the necessary trust that statistical independence can indeed arise
as a natural mathematical feature of coarse-graining functions. The independence of
the Rademacher functions can almost literally be seen from Fig. 4.1. The coarse-
graining yields a very distinct partition; the pre-images of rk for different k mix or
intertwine in an extremely orderly fashion as to realize (4.2). This is the ideal case, the
paradigmatic example of statistical independence. In more realistic physical models,
the “mixing” will be much messier and harder to picture, let alone prove.

Law of large numbers for Rademacher functions

With this groundwork, it is a standard mathematical exercise to prove a law of large
numbers for the Rademacher functions. Let

mn
emp(x) := 1

n

n∑
k=1

rk(x)
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be the empirical mean2, i.e., the relative frequency of 1’s in the first n binary digits of
x ∈ [0, 1). Exploiting statistical independence, one obtains:

λ

({
x ∈ [0, 1) :

∣∣∣∣mn
emp(x)− 1

2

∣∣∣∣ > ε

})
≤ 1

4nε2 , ∀ε > 0. (4.3)

We can phrase this result in various ways:

• The set of x ∈ [0, 1) for which 1 and 0 does not appear roughly equally often in
the binary expansion has negligible content.

• For the overwhelming majority of x ∈ [0, 1), the relative frequency of 1’s and 0’s
is approximately 1/2.

• A relative frequency of mn
emp ≈ 1

2 is typical in Ω.

• We can call this typical value p = 1
2 ofmn

emp (its expectation value) the probability
of “heads” (and, analogously, “tails”), which corresponds to the intuitive Laplace
probabilities for coin tossing.

To clarify the transfer from this mathematical model to the relevant physical situa-
tion: Each x ∈ Ω corresponds to a possible initial condition or nomologically possible
world instantiating a different outcome sequence of heads and tails which is completely
determined by the dynamics. For some initial conditions, almost all the coins would
land on heads; for others, tails comes out with much higher frequency. However, nearly
all possible worlds instantiate the statistical regularity that the relative frequency of
heads and tails in a long series of tosses is approximately 1/2. This (if it could be
established) is an objective “non-random” fact about the possible worlds allowed by
the deterministic laws, just as the typical distribution of binary digits is an objective
fact about real numbers.

In standard textbook terminology, one would call

P(k, δ) := λ
(
r−1
k (δ)

)
(4.4)

“the probability” of the outcome δ ∈ {0, 1} in the k’th trial. But what would have
been the point of using a word with so much philosophical baggage for something as
pedestrian as the length of intervals? More generally, there are at least two reasons to
avoid the identification of (4.4) with the physically relevant notion of probability.

1. While (4.4), technically an image measure” under the “random variable” rk, is a
useful and natural mathematical concept, it has no empirical content. What we
observe and try to explain are statistical regularities, i.e., relative frequencies,
not weights assigned to sets of possible initial conditions.

2A more accurate but somewhat unwieldy name would be “theoretical empirical mean” since memp
yields the relative frequency as a function of the possible x rather than the one actually observed.
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2. Many measures other than the uniform Lebesgue measure would make it true
that µ

(∣∣∣mn
emp(x)− 1

2

∣∣∣ > ε
)
≈ 0 for large n, i.e., agree on the typical relative

frequencies, while assigning different weights to the individual pre-images sets.
In other words, probabilities understood as typical relative frequencies are very
robust against variations of the typicality measure.

Symmetry and Laplace probability

We have, of course, a strong intuition about the tossing of a balanced coin. If the
distribution of mass is symmetric between heads and tails, this should be manifested
in an equal probability (corresponding to the Laplace probabilities of the “elementary
events” heads and tails). Often, a principle of indifference is invoked to make this
connection, as if the empirical regularity – the equidistribution of heads and tails in a
long series of tosses – comes about because we have insufficient reason to prefer one
side of the coin over the other. In fact, the connection between the symmetry of the
coin, the symmetries of the physical laws, and the (roughly) equal frequencies of heads
and tails is made by typicality. The physical symmetries are statistically manifested in
typical “models” of the theory. In Ch. 5.5, we will see that a crucial argument for the
“naturalness” of the uniform typicality measure on classical phase space is, in fact, not
its uniformity per se but its invariance under the symmetries of Galilean spacetime,
matching that of the dynamical laws.

Biased coins

Our first argument, based on a simple counting of possible outcome sequences, is
vulnerable to an objection of circularity: haven’t we essentially assumed an equal
probability of heads and tails by counting all sequences with equal “weight”? For a
biased coin, the set of possible outcomes would be the same, but the probabilities, i.e.,
the typical frequencies, should come out different from 1/2. Aside from the (crucial)
fact that nothing about probabilities was assumed in our argument, this is a valid point.

One may now think about mounting a similar objection against the continuous
model based on the Rademacher functions. Indeed, there are measures on the unit
interval with respect to which “the great majority” of numbers would have a distinctly
uneven distribution of digits. But those are measures that differ radically from the
Lebesgue measure – measures that become singular in the limit n→∞ – and cannot
be confused for sensible typicality measures. Mathematically, we could also put a
delta-measure on x = 0 and say that almost all numbers are identically zero; but aside
from technical jargon, this is simply an abuse of language and doesn’t capture the
correct notion of typicality.

So if probabilities other than 1/2 do not come from different typicality measures,
where would they come from? Usually, from a difference in the dynamics, which parti-
tion the space of initial conditions (here Ω = [0, 1)) into subsets leading to the outcomes
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4.2. TYPICAL FREQUENCIES

0 or 1, respectively. In our model, the dynamics were included in the Rademacher
functions and the binary expansion of numbers which partition the unit-interval sym-
metrically. If we were to model an unbalanced coin, many initial conditions would be
mapped to different outcomes.

Special “macroscopic” boundary conditions can also lead to different typical reg-
ularities. For instance, if we impose the boundary condition x < 2−500 (so that
rk(x) = 0, ∀k ≤ 500), the first n = 1000 digits of the binary expansion would typically
contain about three times as many 0’s as 1’s. (Typically, that is, relative to the initial
“macro-region” [0, 2−500) ⊂ Ω). This corresponds to what we call a non-equilibrium sit-
uation in statistical mechanics, and we emphasize that in the fundamentally determin-
istic setting, there are non-equilibrium macro-conditions rather than non-equilibrium
typicality measures (here, the Lebesgue measure is always the appropriate typicality
measure). In a very simplified sense, we can even see convergence to equilibrium in this
model: the relative frequencies of 0 and 1 start out in non-equilibrium, with an over-
population of 0’s, and typically approach the equidistribution as n increases towards
infinity.

4.2 Typical Frequencies

The theory that is beginning to emerge from our discussion relates probabilities to
relative frequencies but is different from traditional frequentism or hypothetical fre-
quentism. Slightly oversimplified, frequentists try to define the probability p of a
(repeated) event as

p = 1
N

N∑
i=1

χi, (4.5)

while hypothetical frequentists consider the limit of infinitely many (hypothetical)
trials:

p = lim
N→∞

1
N

N∑
i=1

χi. (4.6)

The theory proposed here understands probability as typical relative frequency, that is

µ

(∣∣∣∣∣ 1
N

N∑
i=1

χi − p
∣∣∣∣∣ > ε

)
≈ 0, (4.7)

where µ is a typicality measure and ε a small non-negative number.
Evidently, the conceptual distinction between typicality and probability measures

(that we will further elaborate on) is essential here, otherwise an expression like (4.7)
would be circular as a definition of probability. Probabilities, however, refer to sta-
tistical regularities, while the typicality measure is defined on sets of possible initial
states and only used to identify which statistical regularities obtain for an overwhelm-
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ing majority of initial conditions. Just as the Lebesgue measure on the set of reals, it
has nothing to do with frequencies, or credences, or any kind of intrinsic randomness.

Indeed, among the many possible objections against finite and hypothetical frequen-
tism – Hájek (1996, 2009) formulates 15 arguments against each – I want to highlight
the following: Ultimately, any conclusive physical analysis has to speak about the uni-
verse and its initial conditions (cf. Ch. 8). And then, there simply are no meaningful
frequencies, not even hypothetical ones.

Notably, (4.7) will, in general, not determine a unique number p but a small range
[p− θ, p+ θ] of typical frequencies. It is only on the theoretical limit n→∞ that we
can expect the typical value to become sharp. I consider this to be a feature, not a
bug. The idea that probabilities correspond to exact real numbers is not born out by
most interpretations and particularly naive under epistemic ones. At the very least,
physical probabilities don’t have to be sharp in order to guide rational credences, as
credences are hardly determined up to infinitely many decimal places. They should,
however, satisfy the axioms of probability in an appropriate sense.

Here, we find that typical relative frequencies are positive (since 1
N

∑N
i=1 χi ≥ 0)

and that the typical relative frequency of sure events is one (since 1
N

∑N
i=1 1 = 1).

We must, however, impose the rationality principle that the reported typicality results
should be as strong as possible, e.g., we should say that the probability of the sure event
is one rather than “approximately 0.9999999” (which is technically true but silly).

Finally, typical relative frequencies for mutually exclusive events A and B are
additive in the following sense3:

µ

(∣∣∣∣∣ 1
N

N∑
i=1

χAi − p
∣∣∣∣∣ > θA

)
= δA ≈ 0, µ

(∣∣∣∣∣ 1
N

N∑
i=1

χBi − q
∣∣∣∣∣ > θB

)
= δB ≈ 0

⇒
(∣∣∣∣∣ 1
N

N∑
i=1

χAi∨Bi − (p+ q)
∣∣∣∣∣ > θA + θB

)
≤ δA + δB ≈ 0.

(4.8)

If we called (p− θ) and (p+ θ) the “lower,” respectively “upper probability,” this
would be familiar from theories of imprecise probabilities. However, while most au-
thors interpret imprecise probabilities subjectively, I submit that the objective phys-
ical probabilities that can be grounded in deterministic laws are (except in idealized
limits) unsharp. Notably, the range of typical frequencies tends to get narrower with
increasing sample size N (see our discussion of the LLN in Ch. 2). Physics usually
deals with very robust phenomena (huge N) and thus very precise probabilities, while
special sciences study regularities with much fewer instances and hence more impre-
cise probabilities. Notably, this is not just an epistemic or methodological claim but
a physical one. The true probabilities (i.e., typical relative frequencies) that can be
grounded in the fundamental laws of nature are much less sharp for macro-economic
events than thermodynamic ones.

3This follows from the fact that χAi∨Bi = χAi + χBi for mutually exclusive events and thus∣∣ 1
N

∑N

i=1 χAi∨Bi − (p+ q)
∣∣ ≤ ∣∣ 1

N

∑N

i=1 χAi − p
∣∣+
∣∣ 1
N

∑N

i=1 χBi − q
∣∣.

43



4.3. PROBABILISTIC PREDICTIONS FOR SINGULAR EVENTS

The significance of theoretical limits

In practice, the ensemble size N is not generally known or even fixed. What do
we have in mind when we talk, for instance, about the propabilities, i.e., typical
relative freuquencies, for coin tossing: N = 1000, N = 1000000, or maybe N =
#coin tosses actually occuring in our universe? If we are interested in precise esti-
mates for the range of typical values, there is no way around specifying this (possibly
alongside other relevant details of the coin-tossing process). For the colloquial use,
however, it doesn’t really matter. As long as N is reasonably large, the typical relative
frequencies are approximately 1/2.

Could we also say that the typical relative frequencies for coin tossing are approxi-
mately 499

1000 and 501
1000? We could, but only when referring to coin-tossing sequences that

are not too long, otherwise we might violate the principle that “the reported typicality
results should be as strong as possible.” The theoretical limit frequencies for N →∞,
here 1/2, are thus distinguished by the fact that they are a good reference point for the
range of typical values for arbitrarily large N . Following Goldstein (2012), we could
call these limits theoretical probabilities, as opposed to physical probabilities, though
only if this is not misunderstood as introducing two different philosophical concepts.
The theoretical limits are just a convenient means to identify typical relative frequen-
cies, both in the technical-mathematical sense – when it is useful to work with them –
and in the pragmatic-linguistic sense – when we refer to the theoretical probability as
representative for a small range of typical frequencies.

Speaking of these theoretical limits, we should not let equation (4.6) stand. From
probability theory, a convergence of the empirical mean as in (4.6) can only be obtained
as a typicality result. In particular, in the sense of the weak law of large numbers
(“convergence in probability”)

∀ε > 0 : lim
N→∞

µ

(∣∣∣∣∣ 1
N

N∑
i=1

χi − p
∣∣∣∣∣ > ε

)
= 0, (4.9)

or in the sense of the strong law of large numbers (“almost sure convergence”)

µ

(
lim
N→∞

1
N

N∑
i=1

χi = p

)
= 1. (4.10)

But here, we are really in the regime of abstract mathematical models. Unless infinite
ensembles are possible, there is no reference class of possible worlds to which such
expressions successfully refer.

4.3 Probabilistic Predictions for Singular Events

To repeat: the role of the typicality measure in our account is not to assign an exact
value to every possible event (or phase space region), but only to identify “very large”
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and “very small” sets of initial conditions. Probabilities, on the other hand, are taken
to refer in the first place to statistical regularities rather than singular events. For
this reason, I am not very concerned about the so-called reference class problem (see
Hájek (2006) for a good discussion). One and the same event may be part of multiple
statistical patterns, and which one we take to guide our actions or credences will usually
depend on pragmatic considerations, not least on which typical regularities we are able
to identify in the first place.

If I could see the initial orientation of a coin and be sensitive enough to narrow its
initial angular momentum down to a small interval [L1, L2], I might be able to place
the respective coin flip in a statistical ensemble whose typical relative frequencies differ
from 1

2 . Conceptually, this only poses a problem if one insists that there should be a
physical probability associated with each individual coin flip event. There is, however,
no contradiction between the statements “the typical relative frequency of heads in a
long series of coin tosses is 1

2” and “the typical relative frequency of heads in a long
series of coin tosses with initial angular momentum L ∈ [L1, L2] is 1

3 .” Notably, no
claim is made that using the additional available information leads to a more accurate
prediction for that particular trial, but it will typically pay off in the long run.

Indeed, I find the interpretation of probabilities as typical relative frequencies com-
pelling because single-case probabilities have no empirical content (a singular event
either occurs or it doesn’t). And I also see no reason why the fundamental laws of
nature, if they are deterministic, should ground a probability for any odd macro-event,
e.g., the outcome of the next presidential election.

One might worry, however, that typicality measures (as opposed to probability
measures) are doing too little, by being, in effect, unopinionated about most possible
events. The fundamental laws of physics may not predict probabilities (other than 0
or 1) for the next presidential election, but pollsters and political scientists certainly
do. One could understand these probabilities epistemically. But if one holds a reduc-
tive view of special sciences (as I do, see Ch. 15), one must insist that if there’s any
objective sense in which such probabilistic predictions can be more justified or less,
this should be at least partially grounded in physical facts. The following (idealized)
example should be helpful to see how this could work.

Setup: We imagine an exit poll for a presidential election. Every single voter is as-
signed a number from 1 to N , and a pollster picks a sample of 1000 participants by a
(classical) random number generator.

Result: 480 out of the 1000 participants respond that they have voted for the candidate
of party A, while 520 respond that they have voted for the candidate of party B.

Fair sampling hypothesis: Each voter had an equal and independent chance of being
polled. Hence, for each interview, the probability of picking a party A voter is equal
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to the actual share p = k
N of votes that party A has received.

Mathematical fact: Under the above assumption, the sampling can be described as a
Bernoulli process with unknown probability p. From the result of the poll, one can
then compute a probability of approximately 0.8 that the actual percentage of party
A voters lies below 50%.

Prediction: We should believe with 80% confidence that the candidate of party A has
lost the popular vote.

Note that the probabilistic nature of this prognosis comes only from the “fair sampling
hypothesis,” not from an intrinsic probability of the predicted event. What the poll,
together with the mathematical theory of probability, does, in effect, is to reduce ratio-
nal belief about a complex event – the outcome of a presidential election – to rational
belief about relatively simple events – the outputs of a random number generator.
These beliefs about the sampling process can be physically justified by a typicality
fact: it is typical that the number generator produces fair samples in the long run,
i.e., all possible numbers with roughly equal frequency and in an unpredictable order.
Yet again, there is nothing intrinsically random about this process (we are using a
deterministic RNG), nor a physical probability associated with the election outcome
per se.

This is all very basic statistics, and I am confident that someone more knowledgable
in the field could provide a similar analysis for less simplistic scenarios. There is, of
course, a bit of a “religious war” going on between Bayesians and Non-Bayesians,
and I suppose the latter are the more natural allies for the typicality view. With
respect to the former, the conjecture would be that all sensible priors would eventually
convergence to the typical frequencies. To establish this rigorously, however, seems
like a lot of work for another time.
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Chapter 5

The Mentaculus

5.1 Typicality versus Humean Probability

Our discussion of the coin toss has already hinted at the general structure of deter-
ministic physical theory, which is the following: We have a fundamental state space Γ
whose points are the possible microscopic configurations (of the universe, in the last
resort) and dynamical equations yielding a vector field on Γ which determines the pos-
sible time-evolutions of the states. The general solution of the equations of motion is
described by a flow Φ : R×R×Γ→ Γ such that X(t) = Φt,s(x) is the unique solution
with initial condition X(s) = x. Every x ∈ Γ is thus a possible initial condition for
the universe, corresponding to a possible micro-history.

In the context of classical mechanics, that we shall focus on for now, Γ ∼= R3N×R3N

would be the phase space comprising the positions and momenta of all the N particles,
and the Newtonian or Hamiltonian equations of motion determine a Hamiltonian vector
field. There is also a natural measure λ on Γ called the Liouville measure, which is just
the Lebesgue measure, i.e., the intuitive phase space volume, in canonical coordinates.
This measure has the special property of being stationary under (i.e., conserved by)
the Hamiltonian dynamics, meaning λ(Φt,sA) = λ(A) for a (Borel) set A ⊆ Γ and any
s, t ∈ R. In mathematical terms, the triple (Γ,Φt,s, λ) forms a dynamical system.

In anticipation of our detailed discussion of Boltzmann’s statistical mechanics, we
note that there is a reasonably widespread agreement that the following holds true as
a mathematical fact (see, e.g., Bricmont (1995); Penrose (1989); Albert (2000); Carroll
(2010); Goldstein (2012); Lazarovici and Reichert (2015)):

There exists a small (low-entropy) region MPH in the phase space Γ of the
universe such that the uniform Liouville measure1 λ on MPH assigns high
weight to initial conditions leading to micro-trajectories that instantiate
the thermodynamic regularities – in particular, the thermodynamic arrow
of time – and other salient patterns (about coin tosses, stone throws, etc.)

1If we can conditionalize on the constant total energy, the relevant measure is, more precisely, the
induced microcanonical measure on the energy surface.
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that we observe in our universe.

That is, if we denote this set of “good” initial conditions by M∗PH ⊂MPH ,
it holds true that λ(M∗PH)/λ(MPH) ≈ 1.

Following recent lectures of David Albert, we shall call this the fundamental theorem
of statistical mechanics (FTSM), although it is not literally a theorem in the sense
of rigorous proof. “Statistical mechanics” here should be understood very broadly, as
being tasked with explaining or predicting macroscopic regularities on the basis of the
microscopic laws.

Some people will find it preposterous to refer to initial conditions of the universe in
order to account for something like the motion of a rock or the cooling of a cup of coffee.
Well, in practice, we don’t. In principle, however, even the best-isolated subsystem
is part of a larger system with which it has interacted at some point. Hence, if we
make postulates about initial conditions of various subsystems individually, we commit
redundancy and risk inconsistency2. Any attempt at a conclusive and fundamental
account must therefore talk about the universe as a whole.

An important question is, of course, why the mathematical statement seems so
compelling, given that it is virtually impossible to prove for more than highly ideal-
ized models. This will be addressed in the next chapter, which discusses Boltzmann’s
statistical mechanics in detail. Here, we shall focus instead on the physical and philo-
sophical interpretation of the FTSM (assuming its truth), in particular the meaning
and status of the measure figuring in it.

David Albert (2000, 2015) and Barry Loewer (2007a, 2012b) have developed a
popular and well-worked out position in the context of the Humean best system ac-
count of laws (BSA), adapting David Lewis’ theory of objective chance (Lewis, 1980,
1994; Loewer, 2001, 2004). In a nutshell, the BSA regards laws of nature as the best
systematization of contingent regularities; the “best” systematization being the one
that strikes an optimal balance between simplicity and strength (informativeness) in
describing the world (the so-called Humean mosaic). According to Albert and Loewer,
the best system laws of our world consist in

1. The deterministic microscopic dynamics.

2. The Past Hypothesis postulating a low-entropy initial macrostate of the universe.

3. A probability measure P = λ
λ(MPH) on the Past Hypothesis macro-region MPH .

This probability measure does not refer to any intrinsic probabilities or random events
in the Humean mosaic. Its inclusion into the best systematization is justified by the
fact that it comes at relatively little cost in simplicity but makes the system much more

2To adopt an expression from John Bell (2004, p. 166)
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informative, precisely because it accounts – via the FTSM – for the thermodynamic
regularities, the entropic arrow of time, and many other macroscopic phenomena.3

Loewer introduced the name “Mentaculus” for this best system candidate, a self-
ironic reference to the movie A Serious Man in which a rather eccentric character tries
to develop a “probability map of the entire universe.” As a philosophical proposal,
though, the Mentaculus (eccentric or not) is certainly appealing, as it attempts to pro-
vide a precise account of objective probabilities in deterministic theories. Moreover,
Albert and Loewer employ the Mentaculus in a sophisticated analysis of counterfactu-
als, records, and special science laws, the details of which are beyond the scope of this
chapter.

The view defended in this thesis – and by other authors before (e.g., Goldstein
(2012)) – is that the Liouville measure on the initial macro-region should be under-
stood as a typicality measure. This is to say that the FTSM is interpreted not as
a probabilistic statement but as the proposition that the macroscopic regularities in
question obtain in nearly all possible worlds (consistent with the dynamical laws and
the Past Hypothesis). In this sense, macroscopic regularities, such as the second law
of thermodynamics, come out as typical regularities and the notion of “probability” is
applied to describe typical statistical regularities but not to the fundamental measure
on the phase space of the universe.

What makes the Mentaculus and the typicality account interesting subjects of a
comparative analysis is that they agree on many basic points – like the objective nature
of physical probabilities and the relevance of the FTSM – while disagreeing about three
important issues:

i) What is the metaphysical status of (and justification for) the fundamental mea-
sure?

ii) What normative principle grounds its epistemic implications?

iii) And how wide is the scope of physical probabilities?

Therefore, it will be instructive to further develop the typicality view by contrasting it
with the Mentaculus. A subsidiary goal of this section is to argue that it is preferable
to adopt typicality even in the context of the best system account, while there are
additional motivations if one holds an anti-Humean view about laws of nature.

5.2 Principal Principle and the Meaning of Humean Chances

We have already begun to explain that typicality facts are distinct from probability
facts. In particular, that the role of a typicalility measure is only to determine “very

3It seems plausible that this basic structure of the best system does not hinge on particular micro-
dynamics but can be maintained very generally; although when it comes to some of our current best
theories, the details of the relevant probability postulate are far from clear.
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large” and “very small” sets (of initial conditions, i.e., possible worlds) while no physical
or epistemic meaning is attached to the exact number that it assigns to a particular
set. The Humean probability measure, in contrast, is supposed to contain much more
information. In fact, it will assign a probability (or conditional probability) to any
physical proposition about the world: a probability that my dog gets sick if he eats a
piece of chocolate, or that your favorite football team wins the next Super Bowl, or
that the United States elect a female president in 2028.

When you ask a Humean to explain the regularity theory of chance in 5 minutes,
you will hear something along the following lines: In our world, we find an irregular
pattern of coin toss outcomes. Giving you a complete list of every single coin toss
event would be very informative but not at all simple. Telling you that each coin lands
either on heads or on tails would be very simple but not at all informative. Saying that
the probability of heads and tails is 50% strikes the optimal balance between simplicity
and strength. It summarizes the statistical pattern by saying that heads and tails come
out in irregular order but with a relative frequency of 1/2 throughout the history of
the world.

So far, so good, but in the Mentaculus theory Humean chances mean something
different. First and foremost, the probability P(A) of an event A is the value that the
fundamental probability measure P assigns to the set A of initial micro-conditions in
the Past Hypothesis macro-region for which the respective event obtains (cf. Albert
(2015, p. 8)). The epistemic and behavior-guiding function of these predictions is then
supposed to be manifested in a normative principle, the Principal Principle (PP),
which states that we should align our initial credences with the objective Humean
chances. Formally:

C(A | P(A) = x) = x, (5.1)

or, for conditional probabilities,

C(A | B ∧ P(A | B) = x) = x. (5.2)

There are other variants of the PP proposed in the literature, and debates about
what constitutes “admissible information” that one can conditionalize on (Hall (1994,
2004); Lewis (1994); Loewer (2004)), but these subtleties will not be relevant to our
discussion.

In any case, stipulating the PP does not explain why it is rational to follow it, and
what physical information a probabilistic prediction of the Humean best system con-
tains. What exactly is the Mentaculus telling us by assigning, let’s say, a (conditional)
probability of 30% to the United States electing a female president in 2028? How,
in other words, does the measure 0.3 assigned to the set of initial conditions evolving
into a female president summarize what actually happens in our world? After all,
the Lewis-Loewer theory agrees that there are no genuinely probabilistic facts in the
mosaic. Every possible event either occurs or not, and whether it does is entailed by
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initial conditions and the deterministic dynamics. So what exactly are such single-case
probabilities supposed to inform us about?

A standard Humean response is that, by definition, the probability measure figur-
ing in the best system laws is the optimal measure for our world in terms of balancing
simplicity and strength. Hence, while a single-case probability may not express any-
thing about the individual event per se, there is something about the structure of the
Humean mosaic as a whole that makes the particular value true or accurate (Lewis,
1980). Indeed, according to the BSA, P(A) = x is true in all and only those worlds
whose best system implies P(A) = x, so the proposition seems to be saying something.

I submit that we cannot get out more of the best system than we put in. The
Humean probability law can only inform us about the features or regularities of the
world that it is supposed to fit in the first place. If it is more accurate to assign a
chance of 30% than of 60% (let’s say), there must be concrete physical facts in the
world that make it so; and these facts must be among those that go into evaluating the
strength of the best system candidates. However, as I will argue in more detail below,
many probability measures would assign a probability close to 1 to the thermodynamic
regularities and other salient statistical patterns, yet a chance very different from 0.3
to the United States electing a female president in 2028. By some standard, these
measures may not be as simple as the Liouville measure – which is why they are not
part of the Humean best system – but unless they fare worse in terms of fit, there
is nothing in the world that makes them less accurate when it comes to predicting
presidential elections.

Some authors have read Lewis as suggesting that the Humean probability law is
supposed to fit the macro-history of the world by assigning as high a probability as
possible to any event that, in fact, occurs, and as low a probability as possible to
any event that, in fact, does not occur (while being constrained by the requirement of
simplicity). It cannot really work that way. In the competition for the best system,
being a good predictor of presidential elections does not gain you as many points
for “strength” as predicting the increase of the Boltzmann entropy in our universe.
Also, assigning a probability of 1/2 to individual coin tosses – which may look like the
laws are completely ignorant about the outcomes – is actually informative because it
implies a very high probability for the event that the relative frequency of heads and
tails in a long series of tosses is approximately 1/2. At the end of the day, the best
system probability law will be one that informs us about robust regularities and global
patterns in the world (by assigning to them a probability close to one), while the fit
to singular events will count little to nothing in the trade-off with simplicity.

In particular: if, given the dynamical laws and the Past Hypothesis, two probability
measures P and P̃ are equivalent in terms of strength – because they predict the same
global patterns – while P̃ loses out in terms of simplicity, there is no possible world in
which P̃ replaces P as part of the best systematization.4 Therefore, a proposition like

4That is, unless the standard for simplicity is oddly contingent in a way that depends on microscopic
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“according to the Mentaculus, the probability of event A is P(A) rather than P̃(A)”
cannot restrict the set of possible worlds any further than to those instantiating the
regularities on which P and P̃ agree.

To sum it up in other words: According to the Humean view, there are certain
“chancemaking patterns” Lewis (1994) on which a probability law supervenes, while
“probabilities” for a great many other events – and, in fact, for all measurable subsets
of phase space, most of which do not correspond to any meaningful macro-event – come
out as a by-product. This by-product, to play on a metaphor by Albert (2015, p. 23),
is not a gift from God (“I give you my most efficient summary of the regularities and
you get rational credences for all conceivable events for free”) but mostly mathematical
surplus; the probabilities assigned to singular events could be very different, yet the
physical content of the law the same. Sure, we can postulate that we should live our
lives according to whatever numbers the Mentaculus spits out, but as so often with
articles of faith, there is no rational prospect of reward in this world.

A true regularity theory of probability

In a nutshell, Humean probabilities are supposed to be efficient summaries of statistical
regularities in the world. Then they turn out to refer, first and foremost, to a measure
on sets of possible initial micro-conditions. What has one to do with the other? In
most cases: nothing at all (is exactly my point). In some particularly nice cases, the
connection between a statistical pattern instantiated by a series S = (Ai)1≤i≤N of
similar events (e.g., a long series of coin tosses) and the probability P(Ai) = p of the
individual events that make up the pattern (e.g., the i’th toss resulting in heads) is
provided by a law of large numbers (LLN), that is, a result of the form

P
(
x ∈MPH :

∣∣∣∣∣ 1
N

N∑
i=1

χi(x)− p
∣∣∣∣∣ > ε

)
∝ 1
ε2N

≈ 0. (5.3)

Here, χi(x) is the indicator function mapping each possible initial micro-condition x to
1 if the event Ai occurs, and to 0 if the event Ai does not occur for the micro-trajectory
with initial condition x (see Fig. 1).

We can read equation (5.3) as: “the measure of the set of initial conditions for
which the relative frequency of occurring events deviates significantly from p is very
close to 0.” As a mathematical theorem, stating sufficient conditions for (5.3), the law
of large numbers requires that the events are in some sense independent or uncorre-
lated, which is often intuitively compelling but nearly impossible to verify (and may
fail much more often than we think). The standard proof of the LLN would further-
more make use of the fact that p comes out as the expectation value of the empirical

distribution 1
N

N∑
i=1

χi(x). In the end, however, the role of the measure in (5.3) is merely
to tell us that a particular set of initial conditions – the initial conditions that lead to

details or isolated macro-events.
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significant deviations from the statistical pattern – has a measure close to zero. And
at this point, it doesn’t matter where the number p came from, whether it corresponds
to P(Ai) or not, and whether we gave it any meaning as a probability in the first
place. Its significance as a relative frequency describing a typical statistical pattern is
established by, rather than assumed in, the law of large numbers result (5.3). Indeed,
if (5.3) holds for the measure P, an analogous statement will hold true for many other
measures that agree on the smallness of that set (and, in general, of various other sets
related to other statistical regularities), even if they disagree on the values assigned to
events Ai individually. And it will also hold true in many cases in which the standard
assumptions for the LLN are not satisfied. (For most physical applications, these are
much too strong anyway, which is why statistical mechanics is so darn hard.)

Philosophically, it is thus unnecessary and misleading to think of (5.3) as a con-
sequence of the single-case probabilities determined by P. It is really the other way
around: What a law of large numbers result does, in effect, is to reduce theoretical
probabilities to typical frequencies. These typical frequencies, I claim, are all that the
fundamental laws can or need to inform us about. In particular, if our best theory
tells us that (with “near certainty”) roughly 1/2 of the coin tosses result in heads,
one can begin to justify the rationality of assigning credences about individual tosses
accordingly; For instance by appealing to dutch-book arguments (if I accept bets of
less than 2:1 on each one of these events, I can be almost certain to lose money on the
long run) or maybe by invoking a principle of indifference with regard to the individual
event in the pattern that we are about to observe (Schwarz, 2014).

Ultimately, this view is in no way tied to Humean metaphysics but when combined
with a Humean regularity theory, it puts the latter back on its feet. As in the original
5-minutes sales pitch, probabilities are indeed referring to statistical patterns that the
best system summarizes, rather than abstract weights it assigns to sets of possible
initial conditions of the universe.

One may now wonder how this view of probabilities as typical relative frequencies
makes sense of statements like: “The probability of event A: My dog gets sick, given
B: He eats the piece of chocolate I dropped on the floor is p.”

It seems natural to embed these events into a statistical ensemble: this and that
fraction of dogs (of a certain size) get sick if they eat this and that amount of chocolate.
If nature is kind to us, the best system will predict this statistical pattern as a typical
frequency p – which may or may not correspond to the conditional probability P(A |
B) that the Mentaculus assigns to the singular event that my dog gets sick after
having swallowed the chocolate I dropped on the floor today. It also seems possible to
decompose the events into a more fine-grained description which is part of a statistical
pattern, e.g., the rate at which a dog’s intestinal tract can metabolize theobromine or,
finer still, interaction rates of certain molecules.

It seems to me that the intuition that singular macro-events could or should have an
objective physical probability, in addition to a deterministic micro-description, comes

53



5.2. PRINCIPAL PRINCIPLE AND THE MEANING OF HUMEAN CHANCES

from such (in principle) possibilities of embedding or decomposition – which are, no-
tably, non-unique (recall the “reference class problem”) and always require further
context and analysis. It may be more difficult to explain in physical terms what one
could mean by “the probability that the United States will elect a female president in
2028,” but as a starting point, we should look at the statistical regularities, e.g., the
sampling methods used to obtain polling data, that such predictions are actually based
upon (see our example of the exit poll in the previous section). In any case, the idea
that the Mentaculus provides a shortcut from the fundamental laws of physics to spe-
cific chance prescriptions for individual event tokens may be philosophically appealing
but ultimately too simplistic to pan out.

In the end, whenever we succeed in grounding rational credences in the fundamental
laws of physics, they will be grounded in typicality facts. A remarkable point worth
emphasizing is that rational credences are thus grounded not in propositions about
which our best theories are somehow noncommital or undecided, but in patterns and
regularities that they predict beyond any reasonable doubt.

Principal Principle versus Cournot’s Principle

What the previous discussion has, in fact, accomplished is to reduce the Principal
Principle (PP) – at least those instances of the PP that could have a basis in physics
– to a version of Cournot’s principle (CP) that we discussed in 3. In contrast to the
PP, we do not try to ground exact credences in any odd value that the fundamental
measure assigns to any odd subset of phase space but care only about typical / atypical
regularities. In the sense of Leitgeb’s stability theory, we can also say that, in the
context of statistical mechanics, the FTSM is the basic typicality fact which grounds
or entails the typicality of various thermodynamic “laws” and statistical patterns. In
any case, the measure of the “good” set of initial conditions is so close to 1 that its
typicality is not in question.

While the Lewis-Loewer theory of objective chance is traditionally associated with
the Principal Principle (Lewis even regarded PP as “non-negotiable”), it is very much,
if not more, compatible with Cournot’s principle: If the Humean probability of an
event is very close to one, we can be almost certain that this event actually occurs.
Why? Because this is what the best system is trying to tell us; because the way in
which the Mentaculus summarizes relevant regularities in the mosaic is by assigning
to them a probability very close to one. Ironically, a version of what Lewis (1994)
considered to be the “big bad bug” of his theory of objective chance can serve to vin-
dicate even the strongest form of CP in some cases. The Mentaculus will assign a very
small though positive probability to the universe evolving on an entropy-decreasing
trajectory. However, if the universe actually did evolve on such a trajectory, this Men-
taculus would not be the best systematization of our world (given that so many salient
features depend on its entropic history). Hence, the fact that the Mentaculus assigns
a near-zero probability to anti-entropic trajectories, together with the fact that the

54



5.3. PROBABILITY VERSUS TYPICALITY MEASURES

Mentaculus is the best systematization of our world, implies that an anti-entropic evo-
lution of the universe is impossible. On the other hand, if we are talking about an
event that the best system could, in principle, fail to fit, it is rather immaterial if it
assigns a probability of 10−50 or 10−100. Our residual uncertainty about whether that
event obtains after all, does not come from anything the best system tells us about the
world, but from the possibility that it just had to get this one wrong in the trade-off
with simplicity.

In any case, our main argument so far why even Humeans should favor CP over PP
is that the concrete physical information which the Mentaculus provides is to be found,
first and foremost, in statements of probability close to 1 and 0, while the rationality of
aligning credences with any odd value of the Humean probability is spurious, at best.
Note that also methodologically, the only way to test probabilistic laws is by applying
Cournot’s principle, i.e., by rejecting the law-hypothesis if we observe phenomena to
which it assigns a negligibly low chance (cf. Shafer and Vovk (2006)). Since I am
not a verificationist, I do not claim that single-case probabilities are meaningless just
because they cannot be empirically tested. I have, however, argued that the Humean
regularity account fails to give them meaning as deterministic chances – except to the
extent that they can be reduced to typical frequencies. Humeans often claim that
their probability measure is “empirical,” yet provides information far beyond what is
empirically testable. I don’t think they can have it both ways.

5.3 Probability versus Typicality Measures

The next step from probability to typicality comes by emphasizing the following insight:
If we agree that all we need on the fundamental level are “probabilities” close to 1 and
0, then a whole lot of different measures could do the job.5 If we don’t like the
Lebesgue measure, how about putting a (truncated) Gaussian measure on MPH? In
fact, we can tweak the measure in almost any way we like. Any measure that doesn’t
differ radically from λ will make a statement analogous to the FTSM true, and thus
imply the same thermodynamic laws and statistical regularities. (In Chapter 8, we will
discuss in more mathematical detail how the difference between two measures can be
quantified.) We cannot be too extreme, of course. A delta-measure concentrated on
an anti-entropic microstate will, evidently, lead to very different predictions. However,
as Maudlin (2007b, p. 286) concludes: against this backdrop, “our concerns about
how to pick the ‘right’ probability measure to represent the possible initial states ...
or even what the ‘right’ measure means, very nearly evaporate.”

An important observation is that probabilities (or weights, to use a more neutral
term) close to 1 or 0 are very robust against variations of the underlying measure.
Think for instance of the normalized Liouville measure as a uniform density over the

5The insight that a great many probability distributions over initial conditions lead to the same
statistical predictions is also discussed (though from a somewhat different perspective) in Myrvold
(2016) and, with more historical background, in von Plato (1994).

55



5.3. PROBABILITY VERSUS TYPICALITY MEASURES

macro-regionMPH . If λ(A) ≈ 0 but µ(A)� 0, then the measure µmust radically differ
from λ on a small set A. (The same holds by contraposition for probabilities close to 1.)
In contrast, for λ(B) = 0.3 while µ(B) = 0.4 (let’s say), µ needs to deviate only mildly
from the uniform density on the larger set B (see Fig. 5.1). “Large” and “small” is here
understood with respect to the Liouville measure, but this doesn’t make the argument
circular. The point is that radical deviations from the Liouville measure would be
necessary to come to different conclusions about typical/atypical regularities, while
relatively small variations can lead to significantly different probability assignments
for other events.

B A

μ

λ
μ

λ

Figure 5.1: Schematically: λ and µ disagreeing significantly on the weight assigned to
a set of small (left), respectively medium (right) λ-measure.

At least for the sake of argument, Albert and Loewer are willing to concede that
we could consider best system candidates that involve an entire set or equivalence
class of probability measures, with the understanding that the theory endorses all and
only those probability statements on which these measures (more or less) agree (see,
e.g., Albert (2015, footnote 2)). However, there is no good motivation to do so from
a Humean perspective since a set or equivalence class of measures is neither simpler
nor more informative than the Liouville measure (I have only argued that it is equally
informative). The situation is rather the following: we should use the Liouville measure
because it is simple and natural, but with the understanding that it is not a bona fide
probability measure but a typicality measure. Its role and purpose is to designate
events as “typical” (measure ≈ 1) or “atypical” (measure ≈ 0) or neither, while the
precise numerical assignments have no physical meaning.

This move, to relate CP to a concept of typicality rather than probability, is a more
recent development, though there is precedent for it in the physical literature (see, e.g.,
Everett (1973) and the discussion in Barrett (2016); also Bell (2004, Ch. 15), originally
published in 1981, Dürr et al. (1992), and Goldstein (2001) on Boltzmann). There are
additional motivations for this step, some of which we have mentioned before:

1. As argued above, Cournot’s principle suggests an understanding of probabilities
as typical frequencies. Of course, such an account would be circular if “typical”
were itself explicated in probabilistic terms.
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Moreover, probabilities can be understood as typical frequencies when applied
to events in the universe, but we better not refer to frequencies (not even hypo-
thetical ones) when we speak about the universe itself. For this reason alone, it
makes sense to distinguish two different concepts.

2. In statistical mechanics, it is common and convenient to formalize typicality
with the mathematical tools of measure theory, hence the deceptive kinship to
probability. There are, however, other ways to define “typical,” e.g., in terms of
cardinalities of sets or dimensions of subspaces, which can be relevant in other
contexts and figure in the same way of reasoning. (We will discuss this in more
detail in Ch. 6; for more subtle technical differences between typicality and
probability, see Wilhelm (2019).)

3. Some authors have suggested that “typical” is a more intuitive and unambiguous
notion than “probable” (see, e.g., Dürr et al. (2017)). One way to spell this out
is to say that the intuition associated with a typicality measure is one of “large”
versus “small” rather than “probable” versus “improbable” sets and that we have
a better intuitive grasp of the former than the latter.

Another way is to compare the following two formulations of Cournot’s principle:

i) Expect to find the regularities that obtain in nearly all nomologically possible
worlds.

ii) Expect to find the regularities that obtain with probability close to 1.

I would argue that the first rationality principle has an immediate intuitive ap-
peal while the second version seems more stipulative, or at least neutral with
regard to the interpretative question, what fact the probability statement actu-
ally expresses. Moreover, ii) can be applied to any probability measure – and has
meaningful content only in conjunction with a particular measure – while i) has
intuitive appeal only to the extent that the measure on possible worlds captures
the intuitive meaning of “nearly all.”

5.4 The Epistemic and Metaphysical Status of Typicality

The last points are, admittedly, controversial. Even some proponents of typicality are
uncomfortable with the idea that there exists an a priori notion of “typical.” And ad-
vocates of the Mentaculus emphatically deny that there are typicality facts that come
more or less for free once the dynamical laws are fixed. The deeper question here con-
cerns the metaphysical status of the measure. According to the Mentaculus account,
the fundamental probability measure has the same status as any other Humean law:
it supervenes on the contingent regularities in the world as part of the best system-
atization. This option is, in principle, also available for the typicality measure; that
is, one could consider a typicality rather than a probability measure as part of the
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Humean best system (Callender, 2007). In my view, however, the Humean account –
regardless of its flaws or merits as a metaphysics of laws, in general – fails to capture
the more subtle aspects of typicality and its use in physics. These come across if one
considers the typicality measure6 not as another theoretical postulate on par with the
dynamics but as a way of reasoning about the dynamical laws. In other words: being
intimately tied to Cournot’s principle – which is normative rather than descriptive –
the typicality measure falls itself, at least in part, into the normative domain.

Let me start to explore this by mapping out some key metaphysical differences
between a typicality measure and a Humean probability measure:

1. According to the Mentaculus account, the Humean mosaic is the truthmaker of
the probability measure as part of the best system.

According to the typicality account (at least the version I am defending), a choice
of typicality measure can be reasonable or justified, but there are no concrete
physical facts that make it, strictly speaking, true. (I am sympathetic to the
view that there are objective normative facts that make it true but that’s beyond
the scope of this discussion.)

2. According to the Mentaculus account, the probability measure, together with the
other best system laws, cannot be entirely and radically wrong about the world,
or else they would not form the best system.

According to the typicality account, it is logically and metaphysically possible
for a world to be – in any and all relevant regards – atypical with respect to the
reference class of nomic possibilities.

3. Humean probabilities are supposed to summarize regularities in the actual world.

Typicality statements summarize the modal structure of the laws. They do not
refer directly to the actual world but to the fact that a certain feature or property
is typical among all nomologically possible ones.

All these points show that the typicality measure cannot be just another bookkeeping
device for the mosaic in the sense in which Humeans want to conceive of laws of nature
in general. It can and should be tied to the dynamical laws (which, in turn, may be
reducible or irreducible) but not in a way that depends substantially on contingent
features of the world.

More precisely, I do not claim that the correct typicality measure follows deduc-
tively from the micro-dynamics but argue that there is no possible world in which the
dynamical laws are the same as in ours, while the notion of typicality is significantly
different. Imagine, for instance, a world that is consistent with Newtonian dynamics
but anti-entropic micro-conditions, a world, that is, in which apples sometimes jump
spontaneously up in the air, in which gases tend to clump, and gravitating systems to

6I am using the singular, though we should keep in mind that many different measures, qua math-
ematical objects, are equivalent as typicality measures.
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be blown apart. I do not mean a world that is an exact time-reversal of ours (which
would really be the same world if there is no primitive direction of time) but one in
which violations of our second law of thermodynamics occur on a regular basis. It
seems evident to me that the best system of this world – if one exists – would not
involve Newtonian gravity with a strange typicality measure but very different micro-
dynamics in the first place.

Or, if I can stop pretending to be Humean for a second: if the laws instantiated
in that world were, in fact, the Newtonian ones, rational physicists would justifiably
come to wrong conclusions about them. They would not discover the true dynamical
laws but have a radically different understanding of “typical” than we do. Typicality,
at least when combined with an anti-Humean conception of laws, thus allows for the
metaphysical possibility of “unlucky suckers,” epistemic agents in the absurd situa-
tion that rational inferences lead to radically wrong conclusions about their world.
Conversely, to the extent that the laws of nature are epistemically accessible to us,
our world must correspond – in the relevant respects – to a typical model of the true
theory. This is nothing we could ever know with metaphysical certainty; we can only
trust that “God is subtle but not malicious”, as Einstein put it.

As usually, though, the epistemic situation for the Humean and anti-Humean is the
same in practice. While I believe that it is always the theoretical system as a whole that
is challenged by empirical evidence, I cannot conceive of a situation in which it would
seem rational to revise our notion of typicality instead of adjusting the dynamical
postulates (while the converse is common and unproblematic). For instance, there
are almost certainly initial conditions for a Newtonian universe which are such that
particles create an interference pattern whenever they are shot through a double-slit
and recorded on a screen. This and other quantum phenomena are not made impossible
by classical mechanics, they just come out as atypical. However, changing the typicality
measure in order to save Newtonian theory from falsification by quantum phenomena
is not a serious scientific option that anyone has ever, or should ever, entertain.

Using Quine’s picture of a “web of belief” (Quine, 1951), I suggest that the dynam-
ical laws are closer to the edges of the web than our notion of typicality. The typicality
measure is somewhere in between the dynamical laws and the logical inference rules.
This squares the circle between its being necessary but not a priori. While it is in
principle possible to adjust it to new empirical evidence, the typicality measure is
never the first knob to turn before making adjustments in other parts of a theoretical
system.

One reason is that, because the notion of typicality is so robust against variations
of the measure, any revision of it would be radical, i.e., would have to correspond to
extreme changes in the measure on the state space of the theory. While it can be
maintained that the change of the dynamics from Newtonian mechanics to quantum
mechanics (or general relativity, etc.) was radical, as well, the new laws do at least
recover the old ones in relevant limiting cases. It is hard to see how a similar continuity

59



5.4. THE EPISTEMIC AND METAPHYSICAL STATUS OF TYPICALITY

could hold between different notions of typicality. Instead, we would have to accept
that we have been radically wrong about the meaning of “nearly all.”

There is a more important reason why the typicality measure should be less empiri-
cal or epistemically more robust than the dynamics. As mentioned in the introduction,
due to the huge number of microscopic degrees of freedom, the dynamical laws put
barely any constraints on what is physically possible on macroscopic scales. Given any
macroscopic phenomenon, there are almost certainly microscopic initial conditions for
which the laws of motion would entail it. By the same token, given almost any micro-
dynamics and any phenomenon in the world, there will be some measure that makes
the phenomenon “typical” or sufficiently likely.

Therefore, treating the typicality measure on the same footing as the dynamical
laws would give us too many moving parts that can be adjusted to fit the data. For
the Humean, this is bad because it increases the risk of a tie for the best system,
at least in hypothetical situations when simplicity of the dynamical and probability
postulates pull in opposite directions. For the anti-Humean, it is even worse since the
more freedom we have to adjust what counts as “typical” and “atypical,” the less can
empirical evidence inform us about the true laws of our world. To put it differently:
the more we regard the typicality measure as physically contingent, an independent
empirical hypothesis, the less explanatory work is done by the dynamical laws.

Example. Consider the following model for the coin toss, analogous to our discussion
in Ch. 4. Let Γ = (−1, 1) ⊂ R be the microscopic state space, respectively the
relevant initial macro-region. Let Γ 3 x = ±

∞∑
k=1

rk(x) 2−k, i.e., rk(x) ∈ {0, 1} is the

k’th digit in the binary expansion of x. We interpret the Rademacher function rk as
a macro-variable describing the outcome of the k’th coin toss. As discussed in 4, it is
straightforward to show:

λ

({
x ∈ Γ : 1

N

∣∣∣ N∑
i=k

rk(x)− 1
2

∣∣∣ > ε

})
≤ 1

4Nε2 . (5.4)

Read: for large N , typical initial conditions w.r.t. the Lebesgue measure λ are such
that the relative frequency of heads and tails is approximately 1

2 .
However, now consider the following family of truncated Gaussians as probability

measures: For n ∈ N, let N (0, σ2(n)) be the normal distribution with mean 0 and
standard deviation σ(n) := 1

10
1

2n and

µn :=
1(−1,1)N (0, σ2(n))
‖1(−1,1)N (0, σ2(n))‖1

, (5.5)

where ‖1(−1,1)N (0, σ2(n))‖1 is the normalization. Then, almost the entire weight of
µn (more than 10σ) is concentrated on the interval I(n) :=

(
−(1

2)n, (1
2)n
)
, on which
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rk(x) = 0, ∀ k ≤ n. Hence, µn makes it overwhelmingly likely that the first n coin
tosses result in tails. We could thus fit the statistical regularity without revising the
dynamics – even without making the probability measure less simple – no matter how
dominant the occurrence of tails.

In scientific practice, typicality judgments do, in fact, have a privileged status that
the Humean regularity theory fails to account for.7 In particular, atypicality is pre-
cisely the standard by which dynamical theories are reasonably rejected as empirically
inadequate (think again of the double-slit experiment as a falsification of classical me-
chanics or the 5σ-standard commonly used in particle physics). Interestingly, this
applies in pretty much the same way to deterministic laws as to intrinsically stochastic
ones. The difference is that, in the latter case, falsifying a dynamical and a proba-
bilistic hypothesis is one and the same, while for deterministic theories, it is primarily
the dynamical postulates that stand trial. This is only possible because the typicality
measure is epistemically more robust or, in some sense, entailed by the dynamical laws.
In other words: in the scientific enterprise, some concept of typicality and atypicality is
part of the backdrop against which law-hypotheses are evaluated rather than another
law-hypothesis in its own right.

5.5 Justification of Typicality Measures

For these reasons, most advocates of typicality do not consider the typicality measure
as an independent postulate of the physical theory, although it might be from a strictly
logical perspective. But what then determines the right measure and accounts for its
epistemic rigidity?

One answer we have already alluded to is that the role of the measure is not
so much to define “typical” but to formalize an intuitive and largely pre-theoretic
notion. In other words, there aren’t competing versions of typicality corresponding to
different choices of typicality measures, but one unified concept that a measure can
either capture or fail to capture. If the set of possible worlds were finite, we wouldn’t
feel the need for an additional postulate to express what we mean by “nearly all possible
worlds.” In the continuum case, there is more ambiguity about how to “count,” but
this is arguably a technical rather than a conceptual issue.

The concept of typicality has, in any case, a certain vagueness. Just as it is impos-
sible, in general, to specify a precise threshold ratio above which we should say that
a subset contains “nearly all” elements – i.e., a precise threshold measure close to 1
above which something counts as “typical” – it seems impossible to specify a fixed set
of criteria that make a measure convincing as part of the mathematical formalization

7Marc Lange (2009) makes a similar point when he argues for “degrees of necessity” in laws, though
typicality is not quite a law, and nomic necessity is not quite the right concept here.
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of typicality. In the context of classical Hamiltonian mechanics, the Liouville mea-
sure is clearly a reasonable choice while a delta-measure is clearly not, but a certain
grey area in between seems unavoidable. Consider, for instance, a family of Gaussian
measures with standard deviation σ → 0 so that the distributions become more and
more peaked (see the example above). Again, it would be misguided to ask for a
sharp threshold value of σ below which the Gaussians cease to be suitable typicality
measures. Still, this doesn’t mean that the concept itself is ill-conceived or that the
vagueness is problematic in practice. The bottom line is that a typicality statement
has normative implications if and only if it is made with respect to a reasonable no-
tion of “large” versus “small” sets. And while it is hard to state mathematically what
makes a measure reasonable or unreasonable, we can generally tell them apart when
we see them.

Some authors put less emphasis on the intuitive content of typicality and more
on the condition that the measure must be stationary under the dynamics. This is
to say that the measure of a set of microstates at one time must correspond to the
measure of the time-evolved set at any other time. In this way, the dynamical laws
themselves would constrain the choice of typicality measure. I will provide a more
precise definition of stationarity and further justification for this condition below.

Fortunately or unfortunately, as long as we are dealing with classical mechanics,
both approaches lead to the same conclusion since the simplest and most intuitive
measure – the uniform measure on phase space – is also stationary under the Hamil-
tonian dynamics (though not uniquely so). It could even be justified by a principle of
indifference (Bricmont, 2001), although I believe that the epistemic connotations are
doing no good.

There is, however, a notable example where stationarity and intuitiveness seem to
go apart (and the principle of indifference to fail altogether). In Bohmian quantum
mechanics, the natural typicality measure grounding Born’s rule and thus quantum
statistics for subsystems is given by the |Ψ|2-density on configuration space, induced
by the universal wave function Ψ (Dürr et al. (1992), reprinted as Ch. 2 in Dürr et al.
(2013b)). This measure is stationary (more precisely: equivariant) under the Bohmian
particle dynamics and even uniquely determined by this condition (Goldstein and
Struyve, 2007). However, since we do not know what the universal wave function
and hence the induced typicality measure looks like, it appears that its justification
can hardly lie in pre-theoretic intuitions. If the |Ψ|2-density turned out to be sharply
peaked, it would look very different from a uniform measure and thus seem to constitute
a radical departure from the notion of typicality employed in classical mechanics. In
the next subsection, I will discuss how this conclusion can be avoided and the two
justifications of the typicality measure reconciled, after all.
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Stationarity, uniformity, symmetry

The following discussion is quite technical, though the basic point is rather simple:
So far, we have mostly talked about measures on the initial macro-region of the uni-
verse. In fact, the relevant reference class for typicality statements – what we actually
want to quantify – are not initial micro-conditions but (nomologically) possible worlds.
Initial conditions are just a means to parametrize the respective solution trajectories.
Stationarity, simply put, guarantees that a large set of solution trajectories is deemed
large by the same measure if we look at the trajectories, i.e., the corresponding set of
microstates, at any other time.

One subtlety that often leads to misunderstandings is that proponents of the Men-
taculus tend to think of the fundamental probability measure on phase space Γ as
the one which is uniform over the Past Hypothesis macro-region MPH ⊂ Γ and zero
outside. This is not a stationary measure on Γ since weight will “flow out” of MPH

and disperse all over phase space. Other authors tend to think of the stationary Li-
ouville measure on all of phase space as the natural typicality measure which is then
conditionalized on the initial macrostate MPH . Notably, in our further considerations
which focus on the solution space rather than phase space, this difference will become
largely immaterial.

Let S be the set of solution trajectories for the microscopic dynamics (consistent
with the Past Hypothesis) in the state space Γ ∼= Rn. For any t ∈ R, let εt : S →
Γ, X 7→ X(t) be the map evaluating the trajectoryX at time t. These maps can be read
as charts, turning the solution set S into an n-dimensional differentiable manifold.8

The transition maps between different charts are then εt ◦ ε−1
s = Φt,s, where Φt,s is the

flow arising as the general solution of the laws of motion (Fig. 2).

time

Figure 5.2: Sketch of the solution space and its parameterization by time slices.

8Strictly speaking, some solutions may exist only on a finite time-interval so that the charts are
only locally defined. Here, we assume global existence of solutions for simplicity.
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Now, the easiest way to define a measure µ on S is in one of these charts, let’s say
ε0. Indeed, a possible point of view is that there exists a distinguished “initial” time
so that it makes sense to parametrize solutions by initial data at t = 0. The other
point of view, emphasized by our geometric notation, is that the choice of the “time
slice” is arbitrary, essentially amounting to a particular coordinatization of the solution
space. Under a transition map (coordinate transformation), the measure transforms
by a pullback, µt = Φt,0#µ0, i.e., µt(A) = µ0(Φ−1

t,0A) for any measurable A ⊂ Γ, where
µt is the measure represented in the chart εt.

A measure is stationary if and only if it has the same form in every time-chart, i.e.,

µt = Φt,0#µ0 = µ0, ∀t ∈ R, (5.6)

Equivariance is the next best thing if the dynamics are themselves time-dependent.
Concretely, in the case of Bohmian mechanics, the particle dynamics are determined
by the universal wave function Ψt which itself evolves in time according to a linear
Schrödinger equation. Nonetheless, we have

|Ψt|2dnx = Φt,0#
(
|Ψ0|2dnx

)
, ∀t ∈ R (5.7)

so that the measure has the same functional form in terms of Ψt for any time t.
In conclusion, a stationary or equivariant measure on the state space Γ induces a

canonical measure on the solution space S: a measure that can be defined without
distinguishing a set of coordinates, i.e., a particular moment in time.

Uniformity of a measure, on the other hand, is a metric notion. It requires that

µ(B(x, r)) = µ(B(y, r)), ∀x, y ∈ Γ, r > 0, (5.8)

where B(x, r) is the ball of radius r around x. However, even if the state space Γ
comes equipped with a metric, it does not, in general, induce a canonical metric on
the solution space S. It is thus not clear what the geometric distance between two
possible worlds should be, or whether it makes sense to regard S as a metric space
(Riemannian manifold) at all. However, without a metric on the solution manifold,
it is meaningless to ask whether a measure on it is uniform or not. From this point
of view, it is indeed misleading to regard uniformity as a criterion for the typicality
measure. Even the Liouville measure in classical mechanics is uniform on the “wrong
space,” namely on phase space rather than the space of possible worlds.

The uniformity of the Liouville measure on phase space does nonetheless capture
a meaningful and important feature of the typicality measure, namely its invariance
under Galilean symmetries. A symmetry is an isomorphism T : Γ→ Γ that commutes
with the flow, i.e., Φt,s(Tx) = TΦt,s(x). This then induces a transformation T ∗ : S → S
on the solution space by T ∗ = ε−1

t ◦ T ◦ εt which is independent of t.9 The most

9Proof: ε−1
t Tεt = ε−1

s Φs,tTΦt,sεs = ε−1
s Φs,tΦt,sTεs = ε−1

s Tεs.
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important symmetries of classical mechanics are those of Galilean spacetime, namely:

(qi, pi)1≤i≤N −→ (qi + a, pi) (Translation)

(Rqi, Rpi) (Rotation)

(qi + ut, pi +miu) (Galilei boost)

It is well-known that the Lebesgue or Liouville measure λ is invariant under these trans-
formations, (which are just Euclidean transformations on phase space). Consequently
(as is easy to check), the induced measure on S is invariant under the corresponding
symmetry transformations on the solution manifold.

In Bohmian mechanics, the issue is a bit more subtle since the wave function itself
transforms non-trivially under Galilean symmetries, namely as (Dürr and Teufel, 2009):

Ψt(q1, ..., qN ) −→ Ψt(q1 − a, ..., qN − a) (Translation)

Ψt(R−1q1, ..., R
−1qN ) (Rotation)

e
i
~
∑N

i=1 mi(uqi− 1
2u

2)Ψt(q1 − ut, ..., qN − ut) (Galilei boost)

It is, however, evident that the |Ψ|2-density is covariant under these transformations,
guaranteeing the invariance of the typicality measure under Galilean symmetries.

In the upshot, the typicality measures in both classical mechanics and Bohmian
mechanics are justified and tied to the dynamics by precise mathematical features:
stationarity/equivariance and invariance/covariance under the fundamental spacetime
symmetries. However, at least in classical mechanics, these conditions are not sufficient
to determine the measure uniquely, or even rule out evidently inadequate choices such
as a delta-measure concentrated on a stationary microstate. At the end of the day,
part of what makes a measure compelling and allows it to play its normative role when
it figures in typicality reasoning is that the choice doesn’t seem biased or ad hoc or
overly contrived. In other words, I do not believe that “soft” criteria can or should
be completely avoided, and they aren’t, in fact, in scientific practice. Attempts to
axiomatize typicality measures (Werndl, 2013) seem misguided, not just because the
particular proposals are uncompelling but because it is hard to see why any set of
formal axioms should be more compelling than the very measures we use in physics.

Remark (Room for compromise). We began this section by highlighting three ques-
tions on which the Mentaculus and the typically account disagree. We can now restate
them more concretely:

i) Is the measure grounding the predictions of statistical mechanics a bona fide prob-
ability measure or a typicality measure?

ii) What is the epistemic and metaphysical status of the measure? Is it a theoretical
postulate (a Humean law) on par with the dynamics, or does it formalize a way
of reasoning about the laws?
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iii) What expresses its epistemic or behavior-guiding function, the Principal Principle
or Cournot’s principle?

While I have defended a view that comes down on the opposite side of the Mentaculus
on each of these points, I should emphasize that the answers to the three questions
are logically independent (with the exception that a typicality measure essentially
collapses PP into CP). For instance, it is possible to maintain that the (Humean)
laws involve a typicality measure rather than a probability measure, that a probability
measure expresses a way of reasoning (e.g., a principle of indifference) rather than an
empirical postulate, or that the laws of nature include a bona fide probability measure
in addition to deterministic laws, whose empirical and epistemic import comes from
Cournot’s principle. This leaves room for compromise, but also for misunderstandings
since not everyone advocating for “typicality” or “‘Humean chances” may have the
same package deal in mind. And while there is always some value in compromise and
moderation, the “extremal” positions are often the most interesting ones.
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Chapter 6

The Logic of Typicality

Since typicality results are often formulated in terms of measure theory – or probability
theory, i.e., normalized measures – the concepts of typicality and probability are easily
conflated. This conflation usually happens by mistake, but can also come in the form of
the criticism that “typical” is just another word for “very probable” despite attempts by
some authors to make it into a bigger deal. In fact, as Wilhelm (2019) has already laid
out in detail, typicality and probability are conceptually, formally, and metaphysically
distinct. The goal of this section is to make the formal differences more explicit. For
a more formal-logical discussion of typicality, see Crane and Wilhelm (2020).

6.1 Predicates, Propositions, and Extension Sets

When it comes to applications in physics, a fundamental premise of our discussion
is that macroscopic facts are grounded in microscopic facts, with the latter being
described by a suitable physical theory. We denote the microscopic state space of
that theory by Ω and assume deterministic dynamics which determine a flow Φs,t on
Ω such that X(t) = Φs,t(x) is the unique solution of the equations of motion with
initial condition X(s) = x. In many cases, the micro-dynamics can even be described
as a dynamical system (Ω,Φs,t, µ) with a (normalized) measure µ on the Borel sigma-
algebra that is stationary under the flow Φs,t.

The truth-value of any meaningful proposition ϕ about a physical system is deter-
mined by the microstate of the system or, ultimately, of the universe as a whole. We
can thus associate ϕ with a predicate P = Pϕ on microstates whose extension

AP = P−1
ϕ ({1}) (6.1)

is the subset of Ω which contains all and only those micro-configurations that realize
P . In the terminology of statistical mechanics, Pϕ is a macro-variable (with values in
{0, 1} corresponding to the truth values false and true respectively) and AP ⊂ Ω the
corresponding macro-region.1 In other words, the kind of question we ask, in general,

1In principle, P may also refer to microscopic facts, in which case AP ⊂ Ω will contain only few –
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is not “what is the exact value of some continuous variable F” but “does the value of
F lie in some range (y1, y2)?”. The set Π of relevant predicates defines what we have
called the context of our reasoning. It will always be closed under negation but not
necessarily under logical conjunction and disjunction.

As we generalize this beyond classical mechanics, the implicit metaphysical assump-
tion – which is rather an assumption about how the theoretical formalism connects
to empirical facts – is that microscopic configurations “coarse-grain” to macroscopic
facts, in the same sense in which, for instance, a moving configuration of Newtonian
particles can coarse-grain to a planet circling the sun in an elliptical orbit. This is gen-
erally the case for primitive ontology theories, like Bohmian mechanics in the context
of quantum physics. I believe that all serious candidates for a fundamental physical
theory of the world should specify a primitive ontology or “local beables” in the sense
of (Bell, 2004, Ch. 7), but this is a separate debate.

While a proposition Pt(X) can be time-indexed – read: “the system in microstate
X has the property P at time t – it is possible and convenient to evaluate all predicates
at a common time s = 0 (usually the present or, if it exists, the beginning of time).
To this end, we must simply note that:

X ∈ APt ⇐⇒ X(t) = Φ0,t(X) ∈ AP ⇐⇒ X ∈ Φ−1
0,t (AP ) (6.2)

In other words, Φ−1
0,t (AP ) is the set of micro-configurations at time s = 0 that realize

P at time t. (Notably, both t ≤ 0 and t ≥ 0 are possible here). If we have a stationary
measure µ on Ω, then

µ(A) = µ
(
Φ−1

0,t (A)
)

(6.3)

for all t and all measurable sets A. This is another way to see why stationarity is such
a critical – or at least very natural and convenient – requirement.

The basic intuition behind typicality is one of (very) large versus (very) small sets.
To repeat: a property P ∈ Π is typical within a reference set Ω if the great majority
of elements in Ω instantiate P . To restate this within the framework just introduced:
P is typical if the set AP of microstates realizing P is very large. The exception set
AcP = Ω \ {x ∈ Ω : ¬P (x)} need not be empty but (in an appropriate sense) small or
negligible. Symbolically:

Typ(P )↔ BIG(AP )↔ SMALL(AcP ) (6.4)

Hence, formalizing “typical” in a given context does not require a whole range of
numerical values but only a precise notion of “very large,” respectively “negligibly
small” sets. Measures in the sense of mathematical measure theory are but one –
albeit a very natural and powerful – way to do so.

To flesh this out in more rigorous terms, I shall propose an axiomatization of small

or just one – microstate.
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and large sets. I want to emphasize right away that this is not intended to be an ex-
haustive explication of typicality. I only claim that satisfying the axioms is a necessary
but by no means sufficient condition for some logical structure to realize the notion
of typicality. The exercise is somewhat akin to the abstract definition of a topology
(let’s say). It is illuminating and identifies minimal requirements for a set-structure to
do the relevant job (supporting a sensible notion of continuity, convergence, etc.) but
also admits of examples that are purely academic (e.g., the trivial topology in which
anything converges to everything) and would never be accepted as a basis for physical
or philosophical arguments. A more obvious analogy is that a sensible interpretation
of probabilities need not regard all set-functions satisfying the Kolmogorov axioms as
meaningful, or even metaphysically possible, examples. The deeper point is that typi-
cality is not a purely logical concept but has a semantic and normative dimension that
resists rigorous formalization.

6.2 A Theory of “Small Sets”

Let Ω be a base set, |Ω| ≥ 2, and Π ⊆ P(Ω) a system of subsets that we want to evaluate
as small, large, or neither. (Ω,Π) thus forms the context of a typicality reasoning. We
now call S ⊂ Π a system of small sets if it satisfies the following axioms:

i) ∅ ∈ S

ii) A ∈ S,Π 3 B ⊆ A⇒ B ∈ S

iii) A,B ∈ S ⇒ (A ∪B)c /∈ S

To make this more perspicuous, we introduce the two predicates on Π:

SMALL(A) :⇔ A ∈ S

BIG(A) :⇔ Ac ∈ S.

That is, a set is BIG if and only if its complement is SMALL (but note that ¬SMALL(A)
does not imply BIG(A)). In terms of these predicates, the axioms read

i) SMALL(∅)

ii) SMALL(A),Π 3 B ⊆ A⇒ SMALL(B)

iii) SMALL(A), SMALL(B)⇒ ¬BIG(A ∪B)

From these three axioms, we can immediately derive the following:

Lemma 6.2.1. For all A,B ∈ Π:

a) BIG(Ω)

b) BIG(A), A ⊆ B ⇒ BIG(B)
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c) SMALL(A), SMALL(B)⇒ SMALL(A ∩B)

d) BIG(A), BIG(B)⇒ BIG(A ∪B)

e) BIG(A), BIG(B)⇒ ¬SMALL(A ∩B)

f) SMALL(A)⇒ ¬BIG(A)

Proof.

a) By i) since Ω = ∅c.

b) By ii) since Bc ⊆ Ac.

c) By ii) since A ∩B ⊆ A.

d) From c) since (A ∪B)c = Ac ∩Bc

e) By iii), since SMALL(Ac), SMALL(Bc) ⇒ ¬BIG(Ac ∪ Bc) and Ac ∪ Bc = (A ∩ B)c,
hence ¬BIG(Ac ∪Bc) ⇐⇒ ¬SMALL(A ∩B).

f) By i) and iii), since SMALL(A)⇒ ¬BIG(A ∪ ∅ = A).

In certain contexts, it makes sense to consider a stronger notion of “smallness,” let’s
call it SMALL∗, which is obtained by replacing axiom iii) with:

iii*) SMALL∗(A), SMALL∗(B)⇒ SMALL∗(A ∪B).

Hence, while iii) only requires that the union of two small sets is not big, iii*) re-
quires that it is still small. In technical terminology, the SMALL∗-sets form an ideal,
which corresponds to the notion of negligible sets sometimes found in the mathematical
literature.

In some interesting cases, smallness (bigness) will even be closed under countable
unions (intersections), that is

iii**) If (Ai)i≥1 is a countable collection of SMALL∗ sets, then SMALL∗
( ∞⋃
i=1

Ai

)
.

The difference between finite and countable unions is important for technical purposes,
but to keep things simple, we shall refrain from introducing another distinguishing
notation.

Criteria for smallness

A trivial realization of SMALL∗ (and a forteori SMALL) is SMALL∗(A) ⇔ A = ∅. This
demonstrates consistency of the axioms but is otherwise uninteresting. Much more
interesting and relevant ways to define smallness are the following:
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1. By Counting: Ω a finite set with |Ω| = n.

SMALL(A) :⇔ |A| < k, for some fixed k ≤ n

3 . (6.5)

It is noteworthy that this most basic and intuitive definition satisfies only axioms
i)-iii) but not iii*), i.e., smallness as defined by counting is not closed under
unions.

2. By Cardinalities: Ω an infinite set.

SMALL∗(A) :⇔ |A| < |Ω|. (6.6)

Examples: finite subsets of a countably infinite set (which satisfies axiom iii*));
countable subsets of an uncountably infinite set (which satisfies even iii**)); etc.

3. Measure-theoretic: (Ω,A, µ) a measure space with sigma-algebra A ⊇ Π and
µ not trivial (µ(Ω) 6= 0).

Strong measure-theoretic notion:

SMALL∗(A)⇔ µ(A) = 0. (6.7)

This satisfies axiom iv’), i.e., closedness under countable unions. BIG∗ sets in
this sense contain almost all elements of Ω.

Weak measure-theoretic notion:

SMALL(A) :⇔ µ(A)
µ(Ω) < ε, for some fixed ε ≤ 1

3 . (6.8)

BIG sets in this sense contain nearly all elements of Ω.

Family of measures: M a set of measures on (Ω,A).

SMALL(A) :⇔ sup
µ∈M

µ(A)
µ(Ω) ≤ ε. (6.9)

In other words, SMALL(A) iff µ(A) ≤ ε for all measures µ inM.

Non-normalizable measures: The previous two definitions include the case µ(Ω) =
∞ with the convention 1

∞ = 0 and ∞∞ = 1. Hence, (6.8) becomes

SMALL∗(A) :⇐⇒ µ(A) <∞ = µ(Ω), (6.10)

which is closed under finite unions.

4. Dimensional: Ω a normal topological space.

SMALL∗(A) :⇔ dim(Ā) < dim(Ω) (6.11)
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where dim is the topological dimension and Ā denotes the closure of A.

5. Topological: Ω a connected T1 topological space.2

SMALL∗(A) :⇔ A is a nowhere dense set. (6.12)

A set A is nowhere dense if its closure has empty interior, or, in other words,
if for any neighborhood U ⊆ Ω, there exists a non-empty open set V ⊆ U such
that A ∩ V = ∅.

Alternatively: Ω a Baire space.3

SMALL∗(A) :⇔ A is a meagre set. (6.13)

A set is called meagre if it is a countable union of nowhere dense sets. Meagre
sets are also called sets of first Baire category. The complement of a meagre set
is sometimes called comeagre.

The crucial difference between (6.12) and (6.13) is that “meagreness” is closed
under countable unions (meagre sets form a sigma-ideal) while nowhere denseness
is only closed under finite unions. Q ⊂ R is an example of a set that is meagre
but dense (and hence not nowhere dense).

Some remarks on the interrelations between these definitions:

• For countable (including finite) Ω, the counting-theoretic definition corresponds
to the weak measure-theoretic definition (6.8) with the counting measure.

• If Ω is an uncountable set and the measure µ has no discrete part (i.e., µ({x}) =
0, ∀x ∈ Ω), the cardinality definition is stronger than the measure-theoretic one:
All countable sets have measure zero (while, in general, not all measure zero sets
are countable).

• If Ω ∼= Rn, all measurable subsets of dimension < n have Lebesgue measure zero.

The topological and measure-theoretic notions are, in general, orthogonal. In particu-
lar, there exist not only dense Lebesgue null sets (e.g., Q ⊂ R) but also nowhere dense
subsets of the unit interval with measure arbitrarily close to 1 (“fat Cantor sets”).

Example (Smith-Volterra-Cantor set). The best known example of a nowhere dense
set with positive measure is the Smith-Volterra-Cantor set. It is constructed as follows:

2The T1 separation axiom states that for all x 6= y there exists a neighborhood U of y such that
x /∈ U . Together with Ω connected, this ensures that one-element subsets are nowhere dense.

3A Baire space is a topological space in which the union of every countable collection of closed sets
with empty interior has empty interior. This ensures that Ω is not meagre itself.
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In the first step, remove from the unit interval [0, 1] the middle open interval of
length 1/4, leaving S1 = [0, 3/8] ∪ [5/8, 1].

In the n’th step, remove from each of the remaining 2n−1 intervals the middle
open interval of length

(
1
4

)n
, leaving a union Sn of 2n closed connected intervals.

The Smith-Volterra-Cantor set is then S∞ =
∞⋂
n=1

Sn.

As a countable intersection of closed sets, S∞ is itself a closed set. And it contains no
open interval (every interval is broken up at some step of the iterative process), hence it
has empty interior, hence it is nowhere dense. However, we have removed in total a set
of measure

∞∑
n=1

2n−1

22n =
∞∑
n=1

1
2n+1 = 1

2 from the unit interval, so that λ(S∞) = 1− 1
2 = 1

2 .

The incommensurability of topological and measure-theoretic criteria poses a challenge
to my claim that typicality is one unified concept. Sets that are small in the cardinality-
theoretic or dimensional sense are also small with respect to natural measures. In this
sense, cardinality and dimension provide stronger criteria for typicality. The nowhere-
denseness of a set, however, bares no relation to its content (except that a nowhere
dense set cannot have full measure if the measure is strictly positive, i.e., if µ(U) > 0
for any non-empty open set).

My view is that the topological notions introduced above are indeed not related to
typicality in the sense discussed in this thesis. Topology is, roughly speaking, about
closeness and separation of points, not about their quantity. A nowhere dense set A
need not be small in the sense of containing few elements. Rather its points don’t
accumulate in Ω: Every open neighborhood of Ω contains points that are topologically
separated from A (i.e., not in A or on its boundary).

If we think of physical properties and the microstates4 realizing them, there is
certainly an idea of counterfactual robustness associated with the basic topological
notion of open sets, viz. that the property is robust under small perturbations. We
may say that a microstate x is “good” if not only x itself realizes P but all points
that are sufficiently close to x, as well. If the set of microstates realizing P is nowhere
dense, it implies that there are no good points. If its complement is nowhere dense,
it means that good points are spread out all over Ω. But this notion of “goodness”
is doing both too much and too little for the purposes of a typicality reasoning. Too
little because open sets can be arbitrarily small. And too much because the “bad”
configurations not realizing P can be very few and special ones, even if they are “all
over the place” (like rational points in the continuum) or concentrated in some (small)
region of phase space.

4“Microstate” here need not refer to particle configurations. In cosmology, for instance, it may be
a metric realizing certain geometric properties of spacetime.
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In the end, the touchstone is whether the topological definitions can ground the
relevant normative implications of typicality facts. If a physical phenomenon is realized
for all but a meagre/nowhere dense set of initial conditions, I might be satisfied that
it doesn’t require a suspicious fine-tuning, but wouldn’t go as far as to consider it
conclusively explained. At least not to the extent that any further questions seem
void, as I take to be the case for typical phenomena.

With all that said, I cannot completely dispel the charge that my arguments are
begging the question by presupposing measure-theoretic intuitions. But I would insist,
again, on a semantic aspect of both typicality and mathematics. The meaning of a
formal concept matters for its ability to express typicality.

Conditional Measures

What we don’t quite get from the abstract axioms but the concrete realizations of‘
‘smallness” discussed above is a notion of conditional typicality. The most interesting
and useful one is given in terms of conditional measures. If µ(A) > 0, then the
conditional measure µ(· | A) is defined by

µ(B | A) = µ(A ∩B)
µ(A) for B ∈ A (6.14)

In “benign” cases, it is also possible to conditionalize a measure on a null-set, but for
simplicity, we shall generally assume µ(A) > 0.

Many relevant applications of typicality refer, in fact, to conditional typicality. An
event B may not be typical/atypical simpliciter but become typical/atypical given A.
Conditionalizing on some event/macrostate may even make an atypical event typical
or vice versa. For instance, entropy-increase in a closed system is typical given a low-
entropy initial state, but it is atypical simpliciter since nearly all possible microstates
are already in a state of maximal entropy. Moreover, from a fundamental physical point
of view, many predicates – e.g., “the relative frequency of heads in series of N = 1000
coin tosses is approximately 1/2”– do not even make sense without pertinent boundary
conditions, because most possible universes may not contain any coins, to begin with.
(And some may contain coins, but fewer than 1000 tosses are ever made.) In such
cases, the relevant boundary conditions are often left implicit.

6.3 Typicality Measures

The following proposition specifies the condition under which a system of small sets
can be characterized by the measure-theoretic notion of null sets.

Proposition 6.3.1. Let σ(S) be the sigma-algebra generated by S (i.e., the smallest
sigma-algebra containing all small sets). Then there exists a measure ν on σ(S) such
that

SMALL(A)⇔ ν(A) = 0 (6.15)
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if and only if SMALL(·) is closed under countable unions.

Proof. For any measure ν, the null-sets form a sigma-ideal closed under countable
unions. This follows from the σ-subadditivity of measures: If (Ai)i ≥ 1 is a countable
family with ν(Ai) = 0 ∀i ≥ 1, then ν(

⋃
i≥1Ai) ≤

∞∑
i=1

ν(Ai) = 0. Conversly, suppose

that SMALL(·) is closed under countable unions. Then the set-function

ν̃(A) =

0; if SMALL(A)

1; if BIG(A)

extends to a (normalized) measure ν on σ(S).

Note that the measure obtained above is not quite what we want, since it may not
be defined on all sets in Π. It is, however, sufficient to identify all small and big sets
(while all A ∈ Π \ σ(S) are neither).

The following negative result holds for the weaker measure-theoretic notion of
smallness:

Definition 6.3.2. A measure µ on (Ω,A) is called non-atomic (and (Ω,A, µ) is called
a non-atomic measure space) if

µ(A) > 0⇒ ∃B ⊂ A : 0 < µ(B) < µ(A).

In this case, a kind of intermediate-value theorem holds for the measure: by Sierpinski’s
theorem, there exists for any A ∈ A and p ∈ [0, µ(A)] a B ∈ A with µ(B) = p.

Proposition 6.3.3. Let (Ω,A, µ) a nonatomic measure space. Let ε ≤ 1
2µ(Ω) and

define
SMALL(A) :⇔ µ(A) < ε, A ∈ A (6.16)

Then there exists A,B ∈ σ with SMALL(A), SMALL(B) but ¬SMALL(A∪B). Hence, SMALL
cannot be closed under unions if defined on the entire sigma-algebra.

Proof. Since µ(Ω) ≥ 2ε, there exists (by Sierpinski’s theorem) a measurable B with
µ(B) = 3

4ε. And since µ(Bc) ≥ 5
4ε there exists A ∈ Bc with µ(A) = 3

4ε. Hence
µ(A) = µ(B) < ε but since A and B are disjoint, µ(A∪B) = µ(A)+µ(B) = 6

4ε > ε.

This result is the reason why not all notions of “smallness,” and hence typicality,
can be reduced to the measure-theoretic one. Wilhelm (2019) provides the following
instructive example: Consider Ω = N with the cardinality-theoretic criterion of small-
ness, i.e., SMALL∗(A) ⇐⇒ |A| <∞. For n ≥ 1, let An = {1, . . . , n}. Then (An)n∈N is
an ascending sequence of finite (and thus small) sets with

∞⋃
n=1

An = N. Now suppose

there was a measure µ with µ(An) < ε < µ(N) for all n. By the upwards continu-
ity of measures, we would have µ(N) = µ

( ∞⋃
n=1

An

)
= lim

n→∞
µ(An) ≤ ε and hence a

contradiction.
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Nonetheless, as discussed in Section 3.1, it is usually possible to reconcile (6.8) (the
weak measure-theoretic criterion for smallness) with axiom iii*) (closedness under
unions) by restricting our considerations to an appropriate class Π of relevant sets.
This is to say that we don’t define the smallness predicate on the entire sigma-algebra
of measurable sets, but care only about a more limited class of subsets of Ω. The
following proposition states that closedness under unions is then equivalent to the ex-
istence of a strongest typicality fact, i.e., a smallest BIG set BΩ ∈ Π. We get, moreover,
a notion of (epistemic) “resilience” or “stability” that is central to Leitgeb’s Stability
Theory of Belief : No fact compatible with BΩ can make BΩ atypical.

Proposition 6.3.4. (Leitgeb, 2017, Thm. 7, p. 121) Suppose Π is finite/countable
and

BIG(A) ⇐⇒ P(A) > 1− ε, A ∈ Π

for a normalized measure P. Then the following two conditions are equivalent:

i) BIG(·) is closed under finite/countable intersections.

ii) There exists a smallest BIG set BΩ such that

BIG(A) ⇐⇒ BΩ ⊆ A. (6.17)

Evidentally, BΩ is the union of all BIG sets. And it is also P-stable, meaning that for
any A with P(A) > 0 and ∅ 6= BΩ ∩A ∈ Π:

P(BΩ | A) > 1
2 . (6.18)

Proof. Assuming i), BΩ :=
⋂

BIG(A)A is the desired set satisfying ii).
Assuming ii), let (Ai)i≥1 be a countable collection of BIG sets. Then, ∀i ≥ 1 :
BIG(Ai) ⇐⇒ ∀i ≥ 1 : BΩ ⊆ Ai ⇐⇒ BΩ ⊆

⋂
iAi ⇐⇒ BIG(

⋂
iAi). Hence,

BIG(·) is closed under intersections.
To prove (6.18), we consider for P(A) > 0 the conditional probability

P(B | A) = P(B ∩A)
P(A) = P(B ∩A)

P(B ∩A) + P(Bc ∩A) =
(

1 + P(Bc ∩A)
P(B ∩A)

)−1
.

Now we note the following:

Lemma 6.3.5. If A ∈ Π with A ⊂ BΩ, then µ(A) > ε.

For else, P(Ac) ≥ 1 − ε ⇒ BIG(Ac), but BΩ * Ac in contradiction to ii). Hence, if
∅ 6= BΩ ∩ A ∈ Π, we have BΩ ∩ A ⊂ BΩ ⇒ P(BΩ ∩ A) > ε, while Bc

Ω ∩ A ⊂ Bc
Ω ⇒

P(Bc
Ω ∩A) ≤ ε, and thus P(BΩ | A) > 1

2 .

76



6.3. TYPICALITY MEASURES

Equivalence of measures

Absolute Continuity

Let (Ω,A) a measurable space. A measure ν is called absolutely continuous with
respect to another measure µ (notation: ν � µ) if

µ(A) = 0⇒ ν(A) = 0, ∀A ∈ A. (6.19)

If ν � µ and µ� ν, then the two measures are equivalent in that they distinguish the
same null sets – and thus the same SMALL∗ sets in the sense of (6.7).

If Ω = Rn (with the Borel sigma-algebra), “absolute continuity” is implicitely
understood relative to the Lebesgue measure λ unless µ is otherwise specified. Then
ν � λ implies: For all ε > 0 there exist δ > 0 such that λ(A) < δ ⇒ ν(A) < ε.
Informally: if sets are sufficiently small with respect to the Lebesgue measure, they
will also be small with respect to the absolutely continuous measure ν.

In general, if ν � µ, there exists an integrable function g (unique up to sets of
measure zero) such that

ν(A) =
∫
A
g dµ, ∀A ∈ A (6.20)

In other words, ν has a density with respect to µ. This is the Radon-Nikodym theorem
and the density g is also called the Radon-Nikodym derivative of ν w.r.t. µ.

Total variation of measures and typicality thresholds

Absolute continuity provides an equivalence of typicality measures in the sense of
the strong measure-theoretic criterion (6.7). We now want to clarify in what sense
different measures can provide an equivalent notion of smallness in the sense of the
weaker criterion (6.8).

There are two ways to think about this equivalence. If the conditions from Propo-
sition 6.3.4 apply, smallness on Π is already determined by a smallest BIG set, respec-
tively a largest SMALL set, i.e., by the logical/set-theoretic structure of (Π,S = {A ⊆
Bc

Ω}). In terms of a (normalized) measure µ, the (largest possible) threshold value for
smallness is then evidently

SMALL(A) ⇐⇒ µ(A) < ε := 1− µ(BΩ), for A ∈ Π.

But if this ε is reasonably small, i.e., µ(BΩ) ≈ 1, we will also have µ̃(BΩ) ≈ 1 for any
measure µ̃ that doesn’t deviate too radically from µ.

In practice, however, we usually find ourselves in the opposite situation that we
don’t know BΩ (if it exists) but rely on a natural measure to determine what is typical
and atypical. And we have said that it doesn’t seem reasonable, in general, to specify
a sharp threshold value above which sets are no longer considered as small. Instead,
we should understand smallness – and thus typicality – as a vague predicate (which is
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better captured by the more informal condition SMALL(A) ⇐⇒ µ(A) ≈ 0).
What we can do – regardless of the applicability of (6.18) and more in line with

practical applications – is to specify some ε > 0 such that µ(A) < ε is a sufficient
condition for typicality in the given context, i.e.,

µ(A) < ε⇒ SMALL(A), A ∈ Π. (6.21)

Similarly, we could specify ε < Υ < 1− ε such that µ(A) < Υ is a necessary condition,
i.e., SMALL(A)→ µ(A) < Υ, while remaining agnostic about the range µ(A) ∈ [ε,Υ].

Remark. For proper typicality arguments, we will always require ε� 1, but in differ-
ent contexts, the relevant orders of magnitude may be different. Indeed, in typicality
results, the pertinent estimates are generally about orders of magnitude (e.g., in terms
of powers of N in LLN results) and we rarely, if ever, find ourselves quibbling over
exact numerical values, e.g., whether a measure of 10−24 is small when referring to
possible micro-configurations of a gas or whether we should insist on values below
0.9975× 10−24.

If we are primarily interested in identifying small sets in the sense of (6.21), then,
again, many different measures could do the job. Many measures will agree on the
smallness of a set, provided that they do not differ too radically from one another. Let
us try to make this more precise.

A convenient metric on the space of normalized measures on (Ω,A) is the total
variation distance

dTV (µ, ν) = sup
A∈A
|µ(A)− ν(A)|. (6.22)

Simply put, this is the maximal disagreement between the values that two measures
can assign to the same set. Evidently, if dTV (µ, ν) = δ, then

ν(A) < ε⇒ µ(A) < ε+ δ (6.23)

Hence, if µ(A) < ε+ δ is sufficient for SMALL(A), then ν(A) < ε is sufficient, as well.
More generally: Let M be a set of normalized measures with diamTV (M) =

sup{dTV (µ, ν) : µ, ν ∈M} = δ.

If sup
µ∈M

µ(A) < ε+ δ ⇒ SMALL(A)

Then ν(A) < ε⇒ SMALL(A) for any ν ∈M.

(6.24)

Similarly, if infµ∈M µ(A) > Υ ⇒ ¬SMALL(A), then ν(A) > Υ + δ ⇒ ¬SMALL(A).
Hence, every representative of the class of measures can provide necessary and sufficient
criteria for typicality.

A bound in total variation is actually too strong. Given a reference measure µ, all
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we need is a bound on

sup {|ν(A)− µ(A)| : µ(A) < ε} . (6.25)

If ν � µ with a density (Radon-Nikodym derivative) g, then (6.25) can be written as
sup {|

∫
1A(g − 1)dµ| : µ(A) < ε} (evidentally, µ has the constant density 1 with respect

to itself). With the Hölder inequality, we thus get for all p ∈ [1,∞]:

sup
µ(A)<ε

|ν(A)− µ(A)| = sup
µ(A)<ε

∣∣∣∣∫ 1A(g − 1) dµ
∣∣∣∣ ≤ ε1− 1

p ‖g − 1‖p (6.26)

On the right-hand-side, we have the so-called Lp-norms defined as ‖f‖p = (
∫
|f |pdµ)1/p

for p < ∞, and ‖f‖∞ = ess supx∈Ω|f(x)| (the essential supremum is the least upper
bound on |f(x)| almost everywhere, i.e., with the possible exception of µ-null sets).

The point of this mathematical exercise is that, since ε is very small, g would have
to differ radically from the constant density – in the sense of these Lp-norms – to assign
a large measure to µ-small sets. (However, ‖g − 1‖p could be infinite for high values
of p, so the higher the regularity of g, the stronger the bound from (6.26).)

Example. Consider the model of an ideal gas of N ≈ 1024 particles in a box. Let
A be the macro-region for which the left-hand side of the box contains significantly
more particles than the right-hand-side. Then, with respect to the Lebesgue measure
λ(A) ≈ 10−1024 . However, a measure of less than 10−1023 would certainly be sufficient
for SMALL(A). Thus, if ν is absolutely continuous with bounded density g, this density
would have to peak at values of g(x) & 10(1024−1023) ≈ 101024 to disagree on the
smallness of that set.
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Chapter 7

Other Applications of Typicality

In this short chapter, we will discuss applications of typicality beyond statistical me-
chanics and probability theory. On the one hand, this will emphasize the wide scope
and philosophical potential of typicality. On the other hand, in the following exam-
ples, the appeal to probabilistic concepts is highly questionable. The examples will
thus help to further clarify the difference between typicality and probability.

7.1 Typicality and Well-Posedness

Deterministic laws are, in general, given as (differential) equations of motion that
lend themselves to a well-posed initial value problem. The terminology goes back to
Hadamard (1902), who required of un problème bien posé that (i) a solution exists, (ii)
the solution is unique, and (iii) that the solutions depends continuously on the initial
data.

At least the first two conditions are certainly necessary for determinism, i.e., for
the history of a closed physical system – on the fundamental level the universe –
to be fully determined given its complete physical state at one moment in time. A
famous example for the failure of condition ii) in the framework of classical mechanics
is Norton’s dome (Norton, 2008). Technically, what happens in this case is that the
Hamiltonian vector field fails to be Lipschitz-continuous, thus violating a premise of the
Pascal-Lindelöff theorem establishing existence and uniqueness of solutions of ordinary
differential equations. Existence of solutions as required by Hadamard’s condition (i)
means, in general, global existence for all times. A solution X(t) that cannot be
extended beyond a bounded (or half-bounded) interval (t0, t1), t0 > −∞ ∨ t1 < +∞
indicates the formation of a singularity at which the equations of motion break down.

In Newtonian gravity, this happens when two point particles collide so that the
gravitational force between them diverges: lim

r→0
Gm1m2
r2 = +∞. However, it is known

that initial conditions leading to such collision singularities are atypical; they form a
set of Lebesgue measure zero that is also topologically meagre (Saari, 1971a, 1973).

More surprising is the possibility of non-collision singularities in the N -body prob-
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lem, where particles go off to infinity in finite time. (The time-reversal of such solutions
– corresponding to particles suddenly appearing in space – has also been discussed as
an example of Newtonian indeterminism, see, e.g., Earman (1986, Ch. 3)). Solutions
with non-collision singularities are known to exist for N ≥ 5 (Xia, 1992), but not for
N ≤ 3 (Painlevé, 1897). The case N = 4 is an open mathematical problem. Somewhat
ironically, this is the only N for which we have a rigorous proof that initial conditions
leading to non-collision singularities (if they exist at all) must also form a Lebesgue
null set. Saari conjectures that this holds true for all N ≥ 4 (Saari, 2005, p. 221) and
intuitively, it seems clear that only very conspiratorial behavior could lead to particles
being accelerated to infinity in finite time.

For the guiding equation of Bohmian mechanics, the solution theory is more settled.
For sufficiently “nice” wave functions Ψ, singularities can occur only if the particle
configuration runs into a node of the wave function where the velocity field diverges.
However, equivariance of the |Ψ|2-measure under the Bohmian flow already implies
that Bohmian trajectories tend to avoid regions where Ψ ≈ 0. And indeed, global
existence of solutions has been proven for almost all initial conditions (i.e., a set of
measure 1) relative to this natural typicality measure (Berndl et al., 1995; Teufel and
Tumulka, 2005).

So we note that actual scientific practice aims at establishing existence and unique-
ness of solutions for almost all, i.e., typical initial conditions1 when singularities are
mathematically possible. Such results are generally regarded as satisfactory, establish-
ing that the laws are sound and deterministic – despite pathological “counterexamples”
that receive more attention in the philosophical than in the physical literature.

There is certainly an empirical rationale here. On the one hand, atypical micro-
configurations leading to singularity formation would be virtually impossible to create
in practice. On the other hand, no empirical evidence could ever justify a belief that
the actual microstate of the universe is one of these “bad” configurations. However,
if we want to take the laws seriously as candidates for fundamental laws of nature,
subjective belief and practical impossibility are not the right concepts, and one would
rather make the claim that singular solutions are physically impossible. A singularity,
after all, does not mean that the evolution of the universe suddenly stops but that the
laws themselves are breaking down.

If we take this position, we make a typicality reasoning not with respect to a
reference class of nomologically possible worlds but with respect to a mathematical
solution space. And we are satisfied with the mathematical expressions of the law
if the relation between formal solutions and possible worlds is not quite one-to-one
provided that the solutions we regard as unphysical are also atypical. Probability, I
claim, does not support an analogous reasoning. Impossible initial conditions are not
unlikely but impossible. And whether a particular solution runs into a singularity is
not random but a mathematical fact.

1In the strong sense of “all initial conditions except for a set of measure zero.”
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The situation as described for Newtonian gravity and Bohmian mechanics should
be compared with general relativity (GR), where singularity theorems establish the
existence of spacetime singularities (in the form of geodesic incompleteness) under very
general conditions (see, e.g., Hawking and Ellis (1973)). In other words, singularity
formation in GR seems to be generic rather than atypical. Although some of these
singularity theorems are actually “predictive” – in that they are taken to establish
the inevitability of a Big Bang – they must be considered as negative results from a
foundational perspective, pointing to an intrinsic limitation of GR and the necessity
of a more fundamental theory of spacetime.

7.2 Typicality and Fine-Tuning

We can say: a feature of our universe that is atypical in the sense discussed so far
requires a fine-tuning of initial micro-conditions. The initial conditions of the universe
would have had to be extremely special ones in order to produce it. The feature could
be a (statistical) regularity instantiated in our universe, in which case there is little
debate, at least among physicists, that fine-tuning is bad – if only for the reason that a
theory could be fine-tuned to account for virtually anything. In physics, however, the
term fine-tuning is more commonly used when referring to the singular value of some
physical quantity that we observe in our universe, including parameters that have not
been “produced” by dynamical evolution but have the status of a constant of nature
in the theory. This raises further questions about the applicability of a typicality
reasoning.

The flatness problem

A famous example of a fine-tuning problem is the flatness problem in standard Big
Bang cosmology (which is said to have been resolved by inflationary cosmology). The
“puzzle,” in a nutshell, is that the mass/energy density of our universe (ρ) is very
close to the “critical value” (ρc) required for a flat spatial geometry on cosmological
scales. Moreover, the energy density departs very quickly from the critical value as the
universe expands. The ratio ρ/ρc is commonly denoted by Ω, and while Ω ≈ 1 today,
the deviation from unity would have had to be even ≈ 1060 times smaller at the Planck
time, shortly after the Big Bang. More precisely, from the Friedmann equation,

(Ω−1 − 1)ρa2 = −−3kc2

8πG , (7.1)

where a is the so-called scale factor and k ∈ {±1, 0} indicating negative, positive, or
flat curvature, respectively. However, ρ ∝ a−3 for matter and ∝ a−4 for radiation, so
if ρa2 ∝ a−1 has decreased by a factor of 1060 as the universe expanded, (Ω−1 − 1)
must have increased accordingly (the right-hand-side of the equation is constant).

It is questionable whether this is really puzzling or rather what we called a Mor-
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genbesser case in Ch. 1.2: The value of Ω had to be something, after all, and while 1
may seem special to us, it is as good (or rather as atypical) as any other. Moreover,
several authors have pointed out that since Ω always tends to unity as we approach
the big bang (a → 0), there is always a time in the very early universe at which it
would look “fine-tuned” (Coles and Ellis (1997, p. 22); Lake (2005); Helbig (2012)).
After all, in classical (i.e., non-quantum) cosmology, there is nothing special about the
Planck time that many statements of the flatness problem take as reference point. On
the other hand, one could argue that we are currently experiencing a very special pe-
riod in the history of our universe in which Ω ≈ 1, but this turns the flatness problem
into a problem of self-location rather than fine-tuning, requiring somewhat different
considerations (including anthropic ones) that go beyond the scope of this particular
discussion.

In any case, the interesting philosophical debate is over which features of our uni-
verse are a valid target of scientific explanation versus acceptably brute. The flatness
of our universe per se may not be a good explanandum. It seems, however, that if
the value of Ω in the early universe had been slightly different from what it was, the
universe would have either recollapsed too quickly or expanded too fast to allow for the
formation of stars and galaxies (Lewis and Barnes, 2016, pp. 164-167). The relevant
phenomenon that the standard big bang theory fails to explain is thus not the “special”
numerical value of Ω, but the abundance of stars and galaxies in our universe. This is
what the energy density appears to be fine-tuned for.

That said, a proper typicality analysis should consider the possible “initial” config-
urations of the matter and metric fields, not the possible values of Ω in some abstract
parameter space. Unfortunately, whenever we are dealing with a field theory (such as
general relativity) the fundamental state space Γ is infinite-dimensional, which makes
the construction of a natural typicality measure difficult (see Curiel (2015) for a good
philosophical discussion).

There exists, however, a canonical measure (the GHS measure) on the reduced
phase space (“minisuperspace”) of the Friedmann–Lemaître–Robertson–Walker models
used in standard big bang cosmology. And with respect to this measure, a flat universe
turns out to be, in fact, typical:

“Thus for arbitrarily large expansions (and long times), and for arbitrarily
low values of the energy density, the canonical measure implies that almost
all solutions of the Friedmann-Robertson-Walker scalar equations have neg-
ligible spatial curvature and hence behave as k = 0 models.” (Hawking and
Page, 1988, pp. 803-4)

“[T]he measure is entirely concentrated on exactly flat universes; universes
with nonvanishing spatial curvature are a set of measure zero. [...] There-
fore, our interpretation is clear: almost all universes are spatially flat.”
(Carroll and Tam, 2010, p. 18)
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The second statement, in particular, may be a little too strong. In a recent critical
discussion, McCoy (2017) points out that without a regularization which he finds
questionable, the result is rather that for any value κ∗ of the curvature parameter
κ = k

a2 , FLRW spacetimes with κ < κ∗ form a set of infinite measure, while those with
κ ≥ κ∗ form a set of finite measure. This is a perfectly valid standard of typicality
as we discussed in 6. In particular, a typicality measure – in contrast to a probability
measure – does not have to be normalizable.

Of course, in the present case, we should then say that “nearly flat” (rather than
“exactly flat”) spacetimes are typical. McCoy objects, however, that the threshold
value κ∗ for “nearly flat” is arbitrary – that any observed curvature could thus be
deemed either typical or not small enough. I don’t see this problem. On the one hand,
if we are asking “Why does the large scale structure of our universe look so flat?”,
the explanandum itself is vague. On the other hand, I have argued that the relevant
phenomenon to be explained is actually structure formation, which makes the upper
bound κ∗ not arbitrary. The universe must have been flat enough to allow for structure
formation, and according to the GHS measure, this is typical.

McCoy concludes that mainly due its non-normalizability, the GHS measure “can-
not be used to make typicality arguments in this context” (McCoy, 2017, p. 1251).
I disagree. However, physicists with great expertise have also expressed skepticism
about the justification for using this particular typicality measure (see, e.g., Schiffrin
and Wald (2012)).

While typicality helps to avoid the conceptual problems associated with proba-
bilistic reasoning in cosmology, technical challenges remain. Those are mitigated by
the fact that we do not have to insist on normalized measures and thus regularization
procedures that tend to cause most of the ambiguities. Nonetheless, for a particle
ontology (as we assume throughout most of our discussions), the mathematical side is
usually much simpler.

Fine-Tuning of the natural constants

Another famous fine-tuning problem is the fine-tuning of the natural constants. For
instance, if the strength of the strong nuclear force compared to that of electromag-
netism would have been significantly different, heavy elements couldn’t have formed in
stellar fusion processes. Either most of the hydrogen would have been burned in the
very early universe or stellar nucleosynthesis would have been much less efficient (see,
e.g., Barrow and Tipler (1986); Lewis and Barnes (2016)).

Notably, the explanandum here is not that the value of the fine structure con-
stant is close 1

137 . To wonder about something like that strikes me as an exercise in
numerology rather than a serious scientific question. But the formation of heavy el-
ements (beyond hydrogen) is certainly a relevant physical phenomenon that particle
physics should account for (it could also be cast in terms of reaction rates and thus as a
statistical phenomenon). The problem with typicality statements about fundamental
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constants, however, is what the relevant reference class is supposed to be. Explana-
tions in physics end with the fundamental laws and the constants (with their specific
values) are arguably part of them. Worlds with a different value of, let’s say, the Higgs
mass or the electron charge do not correspond to nomologically possible worlds in the
sense discussed so far, namely worlds parametrized by the initial conditions for the
dynamical quantities.

One could endorse a broader notion of nomic possibility, of course. But why then
stop with the constants? Why not consider quantum field theories with different
fields/force laws/gauge groups as representing nomic possibilities? The idea might be
that physical laws should correspond somehow to mathematical structures – including,
e.g., symmetry groups though no specific numbers – but elaborating on this would take
us too far afield.

The argument that there are no meaningful probabilities associated with the values
of the natural constants (because they are neither randomly distributed nor justifying
any a priori credences) is rather uninteresting, though. Fine-tuning arguments, suc-
cessful or not, should be understood in terms of typicality, not probability. Then, the
relevant questions become clear.

7.3 Typicality in Mathematics

The wide scope of typicality is well illustrated by its use in “pure” mathematics. Typi-
cality results are remarkably common in various mathematical disciplines. What seems
to be lacking so far is a unified theory – or at least a more universal appreciation and
consistent use – of the concept. The following discussion is a modest attempt to
improve upon this situation.

One problem is the parallel use of different terminologies, which may cloud the fact
that they are ultimately referring to one and the same concept. Most commonly found
are statements of results which hold almost everywhere in some measure space, or for
almost all members of a relevant set of points, numbers, functions, etc. More rarely,
“small” exception sets are referred to as negligible sets. Indeed, in certain contexts, they
can be literally irrelevant for the realization of some more “coarse-grained” property.
For instance, changing finitely many elements of an infinite sequence does not affect
its convergence properties. Measurable functions that are almost everywhere the same
(i.e., f(x) = g(x) for all x except for a set of measure zero) are indistinguishable by
Lebesgue integration and thus identified, in the sense of equivalence classes, as elements
of an Lp space. The notion of a generic property can also be found in the literature
and is essentially a synonym for typical property. Formally, these notions are made
precise in terms of topology, cardinality, or measure theory (see Ch. 6). In many
cases, typicality results also come disguised – I believe erroneously – as probabilistic
statements.
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Here are some examples of typicality results in mathematics:

1. Almost all real numbers are irrational/transcendental/uncomputable.

This is true in the sense of “all except for countably many” and a forteori also
in the sense of “all except for a Lebesgue null set.”

2. Almost all real numbers are normal, meaning that the digits 0, ..., (b − 1)
appear with equal frequency if the numbers are expanded in the integer basis b
for any b. The first rigorous proof is due to (Borel, 1909).

3. A monotone function f : (a, b)→ R is almost everywhere differentiable.
[Lebesgue’s theorem for the differentiability of monotone functions]

4. A bounded function f : [a, b] → R is Riemann-integrable if and only if
it is almost everywhere continuous. [Riemann-Lebesgue theorem]

5. Given m linearly independent vectors {v1, ..., vm} in a vector space V of
dimension n > m, typical vectors are linearly independent of {v1, ..., vm}.

This is true because w ∈ V is linearly dependent, if and only if it lies in the
m-dimensional subspace spanned by {v1, ..., vm}.

6. A typical quadratic matrix is invertible.

Analogous to the previous example, it is straightforward to show that a typical
array of n2 real numbers will form linearly independent columns and thus a
matrix of full rank.2

7. Almost all values of a smooth map between smooth manifolds are
regular values. [Sard’s theorem]

Given a smooth map f : M → N , the critical set X ⊂M consists of those points
x at which the differential df(x) has a rank < dim(N). Sard’s theorem states
that the image f(X) – the set of critical values – has Lebesgue measure 0 in N
(while X itself may be large).

8. Khinchin’s theorem. Let ψ : Z+ → R+ be a non-increasing function. A real
number x is called ψ-approximable if there exist infinitely many rationals p

q , q > 0
such that ∣∣∣∣x− p

q

∣∣∣∣ < ψ(q)
q

. (7.2)

Khinchin (1926) proved that if the series
∑∞
q=1 ψ(q) diverges, almost all real

numbers are ψ-approximable, and if the series converges, almost all real numbers
are not ψ-approximable. A more general statement about such “Diophantine
approximations” is the Duffin–Schaeffer conjecture (Duffin and Schaeffer, 1941),

2Moreover, topologically, the set of invertible matrices is open and dense. Open because it is the
pre-image of R \ {0} under the continuous function det and dense because every singular matrix can
be approximated by a sequence of invertible ones.
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a proof of which was very recently announced (Koukoulopoulos and Maynard,
2019).

9. Typical graphs are asymmetric.

Let Ω(n) be the set of (non-directed) graphs with n vertices. Then |Ω(n)| = 2(n2).

A graph Γ ∈ Ω(n) is called symmetric if it has a non-trivial automorphism group,
i.e., if there exists a non-identical permutation of its vertices that leaves the graph
invariant.

A famous theorem by Erdős and Rényi (1963) establishes the following (stronger)
result: For ε > 0, let A(n, ε) ⊂ Ω(n) be the set of graphs that cannot be trans-
formed into a symmetric graph by changing at most n(1−ε)

2 edges. (It is always
possible to obtain a symmetric graph with at most n−1

2 changes.) Then:

lim
n→∞

|Ω(n) \ A(n, ε)|
|Ω(n)| = 0.

10. Every orthonormal basis is uniformly distributed over the sphere.

Theorem (Goldstein, Lebowitz, Tumulka, and Nino Zanghì, 2017).
Let V n be an n-dimensional (real or complex) Hilbert space with n ≥ 4. Let
S(V n) = {x ∈ V n : 〈x, x〉 = 1} be the unit-sphere in V n with the uniform measure
(i.e., the normalized surface area) λ. Let G ∼= O(n) or U(n) the orthogonal or
unitary group on V n and µG the uniform (Haar) measure on G. Then, for any
orthonormal basis B = {b1, . . . , bn} and ε, δ > 0 with n ≥ 1

δ2ε

µG

({
R ∈ G :

∣∣∣∣#(B ∩R(A))
n

− λ(A)
∣∣∣∣ ≤ δ}) ≥ 1− ε, (7.3)

for every Borel measurable set A ⊂ S(V n).

This may not be so easily recognizable as a typicality result since it holds for
all orthonormal bases rather than typical ones. Indeed, any two orthonormal
bases differ by a rotation (an orthogonal or unitary transformation), so if we
say that the vectors of one basis B = {b1, . . . , bn} are uniformly distributed
over the unit sphere, it makes sense to claim so of every orthonormal basis.
The question is rather what it means for n discrete points on the sphere to be
(approximately) uniformly distributed. And this is were Goldstein et al. invoke
a typicality property: Given any (measurable) A ⊂ S(V n) and its congruent
(rotated) sets R(A), R ∈ G, nearly all of them are such that the fraction of base
vectors contained in R(A) is approximately equal to the fraction of surface area
which R(A) occupies on the sphere.

It is not uncommon for mathematicians to use probabilistic language when stating
some such results (less so in number theory, more so in graph theory where it leads
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to the study of “random graphs”). Indeed, Erdös and Rényi formulate their theorem
in terms of the “probability” that a graph can be transformed into a symmetric one.
Goldstein et al., while explicitly making the connection to typicality, refer to the test-
sets R(A) as “random rotations,” and announce that any orthonormal basis in high
dimensions “will pass the random test [for uniformity] with probability close to 1.”

In a purely technical sense, these statements are perfectly correct, and the methods
of proof may indeed draw a lot from probability theory. Conceptually, though, the
reference to probability is misplaced and should be abandoned in favor of typicality.

Goldstein et al. define in terms of typical test-sets when a set of points is “uni-
formly distributed”; then they prove that any orthonormal basis in high dimension is
uniformly distributed over the sphere, not that an orthonormal basis is probably uni-
formly distributed, or something like that. In particular, if one disagreed with their
choice of a uniform measure on the rotation group, one would not disagree about the
likelihood of finding a uniformly distributed orthonormal basis – nor even about the
notion of typicality – but about the very meaning of “uniformly distributed.” The
concept of “random tests,” briefly invoked in the abstract, may be a good heuristic,
but the authors are clearly not proposing a positivist or instrumentalist notion of uni-
formity. Instead, they explicitly draw parallels to other “typicality theorems about
spheres in high dimension,” such as “most of the area of a sphere is near the equator”
and “most of the volume of the unit ball is near the surface.” (p. 703). Evidently,
there is nothing random about the distribution of volume in a ball, nor does the truth
of such propositions depend on statistical tests.

In their seminal work on asymmetric graphs, Erdös and Rényi formulate the as-
sumption that “all possible 2(n2) graphs should have the same probability to be chosen”
when they actually establish – in the most mundane sense of counting – that a certain
property, viz. being asymmetric, is shared by the great majority of graphs of order
n. Their theorem is, in fact, not about choosing any graph, but a mathematical fact
about the sets of all finite graphs. It is, in other words, a typicality fact.

If we want to apply the theorem to a situation where a graph (or some structure
isomorphic to a graph) is indeed chosen or produced – be it by a physical or maybe
by a psychological process – a probabilistic language might become appropriate. But
then we are, strictly speaking, outside the purely mathematical realm and need to
ask the additional question, what it is about the relevant process that justifies the
assumption of uniform probability. If graphs are produced by a physical process, the
question becomes whether a uniform probability is typical under the pertinent physical
dynamics (the relevant typicality measure for this question is then not one on the set
of graphs). And how likely the woman on the street (or in your math department) is
to produce a certain graph when asked for an example seems like a question for an
empirical social study rather than mathematics.

Interestingly, though, there is a partially mathematical explanation for the fact
that an analogous poll, asking participants to name a real number, may produce mostly
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algebraic ones despite their being atypical in R. Since there are uncountably many
transcendental numbers, almost all of them – that is, all except for a countable subset
– cannot be described in any language, or expressed in a closed formula, or produced
by any finite algorithm. In addition, it is very difficult to prove that a given number
is not algebraic, i.e., not the root of some polynomial with rational coefficients (which
is why the corresponding proof for π was such a seminal result). Hence, while almost
all numbers are transcendental, we actually know almost none of them.

The bigger point here draws an interesting contrast between typicality in mathe-
matics and in physics. We have seen that the most interesting typicality statements
in physics have a modal character, referring to a reference class of possible worlds or
initial conditions. This modal character is generally absent in mathematics. Physics
studies the laws of nature, that is, in particular, the modal structure of the laws, but
ultimately has to explain the phenomena of the actual world. Mathematics studies
abstract sets and structures and one finds that many of their interesting features are
typicality fact. But those typicality facts are rarely invoked to explain the properties
of one particular member of the reference set since this is not the kind of problem that
mathematics usually deals with.

To conclude this section, we note that typicality is a very important, yet under-
appreciated concept in mathematics. Conversely, the mathematical applications are
particularly instructive for differentiating typicality from probability, in general. This
is especially true if one shares in the Platonist intuition that there are objective typi-
cality facts in the mathematical realm. But regardless of deeper philosophical commit-
ments: casting internal mathematical results in terms of probabilistic models seems
like a conceptual crutch at best and a category mistake at worst. I thus believe that
the mathematical discourse could benefit from adopting the typicality language more
consistently.
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Chapter 8

From the Universe to Subsystems

Nothing happens at random, but all things for a reason and of necessity.

— Leucippus DK 80 B2

Any fundamental physical theory is a theory of the universe as a whole. Its laws de-
scribe the evolution of the entire configuration of matter. Thus, in classical mechanics
(CM), where the forces range all over physical space, the motion of any particle at any
given time depends, strictly speaking, on the positions of all the other particles and
thus on the initial state of the entire universe. In quantum mechanics (QM), due to en-
tanglement, the only fundamental quantum state is the one pertaining to the universe
as a whole and represented by the universal wave function. However, this fundamental
point of view is utterly impractical for everyday science, which seeks to apply these
theories locally, to small parts of the physical universe. Aside from our limited com-
putational resources, we simply do not know the exact configuration of matter and/or
the exact wave function of the universe so that we could solve the equations of motion
for them.

In order to derive testable propositions from a physical theory, we thus need a pro-
cedure to get from fundamental laws, describing the global evolution of the universe,
to predictions about subsystems. Such a procedure was proposed by Ludwig Boltz-
mann, whose derivation of thermodynamic laws from microscopic particle dynamics
can be viewed as a general scheme for probabilistic reasoning in the face of incomplete
information. As Einstein noted, Boltzmann’s insights are very much independent of
the details of the underlying microscopic theory (see Einstein’s autobiographical notes
in Schilpp (1949)), and the aim of this chapter is to show how they apply to both
classical and quantum mechanics – in particular, if the latter is understood in terms of
Bohmian mechanics. This look ahead on quantum mechanics (to which we shall return
in Chapter 12) is instructive because the Bohmian analysis of quantum equilibrium is,
in many ways, the realization par excellence of Boltzmann’s program. It will also allow
us to address the question what, if any, is the difference between probabilities in CM
and in QM.

Concerning quantum mechanics, we will focus on the theory going back to de
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Broglie (1928) and Bohm (1952a) whose dominant contemporary version is known
as Bohmian mechanics (BM) (Dürr et al., 2013b). The primary reason for doing so
is that standard quantum mechanics runs into the infamous measurement problem
illustrated by Schrödinger’s cat paradox (see Ch. 12). Quantum theories that solve
the measurement problem by being committed to a definite configuration of matter in
physical space are known as primitive ontology theories. The wave function then has
the job to describe how this configuration evolves in time, rather than to provide a
complete description of the physical state. Bohmian mechanics is the most prominent
example of such a theory. The primitive ontology here are particles characterized by
their positions in space. The configuration of particles then evolves according to a
nonlocal deterministic law of motion in which the wave function enters.

I consider Bohmian mechanics to be the most compelling non-relativistic quantum
theory, not only because it provides the most obvious solution to the measurement
problem but also because of the conceptual clarity and mathematical precision with
which it allows us to derive the standard quantum formalism from two simple equations.
Making this broad case is, however, beyond the scope of this thesis (for relevant discus-
sions, see, e.g., Esfeld (2014a); Bricmont (2016); Norsen (2017); Dürr and Lazarovici
(2018); Maudlin (2019)).

We will focus on the fact that Bohmian mechanics allows for a rigorous typicality
analysis grounding the Born rule in deterministic particle dynamics and thus provides
a very clear and utterly unmysterious account of probabilities in quantum mechanics.
In orthodox QM, the source of randomness is the measurement process and the collapse
of the wave function superseding the deterministic Schrödinger evolution. But since
measurements are treated as primitive, and the collapse postulate is obscure (if not
plainly inconsistent), the status of this randomness remains obscure, as well. Bohmian
mechanics, in contrast, provides the clearest counterexample to the widespread belief
that “quantum probabilities” must be fundamentally different from the probabilities
used in classical mechanics.

Nonetheless, there appear to be striking differences between CM and QM that we
have to account for. In particular, also in Bohmian mechanics, one cannot do better
than making statistical predictions according to Born’s rule. In CM, by contrast, we
are used to dealing with situations in which we can obtain a reliable deterministic
description of certain subsystems. We will explain why this is so, and thus address
the bigger question of why quantum mechanics appears more stochastic than classical
mechanics.

8.1 Probabilities in Classical Mechanics

In classical mechanics, the physical state of an N -particle system is completely de-
termined by specifying the positions and momenta of all the particles. Denoting
by qi and pi the position, respectively the momentum, of the i’th particle, we call
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X(t) = (q1(t), ..., qN (t); p1(t), ..., pN (t)) the microstate of the system at time t. The
space of all possible microstates, here Γ := R3N × R3N , is the phase space. The mi-
crostate evolves according to the microscopic laws of motion, which, in the Hamiltonian
formulation, take the form 

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

, (8.1)

with

H(q, p) =
N∑
i=1

p2
i

2mi
+ V (q1, . . . , qn). (8.2)

More compactly, this can be written as

(q̇i, ṗi) = vH(q, p), (8.3)

where vH denotes the vector field on Γ generated by the Hamiltonian H. These
equations give rise to a Hamiltonian flow Φt,0 such that X(t) = Φt,0(X) for any initial
microstate X at t = 0. In equation (8.2), mi denotes the mass of the i’th particle and
V the interaction potential, which can be split into

V (q1, . . . , qn) =
∑
i<j

Vint(qi − qj) + Vext(q1, ..., qN , t). (8.4)

Vint then corresponds to a pair-interaction among the particles (e.g., gravitation) and
Vext is an external potential summarizing the influences of the environment. Of course,
if the N particle system is the entire universe, then Vext = 0 since there is nothing
outside the universe.

Notably, whenever we argue that a subsystem can be treated as isolated, i.e., that
Vext is negligible, for instance, because of the large distance/small mass of other bodies
in Newtonian gravity, we are assuming the universal validity of the laws. The relevant
argument doesn’t go bottom-up – to larger and larger “models” of the theory – but
top-down from the universe to subsystems.

In any case, a Hamiltonian system has several nice properties. If Vext is zero, or at
least time-independent, it conserves the total energy, meaning that H = const. along
any solution of (8.1). Furthermore, by the Liouville theorem, the Hamiltonian flow
conserves phase space volume. This is to say that the uniform Lebesgue measure λ is
a stationary measure on Γ, in the sense that for all t ≥ 0 and any Borel set A ⊆ Γ,

λ(Φt,0A) = λ(A). (8.5)

For fixed E ∈ R, one will usually consider the reduced phase space ΓE := {X ∈ Γ :
H(X) = E} to which a system with total energy E is confined by virtue of energy
conservation. λ then induces a stationary measure λE on the hypersurface ΓE , called
the microcanonical measure. By convention, we normalize this measure to λE(ΓE) = 1.
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Remark. Stationarity and Continuity Equation.

In general, a measure µ evolves under a flow Φt,0 as

µt(A) = µ
(
Φ−1
t,0 (A)

)
, (8.6)

i.e., µt(A) corresponds to the measure that µ = µ0 assigns that the points that have
evolved into the region A at time t. This means that for any test-function f :∫

f(x) dµt(x) =
∫
f(Φt,0(x)) dµ(x). (8.7)

If µ = ρ dx with a density ρ, then µt has a density ρt = ρ(t, x) such that, by (8.7),∫
f(x)ρ(t, x) dx =

∫
f (Φt,0(x)) ρ(x) dx. (8.8)

The stationary condition requires that these integrals are actually constant in t, thus

0 = d
dt

∫
f (Φt,0(x)) ρ(x)dx =

∫
ρ(x)v (Φt(x)) · ∇f (Φt,0(x)) dx

=
∫
ρ(x, t) v(x) · ∇f(x) dx = −

∫
f(x) div(v(x)ρ(x, t)) dx,

where the last equality follows by partial integration (assuming that f falls off quickly
to zero towards infinity). Since this must be valid for any test-function f , we read off
the continuity equation

∂tρ(x, t) + div (v(x)ρ(x, t)) = 0. (8.9)

Informally speaking, the equation says that weight doesn’t get lost but is only trans-
ported along the flow-lines.

For a Hamiltonian vector field, it is easy to check (from eqs. (8.1) and (8.3)) that
div vH = 0, so that ρ = const. is a solution of (8.9). If one wants to be mathematically
fancy about it, one can relate this to the symplectic structure of phase space, which
ensures that the canonical volume form dx = dq ∧ dp does not change under the
Hamiltonian flow. In general, however, a stationary measure is not equivalent to a
stationary density since the volume form may itself evolve with the dynamics.

Randomness and typicality

Given that CM is deterministic, where do probabilities enter the picture? From a
practical point of view, there are at least three reasons to depart from the deterministic
description: (i) we do not have access to the exact values of all positions and momenta
in a given physical system. We can neither manipulate them with arbitrary precision

96



8.1. PROBABILITIES IN CLASSICAL MECHANICS

in experimental situations, nor measure the exact (initial) microstate X in order to
determine the system’s trajectory. (ii) Physical systems can be extremely sensitive to
perturbations of their initial conditions. This means that even a small error about the
initial data can translate into a huge error about the evolution of the system. (iii) The
complexity of calculation increases rapidly as N becomes very large.

Against this background, it seems reasonable and necessary to make two conces-
sions. First, it usually suffices to provide a coarse-grained description of the system.
That is, rather than asking for the exact microstate, we are interested in the value of
certain macroscopic “observables” F : Γ → R. These observables are coarse-graining
in the sense that a great number of microstates X will, in general, correspond to
(approximately) the same value of F . Mathematically, if Γ is endowed with a proba-
bility measure, such a function is called a random variable, but as emphasized before,
this nomenclature is quite deceiving. The macrostate of a system (defined in terms
of such observables) is always determined by its microstate which, in turn, follows a
deterministic law of motion.

Second, although we cannot determine the exact evolution of the system – if only
for the fact that we do not know the exact initial conditions – we can ask what happens
in most possible instances, that is, for typical initial conditions.

In some cases, typical trajectories coarse grain to one and the same macroscopic
history, so that predictions appear deterministic (e.g., when we set out to determine
the trajectory of a stone thrown on earth). In many cases, though, typical initial
conditions agree only on certain statistical patterns in the distribution of coarse-grained
observables (e.g., when we ask for the relative frequency of heads or tails in a long series
of coin tosses). In these latter cases, probabilities come into play.

In any case, if we can establish that a certain fact or feature occurs for the vast
majority of possible initial conditions – that is, in the last resort, for the overwhelming
majority of possible universes described by a particular theory –, we can justifiably
call it a prediction of that theory. In order to make such an argument precise, we need
a measure on phase space – a typicality measure – telling us what an “overwhelming
majority” of initial conditions is.

In CM, the natural typicality measure is the Lebesgue or Liouville measure on
phase space, respectively the induced microcanonical measure on the energy shell. We
have already discussed how this particular choice is justified and what characterizes a
good typicality measure, in general. Here, we shall highlight again stationarity as a
crucial desideratum, since it is essential to a sensible notation of typicality that it does
not change with time. Stationarity of the measure, i.e., equation (8.5), assures that
typical sets remain typical, and atypical sets remain atypical under the time evolution.
In Hamiltonian mechanics, the uniform Liouville measure is thus distinguished as the
simplest stationary measure on phase space, and when we come to Bohmian QM, we
shall see that it is indeed the stationary measure – not the uniform measure – that
yields the appropriate notion of typicality.
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Through the condition of stationarity, the choice of typicality measure is con-
strained by the physical dynamics. However, as noted in Ch. 5.5, stationarity alone
may not distinguish the measure uniquely. In fact, for classical mechanics, any density
f(H) that is function of the Hamiltonian H defines a stationary measure on phase
space. I have already argued that the additional appeal to more informal criteria such
as simplicity and naturalness is quite appropriate. Nonetheless, the situation is more
satisfying in Bohmian mechanics, where the typicality measure can be shown to be
unique in a rather strong sense.

Ideal Gas: The Maxwell distribution

To demonstrate how a typicality argument works, let us consider the stock example
of an ideal gas in a box (with perfectly reflecting walls) that will serve as our toy-
model for the universe. The number of particles in such a macroscopic system is of
the order of Avogadro’s constant, which is N ∼ 1024. Clearly, determining the actual
configuration and / or predicting the trajectories for so many particles is a hopeless
task, even if the particles are non-interacting as in our example.

And yet, it is possible to make reliable predictions about the system. For instance,
we can ask the following: what is the share of particles whose velocity in x-direction
is approximately v0 ∈ R? We can formalize this in terms of the random variable

F (X) := 1
N

N∑
i=1

χ{vi,x∈[v0−δ,v0+δ]}(X). (8.10)

Here, δ > 0 is a small positive number (giving precise meaning to “approximately v0”)
and χ is the indicator function, i.e., χ{vi,x∈[v0−δ,v0+δ]} equals one if vi,x = 1

mpi,x lies in
the interval [v0 − δ, v0 + δ] and zero if it does not.

Fixing the mean energy per particle to E
N = 3

2kBT (kB is the Boltzmann constant
and T can later be identified as the temperature of the system), it is a mathematical
fact that for any 1 ≤ i 6= j ≤ N :

lim
N→∞,E

N
= 3

2kBT
λE
({
X ∈ ΓE : vi,x ∈ [a, b], vj,x ∈ [c, d]

})

=
∫ d

c

∫ b

a

exp
(
− 1
kBT

m(v2
i+v2

j )
2

)
(

2πkBT
m

)3 dvidvj .
(8.11)

From this result – notably establishing (pairwise) statistical independence in the ther-
modynamic limit – one can conclude that for any ε > 0:

λE
({
X :

∣∣∣ 1
N

N∑
i=1

χ{vi,x∈[a,b]}(X)−
∫ b

a
ρMB(v)dv

∣∣∣ > ε
})
→ 0, N →∞, (8.12)
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with
ρMB(v) =

(2πkBT

m

)− 3
2 exp

(
− mv2

2kBT

)
. (8.13)

The rigorous derivation requires little more than standard calculus and measure theory.
The deeper philosophical question, is what the mathematical result means.

The function ρMB(v) is called the Maxwell or Maxwell-Boltzmann distribution.
It is a probability density, describing a distribution of particle velocities. Note that
there is nothing intrinsically random about the velocities of particles in a gas. The
velocity (as well as the position) of every single particle is comprised in the microstate
X whose evolution follows a deterministic equation of motion. There are possible X
for which the actual distribution of velocities in the gas differs significantly from that
described by the Maxwell distribution. For instance, there are microstates X for which
all particles move with one and the same velocity, or microstates X for which a few
very fast particles account for almost the entire kinetic energy while all the others are
nearly at rest. But these states are very special ones. The crucial and remarkable fact
expressed by equation (8.12) is that, for large N , the overwhelming majority of possible
microstates is such that the distribution of velocities in the gas is (approximately)
Maxwellian. What constitutes an “overwhelming majority of microstates” is made
precise in terms of the stationary measure λE . The Maxwell distribution is thus derived
from the microscopic theory as a statistical regularity manifested for typical micro-
configurations.

Ludwig Boltzmann expressed this reasoning as follows:

The ensuing, most likely state [...] which we call that of the Maxwellian
velocity distribution, since it was Maxwell who first found the mathemat-
ical expression in a special case, is not an outstanding singular state, op-
posite to which there are infinitely many more non-Maxwellian velocity-
distributions, but it is, to the contrary, distinguished by the fact that by
far the largest number of possible states have the characteristic properties of
the Maxwellian distribution, and that compared to this number the amount
of possible velocity-distributions that deviate significantly from Maxwell’s
is vanishingly small. (Boltzmann, 1896a, p. 252, translation by the author)

It is crucial to appreciate that while two – actually even three – measures appear in the
mathematical expression (8.12), their status is very different (see Goldstein (2012)).
We have:

• The actual (empirical) distribution ρemp[X] dv = 1
N

N∑
i=1

χ{vi,x∈dv}(X), yielding,
for the microstate X, the fraction of particles with x-velocity in the interval dv.

• The theoretical (Maxwellian) distribution ρMB dv ∝ exp
(
− 1
kBT

mv2

2

)
dv.

• And the typicality (microcanonical) measure λE .
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Equation (8.12) thus tells us that ρemp ≈ ρMB for typical microstatesX ∈ ΓE . Notably,
the Maxwellian ρMB and the empirical distribution ρemp refer to the ensemble of
particles within the box, whereas the microcanonical measure does not refer to an
ensemble of boxes but is used to define typicality.

I also want to emphasize again the very limited degree to which knowledge, infor-
mation, credence or other subjective notions play a role in the analysis. While it is in
some sense correct to say that randomness in a deterministic theory is only due to our
ignorance about initial conditions, it is an objective fact that for the great majority of
microstates the distribution of velocities in an ideal gas is (approximately) Maxwellian.
It is this objective fact, rather than some quantification of our knowledge or beliefs,
that we take to be explanatory.

The coin toss again

Analogous reasoning can be applied to more mundane examples like the repeated
tossing of a coin. It is a statistical regularity found in our universe that the relative
frequency of heads or tails in a long series of fair coin tosses is approximately 1/2.
Since coin tossing is guided by the same laws as all other physical processes in the
world, this statistical regularity has to be explained on the basis of the fundamental
microscopic theory (here: classical mechanics). It is not a new kind of law that holds
over and above the microscopic ones.

We have already seen what such an account would look like. We denote by χi(X) ∈
{0, 1} the outcome of the i’th coin toss in a long series of N tosses. Since classical
mechanics is deterministic, the outcome of every single trial is determined, through the
fundamental laws of motion, by initial conditions X. Obviously, the functions χi are
very coarse-graining. We do not care about the exact configuration of atoms making
up the coin; we do not even care about the exact position or orientation of the coin.
We only ask which side is facing up as the coin lands on the floor. This defines our
macroscopic observables.

It is not wrong to think of X, in the first instance, as ranging over possible initial
configurations of the before-mentioned coin-tossing machine: At time t = 0, a large
number N of coins is filled into the machine, which is then sealed and shielded from
outside influences. From there on, everything takes its deterministic course: the out-
come of each coin toss is completely determined by the initial state of the system.
However, the account would remain incomplete, not just because a perfectly isolated
machine is an unrealistic idealization. The initial configuration of the coin-tossing ma-
chine is itself the result of physical processes (the process of setting up the machine, for
instance) that are determined by suitably specified initial conditions. And these initial
conditions are the result of other deterministic processes in even larger systems, and so
on and so forth. If we think this trough till the end, we must eventually speak about
the universe as a whole – the only truly closed system – and think of χi as functions
on the phase space of the universe (respectively, the Past Hypothesis macro-region).
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initial conditions

deterministic laws
𝑋

X(𝑡)

ΓΓ

𝑀0

Φ𝑡,0

Figure 8.1: Sketch: a macroscopic event supervening on the microscopic evolution.
Φt,0 is the flow arising as the general solution of the microdynamics.

We know, of course, that classical mechanics are not adequate everywhere and on all
scales throughout our universe. Nevertheless, if we want to argue that the Newtonian
theory is sufficient to explain coin toss statistics – and it is hard to see why relativistic
or quantum effects should be relevant – we must ultimately conceive of these statistics
as a regularity in a Newtonian universe.

Now, there are possible initial configurations that would give rise to a Newtonian
universe in which the relative frequency of heads is very different from 1/2. Very
plausibly – that is, if the usual assumption of statistical independence is somewhat
justified – there are possible initial conditions for which almost all coins ever tossed
land on heads, or for which 2 out of 3 tosses result in tails, and so on and so forth.
But such initial conditions are very special ones. In contrast, typical initial conditions
(compatible with there being coins and coin tossers in the first place) are such that
the relative frequency of heads or tails in a long series of trials is approximately 1/2.
More formally, the claim is that for any ε > 0,

λ
(∣∣∣ 1
N

N∑
i=1

χi(X)− 1
2

∣∣∣ > ε
∣∣∣M0

)
= δ(ε,N), (8.14)

where M0 is the initial macrostate of the coin-tossing machine or, better, the universe
(constrained by the relevant facts about the experiment) and δ(ε,N) becomes arbi-
trarily small with increasing N . This is to say that if N is sufficiently large, the set of
initial conditions for which the relative frequency of heads deviates significantly from
1/2 is extremely small. Such initial conditions are not impossible but atypical.

By now, the reader will have certainly made the connection to our previously-
discussed model in terms of the Rademacher functions and also recognized (8.14) as a
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law of large numbers statement.

Deterministic subsystems: the stone throw

As mentioned before, there are many situations in classical mechanics that seem very
different from the coin toss or the velocity distribution of molecules in a gas. For
instance, when we predict the trajectory of a stone thrown on earth, we can, in gen-
eral, use a simple deterministic equation without being embarrassed by our ignorance
regarding the exact initial microstate of the stone or its environment. There are two
conditions satisfied here that allow us to do so:

1. The external forces, that is, the influence of the rest of the universe neglected
in our calculations, is very small compared to the attraction between stone and
earth. This is because other gravitating bodies are either very far away or have
very small masses compared to our planet. Formally, this is to say that

Vext ≈ 0, (8.15)

which allows us to treat the system (stone, earth) for most practical purposes as
an isolated Newtonian system.

We emphasize again that such arguments presuppose the universal validity of the
fundamental law. When we argue that the gravitational attraction of Uranus has
a negligible influence on the trajectory of the stone, we are obviously accepting
that the law of gravitation applies to planet Uranus.

2. The evolution of the relevant macroscopic variable – here, the center of mass
of the stone – is reasonably robust against variations of the microscopic initial
conditions. In other words, small changes in the initial micro-conditions have
(typically) a small effect on the trajectory of the stone. This is why our ignorance
about the exact microscopic configuration of the stone (or of the planet earth,
or the person/apparatus throwing the stone) does not prevent us from making
reliable predictions about the motion of its center of mass.

Nonetheless, even in this case, our prediction will be strictly speaking a typicality
result. Atypical events in the environment or the many-particle system constituting
the stone can lead to very different outcomes. To be precise, we would actually have
to cast our mechanical prediction for the stone’s trajectory in a form that looks very
similar to the probabilistic statements (8.12) or (8.14). For instance, denoting by
x(t) the computed trajectory (depending on the initial position and momentum of the
stone) and by x̃(t) the actual trajectory of the stone (depending on the initial condition
X of the universe), we could write:

λ

({
X : sup

t∈[0,T ]
|x̃(t)− x(t)| > ε

}∣∣∣∣∣M0

)
≈ 0, (8.16)
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where the macrostate M0 includes our approximate (coarse-grained) knowledge of the
initial conditions, as well as our evidence justifying our description of the system (stone,
earth) as an isolated Newtonian subsystem.

That said, the stone throw example still points to a striking difference between
classical and quantum mechanics. In CM, we routinely deal with situations in which
correlations between a subsystem and its environment are irrelevant and deterministic
predictions for the subsystem prove to be successful. In QM, by contrast, we are
generally dealing with situations that are much more similar to the coin toss or the
molecules in a gas, where predictions of statistical patterns are the best we can hope
for. Our aim now is to explain why this is so. To this end, we first have to discuss
probabilities in the quantum case.

8.2 Probabilities in Bohmian Mechanics
Assuming the success of efforts to accomplish a complete physical description, the sta-
tistical quantum theory would, within the framework of future physics, take an approxi-
mately analogous position to the statistical mechanics within the framework of classical
mechanics. I am rather firmly convinced that the development of theoretical physics will
be of this type; but the path will be lengthy and difficult.

— Albert Einstein in (Schilpp, 1949, p. 672)

In QM, we encounter a new dynamical feature that is totally absent from CM: the
specification of initial positions and momenta is replaced with the specification of
an initial wave function. The wave function is defined on configuration space and,
in general, non-separable. That is, due to entanglement, wave functions cannot be
attributed to the particles individually as initial parameters were attributed to them
individually in CM. On the fundamental level, there exists only one wave function, the
universal wave function, pertaining to the whole particle configuration of the universe
taken together.

As announced above, we shall consider the precise quantum theory known as
Bohmian mechanics (BM). BM is characterized by the following three postulates:

1. A Bohmian system with N particles is completely described by a pair (Q,Ψ),
where Q = (Q1, . . . , QN ) ∈ R3N represents the spatial configuration of the par-
ticles and Ψ is a complex square-integrable function on the configuration space
R3N called the universal wave function.

2. The evolution of the wave function Ψ is described by the Schrödinger equation

i~∂tΨt = HΨt, (8.17)

where H is the Hamiltonian of the system.

3. The evolution of the particle configuration follows a first-order differential equa-
tion in which the wave function Ψt enters to determine a velocity field vΨt for
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the particles. More precisely, the particle configurations evolves according to the
guiding equation

Q̇ = vΨt(Q) := ~
m

Im∇Ψt(Q)
Ψt(Q) , (8.18)

where we assume, for simplicity, particles of equal mass m, ∇ is the gradient
on the 3N -dimensional configuration space, and Im denotes the imaginary part.
Note that, due to the entanglement of the wave function, the law of motion is
manifestly nonlocal: except for special situations, the velocity of a particle will
depend on the position of all the other particles at the same time.

Given an initial wave function Ψ0 and the initial particle configuration Q0 ∈ R3N ,
the evolution of the system is completely and uniquely determined for all times. This
determinism is contrary to the popular belief that quantum mechanics is intrinsically
and irreducibly random. However, since we do not know (in fact, as we will see, cannot
know) the exact particle configuration, we have to resort once again to a statistical
analysis in order to extract empirical predictions. To this end, we can pursue the same
strategy as we did before in CM.

In the following, we will largely rely on the development of this strategy by Dürr
et al. (1992) (repreinted as Ch. 2 in Dürr et al. (2013b); for a textbook discussion,
see Dürr and Teufel (2009)). For the statistical analysis of BM, we need a) a sensible
typicality measure defined on configuration space and b) a procedure to get from the
fundamental, universal description in terms of the universal wave function to a well-
defined description of Bohmian subsystems. Given the universal wave function, the
appropriate notion of typicality for particle configurations is defined in terms of the
measure with density |Ψ|2. The crucial feature of this measure is that it is equivariant,
assuring that typical sets remain typical and atypical sets remain atypical under the
Bohmian time-evolution. More precisely, if ΦΨ

t,0 is the flow on configuration space
induced by the guiding equation (8.18), then

PΨ(A) :=
∫
A

|Ψ0|2 d3Nq =
∫

ΦΨ
t,0(A)

|Ψt|2 d3Nq (8.19)

holds for any measurable set A ⊆ R3N . Equivariance is thus the natural generalization
of stationarity for non-autonomous (time-dependent) dynamics. The |Ψ|2-measure can
be proven to be the unique equivariant measure for the Bohmian particle dynamics
that depends only locally on Ψ or its derivatives (Goldstein and Struyve, 2007). In
this sense, it is even more strongly suggested as the correct typicality measure for BM
than the Liouville measure is in CM.

Let us now have a closer look at how BM treats subsystems of the universe. Suppose
that the subsystem consists of n < N particles. We then split the configuration space
into R3N = R3n × R3(N−n), so that, writing q = (x, y), the x-coordinates describe
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the degrees of freedom of the subsystem and the y-coordinates describe the possible
configurations of its environment, i.e., the rest of the universe. Analogously, we split
the actual particle configuration into Q = (Qsys, Qenv) = (X,Y ), with Qsys = X, the
configuration of the subsystem under investigation and Qenv = Y the configuration of
its environment.

Now, in passing from the fundamental universal theory to a description of the
subsystem, we can simply take the universal wave function Ψt(q) = Ψt(x, y) and plug
into the y-argument the actual configuration Y (t) of the rest of the universe. The
resulting

ψYt (x) := Ψt(x, Y (t)) (8.20)

is now a function of the x coordinates only, called the conditional wave function. In
terms of this conditional wave function, the equation of motion for the subsystem takes
the form

Ẋ(t) = ~
m

Im∇xψ
Y
t (x)

ψYt (x)

∣∣∣∣∣
x=X(t)

(8.21)

to be compared with (8.18).

Since the conditional wave function depends explicitly on Y (t), its time-evolution
may be extremely complicated and not follow any Schrödinger-like equation. However,
in many relevant situations, the subsystem will dynamically decouple from its envi-
ronment. We say that the subsystem has an effective wave function ϕ if the universal
wave function takes the form

Ψ(x, y) = ϕ(x)χ(y) + Ψ⊥(x, y), (8.22)

where χ and Ψ⊥ have macroscopically disjoint y-supports and Y ∈ suppχ, so that,
in particular, Ψ⊥(x, Y ) = 0 for almost all x. (This is, notably, much weaker than
assuming that Ψ has a product structure, which is almost never justified.) This means
that we can forget about the empty wave packet Ψ⊥(x, y) and describe the subsystem
in terms of its own independent wave function ϕ (normalized to

∫
|ϕ(x)|2d3nx = 1). If

we can furthermore assume that the interaction between subsystem and environment
is negligible for some time, that is,

Vext(x, y)ϕ(x)χ(y) ≈ 0, (8.23)

the effective wave function will satisfy its own autonomous Schrödinger evolution. Note
that from the point of view of the subsystem, this part of the interaction potential,
coupling x and y degrees of freedom, is an external potential; condition (8.23) is thus
the same as (8.15) above.

Effective wave functions are the Bohmian counterparts of the usual wave functions
in textbook QM, and those wave functions to which the Born rule generally refers.
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For our statistical analysis, we start by considering the conditional measure

PΨ(X ∈ d3nx} | Y ) = |Ψ((x, Y ))|2d3nx∫
|Ψ((x, Y ))|2d3nx

= |ψY (x)|2d3nx, (8.24)

where the conditional wave function ψY is now normalized (and we keep in mind that
in the special situations described by (8.22), it becomes an effective wave function).
This formula already holds a deep insight to which we shall soon return. For practical
purposes, though, conditioning on the configuration Y is much too specific, since we
have only very limited knowledge of Y . However, many different Y s will yield one
and the same conditional/effective wave functions for the subsystem. Collecting all
those Y s, and using the fact that by yielding the same conditional wave function
they also yield the same conditional measure (8.24), a simple identity for conditional
probabilities yields

PΨ(X ∈ d3nx} | ψY = ϕ) = |ϕ|2d3nx. (8.25)

From this formula, we can now derive law of large numbers estimates of the following
kind: at a given time t, consider an ensemble of M identically prepared subsystems
with effective wave function ϕ.1 We denote by Xi the actual configuration of the i’th
subsystem. Let A ⊆ R3n consider the corresponding indicator function χ{Xi∈A}, which
is 1, if the configuration Xi is in A and 0 otherwise. Then, we have for any ε > 0:

PΨt =
({
Q :

∣∣∣ 1
N

N∑
i=1

1{Xi ∈ A}(Q)−
∫
A
|ϕ(x)|2

∣∣∣ < ε
})
→ 0, N →∞. (8.26)

This is to say that for nearly all possible configurations of the universe, the particles in
an ensemble of subsystems with effective wave function ϕ will be distributed according
to |ϕ|2. In other words, Born’s rule holds in typical Bohmian universes, that is, in
quantum equilibrium.

Once again, we emphasize that the |Ψ|2-measure given in terms of the universal
wave function is only used to define typicality. It is not supposed to describe an
actual distribution of configurations (an “ensemble of universes,” whatever that would
mean), because the universe exists only once. By contrast, the |ϕ|2-measure on the
right hand side, defined in terms of the effective wave function, does refer to actual
particle distributions in a typical ensemble of identically prepared subsystems. Born’s
rule is thus predicted and explained by BM as a statistical regularity of typical Bohmian
universes.

Comparing equation (8.25) to (8.12) (and recalling the reasoning that lead to the
respective equations), we recognize the analogy between the derivation of the Maxwell
distribution in CM and the Born distribution in Bohmian mechanics. In essence,
it is Boltzmann’s statistical mechanics applied to two different theories. The status

1The analysis for “time-like ensembles,” i.e., consecutive measurements on the same system, is
mathematically more involved and carried out in Dürr et al. (1992).

106



8.2. PROBABILITIES IN BOHMIAN MECHANICS

of probabilities and the role of typicality is the same in both cases, although the
dynamical laws are strikingly different. On the one hand, this illustrates the deepness
and universality of Boltzmann’s insights. On the other hand, it shows that there is no
need to look for a fundamentally new kind of randomness in the quantum realm. If
the microscopic laws and the ontology of the theory are clear, probabilities in QM are
no more mysterious than they are in CM.

Why Quantum mechanics appears more random

We have highlighted the similarities between the statistical analysis of classical me-
chanics and Bohmian mechanics, showing that probabilities have the same status in
both theories. But what then is the difference between the classical and the quantum
regime? Why does the latter appear so much more unpredictable and random?

Part of the answer is trivial. Quantum mechanics is primarily used to describe mi-
croscopic systems, while Newtonian mechanics is successfully applied on macroscopic
scales. Macroscopic predictions are bound to be more robust against our ignorance
about the micro-conditions. Of course, we think of QM as more fundamental theory
from which classical mechanics emerge in an appropriate “classical limit.” In Bohmian
mechanics, this refers to situations in which the Bohmian trajectories look approxi-
mately Newtonian on macroscopic scales (see, e.g., Dürr and Teufel (2009, Ch. 9)).
This means, however, that the successful “deterministic” predictions of classical me-
chanics are also – and more fundamentally – predictions of Bohmian mechanics.

Furthermore, we have seen that the predictability of a system depends on our
abilitiy to describe it, at least effectively, as independent of external influences. The
nonlocality of quantum mechanics makes this a particularly subtle issue. Newtonian
gravity is also nonlocal, but only in a milder sense. Forces fall off quickly with increas-
ing distance (and gravity is very weak, to begin with) so that parts of the universe can
often be described as autonomous Newtonian systems for all practical purposes.

Quantum mechanics, by contrast, has a distinctly holistic character. In BM, this is
manifested in nonlocal dynamics, in which the entire configuration of particles is guided
by a common wave function. Quantum entanglement (or what Maudlin (2011) calls
the “quantum connection”) is universal and does not fall off with distance. This makes
it much more difficult to consider subsystems as isolated while ignoring the influence of
the rest of the universe. Fortunately, many relevant situations allow for an autonomous
Bohmian description of a subsystem in terms of an effective wave function. Einstein’s
worry (see Einstein (1948)) that nonlocality would make the investigation of nature by
local experiments impossible did not manifest. Nonetheless, we must be careful since
the effective wave function depends implicitly on the environment configuration (e.g.,
on the procedure used to prepare the state in an experiment) via equation (8.22).
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Absolute Uncertainty

More precisely (and more profoundly), the information that we can possess about the
configuration of a Bohmian subsystem is restricted by the theorem of Absolute Un-
certainty (Dürr et al., 1992) that has no analog in classical physics. “Information”
here is understood very prosaically as a correlation between the configuration of the
subsystem and the configuration of some other system – a brain, a measurement de-
vice, a notebook – that constitutes a record. Absolute uncertainty is then a direct
consequence of the conditional probability formula (8.24): all external records about
the subsystem are included in the particle configuration Y of the rest of the universe
and thus already taken into account (i.e., conditionalized on) in equation (8.24) that
yields Born’s rule for the distribution of particle positions.

The theorem of absolute uncertainty thus states that if the effective (or conditional)
wave function of a subsystem is ϕ, an external observer cannot have more information
about the particle configuration of that system than provided by the |ϕ|2-distribution.

Conversely, this means that if we perform additional measurements to determine
the particle positions with greater accuracy, the system’s effective wave function must
be affected and become more and more peaked. Hence, the gradients in the velocity
formula (8.18) induce higher and higher possible velocities, depending on the exact
particle configuration Q, and also an ever greater variation (∼ ∇2ϕ) in the possible
velocities. Less uncertainty about the (initial) particle positions thus implies more
uncertainty about the (asymptotic) velocities – this is the source of Heisenberg’s un-
certainty principle. Consequently, even tiny variations in the initial data may lead to
large deviations of the corresponding Bohmian trajectories. (Our rapidly increasing
uncertainty about the particle positions is then mirrored by the quick spreading of the
wave function under the Schrödinger time evolution.)

Absolute uncertainty is a feature of quantum equilibrium. And this is maybe
the deepest explanation for our epistemic limitations in the microscopic realm: Our
universe is in quantum equilibrium but macroscopically in (thermodynamic) non-
equilibrium. And non-equilibrium is what allows for more informative correlations.
Just as a gas in equilibrium is always Maxwell-distributed (with different tempera-
tures and/or effective Hamiltonians), Bohmian subsystems are always Born-distributed
(with different effective wave functions).

In conclusion, the “randomness” of quantum mechanics is a result of quantum
equilibrium and manifestly nonlocal dynamics, which are such that a system becomes
immediately more chaotic as we try to determine the micro-conditions with greater
accuracy. This forces us to resort much more routinely to probabilistic reasoning than
is the case in classical physics. For a quantum system, Born’s rule provides – provably
– as good a description as we can get in a universe in quantum equilibrium.
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Chapter 9

Boltzmann’s Statistical
Mechanics

In this chapter, we will discuss Ludwig Boltzmann’s statistical mechanics and revisit
the groundbreaking insights of the Austrian physicist who, more than a century ago,
showed how to derive and explain macroscopic regularities on the basis of the under-
lying laws governing the motion of the microscopic constituents of matter. We will
focus, in particular, on his account of thermodynamic irreversibility and the second
law of thermodynamics in which the concept of typicality plays a central role.

In the philosophical literature, the account is sometimes referred to as “Neo-
Boltzmannian” but this name strikes me as overly flattering to both Boltzmann’s
critics and his contemporary defenders. This is not to diminish the important con-
tributions of, among others, Lebowitz (1993a,b), Bricmont (1995), Penrose (1989),
Goldstein (2001), and Carroll (2010), who have recaptured and elaborated on Boltz-
mann’s ideas. But I assume these authors will agree with me that the critical concepts
and insights are all there in Boltzmann’s original work and have stood the test of
time. Reintroducing them to physicists, mathematicians, and philosophers proved to
be highly necessary, however, as they were – and still are – subject to both unnecessary
misunderstanding and important efforts to explore their full potential.

9.1 The Second Law of Thermodynamics

Our discussion is concerned with the explanation of the irreversible thermodynamic be-
havior of macroscopic systems. The term “thermodynamic behavior” refers to the ubiq-
uitous phenomenon that physical systems, prepared or created in a non-equilibrium
state and then suitably isolated from the environment, tend to evolve to and then stay
in a distinguished macroscopic configuration called the equilibrium state. Familiar ex-
amples are the expansion of a gas, the dissipation of heat, the mixing of milk and
coffee, and so on.

Phenomenologically, this empirical regularity is captured by the second law of ther-
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modynamics positing the monotonous increase of a macroscopic variable of state called
entropy which attains its maximum value in equilibrium.1 One of the main tasks of
statistical mechanics is to explain this macroscopic regularity on the basis of the more
fundamental laws guiding the behavior of the system’s micro-constituents.

A key concept of Boltzmann’s statistical mechanics is the distinction between mi-
crostates and macrostates. Whereas the microstate X(t) of a system is given by the
complete specification of its microscopic degrees of freedom, the macrostate M(t)
is specified in terms of physical variables that characterize the system on macro-
scopic scales (like its volume, pressure, temperature, and so on). The macroscopic
state of a system is completely determined by its microscopic configuration, that is
M(t) = M(X(t)), but one and the same macrostate can be realized by a large (in gen-
eral infinite) number of different microstates, all of which “look macroscopically the
same.” The partitioning of the set of microstates into sets corresponding to different
macrostates is therefore called a coarse-graining.

Turning to the phase space picture of classical Hamiltonian mechanics for an N -
particle system, a microstate corresponds to one point X = (q, p) in phase space
Γ ∼= R3N × R3N , q = (q1, q2, ..., qN ) being the position and p = (p1, p2, ..., pN ) the
momentum-coordinates of the N particles, whereas a macrostate M corresponds to an
entire region ΓM ⊆ Γ of phase space, namely the set of all microstates that realize M .
The microscopic laws of motion are such that any initial microstate X0 determines
the complete micro-evolution X(t) = φt(X0) of the system – represented by a unique
trajectory in phase space going through X0 – thereby also determining the macro-
evolution M(X(t)) as the microstate passes through different macro-regions.

Figure 9.1: Partition of phase space into macro-regions. Size difference are vastly
larger than depicted. Graphic from: Penrose (1989).

These concepts are pretty much forced on us if we accept the supervenience of
macroscopic facts on microscopic facts, and they are essential to appreciating the

1This broad use of the term “second law of thermodynamics” may be somewhat ahistoric but has
become customary in physics and I shall take license to adopt it, as well.
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problem at hand. The second law of thermodynamics describes an empirical regu-
larity about the macro-evolution M(t) of a physical system. This macro-evolution is
determined by the evolution of the microscopic configuration, which follows exact de-
terministic laws of motion. The aspiration of statistical mechanics is thus to explain or
justify the empirical regularity expressed by a macroscopic law on the basis of the more
fundamental microscopic theory. When it comes to the second law of thermodynamics,
this seems like a quite formidable task, as it requires us to reconcile the irreversibility
of thermodynamic behavior with the time-reversal symmetry of the microscopic laws of
motion. The task was nevertheless accomplished by Ludwig Boltzmann in the second
half of the 19th century. His account is based on two essential insights:

1. The identification of the Clausius entropy of thermodynamics with the (logarithm
of the) phase space volume corresponding to a system’s current macrostate. For-
mally:

S = kB ln |ΓM(X)|, (9.1)

where kB is the Boltzmann constant and |ΓM | denotes the volume (the Lebesgue
or Liouville measure) of the phase space region ΓM , comprising all microstates
X ∈ Γ that realize the macrostate M .

2. The understanding that the separation of scales between the microscopic and
the macroscopic level leads to enormous differences in the phase space volume
corresponding to states with different values of entropy. In particular, we will
generally find that the equilibrium region – by definition, the region of maximum
entropy – is vastly larger than any other macro-region, so large, in fact, that it
exhausts almost the entire phase space volume (or more precisely, at fixed total
energy E, the induced 6N −1-dimensional volume on the energy surface ΓE). In
other words: nearly every microstate is an equilibrium state.

These two points are related as follows: Entropy is an extensive state variable, meaning
that, for fixed values of the other macro-variables, it usually grows like N , the number
of microscopic constituents. Substantial entropy differences are thus of order N , and
the differences in the measure of the corresponding macro-regions even of order exp(N).
If we now recall that N ∼ 1024 for macroscopic systems (from Avogadro’s constant), we
see that the differences in phase space volume corresponding to different entropy levels
are enormous. In other words, we generally find that for macroscopic systems, i.e., for
systems with a very large number of microscopic degrees of freedom, the partitioning
of microstates into macrostates does not correspond to a partitioning of phase space
into regions of roughly the same size, but into regions whose sizes vary by a great many
orders of magnitude, with the equilibrium region being by far the largest.

What we learn from these insights is, first and foremost, that the thermodynamic
behavior we seek to explain is not a feature of certain special micro-evolutions, but
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rather the kind of macro-behavior that would obtain for almost any conceivable trajec-
tory that a microstate, starting in a non-equilibrium region, could follow through phase
space. In fact, the micro-dynamics would have to be very peculiar to avoid carrying
the microstate into larger and larger phase space regions – corresponding to a gradual
increase in entropy – and finally into the equilibrium region, where it remains for the
foreseeable future. This is why Boltzmann’s arguments are extremely robust against
the details of the microscopic theory, giving us an understanding of thermodynamic
behavior as a virtually universal feature of macroscopic systems.

Notably, though, it cannot be true that all microscopic initial conditions lead
to an evolution of increasing (or non-decreasing) entropy. This is a straightforward
consequence of the time-reversal symmetry of the microscopic laws, as was famously
pointed out by Johann Loschmidt in his “reversibility objection.” Hence, Lebowitz
rightly warned us, quoting Ruelle, that Boltzmann’s ideas are “at the same time simple
and rather subtle” (Lebowitz, 1993b, p. 7). We will elaborate on these subtleties in
the following section and see how the time-symmetry is broken.

The typicality account

To build on the basic principles of Boltzmann’s statistical mechanics and go into the
details of the typicality account, let us discuss the paradigmatic example of a gas in
a box. We thus consider a system of N ≈ 1024 particles – interacting by a short-
range potential (or not at all in the model of an ideal gas) – which are confined
to a finite volume within a box with reflecting walls. Now assume that we find or
prepare the gas in the macrostate M2 sketched below (Fig. 9.2), that is, we consider
a particle configuration that looks, macroscopically, like a gas filling out about half of
the accessible volume. What kind of macroscopic evolution should we expect for this
system?

Figure 9.2: Thermodynamic evolution of an expanding gas

A simple combinatorial argument shows that the overwhelming majority of microstates
that the system could possibly evolve into look, macroscopically, likeMeq, i.e., like a gas
that is homogeneously distributed over the entire box. In fact, one can readily conclude
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that the phase space volume corresponding to this equilibrium macrostate Meq is about
2N ≈ 101024 times (!) larger than the phase space volume occupied by configurations
with substantially lower entropy (in agreement with our general reasoning above).
Hence, as the particles move with different speeds in different directions, scattering
from each other and occasionally from the walls, the system’s microstate wanders
around on an erratic path in the high-dimensional phase space, and we should expect
that this path will soon end up in the equilibrium region ΓMeq and then leave ΓMeq

only very rarely, corresponding to fluctuations of the entropy about its maximal value.
Larger fluctuations, e.g., from Meq back into M2, are possible, as well. They

must, in fact, occur for almost all initial conditions according to Poincaré’s recurrence
theorem. However, as Boltzmann (1896a) already explained (see also Ehrenfest (1907)),
the time-scales on which substantial fluctuations are to be expected are so astronomical
– many orders of magnitude greater than the age of the universe – that they have no
empirical relevance.

It was also clear to Boltzmann (at least after objections from Loschmidt) that
there are initial conditions in ΓM2 for which the system will not exhibit the “expected”
thermodynamic behavior but follow an anti-thermodynamic trajectory of decreasing
entropy. For if we consider a macrostate M1 of even lower entropy, the time-reversal
symmetry of the equations of motions implies that for every solution corresponding
to a macro-evolution from M1 to M2, there exists another solution carrying an initial
microstate in ΓM2 into the lower-entropy macro-region ΓM1 . (Indeed, we only have to
take the solutions that have evolved from ΓM1 into ΓM2 and reverse all the particle
momenta.) However, the microscopic initial conditions in ΓM2 that lead to such an anti-
thermodynamic evolution are extremely special ones relative to all possible microstates
realizing M2 – they form a subset whose measure relative to that of ΓM2 is close to
zero. The correct assertion is thus that nearly all initial configurations in ΓM2 will
evolve into the equilibrium-region ΓMeq , while only a very small set of “bad” initial
conditions will show the anti-thermodynamic evolution from ΓM2 into ΓM1 . We will
make these arguments more precise in a minute.

For now, let us note that it is more appropriate to consider not any individual
trajectory, but the set of all solutions with initial conditions in ΓM2 . The dynamics of
a system of N ≈ 1024 particles is very chaotic, in the sense that even small variations
in the initial configuration can lead to considerable differences in the time-evolution.
Under the Hamiltonian dynamics, the set of microstates realizing M2 at the initial
time will thus quickly spread over phase space (respectively a submanifold compatible
with the constants of motion) with the overwhelming majority of microstates ending
up in the equilibrium-region and only a small fraction of “bad” initial configurations
evolving into the comparably tiny macro-regions of equal or lower entropy.

Remark (On the concept of chaos). The notion of “chaos” is difficult to exhaust with
rigorous mathematical definitions. It is clear that some form of dynamical instability is
characteristic of thermodynamic systems with many degrees of freedom, and there are
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various (usually highly idealized) mathematical concepts trying to capture this char-
acteristic. Their fruitfulness in certain areas of mathematics may have contributed to
the idea that one of them in particular must play a central role in the foundations of
statistical mechanics and be identified as the precise dynamical assumption underlying
Boltzmann’s arguments. However, as emphasized before, the explanation of thermo-
dynamic behavior is much more robust against the details of the microscopic model
and doesn’t hinge on any narrowly conceived property of the underlying dynamics. In
particular, the relevant systems might easily fail to be ergodic, or mixing, or have ev-
erywhere positive Lyapunov exponents – to throw around some jargon – though their
overall behavior would have to be completely qualitatively different from what it is
generally understood to be in order to render the typicality account irrelevant.

Let us summarize our discussion up to this point. The time-reversal invariance of
the microscopic laws implies that it cannot be true that all microstates in a low-entropy
macro-region M2 evolve into states of higher entropy. But Boltzmann’s analysis tells
us that micro-conditions leading to an entropy-decreasing evolution are atypical –
they form a subset of extremely small measure – while the great majority of micro-
configurations realizing M2 will evolve into states of higher entropy until reaching
equilibrium, and then stay in equilibrium for most of the time. Thermodynamic be-
havior, in other words, is typical given a non-equilibrium initial macro-state.

The role of the typicality measure

Throughout the above argument, the intuitive notions of nearly all or extremely spe-
cial, that we associated with typicality/atypicality, were understood in terms of the
stationary Liouville measure, i.e., in terms of the natural phase space volume of the
set of microstates with the respective property. More precisely, for a perfectly isolated
system with total energy E, we would have to consider instead of the Liouville mea-
sure the induced microcanonical measure µE on the hypersurface ΓE ⊂ Ω, to which
the motion of the system is confined in virtue of energy conservation. For simplicity,
I will often omit this distinction and merely refer to “phase space” and the “measure”
or “size” of macro-regions.

In any case, a crucial property of the Liouville measure as well as the microcanonical
measure is their stationarity under the microscopic time-evolution. This is such an
essential feature because it means that

a) the notion of typicality is timeless, i.e., typicality statements do not have to make
reference to external time.

b) the Hamiltonian dynamics “care” about the size of the macro-regions, in the sense
that the stationary measure, as a measure on initial conditions, carries over to
a well-defined measure on solution trajectories, which is such that the number of
trajectories passing through a phase space region at any given time is proportional
to the size of that region.
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Turning back to Boltzmann’s explanation of the second law, we note that the Liouville
measure (respectively the microcanonical measure) as a typicality measure serves two
purposes in the argument:

1. To establish that the region of phase space corresponding to the macrostate
M2 is very much larger than the region of phase space corresponding to the
macrostate M1, and that the region of phase space corresponding to the equi-
librium macrostate Meq is very much larger than the region of phase space cor-
responding to the macrostate M2, so large, in fact, that it occupies almost the
entire phase space.

It is easy to learn about this “dominance of the equilibrium state” Frigg (2011),
yet hard to appreciate the scale of proportions involved. Just think of the ratio
101024 : 1 for the gas-model, which is beyond anything we could intuitively grasp.

Together with the stationarity of the phase space measure, the dominance of the
equilibrium state already implies that (by far) most of the solution trajectories
are in equilibrium (by far) most of the time (see Reichert (2020) for a rigorous
proof). This is not quite what we need, but not too far away, either.

2. To define a notion of typicality relative to the current macrostate of the system,
allowing us to assert that nearly all microstates in the non-equilibrium region
ΓM2 will evolve into equilibrium, while nearly all equilibrium configurations will
stay in equilibrium for the foreseeable future.

Regarding the meaning of “nearly all,” one should note that it is only in the
idealized situation of a thermodynamic limit (where the number of microscopic
degrees of freedom goes to infinity) that one can expect the exception set of
“bad” configurations to be of measure zero, while if we argue about a realistic
system, the atypicality of such configurations is substantiated by the fact that
they have very very small (though positive) measure compared to the measure
of the respective macro-region.

In fact, stationarity allows us to estimate the measure of the good microstates
relative to the bad ones in ΓM2 by the ratio of phase space volume occupied
by M2 to the phase space volume corresponding to lower-entropy states. For
let ΓMlow

be the region of phase space corresponding to states of (substantially)
lower entropy and let B ⊂ ΓM2 be the set of initial conditions in ΓM2 that
will have evolved into ΓMlow

after a time ∆t. Then Φ∆t(B) ⊆ ΓMlow
and thus

|B| = |Φ∆t(B)| ≤ |ΓMlow
|, so that |B| : |ΓM2 | ≤ |ΓMlow

| : |ΓM2 | ≈ 1 : 101024 .

In sum, there are two typicality statements involved in Boltzmann’s account of
the second law. First, that equilibrium configurations are typical in Γ, i.e., with
respect to all possible microstates. Second, that micro-configurations converging to
equilibrium and thus leading to thermodynamic macro-behavior are typical relative to
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a non-equilibrium (initial) macro-region. The second statement is conceptually more
subtle and much more difficult to prove rigorously.

9.2 Irreversibility

By incorporating into our discussion what was essentially Boltzmann’s answer to
Loschmidt’s reversibility objection, we have already seen how the typicality account
resolves the greatest challenge to our reductionist enterprise: the prima facie contra-
diction between the irreversibility of thermodynamic processes and the reversibility of
the underlying mechanical laws. To highlight the solution, we recall that it was crucial
to the typicality argument that it referred to (typical or atypical) initial conditions
relative to the initial macrostate. Of course, in terms of overall phase space volume, a
non-equilibrium macrostate occupies a vanishingly small fraction of phase space to be-
gin with. The relevant notion of typicality when discussing convergence to equilibrium
from a non-equilibrium macrostate M2 is thus defined by the phase space measure
conditioned on the fact that the initial microstate of the system is in the respective
(low-entropy) region ΓM2 .

Now, the time-symmetry of the microscopic laws is manifested in the fact that
the phase space volume occupied by the bad initial conditions in Γeq – the initial
conditions for which the system will evolve out of equilibrium into the macrostate M2

– is just as large as the phase space volume occupied by the good initial conditions in
ΓM2 for which the system will relax into equilibrium. In other words, over any given
period of time, there are just as many solutions that evolve into equilibrium, as there
are solutions evolving out of equilibrium into a lower entropy state. The first case,
however, is typical for systems in non-equilibrium, whereas the second case is atypical
with respect to the possible equilibrium configurations.

It is this fact and this fact alone that establishes the irreversibility of thermo-
dynamic behavior. And what breaks the time-symmetry is only the assumption (or
preparation) of a special, i.e., low-entropy, initial macrostate.

Past Hypothesis and the thermodynamic arrow

By identifying the special macroscopic boundary conditions as the origin of the ther-
modynamic asymmetry, the typicality account is shifting the explanatory burden from
why it is that a system in non-equilibrium relaxes to equilibrium (once macroscopic
constraints are removed), to why it is that we find systems in such special states in
the first place. Notably, with respect to all possible microstates, most configurations
realize a state for which the system is in equilibrium, will be in equilibrium for most
of its future, and has been in equilibrium for most of its past. This situation – which
would be typical simpliciter – is indeed a time-symmetric one.

As long as we are preoccupied with boxes of gas or melting ice-cubes or the like,
their low-entropy states will usually be attributable to influences from outside, i.e., to
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the fact that these systems are actually part of some larger system (usually containing
a physicist, or a freezer, or the like) from which they “branched off” at some point to
undergo a (more or less) autonomous evolution as (more or less) isolated subsystems.
This presupposes, however, that these larger systems were themselves out of equilib-
rium; otherwise, they couldn’t give rise to subsystems with less than maximal entropy
without violating the second law.

If we think this through to the end, we arrive at the question why it is that we
find our universe in such a special state, far away from thermodynamic equilibrium
(and how to justify our belief that its state was even more special the farther we go
back in the past). This is what Goldstein calls the “hard part of the problem [of
irreversibility]” (Goldstein, 2001, p. 49), and it concerns, broadly speaking, the origin
of irreversibility and the thermodynamic arrow of time in our universe. Dealing with
the “hard problem” will require us to confront the meaning and status of the Past
Hypothesis (Albert, 2000) postulating a very-low-entropy beginning of our universe.
We will do so in Chapter 11.

9.3 The Status of Macroscopic Laws

In the old theory of thermodynamics, Clausius’ second law

d
dtS ≥ 0 (9.2)

was, as the name says, understood as a law of nature. This understanding – together
with still widespread skepticism about the atomic theory – was the major obstacle to
appreciating the reduction achieved with Ludwig Boltzmann’s statistical mechanics.
Indeed, the Boltzmannian analysis forces us to make two concessions with respect to
the nomological status of the second law of thermodynamics. First, it cannot hold
necessarily, that is, for all possible initial micro-conditions. Second, it will not hold
true all the time since on time scales approaching those of the Poincaré cycles, the
Boltzmann entropy – the statistical mechanical counterpart of the Clausius entropy –
fluctuates.2 It will “only” be typically true on empirically relevant time scales.

Many contemporary publications are still putting a lot of emphasis on the fact that
Boltzmann’s second law is not exact, distinguishing, for instance, “thermodynamic-like
behavior” – associated with the fluctuating Boltzmann entropy – from the “thermo-
dynamic behavior” that was associated with the (supposedly) strictly non-decreasing
Clausius entropy. In find this neither helpful nor necessary. Leaving aside the fact that
these publications characterize “thermodynamic-like behavior” in terms of infinite-
time averages that don’t even capture the relevant phenomena, the basic point has
been understood by physicists since one-and-a-half centuries ago, first and foremost

2Glenn Shafer has pointed out to me that it doesn’t even make sense to say that a fluctuating
quantity “increases” or “decreases” without a specification of the time scales to which such a statement
refers.
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by Boltzmann himself. Clausius’ second law was not the full story, and the kind of
“thermodynamic behavior” that some authors are still after is simply not in the cards.

Philosophically, the truly remarkable aspect about the statistical character of ther-
modynamic laws is not the way in which laws that were once thought of as exact turn
out to be merely approximately true, but the way in which the regularities expressed
by these laws turn out to be contingent rather than necessary. According to the micro-
scopic theory, the initial condition of our universe could have been such that systems,
prepared or created in a low-entropy state, would regularly end up on one of the “bad”
trajectories that undergo an anti-thermodynamic evolution. That is to say that there
are possible Newtonian universes in which gases are regularly found to contract rather
than expand, in which heat does sometimes flow from colder to hotter bodies, and in
which macroscopic objects such as apples and tables and chairs occasionally jump up
in the air simply because a large number of particles in the ground happen to push in
the same direction at the same time. In these possible universes, it is simply not true
that such events are “very unlikely” because they happen all the time.

If we accept the microscopic laws as (more) fundamental, we thus have to concede
that the so-called macroscopic laws – even in an approximate or statistical sense –
are strictly speaking not laws at all in that they lack nomological necessity. And
yet, I would insist, it is more than a mere contingency, more than a factum brutum,
that thermodynamic regularities hold in our universe. The question we should ask is
therefore: What more do the fundamental laws tell us about such regularities? What
concept is weaker than necessity and captures the nomological status of the second
law of thermodynamics?

The right answer, I submit, is not far to seek. Something is nomologically necessary
if it obtains in all possible worlds permitted by the fundamental laws. Most “law-like”
regularities fall a little short of that but obtain in nearly all possible worlds. The
appropriate concept, in other words, is typicality.

The standard notions of probability are ill-suited to do the job. Epistemic prob-
abilities are no substitute for nomological necessity. The fact that I do (or maybe
should) believe that a macroscopic regularity obtains strikes me as categorically inad-
equate to bestow this regularity with any kind of nomological authority. Natural laws
– including effective and special science ones – guide rational belief and expectations,
but they are not themselves statements of (rational) belief. Frequentist probabili-
ties are appropriate to characterize the explanandum, i.e., the regularity itself: over
every short time-interval, the Boltzmann entropy probably increases. But they are
question-begging when referring to a statistical distribution of initial conditions, and
meaningless when referring to the universe as a whole.

If we are serious about our commitment to argue within the paradigm of a deter-
ministic microscopic theory, we have to take it to the conclusion that there is nothing
more random about the creation or preparation of a subsystem with certain initial
conditions than about the evolution of an isolated system once prepared. To defer the
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source of “randomness” to the outside – from the box of gas to the shaky hands of
the experimentalist, or to external perturbations preventing the subsystem from being
perfectly isolated – is just to pass the buck. But the buck must stop, eventually, with
the universe itself. For the universe is what it is; it exists once and only once, there is
nothing before and nothing outside. And we either live in a universe that obeys the
second law of thermodynamics (on cosmological scales and, with the possibility of very
rare exceptions, in its branching subsystems) or we do not.

Typicality is just what the doctor ordered. It is a modal concept, expressing ob-
jective facts about the set of nomic possibilities referring, ultimately, to the universe
as a whole. These facts provide for the relevant relation between the microscopic laws
and the macroscopic regularity: the microscopic laws make the regularity typical. And
they can ground explanations and predictions, thus serving the epistemic and behavior-
guiding functions generally attributed to natural laws. Finally, typicality captures a
sense of counterfactual robustness in that the regularity obtains not only for the actual
initial micro-conditions of our universe but for nearly all possible ones.

Thermodynamic “laws” and other macroscopic phenomena are thus typical regu-
larities under the fundamental microscopic laws. It is this fact that characterizes the
relevant reduction and grounds their own law-like status.

On the derivation of typicality laws

In philosophy of science, the often-criticized yet very persistent models of Nagelian
reduction and deductive-nomological explanations have established the idea that the
relationship between a microscopic theory and a macroscopic regularity should be one
of logical entailment. The macroscopic “law” or regularity should be derived from the
more fundamental theory plus suitably specified “auxiliary assumptions.” While this is
not entirely wrong, understanding such a derivation in too naive logical terms misses
the crucial role that initial conditions play in an account of a macroscopic phenomenon.

For what is it to derive, e.g., the thermodynamic behavior of a gas from the Newto-
nian laws of particle dynamics? Is it to show that there exists at least one microscopic
configuration for which the gas will relax to equilibrium? Is it to show that it will
happen for all possible initial states? The unsatisfactory weakness of the first propo-
sition and the falsehood of the second must severely question the adequacy of purely
deductive schemes of explanation.

Consider an inference of the form

∀x
(
F (x)⇒ G(x)

)
,

where x ranges over possible (microscopic) realizations of the system and the predi-
cate G is a suitable formulation of “exhibiting thermodynamic behavior.” Then, the
antecedent F (x) would have to contain a clause that is essentially equivalent to the
assumption “The initial conditions of the system x are such that G(x),” which makes
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the inference too trivial to be explanatory. Of course there exist initial conditions
for which the gas will expand. There also exist initial conditions for which the gas
will contract. And initial conditions for which the gas will transform into a banana.
In other words, for a system with sufficiently many degrees of freedom and some-
what non-trivial dynamics, it is basically always possible to maintain that it has the
(macroscopic) property G because the initial conditions were such that G(x).

The only thing that can provide explanatory value in this context is the assertion
of typicality, i.e., to establish that G is not a feature of certain special micro-conditions,
but a physical fact that would obtain for the great majority of possible (initial) mi-
crostates. This is also to assure that the explanatory work is done as much as possible
by the physical laws rather than some fine-tuned arrangement of microscopic degrees
of freedom.

Notably, the relevant statement is now, logically and grammatically, a proposition
aboutG rather than a proposition about any particular x. To provide an explanation or
reduction of the second law of thermodynamics is thus not to state a set of assumptions
about an individual system that implies its thermodynamic behavior, but to establish
the relevant phenomenon as a typical feature of the microscopic laws.

Probabilistic schemes may give the appearance of a deductive explanation. If the
explanandum is understood in probabilistic terms, it can be derived from the dynam-
ical laws plus suitable probabilistic assumptions. We must, however, insist that any
such account commit to a consistent interpretation of probability. Physical phenomena
can often be described in statistical terms. But they cannot be derived from statistical
(or frequentist) assumptions without “passing the buck,” as argued before. Deduc-
tive probabilistic explanations – unless content with reducing one statistical regularity
to another – are thus invariably playing some sort of “trick,” like deriving physical
phenomena from subjective belief, or smuggling in some extra-logical inference.

Without a resort to typicality, the weaker relation of supervenience faces the same
problems as logical entailment. That a macroscopic regularity supervenes on the micro-
scopic laws would mean that the regularity could not be different without a difference in
the microscopic laws (or the relevant auxiliary assumptions). But this is patently false.
For different micro-configurations, the same microscopic laws with the same macro-
scopic boundary conditions could give rise to completely different macro-behavior.
Supervenience holds true only if the target of reduction is correctly understood as a
typicality statement: There cannot be any difference in the typical regularities without
a difference in the microscopic laws or the relevant macroscopic boundary conditions.

What else is left to say? Not much, I believe. To understand that a certain
regularity is typical, and yet to wonder why it is that we observe this regularity in
nature, is to wonder why our universe is typical, i.e., why it is, in the relevant respect,
like the overwhelming majority of possible universes allowed by the fundamental laws
of nature. And while I wouldn’t know how to answer – except again with Einstein’s
bon mot that “God is subtle, but not malicious” – the very question strikes me as
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utterly uncompelling. Explanations have to end somewhere. If we can establish that a
certain property is typical for a particular kind of system, this should remove any sense
of mystery or puzzlement as to why we find such systems instantiating the respective
property. Hence, we should consider the phenomenon to be conclusively explained on
the basis of the microscopic theory. Similarly, if we can establish that a macroscopic
feature or regularity is typical for a certain kind of system, we should expect to find
this feature realized in systems of said kind. In this sense, it constitutes a prediction
of the microscopic theory.

In this fashion, typicality statements figure in a way of reasoning about natural
laws. In fact, since the situation in which we find ourselves towards the world is
necessarily one in which all we can ever hope to know is compatible with a plurality
of fundamental (microscopic) matters of fact, the relevant explanatory and behavior
guiding statements that we can extract from fundamental physics are almost always
results about typical solutions.

Typicality facts thus have certain normative implications, which shouldn’t be con-
fused for logical ones. Logically, the fact that a property G is typical doesn’t entail
anything about any particular instance (such an inference is simply not in the cards).
It is always possible for a particular system – and ultimately our universe – to be
atypical in the relevant respect. But facts that strike us as atypical are usually the
kind of facts that cry out for further explanation. This is why a Casino manager has
not just economic interest but reasonable grounds to suspect cheating if a player hits
three jackpots in a single night. And this is why good scientific practice would even-
tually require us to revise our theory and look for a different set of laws, rather than
endorsing an explanation of phenomena based on special initial conditions or, if you
wish, a streak of bad luck. In the end, it is not logically but epistemically inconsistent
to accept a physical theory and, at the same time, that our universe is (in the relevant
respects) an atypical model of that theory, for this would undermine any reasons to
endorse the theory in the first place.

9.4 Intermezzo: Time-Reversal invariance

I have repeatedly emphasized the time-reversal invariance of the microscopic laws
multiple times without ever making precise what that symmetry is. My impression
is that the concept of time-reversal is quite uncontroversial in physics, though not so
among philosophers. Hence, some remarks (going beyond Newtonian mechanics) may
be in order.

Newtonian Mechanics

Consider an N particle Newtonian system following an equation of motion

mẌ(t) = F (X(t)) , (9.3)
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where X(t) = (x1(t), ...,xN (t)) ∈ R3N is the (spatial) configuration of the system at
time t, m = diag(m1, . . . ,mN ) is the mass matrix, and F an (N -particle) force field.
Let X(t), t ∈ [0, T ] be a solution of (9.3). We call

X̄(t) := X(T − t), t ∈ [0, T ] (9.4)

the time-reversal of X(t) and the evolution of X(t) reversible if its time-reversal X̄(t)
is also a solution of (9.3), i.e., a possible Newtonian history. Simply put: whatever
can unfold in one time-direction can also happen in reverse.

Now, by taking the time-derivatives,

˙̄X(t) = d
dtX(T − t) = −Ẋ(T − t)

¨̄X(t) = d2

dt2X(T − t) = Ẍ(T − t),
(9.5)

and thus, using the fact that X(t) is a solution of (9.3), we have

m ¨̄X(t) = mẌ(T − t) = F (X(T − t)) = F (X̄(t)). (9.6)

Hence, if X(t) is a solution of the Newtonian law (9.3), its time-reversal X̄(t) is also a
solution. In other words, all Newtonian evolutions are reversible and we therefore call
the laws of the form (9.3) time-reversal invariant.

Remark (On time-reversal). 1. Since the law is also time-translation invariant, it
doesn’t matter if we consider X̄(t) := X(T − t) or X̄(t) := X(−t) as the time-
reversal.

2. Except for special cases, e.g., X(t) ≡ const., X̄(t) and X(t) are (mathematically)
different trajectories in configuration space. Time-reversal invariance does not
mean that individual solutions are time-symmetric but that the time-reversal of
any solution is again a solution of the dynamical laws.

3. The time-reversal of X(t) goes through the same spatial configurations in oppo-
site order, while the velocities are reversed.

4. Time-reversal invariance would not hold in the presence of dissipative forces
F = F (X, Ẋ); but such Newtonian force laws are generally considered to be
effective (e.g., friction) rather than fundamental.

Electrodynamics

For simplicity, we shall not consider the full Maxwell-Lorentz theory but only a single
charge in an external electromagnetic field (E(t,x),B(t,x)). The Lorentz force law
then reads

mẍ(t) = q [E (t,x(t)) + ẋ(t)×B (t,x(t))] . (9.7)
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Let x(t), t ∈ [0, T ] be a solution of (9.7) and x̄(t) := x(T − t) its time-reversal. Analo-
gously, the “naive” time-reversal of the electromagnetic field would be (Ē(t), B̄(t)) :=
(E(T − t),B(T − t)). In view of (9.5), it is easy to check that x̄(t) satisfies

m¨̄x(t) = q
[
Ē (t, x̄(t))− ˙̄x(t)× B̄ (t, x̄(t))

]
. (9.8)

But this is not the Lorentz force law (9.7) for the time-reversed fields (Ē(t), B̄(t)) (note
the minus sign in front of the velocity-dependent term). However, x̄(t) is a solution of
(9.7) for the electromagnetic field(

Ẽ(t), B̃(t)
)

:=
(
E(T − t),−B(T − t)

)
, (9.9)

i.e., we have:
m¨̄x(t) = q

[
Ẽ (t, x̄(t)) + ˙̄x(t)× B̃ (t, x̄(t))

]
. (9.10)

Indeed, the transformation (9.9) is also consistent with time-reversal in the Maxwell
field equations, omitted in our discussion.3

Therefore, most people – with the notable exception of David Albert (2000) – agree
that classical electrodynamics is time-reversal invariant, but that the fields transform
non-trivially under time-reversal, namely into (Ẽ, B̃) rather than (Ē, B̄).

Albert (2000) argues that classical electrodynamics is not time-reversal invariant
because the fields are part of the physical state and therefore any solution (x(t),E(t),B(t))
would have to be reversible in the sense that (x̄(t), Ē(t), B̄(t)) is again a solution of
the (Maxwell-)Lorentz equations. The mainstream view considers it sufficient that
the particle-evolution x(t) is reversible, while the fields transform in a simple, albeit
non-trivial way. The debate is thus over which parts of the physical state evolution
have to be “exactly” reversible.

Quantum mechanics

The fundamental dynamical equation in quantum mechanics is the Schrödinger equa-
tion

i ~ ∂tψ = Hψ, (9.11)

describing the time-evolution of the wave function ψ. Given a solution ψ(t), t ∈ [0, T ]
of (9.11), we consider the naive time-reversal ψ̄(t) := ψ(T − t), t ∈ [0, T ]. It is now
easy to check that ψ̄(t) satisfies

− i ~ ∂tψ̄(t) = Hψ̄(t). (9.12)

Again, this is not the correct law, but off by a minus sign. However, taking the
complex conjugate of (9.12) (noting the imaginary unit on the left-hand-side and that

3Although it would not be hard to see from the inhomogeneous Maxwell equations ∇×E = −∂tB
and ∇×B = B + 1

c2 ∂tE why the B-field picks up a minus sign under a reparametrization t→ T − t.
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the Hamiltonian is real), we get:

i ~ ∂tψ̄∗(t) = Hψ̄∗(t). (9.13)

In other words, the naive time-reversal ψ̄(t) = ψ(T − t) does not solve the Schrödinger
equation, but its complex conjugate

ψ̃(t) := ψ∗(T − t) (9.14)

does. This corresponds to an anti-unitary time-reversal operator, if one wants to be
fancy about it.4

So why does this make quantum mechanics time-reversal invariant?5 The orthodox
response is that the empirically relevant quantity is not ψ(t) itself but the probability
density |ψ(t)|2, or maybe expectation values 〈ψ(t)|Â |ψ(t)〉 of self-adjoint operators.
The first is evidently the same for ψ and ψ∗, the latter remain the same up to a
sign (the expected momentum, for instance, gets reversed, as it should). However, for
the non-positivist, there would seem to be a difference between an invariance of the
observable quantities and a fundamental symmetry of nature. The orthodox view is
thus somewhat unsatisfying.

Bohmian mechanics

As usual, the situation is clearer in Bohmian mechanics. Here, what needs to be
reversible is again the evolution of the particle configuration X(t) = (x1(t), ..., xN (t)) ∈
R3N following the guiding equation

Ẋ(t) = vψ(X(t)) = ~
m

Imψ∗∇ψ
ψ∗ψ

(X(t)). (9.15)

Then, given a solutionX(t), t ∈ [0, T ] of (9.15), it is easy to check that its time-reversal
X̄(t) solves

˙̄X(t) = vψ̃( ˙̄X(t)) (9.16)

i.e., the guiding equation for the time-reversed wave function (9.14). Therefore, Bohmian
mechanics has time-reversal symmetry.

The situation here is pretty much analogous to that in classical electrodynamics:
The evolution of the particle configuration is reversible, but there are additional degrees
of freedom – here the wave function, there the fields – that must transform in a non-

4López (2019) suggests instead a unitary time-reversal T such that T ∗HT = −H. This doesn’t
exist for simple mathematical reasons. The spectrum of Hamiltonians is usually bounded from below,
i.e., σ(H) = [β,+∞) and thus σ(−H) = [−∞,−β), but any unitary transformation H → T ∗HT
leaves the spectrum invariant.

5In quantum field theory, more precisely the standard model of particle physics, time-reversal
invariance is violated in weak interactions, though the combined symmetry CPT (charge, parity, and
time) is still considered a fundamental – and necessary – symmetry of nature, see, e.g., Streater and
Wightman (2000).
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trivially way.
One metaphysical view distinguishes the primitive ontology (PO) – the fundamental

constituents of matter postulated by a theory – from degrees of freedom that belong
to the dynamical or nomological structure of theory, whose role, in other words, is
first and foremost a dynamical one for the evolution of the PO. Under symmetries
in general, and time-reversal, in particular, the history of the PO has to be invariant
(or covariant in the natural way), while the dynamical quantities can transform non-
trivially. Elsewhere, I have endorsed the position that in Bohmian mechanics and
classical electrodynamics the particles alone are the primitive ontology while the wave
function, respectively the electromagnetic field, falls into the latter category (Esfeld
et al., 2014; Lazarovici, 2018). In any case, the debate about which quantities should
be exactly reversible – and thus the debate about which theories have bona fide time-
reversal symmetry – is (where not based on mere misunderstandings) a debate about
physical ontology.

Time-reversal symmetry and the arrow of time

Finally, there is the argument from time-reversal invariance against a primitive (meta-
physical) direction of time. Some vague version of the argument seems to be almost
folklore among physicists while some philosophers are still debating what the argument
is supposed to be exactly. Although it is beyond the scope of our current discussion
– which deals with the thermodynamic arrow of time – let me briefly state how I
understand it.

Suppose there was a primitive direction of time. Then, any possible world, that is,
any solution of the fundamental dynamical laws, would have a time-reversed “twin”
which is physically identical except for the order in which the (particle) configurations
are run through. At least, the two worlds would be indistinguishable by subjects in-
habiting them, assuming that subjective experience supervenes on the spatio-temporal
distribution of matter. Thus, by the principle of the identity of indiscernibles (PII) –
or, more profanely, a principle of parsimony – the twin solutions should be regarded
merely as different mathematical representations of one and the same physical world.

In particular, we represent the time axis by the continuum of real numbers. But in
fact, R has mathematical surplus structure in that it is totally ordered, and reversing
the orientation – by the reparameterization X(t)→ X(−t), is merely a different choice
of gauge that doesn’t correspond to any difference in the world. Consequently, time-
reversal must be understood as a passive transformation since the idea that one could
(hypothetically) hold the direction of time fixed while changing the order of events
unfolding in it is meaningless. In other words, the structure of time involves only a
betweenness relation (a triadic relation between points in time) but not a dyadic order
relation of “earlier than” and “later than.”6

6This is sometimes called a “C-theory” of time, see, e.g., Farr (2018).
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I find this view attractive but must admit that the argument from time-reversal
symmetry is not hard to dismiss. One can simply reject the PII or deny that the
parsimony of the deflationary view has any virtue. One can insist that subjective
experience supervenes not only on a world’s unoriented path in configuration space
but also on the direction of change or “passage.” Maybe more convincingly, one can
insist that a solution trajectory and its time-reversed twin are not physically identical,
even in the Newtonian case, since the velocities/momenta differ by a global sign. At
this point, both sides of the debate would seem to beg the question because a reversal of
all particle velocities amounts to a physical difference if and only if there is a direction
of physical time itself.

9.5 Objections and Responses

In this final section, we are going to address the most common objections to the
typicality account that have been raised in the contemporary philosophical literature.
We will argue that these objections are unfounded and often based on unnecessary
misunderstandings of Boltzmann’s arguments.

Missing the point of typicality

One of the most common mistakes in the debate about Boltzmann’s statistical me-
chanics is the failure to appreciate the difference between a typicality statement and
an inference about particular instances. Consider, for example, the objection of Roman
Frigg in reply to Goldstein (2001):

Goldstein suggests that a system approaches equilibrium simply because
the overwhelming majority of states in ΓE are equilibrium microstates [...].
This is wrong. If a system is in an atypical microstate [...], it does not
evolve into an equilibrium microstate just because the latter are typical;
typical states do not automatically function as attractors. (Uffink, 2007,
979–980) provides the following example. Consider a trajectory x(t), i.e.,
the set {x(t) = φt(x(t0)) | t ∈ [t0,∞)}, a set of measure zero in ΓE . Its
complement, the set ΓE \x(t) of points not laying on x(t), has measure one.
Hence the points on x(t) are atypical while the ones not on x(t) are typical
(with respect to ΓE , µ, and the property ‘being on x(t)’). But from this
we cannot conclude that a point on x(t) eventually has to move away from
x(t) and end up in Γ\x(t); in fact the uniqueness theorem for solutions tells
us that it does not. The moral is that non-equilibrium states do not evolve
into equilibrium states simply because there are overwhelmingly more of
the latter than of the former, i.e., because the former are atypical and the
latter are typical. (Frigg, 2011, p. 82).
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Of course, no one suggests, in the naive sense implied by Frigg, that any particular
trajectory must move to equilibrium “simply because” the overwhelming majority of
states are equilibrium states, just as no one suggests that any particular lottery ticket
must lose simply because the overwhelming majority of possible combinations are losing
combinations. Goldstein’s argument – which is the same as our argument, which is
the same as Boltzmann’s – is not about what any individual solution trajectory must
do, but about what the great majority of them does.

So what is the point of the “counterexample” formulated by Uffink that made such
an impression on Frigg? Evidently, it is correct that a solution x(t) will never enter
the phase space region ΓE \ {x(t)} despite the fact that this set has measure one.
But almost all solutions will. In fact, it follows from the “uniqueness theorem” that
every other solution (with the same total energy) lies entirely in ΓE \ {x(t)}. Quite
possible, the critics have misunderstood what the really interesting typicality statement
in the proposed account is: not that equilibrium is typical, but that convergence to
equilibrium is typical relative to any non-equilibrium initial macrostate.

Hence, leaving aside the fact that the artificial phase space region considered by
Uffink is of no physical interest, the alleged “counterexample” is completely off-target.
It’s like some people arguing that typical lottery tickets will fail to win the jackpot
because of the huge number of possible combinations, while others are running around
with a winning ticket in order to disprove them.

The measure zero problem

If Uffink’s example works at all, then as another instance of the so-called measure
zero problem which, in a nutshell, is the observation that as soon as we go to a more
fine-grained description, any physical system is found to be atypical with respect to
some properties (see our discussion in 1.2). In particular, for a continuous state-space
and a nonsingular measure, the actual microscopic configuration and, as just noted,
even the entire trajectory of a system will constitute a set of measure zero. While
this observation is often presented as a serious challenge to typicality arguments (see,
e.g., Sklar (1973)) I don’t see it as causing much of an embarrassment for the way of
reasoning defended here.

There are facts and regularities that are explained by the microscopic laws by virtue
of being typical (like ice-cubes melting at high temperature). There are contingent facts
about physical systems that are not typical but can be explained in a different way,
usually by tracing them back to other special states of affairs. For instance, the current
state of my desk is certainly atypical with respect to the exact distribution of objects
on it, but I could tell some sort of causal story about how a used coffee mug ended up
near the keyboard and how the blue book came to lie on top of the heavier red one.
Finally, there are facts like the one that a trajectory through some state space will
never cross its complement – which do not require any explanation but can be used to
create unnecessary confusion.
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That said, there is a serious question about what, in general, characterizes a good
explanandum; why some measure zero events would de facto falsify our theory while
others are reasonably accepted as brute facts. I provided my best attempt at an
analysis in 1.2.

Misidentifying the macrostates

One objection to the typicality account seems to go back to Lavis (2005) and was later
picked up by other authors, in particular Werndl and Frigg in several publications
(Frigg and Werndl, 2012; Werndl and Frigg, 2015a,b). This objection questions one
of Boltzmann’s fundamental insights by arguing that the equilibrium macrostate (the
state of maximal entropy) does not generally take up the majority of phase space
volume. The corresponding macro-region may be the biggest one (in terms of the
natural phase space measure) but not bigger than all the non-equilibrium regions
combined.

Lavis’ argument follows Boltzmann’s combinatorial analysis of the gas in a box,
in which the one-constituent state space is partitioned into finitely many cells while
counting the number of particles in each cell. Lavis observes – considering, for in-
stance, the simple case of N = 8 particles distributed over m = 4 cells – that while the
most likely occupation (2, 2, 2, 2) (meaning: every cell contains exactly two particles)
corresponds to more phase space volume than, say, (3, 2, 2, 1), there are 12 possible
permutations of (3, 2, 2, 1), all describing non-equilibrium macrostates. Hence, he con-
tinues, the sum of the measures of such degenerate states exceeds that of the largest
“macrostate” (2, 2, 2, 2) which Lavis takes to be the Boltzmann equilibrium.

I am surprised that this could have caught on as a serious objection. Of course,
while having exactly N/m particles in each of the m cells is more likely, i.e., corre-
sponding to larger phase space volume, than any other specific occupation of cells
(assuming m even divides N), this is overall a very special configuration. In fact, the
“probability” of this exact equidistribution goes to zero for large N . However, for
large (macroscopic) N and small (microscopic) particles, having precisely N/m parti-
cles in each cell is macroscopically indistinguishable from configurations in which some
cells contain one or two or ten or even a million particles more than others. In other
words, the exact equidistribution (that Lavis falsely identifies with the Boltzmann
equilibrium) and small deviations from the exact equidistribution (that he wants to
weigh against the former) actually coarse-grain to one and the same macrostate, all
corresponding to thermodynamic equilibrium.

More precisely, it is an elementary result of probability theory that the phase space
measure is concentrated on configurations for which the number of particles in each
cell deviates by at most ∼

√
N
m from the mean value. For N ≈ 1024 and m � N ,

this means that microstates corresponding to local density-fluctuations of less than a
billionth of a percent exhaust almost the entire phase space volume. It is this set of
for all practical purposes indistinguishable configurations that constitute the relevant
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Boltzmann equilibrium.
To suggest that a gas is “out of equilibrium” if there are two more molecules in the

left half of the box (let’s say) is to miss the whole point of the micro/macro-distinction
and to attack a caricature of Boltzmann’s ideas.

In a similar vein, Werndl and Frigg (2015b) criticize Penrose and Goldstein for
falsely inferring the dominance of the equilibrium state (the equilibrium region ex-
hausting a majority of phase space volume) from its prevalence (the equilibrium region
being larger than any non-equilibrium region) “by calculating that the ratio between
the measure of the equilibrium macro-region and the macro-region of a standard non-
equilibrium state is of order 10N .” The objection here is, again, that the measure of the
non-equilibrium regions could still sum up to a total that exceeds the measure of the
equilibrium region. But if we recall that the scale of N is roughly 1024 for macroscopic
systems, one must wonder how many different macrostates Werndl and Frigg believe
that one can meaningfully distinguish. Even if there were measurements fine enough
to discern 101024 different states of a gas or a cup of coffee (which there aren’t), they
would clearly cease to be “macroscopic” in a sense relevant to statistical mechanics.

In conclusion, the objection presented by these authors has little to do with a
problematic “degeneracy” of lower-entropy states and everything to do with a failure to
consider an appropriate coarse-graining into macrostates. While one cannot completely
discard the possibility of peculiar counterexamples (and there are, indeed, cases in
which it makes sense to speak of two or more equilibrium states), the dominance of the
Boltzmann equilibrium is the generic case in statistical mechanics – when “Boltzmann
equilibrium” is understood correctly.

The role of the dynamics

A final point of criticism that we must address is that Boltzmann’s account fails to
identify precise assumptions about a system’s micro-dynamics that imply the typical-
ity of thermodynamic behavior. Part of my response to this criticism can be found in
my previous remarks about the elusive character of “chaos,” as well as in the obser-
vation that there is nothing special (in the colloquial sense) about dynamics carrying
microstates from the vanishingly small non-equilibrium region into the rest of phase
space corresponding to thermodynamic equilibrium. Another part of the response con-
sists simply in the concession that the typicality account is not – and doesn’t pretend
to be – a rigorous mathematical proof.

The real debate, however, goes somewhat deeper and concerns the nature of phys-
ical explanation and the role of mathematical proof in general. It deserves its own
section.
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9.6 Physics and Mathematics

The intellectual attractiveness of a mathematical argument, as well as the considerable
mental labor involved in following it, makes mathematics a powerful tool of intellectual
prestidigitation – a glittering deception in which some are entrapped, and some, alas,
entrappers.

— Jack Schwartz, “The Pernicious Influence of Mathematics on Science” (1996)

Here is a joke: How can you tell that your janitor studied philosophy of physics? You
complain that the heat is not working, and he asks you to check if your living room has
good ergodic properties.

It is said that a joke is no good if one has to explain the punchline. But since I have
limited comedic ambitions, I am going to do exactly that. The dispersion of heat in a
volume, such as your living room, is a thermodynamic process, an instance of the second
law, in fact. It can be phenomenologically described by the heat equation but is well-
understood, from a more fundamental point of view, in terms of particle motion. The
reduction of the phenomenological law to the micro-dynamics of particles falls into the
domain of statistical mechanics. And it is a widespread belief in the philosophical (but
also part of the physical) literature that the explanation of thermodynamic behavior
– if not the success of statistical mechanics, in general, – rests on the assumption of
ergodicity. If this were so, it would mean that physics does not provide good reasons
to expect the dispersion of heat emitted from a radiator if the room – qua physical
system – failed to be ergodic.

Now, one could be pedantic and point out that a living room is not a perfectly
closed system, so it cannot be a proper ergodic system in the precise mathematical
sense. And one could further point out that even if we modeled the living room as
a closed ellipsoid with perfectly reflecting walls and the air molecules as little billiard
balls bouncing of each other7, ergodic properties will hardly survive the smallest depar-
ture from this idealization. Most importantly, however, ergodicity is such an abstract
mathematical concept that the very question whether it applies to a living room strikes
me as somewhat ridiculous, close to a category mistake.

Let us recall what ergodicity is all about. In the modern literature8, ergodicity
is usually introduced as a property of dynamical systems: A dynamical system is
ergodic if every invariant set has measure 1 or 0. (A measurable subset A ⊆ Γ is
invariant under the time-evolution if φt(A) = A, ∀t.) A solution, i.e., a flow-line, of
the dynamical system may also be called ergodic, namely, if the proportion of time that
the trajectory spends (over its entire history) in any region of phase space corresponds

7See Sinai (1970); Bunimovich (1979) for ergodic properties of analogous two-dimensional models.
8The “ergodic hypothesis” was first introduced by Ludwig Boltzmann but didn’t even appear any-

more in his second lectures on gas theory (1896). The concept was later revived, in modern form, by
the groundbreaking works of Birkhoff, von Neumann, and Khinchin that established ergodic theory as
a productive (and admittedly very elegant) field of mathematics, whose physical relevance, however,
is questionable.
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to the measure of that region. Formally:

lim
T→∞

1
T

∫ T

0
1A(X(t))dt = µE(A), (9.17)

where 1A(x) is the characteristic function of A ⊆ ΓE . This, in turn, is essentially
equivalent to the statement that the solution-trajectory comes arbitrarily close to every
single point in ΓE , thus establishing the connection with Boltzmann’s original (quasi)-
ergodic hypothesis.9 The celebrated ergodic theorem of Birkhoff (1931) establishes
that typical solutions of an ergodic system – in the strong sense of all except for a set
of initial conditions with measure zero – are ergodic trajectories.10

In the literature on foundations of statistical mechanics, ergodicity (or stronger
properties higher up the “ergodic hierarchy”) has been assigned various tasks: to jus-
tify the choice of the microcanonical measure as the unique stationary measure on
the energy hypersurface, to explain the relevance of Gibbsian ensemble averages by
identifying them with time averages of individual systems, or to account for thermo-
dynamic behavior and the convergence to equilibrium. All of these ideas are misguided
for different reasons, but for now, we shall focus on the latter claim that ergodicity is
relevant for the microscopic reduction of the second law. Frigg and Werndl (2011) give
the following argument:

Consider an initial condition x that lies on an ergodic solution. The dy-
namics will carry x to [the equilibrium region] ΓMeq and will keep it there
most of the time. The system will move out of the equilibrium region
every now and then and visit non-equilibrium states. Yet since these are
small compared to ΓMeq , it will only spend a small fraction of time there.
Hence the entropy is close to its maximum most of the time and fluctu-
ates away from it only occasionally. Therefore, ergodic solutions behave
[thermodynamic]-like. (p. 633)

In brief, ergodicity is not sufficient for thermodynamic behavior because

a) Ergodicity of trajectories is a time-symmetric property (the time-reversal of an
ergodic solution is also an ergodic solution) and thus cannot account for thermo-
dynamic irreversibility.

b) Infinite time averages imply nothing about the behavior of the system on empiri-
cally relevant time scales. The characteristic time scale associated with irreversible
thermodynamic behavior is that of a system’s relaxation time (the time it typically

9See, for instance, the Ehrenfests (1907) on Boltzmann’s ergodic hypothesis or Sklar (1973).
10Frigg and Werndl (2011) advocate instead for a weaker notion of “epsilon-ergodicity” which only

requires an ergodic evolution for all initial micro-conditions except for a set of positive measure ≤ ε.
This is doing nothing to avoid our following objections; the uselessness of epsilon-ergodicity is only
more obvious since non-equilibrium macro-region have tiny measure, to begin with, and may thus lie
entirely in this exception set.
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takes to reach equilibrium), which may be seconds for the spreading of a gas, min-
utes for the cooling of a hot bowl of soup, many years for the decay of radon, and
many billions of years for the heat death of the universe. But all this is just the
blink of an eye compared to the time scales associated with ergodic behavior (see
Fig. 9.3). The time scales associated with ergodic behavior, the time scales, that is,
on which trajectories begin to “wind around” the energy-hypersurface and explore
even the smallest (macro-)regions, are those of the Poincaré cycles which were al-
ready estimated by Boltzmann, for the gas model, to be about 101020 years(!) –
exceeding the age of our universe by many orders of magnitude. Conceptually, the
proposition that a particular system behaves ergodically doesn’t even make sense
when referring to a period of time relevant to its thermodynamic evolution, just
as the proposition that a particular gentleman is “aging in dignity” doesn’t make
sense when referring to a period of few nanoseconds.

And ergodicity is not necessary for thermodynamic behavior because

a’) Given the huge differences in phase space volume corresponding to the equilibrium
versus non-equilibrium regions, we do not need exact equality between phase and
time averages to establish that a system will spend most of the time in equilibrium.
To put it differently: virtually any conceivable path through phase space would
spend most of the time outside the non-equilibrium region. To do so, a solution
does not need to densely cover the entire phase space, any more than a person’s
travel route needs to cover the entire surface of the earth to account for her spending
most of the time outside the Principality of Monaco.

b’) We do not care if and for how long a micro-trajectory visits every measurable
subset of phase space. Only the phase space regions associated with the partition
into macrostates are relevant for describing a system’s macro-evolution.

c’) There are very instructive and well-studied toy models for convergence to equilib-
rium that are clearly not ergodic (see Bricmont (1995, 2001) for good discussions).

In effect, an ergodic evolution of a trajectory has nothing to do with thermodynamic
behavior. Arnold and Avez, in their standard work on ergodic theory, put it even more
concisely (1968, p. 77, footnote 17):

Statistical mechanics deals with asymptotic behavior as N → +∞ (N=number
of particles) and not as t→ +∞ for fixed N .

There is certainly something about ergodicity as a property of dynamical systems that
has the right flavor, in that it expresses a notion of chaos and implies the absence of
dynamical “barriers” preventing solutions from reaching equilibrium (though invoking
it for this purpose is, to adopt a German proverb, like shooting sparrows with a can-
non). Overall, however, the idea that ergodicity plays a central role in the foundations
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Figure 9.3: Typical entropy curves of macroscopic systems on thermodynamic time
scales (left) and on ergodic time scales (right). τr is the relaxation time. On the right,
periods of near-maximal entropy are vastly longer than depicted.

of statistical mechanics is misguided and has repeatedly lead the foundational debate
astray.

I want to briefly discuss another ergodic property, which is stronger than ergodicity
yet somewhat more instructive. A dynamical system is called mixing if

lim
t→∞

λ(A ∩ Φ−t(B)) = λ(A)λ(B) (9.18)

for all measurable A,B ⊆ Γ. We now consider a Hamiltonian dynamical system
(Γ, λ,Φt) and a macro-variable F which is an average of one-particle quantities, i.e.,
a function of the form F (x) = 1

N

∑N
i=1 f(xi), x = (x1, ..., xN ) ∈ Γ. The equilibrium

region then corresponds to

B =
{
x ∈ Γ :

∣∣ 1
N

N∑
i=1

f(xi)− F̄
∣∣ < ε

}
, F̄ =

∫
Γ
F (x)dλ(x)

with ε ∼ N−1/2. This is nothing more than the law of large numbers: micro-
configurations for which the value of F deviates only slightly from the theoretical mean
exhaust the great majority of phase space volume. We consider, however, systems that
start out in a non-equilibrium macro-region A. This is to say that at any time t > 0,
we care only about equilibrium configurations that have evolved from the macro-region
A at t = 0. Such a boundary condition leads, in general, to correlations between the
particles. But now we can use the mixing property, together with the (weak) law of
large numbers, to conclude “convergence to equilibrium” in the following sense:

λ(Φt(A) ∩B) = λ(A ∩ Φ−t(B)) t→∞−−−→ λ(A)λ(B) ≥ λ(A)
(

1− V(f)
ε2N

)
, (9.19)

assuming the variance of f is finite. That is, in the limit t → ∞, nearly all initial
microstates in A end up in the equilibrium region B. This result (notably a typicality
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result) is as elegant as it is physically irrelevant. On the one hand, because realis-
tic systems are hardly “mixing.” On the other hand, because, yet again, nothing of
empirical import follows from the infinite-time limit. This is in notable contrast to
the quantitative estimate in terms of the particle number N on the right-hand-side.
Simply put, the N → ∞ limit coming from the LLN is physically relevant, while the
t → ∞ limit coming from the mixing property is – absent additional results about
the convergence rate – pure mathematical abstraction. At the same time, the exact
factorization in (9.19) is unnecessarily (and unrealistically) strong. What we would
really need is λ(A∩Φ−t(B)) ≈ λ(A)λ(B) (in an appropriate sense, which can be very
weak) and on time scales that are long relative to the mean free time between particle
collisions, but not much longer than the observed relaxation time of the system.

Here, we should keep in mind the insight that Pierre Duhem formulated more than
a century ago:

[A] mathematical deduction is of no use to the physicist so long as it is
limited to asserting that a given rigorously true proposition has for its
consequence the rigorous accuracy of some such other proposition. To be
useful to the physicist, it must still be proved that the second proposition
remains approximately exact when the first is only approximately true.
(Duhem, 1954, p. 143)

Ergodic properties fare badly against this “principle of stability” (Fletcher, 2020),
both in the sense that they appear to be unstable against variations of the microscopic
model, and in the sense that they imply only exact but empirically irrelevant results.

Hence, just like the weaker notion of ergodicity, mixing is doing both too much and
too little. And yet, like ergodicity, the mixing property captures – in a very Platonic
sense – some idea of chaotic behavior that is both plausible and relevant for realistic
macro-systems: After a certain number of scatterings, the particles “forget” their
common origin in the non-equilibrium region A and acquire statistical independence.
Consequently, the configuration will start to look more and more like a typical, i.e.,
equilibrium, configuration relative to the entire phase space. This is essentially what
any rigorous derivation of thermodynamic behavior would have to show in one form or
the other – though almost certainly not by establishing the mixing property. Instead,
we would have to leave the Platonic realm of ergodic theory and get our hands dirty
with very hard analysis and cumbersome epsilonics. Even for highly simplified models,
a rigorous and physically relevant proof of convergence to equilibrium will look nothing
like (9.19) or the one-paragraph argument quoted from Frigg and Werndl above.

Proof and explanation

The deeper moral here is that when it comes to the difficult problem of macro-to-micro
reduction, mathematical physics is, in many ways, the art of the possible. Evidently,
we cannot just solve the equations of motion for N ≈ 1024 particles to check for the
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desired macro-behavior. Hence, it lies in the nature of the problem that rigorous results
are rare and difficult to come by. Instead, we make simplifications, approximations,
and idealizations. We use cut-offs, rescalings, and infinite limits – alongside various
formal assumptions that allow us to derive relevant estimates or satisfy the conditions
of previously established theorems. And often, such assumptions will take precedence
in the statement of a mathematical result while the critical ideas behind the strategy
of proof get lost in technical details.

In consequence, not all proofs are explanatory, and not all explanations can be
turned into rigorous proof. Discerning mathematical abstractions and technical crutches
from physical insights that do actual explanatory work is a very subtle issue. When we
discuss the philosophical foundations of statistical mechanics, it is tempting to look at
mathematical publications and read the premises of the reported results as the relevant
axioms or auxiliary assumptions for some sort of deductive-nomological explanation –
especially when they come in such a simple and elegant form as ergodic properties do.
This literal-mindedness about mathematics is counterproductive, however, leading us
further away from a true understanding of the phenomena.

Most mathematical theorems in statistical mechanics are extremely valuabe by
refining, substantiating, or challenging our physical understanding. But insisting on
mathematical rigor is not always testament to a rigorous mind. Hand-waving about the
fundamental postulates of a theory should not be acceptable (cf. the our discussion
of the quantum measurement problem in Ch. 12); but when it comes to applying
a theory in complex situations, arguments based on an educated intuition can be
more instructive than precise yet sterile proof. For while it lies in the nature of a
logical deduction that the truth of the conclusion depends rigidly on the truth of the
premises, it is essential to a good physical explanation to be reasonably stable under
perturbations of its underlying assumptions – in particular when they are themselves
the result of approximations and idealizations (cf. Schwartz (1966)).

Boltzmann’s account of thermodynamic irreversibility is an explanation or explana-
tory scheme, not a proof. It leaves many details to be filled out in individual cases,
but its generality and robustness is what makes it so powerful and compelling. In the
philosophical literature, the account has nonetheless come under attack for its lack of
mathematical rigor and the alleged failure to make its assumptions about the micro-
dynamics explicit (Uffink, 2007; Frigg, 2009, 2011; Frigg and Werndl, 2011, 2012).
Frigg and Werndl (2012) even go as far as declaring that the typicality account is
“mysterious” because the “connection with the dynamics” is unclear (p. 918). Jos
Uffink writes on a similar note (as a conclusion to his “counterexample” discussed in
the previous section):

[I]n order to obtain any satisfactory argument why the system should tend
to evolve from non-equilibrium states to the equilibrium state, we should
make some assumptions about its dynamics. In any case, judgments like
‘reasonable’ or ‘ridiculous’ remain partly a matter of taste. The reversibility

135



9.7. H-THEOREM AND KINETIC EQUATIONS

objection is a request for mathematical proof (which, as the saying goes, is
something that even convinces an unreasonable person). (2007, p. 61)

We have already seen that these objections are at least partially based on a misun-
derstanding of what the typicality account actually argues for. That aside, the critics
appear to insist that any satisfactory account of the second law must involve a precise
mathematical assumption about a system’s micro-dynamics that logically implies its
thermodynamic behavior (see also (Frigg and Werndl, 2011, p. 632)). This request
strikes me as overly ambitious and I have tried to explain why a “reasonable person”
will often settle for less than rigorous proof. The promise of ergodic programs old and
new was that the dynamics of a trillion trillion interacting particles can be abstracted
to a simple mathematical property that is both precise and universal, i.e., realized by
a great variety of relevant systems. I would be elated if such a property existed but see
no reason why it should. When dealing with complex phenomena, precision usually
comes with specificity, while the explanation provided by Boltzmann operates on a
much more general level, thereby capturing a nearly universal truth.

That said, one of the great insights from Boltzmann’s analysis is precisely that
thermodynamic behavior does not rely on any special feature of the microscopic time-
evolution. Simply put, the role of the dynamics is to carry a great majority of the
microstates in the vanishingly small non-equilibrium region reasonably quickly into
the rest of phase space that corresponds to thermodynamic equilibrium. And this is
so much weaker and so much more plausible as an “assumption” about the micro-
dynamics of complex systems that it is hard to see how it could be further explained
by reducing it a formal mathematical premise.

If you throw a bottle into the Atlantic Ocean, what precise feature of oceanic
currents ensures that it will typically spend most of the time outside the region where
the Titanic sank?

Indeed, it is the absence of thermodynamic behavior that would point to some
remarkable feature of the phase space flow (e.g., dynamical attractors) in need of
more detailed investigation. I actually agree with Frigg and Werndl (2011) that the
ideal result, from a technical point of view, would be yet another typicality state-
ment: that typical Hamiltonians, within a relevant class of interacting models, lead to
thermodynamic behavior and convergence to equilibrium. But at the current stage of
mathematical research, I doubt that such a proof is in the cards, and I don’t believe
that our physical understanding of the second law of thermodynamics hinges on it in
any significant way.

9.7 H-theorem and Kinetic Equations

Although the formula engraved on Boltzmann’s tombstone is equation (9.1), connecting
the entropy of a microstate with the measure of the corresponding macrostate, his
name is at least as intimately associated with the Boltzmann equation and the H-
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theorem, describing, in a more quantitative manner, convergence to equilibrium for a
low-density gas. This H-theorem is of great interest in light of our previous discussion.
First, because it illustrates very clearly the need for a typicality argument. Second,
because it can be viewed as a concrete implementation of the general scheme that we
introduced as the “typicality account.”

By expanding on these points, I also want to counter two widespread misconcep-
tions that may have arisen from Boltzmann’s first presentation of the H-theorem but
persisted despite his more refined argumentation in later writings. The first is man-
ifested in the charge that the account of thermodynamic irreversibility provided the
H-theorem begs the question because the derivation of the Boltzmann equation is
based on an explicitly time-asymmetric assumption about the micro-dynamics. The
second, more basic misunderstanding is that the H-theorem and the typicality account
are somehow competing accounts of entropy-increase and convergence to equilibrium.
Witness, for instance, Huw Price who writes with respect to the latter:

In essence, I think – although he himself does not present it in these terms
– what Boltzmann offers is an alternative to his own famous H-Theorem.
The H-theorem offers a dynamical argument that the entropy of a non-
equilibrium system must increase over time, as a result of collisions between
its constituent particles. [...] The statistical approach does away with this
dynamical argument altogether. (Price, 2002, p. 27)

Similarly, the pertinent entry in the Stanford Encyclopedia of Philosophy (Uffink, 2017)
presents Boltzmann’s work as a series of rather incoherent (and ultimately inconclusive)
attempts to explain thermodynamic irreversibility.

I am convinced that the reason why Boltzmann did not present the “statistical
approach” as an alternative to the H-theorem is that, in fact, it isn’t. Understood cor-
rectly, there is a clear conceptual continuity between the H-theorem and the typicality
account, so that the latter does not appear as a break with Boltzmann’s earlier work
but as a distillation of its essence (see also Goldstein (2001), Goldstein and Lebowitz
(2004)). To make this case, we shall first review the basic setting of the H-theorem
and the concept of distribution functions and kinetic equations more broadly.11

We recall that the microstate of an N -particle system is represented by a point X =
(q1, ..., qN ; p1, ..., pN ) in the 6N -dimensional phase space Γ, comprising the position
and momenta of all particles. The same state (modulo permutations of the particles)
can also be represented as N points in the 6-dimensional µ-space, whose coordinates
correspond to position and velocity of a single particle, i.e., X → {(q1, v1), ..., (qN , vN )},
with vi := pi/m.

Many results in many-body physics and statistical mechanics, most famously Boltz-
manns H-theorem, are concerned with the evolution of a function fX(q, v) on this
µ-space, which provides an efficient description of the most important (macroscopic)

11For a good introduction, see also Davies (1977); for more detailed mathematical treatments, e.g.,
Spohn (1991), Villani (2002).
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characteristics of a system in the microstate X. This function is the empirical dis-
tribution or coarse-grained density of points in µ-space. We can think of dividing
µ-space into little cells – whose dimension is large enough to contain a great number
of particles, yet very small compared to the resolution of macroscopic observations –
and counting the number of particles in each cell. For fixed q and v, fX(q, v) then
corresponds to the fraction of particles in the cell around (q, v). In the limit where the
size of the cells goes to zero (for fixed N), the coarse-grained empirical distribution
becomes the microscopic distribution

µX := 1
N

N∑
i=1

δ(q − qi) δ(v −m−1pi). (9.20)

It is important to emphasize again that although fX(q, v) is technically a probability
density (just like µX is technically a probability measure), there is nothing random
about it. Instead, we should think of X 7→ fX itself as a special type of macro-
variable, i.e., a coarse-graining function of microstates. In particular, we may compute
the Boltzmann entropy associated to any such distribution. Suppose we divide µ-space
into m � N cells (C1, . . . , Cm) and denote by Nk the number of particles in the cell
Ck, k ∈ {1, ..,m}. By simple combinatorics, there are

N !
N1! · · ·Nm! (9.21)

ways to distribute the particles over the cells, which lead to the same occupation
numbers. And with the Sterling approximation n! ≈

√
2πn

(
n
e

)n, we find for the
Boltzmann entropy associated to fX :

S ≈ kB

(
const.−

m∑
k=1

Nk log(Nk)
)
. (9.22)

Writing Nk = Nfk|Ck| with |Ck| the size (6-dimensional volume) and fk the density
of particles in the cell Ck, we thus have S ≈ const. − NkB

m∑
k=1
|Ck|fk log(fk) and see

Boltzmann’s famous H-functional

H[ft] =
∫
f(t, q, v) log f(t, q, v) (9.23)

emerging in the continuum limit, such that a decrease of H(t) corresponds to an
increase of the Boltzmann entropy.

Indeed, the distribution function becomes a truly powerful concept when one con-
siders effective models in which a continuous function f(t, q, v) follows an autonomous
time-evolution given by a partial differential equation, a so-called kinetic equation, of
the form:

∂tf + p · ∇qf +K · ∇pf = (∂tf)coll . (9.24)
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Here, K is a force term describing long-range interactions and (∂tf)coll the collision
term characteristic of the Boltzmann equation. The classical ansatz is

(∂tf)coll (q, v) =
∫
W (v1, v2; v3, v) [f(t, q, v1)f(t, q, v2)− f(t, q, v3)f(t, q, v)] dv1dv2dv3

with an appropriate scattering kernel W (v1, v2; v′1, v′2), giving the probability per unit
time that a collision of two particles with velocities v1 and v2 results in velocities v′1
and v′2, respectively.

Important examples of kinetic equations without collision term are Vlasov12 or
mean field equations with a force term of the form:

K(t, q) = −
∫
∇V (q − q′)f(t, q′, v′)dq′dv′ (9.25)

for an interaction potential V . The intuition is thereby that every particle feels the
average force exerted by the current particle distribution.

In any case, the continuous distribution f(t) arising as a solution of the kinetic
equation (9.24) is supposed to approximate (in the limit of large particle numbers)
the actual empirical distribution of the N -particle system evolving according to the
pertinent micro-dynamics. To derive the kinetic equation, i.e., justify the effectice
model based on the more fundamental microscopic theory, is thus to prove a state-
ment of the following kind: Let f(t, q, v) be a solution of (9.24) with boundary con-
dition f(0, q, v) = f0(q, v). If the (continuous) density f0 is a good approximation
to the empirical distribution fX of the initial microstate X, then f(t) will be a good
approximation to the empirical distribution fX(t) of the time-evolved microstate X(t).

fX
≈

f0

microscopic

time-evolution

��

kinetic equation

time-evolution

��
fX(t)

≈
f(t)

(9.26)

For somewhat realistic interactions, this won’t be true for all initial configurations X
with fX ≈ f0 but only for typical ones (see, e.g., Hauray and Jabin (2015); Lazarovici
and Pickl (2017) for pertinent results about mean field equations).

Example (Weak convergence). Mathematically, the relevant approximation is made
precise in terms of the weak topology on the space of probability measures. For a

12An equation of this type was introduced by A.A. Vlasov in his work on plasma physics Vlasov
(1938, 1968) and even earlier by J.H. Jeans in the context of Newtonian stellar dynamics Jeans (1915).

139



9.7. H-THEOREM AND KINETIC EQUATIONS

sequence (µk)k of normalized measures, weak convergence to ν is denoted by µk ⇀ ν

and means that ∫
φ(x) dµk(x)→

∫
φ(x) dν(x), k →∞,

for all bounded and continuous functions φ : Rn → R.
A convenient metric inducing this topology is the bounded Lipschitz distance defined
as:

dBL(µ, ν) := sup
φ

{∣∣∣∣∫ φ(x) dµ(x)−
∫
φ(x) dν(x)

∣∣∣∣ : sup
x 6=y

φ(x)− φ(y)
|x− y|

= 1, sup
x
|φ(x)| = 1

}
.

Hence, we can understand fX(t) ≈ f(t) to mean that the bounded Lipschitz distance
between the measures fX d3q d3v and f(t) d3q d3v is small, implying approximately
equal results when (somewhat well-behaved) “macro-variables” on µ-space are inte-
grated with respect to the empirical distribution fX and the theoretical distribution
f(t), respectively.

However, it is usually convenient for technical reasons to work in the limit N →∞,
and consider a sequence of microscopic systems with increasing particle number whose
empirical distributions converge to f(t). Moreover, while fX depends in the partition
of µ-space into cells, the weak topology allows us to compare the continuous density
f(t) directly to the discrete microscopic distribution µX(t) (cf. eq. (9.20)), making
the “step-function” fX(t) dispensable for technical purposes. We nonetheless keep the
focus on fX(t), as it makes the coarse-graining nature of the Boltzmannian distribution
function more evident.

One can also take another point of view on kinetic equations that deals – in mathe-
matical lingo – with ensembles or “random initial conditions” but is (of course) best
understood as aiming at typicality results. This approach considers measures on the
N -particle phase space rather than distributions on the reduced µ-space. Suppose that
at t = 0, the particles are identically and independently distributed according to f0,
that is, in other words, according to the product measure FN0 = ⊗Nf0 on Γ. If F is
evolved with the N -particle flow determined by the microscopic dynamics, one easily
checks that it satisfies the Liouville equation

∂tF
N
t +

N∑
i=1

pi · ∇qiFNt +
N∑
i=1

1
N

∑
i 6=j

K(qi − qj) · ∇piFNt = 0. (9.27)

Now one would like to establish that under this time-evolution, the particles remain
“approximately independent” with FNt ≈ ⊗Nft, where ft is a solution of the kinetic
equation (9.24) with initial condition f0. Formally, this approximation is understood as
a weak convergence of marginals. Writing zi = (qi, vi), the reduced k-particle marginal
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is
(k)Ft(z1, ..., zk) :=

∫
ft(Z) d3zk+1...d3zN , (9.28)

and one tries to prove that

(k)Ft ⇀ ⊗kft, N →∞. (9.29)

This is the modern mathematical formulation of molecular chaos. It is basically equiv-
alent to the “deterministic” result sketched in Fig. 9.26 for typical initial conditions.

Typicality is thereby understood with respect to the product measure FN0 = ⊗Nf0.
At first glance, this might seem to conflict with our insistence that there aren’t different
competing typicality measures for classical mechanics, but that the Liouville measure,
respectively the induced microcanonical measure, is always the appropriate choice.
Indeed, in Boltzmannian statistical mechanics, non-equilibrium situations should be
first and foremost characterized by a special macrostate. In the present problem, we
consider systems starting out in the macro-region Mf0 = {X ∈ Γ : µX ≈ f0}, and
for large N , FN0 is indeed equivalent to the uniform measure restricted to Mf0 (in
the limit N → ∞, this equivalence is exact in the sense that FN0 and λ

∣∣Mf0 are
absolutely continuous with respect to each other). Because of the manifest statistical
independence of the particles, F0 is just much easier to work with.

If we now recall from (8.11) that the k-particle marginals of the microcanonical
measure (for N � k) are Maxwellian distributions, this may already indicate how
molecular chaos for the Boltzmann equation could establish convergence to equilibrium:
typical initial conditions in Mf0 evolve into the equilibrium region Mfeq characterized
by an (approximately) Maxwellian velocity distribution. We will discuss this in more
detail in the next section.

Remark (Scaling limits). The derivation of a kinetic equation always requires an
appropriate rescaling of the microscopic dynamics to ensure that the relevant phys-
ical quantities remain of constant order in the limit N → ∞. Conceptually, this is
best understood as a dimensional rescaling of the time, position, and/or momentum
coordinates. For the Vlasov equation, the relevant regime is the mean field scaling
V → 1

N V , which ensures that the total mass/charge of the system remains of order 1.
This corresponds to tracking the time evolution on large (macroscopic) time scales, i.e.,
in rescaled coordinates t′ = N−1/2t, p′ = N1/2p. To derive the Boltzmann equation,
one has to make some ansatz for the particle collisions in the microscopic dynamics.
The simplest (interesting) one would be the hard spheres model, which, evidently, is
itself an idealization. In any case, the relevant scaling regime is the Boltzmann-Grad
limit in which the scattering radius scales as r(N) ∼ N−1/2. This is typically realized
in rarified gases.

While kinetic equations are commonly and successfully applied in many areas of
physics and chemistry, the rigorous justification of the continuous model can be an
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awfully hard mathematical problem. For the Boltzmann equation, the landmark result
of Lanford (1975) establishes molecular chaos only for a very short time interval (a
fraction of the particles’ mean free time). Subsequent results have extended the proof
to a larger class of scattering potentials but not yet overcome this crucial limitation.

Boltzmann’s Stoßzahlansatz

Let us now take a more informal look at Boltzmann’s equation and H-theorem. The
goal of the H-theorem is to show the convergence of an initial non-equilibrium distri-
bution f0(q, v) to the Maxwell distribution feq(q, v).

We have already seen from eq. (8.12) that the Maxwell distribution corresponds to
the equilibrium state in Boltzmann’s sense, i.e., the typical value of the macro-variable
X → fX . In other words, while the coarse-grained distribution fX will be different
for different microscopic configurations X, it is in fact (more or less) the same for the
overwhelming majority of possible microstates, namely (approximately) of the form

fX(q, v) ∝ e−
1
2mβv

2
,

for a constant β that is the inverse temperature of the system. Note that the distribu-
tion having no q-dependence means that the gas is homogeneously distributed over the
entire volume, with no correlations between position and velocities, i.e., with uniform
temperature.

This crucial insight does not appear explicitly in Boltzmann’s H-theorem, however,
which is rather based on the following three claims:

1) For a low-density gas, the time-evolution of fX(t)(q, v) is well described by an ef-
fective equation, now known as the Boltzmann equation.

2) For a solution f(t, q, v) of the Boltzmann equation, the H-function H[f(t)] =∫
f(t, q, v) log f(t, q, v)dqdv is monotically decreasing in t. (Whereas H(fX(t)(q, v))

for the actual coarse-grained distribution will fluctuate.) Recall that in (9.22), we
have already identified the H-function as a (negative) measure of the Boltzmann
entropy.

3) The H-function reaches its minimum for the Maxwell-distribution feq(q, v).

Together with 2), this implies, in particular, that the Maxwell distribution is a
stationary solution of the Boltzmann equation.

Propositions 2) and 3) are fairly standard mathematical results. The crux of the matter
is proposition 1). When Boltzmann first presented the H-theorem in 1872, he argued
that a dilute gas must evolve in accord with his equation; he later had to mitigate this
statement, claiming, in effect, only that it would typically do so on empirically relevant
time-scales. Indeed, proposition 1), and therefore the H-theorem must be understood
as typicality statements.
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Boltzmann’s original derivation of the Boltzmann equation was famously based on
the Stoßzahlansatz or the assumption of molecular chaos. “Assumption” is, unfor-
tunately, not a perfectly accurate translation of the German word Ansatz. Whereas
the first is often used synonymously with a logical premise, the latter has a distinctly
pragmatic character. A better translation would be “working hypothesis” – a plausible
(though oversimplified) guess, which is, in the first instance, validated by its success
but would ultimately require a deeper justification. So again, we have to keep in
mind that Boltzmann’s derivation is a brilliant physical argument, but not a rigorous
mathematical proof.

In any case, the Stoßzahlansatz is an assumption about the relative frequencies of
collisions between the particles in the gas. Denoting by N (t, q; v1, v2) the number of
collisions happening near q in a small time-interval around t between particles with
velocity (approximately) v1 and v2, the Stoßzahlansatz is:

N (t, q ; v1, v2) ∝ N2 f(t, q, v1)f(t, q, v2) |v1 − v2| dt dq dv1dv2. (9.30)

Simply put: The relative frequency of collisions between particles of different velocities
occurring in the cell around q is proportional to the density of particles with the
respective velocities near the respective position. The scattering probability being
proportional to the product of f(t, q, v1) and f(t, q, v2) means that particles of different
velocities are statistically independent as they contribute to the collisions. This is, more
specifically, the meaning of molecular chaos.

We are not going to repeat Boltzmann’s derivation, but it is true as a matter of
mathematical fact that if and as long as the assumption of molecular chaos and hence
the Stoßzahlansatz are valid, the Boltzmann equation will hold (as a good approxima-
tion to the evolution of the empirical distribution under the actual micro-dynamics).
The H-theorem thus hinges on the question, if and in what sense the assumption of
molecular chaos is justified.

For the purpose of illustration, let’s imagine that we could freeze the system at time
t = 0 and arrange the position and momentum of every single particle before letting the
clock run and the system evolve in time. (Note that there is no issue here as to whether
we let the clock run “forwards” or “backward” – the problem is symmetric with respect
to the time-evolution in both directions.) Which particles are going to collide and how
they are going to collide is then completely determined by these initial conditions and
the microscopic laws of motion. We could, for instance, arrange the initial configuration
in such a way that “slow” particles will almost exclusively scatter with other “slow”
particles, and “fast” particles with other “fast” particles. But such initial conditions
are obviously very special ones. For typical microscopic configurations, coarse-graining
to the initial distribution f0(q, v), we will find that the relative frequencies with which
particles of different velocities meet for the first collision is roughly proportional to
the density of particles with the respective velocities, i.e., given by eq. (9.30). This is
nothing more and nothing less than the law of large numbers. The validity of (9.30)
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at the initial time is thus, like all LNN results, a typicality statement and, as such,
another mathematical fact.

The critical issue is whether molecular chaos propagates with the microscopic dy-
namics. Assume that after an (infinitesimal) time-interval ∆t, for which the Boltzmann-
equation is valid, the continuous distribution has evolved into f(∆t, q, v). How do we
know that (9.30) is still a good approximation for all but a small set of initial con-
ditions? It is still true that eq. (9.30) is satisfied for typical microscopic configura-
tions realizing the current distribution, i.e., counting all possible configurations that
coarse-grain to f(∆t, q, v). But we cannot count all these configurations since the
relevant microstates must have evolved from the macro-region realizing the initial dis-
tribution f0(q, v). Mathematically, this constraint translates into a loss of statistical
independence at times t > 0, making it prima facie questionable whether a law-or-
large-numbers statement for the collisions, i.e., (9.30), still holds. This is, by the way,
the only meaningful sense in which interactions build up correlations (notably, in both
time-directions), and it should be distinguished from naive causal intuitions that two
particles are somehow intrinsically independent before – but not after – they collide.

Boltzmann’s Stoßzahlansatz is thus the assumption that statistical independence
is sufficiently well preserved under the microscopic time-evolution, or, in other words,
that the relative frequency of collisions is always the typical one with respect to the
current distribution function.

We have already noted that a rigorous derivation of the Boltzmann equation would
amount to a proof of this assumption, i.e., a proof that molecular chaos propagates (in
the Boltzmann-Grad limit). This would be a monumental mathematical achievement,
a sure claim to fame and a Fields Medal (for anyone young enough to qualify). However,
based on physical intuition and various encouraging results, there is little doubt that
Boltzmann’s assumption – though idealized – is justified. Given that the microscopic
dynamics are very chaotic, that the number of particles in a gas is huge, and the gas
(by assumption) very dilute so that problematic re-collisions are extremely rare, it
is highly plausible that the relative frequencies of scatterings should not become too
special – in the sense of deviating significantly from the expectation values (9.30) –
unless the initial micro-configuration itself were very special.

Of course, it is important to note that, unless one considers the thermodynamic
limit of infinitely many particles, molecular chaos and equation (9.30) will hold at best
approximately for all but a small set of “bad” initial conditions; that this approximation
will get worse with time, and that the approximation is only good enough until it isn’t.
Eventually, a typical system will exhibit sizable fluctuations out of equilibrium, at
which point its evolution is no longer adequately described by the Boltzmann equation.

Example (A simple toy-model for the Boltzmann equation). We consider a system
of N � 1 balls. At the beginning, n of the balls are black and m = N − n are white.
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When two like-colored balls collide, they change their color; otherwise they stay the
same:

w + w → b+ b

b+ b→ w + w

b+ w → b+ w

(9.31)

Note that these dynamics are time-symmetric. For our model, we consider discrete
time-steps, assuming that in each round a total of k � N collisions occur. Now we
make the following “Stoßzahlansatz”: The probability that a black/white ball enters
a collision corresponds to current the fraction of black/white balls in the system. The
expectated numbers of collisions in each round are thus:

k ·
(
n

N

)2
collisions b+ b

k ·
(
m

N

)2
collisions w + w

k · 2
(
n

N

)(
m

N

)
collisions b+ w resp. w + b.

Consequently, the expected change in the total number of black and white balls is

n→ n+ k · 2
[(

m

N

)2
−
(
n

N

)2
]

m→ m+ k · 2
[(

n

N

)2
−
(
m

N

)2
]
,

and taking the difference:

(n−m)→ (n−m)− 4k
N2 (n−m)(n+m) =

(
1− 4k

N

)
(n−m).

This is iterated in each round. For large N , typical evolutions will be close to this
theoretical expectation and hence, after T ∈ N time-steps:

(n−m)(T ) ≈
(

1− 4k
N

)T
(n−m)(0)→ 0, T →∞. (9.32)

We thus have convergence to equilibrium: the number of black and white balls in the
system tends towards the equidistribution; and if we start with an unequal number
of black and white balls – i.e., in non-equilibrium – the time-symmetric scattering
dynamics (9.31) lead to the irreversible macro-evolution (9.32). However, small devi-
ations from the expectation values will add up over time, leading to fluctations out of
equilibrium. At that point, the effective equation (9.32) is no longer valid.
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H-theorem as a typicality statement

With all that said, let us summarize once again why Boltzmann’s H-theorem is not an
alternative way of explaining thermodynamic behavior but a concrete exemplification
of the general typicality account.

While the micro/macro distinction does not appear as prominently in the formu-
lation of the H-theorem, it is essential that the function f(t, q, v) pertains to a coarse-
grained description of the system, hence distinguishing a macro-region in phase space
consisting of all microscopic configurations whose distribution is well-approximated by
the same f . Convergence to equilibrium is then established for typical initial conditions
relative to this initial non-equilibrium region. And the equilibrium state – character-
ized by the Maxwell distribution to which a non-equilibrium distribution typically
converges – is, as always, distinguished by the fact that it is the one realized by an
overwhelming majority of all possible microstates.

Despite the common focus on the Stoßzahlansatz, I submit that the tendency to
equilibrium is mostly explained by this dominance of the equilibrium state. The ex-
planatory role of molecular chaos is somewhat subsidiary to this insight, namely to
validate the intuitively obvious fact that the “most likely” evolutions will thus carry a
non-equilibrium configuration into the overwhelmingly large equilibrium region.

Finally, we understand that the irreversibility of the Boltzmann equation (as an
effective description of a system’s macro-evolution) is – as usual – a consequence of
the fact that non-equilibrium configurations converging to equilibrium are typical with
respect to the corresponding macrostate, whereas microstates leading to the time-
reversed evolution are atypical relative to the equilibrium state, i.e., relative to all
micro-configurations coarse-graining to feq(q, v). The same holds true with respect to
any macrostate along the way.

It is often claimed and criticized that the Stoßzahlansatz is a manifestly time-
asymmetric assumption, in that the incoming rather than the outgoing velocities are
assumed to be independently distributed according to the current density function
(see, e.g., Uffink (2007, p. 117)). This claim, though technically correct, is missing the
point, and the misunderstanding seems to be mostly due to the failure to recognize
molecular chaos, respectively the Stoßzahlansatz, as typicality statements.

For typical initial conditions (relative to the current macrostate), eq. (9.30) is
equally valid for the time-evolution in both time-directions. The origin of the asym-
metry is, as always, the special boundary condition, i.e., the assumption of a non-
equilibrium initial distribution. Relative to this low-entropy initial state, the rele-
vant micro-configurations are typical ones for which entropy increases (in both time-
directions), whereas the higher-entropy configurations along the corresponding solu-
tions are necessarily atypical, relative to their current macrostate, with respect to their
evolution towards the low-entropy boundary condition. In particular, this atypical evo-
lution towards the past (for which molecular chaos doesn’t hold) is explained by the
non-equilibrium boundary condition.
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Molecular chaos thus breaks time-symmetry only in the good and necessary sense
that it applies to the thermodynamic evolution but not to the reversed motion. This
does not mean, however, that any time-asymmetry was smuggled into Boltzmann’s
argument in addition to the one introduced by the non-equilibrium initial state. If
the terms “incoming” and “outgoing” velocities are misleading here, we can simply
replace them with velocities “towards,” respectively “away from” (in a temporal sense)
the non-equilibrium boundary condition. Since statistical independence is a typicality
property, molecular chaos can only hold for the time-evolution away from the low-
entropy boundary condition. For evolutions towards it, the boundary constraints will
naturally impose strong, seemingly conspiratorial correlations.

The deeper question, why the low-entropy boundary conditions that we are able to
prepare are always “past” rather than “future” ones (and thus why only the Boltzmann
rather than the “anti-Boltzmann” equation is actually relevant) goes beyond the scope
of the H-theorem per se. It is a question about the arrow of time and the boundary
conditions of our universe that we will address in Chapter 11.

9.8 Boltzmann vs. Gibbs

Throughout our discussion, we have followed the Boltzmannian approach to statistical
mechanics and did not say much about the other influential framework that goes
back to J.W. Gibbs. The key difference is often characterized as one between an
individualist and an ensemblist view. In Boltzmannian statistical mechanics, we assign
microstates and macrostates to individual systems. This sometimes raises the question,
how probability theory can be applied (without resorting to epistemic probabilities),
but the question is answered by the concept of typicality. In Gibbsian statistical
mechanics, probability measures are interpreted as ensemble distributions and thus
taken to describe the state of an (usually hypothetical) ensemble. This often raises the
question, what Gibbsian predictions imply for observations on individual systems.

In recent years, the relationship between the Boltzmannian and Gibbsian frame-
work has been a subject of great interest to philosophers of physics (foor a good recent
discussion – by a mathematical physicist – see Goldstein (2019)). In this section, I
am primarily going to address one contribution that I find less helpful, while trying to
make some clarifying remarks of broader relevance along the way.

Charlotte Werndl and Roman Frigg (2017) address, in particular, the question, if
and when Boltzmann and Gibbs yield equivalent predictions for equilibrium values of
macroscopic observables. In the Boltzmannian framework, the macro-variables take
(approximately) constant values on the equilibrium region of phase space, which are
thus revealed by a suitable measurement on a system in equilibrium (a system, that
is, whose actual microstate is in the equilibrium state). In the Gibbsian framework,
equilibrium is a property of an ensemble, represented by a stationary distribution ρ

on phase space Γ, and it is often (though maybe somewhat carelessly) said that the
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prediction for a measurement of a macro-variable f on an individual ensemble system
is given by the phase average

〈f〉 =
∫

Γ
f(z)ρ(x) dx , (9.33)

where x ∈ Γ are the phase space coordinates. This quantity is also called the ensemble
average or expectation value of f .

There are many situations in which the Gibbsian phase average agrees – within ap-
propriate error bounds – with the Boltzmannian equilibrium value. Werndl and Frigg
mention a criterion which they call the “Khinchin condition” and which they charac-
terize briefly as the phase function having “small dispersion for systems with a large
number of constituents.” Indeed, in less technical terms, a sufficiently small dispersion
of the macro-variable means precisely that typical values (the Boltzmann equilibrium
value) are close to the average value (the Gibbsian equilibrium value). Another way to
formulate the Khninchin condition – now from a Boltzmannian perspective – is to say
that there exists a unique Boltzmann equilibrium whose corresponding macro-region
exhausts almost the entire phase space volume in terms of the pertinent stationary
measure. Formally:

µρ (Γeq) =
∫

Γ
1{f(x) ∈ (ξ ±∆ξ)} ρ(x) dx = 1− ε, (9.34)

where ∆ξ is very small compared to ξ, and ε is very small compared to 1 (and 1A

denotes the characteristic function of the set A). For then, the macro-variable f takes
an (approximately) constant value – the Boltzmannian equilibrium value ξ±∆ξ – on a
set of measure close to 1 – the Boltzmannian equilibrium region Γeq. Hence, the phase
average (9.33) will be close to the Boltzmannian equilibrium value (provided f is some-
what well-behaved, and its values don’t suddenly “explode” outside the equilibrium
region). Rigorously:

|〈f〉 − (1− ε)ξ| ≤
∫

Γeq
|f(x)− ξ| ρ(x) dx+

∫
Γ\Γeq

|f(x)|ρ(x) dx

≤ (1− ε)∆ξ + ε sup
x∈Γ\Γeq

|f(x)|,
(9.35)

and thus 〈f〉 ≈ ξ assuming ε supx∈Γ\Γeq |f(x)| � |ξ|.

It is important to emphasize that, unless one considers a thermodynamic limit, “the
Boltzmannian equilibrium value” refers, in general, to a small range of values of f . This
kind of coarse-graining is both essential for probabilistic estimates and physically called
for, considering that the relevant measurements have limited accuracy. For Werndl
and Frigg, in contrast, every single value of the macro-variable f defines a different
“macrostate,” implying that, for them, even the slightest variation in the respective
physical quantity – pressure, density, energy, etc. – leads to a system being “out
of equilibrium.” What the authors call the “Boltzmann equilibrium” is thus not the
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equilibrium as defined by Boltzmann or used in Boltzmannian statistical mechanics,
and it is unfortunate, since misleading, that they refer to it by the same name. For our
further discussion, we will thus refer to it as the “Werndl-Frigg equilibrium” instead.

The existence of a dominant Boltzmann equilibrium (in the sense of Boltzmann)
is, in fact, the generic case in statistical mechanics, implying that Boltzmann and
Gibbs make (in general) equivalent predictions for systems in the respective equilibria.
If we agree that the Boltzmannian formulation is the more fundamental one, this
also explains why Gibbsian phase averaging yields relevant predictions for individual
measurements. Simply put, the macro-variables are essentially constant across most
of the ensemble and the average reflects this typical value.

It is a common misconception – repeated in many textbooks – that the empirical
relevance of the phase average is due to Birkhoff’s ergodic theorem, which establishes
equality between (9.33) and the time-average lim

T→∞
1
T

∫ T
0 f(x(t))dt for almost all initial

conditions. The argument is that one measures ergodic time-averages because mea-
surements are not instantaneous but require a prolonged interaction between apparatus
and system. This is completely wrong since ergodic time scales are much too long (see
Goldstein (2001)).13

On the other hand, there are famous and well-studied cases in which the Khinchin
condition (9.34) doesn’t hold. For instance, in the two-dimensional Ising model without
external field, it makes sense to speak of two Boltzmann equilibria below the critical
temperature, corresponding to a positive or negative magnetization, respectively. The
distribution ρ is, however, symmetric under a flip of all spins, hence yielding an average
magnetization of zero. There is nothing inconsistent or mysterious about this fact,
as long as we keep in mind that the Gibbsian value refers, in the first place, to an
ensemble average. In particular, in statistical mechanics, one does not try to draw
interesting conclusions about the Ising model from such phase averages. Instead, one
usually studies so-called phase transitions at the critical temperature by fixing either
+1 or −1 boundary conditions (referring to the polarization of spins at the edge of the
lattice), thus implicitly picking one of the two magnetization states.

Boltzmann vs. Werndl and Frigg

Werndl and Frigg (2017) mention the magnetization in the Ising model only briefly but
present instead other examples for which they claim a disagreement between Boltz-
mannian and Gibbsian equilibrium values. One such example is based on the “baker’s
gas,” a mathematical model for the ideal gas that the authors have used in various
publications to argue that the Boltzmann equilibrium (the largest macro-region) fails
to be dominant, i.e., does not exhaust a majority of the phase space volume as stated
in equation (9.34). To this end, the authors partition the one-particle phase space

13Schwarz (1992, p. 23-24) put it most succinctly: “[T]he delicious ingenuity of the Birkhoff ergodic
theorem has created the general impression that it must play a central role in the foundations of statis-
tical mechanics. [...] The Birkhoff theorem in fact does us the service of establishing its own inability
to be more than a questionably relevant superstructure upon [the] hypothesis [of absolute continuity].”
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(corresponding to the unit square in the baker’s model) into k cells and claim that the
macrostate corresponding to the Boltzmann equilibrium is the “uniform distribution”
for which each cell contains exactly N

k particles. It is then easy to see that while the
phase space volume associated with this distribution is greater than the phase space
volume associated with any other particular arrangement of particles over the cells, it
will not exhaust a majority of phase space volume for large N . In their paper, the au-
thors exploit this fact – amounting to an apparent violation of the Khinchin condition
(9.34) – by introducing an artificial macro-variable, weighing the previously defined
“macro-regions” in such a way that the Gibbsian phase average differs significantly
from the value associated with the uniform distribution.

However, as emphasized above, the authors’ reference to the “Boltzmann equilib-
rium” is a misnomer, since they use a notion of equilibrium that does not correspond
to the concept introduced by Boltzmann and used in Boltzmannian statistical mechan-
ics (thereby repeating the arguments of Lavis (2005) that we have already criticized
above). Exact uniform distributions, where each cell contains exactly N

k particles, are
very special configurations, their measure actually goes to zero for large N . But config-
urations for which the fraction of particles contained in each cells differs only slightly
from 1

k are macroscopically indistinguishable and coarse-grain to the same macrostate
in Boltzmann’s sense. Otherwise, we would have to say, for instance, that a gas is “out
of equilibrium” if the left-hand-side of the volume contains even a single particle more
than the right-hand-side.

Compare this with Boltzmann’s discussions of the Maxwellian velocity distribution
as the equilibrium state of an ideal gas. Here, Boltzmann was very explicit about
the fact that “for a finite number of molecules, the Maxwell distribution will not hold
exactly but only to a good approximation.” (Boltzmann, 1896b, translation D.L.)

In the case of the baker’s model, the dominant Boltzmann equilibrium contains all
configurations for which the relative number of particles in each cell is within 1

k±
const.√
N

.
Since 1√

N
is a tiny number for macroscopic N , corresponding to density fluctuations of

less than one-tenth of a billionth of a percent, these configurations look macroscopically
uniform and constitute the relevant equilibrium state. The Khinchin condition (9.34) is
thus satisfied, and the Boltzmannian and Gibbsian equilibrium values will be equivalent
for all sensible macro-variables.

Law of Large Numbers vs. EET

By the same token, all other examples presented by Werndl and Frigg may show a
disagreement between the Gibbsian equilibrium and their own, but shed no light on
the relationship with the real Boltzmann equilibrium. Nevertheless, the authors go
on to conclude that it is “[a]n important task of the foundations of SM [statistical
mechanics] ... to classify under which conditions the two frameworks lead to the same
results and under which conditions they do not” (p. 1300) and present a “new theorem
specifying a set of conditions” under which “Boltzmannian” and Gibbsian equilibrium
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values coincide. I quote their result in full:

Equilibrium Equivalence Theorem (EET): Suppose that the system
(X,Tt, µX) is composed of N ≥ 1 constituents. That is, the state x ∈ X
is given by the N coordinates x = (x1, ..., xN ); X = X1 × X2 . . . × XN ,
where Xi = Xoc for all 1 ≤ i ≤ N (Xoc is the one-constituent space). Let
µX be the product measure µX1 × µX2 . . .× µXN , where µXi = µXoc is the
measure onXoc. Suppose that an observable κ is defined on the one-particle
space Xoc and takes the values κ1, . . . , κk with equal probability 1/k, k ≤
N . Suppose that the macro-variable K is the sum of the one-component
observable, i.e., K(x) =

∑N
i=1 κ(xi). Then the value corresponding to the

largest macro-region as well as the value obtained by phase space averaging
is N

k (κ1 + κ2 + . . . κk).

This theorem tries to identify the Werndl-Frigg equilibrium value with the Gibbs av-
erage. It does not relate to the Boltzmann equilibrium. That is because the “largest
macro-region” of Werndl and Frigg refers to the set on which the macro-variable takes
exactly the average value, and this is, again, in contrast to the Boltzmannian frame-
work, in which a small range of (for all practical purposes indistinguishable) values
coarse-grains to one and the same macrostate.

It should be noted, however, that part of the conditions specified by Werndl and
Frigg are sufficient (though by no means necessary) for the equivalence of Gibbsian and
Boltzmannian equilibrium values. In fact, under these conditions, the equivalence is
a standard exercise in statistical mechanics, based on the law of large numbers (LLN)
– the fundamental theorem of probability theory that we have already discussed in
Chapter 2. The LLN yields for a family of independent and identically distributed
random variables:

µ

({
x :
∣∣∣∣∣ 1
N

N∑
i=1

κ(xi)−
1
k

(κ1 + κ2 + . . .+ κk)
∣∣∣∣∣ < ε

})
≥ 1− σ2

ε2N
, (9.36)

for any ε > 0, where σ2 is the variance of κ. For the macro-variable K(x) =
∑N
i=1 κ(xi)

then, which is extensive and growing with N , we can set ε = N−δ for δ ∈ [0, 1
2 ] so that,

in terms of K (and writing K := N
k (κ1 +κ2 + . . .+κk) as a “phase average”), the LLN

estimate becomes

µ

({
x :
∣∣∣∣K(x)−

∫
K(x′) dµ(x′)

∣∣∣∣ < N1−δ
})
≥ 1− σ2

N1−2δ . (9.37)

Note that the bound N1−δ is small compared to K, which is of order N , i.e., it is
the relative deviation

∣∣∣K−K
K

∣∣∣ . N1−δ

N = N−δ that becomes vanishingly small for large
particle numbers. In particular, for a macroscopic system, we have N ∼ 1024 (from
Avogadro’s constant), and setting δ = 1

3 , we can conclude that K deviates from K by
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less than one millionth of a percent on a set of measure (approximately) 0, 999999.14

To sum up in less technical terms, the weak law of large numbers says precisely
that for large N (which is the relevant case in statistical mechanics), phase space
is dominated by an equilibrium region, on which the value of the macro-variable K
is very close to the expectation value (= phase average). And this is precisely the
empirical equivalence of Boltzmannian and Gibbsian equilibrium values. The LLN
also yields immediately the Khinchin condition, both in the sense of small dispersion
(which is actually how the LLN is usually proven) and in the form of equation (9.34)
(to be compared with (9.37)). Finally, the LLN holds even under much more general
assumptions than those of Werndl’s and Frigg’s EET, namely (in the usual textbook
version) for any sum of uncorrelated and identically distributed random variables.

I have to emphasize again that while the LLN applies immediately under their
stated assumptions, the theorem proven by Werndl and Frigg is not a LLN state-
ment because the authors have a different notion of “Boltzmann equilibrium” in mind.
The LLN, like much of statistical mechanics, is about estimates. Werndl and Frigg
don’t do estimates. Instead, in their paper, the Werndl-Frigg equilibrium value and
its equality to the phase average is supposed to be exact. This is why, in addition to
considering standard conditions for the LLN, Werndl and Frigg assume a particularly
simple distribution of the macro-variable for which the average coincides with the most
likely value. The EET is then a straightforward exercise in combinatorics. Its physical
relevance, however, is questionable, to say the least. First, the measure of what the
authors call the “largest macro-region,” i.e., the set on which K takes precisely the
value N

k (κ1 +κ2 + . . .+κk), actually goes to zero for large N . Interpreting this measure
probabilistically, it is thus extremely unlikely for a system to be in this Werndl-Frigg
equilibrium. Second, while the macro-variables assumed in the EET are discrete, dif-
ferent values can be very close for large N . Therefore, many different “macrostates”
in the sense of Werndl and Frigg will be empirically indistinguishable, given the lim-
ited resolution of measurements on macroscopic systems. This is a crucial difference
between macrostates in the sense of Werndl and Frigg and macrostates in the sense of
Boltzmann. In general, it should be clear that the relevant notion of equivalence for
Boltzmannian and Gibbsian equilibrium predictions can only be empirical equivalence,
i.e., that the respective values agree to a sufficiently good approximation.

The law of large numbers is, in fact, the paradigm that we should have in mind
when we think about the Boltzmann equilibrium: there is a certain range of typical
values for the relevant quantities; and the larger the particle number N , the more
weight (phase space measure or probability, if you wish) is concentrated on an ever
smaller range of values around the mean.

It is also a standard result in probability theory that the variance (= dispersion
squared) for a sum of independent random variables (as considered by Werndl and

14A tacit assumption, generally made, is that the variance σ2 of the one-constituent variables κi is
of order 1. If σ is extremely large, or somehow chosen to increase with N , the LLN may fail to provide
relevant estimates, though such cases seem unphysical.
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Frigg) is additive. This is to say, in particular, that typical fluctuations are of the
order

√
N and we will not have a dominant equilibrium region if the coarse-graining

into macrostates is finer than that (cf. also the central limit theorem discussed in Ch.
2.2). This is a simple mathematical fact, not a foundational problem.15

To be clear: a macro-variable, qua mathematical object, is usually some nice func-
tion of the microscopic variables – think for instance of the energy H(q, p) as a function
of the particles’ positions and momenta in a canonical ensemble. But such a variable
is, in general, too fine-grained to consider all its different values as macroscopically
distinct. There is thus not a one-to-one correspondence between the possible values
of the macro-variable and Boltzmannian macrostates. Boltzmannian macrostates are
supposed to be observationally distinguishable by relevant means.

While the Boltzmannian equilibrium value is thus necessarily “unsharp,” the Gibb-
sian equilibrium value, if identified with the phase average (9.33), is a definite real
number by definition. It would be a mistake, however, to read this as an “infinitely
precise” prediction of the Gibbsian theory, as if it said that the observed value in ev-
ery single instance is exactly the mean. Instead, one can, for instance, compute the
ensemble variance

(∆f)2 :=
∫

(f(x)− 〈f〉)2ρ(x) dx (9.38)

and identify the Gibbsian prediction (in the sense of a typicality statement), to be
compared with the Boltzmannian one, with 〈f〉 ±∆f .

As to the broader question under which conditions Boltzmannian and Gibbsian
equilibrium predictions are equivalent, a good case can be made that the Khinchin
condition, in the sense of “uniqueness and dominance of the Boltzmann equilibrium,”
is not only sufficient16 but also necessary. For if the condition is violated, we have
either no Boltzmann equilibrium – and thus no Boltzmann equilibrium value – or
multiple Boltzmann equilibria, so that the Gibbsian phase average will correspond
to an average of the Boltzmann equilibrium values rather than any one in particular
(unless, of course, this average happens to be itself among the set of equilibrium values).
However, instead of arguing this point in greater detail, a more relevant observation
is the following: If the Khinchin condition doesn’t hold, it means that there’s a high
probability of finding macro-values that differ significantly from the Gibbsian phase
average, so that this phase average, as a prediction for individual measurements, is
highly dubious in the first place.

Mind the gap

Werndl and Frigg have written a series of papers (e.g., 2015a,b, 2017) attacking the
premise of a dominant Boltzmann equilibrium and addressing the problems – like the

15Note that partitioning the one-constituent space into cells is only a coarse-graining on the micro-
scopic scale (order 1 for an extensive variable) and thus not sufficient for a macroscopic coarse-graining.

16Together with an appropriate bound on the variation of the macro-variable as specified after eq.
(9.35).
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non-equivalence of Boltzmannian and Gibbsian equilibrium values – that ensue. In al-
most every case, these alleged foundational problems arise only from an idiosyncratic
definition of “macrostates” and “Boltzmann equilibrium” that does not correspond to
the relevant Boltzmannian concepts. If one fails to consider an appropriate coarse-
graining of the microscopic state space – as suggested both by physical considerations
and elementary results in probability theory – the resulting “counterexamples” to the
existence of a dominant “equilibrium state” are neither surprising nor relevant to Boltz-
mann’s statistical mechanics. No Boltzmannian – least of all Boltzmann himself – ever
claimed that one could partition phase space in any arbitrary matter and end up with
a dominant equilibrium state.

In general, I am skeptical of this ad absurdum approach to the foundations of
statistical mechanics – constructing artificial counterexamples that create artificial
problems. In my view, it misses the point of the discipline, which is not an axiomatic
theory but an effective framework for the description of complex systems which requires
some degree of pragmatism and good physical sense. A crucial difference is that in
an axiomatic theory, any counterexample can point to foundational issues, while in
statistical mechanics, some counterexamples point merely to inadequate use.
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Chapter 10

Causality and the Arrow of Time

The law of causality, I believe, like much that passes muster among philosophers, is a relic
of a bygone age, survivinig, like the monarchy, only because it is erroneously supposed
to do no harm.

— Betrand Russel, On the notion of cause, 1912.

A standard example of a causal relation is: “The ball hitting the window is the cause
of the window breaking.” However, it is not true that a ball (with this and that
momentum) hitting the window (of this and that constitution) will necessarily break
the window. There are certainly microscopic initial conditions realizing the respective
macrostate for which the glass will resist the impact. What is very plausibly true is
that typical micro-configuration, coarse-graining to a window and a ball flying towards
it, will evolve into configurations coarse-graining to a broken window and a ball on the
other side.

With this in mind, I propose the following typicality analysis of causation. We
shall say that a macrostate (macro-event) A causes another macrostate B under the
conditions C if

¬Typ(B | C) but Typ(B | A ∩ C). (10.1)

Notably, this is a relation between macrostates of a (closed) physical system char-
acterized by the properties A and B and the “ceteris paribus” clause C. It is not
a relation between ball and window conceived as separate physical systems since we
must represent both on the same phase space.

Our definition incorporates a sort of “Hume counterfactual,” which is not if A had
not happened, B would not have happened – the truth value of this counterfactual is
actually underdetermined if A and B are characterized in macroscopic terms – but: if
A had not happened, B happening would not have been typical. In many interesting
cases, even Typ(¬B | C) and thus the stronger counterfactual if A had not happened,
B would typically not have happened are true, but I don’t consider this to be necessary.
One may very well cause events that would not have been otherwise atypical, e.g., by
cheating to make sure that one decisive die roll lands on six. (Whereas, according to
the proposed analysis, one cannot cause events that will typically occur anyway.)
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We note that the following inferences are not generally true:

Typ(E|A), Typ(E|B)⇒ Typ(E|A ∩B) (10.2)

Typ(E|A), Typ(E|B)⇒ Typ(E|A ∪B) (10.3)

Counterexamples are schematically sketched in Fig. 10.1.

A AB B

Figure 10.1: Schematically: “bad” configurations, for which E fails to obtain, are red.
Left: the red region is small in A and in B but not in the intersection. Right: the red
region is small in A and in B but not in the union (it makes up a larger proportion of
the area of A ∪B).

At first, I found the failure of (10.3), in particular, counterintuitive and worried
that the typicality definition of causation thus couldn’t be correct. If A causes E and
B causes E, shouldn’t this imply that A OR B causes E since at least one of the causes
occurs? Further reflection convinced me otherwise. Note that A ∪ B is equivalent to
A∪ (B \A). But the instances of B that lead to E may also be instances that typically
realize A, as well. For example, the propositions “An uncontrolled plane crash causes
death” and “Severe physical injury causes death” may both evaluate as true, but severe
physical injury OR an uncontrolled plane crash without severe injury does not cause
death.

Similarly (to stay with the morbid examples) it may be true that an overdose
of blood pressure-lowering medication causes death and that an overdose of blood
pressure-increasing medication causes death but that an overdose of both at once does
not. Hence, it seems right that (10.2) can fail, as well.

Inference (10.3) does hold if E ∩ A ∩ B = ∅, that is, intuitively, if A and B bring
about E in distinct ways. Since then, we have for any measure µ:

µ(E | A ∪B) = µ(E ∩ (A ∪B))
µ(A ∪B) = µ(E ∩A) + µ(E ∩B)

µ(A ∪B) ≥ µ(E ∩A) + µ(E ∩B)
µ(A) + µ(B) ,
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so that µ(E | A) = µ(E∩A)
µ(A) > 1− ε and µ(E | B) = µ(E∩B)

µ(B) > 1− ε implies

µ(E | A ∪B) = µ(E ∩A) + µ(E ∩B)
µ(A) + µ(B) ≥ (1− ε)(µ(A) + µ(B))

µ(A) + µ(B) = 1− ε.

Hence, the measure of “bad” configurations, which don’t bring about E, doesn’t in-
crease under disjunction of disjoint causes.

10.1 Causal Explanations as Typicality Explanations

Hence, upon the view proposed here, causal relations are not fundamental and not
instantiated by microscopic interactions per se. Dynamical laws yield a relation of
entailment (or maybe necessitation) between physical states at different times, and this
relation is symmetric if the laws are bi-deterministic. Given the complete dynamical
state of the world at any time t (or, relativistically, on a Cauchy hypersurface) the laws
determine the complete state of the world at any other time, earlier or later.

Causal relations, on the other hand, are understood in terms of typical macro-
evolutions between macrostates. And this relations will manifest asymmetrically in
systems which (like our universe) have a thermodynamic arrow of time. Indeed, it
follows from the Boltzmannian analysis that in a system with a thermodynamic arrow,
the evolution towards the future (the direction of entropy increase) looks like a typical
one relative to any intermediate macrostate, while the actual microstate is necessarily
atypical with respect to its evolution towards the entropic past. This is essentially the
reversal of the familiar “paradox” that entropy increase in both time directions comes
out as typical relative to any non-equilibrium macrostate (see Fig. 10.2).

Thus, in a universe with a thermodynamic arrow, causal relations in the sense of
(10.1) will in general only be instantiated between past causes and future events (with
respect to the direction of entropy increase) and causal inferences of the form

A, Typ(B | A) B (10.4)

will only be successful for predictions, i.e., when B lies in the entropic future of A.
Of course, in the usual way of speaking, it is possible to cause a lower-entropy state,

e.g., when a freezer causes water to freeze into an ice cube. To apply our analysis,
however, we have to look at the bigger picture: A room containing a freezer with water
typically evolves into a room with a freezer, an ice cube, and somewhat increased
temperature. The room may be considered as a closed system for the purpose of this
analysis, but the system refrigerator + water alone may not. The emission of heat into
the environment must be taken into account to see the thermodynamic arrow.

Since in a universe with a thermodynamic arrow only the macro-evolution into
the future is typical relative to the present macrostate, a sensible way of making
retrodictions, i.e., inferences about the past, is not (10.4) (from a present “cause” to
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ti
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e 𝑀1 = 𝑀𝑎𝑐𝑡

𝑀0
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Figure 10.2: We assume, for simplicity, that all macrostates are invariant under the time-reversal
transformation ((q, p) → (q,−p) in classical mechanics). Typical microstates in the intermediate
macro-region M1 = Mact evolve into a higher-entropy region M2 in both time directions. Only a small
subset of microstates (light grey area) have evolved from the lower-entropy state M0 in the past; an
equally small subset (shaded area) will evolve into M0 in the future. The actual microstate (cross)
has evolved from the lower-entropy state in the past; only its future time-evolution corresponds to the
typical one relative to the macrostate Mact.

a past “effect”) but abductive reasoning, by which I mean the following method of
“inference to the best explanation”:

B, Typ(B | A) A (10.5)

In other words, rather than asking what past state (or states) would be typical given the
present macrostate, we should ask what past state (or states) would make our present
macrostate typical. (If no such past macrostate exists, the next best explanation would
be one that makes the present state not atypical, i.e., Typ(¬B) but ¬Typ(¬B | A).)

I am not able to provide a complete analysis of what makes an explanation good
or best, but the following principles of “parsimony” seem reasonable:

i) If Typ(B | A) and Typ(B | A′) but A′ ( A, then A is (ceteris paribus) the
preferable explanation. In other words, if both A and A ∩ X make B typical,
we should infer A and not commit to an explanation that is more specific than
necessary.

ii) Assuming constant ancillary conditions C, if both Typ(B | A∩C) and Typ(B | A′∩
C) but Typ(A | C) while ¬Typ(A′ | C) (A is typical but A′ is not) or Typ(¬A′ | C)
while ¬Typ(¬A | C) (A′ is atypical but A is not) then A is preferable to A′ given
C. This is the point where when we see hoof prints in the ground, we infer (based
on zoological facts C that we know about the world) that they were made by a
horse rather than a unicorn.

158



10.2. CAUSAL AND EPISTEMIC ASYMMETRY

In the upshot, I submit that causal relations are defined between macrostates and
in terms of typicality. In particular, causal inferences and explanations are a form of
typicality inference/ explanation, notably based on conditional typicality. Features of
the world that are typical tout court – not just typical given some prior state or event
that may itself be atypical – are explained in a deeper, more conclusive sense.

In particular, such tout court typicality explanations are not just a fallback option
when we would really like to know the causal history of the world but don’t possess
enough information. Once a feature of our world has been established as typical
relative to all nomologically possible worlds, all explanatory pressure is relieved. To
wonder further, why our world is typical in that respect would be irrational. Causal
explanations, on the other hand, tend to lead into regress – to what caused the cause? –
and since the search for a first cause or “unmoved mover” seems in vain, the explanation
is never fully grounded.

Remark (Typicality facts summarizing causal facts). Wilhelm (2019) argues that
some typicality facts explain by summarizing part of the causal history of the world.
This applies, more specifically, to typicality facts about actual ensembles that exist in
our world. Wilhelm’s go-to example is: “Short-tailed bobcats are typical” – which ar-
guably summarizes part of the history of biological evolution of bobcats – and he takes
this to be explanatory of the fact that Mary the bobcat has a short tail. While Wilhelm
already distinguishes such typicality facts (about the actual world) from modal typi-
cality facts (about nomologically possible worlds), I am making the further case that
the latter are, in fact, what grounds causal explanations. In other words, typicality
explanations are more fundamental than causal ones.

10.2 Causal and Epistemic Asymmetry

We have just said that the thermodynamic asymmetry corresponds to an asymmetry
of typicality, so to speak. But then one could worry that we have applied what Price
(1996) calls a “temporal double standard” in accounting for the thermodynamic arrow
in the first place. The thermodynamic history of our universe is typical relative to the
initial Past Hypothesis macrostate, and we took this fact to be explanatory. But the
evolution is atypical with respect to the future (final?) macrostate – and haven’t we
insisted that explanations based on atypicality are unacceptable, that atypical facts cry
out for further explanation? Indeed we have, but the atypical evolution of the universe
towards the entropic past is explained by the low-entropy boundary condition, i.e., the
Past Hypothesis.

There is not much more to be said here unless one is unhappy with this explanation.
And there are reasons to be unhappy with it since a low-entropy initial condition is
itself atypical relative to the complete phase space of the theory. In the next chapter,
we will thus discuss the prospect of making do without the assumption of a special
initial macrostate and establish a thermodynamic arrow as typical tout court. In this
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case, the fact that the macro-evolution in one time-direction is atypical relative to any
intermediate macrostate is itself a typical phenomenon and explained by this (more
basic, since unconditional) typicality fact.

In any case, it should be emphasized that if one holds a reductive view about
the direction of time, the identification of the low-entropy boundary condition with
the “past” is not a priori. The aim is rather to reduce the perceived differences be-
tween “past” and “future” to the thermodynamic asymmetry and/or the asymmetric
boundary conditions.

An opposite point of view is advocated by Tim Maudlin (2007a), who regards the
direction and, more precisely, the passage of time as metaphysically primitive. For
Maudlin, it lies in the nature of time and laws that explanations go from past or initial
to future or final states:

So we have the following situation: if the asymmetrical treatment of the
‘initial’ and ‘final’ boundary conditions of the universe is a reflection of the
fact that time passes from the initial to the final, then the entropy gradient,
instead of explaining the direction of time, is explained by it. [...]

If we are to maintain that typicality arguments have any explanatory force
– and it is very hard to see how we can do without them – then there must
be some account of why they work only in one temporal direction. Why
are microstates, except at the initial time, always atypical with respect to
backward temporal evolution? And it seems to me that we have such an
explanation: these other microstates are products of a certain evolution,
an evolution guaranteed (given how it started) to produce exactly this
sort of atypicality. This sort of explanation requires that there be a fact
about which states produce which. That is provided by a direction of
time: earlier states produce later ones. Absent such a direction, there is
no account of one global state being a cause and another an effect, and
so no account of which evolutions from states should be expected to be
atypical and typical in which directions. If one only gets the direction of
causation from the distribution of matter in the space-time, but needs the
direction of causation to distinguish when appeals to typicality are and
are not acceptable, then I don’t see how one could appeal to typicality
considerations to explain the distribution of matter, which is what we want
to do. (pp. 131-134)

I do not believe there’s any sense borne out by physics in which a microstate X(t0)
produces the states X(t) for t > t0 but not for t < t0. There is a sense in which a
macrostate M(t0) produces M(t) for t > t0 rather than t < t0, namely that

Typ (M(t) |M(t0)) ⇐⇒ t ≥ t0 (10.6)

160



10.2. CAUSAL AND EPISTEMIC ASYMMETRY

because of the entropic arrow. This is sufficient to capture the causal intuitions that
we gather from our manifest image of the world1 but extrapolating them to the funda-
mental (microscopic) level is questionable. In any case, Maudlin and I seem to agree
that there are deep connections between the asymmetries of entropy, typicality, and
causation but disagree on issues of priority. Here, I am interested in pursuing the
reductive program with respect to the arrow of time and seeing how far it can take us.

My starting point will be the question, in what sense the difference between causal
and abductive inferences – which we have associated with predictions and retrodic-
tions, respectively – could account for our experience of a direction of time. Other
authors (e.g., Reichenbach (1956); Price (1996); Albert (2000); Callender (2016)) have
identified two phenomena, in particular, that must be accounted for:

1. We have records of the past but not the future.

2. We can influence the future but not the past (or at least have the very strong
impression that we can).

Asymmetry of records

We find a dinosaur bone in the ground and conclude that a past macrostate which
would have typically evolved into the present state with a dinosaur bone is a state
containing a dinosaur. The bone is thus a record of a dinosaur in the past, based on
abductive reasoning in the sense of (10.5). Notably, the usual argument that “a state
containing a dinosaur is much more unlikely than a random fluctuation producing a
bone” has no basis in our analysis. At no point did we associate the phase space
measure of a macro-region with an intrinsic probability.

We can also predict, for the distant future, that the bone will further decay (as
almost anything else), but this might seem less interesting than a dinosaur, of course.
Why do we find fossil records from animals that have existed in the past but not
from animals that will exist in the future? Because dying and decaying is an entropy-
increasing (thermodynamically irreversible) process that typically occurs only in one
time direction.

This example is somewhat special in that it can be conceived in terms of the
thermodynamic history of the dinosaur alone. In other cases, where we can consider
a subsystem as isolated, the idea that its present state tells us more about the past
than about the future may be simply unjustified. For instance, one could argue that a
half-melted ice cube is as much a “record” of a full ice cube in the past as of a puddle
of water in the future.

Many records, however, are relevant because they seem to tell us something about
an interaction with other systems. When we expose a photographic film to take a
picture, the final record state has lower entropy than the initial state. Still, if we find

1But remember that we always have to look at the full picture: a carpenter produces not only a
chair but also a lot of waste and heat.
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a photograph and ask what state in the past would have typically produced it, we can
infer a film in a camera being exposed to light reflected from the scenery depicted in the
image. (“Producing” here means nothing more than evolving into a state containing
the photograph, which may then branch off as an independent subsystem.) There is
no autonomous evolution of the photograph itself that would make its current state
typical, hence we infer that it was part of a larger system in which it has interacted in
the past.

In the first instance, when we observe a subsystem B at time t0, we don’t know with
what other systems it may have interacted at other times t 6= t0. However, we infer
past interactions under the constraint that they must typically produce the present
state of B, while no such constraint is justified for future interactions. Someone may
come and throw the photograph into a fire. The evolution of a heap of ash into a
photo is atypical. Hence, we can conclude that the photograph has not been burned
at any time t < t0, but not that it won’t be burned at some time t > t0 (because,
to repeat, the thermodynamic asymmetry implies that macro-evolutions towards the
entropic past are, in general, atypical relative to the future state).

For the same reason, I submit that, whatever its neurophysiological basis may be,
memory must work in the same fashion. A past interaction with a system A at t < t0

can make a brain state at time t0 typical (relative to the state of A ⊕ B at t) but a
future interaction will not. In order to create “records” of future events, the process
of perception and memorization would have to be extremely sensitive to microscopic
details which would come at a very high cost but with little reward from the point of
view of Darwinian evolution. A system supposed to store reliable information about
macroscopic events can do so only for events in the entropic past of the corresponding
record state.

This analysis can be complementary to that of David Albert (2000, 2015), who
argues that a record is not one instantaneous state of a system from which we infer
something about an earlier state but two diachronic states – a “ready state” and a
“record state” – from which we infer something about events occurring in between.
If we consider, for instance, a frictionless billiard game and we know that the black
ball had momentum p0 at time t0 and momentum p1 6= p0 at t1, we can infer that
it must have collided with at least one other ball at some point in the time-interval
(t0, t1). There is no entropic arrow in this (idealized) example, assuming a frictionless
billiard with perfectly elastic collisions. However, when we observe the ready state p0,
we do not know the ball’s momentum at t1. When we observe the record state p1, we
remember the ready state p0 at t0 and can thus infer that a collision has occurred in
the meantime.

At least in such cases, Albert’s observation strikes me as perfectly correct. As an
account of the epistemic asymmetry, the argument may seem circular or to lead into
an infinite regress: Our records are records of the past and not the future because we
know more about the past (i.e., the ready states). And we know more about the past
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than about the future because we have records of the past. What breaks the circle
according to Albert is the Past Hypothesis, which he calls “the mother ... of all ready
conditions” (Albert, 2000, p. 118). But it has never seemed quite plausible to me (and
many other’s, I think) how the cosmological boundary conditions of the universe could
figure in an inference about billiard balls, especially since we don’t know yet what the
initial macrostate of our universe actually was. Albert’s response is that “some crude,
foggy, partly unconscious, radically incomplete, but nonetheless perfectly serviceable
acquaintance with the consequence of the past hypothesis and the statistical postulate
and the microscopic equations of motion will very plausibly have been hard-wired into
the cognitive apparatus of any well-adapted biological species” (Albert, 2015, p. 39).
To me, this claim sounds itself a tiny bit foggy and incomplete. I have, therefore,
proposed a different explanation why biological species adapted to the thermodynamic
asymmetry would remember the past but not the future. That analysis (based on
a different notion of “record”) may provide some of the missing pieces for Albert’s
account – and vice versa.

Asymmetry of influences

Let us now consider the asymmetry of influences, i.e., point 2 from above. We have at
least an illusion of agential control over a limited number of physical degrees of freedom;
first and foremost over our body, and then, by extension, our immediate surroundings
with which our body can interact (cf. Loewer (forthcoming)).2 As limited as this
(perceived) control may be, it is enough to “decide” between macro-configurations
that differ radically with respect to their typical evolution into the future. Just think
of David Lewis’ example of president Nixon deciding whether or not to push the atomic
button (Lewis, 1979). A slight movement of the finger may cause – or not cause – a
nuclear war.

Now, we have already explained why causal influences do not go from present or
future states to past ones. But what about the abductive inferences (10.5) that we
deemed appropriate for retrodiction: Would the best explanation, i.e., the macrostate(s)
typically evolving into Nixon’s then-present state, have been different if Nixon had
pressed the button? On the one hand, the answer is: Yes, of course, a different ex-
planandum would have required a different explanans (duh). But it may seem like
calling the inferred past state an “explanation” is doing too much work in dismissing
this counterfactual dependence as unremarkable. Thus it seems relevant to note that,
on the other hand, the past macrostates which make it typical for Nixon to push or not
push the button must arguably include the physical state of Nixon’s brain – to which
Nixon himself has no direct epistemic access. In general, we may introspect about the
reasons for our decision but rarely about their physical cause.

Notably, nothing in our account undercuts the counterfactual “if Nixon had pushed
2I am, by the way, a compatibilist about free will, but the issue is beyond the scope of our present

discussion, and I would largely endorse the eternalist view of Hoefer (2002).
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the button, then the past history of the universe would have been different.” This coun-
terfactual is true, period. It just isn’t constitutive of a causal influence according to
our analysis, which understands the relevant counterfactual dependence in terms of
typical macro-histories. It is then an observation of psychological rather than meta-
physical importance that the states thus dependent on our choices (and not too far
removed from the present) are largely external when they lie in the (entropic) future,
and internal – involving, in particular, our brain state – when they lie in the (entropic)
past. I believe that this at least begins to explain why an inference of the form (10.1)
feels so different from an inference of the form (10.5); why the former rather than the
latter would be associated with the impression – and be it only an illusion – of having
an impact on the world.

Albert (2000, 2015) and Loewer (e.g., 2007a, 2012b) argue that the possible macro-
histories are nomologically more constrained towards the past because they must con-
verge in the Past Hypothesis macro-region. This way of reducing not the causal to the
thermodynamic asymmetry but both to the Past Hypothesis gives the causal asym-
metry more physical substance – at least if the Past Hypothesis is understood as a
physical law, as they suggest.3 I remain open to this option, which is neither presup-
posed nor contradicted by the analysis provided here. But I hesitate to assign such a
distinguished status to the Past Hypothesis because of my hopes (to be pursued in the
next chapter) that we might be able to avoid it. In any case, one could say that the
Mentaculus of Albert and Loewer grounds the causal asymmetry directly in what they
take to be the laws of nature (plus an analysis of counterfactuals) while in my account,
it is one or two steps further removed. I am not unhappy about this, since I have long
been convinced that causality is an effective and somewhat anthropomorphic concept
whose legitimation from the fundamental laws of physics goes only so far.

3Metaphysically, Albert and Loewer are Humeans, of course, so they don’t admit any fundamental
causal relations, either.
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Chapter 11

Arrow(s) of Time without a Past
Hypothesis

11.1 The Easy and the Hard Problem of Irreversibility

What is the difference between past and future? Why do so many physical processes
occur in only one time direction, despite the fact that they are governed or described,
on the fundamental level, by time-symmetric microscopic laws? These questions are
intimately linked to the notion of entropy and the second law of thermodynamics. From
the point of view of fundamental physics, it is the second law of thermodynamics that
accounts for such phenomena as that gases expand rather than contract, that glasses
break but don’t spontaneously reassemble, that heat flows from hotter to colder bodies,
that a car slows down and doesn’t accelerate once you stop hitting the gas. All these
are examples of irreversible processes, associated with an increase of entropy in the
relevant physical systems.

Goldstein (2001) – possibly inspired by Chalmers’ discussion of the mind-body
problem (Chalmers, 1995)– distinguishes between the easy part and the hard part of
the problem of irreversibility. The easy part of the problem is: Why do isolated systems
in a state of low entropy typically evolve into states of higher entropy (but not the
other way round)? The answer to this question was provided by Ludwig Boltzmann,
who reduced the second law of thermodynamics to the statistical mechanics of point
particles. We have discussed it in some detail in Chapter 9.

The easy problem of irreversibility can be arbitrarily hard from a technical point
of view if one seeks to obtain rigorous mathematical results about the convergence
to equilibrium in realistic physical models. It is easy in the sense that, conceptually,
Boltzmann’s account is well understood and successfully applied in physics and math-
ematics – despite ongoing (but largely unnecessary) controversies and misconceptions,
some of which we have addressed.

The hard problem begins with the question: Why do we find systems in low-entropy
states to begin with if these states are atypical? Often the answer is that we prepared
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them, creating low-entropy subsystems for the price of increasing the entropy in their
environment. But why then is the entropy of this environment so low – most strikingly
in the sense that it allows us to exist? If one follows this rationale to the end, one
comes to the conclusion that the universe as a whole is in a state of low entropy (that
is, globally, in a spatial sense; we don’t just find ourselves in a low-entropy pocket in
an otherwise chaotic universe) and that this state must have evolved from a state of
even lower entropy in the distant past. The latter assumption is necessary to avoid the
absurd conclusion that our present macrostate – which includes all our memories and
records of the past – is much more likely the product of a fluctuation out of equilibrium
than of the low-entropy past that our memories and records actually record. In other
words: only with this assumption does Boltzmann’s account “make it plausible not only
that the paper will be yellower and ice cubes more melted and people more aged and
smoke more dispersed in the future, but that they were less so (just as our experience
tells us) in the past” (Albert, 2015, p. 5). For a good discussion of this issue, see also
Feynman (1967, Ch. 5) and Carroll (2010).

In sum, the hard part of the problem of irreversibility is to explain the existence
of a thermodynamic arrow of time in our universe, given the fact that the universe is
governed, on the fundamental level, by reversible microscopic laws. And the standard
account today involves the postulate of a very special (since very low-entropy) initial
macrostate of the universe. Albert (2000) coined for this postulate the now-famous
term Past Hypothesis (PH). But the status of the Past Hypothesis is highly controver-
sial. Isn’t the very low-entropy beginning of the universe itself a mystery in need of
scientific explanation?

11.2 The Controversy over the Past Hypothesis

In the literature, by and large three different stances have been taken towards the
status of the Past Hypothesis:

1. The low-entropy beginning of the universe requires an explanation.

2. The low-entropy beginning of the universe does not require, or allow, any further
explanation.

3. The Past Hypothesis is a law of nature (and therefore does not require or allow
any further explanation).

The first point of view is largely motivated by the fact that our explanation of
the thermodynamic arrow is based on a typicality reasoning. Assuming a low-entropy
initial macrostate of the universe, Boltzmann’s analysis allowed us to conclude that
typical microstates relative to this macrostate will lead to a thermodynamic evolution
of increasing entropy. On the flip side, we have argued that atypical facts are usually
the kind of facts that cry out for further explanation (cf. Maudlin (2020)). And
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to accept the PH is precisely to assume that the initial state of our universe was
atypical, relative to all possible microstates, in that it belonged to an extremely small
(i.e., very low-entropy) macro-region. Penrose (1989) estimates the measure of this
macro-region relative to the available phase space volume to be at most 1 : 1010123 – a
mind-bogglingly small number.

Arguably, the explanatory pressure is somewhat mitigated by the fact that the PH
entails only a special initial macrostate rather than a microscopic fine-tuning. More
precisely, the relevant boundary condition can be characterized in a simple and non-
question-begging way (that is, in terms of its low entropy and without invoking the
explanandum of an entropy-increasing evolution). Nonetheless, the necessity of a PH
implies that our universe looks very different from a typical model of the fundamental
laws of nature – and this fact alone raises legitimate concerns.

Figure 11.1: God picking out the special (low-entropy) initial conditions of our universe. Source:
Penrose (1989).

The second point of view is, in particular, defended by Callender (2004a,b). While
Callender is also sympathetic to the third option (regarding the PH as a law), he makes
the broader case that a) there is no single feature of facts – such as being atypical –
that makes them require explanation, and b) the conceivable explanations of the Past
Hypothesis aren’t much more satisfying than accepting it as a brute and basic fact.
Notably, Ludwig Boltzmann himself eventually arrived at a similar conclusion:

The second law of thermodynamics can be proved from the mechanical
theory if one assumes that the present state of the universe, or at least that
part which surrounds us, started to evolve from an improbable state and
is still in a relatively improbable state. This is a reasonable assumption
to make, since it enables us to explain the facts of experience, and one
should not expect to be able to deduce it from anything more fundamental.
(Boltzmann, 1897)

The third and final option is most prominently advocated by David Albert (2000) and
Barry Loewer (2007a) in the context of the Humean best system account of laws. Upon
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their view, the laws of nature consist in

a) The microscopic dynamical laws.

b) The Past Hypothesis

c) A probability (or typicality) measure on the initial macro-region.

This package is the “Mentaculus” (Loewer, 2012b) that we have already introduced
in Chapter 5. Here it should be noted, however, that the proposition which Albert
wants to grant the status of a law is not that the universe started in any low-entropy
state. The PH, in its current form, is rather a placeholder for “the macrocondition
... that the normal inferential procedures of cosmology will eventually present to us”
(Albert, 2000, p. 96). Ideally (I suppose), physics will one day provide us with a nice,
simple, and informative characterization of the initial macrostate of our universe –
maybe something along the lines of Penrose’s Weyl curvate conjecture (Penrose, 1989)
– that would strike us as “law-like.” But this is also what many advocates of option
1 seem to hope for as an explanation of the PH. So while option 3 sounds like the
most clear-cut conclusion about the status of the PH, it is debatable to what extent it
settles the issue. The more we have to rely on future physics to fill in the details, the
less is already accomplished by calling the Past Hypothesis a law of nature. Moreover,
if we had such a “law-like” characterization of the initial boundary conditions of the
universe, we would still have the option to interpret them as a Humean law, or as
nomologically necessary in a metaphysically more robust, i.e., anti-Humean, sense.1

Tying option 3) to Humean metaphysics may thus be philosophically convenient but
not at all necessary.

11.3 Thermodynamic Arrow without a Past Hypothesis

In recent years, Sean Carroll together with Jennifer Chen (2004; see also Carroll
(2010)), and Julian Barbour together with Tim Koslowski and Flavio Mercati (2013,
2014, 2015) independently put forward audacious proposals to explain the arrow of
time without the postulate of an atypical initial state. While Barbour’s arrow of time
is not, strictly speaking, an entropic arrow (but rather connected to a certain notion
of complexity), Carroll’s account is largely based on the Boltzmannian framework, al-
though with a crucial twist. For this reason, we shall focus on the Carroll account
first, before comparing it to the theory of Barbour et al. in Section 11.6.

The crucial assumption of Carroll and Chen is that the relevant measure on the
state space of the universe is unbounded, allowing for macrostates of arbitrarily high
entropy (while we shall assume that none has infinite entropy). Then, every macrostate
is a non-equilibrium state from which the entropy can typically increase in both time

1At least I don’t see why anti-Humeans must be committed to dynamical laws only, though some
of the major anti-Humean positions, such as the production view of Maudlin (2007a) might be.
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directions, defining a thermodynamic arrow – or rather two opposite ones – on either
side of the entropy minimum. A typical entropy curve (one hopes) would thus be
roughly parabolic or “U-shaped,” attaining its global minimum at some moment in
time and growing monotonously (modulo small fluctuations) in both directions from
this vertex (Fig. 11.2). Barbour et al. (2015) describe such a profile as “one-past-
two-futures,” the idea being that observers on each branch of the curve would identify
the direction of the entropy minimum – which the authors name the Janus point – as
their past. In other words, we would have two future-eternal epochs making up the
total history of the universe, with the respective arrows of time pointing in opposite
directions.

en
tr
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y

�me

Figure 11.2: Typical entropy curve (with fluctuations and interpolated) for a Carroll universe. The
arrows indicate the arrow(s) of time on both sides of the “Janus point” (entropy minimum).

The Carroll model is intriguing because it is based on the bold, yet plausible as-
sumption that the universe has no equilibrium state – a crucial departure from the
“gas in the box” paradigm that is still guiding most discussions about the thermody-
namic history of our universe (cf. Barbour (2017)). And it is particularly intriguing for
anybody worried about the status of the Past Hypothesis because it seeks to establish
the existence of a thermodynamic arrow in the universe as typical. This is in notable
contrast to the standard account, in which we saw that an entropy gradient is typical
only under the assumption of atypical – and time-asymmetric – boundary conditions.

Prima facie, it seems plausible that an eternal universe with unbounded entropy
would exhibit the U-shaped entropy profile shown in Fig. 11.2. For if we start in
any macrostate, the usual Boltzmannian arguments seem to suggest that typical mi-
crostates in the corresponding macro-region lead to entropy-increase in both time di-
rections (since there are always vastly larger and larger macro-regions, corresponding
to higher and higher entropy values, that the microstate can evolve into). And then,
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any sensible regularization of the phase space measure would allow us to conclude that
a U-shaped entropy profile is typical tout court, that is, with respect to all possible
micro-histories.

However, if we assume, with Carroll, a non-normalizable measure – that assigns an
infinite volume to the total phase space and thus allows for an unbounded entropy –,
the details of the dynamics and the phase space partition must play a greater role than
usual in the Boltzmannian account. For instance, the measure of low-entropy macro-
regions could sum up to arbitrarily (even infinitely) large values, exceeding those of
the high-entropy regions. Or the high-entropy macro-regions could be arbitrarily far
away in phase space, so that the dynamics do not carry low-entropy configurations into
high-entropy regions on relevant time scales. The first important question we should
ask is therefore:

Are there any interesting and realistic dynamics that give rise to typical
macro-histories as envisioned by Carroll and Chen?

The original idea of Carroll and Chen (2004) is as fascinating as it is speculative. The
authors propose a model of eternal spontaneous inflation in which new baby universes
(or “pocket universes”) are repeatedly branching off existing ones. The birth of a new
universe would then increase the overall entropy of the multiverse, while the baby
universes themselves, growing from a very specific pre-existing state (a fluctuation
of the inflaton field in a patch of empty de-Sitter space), would typically start in an
inflationary state that has much lower entropy than a standard big bang universe. This
means, in particular, that our observed universe can look like a low-entropy universe,
with an even lower-entropy beginning, even when the state of the multiverse as a whole
is arbitrarily high up the entropy curve. The details of this proposal are beyond the
scope of this thesis and do not (yet) include concrete dynamics or a precise definition
of the entropy.

In more recent talks, Carroll discusses a simple toy model – essentially an ideal gas
without a box – in which a system of N non-interacting particles can expand freely in

empty space. The only macro-variable considered is the moment of inertia, I =
N∑
i=1

q2
i

(in the center-of-mass frame), providing a measure for the expansion of the system.
It is then easy to see that I will attain a minimal value at some moment in time t0,
from which it grows to infinity in both time directions (cf. equation (11.7) below).
The same will hold for the associated entropy since a macro-region, corresponding to
a fixed value of I, is just a sphere of radius

√
I in the position coordinates (while all

momenta are constant). The entropy curve will thus have the suggested U-shape with
vertex at t = t0. A detailed discussion of this toy model can be found in Reichert
(2012), as well as Goldstein et al. (2016).

I am not going to discuss these two models in more detail since I have little to add
to the references cited above. Instead, I am going to argue in Section 11.5 that there
exists a dynamical theory fitting Carroll’s entropy model that is much less speculative
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than baby universes and much more interesting, physically, than a freely expanding
system of point particles. This theory is Newtonian gravity. It will also allow us
to draw interesting comparisons between the ideas of Carroll and Chen and those of
Barbour, Koslowski, and Mercati.

First, however, we want to address the question, whether this entropy model would
even succeed in explaining away the Past Hypothesis. Are typical macro-histories as
envisioned by Carroll and sketched in Fig. 11.2 sufficient to ground sensible inferences
about our past and future? Or would we still require, if not the PH itself, then a
close variant, an equally problematic assumption about the specialness of the observed
universe?

11.4 The (dispensible) Role of the Past Hypothesis

The question to be addressed in this section is thus the following:

Can Carroll’s entropy model ground sensible statistical inferences about
the thermodynamic history of our universe without assuming (something
akin to) a Past Hypothesis?

To approach this issue, and clarify the role of the PH in the standard account, we have
to disentangle two often confounded questions:

i) Given the fundamental laws of nature, what do typical macro-histories of the
universe look like? In particular: is the existence of a thermodynamic arrow
typical?

ii) Given our knowledge about the present state of the universe, what can we reason-
ably infer about its past and future?

The answer to question i) will, in general, depend on the dynamical laws as well as
cosmological considerations. If we have infinite time and a finite maximal entropy, a
typical macro-history will be in thermodynamic equilibrium almost all the time, but
also exhibit arbitrarily deep fluctuations into low-entropy states, leading to periods
with a distinct entropy gradient, i.e., a local thermodynamic arrow. This fluctuation
scenario was, in fact, one of Boltzmann’s attempts to resolve to the hard problem of
irreversibility (Boltzmann, 1896b).

However, to assume a fluctuation as the origin of our thermodynamic arrow is
highly unsatisfying, Feynman (1967, p. 115) even calls it “ridiculous.” The reason is
that fluctuations which are just deep enough to account for our present macrostate are
much more likely (i.e., would typically occur much more frequently2) than fluctuations
producing an even lower-entropy past from which the current state could have evolved
in accordance with the second law. We would thus have to conclude that we are

2e.g. in the sense lim sup
T→+∞

1
T

(
#fluctuations to entropy S in the time-interval [−T, T ]

)
171



11.4. THE (DISPENSIBLE) ROLE OF THE PAST HYPOTHESIS

currently experiencing the local entropy minimum, that our present state – including all
our records and memories – is, in fact, the product of a random fluctuation rather than
a lower-entropy past. Feynman makes the further case that the fluctuation scenario
leads not only to absurd conclusions about the past but to wrong ones about the
present state of the universe, as it compels us to assume that our current fluctuation
is not any deeper than necessary to explain the evidence we already have: If we dig in
the ground and find a dinosaur bone, we should not expect to find other bones nearby.
If we stumble upon a book about Napoleon, we should not expect to find other books
containing the same information about a guy called Napoleon. The most extreme
form of this reductio ad absurdum is the Boltzmann brain problem (see, e.g., Carroll
(2010) for a nice discussion): a fluctuation that is just deep enough to account for
your empirical evidence (many people claim) would produce only your brain, floating
in space, with the rest of the universe at equilibrium. You should thus conclude that
this is, by far, the most likely state of the universe you currently experience.

The only possible escape in such a fluctuation scenario is to invoke the additional
postulate – a form of Past Hypothesis – that the present macrostate is not the bottom
of the fluctuation, but has been preceded by a sufficiently long period of entropy
increase from a state of much lower entropy, still. In this context, the PH would thus
serve a self-locating function, taking the form of an indexical proposition that locates
our present state on the upwards-slope of a particularly deep fluctuation (Fig. 11.3).

Figure 11.3: Self-location hypothesis in the fluctuation scenario (upper image) and big bang scenario
(lower image) with bounded entropy. Time-scales in the upper image are much larger than below and
periods of equilibrium are much longer than depicted.

The now standard account assumes a bounded entropy and a relatively young
universe – about 13.8 billion years according to estimates from modern big bang cos-
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mology. In this setting (we interpret the big bang as the actual beginning of time),
a typical history would not have any thermodynamic arrow at all (the time scale of
∼ 1010 years is too short for significant entropy fluctuations on cosmological scales).
Thus, we need the PH to account for the existence of a thermodynamic arrow in the
first place by postulating a low-entropy boundary condition at the big bang. A self-
locating proposition is still crucial and hidden in the assumption of a young universe.
Winsberg (2012)) makes it explicit in what he calls the “Near Past Hypothesis” (NPH),
which is that our present state lies between the low-entropy beginning of the universe
and the time of first relaxation into equilibrium. Without such an assumption – and
assuming that the universe is eternal in the future time direction – we would essentially
be back in a fluctuation scenario with all its Boltzmann-brain-like absurdities. In a
future-eternal universe with bounded entropy, there are still arbitrarily many entropy
fluctuations that are just deep enough to account for our present evidence (but not
much deeper). And we would still have to conclude that we are much more likely
in one of these fluctuations than on the initial upwards slope originating in the very
low-entropy big bang (cf. Loewer (2020)).

The self-locating role of the PH (which I take to include the NPH – for what
would be the point otherwise?) is thus indispensable. And it is, in fact, the indexical
proposition involved, rather than the non-dynamical boundary condition, that I would
be surprised to find among the fundamental laws of nature as we consider this option
for the status of the Past Hypothesis.

Sean Carroll’s model postulates an eternal universe and unbounded entropy, sug-
gesting that typical macro-histories will have the U-shaped entropy profile depicted
in Fig. 11.2. If this works out – and I will argue that it does, but at least see no
reason why it couldn’t – the existence of a thermodynamic arrow (respectively two
opposite ones) will be typical. (For completeness, we could also discuss the option of
a temporally finite universe and unbounded entropy, but this model doesn’t seem to
add much of interest.)

In the upshot, Carroll’s model could indeed explain the existence of a thermody-
namic arrow without postulating a Past Hypothesis over and above the microscopic
laws. It may still turn out that we need to invoke a PH for purposes of self-locating, if
the theory would otherwise suggest that our present macrostate is the global entropy
minimum, i.e., has not evolved from a lower-entropy past. The relevant version of the
PH may then take the form of an indexical clause – stating that our present state is
high up the entropy curve – or be a characterization of the entropy minimum (Janus
point) of our universe. (In the first case, the PH would locate the present moment
within the history of an eternal universe; in the latter, it would first and foremost
locate the actual universe within the set of possible ones.) But it is not obvious why
the Carroll model would lead to the conclusion that our current state is near the en-
tropy minimum, and the issue actually belongs to our second question – how to make
inferences about our past – to which we shall now turn.
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Predictions and Retrodictions

The most straightforward response to question ii) – how to make inferences about
the past or future – is the following method of statistical reasoning: Observe the
current state of the universe (respectively a suitably isolated subsystem), restrict the
pertinent probability (more correctly: typicality) measure to the corresponding macro-
region in phase space, and use the conditional measure to make probabilistic inferences
about the history of the system. I shall call this naive evidential reasoning (reviving a
terminology introduced in an unpublished 2011 draft of Goldstein et al. (2016)). The
negative connotation is warranted because we know that while this kind of reasoning
works quite well for predictions – inferences about the future – it leads to absurd, if
not self-refuting, conclusions when applied for retrodictions – i.e., inferences about the
past.

The standard move to avoid this predicament is to employ the PH to block naive
evidential reasoning in the time direction of the low-entropy boundary condition. For
sensible retrodictions, we learn, one must conditionalize on the low-entropy initial state
in addition to the observed present state. It is rarely, if ever, noted that an appeal
to a PH may be sufficient but not necessary at this point. The key is to appreciate
that the second question – how to make inferences about the past and future of the
universe – must be addressed subsequently to the first – whether a thermodynamic
arrow in the universe is typical. For if we have good reasons to believe that we live in a
universe with a thermodynamic arrow of time, this fact alone is sufficient to conclude
the irrationality of retrodicting by conditionalizing the phase space measure on the
present macrostate.

Indeed, we have seen it in the previous chapter: The Boltzmannian analysis im-
plies that in a system with a thermodynamic arrow, the evolution towards the future
(the direction of entropy increase) looks like a typical one relative to any intermedi-
ate macrostate, while the actual microstate is necessarily atypical with respect to its
evolution towards the entropic past. Hence, the fact that naive evidential reasoning
doesn’t work towards the entropic past can be inferred from the existence of a thermo-
dynamic arrow; it does not have to be inferred from the assumption of a special initial
state. The explanation of the thermodynamic arrow, in turn, may or may not require
a special initial state, but this was a different issue – discussed above.

If the relevant physical theory tells us that a thermodynamic arrow is typical, i.e.,
exists in almost all possible universes, we have a very strong theoretical justification for
believing that we actually live in a universe with a thermodynamic arrow. And if we
believe that we live in a universe with a thermodynamic arrow, a rational method for
making inferences about the past is not naive evidential reasoning, but the inference to
the best explanation (10.5) discussed in Chapter 10. Instead of asking what past state
is typical given the present macrostate (or adjust our credence in the past macrostate
M0 to P(M0 | Mact), if such a probability even makes sense), we should ask what
past state would typically evolve into the present one, i.e., “bet” on macrostates M0
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that maximize P(Mact | M0). If we find a dinosaur bone, we should infer a past state
containing a dinosaur. If we find history books with information about Napoleon,
we should infer a past state containing a French emperor by the name of Napoleon.
In particular, considering the universe as a whole, the fact that it has evolved from
a lower-entropy state in the past is inferred, rather than assumed, by this kind of
abductive reasoning.

By now, it should be clear that the debate is not about whether the assertion of
a low-entropy past is true, but about whether it is an axiom. And the upshot of our
discussion is that if the existence of a thermodynamic arrow in the universe turns out
to be typical, we can consider our knowledge of the low-entropy past to be reasonably
grounded in empirical evidence and our best theory of the microscopic dynamics (as
any knowledge about our place in the history of the universe arguably should).

Another way to phrase the above analysis goes as follows: Naive evidential reason-
ing applied to both time directions will always lead to the conclusion that the current
macrostate is the (local) entropy minimum. However, if we know that we observe a
universe (or any other system) with a thermodynamic arrow, we also know that this
conclusion would be wrong almost all the time. More precisely, it would be wrong
unless we happened to observe a very special period in the history of the universe in
which it is close to its entropy minimum.

Goldstein, Tumulka, and Zanghì provide a mathematical analysis of this issue in
the context of Carroll’s toy model of freely expanding particles (Goldstein et al., 2016).
Their discussion shows that the two opposing ways of reasoning – typical microstates
within a given macro-region versus typical time-periods in a history characterized by a
U-shaped entropy curve – come down to different ways of regularizing the unbounded
phase space measure by choosing an appropriate cut-off. Goldstein et al. then argue
against the first option, corresponding to naive evidential reasoning, and say that
certain facts about the past amount to “pre-theoretical” knowledge. I have provided a
concurrent argument based more explicitly on a theoretical (Boltzmannian) analysis.
Nonetheless, from a formal point of view, a certain ambiguity remains. In Section 11.6,
we will discuss how the relational framework of Barbour et al. is able to improve upon
this situation.

The mystery of our low-entropy universe

Another possible objection to the Carroll model (disregarding baby universes) goes as
follows: Doesn’t the fact that the entropy of the universe could be arbitrarily high
make its present very low value – and the even lower value at the Janus point – only
more mysterious? In other words: doesn’t the fact that the entropy could have been
arbitrarily high only increase the explanatory pressure to account for the specialness
of the observed universe?

I believe that the Carroll model precludes any a priori expectation of what the
entropy of the universe should be. If it can be arbitrarily (but not infinitely) large,
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any possible value could be considered “mysteriously low” by skeptics. This is what
we called a “Morgenbesser case” in Ch. 1.2 when we proposed a characterization of
acceptably brute facts: Why is the entropy of our universe so low? If it were any
higher, you’d still be complaining!

I guess divergent intuitions about this question are possible, however, and the ambi-
guity is once again paralleled by mathematical issues arising from the non-normalizability
of the phase space measure.3 I’ll have to leave it at that as far as the discussion of the
Carroll model is concerned, exploring instead in a later section how the shape space
theory of Barbour et al. is able to resolve the issue. First, though, I owe the reader
some evidence that a discussion of Carroll universes is not pure speculation but that
Newtonian gravity might, in fact, provide a relevant example.

11.5 Entropy of a Classical Gravitating System

There is a lot of confusion and controversy about the statistical mechanics of classical
gravitating systems, despite the fact that statistical methods are commonly and suc-
cessfully used in areas of astrophysics that are essentially dealing with the Newtonian
N -body problem (see, e.g., Heggie and Hut (2003)). (An excellent paper clearing up
much of the confusion is Wallace (2010)); see Callender (2010) for some problematic
aspects of the statistical mechanics of gravitating systems, and Padmanabhan (1990)
for a mathematical treatment.) Some examples of common claims are:

a) Boltzmann‘s statistical mechanics is not applicable to systems in which gravity is
the dominant force.

b) The Boltzmann entropy of a classical gravitating system is ill-defined or infinite.

c) An entropy increasing evolution for a gravitating system is exactly opposite to
that of an ideal gas. While the tendency of the latter is to expand into a uniform
configuration, the tendency of the former is to clump into one big cluster.

I believe that the first two propositions are simply false, while the third is at
least grossly oversimplified. However, rather than arguing against these claims in the
abstract, I shall provide a demonstration to the contrary by proposing an analysis of
a classical gravitating system in the framework of Boltzmann’s statistical mechanics
(based on joint work with Paula Reichert).

We start by looking at the naive calculation, along the lines of the standard text-
book computation for an ideal gas, that finds the Boltzmann entropy of the classical
gravitating system to be infinite (see, e.g., Kiessling (2001)). For N gravitating parti-

3In particular, if we tried to interpret this measure probabilistically (what we don’t do upon the
typicality view), we would run into the paradox that any finite range of entropy values has probability
zero.
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cles with (for simplicity equal) mass m in a volume V , we have

S(E,N, V ) := kB log|Γ(E,N, V )| = kB log
[ 1
h3NN !

∫
V N

∫
R3N

δ
(
H − E

)
d3Nq d3Np

]
,

(11.1)

with

H(q, p) =
N∑
i=1

p2
i

2m −
∑

1≤i<j≤N

Gm2

|qi − qj |
(11.2)

and

∫
V N

∫
R3N

δ
(
H − E

)
d3Np d3Nq = C

∫
V N

(
E +

∑
i<j

Gm2

|qi − qj |

) 3N−2
2

d3Nq = +∞. (11.3)

For N > 2, the integral (11.3) diverges due to the singularity of the gravitational
potential at the origin.

There is nothing mathematically wrong with the above calculation; it just doesn’t
actually compute what it’s supposed to. One problem is that as we integrate over V N ,
we sum over all possible configurations of N particles (with total energy E) within
the volume V . This includes configurations in which the particles are homogeneously
distributed over V , but also configurations in which most particles are concentrated
in a small region of the volume (Fig. 11.4). In the case of the ideal gas in a box,
the contribution of the latter is negligible since almost the entire phase space volume
is concentrated on spatially homogeneous configurations. It is the entropy (or phase
space volume) of this equilibrium state that we actually want to compute, and the
mistake we make by including non-equilibrium configurations (in which the particles
are concentrated in one half, or one quarter or one third, etc. of the volume) is so
small that it is hardly ever mentioned.

Figure 11.4: Performing the volume integral in (11.3), we sum over all possible configurations of
the particles within the given volume V .

In the case of a gravitating system, the situation is distinctly different since the
spatial configuration is correlated with the kinetic energy or, in other words, with
the possible momentum configurations of the system. Simply put, for an attractive
potential and constant energy, a more concentrated spatial configuration corresponds

177



11.5. ENTROPY OF A CLASSICAL GRAVITATING SYSTEM

to higher kinetic energy and thus larger phase space volume in the momentum variables.
The “total volume” V is thus not a good macro-variable to describe a system with
gravity. In particular, if we want to know whether the entropy of a gravitating system
is increasing as the configuration clusters, we have to consider macroscopic variables
that actually distinguish between more and less clustered configurations.

I propose to describe a system of N gravitating point particles by the following set
of macro-variables:

• E(p, q) = p2

2m + V (q) =
N∑
i=1

p2
i

2m −
∑

1≤i<j≤N
Gm2

|qi−qj | is the total energy of the system

which is a constant of motion.

• I(q) =
N∑
i=1

m(qi− 1
N

N∑
j=1

qj)2 is the moment of inertia that will quantify how much

the particles are spread out over space. In the center of mass frame, it simplifies
to I(q) = mq2 =

∑N
i=1mq2

i . Notably, we will consider particles that can expand
arbitrarily in space, without any physical boundaries (like a box) confining them
to a given volume. I(q) can thus grow without bound.

The moment of inertia alone is still too coarse to differentiate between, let’s say, a
uniform configuration and a concentrated cluster with few residual particles far away.
To distinguish between more and less clustered configurations, we have to introduce a
further macro-variable. We choose:

• U(q) := −V (q) =
∑

1≤i<j≤N
Gm2

|qi−qj |
, which is just the absolute value of the potential

energy. Since the total energy is E(q, p) = T (p) + V (q), specifying the value of

E and U is equivalent to specifying E and the kinetic energy T (p) =
N∑
i=1

p2
i

2m . An

increase of U(q) thus signifies both clustering and heating of the system.

Note that defining macrostates in terms of U (respectively the potential energy)
automatically takes care of the ultraviolet divergence in the computation of the
associated entropy since the minimal particle distance r is bounded as r ≥ Gm2

U .

Evidently, I do not claim that the moment of inertia or the gravitational potential
energy of the universe can be precisely measured. What makes them relevant macro-
variables is, first and foremost, the fact that they are coarse-graining: many different
micro-configurations of an N -particle universe realize the same values of I and U .
Moreover, it will soon become clearer that these macro-variables do indeed provide
relevant information about the large-scale structure of a gravitating universe.
Now, to determine the entropy of the respective macrostates, we have to compute the
phase space volume corresponding to a macro-region Γ(E, I, U), that is

|Γ(E, I, U)| =
∫∫

R3N×R3N

δ
( p2

2m + V (q)− E
)
δ
(
V (q) + U

)
δ
(
mq2 − I

)
d3Nq d3Np

(11.4)
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for fixed values of E, I, and U . Unfortunately, we weren’t able to solve this integral
analytically (which might be, in fact, impossible). However, if we replace the sharp
values of the macro-variables with a small interval I(q) ∈ (I −∆I, I + ∆I), |V (q)| ∈
(U − ∆U,U + ∆U) with, e.g., ∆I = I√

N
,∆U = U√

N
(roughly a standard deviation),

we can obtain the bounds:

C
(Gm5/2
√
IU

)3
e−5N (E+U)

3N−2
2 I

3N
2 ≤ |Γ(E,U±∆U, I±∆I)| ≤ Ce

√
N (E+U)

3N−2
2 I

3N
2 ,

for sufficiently large values of I and U (more precisely, of the dimensionless quantity√
IU

Gm5/2 ) and E ≥ 0, where C is a positive constant depending only on N and m. A
precise statement and proof (valid for any E) is given in the appendix. Thus, we have

|Γ(E,U, I)| ≈ const. ·
(
I(E + U))

3N
2 , (11.5)

and, ignoring an additive constant,

S(E, I, U) ≈ 3N
2
(
log(E + U) + log(I)

)
. (11.6)

Typical evolutions

We now provide a discussion of this result.

1. With our choice of macro-variables, the associated Boltzmann entropy of a grav-
itating system is well-defined and finite. We also see that the entropy can grow
without bounds, either due to continuous expansion of the system (I → +∞)
and/or due to continuous clustering and self-heating (U → +∞).

2. While common wisdom says that the typical evolution of a gravitating system
is one of clumping and clustering, our computation shows that clustering and
expansion (as quantified by the macro-variable U and I, respectively) can con-
tribute equally to an increase of entropy. This fits well with the observed pro-
cesses of gravithermal collapse that are known to show a “core-halo” pattern (see,
e.g., Heggie and Hut (2003, Ch. 23)): the configuration of masses splits into a
core that collapses and heats up (increase of U) and a collection of particles on
the outskirts that are blown away (increase of I).

On even larger (cosmological) scales, a gravitating system in a homogeneous
configuration can increase its entropy along both “dimensions” by forming many
local clusters (“galaxies”) that disperse away from each other – a process that
would look very much like structure formation!

Hence, it seems to be precisely the interplay between the opposing tendencies
of clustering and expansion that makes classical gravity much more interesting,
from a thermodynamic point of view, than often assumed.
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3. Analytical and numerical results support the conclusion that the typical evolu-
tion of a gravitating system is one in which the entropy (11.6) increases from
a minimum value in both time directions, giving rise to the U-shaped entropy
curves proposed by Carroll and Chen. The first analytical result is the classical
Lagrange-Jacobi equation for the gravitational potential:

Ï = 4E − 2V. (11.7)

From this equation, which is a standard result in analytical mechanics, it follows
immediately that if E ≥ 0, the second time derivative of the moment of inertia is
strictly positive (note that V is negative), meaning that I(t) is a strictly convex
(upwards curving) function. Together with the fact that I → ∞ as t → ±∞
(Pollard, 1967), we can conclude that the graph of I has precisely the kind of
U-shape that we expect for the entropy.

Thanks to the results of Saari (1971b) and Marchal and Saari (1976), we have an
even clearer picture of the asymptotic behavior of the Newtonian gravitational
N -particle system. Their work studies the inter-particle distances |qi − qj |, as
well as the dispersion from the center of mass for t → ∞, independent of the
total energy. They found that either the minimal particle distance goes to zero

lim
t→∞

r(t) := lim
t→∞

min
i 6=j
|qi(t)− qj(t)| = 0,

while the greatest particle distance goes to infinity faster than t

lim
t→∞

R(t)
t

:= lim
t→∞

t−1 max
i 6=j
|qi(t)− qj(t)| =∞,

or the asymptotic behavior in the center-of-mass frame is characterized by

qi(t) = Ait+O(t2/3) ∀i = 1, . . . , N and lim sup
t→∞

r > 0, (11.8)

where Ai ∈ R3 are constant vectors (possibly the zero vector). Note that since
the dynamics are time-reversal invariant, the results hold for t→ −∞, as well.

The first case describes so-called “super-hyperbolic escape.” This scenario is
consistent with an increase of our gravitational entropy (11.6), implying both
I → ∞ and U → ∞ as t → ∞, but also includes the pathological solutions
that diverge in finite time. It is the second case (when super-hyperbolic escape
is excluded) in which the Newtonian N -body system is much more interesting
and generally well-behaved. More precisely, we see that if (11.8) holds, all inter-
particle distances fall into one of the following three classes (see Saari (1971),
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Cor. 1.1, together with Marchal and Saari (1976), Cor. 6):

|qi − qj | = Lijt+O(t2/3), (11.9)

or |qi − qj | = O(t2/3) (11.10)

or |qi − qj | ≤ L (11.11)

asymptotically in t, with positive constants L,Lij .

The result can be summarized as follows (cf. (Saari, 1971b, p. 227)): On suffi-
ciently large time scales, the system forms clusters, consisting of particles whose
mutual distances remain bounded. These clusters form subsystems (clusters of
clusters) that are reasonably well isolated (energy and angular momentum are
asymptotically conserved in each one of them separately), the distance between
their centers of mass growing proportional to t. Finally, within each of these
subsystems, the clusters separate approximately as t2/3. In other words, the
long-term behavior of such a Newtonian universe looks very much like struc-
ture formation, with local clumping into “galaxies” and global expansion due to
galaxies and galaxy clusters receding from each other.

In regard to entropic considerations, i.e., equation (11.6), we note that the mo-
ment of inertia will grow asymptotically like I(t) ∼ t2, while the macro-variable
U(t) is at least bounded from below by some multiple of N

L2 (assuming that the
number of particles in a cluster is of order N). What happens at intermediate
times? Assuming henceforth non-negative total energy, we already know that
I(t) is strictly convex. Together with its quadratic growth for t → ±∞, we can
conclude that it has a unique global minimum, let’s say at t = τ , from which
it increases in both time directions. U(t) will in general fluctuate, but if we
exclude particle collisions and “near particle collisions” (very close encounters),
it will remain bounded and not vary too quickly (U̇ remains bounded, as well).
Hence, one would expect that the graph of (E+U(t))I(t) (the logarithm of which
is proportional to our gravitational entropy) looks qualitatively like that of I(t),
namely by and large parabolic. Indeed, numerical simulations by Barbour et al.
(2013, 2015) for the E = 0 universe (with N = 1000 and random initial data)
support the claim that the evolution of I · U is well interpolated by a parabola
of the form α(t − τ)2 + β with α, β > 0. All this suggests the desired U-shaped
evolution of the entropy S(E, I, U) ≈ 3N

2

(
log(E + U) + log(I)

)
as a function of

time for a Newtonian gravitating universe with non-negative energy. (Actually,
on large time scales, the shape looks less like a U and more like g – how some
children draw birds on the horizon – since S(t) grows only logarithmically as
|t− τ | → ∞.)

We conclude that a Newtonian gravitating universe is indeed a “Carroll universe” which
has no equilibrium state and for which entropy increase (in opposite directions from
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a global minimum) is typical. Quite astonishingly, this entropy increase is consistent
with structure formation, showing that the colloquial understanding of entropy as a
“measure of disorder” does not always provide the right intuition. And contrary to
another popular belief, the typical evolution of a gravitating system does not just lead
to one big boring clump of matter, either.

11.6 Gravity and Typicality from a Relational Point of
View

Starting from Machian / Leibnizian principles, Barbour, Koslowski, and Mercati (2013,
2014, 2015) discuss the Newtonian gravitational system from a relationalist perspec-
tive. According to the relational framework that Julian Barbour has championed over
the past decades, all physical degrees of freedom are described on shape space S which is
obtained from Newtonian configuration space by factoring out global rotations, trans-
lations, and scale, leaving us with a 3N−7 dimensional space for an N -particle system.
The configuration of N point particles is then characterized by the angles and ratios
between their (Euclidean) distance vectors – or, in other words, by its shape – inde-
pendent of extrinsic scales. The lowest-dimensional (non-trivial) shape space is that
of N = 3 particles. In this case, the shapes are those of triangles – specified by 2
angles or the ratios between 3 distances – and the topology of shape space is that of a
2-dimensional (projective) sphere.

Considering standard Newtonian gravity on absolute space and trying to extract,
so to speak, its relational essence, we have to eliminate all dependencies on extrinsic
spatio-temporal structures. To this end, we restrict ourselves to models with vanishing
total momentum, P =

∑N
i=1 pi ≡ 0, and angular momentum, L =

∑N
i=1 qi × pi ≡ 0,

excluding rotating universes and propagations of the center of mass, respectively.4

Furthermore, the rejection of absolute time scales leads to considering only universes
with zero total energy (E ≡ 0), since this is the only value invariant under a rescaling
of time-units.

The difficult issue when it comes to formulating Newtonian gravity on shape space
is the lack of scale-invariance. Newtonian gravity has models that do not rotate (L ≡ 0)
and models that do not propagate (P ≡ 0) but it does not have models that do not
expand (D := 1

2 İ =
∑N
i=1 qi · pi ≡ 0; Barbour calls D the dilatational momentum).

The characteristic size of an N -particle system is given by σ =
√
I, where I =

N∑
i=1

q2
i

is the center-of-mass moment of inertia, and we have already seen that I can never
be constant for non-negative energy (equation (11.7)) but is roughly parabolic as a
function of time. In other words: an N -particle universe interacting by Newton’s law

4Arbitrary solutions of Newtonian mechanics can be projected onto shape space, but the total
angular momentum (let’s say) cannot be captured by relational initial data. It corresponds to a
particular choice of reference frame (“gauge”), when the shape space theory is lifted to absolute phase
space; cf. Dürr et al. (2019). L = 0 is then the only canonical choice, and the only one suggested by
Machian principles.
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of gravity always changes in size. In fact, the general Lagrange-Jacobi identity shows
that E = 0 and I ≡ const. is possible only if the potential is homogeneous of degree
−2. This had motivated the alternative, scale-invariant theory of gravitation proposed
in Barbour (2003). Here, we discuss the relational formulation of Newtonian gravity
with the familiar 1

r -potential.
Of course, we can (and will) insist that a “change in size” is meaningless from a

relational point of view, but the process has nonetheless dynamical (and thus empir-
ical) consequences in Newtonian theory. Simply put: for constant energy, a gravi-
tating system that expands is also slowing down. Newtonian laws (with a potential
homogeneous of degree k) are always invariant under a global rescaling of distance,
q → αq for constant α > 0, when compensated by a corresponding change in time-
units, t → α1−k/2t. However, the characteristic scale σ(t) =

√
I(t) of a gravitating

system changes in time. (Compare: absolute rotations are meaningless from a rela-
tional point of view; but while the laws are invariant under time-independent rotations,
particles in a rotating universe experience a centrifugal force affecting their motions.)
Hence, if we eliminate this scale “by hand”, namely by a time-dependent coordinate
transformation q → q

σ(t) , the resulting dynamics can be formulated on shape space,
but will no longer have the standard Newtonian form. Instead, the dynamics become
non-autonomous (time-dependent) with scale acting essentially like friction (Barbour
et al., 2014).

How to capture this time-dependence without reference to external time? Barbour
et al. make use of the fact that the dilatational momentum D = 1

2 İ is monotonically
increasing (Ï > 0 by equation (11.7)) and can thus be used as an internal time-
parameter, a kind of universal clock. In particular, we observe that D = 0 precisely
when I reaches its global minimum. This central time thus marks the mid-point
between a period of contraction and a period of expansion, or better (though this
remains to be justified): the Janus point between two periods of expansion with respect
to opposite arrows of time. It provides, in particular, a natural reference point for
parametrizing solutions of the shape space theory in terms of mid-point data on the
shape phase space T ∗S.5

There is one last redundancy from the relational point of view that Barbour et
al. (2015) call dynamical similarity. It comes from the invariance of the equations of
motion under a simultaneous rescaling of internal time D and shape momenta. More
simply put: two solution trajectories are physically identical if they correspond to the
same geometric curve in shape space, the same sequence of shapes, even if that curve
is run through at different “speeds.” Thus, factoring out the absolute magnitude of the
shape momenta at central time, we reduce the relevant phase space (that parametrizes
solutions) by one further dimension. The resulting space PT ∗S (mathematically, this
is the projective cotangent bundle of shape space S) is compact, which means, in

5Mathematically, this is the cotangent bundle of shape space S, just as Hamiltonian phase space is
the cotangent bundle of Newtonian configuration space.

183



11.6. GRAVITY AND TYPICALITY FROM A RELATIONAL POINT OF VIEW

particular, that it has a finite total volume according to the uniform volume measure.
And this is where the relational formulation, i.e., the elimination of absolute degrees
of freedom, really starts to pay off. Since the uniform measure on PT ∗S – which
Barbour et al. take to be the natural typicality measure – is normalizable, it allows
for a statistical analysis that avoids the ambiguities resulting from the infinite phase
space measure in the Carroll model. Unfortunately, the construction of the measure is
not entirely canonical but involves the choice of a metric on shape space. And while
the choice made by Barbour and collaborators seems natural enough, the justification
of the typicality measure for the shape space theory remains a critical step that would
require a more in-depth analysis. (Dürr, Goldstein, and Zanghì (2019) provide an
insightful discussion, though focussing on the quantum case.) Deviating from the
notation of Barbour et al., we denote their measure on the reduced phase space by µε.

Shape complexity and the gravitational arrow

To describe the macro-evolution of a gravitating system on shape space, Barbour and
collaborators introduce a dimensionless (scale-invariant) macro-variable CS which they
call shape complexity:

CS = −V ·
√
I. (11.12)

Comparison with (11.5) and (11.6) (setting E = 0 and remembering that U = −V )
shows an relationship between this shape complexity and the gravitational entropy that
we computed on absolute phase space: S(E = 0, I, U) ∝ N log(

√
ICS). Recalling the

previous discussion (or noting that CS ≈ R/r, where R is the largest and r the smallest
distance between particles), we also see that low shape complexity corresponds to dense
(on the scale of r) homogeneous states in absolute space, while high shape-complexity
indicates “structure” – dilute configurations of multiple clusters.

On shape space, considering the simplest case of N = 3 particles, the configuration
of minimal shape complexity is the equilateral triangle, while the configuration of
maximal shape complexity corresponds to “binary coincidences” in which the distance
between two particles – relative to their distance to the third – is zero. This is to
say that 3-particle configurations with high shape complexity will, in general, contain
a Kepler pair (a gravitational bound state of two particles) with the third particle
escaping to infinity.

Above, we discussed the typical evolution of −V · I and found it to be roughly
parabolic or U-shaped. Analogously, one can conclude that the evolution of CS =
−V ·

√
I (in Newtonian time) will typically exhibit a V-shaped profile: it has a global

minimum at central time (D = 0), from which it grows roughly linearly (modulo
fluctuations) in both time directions (see Fig. 11.6). In the terminology of Barbour,
Koslowski, and Mercati, this defines two opposite gravitational arrows of time with the
Janus point as their common past. Note that these are not entropic arrows, though
our previous discussion strongly suggests that the evolution of the shape complexity
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on shape space will align with the evolution of the gravitational entropy (11.6) on
absolute space.

A remarkable feature of the relational theory, however, is that it reveals the origin
of the gravitational arrow to be dynamical rather than statistical: the negative of
the shape complexity corresponds to the potential that generates the gravitational
dynamics on shape space. There is thus a dynamical tendency towards higher values
of CS (lower values of the shape potential). In contrast, Boltzmannian statistical
mechanics suggest that entropy increase is typical because there are a great many
more high-entropy than low-entropy configurations that a system could evolve into. It
does not suggest that physical forces are somehow driving the system towards higher
entropy states.

Figure 11.5: Top: evolution of the shape complexity CS found by numerical simulation for N = 1000
and Gaussian initial data. Bottom: schematic depiction (not found by numerical simulation) of three
corresponding configurations on Newtonian space-time. Source: Barbour et al. (2015).

Turning to the statistical analysis of the shape space theory, we are interested
in determining typical values of CS at the Janus point. To this end, we consider
the measure assigned to mid-point data (Janus point configurations) with low shape
complexity

CS ∈ [Cmin, α · Cmin] := I1, (11.13)

respectively high shape complexity

CS ∈ (α · Cmin,∞) := I∞. (11.14)

Here, 1 < α � ∞ is some positive constant, and Cmin is the smallest possible value
of CS . The key result (not yet rigorously proven but strongly substantiated by the
3-particle case and numerical experiments for large N) is that already for small values
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of α (α < 2 for large N)
µε(I∞)

µε(PT ∗S) ≈ 0, (11.15)

and consequently
µε(I1)

µε(PT ∗S) ≈ 1. (11.16)

This means: it is typical that a universe at the Janus point (the beginning of our
macro-history) is in a very homogeneous state!

Regardless of the philosophical merits of relationalism, the relational theory of Bar-
bour, Koslowski, and Mercati thus comes with two great virtues: First, it provides a
sensible normalizable measure on the set of possible micro-evolutions that still estab-
lishes an arrow of time as typical. Even more spectacularly, typical evolutions with
respect to this measure go through very homogeneous configurations at their Janus
point (∼ the “big bang”). In other words, initial states that have very low entropy
from the absolutist point of view come out as typical in the shape space description –
provided one accepts the proposed measure on PT ∗S as a natural typicality measure.
This would resolve the two potential issues that we have identified in the Carroll model:
the “mysteriously” low entropy of our universe, and the justification for locating our
present state reasonably far away from the entropy minimum.

Entaxy and Entropy

On the other hand, Barbour et al. introduce another concept called (instantaneous)
entaxy that I find much less compelling. The instantaneous entaxy (the authors also use
the term solution entaxy for the measure µε on PT ∗S) is supposed to be the measure
of a set of shape configurations corresponding to a given value of shape complexity. It
thus seems prima facie analogous to the Boltzmann entropy defined in terms of the
macro-variable CS , with the notable exception that it decreases in time as the shape
complexity increases. Recall, however, that the measure µε was only defined on mid-
point data, by cutting through the set of solution trajectories at their Janus points,
so to speak. Barbour et al. now extend it to arbitrary (internal) times by stipulating
that the entaxy associated with a particular value of shape complexity at any point in
history is the measure of mid-point configurations with that same shape complexity.

This definition seems somewhat ad hoc and corresponds to comparing macrostates
at different times in terms of a measure that is not stationary under the dynamics: A
set of mid-point data will have a bigger size than the set of time-evolved configurations
(phase space volume gets lost, so to speak). Indeed, on the 3-particle shape space, one
can explicitly show that the points of maximal shape complexity are dynamical at-
tractors; hence, a stationary continuous measure on shape phase space does not exist.
In general, it is not even clear if stationary measures are a meaningful concept in
relational mechanics since there is no absolute (metaphysical) sense in which configu-
rations on different solution trajectories with the same internal time are simultaneous.
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They merely happen to agree on whatever part or feature of the configuration plays
the role of an internal “clock.” For all these reasons, the entaxy should not be regarded
as a shape analogon of the Boltzmann entropy (which is always defined in terms of
a stationary measure). In particular, the fact that the gravitational arrows point in
the direction of decreasing rather than increasing entaxy is not in contradiction with
Boltzmannian arguments.

Finally, one may wonder whether we could compute on absolute phase space the
Boltzmann entropy associated to the shape complexity or other scale-invariant macro-
variables. Note that for E = 0, our gravitational entropy (11.6) is a function of −V I.
Couldn’t we have just computed an entropy for the macro-variable CS = −V

√
I,

instead? Interestingly, the answer is negative, and the reason is the following simple
result:

Proposition 11.6.1. Let µ a measure on Rn (equipped with its Borel sigma-algebra),
which is homogeneous of degree d, i.e., µ(λA) = λdµ(A) for any measurable A ⊂ Rn

and all λ > 0. Let F : Rn → Rm be a measurable function homogeneous of degree k,
i.e., F (λx) = λkF (x), ∀x ∈ Rn. Then we have for any measureable value-set J ⊂ Rm:

µ
(
{x | F (x) ∈ λkJ}

)
= λdµ

(
{x | F (x) ∈ J}

)
. (11.17)

Proof.

µ
(
{x | F (x) ∈ λkJ}

)
= µ ({λx | F (x) ∈ J}) = λdµ ({x | F (x) ∈ J}) .

From this, we can immediately conclude:

Corollary 11.6.2. If the measure µ is homogeneous of degree d 6= 0 and F is homo-
geneous of degree 0 (i.e., scale-invariant), then

µ
(
F−1(J)

)
∈ {0,+∞}. (11.18)

Proof. Applying (11.17) with k = 0 and d 6= 0 yields µ
(
F−1(J)

)
= λdµ

(
F−1(J)

)
for

any λ > 0.

Hence, using a homogeneous phase space measure – such as the Liouville measure on
Γ ∼= R6N – macro-regions defined in terms of scale-invariant macro-variables must have
measure zero or infinity, so that the corresponding Boltzmann entropy would be ill-
defined. This suggests that the concept of entropy is intimately linked to absolute scales
and thus not manifestly relational. Note, in particular, that expansion and heating –
processes that are paradigmatic for entropy increase (especially, but not exclusively in
our analysis of gravitating systems) – require absolutes scales of distance and velocity,
respectively.

187



11.6. GRAVITY AND TYPICALITY FROM A RELATIONAL POINT OF VIEW

This also emphasizes once again that the gravitational arrow of Barbour et al. is
not an entropic arrow, although it matches – maybe accidentally, maybe for reasons I
don’t quite understand – the entropic arrow that we identified on absolute phase space.
The result also leaves the relationalist with the following interesting dilemma: Either
the notion of entropy is meaningful only for subsystems – for which the environment
provides extrinsic scales – or we have to explain why the entropy of the universe is a
useful and important concept despite the fact that it is related to degrees of freedom
that are strictly speaking unphysical, corresponding to mere gauge in the shape space
theory.

Can we dispense with the Past Hypothesis?

In conclusion, the works of Carroll and Chen as well as Barbour, Koslowski, and Mer-
cati show that it is possible to establish an arrow of time as typical, without the need
to postulate special boundary conditions or any other form of Past Hypothesis. By
proposing the definition of a Boltzmann entropy for a classical gravitating universe,
we argued that Newtonian gravity provides a relevant realization of Carroll’s entropy
model which can be compared to the shape space formulation of Barbour et al. We
found, in particular, that the gravitational arrows identified by Barbour and collabo-
rators in terms of shape complexity will match the entropic arrows in the theory on
absolute space. The extension to other microscopic theories (and/or macroscopic state
functions) will require further research.

The relationalist and the absolutist approaches both have the resources to avoid
the reversibility paradox and ground sensible inferences about the past and future
of the universe. However, while certain ambiguities remain in the Carroll model –
resulting, in particular, from the non-normalizability of the phase space measure –
those issues are resolved by the shape space theory of Barbour et al. (provided we
accept their proposed typicality measure). In any case, for a Newtonian gravitating
universe, Barbour’s analysis suggests that homogeneous configurations at the “big
bang” (Janus point) are typical, explaining why the universe started in what looks
like a very low-entropy state from an absolutist perspective. However, if the shape
space theory is actually fundamental, the “entropy of the universe” turns out to be a
somewhat spurious concept whose status remains to be discussed in more detail.
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Appendix: Computation of the gravitational entropy

We compute the phase space volume of the macro-region Γ(E, I ± εI, U ± εU), i.e.:

1
N !h3N

∫
d3Np

∫
d3Nq δ

(
H(q,p)− E

)
1
{

(1− ε)U ≤
∑
i<j
i,j=1

Gm2

|qi − qj |
≤ (1 + ε)U

}
1
{

(1− ε)I ≤
N∑
i=1

mq2
i ≤ (1 + ε)I

}
,

(11.19)

with the Hamiltonian

H(q, p) =
N∑
i=1

p2
i

2m −
∑

1≤i<j≤N

Gm2

|qi − qj |
.

We shall prove the following

Proposition. If the scale-invariant quantity
√
IU is large enough that

√
IU ≥ 4Gm5/2 log(N)N5/2 , (11.20)

we obtain the bounds:

|Γ(E, I ± εI, U ± εU)| ≥ C e−
9
2N
(Gm2ε

U

)3
(E + (1− ε)U)

3N−2
2
( I
m

) 3N−3
2

,

|Γ(E, I ± εI, U ± εU)| ≤ C (E + (1 + ε)U)
3N−2

2
(
(1 + ε) I

m

) 3N
2
,

for any 1 > ε > 2
N and N ≥ 4, where C = (2m)

3N−2
2

2(N !)h3N

(
Ω3N−1

)2
, with Ω3N−1 the surface

area of the (3N − 1)-dimensional unit sphere.

For non-negative E, this can be simplified further by using (E + (1 + ε)U)n ≤ (1 +
ε)n(E + U)n ≤ eεn(E + U)n, respectively (E + (1 − ε)U)n ≥ (1 − ε)n(E + U)n ≥
e−2εn(E + U)n, for ε < 1

2 .

Proof. We first perform the integral over the momentum variables and are left with

(2m)
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{
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∑
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}
1
{
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mq2
i ≤ (1 + ε)I

}
.
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From this, it is straightforward to obtain the upper bound:

(11.19) ≤ (2m)
3N−2

2

2N !h3N Ω3N−1 2Ω3N−1

3N (E + (1 + ε)U)
3N−2

2
[(

(1 + ε) I
m

) 3N
2 − ((1− ε) I

m
)

3N
2
]

≤ C

3N (1 + ε)
3N
2
(
E + (1 + ε)U

) 3N−2
2
( I
m

) 3N
2
.

For the lower bound, we consider the set B := B1 × . . .×BN ⊂ R3N defined by

Bj :=
{
|qj | ∈ [(2j − 2)ξ, (2j − 1)ξ]

}
,

with ξ = ξ(I,N) to be determined soon. That is, we consider a series of concentric
spheres around the origin, their radii being an increasing multiple of ξ, and configura-
tions for which the volume between two spheres is alternately empty or occupied by a
single particle. In B, we have mq2 ∈ [I+ −∆I, I+] with

I+ =
N∑
i=2

mq2
i ≤ m

N∑
i=2

(2i− 1)2ξ2 = m

3 N(4N2 − 1)ξ2 (11.21)

and

∆I = m
N∑
i=1

[(2i− 1)2 − (2i− 2)2]ξ2 = m
N∑
i=1

[4i− 3]ξ2 ≤ 2mN2ξ2 ≤ 2
N
I+.

We thus set

ξ :=
√

3I
mN(4N2 − 1) , (11.22)

so that I+ = I, and note that 2
N I < εI for ε > 2

N , so configurations in B are within
the right range of values for the moment-of-inertia macrovariable.

Now we have to make sure to consider configurations whose potential energy is also
in the right range |V (q)| ∈ [U ± εU ].

To this end, we note that for q ∈ B, the distance between two particles is bounded
from below by |qi−qj | ≥ (2(j− i)− 1)ξ, and for each 1 ≤ k ≤ N − 1, there exists less
than N particle pairs with j − i = k. Hence, the potential energy is bounded by

∑
i<j

Gm2

|qi − qj |
≤ N

N−1∑
k=1

Gm2

(2k − 1)ξ ≤ 2N log(N)Gm
2

ξ
< U, (11.23)

where we used the assumption (11.20) and the estimate

N−1∑
k=1

1
(2k − 1) ≤ 1 +

N−1∑
k=2

1
k
≤ 1 +

N∫
1

1
x

dx = 1 + log(N) ≤ 2 log(N), for N ≥ 4.

In particular, we know that for q ∈ B and, e.g., q1 = 0, we have |V (q)| < U . But also
that limq1→q2 |V (q)| = +∞. Hence, by the mean value theorem, there exists for any
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(q2, . . . ,qN ) ∈ B2 × . . .×BN a λ ∈ (0, 1) such that −V (λq2,q2, . . . ,qN ) = U .
Now it is not difficult to check that if we place q1 at a distance of not more than

r := εGm
2

2U from λq2, the potential energy |V (q)| =
N∑
i=2

Gm2

|q1−qi|
+

∑
16=i<j≤N

Gm2

|qi−qj |
will

change by less than ||V (q)| − U | ≤ εU . Moreover, while q1 may no longer be in B1,
the moment of inertia m

∑N
i=1 q2

i increases by less than m(3ξ)2 < εI and thus remains
within the interval [I ± εI].

We denote by Kr[q] the ball of radius r around λq2, with λ = λ(q2, . . . ,qN ) as
introduced above. Its volume is 4π

3

(
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)3
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Summing over all possible permutations of the particles over the rings in the definition
of B, we get an additional factor of N !. With the Sterling approximation Γ(n + 1) =
n! >

√
2πn

(
n
e

)n
, we finally obtain a lower bound of the form

(11.19) ≥ C e−
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.
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Chapter 12

Quantum Mechanics

12.1 The Measurement Problem

If, after more than a century, people are still debating Schrödinger’s cat, then not
just because the brilliant physicist found such a vivid image to illustrate his paradox.
Rather, Schrödinger hit the nail right on its head. He formulated the measurement
problem of quantum mechanics, and this measurement problem shows why the ortho-
dox view of the theory is not just unsatisfactory but completely untenable.

In a nutshell, the problem with quantum mechanics is the following: There is only
one equation and one physical entity defining the theory – the Schrödinger equation
and the wave function – and they do not describe the phenomena as we perceive
them. There are various ways to see that, for instance as follows: Suppose a system is
described by a linear combination of wave functions ϕ1 and ϕ2 and an apparatus can
display either “ϕ1” or “ϕ2” by interacting with the system.

In principle, this apparatus must also have a quantum mechanical description.
After all, we conceive the measuring apparatus as consisting of atoms and molecules,
and if all these atoms and molecules are described by a wave function, then this wave
function must also provide a quantum mechanical description of the apparatus as a
whole. This means that the apparatus has states Ψ1 und Ψ2 – pointer positions “1”
and “2” corresponding to wave packets with disjoint support in configuration space –
and a ready state Ψ0, such that:

ϕiΨ0
Schrödinger evolution−→ ϕiΨi . (12.1)

The Schrödinger time evolution (12.1), however, is linear. Therefore, a system wave
function

ϕ = c1ϕ1 + c2ϕ2, c1, c2 ∈ C, |c1|2 + |c2|2 = 1,

leads to

ϕΨ0 = (c1ϕ1 + c2ϕ2)Ψ0
Schrödinger evolution−→ c1ϕ1Ψ1 + c2ϕ2Ψ2. (12.2)
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This seems like an absurd result. The superposition

c1ϕ1Ψ1 + c2ϕ2Ψ2 (12.3)

describes an entangled state between system and apparatus in which the pointer po-
sition is “1” and “2” at the same time. “Pointer” here is just a stand-in for whatever
registers or indicates the measurement result. In Schrödinger’s famous cat experiment,
ϕ1 would describe a decayed atom (leading to the release of hydrocyanic acid) and ϕ2

the not yet decayed atom (so that the flask of poison remains intact). (12.3) thus
describes a superposition of dead cat and alive cat.

Thus, if we insist that the result of the measurement is either “1” or “2”, but not
both at the same time, we have the following situation: Either the wave function of
the system after measurement is not (12.3). Then the Schrödinger equation is not
correct, at least not always. Or the wave function of the system is indeed (12.3), but
this wave function does not provide a complete description of the physical situation.
In this case, we are missing precisely those variables that make the difference between
a pointer pointing to the left and a pointer pointing to the right – the variables that
make the difference between a dead cat and a living cat.

The orthodox answer

In order to maintain the completeness of the quantum mechanical description, John
von Neumann, Werner Heisenberg, and others introduced an additional axiom into
the theory. In the process of “measurement” or “observation,” they postulated, the
Schrödinger time evolution is suspended and replaced by a random dynamic which
reduces the superposition (12.3) with probability |ci|2 to the wave function ϕiΨi. How-
ever, in contrast to the Schrödinger evolution, this new dynamic, the collapse of the
wave function, was not supposed to be described by a precise mathematical law. It
is introduced ad hoc, as a property of “the observer.” Indeed, it is precisely for this
reason that the observer assumes a central role in the theory, as the subject whose act
of measurement or observation brings about the physical facts. Wolfgang Pauli de-
scribed this as an “act of creation lying outside the laws of nature.” However, it is not
even these esoteric notes of the Copenhagen school that prevent us from accepting the
collapse postulate as part of a serious physical theory, but simply its “unprofessional
vagueness” (Bell). We now have two contradictory dynamics for the wave function,
so when exactly does one or the other apply? When exactly is a physical process
considered a “measurement”? And what distinguishes an “observer” from a molecule,
or a cat, or the pointer of an apparatus? Here is Bell in his brilliant article Against
measurement:

It would seem that the theory is exclusively concerned about ‘results of
measurement’, and has nothing to say about anything else. What exactly
qualifies some physical systems to play the role of ‘measurer’? Was the
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wavefunction of the world waiting to jump [collapse] for thousands of mil-
lions of years until a single-celled living creature appeared? Or did it have
to wait a little longer, for some better qualified system ... with a Ph.D.?
If the theory is to apply to anything but highly idealised laboratory oper-
ations, are we not obliged to admit that more or less ‘measurement-like’
processes are going on more or less all the time, more or less everywhere?
Do we not have jumping then all the time? (Bell, 2004, p. 216)

Three solutions to the measurement problem

Following Tim Maudlin (1995), a precise and general formulation of the measurement
problem can be given as follows: There are three principles that a naive reading of
quantum theory seems to suggest, and these three principles together are logically
inconsistent; they cannot all be true.

1) The wave function of a system provides a complete description of its physical state.

2) The time evolution of the wave function always follows a linear (Schrödinger) equa-
tion.

3) Measurements (usually) have unique outcomes.

The contradiction was derived above and is, in essence, Schrödinger’s cat paradox. If
the wave function follows a linear time evolution, the measurement procedure (12.2)
results in a macroscopic superposition (12.3). If (12.3) provides a complete description
of the physical state of the measurement device, the outcome of the measurement can-
not be unique. Thus: 1)∨2)⇒ ¬3). The three assumptions are mutually inconsistent,
and any coherent formulation of quantum mechanics must negate at least one of them.

The negation of 1) leads to Bohmian mechanics, which postulates an ontol-
ogy of point particles so that the state of a system is given by the actual particle
configuration in addition to the wave function. For an N -particle system, this is a
pair (ψ,Q), with Q ∈ R3N the particle configuration in physical space. The role of
the wave function ψ is first and foremost to guide the motion of the particles. This
is expressed by a precise mathematical law in which the wave function enters. The
measurement problem is solved because every system has a well-defined spatial con-
figuration at all times, given by the positions of its constituent particles. The wave
function of a measurement device (for instance) may be in a superposition (12.3), but
the actual configuration Q describes a pointer pointing either to the left or to the right.

The negation of 2) leads to objective collapse theories like GRW (after Ghi-
rardi, Rimini, andWeber (1986) ), which modify the Schrödinger equation by a stochas-
tic (non-linear) collapse term. This collapse law is such that systems with few degrees
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of freedom hardly ever collapse, while macroscopic superpositions are typically de-
stroyed almost instantly. The crucial point is that the collapse of the wave function
is now described by a precise mathematical law which is valid at all times; it is not,
as in orthodox quantum mechanics, an ad hoc postulate tied to vague notions like
“measurements” or “observers.”

The negation of 3) leads to the Many Worlds theory. If we insist on 1) and
2), we have no other choice but to accept macroscopic superpositions such as those of
“dead cat” and “alive cat” as a consequence of quantum mechanics. The radical conclu-
sion, generally attributed to Hugh Everett III., is that both parts of this superposition
describe a real physical state. But wouldn’t we then observe two cats rather than one?
Or maybe a cat in an absurd hybrid state of “dead” and “alive”? No, we would not,
because the superposition of the wave function doesn’t stop with the cat. It would
come to include the experimentalist herself, the laboratory, indeed the entire universe,
so that everything joins in the splitting described by (12.3). In the last resort, this
description of nature thus comprises two “worlds,” corresponding to the decoherent
branches of the wave function: In one world, the radioactive atom has decayed, the cat
has been poisoned to death, and the experimentalist is sad. In the other, the atom has
not decayed, the cat is alive and well, and the experimentalist takes the animal back
home. Because of the linearity of the Schrödinger equation, the two “copies” of the
experimentalist can never interact, and decoherence makes it practically impossible to
bring the dead cat and the living cat back into interference. Thus, both worlds can
exist in parallel, without observers in one ever (directly) perceiving the other. They
have a common past but are causally disjoint with respect to their future evolution.

It is not my goal here to argue that Bohm, GRW, and Everett provide the only solutions
to the measurement problem, but by and large, the three strategies exhaust the space
of logical possibilities. Either we admit additional physical variables over and above
the wave function, or we modify the linear wave equation, or we accept a Many-Worlds
picture.

Connecting the wave function to the world

From an orthodox perspective, the measurement problem is often phrased as the ques-
tion when (and how) the collapse of the wave function occurs, i.e., when exactly the
linear Schrödinger evolution is suspended in favor of the random state reduction. The
deeper issue behind the measurement problem, however, is how the wave function (or
the quantum formalism more generally) is supposed to connect at all to the world that
we experience. The deeper issue, in other words, is not what to make of a superposed
wave function of “dead cat” and “alive cat” but what a complex-valued function on
a high-dimensional configuration space (or maybe some vector in an abstract Hilbert
space) has to do with a cat in the first place.
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Before even getting at the infamous collapse postulate, standard quantum mechan-
ics tries to relate the wave function to observable quantities by other abstract axioms
involving self-adjoint operators and their eigenvalues. If we look at an honest textbook
like Cohen-Tannoudji et al. (1991), we find postulates such as:

1. At a fixed time t0, the state of a physical system is defined by specifying a wave-
function ψ(x, t0).

2. Every measurable physical quantity Q is described by an operator Q̂; this operator
is called an observable.

3. The only possible result of the measurement of a physical quantity Q is one of the
eigenvalues of the corresponding observable Q̂.

4. When the physical quantityQ is measured on a system in the normalized state ψ, the
probability P(qn) of obtaining the non-degenerate eigenvalue qn of the corresponding
observable Q̂ is

P(qn) =
∫
φ∗nψ (12.4)

where φn is the normalized eigenvector of Q̂ associated with the eigenvalue qn.

So the “unprofessionally vague” notions of “measurement” (or “measurable,” or “mea-
sured”) appear already in postulates 2–4 before we arrive at the contradiction between
wave function collapse (postulate 5) and the linear Schrödinger evolution (postulate 6).
In particular, there is no clear prescription for which observable-operator corresponds
to which “physical quantity,” or what measurement procedure is suitable for measur-
ing it (and no way to tell by analyzing the textbook theory). We rather have to trust
that the theoretician will know what computations to do, and the experimentalist will
know what experiment to perform so they can compare their data. Vagueness and
ambiguity is certainly unacceptable when it comes to the dynamical laws of a theory,
but why should they be more acceptable when it comes to how the formalism of the
theory relates to the physical and empirical facts?

In order to provide a precise and objective description of nature, modern quantum
theories have, by and large, followed two different strategies.

One is the primitive ontology program (see, e.g., Allori et al. (2008, 2014); Esfeld
(2014a) and Bell’s notion of “local beables” in Bell (2004, Ch. 7)) which admits
additional physical variables, over and above the wave function, that represent the
fundamental constituents of matter in space and time. Such theories – with Bohmian
mechanics as the prime example – thus relieve the wave function from the burden of
representing matter, its role being instead a dynamical one for the evolution of the
primitive ontology.

The other program can be subsumed under the umbrella-term of wave function
functionalism. It tries to develop an objective description of nature in terms of the
wave function alone by locating macro-objects as patterns in the wave function (e.g.,
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Albert (2013); Ney (2015)). We will discuss this attempt below in the context of the
Many Worlds theory.

In any case, if the dynamical laws are mathematically consistent and the ontology
of a theory clear – if it is clear, in other words, how the theory seeks to describe matter
in space and time – there cannot be any ambiguities or contradictions. The description
may be wrong or empirically adequate, but it cannot be paradoxical.

Objective collapse theories are usually regarded as a third approach to solving the
measurement problem but actually fall in either one of the two camps just described.
The original GRW theory (now sometimes called GRW0) is a theory about the wave
function alone. However, there is still a difference between a cat and the wave function
of a cat – even a collapsed one – and GRW0 faces the same challenges as the Many
Worlds theory in making the connection. Nowadays, it is thus common to equip the
GRW theory with a primitive ontology, as well. One proposal (due to John Bell (2004,
Ch. 22)) regards the collapse centers themselves as the primitive ontology – discrete
“matter flashes” in space and time that constitute macro-objects (GRWf). Another
proposal (due to GianCarlo Ghirardi et al. (1995)) uses the GRW wave function to
define a continuous mass density field in physical space or spacetime (GRWm). Ei-
ther way, one can make the case that the stochastic collapse law adds nothing to the
Bohmian (or Everettian) solution of the measurement problem (Esfeld, 2018). How-
ever, since it leads to certain predictions that differ from those of the unitary quantum
theories, it may just turn out to be empirically more correct.

12.2 Born’s Rule and the Measurement Process

A common first reaction to the measurement problem is to insist that the wave func-
tion was never meant to describe the actual physical facts but that only its statistical
interpretation according to Born’s rule is significant. A superposition like (12.3) should
thus be read as saying that the measurement outcome is “1” with probability |c1|2 or
“2” with probability |c2|2. It is this statistical law, after all, that is experimentally
confirmed with great precision. Fair enough, but merely pointing to the Born rule
does not solve the measurement problem. The Schrödinger equation is a deterministic
equation and according to this equation, the wave function at the end of the experi-
ment is always (12.3). If this wave function provides a complete description of system
and apparatus, the outcome of the measurement is always the same. The identical
physical state, if complete, cannot on some occasions describe a measurement appa-
ratus whose pointer points to the left and on other occasions a measuring apparatus
whose pointer points to the right (cf. Maudlin (1995)). So again, either the linear
Schrödinger equation is incorrect, or we are missing precisely those physical variables
whose probability distribution the Born rule is supposed to describe.

That said, let us apply the Born rule to our measurement scenario and see where it
takes us. We describe the configuration space of the complete system by coordinates
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q = (x,y), where x ∈ Rk are the coordinates of the measured system (S) and y ∈ Rm

those of the measurement device (D). According to Born’s rule, we have

P(pointer points to 1) =
∫

supp Ψ1
|c1ϕ1Ψ1 + c2ϕ2Ψ2|2 dkx dmy (12.5)

= |c1|2
∫

supp Ψ1
|ϕ1Ψ1|2dkx dmy

+ |c2|2
∫

supp Ψ1
|ϕ2Ψ2|2dkx dmy

+2Re
(
c1c2

∫
supp Ψ1

(ϕ1Ψ1)∗ϕ2Ψ2dkx dmy
)

(12.6)

≈ |c1|2
∫
|ϕ1Ψ1|2dkx dmy = |c1|2 . (12.7)

Here, one has to note that since the supports of the two pointer wave functions on
configuration space are disjoint (or nearly so), the real part (12.6) is zero (or nearly so).
The probability of the outcome “1” is thus |c1|2, and the probability of the outcome
“2” is |c2|2, just as the rules of textbook quantum mechanics suggest. But what exactly
have we calculated here?

The response of Bohmian mechanics corresponds to the common way of speaking:
Born’s rule provides the probability distribution of the particle positions constitut-
ing the device with its pointer. |c1|2 is thus the probability that, at the end of the
measurement process, the pointer points left, indicating the measurement result “1.”

In the GRW theory, the same computation has a different meaning. Here, Born’s
rule provides first and foremost a probability distribution for the center of collapse.
Unless the collapse centers themselves are interpreted as the ontology of the theory
(the matter flashes mentioned above) |c1|2 is thus, first and foremost, the probability
that (12.3) collapses onto a wave function localized in the support of Ψ1.

The interpretation of Born’s rule in the Many Worlds theory is difficult. Here, it
doesn’t make sense to say that |c1|2 is the probability that the measurement outcome
“1” occurs because all possible outcomes occur with certainty. We shall, therefore,
postpone the issue to discuss probabilities in the Many Worlds theory in more detail.

Finally, one may ask what the meaning of Born’s rule is according to the orthodox
(Copenhagen) quantum theory. One could say that the above computation describes a
“position measurement” of the pointer. Then, |c1|2 is the probability that the pointer
points left, to “1,” if we look at it, but decidedly not the probability that the pointer
points left even if nobody looks. Alternatively, one could forbid the computation
altogether and insist that the probabilities must come from an observable-operator
(maybe a “cat-aliveness-operator”). The most orthodox answer of all – Bohr’s answer
– is that the computation is forbidden because a measurement device is too big to have
a wave function. If all this doesn’t sound too serious, then because, indeed, it cannot
be taken seriously.
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Observable operators as statistical book-keepers

In textbook quantum mechanics, much ado is made about the observable-operators
that are supposed to represent (somehow) observable quantities with their eigenval-
ues corresponding to the possible measurement values. Thus, I want to discuss very
briefly how the observable operators arise as nothing but convenient “book-keepers”
for measurement statistics.1 For further details, I refer the reader to Dürr et al. (2004)
(reprinted as Ch. 3 in Dürr et al. (2013a)) and Ch. 7 in Dürr and Lazarovici (2020).

Basically, it suffices to consider equations (12.1 – 12.7). Coupling of a system to
a measurement device leads to a canalization of the wave function into decoherent
(orthogonal) branches corresponding to different pointer states:

ϕΨ0 =
(∑

i

ciϕi

)
Ψ0 −→

∑
i

ciϕiΨi.

Now let Pi be the orthogonal projection onto ϕi. In Dirac notation Pi = |ϕi〉〈ϕi|.
Then, we immediately obtain:

〈ϕ, Piϕ〉 = |ci|2, (12.8)

corresponding to the Born probability for the pointer position i (i.e., Y ∈ supp Ψi) as
computed in (12.7). If, for any i ≥ 1, the measurement value indicated by the pointer
position i is αi ∈ R, the expectation value of the result of the measurement is:

∑
i≥1

αi|ci|2 = 〈ϕ,
∑
i≥1

αiPiϕ〉 = 〈ϕ, Âϕ〉 (12.9)

with the self-adjoint operator
Â =

∑
i≥1

αiPi. (12.10)

Mathematically, the right-hand-side of (12.10) is the spectral decomposition of Â.
Two points are important to take away. First and foremost, that the Born rule

for “position measurements” is sufficient to ground the entire measurement formalism
of quantum mechanics. Second, that the “observable values” arise, in general, only
through the process of measurement and the canalization of the wave function into
macroscopically disjoint branches, which can then be associated with the eigenspaces
of some linear operator on Hilbert space. All the confusion about “quantum logic”,
“hidden variables”, “metaphysical indeterminism” etc. comes only if one tries to think
of quantum observables as fundamental and of their eigenvalues as intrinsic properties
that a system might possess prior to, or independent of, the measurement process
(cf. Daumer et al. (1996); Bell (2004); Lazarovici et al. (2018); Dürr and Lazarovici
(2020)).

1An understanding that one could have already gathered from von Neumann’s seminal Mathema-
tische Grundlagen der Quantenmechanik (1932) had the operators not developed a “life of their own”
in the Heisenbergian tradition.
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Example (Spin Measurement). An instructive example is the measurement of spin on
a spin-1/2-particle. If one sends a spinor wave function ψ0 = φ0(x)

(α
β

)
, |α|2 + |β|2 = 1

(in the z-spin eigenbasis) through a Stern-Gerlach-magnet oriented in z-direction, the
wave function splits into spatially separating parts

ψt = φ+(x, t)
(
α

0

)
+ φ−(x, t)

(
0
β

)
.

φ+ is deflected in positive z-direction and φ− in negative z-direction, and the experi-
ment is such that after a sufficient amount of time, the two wave parts will no longer
overlap. At least in Bohmian mechanics, it now makes sense to ask which of the two
wave packets is guiding the particle. In any case, the probability for spin UP and spin
DOWN is simply the probability that the particle is found in the support of φ+ (above
the symmetry axis) respectively φ− (below the symmetry axis) when registered by a
detector or on a photographic plate. Using Born’s rule, we compute

P(Spin UP) = P(X ∈ suppφ+) = |α|2
∫
|φ+(x, t)|2 d3x = |α|2,

P(Spin DOWN) = P(X ∈ suppφ−) = |β|2
∫
|φ−(x, t)|2 d3x = |β|2.

These probabilities can be read off easily from the projections to the spin components(1
0
)
respectively

(0
1
)
. Written in matrix, we have

P+ =
(

1 0
0 0

)
, P− =

(
0 0
0 1

)
,

and immediately obtain

〈ψ, P+ψ〉 = |α|2, 〈ψ, P−ψ〉 = |β|2. (12.11)

The expectation value is, accordingly,

~
2 P(spin UP)− ~

2 P(spin DOWN) = ~
2 〈ψ, P+ψ〉 −

~
2 〈ψ, P−ψ〉

= 〈ψ, ~2(P+ − P−)ψ〉 = 〈ψ, ~2σzψ〉.

Here, the Pauli matrix ~
2σz, commonly called the “z-spin-observable”, appears as the

book-keeping operator associated with the experiment.
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Typicality and Observation

It is instructive to carry our computation (12.5) one step further, and a consider a
“measurement of the pointer position” by another system C. We may think of an
“observer” looking at the measurement device, although I would prefer a camera or
some other system under no suspicion of consciousness. The spatial resolution of such
an observation could be finer than the spread of the “pointer states” Φi

2, but we
shall consider the simplest case in which the measurement interaction leads to a wave
function of the form

c1ϕ1Φ1Ψ1 + c2ϕ2Φ2Ψ2, (12.12)

where Ψ1 is concentrated on a region L of the configuration space of C corresponding
to the camera recording a pointer pointing left, and Ψ2 is concentrated on a region
R corresponding to the camera recording a pointer pointing right. (And where it is
assumed that the recorded measurement device has been perfectly isolated up to this
point, so there is no environmental decoherence.)

We will now analyze the situation in Bohmian terms – which are the simplest ones
–, but the transfer at least to collapse theories is straightforward. So, what is the
probability that the pointer actually points to the left, i.e., Y ∈ L := supp Φ1, while
the camera records a pointer pointing right, i.e., Z ∈ R := supp Ψ2? We find

P(Y ∈ L, Z ∈ R) =
∫
Rk×L×R

|c1ϕ1Φ1Ψ1 + c2ϕ2Φ2Ψ2|2 dkx dmy dnz ≈ 0, (12.13)

since Φ2 is (approximately) zero on L, while Ψ1 is (approximately) zero on R, hence
both Φ1Ψ1 and Φ2Ψ2 are just about zero on L×R. Simply put: if you look where the
pointer is, you will typically see the pointer where it is.

Figure 12.1: Sketch of a position measurement (recording of the pointer position) in
configuration space. On the z-axis, the degrees of freedom of the device, on the y-axis,
those of the camera. The dot indicates the actual configuration of the system D ⊗ C.

2Thus corresponding to a Schrödinger evolution Φi −→
∑

j
ΦijΨj , where

∑
j

Φij = Φi and the Ψj

are the record states of the “observer.”
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However, it is quite realistic to assume that the wave packets Φi or Ψi have long
“tails” – i.e., some overlap in configuration space – so that P(Y ∈ L, Z ∈ R) is not
exactly zero but only nearly so (as indicated by the ≈ sign in (12.13)). Hence, there
is a very small, yet non-zero probability that the pointer configuration points to the
left (at least for a short period of time), while the camera – or “observer” – sees a
pointer pointing to the right. If the measurement devices are somewhat accurate, this
probability will be so small as to be practically negligible, but the atypical outcome
is still possible according to the theory. Would this mean that the configuration Y of
Bohmian particles (or GRW flashes) does not correspond to the “real” pointer position?
No, it means precisely what the theory says, namely that there is an extremely small,
yet non-zero probability that the pointer points left, while the camera records a pointer
pointing right.

And this shouldn’t be all that surprising upon reflection. Also according to classical
electrodynamics, it is possible, yet atypical, that I see the moon to my right although
it is actually to my left, because what I see is a very special fluctuation in the elec-
tromagnetic field. It is also possible, yet atypical, that I hold a thermometer – or my
finger – in hot water but register a very low temperature because all the fast particles
happen to move away from it.

The quantum mechanical (or Bohmian) analysis of the measurement process is thus
a nice illustration of the fact that atypicality can always undermine the reliability of
observations. Consequently, any inference from empirical evidence has to rely on a
form of Cournot’s principle, viz., on the assumption that the evidence has not been
produced by an atypical or very low probability event.

12.3 Quantum Equilibrium

We have already talked about the derivation of Born’s rule in Bohmian mechanics
that goes back to Dürr, Goldstein, and Zanghì (1992): The Bohmian laws make Born
statistics typical. For nearly all possible initial configurations of the universe – with
respect to the unique equivariant measure induced by the universal wave function –
ensembles of subsystems with effective wave function ϕ are |ϕ|2-distributed. Quantum
statistics thus hold in quantum equilibrium.

A mathematically nice, yet didactically unfortunate fact is that the typicality mea-
sure on the configuration of the universe and the typical distribution of subsystems
take the same functional form in terms of the respective wave functions. Occasionally,
this gives rise to the misguided criticism that the Bohmian derivation of the Born rule
is “circular”: |ψ|2 in, |ψ|2 out. It is thus important to keep in mind that the universal
wave function Ψ on the one hand and the effective wave function ϕ of subsystems on
the other have a different mathematical, physical, and metaphysical status. In partic-
ular, the |ϕ|2-distribution in terms of effective wave functions is indeed derived, not
assumed; quite analogous to the way in which the Maxwell distribution in classical
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statistical mechanics comes out as the equilibrium distribution of an ideal gas.
A vocal critic of the typicality account is Antony Valentini, who proposed instead

a “quantum H-theorem” showing the convergence of a non-equilibrium distribution to
the Born distribution (Valentini, 1991a,b; Valentini and Westman, 2005). Valentini’s
criticism is largely based on the just-mentioned “circularity objection” and an insis-
tance that typicality is synonymous with probability (which it is not) (Valentini, 1996,
2020). His dissenting opinion on what an explanation should look like is, however,
worth addressing in brief. For Valentini, the fact that quantum equilibrium is typical
with respect to the natural measure doesn’t justify the conclusion that our universe
has been in equilibrium all along; he wants to know how it got there.

Throughout this thesis, we have worried about the Past Hypothesis and the ques-
tion why our universe is not in thermodynamic equilibrium. Valentini’s worry here
seems to be quite the opposite, why a Bohmian3 universe should be in quantum equi-
librium and, more specifically, that if it did start out in quantum equilibrium, there
could no dynamical account for the fact. Three remarks seem pertinent here:

1. The typicality explanation is based on the Bohmian dynamics. It is the dynamics
that distinguish the typicality measure as the unique equivariant measure and
make the Born statistics typical. (For the relevance of equivariance, see Ch. 5.5.)

2. Bohmian ensembles in non-equilibrium converge to the Born distribution for
the same reason that classical gases converge to a Maxwell distribution: the
vast majority of possible micro-configurations realize the respective equilibrium
distribution. This is, of course, exactly what equilibrium means in Boltzmann’s
sense.

3. As with classical systems, not all non-equilibrium configurations in Bohmian
mechanics converge to equilibrium; only most of them do. Thus, somewhat iron-
ically, Valentini’s account would also require typicality, although conditioned on
an atypical initial macro-region that he assumes without need. Valentini re-
sponds that the “exceptional” initial conditions are ruled out empirically “by the
observation of equilibrium today” (Valentini, 2020). But then we could always
conclude, based on the observation of some phenomenon, that the initial condi-
tions were such as to realize the phenomenon (unless the phenomenon is strictly
impossible according to the theory). If all Valentini claims to have proven is that
convergence to quantum equilibrium is not impossible, the result is very weak.

In effect, this entire thesis makes the case that Valentini has it backward. Atypical
initial conditions, i.e., quantum non-equilibrium, would be puzzling and put the the-
ory in question, while the fact that Born statistics come out as typical tout court in

3Valentini insists on the name de Broglie-Bohm pilot wave theory as opposed to Bohmian mechanics,
which was mainly established through the work of Dürr, Goldstein, and Zanghì (DGZ). While it would
be an exaggeration to speak of two different theories, Valentini’s “interpretation” differs in several
respects from that of DGZ.

204



12.3. QUANTUM EQUILIBRIUM

Bohmian mechanics is the best case come true. This is not to say that the “quantum
H-theorem” is completely without merit, but that it is mostly academic. In contrast to
Boltzmann’s H-theorem, the set of cases to which it actually applies in our universe is,
for all we know, the empty set. Finally, Valentini (2020) claims that quantum equilib-
rium makes the Bohmian theory “unfalsifiable,” by which he really means: empirically
equivalent to standard quantum mechanics. Again, the opposite is true. Quantum
non-equilibrium could give rise to any correlation – or lack of correlation – between
the states of observed systems and the outcomes of measurements on those systems. In
other words, allowing for atypical initial conditions would make the theory unfalsifiable
because atypical initial conditions could produce virtually any data we like.

Thermodynamic arrow in Bohmian mechanics

We have just drawn some parallels (and contrasts) between quantum equilibrium and
thermodynamic (non-)equilibrium. There is indeed an important question that needs
to be addressed: If our universe, conceived as a Bohmian universe, is already in quan-
tum equilibrium, where does the thermodynamic arrow come from? The received view
to date is that it comes from the universal wave function, which started out in a spe-
cial, i.e., low-entropy, macro-region of Hilbert space. To make this somewhat precise,
we shall briefly summarize the generalization of Boltzmann’s statistical mechanics to
quantum states, according to Goldstein et al. (2010):

We can consider a (normalized) wave function Ψ as a microstate in a Hilbert space
H. More precisely, we shall restrict the system to a finite-dimensional “energy shell,”
corresponding to a degenerate eigenvalue of the Hamiltonian. Furthermore, we consider
a partition

H =
⊕
α∈A
Hα (12.14)

of the Hilbert space (energy shell) into orthogonal subspaces of varying though finite
dimension (maybe determined by a set of relevant observables). These subspaces cor-
respond to the Boltzmannian macro-regions and their respective quantum Boltzmann
entropy is

S(Hα) = kB log (dimHα) , (12.15)

where dimHα is the dimension of the subspace Hα. The equilibrium region is, as
always, the region of maximal entropy with dimHeq ≈ dimH. In contrast to classical
mechanics, however, a quantum state can be in a superposition of various macrostates,
i.e., Ψ need not lie entirely in one of the subspaces making up the partition. However,
we can say that Ψ realizes the macrostate corresponding to Hα iff 〈Ψ | Pα | Ψ0〉 ≈ 1,
where Pα is the projection onto Hα. In Bohmian mechanics, it also makes sense to say
that the macrostate of a system is determined by the branch of the wave function that
actually guides the particle configuration, while disregarding empty branches.

Remark (Decoherence). On the other hand, the branching of the wave function –
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also known as decoherence – is itself an important example of a thermodynamically
irreversible process. Heuristically, this can be understood as follows: Reversing the
thermodynamic evolution of a Newtonian macro-system would require an exact rever-
sal of ∼ 1024 particle velocities. Similarly, bringing two macroscopic wave packets back
into interference – i.e., to overlap on configuration space – would require precise control
over ∼ 1024 phases of the one-particle wave components. Simply put, each dimension
of configuration space is one along which the wave packets might fail to “meet,” which
makes it practically impossible to bring macroscopic wave functions back into interfer-
ence. Unfortunately, I am not aware of any treatment that makes the connection to
the Boltzmann entropy (12.15) precise.

Returning to the arrow of time in Bohmian mechanics, it is usually assumed that
the wave function of our universe is atypical, having started out in a macro-region
of very low (quantum) Boltzmann entropy, while relative to this wave function, the
particles are in quantum equilibrium. This can account for both the Born rule and
thermodynamic irreversibility but raises the usual worries about the Past Hypothesis,
referring, in this case, to the special initial macro-conditions of the quantum state (cf.
Chen (2018) for a discussion and interesting solution). However, Bohmian mechan-
ics opens up the intriguing possibility of a stationary wave function of the universe,
satisfying a “constraint” Schrödinger equation of the form

HΨ = 0 (12.16)

(that would correspond to the Wheeler-de-Witt equation in canonical quantum grav-
ity). In contrast to orthodox quantum theories, Bohmian mechanics would not be hit
by the “problem of time” (see, e.g., Kiefer (2015)). The particle configuration and
the effective wave functions of subsystems would, in general, evolve even if the uni-
versal wave function did not. This option seems particularly attractive if one favors
a nomological interpretation of the wave function according to which Ψ is part of the
physical laws rather than a beable over and above the particles (Dürr et al., 1997; Gold-
stein and Zanghì, 2013; Esfeld et al., 2014; Esfeld, 2014b). Hence, the ideal solution,
from my point of view, would be something like the following: a natural (possibly
non-normalizable) stationary wave function that makes a thermodynamic arrow typ-
ical (à la Carroll) with respect to some internal physical time-parameter (maybe the
scale factor of spacetime?) playing the role of a universal “clock.” Of course, physics
cares little about my wishes, and to date, this is merely the statement of a speculative
research program.

Why Determinism?
The appearances are a sight of the unseen.

— Anaxagoras, Fragment 21a

Since the empirical predictions of Bohmian mechanics are based on the Born rule, i.e.,
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the quantum equilibrium distributions, they will always agree with the predictions of
standard quantum mechanics – whenever the latter are well-defined. Now we could
point to various cases in which the orthodox predictions – in contrast to the Bohmian
ones – are indeed unclear or ambiguous4, and others in which observed phenomena are
much more naturally interpreted in Bohmian terms5. At the end of the day, however,
the empirical import of the Bohmian theory comes always from its statistical analy-
sis rather than the exact particle trajectories described by the deterministic guiding
equation.

It is usually regarded as an innovation of quantum physics that the phenomena are
necessarily “random” in this sense. The truth is that quantum theory entails rigorous
limits on our epistemic access to the micro-cosmom (see, in particular, the Bohmian
theorem of absolute uncertainty discussed at the end of Ch. 8.2, and Cowan and
Tumulka (2016) for an analogous result about collapse theories), but the idea that
according to classical mechanics (conceived as an atomistic theory) the situation was
radically different as a practical matter has always struck me as naive. Why would
anyone have ever thought it feasable to determine the initial conditions of Newtonian
particles with infinite precision? Indeed, we have seen that even the ostensibly deter-
ministic phenomena that are successfully predicted by Newtonian physics must ulti-
mately be understood as typical regularities of many-particle systems. What Einstein
said about Brownian motion in his 1910 lecture “Über das Boltzmann’sche Prinzip und
einige unmittelbar aus demselben fliessender Folgerungen”6 thus applies to Newtonian
trajectories, in general, and translates perfectly to the situation in Bohmian mechanics:

If we now conclude by asking once again the question “Are the observ-
able physical facts completely causally linked with one another?”, we must
firmly deny it. [...] According to the theory, one would need, in order to
[compute the trajectories], to know the position and velocity of every single
molecule, which seems impossible. Nevertheless, the laws of mean values
that have proven themselves all over, as well as the statistical laws of fluctu-
ations applicable in those areas of subtle effects, convince us that we must
adhere to the principle of a complete causal link between the occurrences
in the theory, even if we cannot hope to ever obtain direct confirmation
of this view through refined observations of nature. (Translation by the
author.)

In other words, what gives us trust in the microscopic theory is not primarily the
intuitive appeal that determinism and particle trajectories may or may not have, but
the naturalness and coherence with which it grounds the empirical (statistical) phe-
nomena. For most practical purposes, however, nothing is lost by simply postulating,

4E.g., arrival time measurements (Das and Dürr, 2019), or “Wigner’s friend” experiments
(Lazarovici and Hubert, 2019).

5Such as weak measurements of particle trajectories, cf., e.g., Dürr and Lazarovici (2020, Ch. 8).
6Archived by Physikalische Gesellschaft Zürich. http://www.pgz.ch/history/einstein/index.html
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rather than deriving, a bunch of phenomenological and probabilistic rules – which is
essentially what standard quantum mechanics is doing (Maudlin (2019) calls it the
“quantum recipe”).

The final irony is now that while Einstein’s derivation of Brownian motion proved
instrumental in fostering the acceptance of the atomic theory, mainstream physics has
long since regressed to the Machian positivism that called atomic particles a “figment
of the imagination” (Hirngespinste). No physicist today will flat out deny the existence
of atoms and more elementary particles, but many will at least pay lip service to the
idea that “particle” refers only to some abstract state characterized by its observable
properties.

In any case, one could certainly have a general argument about whether a deter-
ministic theory is always preferable ceteris paribus because it provides a more complete
description of nature’s course. This point, however, is somewhat mute since the sit-
uation we are facing in quantum theory is, though marked by underdetermination,
not quite a ceteris paribus situation. The objective collapse models that are seriously
entertained today make certain predictions that differ, in principle, from those of uni-
tary quantum mechanics, while various “interpretations” of the standard formalism,
which keep insisting on irreducible randomness in some form or the other, operate
with a very different standard of conceptual clarity and mathematical rigor. The one
alternative we have to discuss in more detail is the Everettian Many Worlds theory,
which – though fundamentally deterministic – provides a description of nature that
differs radically from the Bohmian one.

12.4 The Many Worlds Theory

Hugh Everett III. is credited as the father of the Many Worlds theory, although the
name was only later introduced by Bryce DeWitt, and it is historically disputed
whether Everett truly believed in the reality of many worlds or was, in fact, more
of an instrumentalist (see Barrett (2001)). Undisputed is Everett’s insistence that we
must take quantum theory seriously on all scales. He thus introduced the concept of
the universal wave function that already played a crucial role in earlier chapters (Ev-
erett, 1956). Everett recognized that the shifty split between the microscopic quantum
regime and the macroscopic classical regime couldn’t stand if quantum mechanics was
supposed to provide a coherent description of nature. In contrast to David Bohm
(1952a,b), however, Everett refused to introduce additional variables into the theory.
He insisted on “pure wave mechanics” defined only in terms of the (universal) wave
function and the linear Schrödinger equation. Today, it is generally accepted that such
a theory results in a Many-Worlds picture, in which the decoherent branches of the
wave function describe a multitude of different but equally real macro-histories.

One may certainly find such a theory bizarre or extravagant. John Bell (2004)
called it “above all ... extravagantly vague” (p. 194). Indeed, on closer examination,
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the problem with the Many Worlds theory is not the many worlds but the question,
how the theory is supposed to describe any world at all. In other words: how do we
locate tables and chairs and cats and measurement devices with pointer positions in
the wave function of the universe?

A first approximation to a solution goes something like this: Any point in 3N -
dimensional configuration space describes the positions ofN particles in three-dimensional
space, and this configuration can be such that it forms a table, or a cat, or a mea-
surement device whose pointer points to the left. And other points in configuration
space that lie nearby will describe particle configurations that deviate only slightly and
will thus look macroscopically the same. In this way, we can identify entire regions
of configuration space with certain macroscopic “images” that are coarse-grained from
particle configurations. Thus, if a particular branch of the wave function is (suitably
well) localized in a region of configuration space that coarse-grains to a cat, we can
say that we have located a cat in the wave function. And if another part of the wave
function is (suitably well) localized in a region of configuration space that coarse-grains
to a dead cat, we can say that we have located a dead cat in the wave function.

The problem with this response doesn’t even lie in the expression “suitably well”
that the reader may find justifiably suspicious. The problem with this response is
that we have been cheating all along. For what justifies the identification of points
in 3N -dimensional configuration space with configurations of N hypothetical particles
in 3-dimensional space? What even justifies the name “configuration space” for the
high-dimensional space on which the universal wave function lives? Configuration of
what? If the ontology of quantum mechanics is supposed to be the wave function and
the wave function alone, we cannot suddenly pretend that its degrees of freedom refer,
somehow, to particle positions. As de Broglie remark already in 1927: “It seems a little
paradoxical to construct a configuration space with the coordinates of points that do
not exist.” (Quoted from (Bacciagaluppi and Valentini, 2009, p. 346))

In the modern literature, one thus finds another strategy that falls under the philo-
sophical concept of functionalism. The idea, in a nutshell, is that being a cat is not
to be a cat-shaped configuration of matter. To be a cat is to act like a cat: to chase
after a mouse when it passes by, to purr when being caressed, to land on the feet when
jumping out the window, etc. The locate a cat or a table or a chair in the universal
wave function is thus not to find something that composes a cat or a table or a chair
(as Bohmian particles would), but to identify certain patterns in the wave function
that, in their interplay, satisfy the pertinent functional definitions. Since quantum me-
chanics describes interactions first and foremost on the level of the wave function, one
may expect (or hope) that the wave function will show the right dynamical behavior to
represent our world (and many others like it) in this way. And the hope is somewhat
substantiated by results about the classical limit of quantum mechanics which show
that, in certain situations, well-localized wave packets typically propagate, to a good
approximation, like classical Newtonian bodies.
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There are serious doubts about whether such a wave function functionalism can
work in practice, or even in principle (see, e.g., Monton (2006), Maudlin (2010)). We
experience the physical world as matter moving and interacting in three-dimensional
space, and it is not hard to understand how macro-objects like tables and cats could be
functionally realized by microscopic objects – like particles – moving and interacting
in three-dimensional space. (Indeed, Bohmians are also “macro-object functionalists”
(Lewis, 2007) in this sense.) But the degrees of freedom of the wave function do not
move and interact in three-dimensional space. They do not even stand in distance
relations to one another but live in different dimensions of the high-dimensional “con-
figuration” space. Hence, a cat-wave cannot chase a mouse-wave anymore than the
latitude of my hand can chase its longitude. The spacetime state realism proposed by
Wallace and Timpson (2010) (see also Wallace (2012a)), which tries to conceive the
Many Worlds theory in spatiotemporal terms, might fare better in this respect. But
the more elaborate the Everettian functionalism becomes, technically and metaphysi-
cally, the less plausible the claim that it is all “just unitary quantum mechanics” and
thus somehow more economical than Bohmian mechanics or collapse theories.

Probabilities in the Many Worlds theory

The ManyWorlds theory has trouble reproducing the statistical predictions of quantum
mechanics, i.e., the Born rule. The problem is not that the theory is deterministic
(there is only one equation, the Schrödinger equation, which is deterministic). We have
discussed in detail how objective probabilities can be grounded in deterministic laws,
including the derivation of Born’s rule in Bohmian mechanics. The critical question
when it comes to probabilities in the Many Worlds theory is rather: probabilities of
what? The theory says, after all, that every possible result of a quantum experiment
actually obtains.

If we consider, for example, a spin-measurement on a spin-1/2-particle, it doesn’t
seem meaningful to ask for the probability of measuring “Spin UP” or “Spin DOWN.”
In one world, the upper detector clicks and we measure spin UP, in another world,
the lower detector clicks and we measure spin DOWN (assuming, of course, that the
particle was not in an eigenstate).

Naively, one may think that quantum statistics refer to the relative frequency of
worlds. One outcome being “more likely” than another simply means that it will
be realized in a greater number of world-branches. However, if this were true, the
Many Worlds theory would make incorrect predictions. Suppose our electron is in the
spin-state

ψ1 = 1
2 |↑z〉+ 1

2 |↓z〉

and we measure its spin in z-direction. At the end of the experiment, our world will
have split into two branches: one in which we have measured “spin UP,” and one in
which we have measured “spin DOWN.” Each possible outcome thus occurs in an equal
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number of worlds, in accordance with the quantum mechanical probabilities. But now
suppose the electron is instead in the spin-state

ψ2 = 1√
3
|↑z〉+

√
2
3 |↓z〉.

According to Born’s rule, the probabilities are 1
3 for “spin UP” and 2

3 for “spin DOWN.”
According to the Many Worlds theory, however, the outcome is the same as before:
we end up with two branches, in which the result of the measurement is “spin UP”
and “spin DOWN,” respectively. Hence, naive “branch counting” – to the extent that
it even makes sense – doesn’t yield statistics consistent with quantum mechanical
predictions. Notably, the “weights” of the world-branches, i.e., the pre-factors c1 = 1√

3

and c2 =
√

2
3 , have no physical significance. It’s not like one world is “more real” or

“exists with higher intensity” than the other (pace Vaidman (2018) who seems to argue
in this way); the functional relations within a branch are all that matters.

In light of our previous discussions, the reader may already realize that the dif-
ficulties come, at least in part, from the idea that probabilities pertain to individual
events like the outcomes of a particular measurement. In any case, since many authors
find it difficult to identify interesting probabilities in an Everrettian multiverse, they
try to locate them in our head, that is, to interpret them as subjective probabilities.
For instance: after I perform a spin measurement – but before I look at the detector
to see the result – I don’t know if I find myself in a world in which the detector has
registered “spin UP” or a world in which it has registered “spin DOWN.” What should
be my “degree of belief” for one or the other? If someone offers me a 2:1 bet on “spin
UP,” should I take it? The “chances” in this case arise from my “self-locating uncer-
tainty” (Sebens and Carroll, 2016): I do not know which branch of the Many Worlds
universe my present self inhabits and the goal of a theoretical analysis would be to
show that it is rational to assign degrees of belief according to the quantum mechanical
probabilities. Other authors have taken a more decision-theoretic perspective, trying
to argue that it is rational, in an Everettian multiverse, to act according to the Born
probabilities. In this vein, Wallace (2012b) stipulates a set of 10 axioms to justify the
use of the branch amplitudes for calculating expected utilities in decision problems.
Maudlin (2014) points out that these axioms do not allow a rational agent to split a
payoff among two or more of her future copies, i.e., to see any utility in the option
all of the above. “If one were mischievous, one might even put it this way: Wallace’s
‘rationality axioms’ entail that one should behave as if one believes that Everettian
quantum theory is false.” (p. 804)

But regardless of how convincing such rationality principles may or may not be,
there is something unsatisfactory about retreating to dutch-book arguments or purely
subjective probabilities. After all, in our laboratories, we do not take bets or poll
scientists on their personal expectations. We observe concrete statistical regularities
that can be reproduced in independent experiments and are very well predicted by
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Born’s rule. A quantum theory should be able to account for these empirical facts –
otherwise, the theory is no good.

Everett’s typicality argument

Hugh Everett’s own explanation of the Born rule (which, oddly, has been abandoned
by modern Everettians) was based on a typicality argument – and thus on objective
probability assignments – not unlike to the one we have discussed in Bohmian me-
chanics. Therein, the |Ψ|2-measure determined by the universal wave function (that
is, the absolute squares of the pre-factors of the various branches) defines a typicality
measure on world-branches, which is then used to identify statistical regularities that
hold in the overwhelming majority of branches.

The typicality measure is thereby distinguished by something akin to stationarity
under the Schrödinger evolution. More precisely, Everett stipulated three requirements
for the typicality measure (Barrett, 2016):

1. It should be a positive function of the complex-valued coefficients associated with
the branches of the superposed wave function.

2. It should be a function of the amplitudes of the coefficients alone.

3. It should satisfy on additivity requirement: if a branch b is decomposed into a
collection {bi} of sub-branches, the measure assigned to b should be the sum of
the measures assigned to the sub-branches bi.

This last additivity condition can be understood diachronically as stationarity, in the
sense that the weight associated with any world at any time equals the sum of weights
associated with all of its branching histories at later times. As Hugh Everett explained:

We wish to make quantitative statements about the relative frequencies
of the different possible results of observation – which are recorded in the
memory – for a typical observer state; but to accomplish this we must have
a method for selecting a typical element from a superposition of orthog-
onal states. [...] The situation here is fully analogous to that of classical
statistical mechanics, where one puts a measure on trajectories of systems
in the phase space by placing a measure on the phase space itself, and then
making assertions ... which hold for “almost all” trajectories. [...] How-
ever, for us a trajectory is constantly branching (transforming from state to
superposition) with each successive measurement. To have a requirement
analogous to the “conservation of probability” in the classical case, we de-
mand that the measure assigned to a trajectory at one time shall equal
the sum of the measures of its separate branches at a later time. This
is precisely the additivity requirement which we imposed and which leads
uniquely to the choice of square-amplitude measure. (Everett, 1957, pp.
460-461)
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Consider for instance a sequence of z-spin-measurements performed on identically pre-
pared electrons in the state

α|↑z〉+ β|↓z〉, |α|2 + |β|2 = 1.

We denote by |⇑〉 respectively |⇓〉 the state of the measurement device (and, in the
last instance, the rest of the world), that has registered “spin UP,” respectively “Spin
DOWN.” After the first measurement, our world splits according to

α|⇑〉|↑z〉1 + β|⇓〉|↓z〉1 , (12.17)

where the index 1 indicates the measurement on the first particle. With the sec-
ond measurement, each world splits anew, namely according to the decoherent wave
branches:

α2|⇑⇑〉|↑z〉2|↑z〉1 + βα|⇓⇑〉|↓z〉2|↑z〉1 + αβ|⇑⇓〉|↑z〉2|↓z〉1 + β2|⇓⇓〉|↓z〉2|↓z〉1

The first three steps of the branching process are shown in the following figure 12.2:

Figure 12.2: Branching Many Worlds histories after three spin measurements. Suc-
cessive arrows indicate successive outcomes. (Graphic adapted from Barrett (2016))

The conservation of the measure in each branch can now be readily verified. For
instance, along the history on the left, we have after the second measurement:

|α|4 + |α|2|β|2 = |α|2(|α|2 + |β|2) = |α|2.

This conservation of the typicality measure wouldn’t hold if we weighted each branch
equally, i.e., performed a simple branch counting. This is easy to see if we assume
that, in our example, the second measurements in the already separated worlds occur
at different times. If the second measurement occurs earlier in the left branch than
in the right branch, the total number of worlds first increases from 2 to 3, and the
weight of the right branch suddenly drops from 1/2 to 1/3. That is, until the second
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measurement occurs in the right branch as well, resulting in a total of 4 branches.
Following the principle of stationarity, we thus arrive at the |Ψ|2-measure as the

typicality measure by which we weight branches of the universal wave function corre-
sponding to Everettian worlds. And according to this measure, a typical branch will
be one in which Born’s rule – and thus quantum statistics – holds.

Let’s check this for our go-to example of consecutive spin measurements. After n
measurements, the measure of worlds in which the outcome “spin UP” occurred exactly
k-times is

(n
k

)
|α|2k|β|2(n−k). Writing |α|2 =: p and |β|2 = 1 − p, we see that this is

a Bernoulli process with n independent trials and “success” probability p. According
to the law of large numbers, the typical relative frequencies for spin UP are thus
k
n ≈ p = |α|2, matching the prediction of quantum mechanics.

In the upshot, Everett’s analysis establishes that quantum statistics hold across
typical histories of the constantly branching Many Worlds universe. We would now
like to conclude this analysis with a solid probabilistic prediction and say something
like: “So, I should expect to experience a typical history in which the Born statistics
hold.” However, to whom this I refers in a Many Worlds universe is a very subtle and
difficult question. Even understood in a branch-indexical way, it does not pick out
a unique future macro-history. My current branch is going to split repeatedly, and
there will be a great many (maybe infinitely or unquantifiably many) versions of me
registering different outcome statistics.

Hence, I see no way around the conclusion that the Many Worlds theory lacks
a predicitve quality in this sense. I do believe, however, that Everett’s typicality
reasoning can ground post-factum explanations. When I lie on my death bed and
wonder, with my last breath, why I have experienced a history consistent with quantum
statistics, I would die in peace knowing that this is typical; that nearly all versions
of me existing in the Everettian multiverse have experienced a history consistent with
quantum statistics.

Wilhelm (2019) makes the interesting observation that this typicality explanation
is manifestly distinct from probabilistic explanations if we agree that the latter pre-
suppose that only one of the possible outcomes is actually realized:

“[I]n Everettian quantum mechanics, the various possible outcomes of any
given experiment all obtain. Everett himself makes this point: it would
be a mistake, he says, to think of just one outcome as obtaining, to the
exclusion of the others. So the sequences of outcomes other than the one
invoked in the explanandum ... occur too. But in probabilistic explana-
tions, that cannot happen. In probabilistic explanations, the event invoked
in the explanandum is the only outcome, of the various possible mutually
exclusive outcomes, that occurs.”

One could try to evade Wilhelm’s argument by falling back on self-locating probabili-
ties: only one of the copies of D.L. existing in the multiverse is the branch-indexical I.
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But me being me doesn’t seem like the right explanandum. There is no self-location
uncertainty in the death bed scenario; I know what life I have lived, i.e., what branch
I am actually on. For better or worse, the typicality explanation ends with the fact
that the Born rule holds across the great majority of branches. To ask further, for
the probability that I find myself on any one of the branches (as if my ego had been
somehow thrown at random into the multiverse) strikes me as redundant at best and
meaningless at worst.
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Chapter 13

Typicality and the Metaphysics
of Laws

It would seem unreasonable ... if the whole universe and each and every part of it were
in order..., while there were nothing of the kind in the principles.

— Theophrastus, Metaphysics 7 a 101

13.1 What are Laws of Nature?

Over the past few decades, the best system account has developed into a popular,
maybe even the dominant, position regarding the metaphysics of laws of nature. In
brief, this view holds that laws of nature are merely descriptive, an efficient summary
of contingent regularities that we find in the world. Metaphysically, it is based on the
thesis of Humean supervenience – named in honor of David Hume’s denial of necessary
connections – that David Lewis (1986a) famously characterized as “the doctrine that
all there is to the world is a vast mosaic of local matters of particular fact, just one
little thing and then another.” Laws of nature are then supposed to supervene on
this Humean mosaic as the deductive system that strikes the optimal balance between
simplicity and informativeness in describing the world.

The Humean “regularity view” of laws is opposed to the “governing view,” in its
various forms, according to which the fundamental laws play an active role in guiding,
or producing, or constraining the history of the universe. For the purpose of our
discussion (and avoiding a complete overview of the various anti-Humean positions),
I will take the main contemporary contenders to be dispositional essentialism (Bird,
2007) – which grounds the laws of nature in dispositional properties instantiated by the
fundamental entities – and nomic primitivism (Maudlin, 2007a), which admits “law of
nature” as a primitive ontological category, and laws as fundamental entities into the
ontology of the world.

Notably, our discussion will only be concerned with fundamental physical laws that
1Quoted after Finkelberg (2017, p. 59).
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govern or summarize the entire physical history of the world, although both Humean
and anti-Humean views may be compatible with more deflationary notions.2 On the
other hand, I am only going to defend the minimal anti-Humean thesis that laws
“govern” or “constrain” that history. If the view that laws “produce” entails more
than that (as Schaffer (2016) argues) or is tied to a particular metaphysics of time (see
Loewer (2012b) versus Maudlin (2007a)), it will require independent justification.

There is one way to phrase the debate between Humeanism and anti-Humean
metaphysics that I find both uninteresting and misleading (for reasons that will become
clearer in the course of our discussion): Laws can determine regularities (as their
instances), and regularities can determine laws (as their best systematization), and so
the question is: what comes first, what is more fundamental, the regularities or the
laws? (“What grounds what?” is how one would put it, more properly, in contemporary
metaphysics, see, e.g., Schaffer (2008, 2009).) One could then be skeptical about one
of the two grounding relations and choose sides on this basis; e.g., deny that there
can ever be an unambiguously best system, or find it utterly mysterious how laws
are supposed to “govern” anything. This is not my main concern, however, and our
discussion will grant that both the regularity and the governing view of laws are at
least conceptually sound. Instead, I consider the debate between Humean and anti-
Humean metaphysics to be first and foremost a debate about fundamental ontology
– whether there is more to the fabric of the world than the Humean mosaic – and
the interesting choice to be one between ontological parsimony and other theoretical
virtues.

In this debate, Humeans have had remarkable success in defending a prima facie
implausible position against all objections that have been thrown their way (and then
claim victory on the grounds of parsimony). In recent years, criticisms of the best sys-
tem account have focussed, in particular, on the lack of explanatory power of Humean
laws (e.g., Maudlin (2007a); Lange (2013)), the alleged subjectivity of the best system
(Armstrong, 1983; Carroll, 1994), or the commitment to a separable ontology which
is put into question by the entanglement structure of quantum mechanics (Maudlin,
2007a). Humeans have resisted all of these attacks with some, though varying, degree
of persuasiveness (see, e.g., Lewis (1994); Loewer (1996, 2012b); Cohen and Callender
(2009); Hall (2009), for the application of Humeanism to (Bohmian) quantum mechan-
ics see Esfeld et al. (2014); Esfeld (2014b); Miller (2014); Callender (2015); Bhogal and
Perry (2017)). This is not to say that the objections have no merit, but I believe they
have not quite managed to capture the implausibility of Humean metaphysics and turn
it into a compelling argument for modal realism.

The present chapter aims to do just that. It will thereby elaborate on a fairly
common anti-Humean intuition, which is to look at the astonishing order in our cosmos,
the uniformity of nature expressed by the simple and successful laws discovered in
physics, and ask: how likely is it that these regularities come about by chance?

2Maudlin’s view, according to which laws produce the history of the universe, is arguably not.
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One place where this argument is articulated in some detail is in the book “The
Divine Lawmaker” by John Foster (2004):

What is so surprising about the situation envisaged – the situation in which
things have been gravitationally regular for no reason – is that there is a
certain select group of types, such that (i) these types collectively make up
only a tiny portion of the range of possibilities, so that there is only a very
low prior epistemic probability of things conforming to one of these types
when outcomes are left to chance ... (p. 68)

I agree with the basic intuition but believe that the argument, thus phrased, cannot
succeed. Indeed, Humeans have several good points to make in response:

1. We do not have to account for why the law of gravitation – or any other particular
law described by physics – holds in our universe. Anti-Humean views do not
explain this, either. The debate is about what it is to be a law, not why the laws
of our world are what they are.

2. What do you mean by “chance”? The thesis of Humean supervenience holds
that the history of the universe, the distribution of “local particular facts,” is
contingent. But contingency, or the absence of a further metaphysical ground,
does not mean randomness. In fact, Humean metaphysics are opposed to all
intuitions about the mosaic being “produced” by a chancy process – particles
performing random motions, or God playing blindfolded darts and throwing local
particulars into spacetime, or anything like that.

3. Where do your “prior probabilities” come from? What determines the right
probability measure over possible worlds? All successful applications of proba-
bility theory come from within science. And according to the most prominent
Humean account (see Ch. 5), the fundamental probability measure that grounds
probabilistic predictions and rational priors is itself part of the best system that
supervenes on the Humean mosaic. In other words: the actual world determines
all relevant probabilities; there are no justified a priori probabilities which could
warrant the conclusion that a world like ours is unlikely.

These points are well taken. In particular, I agree that references to probability or
chance are dubious in a metaphysical context where subjectivist, frequentist, and regu-
larity interpretations all seem questionable or inappropriate. The concept of typicality,
however, strikes me as a perfect fit for the issue at hand.

13.2 Typicality in Metaphysics

Why does typicality avoid the objections raised against probability? For one, because
typicality statements are extremely robust against variations of the measure used to
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quantify subsets of a reference set W , so much so that, in many cases, the question
how to pick the right measure or what it even means to be the “right” measure doesn’t
even arise (cf. Maudlin (2007b, p. 286)).

Our very first example of a typicality statement was: almost all real numbers are
irrational. That is, being irrational is typical within the set R of reals.

In what sense is this true? First and foremost, in terms of cardinalities. The set
of real numbers is uncountably infinite, while the subset of rational numbers is only
countably infinite. Therefore, |R\Q||R| = 1 and |Q|

|R| = 0. This is a very precise and
generally uncontroversial sense in which almost all real numbers are irrational. In
principle, nothing more needs to be said here. However, since we will use it later on –
and since its more familiar from applications in physics – we can spell out typicality
in terms of a measure in the sense of mathematical measure theory. It then seems
natural to consider the uniform Lebesgue measure on R, which makes it true that all
real numbers except for a subset of measure zero are irrational. (This is weaker than the
statement in terms of cardinalities; there exist Lebesgue null-sets that are uncountably
infinite.) Note that the Lebesgue measure on R is not normalizable, so it cannot be
confused with a probability measure. But maybe the uniform measure is suspicious as
it reeks too much of a “principle of indifference.” Fair enough, we can pick virtually
any other measure we like. Any non-discrete measure, i.e., any measure that is zero on
singletons, will agree that Q ⊂ R has measure zero. (By σ-additivity, a measure can
be non-zero on countable sets if and only if it is non-zero on some one-element sets.)
Simply put, we assume nothing more than that a one-element subset is vanishingly
small compared to an uncountably infinite set. There is thus a very innocent and
intuitive sense in which all reasonable measures agree on the meaning of “typical.”

Typicality statements in physics usually admit exception sets of very small (but
non-zero) measure. Here and in our following discussion, we can use a particularly
strict standard of typicality that provides even stronger results than can be realistically
obtained in the physical context.

Another crucial difference between typicality and probability is that typicality is not
tied to ignorance, randomness, or indeterminism. It is an objective, determinate fact
that typical real numbers are irrational. It has nothing to do with anyone’s credences,
nor with some number being picked at random, or picked out at all.

When applied to a reference class of possible worlds, typicality figures in a way
of reasoning about contingency. (And contingency, if anything, is central to Humean
metaphysics.) We have already applied this in the context of physics and statistical
mechanics; now I am going to argue that typicality extends to a powerful way of
reasoning in metaphysics.

The typicality fact that the best system account has to deal with is then the
following: It is typical for Humean worlds to have no Humean laws. Almost all Humean
worlds do not have any regularities in the first place but are too complex to allow for a
systematization by physical laws. (This will be rigorously proven for deterministic laws
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and in a more hand-waving fashion for probabilistic ones.) The challenge to Humean
metaphysics is thus not to account for why we find these particular laws in our universe
but why we find any laws at all. Conversely, if we do live in a world that is regular
enough to be described by laws of nature, the best explanation is the existence of
something in the fundamental ontology that makes it so.

Ontological possibility

The orthographical symbols are twenty-five in number. This finding made it possible,
three hundred years ago, to formulate a general theory of the Library and solve satisfac-
torily the problem which no conjecture had deciphered: the formless and chaotic nature
of almost all the books.

— Jorge Luis Borges, The Library of Babel

While typicality statements, at least when made with respect to an infinite reference
set, require some mathematical tool like measures to give precise meaning to the locu-
tion “almost all,” their truth-maker – and what is ultimately doing the explanatory or
argumentative work – is not the measure but the reference class with respect to which
properties come out as typical or atypical (or neither). In particular, an important
(if not the most important) way in which laws of nature, however conceived, explain
or predict is by delimiting a set of nomologically possible worlds that makes certain
physical phenomena typical.

Indeed, we learned with the breakthrough of atomism and the development of
statistical mechanics that, due to the huge number of microscopic degrees of freedom,
the fundamental dynamical laws allow for vast possibilities far beyond what had been
thought of as permissible by physical laws. That apples fall to the ground but don’t
spontaneously jump up, that planets do not suddenly fly off their orbit (while emitting
an ultra-fast particle in the opposite direction), and heaps of dust do not spontaneously
transform into dinosaurs, is explained not by the fact that such events are nomologically
impossible but by the fact that they are atypical, i.e., they would require extremely
special micro-conditions of the universe.

Analogously, if we want to apply a typicality reasoning in a metaphysical context
– evaluating the merits of a Humean versus anti-Humean metaphysics – we need a
reference class of possible worlds that is determined by the respective ontologies and
does not a priori coincide with nomic possibilities. The relevant reference class that I
propose is generated as follows:

Fix the fundamental ontology of the world as postulated by a metaphysical theory,
that is, the fundamental entities with their essential properties, and consider all their
possible configurations, i.e., possible distributions of contingent properties (such as
spatiotemporal relations) over these “individuals.”

Possible worlds thus generated are sometimes called Wittgenstein worlds, in refer-
ence to the following passage of the Tractatus:
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2.0271 The object is the fixed, the existent; the configuration is the changing,
the variable.

2.0272 The configuration of the objects forms the atomic fact. [...]

2.04 The totality of existent atomic facts is the world.

Allowing for “augmentation” and “contraction” – adding individuals (but not univer-
sals) beyond those that exist, or removing some that do – the set of Wittgenstein worlds
is extended to “Armstrong worlds” (Kim, 1986) and the theory of modality known as
Combinatorialism (Armstrong (1986, 1989); see Sider (2005) for a recent discussion).
In our discussion, we will not need augmentations and contractions, and if we consider
the option that laws of nature may themselves be among the fundamental “entities”
that exist in our world, adding or removing them would defeat the purpose. Hence, we
shall keep the basic furniture of our world fixed, both in type and in number. Notably,
I am not interested in defending this or any other version of Combinatorialism as a
full-blown theory of metaphysical possibility. Instead, let us call the relevant notion
of modality ontological possibility, the crucial point being that a world is ontologically
possible (according to a metaphysical theory) if it has the same fundamental ontology
as postulated for the actual world.

Here are some examples for the use of ontological possibility: If the fundamental
ontology of the world consists in point particles moving in space, it is ontologically
necessary for all material objects to be spatially localized. If the fundamental ontology
of the world consists of N permanent point particles, it is ontologically impossible for
any object to be composed of more thanN parts. According to a Super-Humean theory
of space or spacetime (Huggett, 2006), it is ontologically possible for spacetime to have
more than four dimensions. According to a functionalist theory of the mind – but not
according to theories that postulate “minds” as ontological primitives – consciousness
is ontologically contingent.

Why should we care about ontological possibility given that it is, as far as I can
tell, a notion that we have just stipulated rather than an established philosophical
concept?

Most basically, because this seems like a fairly standard semantic interpretation of
what a hypothesis about the fundamental ontology of the world means.

Intuitively, because the fundamental entities that we believe to exist should have
a distinguished epistemic and explanatory role over those that are merely possible or
conceivable.

Most importantly, because ontological possibility, thus defined, is the form of
modality that captures the disagreement between Humean and many anti-Humean
metaphysics. Humeans and anti-Humeans will agree on the set of nomological possible
worlds (if they agree on what the best theories of physics are) and they may agree or
disagree on metaphysical possibility for all kinds of philosophical reasons that can go
beyond their stance on laws of nature. Humeans, however, are committed to a principle
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of unrestricted recombination (Lewis, 1986b): it is possible to change the configuration
of fundamental entities or properties in any part of the Humean mosaic while holding
fixed the rest of the mosaic. This is the positive content of Humean metaphysics,
the flip side of the negative theology regarding necessary connections and all kinds of
“non-Humean whatnots.”

The main anti-Humean positions, on the other hand, hold that there exists some-
thing in the actual world – be it essential dispositional properties or primitive laws –
that restricts combinations; that makes it impossible, let’s say, for a world to have the
same fundamental ontology as ours but a distribution of masses incompatible with the
law of gravitational attraction. Notably, the relevant ontological commitment is not to
some non-Humean laws, no matter how silly or complex, but to the fundamental laws
that physics discovers in our universe (and of which, as of today, we have only partial or
approximate knowledge). The anti-Humean positions I have in mind also include the
view that the manifestation of the primitive laws or dispositions are essential to them,
i.e., that a non-Humean law is the same in every world in which it exists. (This may
not extend to certain parts of the laws, like the constants of nature figuring in their
formulation. Typicality considerations then give rise to the issue of fine-tuning of the
constants, which is indeed a big topic in fundamental physics but beyond the scope of
our discussion.) The different meanings of “nomological possibility” under a Humean
and anti-Humean understanding is then manifested in the fact that according to the
latter but not the former, ontologically possible worlds are a subset of the nomologi-
cally possible ones. Of course, many anti-Humean theories go as far as claiming that
nomic possibility coincides with metaphysical possibility, but this is an unnecessarily
strong assumption for our purposes.

Typicality and the Case against Humeanism

With such a reference class of ontologically possible worlds, typicality can play a similar
role in metaphysics as it does in the physical sciences. Any law-hypothesis in physics
designates a set of nomologically possible worlds. This set must contain the actual
world for the proposed law to have any chance of being true. However, this is not
sufficient for us to judge the law-hypothesis as compelling or explanatory or even
empirically adequate. For instance, there are very plausibly Newtonian universes which
are such that whenever particles are shot through a double slit and recorded on a
screen, they form an interference pattern. These and other quantum phenomena are
not made impossible by Newtonian laws; they just come out as atypical. On the
other hand, whenever we succeed in explaining (macroscopic) phenomena based on
the fundamental (microscopic) laws, we show that they are typical, i.e., obtain in
nearly all nomologically possible worlds. Among the typical regularities of our world
are also statistical regularities, which is where objective probabilities come into play
(see Chs. 4 and 5). And if Bohmian mechanics is true, we even understand why
quantum statistics are typical in this sense (Ch. 8).
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The case of the thermodynamic arrow discussed in Chapters 9 and 11 was a particu-
larly interesting example. It is argued, based on the insights of Boltzmann’s statistical
mechanics, that nearly all possible micro-histories, relative to a low-entropy initial
macrostate, correspond to an evolution of increasing entropy. However, it is atypical
for the universe to be in a low-entropy state, to begin with. This is why it’s generally
considered necessary to invoke the Past Hypothesis as an additional theoretical pos-
tulate, and there is a big debate about whether this Past Hypothesis is of the right
kind to be a basic postulate in a physical theory – even an additional law of nature –
or whether it cries out for further explanation.

In general, the way in which we evaluate physical theories is thus roughly the
following: we consider the set of nomologically possible worlds determined by the
laws it postulates, and require that the saliant and relevant features of our world –
the phenomena which are the target of explanation – come out as typical (or, at the
very least, not as atypical). If our world corresponds, in the relevant respects, to an
extremely special and fine-tuned, i.e., atypical, model of the theory, we amend or reject
the theory. If we did not follow this standard, we would lose all means to test a theory
against empirical evidence because special initial conditions could account for almost
anything.

I submit that a similar standard should apply in metaphysics when we judge pro-
posals for a fundamental ontology of the world. If we want to know what explanatory
work a “metaphysical theory” is doing, and how it matches the world we live in, we
should consider the set of ontologically possible worlds determined by the fundamental
ontology it postulates and require, at the very least, that the features of our world
that fall under the purview of the proposed metaphysics do not come out as atypical.

We will never get around the basic problem of underdetermination, of course, but
this does not mean that there are no rational standards by which ontological commit-
ments can be judged against the manifest appearance of the world. Typicality provides
such a standard; and if we reject it, we could postulate virtually any ontology we like
– as long as it gives us enough “degrees of freedom” to play around with – and claim
that they are arranged in precisely such a way as to ground, or realize, or serve as
the supervenience base of whatever structure we identify in nature. In other words:
except for being logically inconsistent, both physical and metaphysical theories cannot,
in general, do any worse in their respective domain than make the relevant features
of our world atypical. When we consider proposals for the metaphysics of laws, the
“lawfulness” of the world is undoubtedly a relevant feature.

Typicality, we recall, is associated with the following rationality principle: Suppose
we accept a theory T and we come to believe that our world has a salient and relevant
property P . If it turns out that P is typical according to our theory, there is nothing
left to explain. If, however, it turns out that P is atypical according to T , we have
to look for additional theoretical principles that provide further explanation for P , or
else, in the last resort, reject our theory.
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Atypicality, in other words, creates an epistemically unstable situation, and refusal
to move means, in effect, to give up on a rational understanding of the world. The
idea that our world just happens to be, in some relevant respect, an atypical model
of our theory is unacceptable in science. I believe that this rationality principle is so
deeply rooted in scientific thought that it is rarely made explicit, let alone questioned.
As a matter of fact, more authors (see, e.g., Putnam (1969)) have questioned the laws
of logic than entertained “explanations” based on atypicality.

Very much related to this is another precedent from science, namely that of typi-
cality as a necessary condition for a successful reduction. For instance, we accept the
reduction of the thermodynamic theory of gases to the kinetic theory of particles –
including the ontological reduction of gases to particle configurations – because the
atomistic theory makes the relevant gas properties typical. Conversely, since special
micro-configurations could realize almost anything, the typicality standard prevents
trivial and spurious accounts. Explanations of the form: Assume the initial conditions
of the universe (or some relevant subsystem) are such that P , then P . Or reductions of
the form: Assume that X has the right configuration to realize/ground Y , then we can
reduce Y to X. Humean supervenience strikes me as having essentially this character:
Assuming that the Humean mosaic is exactly as if governed by laws, we can reduce
the laws to the mosaic.

It is admittedly difficult to find genuine examples of typicality reasoning in meta-
physics that do not rely on natural laws and hence nomic possibilities. However, it is
not too much of a stretch to revisit Leibniz’ monadology, which denied the possibil-
ity of causal interactions between different monads (fundamental substances that can
have either mental or material attributes) and ask: Why did Leibniz have to invoke his
infamous doctrine of pre-established harmony to account for the coordination between
physical and mental states (a form of which David Hume endorsed, as well)? Why
could he not have left every monad to itself and claim that it is a contingent fact
of our world that they happen to evolve in conformity? Well, because this claim is
absurd, because without God’s synchronization and in the absence of any causal or
metaphysical connection, the conformity of mental and physical events would not be
merely unexplained but atypical. Clearly, there would be countless more ways in which
the mental and physical history of the world (and each person individually) could be
in discord than in harmony, and clearly, discord is thus what Leibnizian metaphysics
without pre-established harmony would imply. (Notably, we can make this judgment
with high confidence even though we have nothing like a “probability measure” over
possible mental states.) In the upshot: because his ontology of monads makes the con-
formity of mental and physical events atypical (though not impossible), and because
giving up on this conformity would lead to absurdity or de facto solipsism, Leibniz had
to postulate an additional metaphysical principle, viz. pre-established harmony.

A Humean ontology, as we shall now prove, makes the lawfulness of the world
atypical, the harmony (so to speak) between physical events at different times at places
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that would allow for a systematization of the mosaic. As a consequence, we can accept
a Humean ontology and be anti-realists about laws (which is not completely absurd;
maybe Nancy Cartwright (1983) – though no Humean – is right, and we never had
good reasons to believe that laws of nature should be exactly and universally true). Or
we can believe in true universal laws and look for additional metaphysical principles
that account for their existence. What most advocates of the best system account
maintain, however, is that Humean metaphysics are true and, at the same time, that
our world is an atypical instantiation of a Humean ontology – not just with respect to
some minor detail but with respect to its lawfulness, the very feature at the center of
their account. And this thesis, as a matter of reason and scientific practice, cannot be
accepted.

13.3 Typical Humean Worlds have no Laws

In this section, we will prove the main theorem of this chapter. In brief: typical Humean
worlds have no laws. We begin with a simple toy model that we call the Chaitin model,
after Gregory Chaitin (2007), who, based on ideas that strike me as very Humean,
proposed a connection between scientific practice and algorithmic information theory.

The Chaitin model

In our model, a world – with the totality of physical facts – is represented by an infinite
sequence of 0’s and 1’s. Assuming a principle of unrestricted recombinations, the set
of ontologically possible Humean worlds thus corresponds to W = {0, 1}N, the set of
all possible sequences.

The Kolmogorov complexity of a sequence w ∈ W is defined as the length of the
shortest algorithm that generates it. If w has finite Kolmogorov complexity, i.e., can
be produced by a finite algorithm, it is called algorithmically compressible.

For instance, the sequence w0 = 0101010101... can be generated by an algorithm
(an infinite loop) like

whi l e True :
p r i n t ( " 0 1 " )

so that it is algorithmically compressible with Kolmogorov complexity of 22 or less.
We can think of an algorithm as a candidate for a best system law, its role being to

provide an efficient summary of the world (sequence). In the spirit of the best system
account, the length of the algorithm can be thought of as the measure of its simplicity.
However, our argument will not require laws to be particularly simple, they only have
to be finite.

One problem, also familiar from the best system account, is that the length of an
algorithm depends on the language in which it is written.3 We will call two languages

3The short example above is written in Python.
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L1 and L2 intertranslatable if there exists a finite set of rules translating any algorithm
in L1 into an algorithm in L2 and vice versa. It is easy to check that intertranslatability
is an equivalence relation, and that the Kolmogorov complexity of a sequence with
respect to any two intertranslatable languages differs at most by a finite constant.
Hence, algorithmic compressibility is well-defined on these equivalence classes.

It is well known that the best system account would be trivial without some re-
striction on the admissible languages in which the systematizations can be formulated.
For otherwise, the best system would simply consist in a primitive predicate F such
that F (w) is true if and only if w is the actual world @, see Lewis (1983, p. 367).
“Being intertranslatable with any language known to humanity” seems like a very gen-
erous restriction, more so than if we assumed a privileged language of perfectly natural
predicates. (In the toy-model, we could also define compressibility with respect to a
universal Turing machine, but it may be less obvious how this generalizes.)

Hence, let L be the set of finite algorithms (“possible laws”) in any language inter-
translatable with some language known to humanity, and W ∗ ⊂W the corresponding
set of compressible sequences. We call any w ∈W ∗ a lawful world.

Now, the following are simple mathematical facts:

• The set W of “possible Humean worlds” is uncountably infinite (its cardinality
is that of the continuum): |W | = 2ℵ0 > ℵ0.

• The set L is countably infinite: |L| = ℵ0. [There are at most countably many ad-
missible languages and countably many finite algorithms that can be formulated
in each language. A countable union of countable sets is countable.]

• The set of compressible sequences (“lawful worlds”) cannot be greater than the
set of possible algorithms (“laws”): |W ∗| ≤ |L| = ℵ0. [Since each algorithm
generates at most one sequence.]

• We conclude: |W
∗|

|W | = 0. Hence, almost all sequences are algorithmically incom-
pressible. Or: Almost all Humean world have no laws.

As in the example of irrational numbers, we could also express typicality in terms of
a measure rather than cardinalities. It then holds true that µ(W ∗ ⊂ W ) = 0 with
respect to all measures on W that are zero on singletons. In the upshot, “lawfulness”
is atypical among Humean worlds under any reasonable interpretation of the concept.

From the toy model to the real world

While I hope the model to be instructive, the real world is evidently not a sequence of
numbers, and fundamental laws of nature are not just algorithms for data compression
but, first and foremost, dynamical laws for the microscopic constituents of the world.
In order to extend our previous result to realistic physical laws – focusing, for now, on
deterministic ones – we proceed as follows:

229



13.3. TYPICAL HUMEAN WORLDS HAVE NO LAWS

We fix a slice V of the mosaic which is sufficiently extended in space and time as
to fix not just initial conditions for any deterministic dynamics, but also the values of
all free parameters, like constants of nature, that may appear in their formulation. (V
could be the actual history of our universe up to some time t, but a great many other
choices will do, as well.) Then there exist at most countably many deterministic laws
(if any) compatible with the facts in V – each determining a unique history for the rest
of the universe – but uncountably many Humean possibilities to complete the mosaic.

Hence, we conclude that whatever the facts in V , it is atypical for the rest of the
Humean mosaic to be constituted in a way that is consistent with a deterministic law
(formulated in any language, formal or natural, that we could ever hope to understand).

As a Corollary, we obtain: Assuming Humean supervenience, any deterministic
system that can describe a world up to time t will typically fail to be true at later
times. This supports and strengthens the argument that Humeanism cannot sustain
inductive inferences (Dretske, 1977; Armstrong, 1983). Of course, induction is difficult
to justify in general, but Humean metaphysics undermine it in this sense.

While this (a)typicality result seems serious enough, it is, strictly speaking, a con-
ditional claim “given one part of the mosaic.” In general, there are already uncountably
many possibilities for the “initial” data, i.e., uncountably many worlds consistent with
every single deterministic law. At this point, we thus need some measure theory, after
all, to obtain an unconditional typicality result. As always, we assume that one-element
subsets (and hence, by σ-additivity, countable subsets) of an uncountable set have mea-
sure zero. In addition, we require only that this remains true if we conditionalize on
the configuration of the Humean mosaic in V and count the possible configurations in
some distant region U . This is certainly legitimate considering the Humean principle
of free combinations which holds that one puts no restrictions on the other (our as-
sumption is even weaker than that possible configurations in V and U can be measured
independently). There is one technical subtlety involved in the proof which is given in
the appendix (because we are potentially conditioning on a null-set), but in a nutshell,
the argument concludes as follows: Denote by wU the configuration of the mosaic in a
spacetime region U . There are uncountably many possible configurations wU , but (by
the previous argument) at most countably many consistent with a deterministic law
and the “boundary condition” wV . Hence, µ(wU consistent with a law |wV ) ≡ 0 (for
a suitable choice of U and V ) and thus, with W ∗ the set of lawful Humean worlds,

µ(W ∗) ≤
∫
µ(wU consistent with a law |wV ) dµ(wV ) = 0

according to any reasonable measure. We conclude:

Theorem. It is atypical for Humean worlds to be consistent with any deterministic
systematization.

Philosophically, the notion of a “reasonable measure” is doing a lot of work here.
Mathematically, it is certainly possible to define other measures, but these are so
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clearly biased or ad hoc that they cannot play the role of a typicality measure. As
we have said before, it is also possible, mathematically, to put a delta-measure on
the reals and say that “almost all real numbers are zero.” But this statement is only
true in the technical sense in which the locution “almost all” is introduced in measure
theory. In any other sense of the words, it is merely an abuse of language. The point
is that a typicality statement will have rational (normative) implications if and only
if it is made with respect to a reasonable notion of “almost all” (or “large” versus
”small” sets of possible worlds). And the claim is that the assumptions of our theorem
are so weak and well-motivated that they exhaust all measures that could pass for
“reasonable.” To deny our conclusion is to either deny that a one-element subset is
vanishingly small compared to an uncountably infinite set (which seems absurd) or
to presuppose extremely strong “correlations” between different parts of the mosaic
(which means, in effect, to deny Humeanism).

Finite systematizations

Our proof that the existence of a deterministic systematization is atypical for Humean
worlds relied on the assumption that there are uncountably many possible configura-
tions of the mosaic, or an infinite number of physical facts that the laws would have to
account for. On what basis could this assumption be denied? One could insist that the
world is finitary, i.e., that space and time are finite and discrete, and that there are no
continuous degrees of freedom in the physical ontology. While this cannot be ruled out
in principle, it constitutes a very strong a priori commitment and a revisionary stance
with respect to contemporary physics. Alternatively, one could insist that laws of na-
ture do not have to provide a complete (microscopic) description of the world but only
systematize a particular, limited subset of (macro-)events – e.g., measurement results
or empirical observations – that is plausibly finite. This second option is essentially
instrumentalism; the view that laws are efficient book-keepers of empirical data rather
than universal truths about the world.

In any case, if laws had to account only for a finite number of physical facts, it
would still be true that typical Humean worlds are more or less irreducibly complex –
meaning that they cannot be systematized by laws that are significantly simpler than
a complete list of the relevant events – but only with respect to a more restricted
set of languages in which the systems can be formulated. (Think about the Chaitin
model and the question, whether the Kolmogorov complexity of a finite sequence is
significantly lower than the length of that sequence.) One could thus retreat to the
idea that the order in our universe is not objective, but that (instrumentalist) laws –
and the regular patterns they summarize – exist because we have adapted our cognitive
and mathematical tools to the world that we inhabit (see, e.g., Wenmackers (2016)).

Although I find it very uncompelling, I am not going to argue against this possible
escape. If one concedes that Humeanism is de facto instrumentalism (or requires
revisionary physics) the whole debate would be a very different one.
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Indeterministic laws

The issue becomes more complicated if we consider the possibility of indeterministic
laws. Logically, at least, an indeterministic law (e.g., a stochastic evolution) could be
compatible with any mosaic whatsoever – that is, unless there are real propensities in
the world that the law is supposed to summarize. In fact, there is even a good case to
be made that typical Humean worlds are well described by something like Brownian
motion, which can be technically considered a “law” but describes pure noise rather
than any kind of regular order.

For a probabilistic law to be informative, and allow for something akin to causal
inferences, it must predict reasonably high conditional probabilities for a relevant class
of events (Lewis (1980) talked, in particular, about “history to chance conditionals”),
that is, expressions of the form P(A | B) ≈ 1 where the conditional probability for
A depends non-trivially on B. In our world, the history of the universe up to the
present time t should make it reasonably likely that the earth will still be in its solar
orbit 10 seconds from now. Kicking a ball from the left/right should make it reasonably
likely that the ball flies off to the right/left. More generally speaking, a concentration of
masses in a small spacetime region B might make it very likely that masses agglomerate
in another region A, or something like that.

Now, could such correlations be typical with respect to Humean ontological pos-
sibilities? I claim that they can not. If we take Humean metaphysics seriously, the
possible configurations in one part of the mosaic should be independent of the facts
in any other part of the mosaic. In effect, any evidence for a robust correlation is evi-
dence that we do not live in a typical Humean world. And the existence of infinitely
many correlated events would certainly be atypical with respect to Humean possibil-
ities (while, if there is only a limited number of events that a law has to account for,
we are essentially back in the “instrumentalist” scenario discussed above).

This is, admittedly, a less rigorous argument than the one for deterministic laws.
And the result is weaker, as well, relying on a distinction between “informative” and
“non-informative” laws that would warrant further elaboration, and on typicality mea-
sures with strong independence properties. However, at the end of the day, I don’t
expect the contentious point of our discussion to be whether Humean metaphysics fares
much better with respect to probabilistic laws than deterministic ones. As with in-
strumentalism (or maybe even more so), committing to indeterminism from the get-go
does not seem like an attractive option that most Humeans would want to take.

13.4 On the Uniformity of Nature

With the caveats just discussed, I consider it a fact that the existence of Humean laws
is atypical among Humean worlds. The philosophically more delicate discussion hap-
pened in Section 3, where we argued for the normative implications of such typicality
facts. I take it that any form of rationality is normative. At the same time, I see one
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of the weaknesses of probabilistic arguments in that they try to shortcut the issue and
argue directly in epistemic or doxastic terms. Typicality facts are neither epistemic nor
doxastic facts. They hold independently of what we know or believe. Yet, they have
implications for what we should rationally believe, or accept, or seek to explain; in
this case that we cannot accept Humean metaphysics and believe in a lawful universe
without seeking explanation for its lawfulness.

On the other hand, the explanation provided by non-Humean laws is not a bona
fide typicality explanation in that non-Humean laws make their instantiation not just
typical but necessary. (Although, as discussed in detail in earlier chapters, they gener-
ally make macroscopic/empirical regularities typical but not necessary.) Technically,
necessity implies typicality, but it is, of course, strictly stronger. The primary role of
typicality in the argument is thus not to sustain an explanation but to establish that
one is required, that the price for declaring the history of the universe to be entirely
contingent is unreasonably high. However, what applies here as well as to bona fide
typicality explanations is that they do not have to involve an interesting “mechanism”
by which the explanandum comes about. There is no interesting story left to tell about
how laws govern or how dispositions bring about their manifestation; the point is that
they are a natural part of an ontology that doesn’t make the existence of regularities
in the world miraculous.

This explanatory virtue of non-Humean laws comes from their modal force, from
the way in which they restrict ontological possibilities. In contrast, the idea that non-
Humean laws fare better in explaining their particular instances has made the modal
realist positions vulnerable to the virtus dormitiva objection that any explanation they
provide over and above the regularity theory is trivial or circular: Why do masses at-
tract each other? Because they have the disposition to attract each other. Or: because
it is a law that masses attract each other. In the contemporary literature (see, e.g.,
Emery (2019)), such statements are often spelled out in terms of grounding relations
or as “in virtue of” explanations, which makes them manifestly non-circular but still
ring hollow to people not already sold on the merits of these metaphysical concepts.
Indeed, the impactful argument of Loewer (2012b) – which not only rejects the charge
that Humean laws are not explanatory but puts anti-Humeans on the defensive – was
to insist on a distinction between scientific and metaphysical explanations, suggesting
that the latter are ipso facto unscientific and thus somehow suspect. Thinking in terms
of typicality (which, we have argued, is very scientific) one understands that the ac-
tual explanatory advantage of non-Humean laws is not that they provide an additional
metaphysical ground for individual instances, but that they account for why our world
is lawful in the first place.

At the end of the day, one can only go so far in compelling someone to accept a
particular way of reasoning and the norms that come with it. Some readers may deny
that typicality facts have any philosophical implications at all, that there is even a
sense in which Humean metaphysics make the lawfulness of our world surprising or
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remarkable. There is, however, no shame in sharing at least in a sense of wonder about
the order of our cosmos. (After all, according to Aristotle, the sense of wonder is the
very beginning of philosophy.) The following passage from one of Albert Einstein’s
letters to Maurice Solovine comes to mind:

You find it strange that I consider the comprehensibility of the world (to
the extent that we are authorized to speak of such a comprehensibility)
as a miracle or as an eternal mystery. Well, a priori one should expect
a chaotic world which cannot be grasped by the mind in any way. One
could (yes one should) expect the world to be subjected to law only to
the extent that we order it through our intelligence. Ordering of this kind
would be like the alphabetical ordering of the words of a language. By
contrast, the kind of order created by Newton’s theory of gravitation, for
instance, is wholly different. Even if the axioms of the theory are proposed
by man, the success of such a project presupposes a high degree of ordering
of the objective world, and this could not be expected a priori. That is the
“miracle” which is being constantly reinforced as our knowledge expands.
There lies the weakness of positivists and professional atheists who are
elated because they feel that they have not only successfully rid the world
of gods but “bared the miracles.” (Cited from Einstein (1987, pp. 132-33).)

What, to their credit, distinguishes most Humeans from the “positivists and profes-
sional atheists” that Einstein talks about, is some acknowledgment that the best system
account of laws has to rely on nature being “kind to us” (Lewis, 1994, p. 479), on “a
high degree of ordering of the objective world” that cannot, by any means, be expected
a priori. However, this kindness of nature is so stupendous and is doing so much work
in the best system account that it is highly unsatisfying, if not intellectually dishonest,
to leave it as an afterthought or some sort of auxiliary assumption without any basis
in the metaphysical theory. If Humeans tried to give it more flesh, and spell it out
as a metaphysical principle that makes the uniformity of the world typical (or neces-
sary)4, their account would be much more sound but also start to look a lot more like
anti-Humeanism.

One the other hand, some authors have made the point that anti-Humean meta-
physics fare no better in explaining the uniformity of nature (Hildebrand, 2013). In
this vein, advocates of the regularity theory could admit that Humeanism fails to ac-
count for a lawful universe but deny that anti-Humean positions have an explanatory
advantage in this respect. In the language of typicality, the relevant argument goes
roughly as follows:

Even if our world contained primitive laws or dispositions that necessitate simple
universal regularities, this very fact is atypical, as well. In almost all worlds in which

4A metaphysical analog of the Past Hypothesis in physics, so to speak.
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non-Humean laws exist, these laws would be so strange or complex that they could not
be formalized in any simple and informative system. Hence (it seems), the typicality
argument can be turned just as well against the anti-Humean theories.

I am not sure if this (a)typicality statement is true. At least, most anti-Humean
theories do not entail the possibility of arbitrarily complex laws in the same sense
in which Humean metaphysics entails the possibility of arbitrarily complex mosaics.
Moreover, if we change the configuration of a lawful Humean mosaic only slightly (in
a small spacetime region, let’s say,) it will, in general, no longer be a lawful mosaic.
If we change a simple law only slightly, it will still be a simple law. The point is
that the “degrees of freedom” of a law are clearly different from those of the world,
and the question, what metaphysical possibilities we must admit with respect to the
type “law of nature” strikes me as a very difficult one. Hildebrand (2013) takes nomic
primitivism to mean that there exists a primitive lawhood operator “It is a law that...”,
which can attach to any proposition P , no matter how gruesome or unnatural. But
this is not at all how physical laws are formulated, or what the anti-Humean theories
that we regarded as promising actually commit to.

That said, even if we grant that typical non-Humean worlds have no simple laws,
it is crucial to note that this is a typicality statement with respect to a different
reference class than we employed in our discussion; namely metaphysically possible
worlds – under a liberal interpretation of metaphysical possibility – rather than what
we called ontologically possible worlds. It is thereby shifting the debate from ontology
to meta-ontology, from the question: “What is the fundamental ontology of our world
(and does it contain the laws that physics discovers)?” to: “Why is the fundamental
ontology (here, specifically, the laws) what it is?”. It is much less clear that this is
a good and tractable question, and it is, in any case, not the question we set out to
debate. It might be worth exploring the idea of meta-laws that constrain the possible
non-Humean laws (Lange, 2009), but this goes beyond the scope of our discussion,
and one must worry that it would, at best, be passing the buck (for what explains or
necessitates the meta-laws?).

The following analogy may help to illustrate my point: If all matter propagates
along three spatial dimensions (not just appears to, but actually does), it is more than
reasonable to infer that space, however conceived, is three-dimensional. (It is possible
yet atypical that space has more dimensions, while all motion happens to occur along
a three-dimensional subspace). But why has space three dimensions when it could, at
least mathematically, have arbitrarily many? I don’t know, and this was not the issue.

The aim of our discussion was not to defend anti-Humeanism as an a priori thesis.
No one, I think, holds the view that our world must contain some primitive laws
or dispositions, even if they govern only the growth of beetroots, or account for no
meaningful regularities at all. My belief in non-Humean laws is very much contingent
on the success of the scientific enterprise. And if I wake up tomorrow and find that
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the law of gravitation no longer holds, I would float through the air and admit that
Humeanism was probably right all along.

Certainly, anti-Humean metaphysics do not relieve us of wonder and amazement
about the simple and elegant laws that we discover in our universe. The existence of
something over and above the Humean mosaic is, instead, an ontological conclusion
that we draw from this discovery – with good reason, as this chapter has argued in
detail. That may be as far as we can go. However, if there were a promising chance to
take the explanation one step further, to understand why the laws are what they are,
we should, by all means, follow the evidence where it leads us. It could, in any case,
lead us only further away from Humeanism.
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Appendix: Proof of the Theorem

Theorem. It is atypical for Humean worlds to be consistent with any deterministic
systematization.

Proof. Let’s assume, with David Lewis, that the fundamental ontology is one of “per-
fectly natural properties” instantiated at spacetime points. (The argument for other
ontologies, e.g., continuous particle trajectories, will go more or less analogously.) We
can then model the set of possible Humean worlds byW := {w :M→ S ⊂ Rn}, where
M is the spacetime manifold and the “field values” w(x) describe the magnitudes of
the relevant properties at spacetime point x.

We denote by wV the restriction of w to V ⊂ M for a suitable V as explained in
Section 4.2 (wV is “the configuration of the mosaic in V ”) and by LU [f ] the possible
configurations of the mosaic in U ⊂M that are consistent with some deterministic law
and the boundary condition wV = f . By the argument given in Section 4.2, LU [f ] is
at most countable for any f : V → S, and for any U ⊆M\ V , the set W ∗ of Humean
worlds consistent with a deterministic law must be contained in {w ∈ LU [wV ]} ⊂W .

Now, we choose as U a collection of points in M \ V ; countably infinitely many
points if S is discrete, and finitely many if S is continuous. In any case, there are un-
countably many possible configurations on U (but at most countably many consistent
with a deterministic law and given boundary conditions on V ). Let µ be a normalized
measure on W (more precisely, on a suitable σ-algebra). Then there exists a regular
version of µ (w(U) ∈ · |wV ), i.e., a well-defined measure on the possible configurations
in U , even if we conditionalized on a null-set. This holds because the value space of wU ,
viz. S|U |, is isomorphic to some subspace of Rk, k ∈ N∪{∞} (Ash and Doleans-Dade,
2000, Thm. 5.6.5). By assumption, this conditional measure has no discrete part (for
at least some suitable choices of U and V ), i.e., it is zero on singletons, and thus by
σ-additivity also on countable sets. Hence, µ(wU ∈ LU [wV ] | wV ) ≡ 0. Therefore,

µ(W ∗) ≤
∫
µ(wU ∈ LU [wV ] | wV ) dµ(wV ) = 0. (13.1)

The proof extends at least to σ-finite measures with the conditional “probability”
replaced by a Radon-Nikodym density (Ash and Doleans-Dade, 2000, Thm. 2.2.1).
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Chapter 14

Super-Humeanism: A Starving
Ontology

14.1 The Radicalization of Humeans

Ever since its inception, which is widely attributed to the work of David Lewis (see, e.g.,
Lewis (1973, 1986a, 1994)), the program of Humean supervenience has grown bolder
and larger in scope. While Lewis’s account of laws of nature was mainly motivated
by his rejection of modal connections, other authors have employed the best system
strategy to ban all sorts of properties or entities, which they deem metaphysically
suspicious, from the fundamental ontology of the world. Indeed, from the point of
view of many modern Humeans, Lewis was too generous in outfitting the Humean
mosaic, by admitting intrinsic qualities in addition to spatiotemporal relations. The
key to understanding the more recent and ambitious Humean programs is to appreciate
the following two insights:

i) All empirical data can be ultimately understood as consisting in the distribution of
matter in space and time (including pointer positions, display readings, computer
printouts, or whatever else records the outcomes of experiments).

ii) While the strength of the best system candidates is measured against the regular-
ities in the world, the laws of nature, as described by our best physical theories,
are not just universal generalizations but involve all sorts of physical constants,
dynamical variables, and geometric structures that figure in the mathematical
formulation of laws of temporal evolution.

Hence, the Humean, if she is bold enough, can maintain that the Humean mosaic
consists only in the spatiotemporal distribution of matter — made up by localized
objects such as particles — while all other structures and quantities appearing in the
formulation of physical theories are part of the best system, introduced to provide a
simple and informative summary of the mosaic.
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Structures and quantities that have thus been subject to some form of Humean
reductionism include physical properties such as mass and charge (Hall, 2009; Esfeld
et al., 2015), dynamical objects like the wave function in (Bohmian) quantum me-
chanics (Esfeld et al., 2014; Esfeld, 2014b; Miller, 2014; Callender, 2015; Bhogal and
Perry, 2017), and even geometric structures describing an absolute space or spacetime
(Huggett, 2006; Vassallo and Esfeld, 2016). This is to say that the Humean can defend
a relationalist conception of space (and time), without providing a relational refor-
mulation of the physical laws, by maintaining that the absolute background space,
presupposed by theories such as Newtonian mechanics or General Relativity, is merely
a descriptive tool, allowing for a more efficient summary of the relational history of
matter. The corresponding view is also known as Super-Humeanism, in analogy (and
opposition) to super-substantivalism in the philosophy of spacetime.

Of course, not all Humeans go equally far in their reductionism, and not all reduc-
tionist programs are based on Humean metaphysics. Being anti-Humean doesn’t mean
that one has to be a realist (or “fundamentalist”) about every structure employed in our
mathematical formalization of the laws. However, the best system strategy, once ap-
plied to laws of nature, has proven very efficient in ridding the world of “non-Humean
whatnots” and thereby opened the door to declaring anything one likes – or rather
dislikes – a whatnot, deserving of the Humean exorcism.

One of the most radical and comprehensive Super-Humean projects is due to Esfeld,
Deckert and Vassallo (e.g., Vassallo et al. (2017); Esfeld and Deckert (2017)). The aim
of this project is to spell out an ontology of the natural world that is as parsimonious
as possible, while being overall coherent and empirically adequate. The proposed
ontology consists in primitive matter points, without intrinsic properties, individuated
by primitive distance relations (axiom 1). These matter points are permanent, with
the distances between them changing (axiom 2).

All that exists in the world is thus a network of changing distance relations between
bare matter points. The role of physics is now to provide the most efficient description
of the history of changing distance relations – striking an optimal balance between sim-
plicity and strength – by introducing appropriate dynamical parameters and geometric
representations. In a recent book (Esfeld and Deckert, 2017), this view is spelled out
in detail and applied to a wide range of modern physical theories from Newtonian
mechanics, to Bohmian quantum mechanics, to general relativity and even quantum
field theory, where the authors show how an ontology of permanent point particles
can account for the phenomena appearing as “particle creation and annihilation” (cf.
Deckert et al., 2017).

It is important to note that the distance relations postulated by Esfeld and col-
laborators are structureless, dimensionless, and undirected. They are constrained only
by the triangle inequality which is arguably the minimal requirement to make them
distance relations that hold together the material world (in contrast to, let’s say, hy-
pothetical thinking relations that hold together a world of minds), but there is nothing
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about the relations that would make them 3 or 2 or 10-dimensional, Euclidean or non-
Euclidean distances. This is in notable contrast to the relational project championed,
in particular, by Julian Barbour (see, e.g., Barbour and Bertotti (1982)), whose fun-
damental relations carry much more geometric structure (precisely the non-absolute
Euclidean structure in the non-relativistic case) and are meant to constrain the dy-
namical laws, in the sense that the formulation of the laws should not refer to more
or different geometric structure than what is provided by these fundamental relations.
Upon the Super-Humean strategy, first proposed by Nick Huggett (2006) and adopted
by Esfeld et al., all geometric features have been delegated to the best system. The
Humean mosaic consists only in structureless distance relations between point particles
(primitive matter points), while the candidates for the best system description vary
not only with respect to the dynamical laws but also with respect to the spatiotempo-
ral geometry used to represent the history of distance relations and formulate the laws
of motion. Hence, from the fundamental point of view, all geometric structures are
nothing more than mathematical or representational surplus. Yet, of all the represen-
tational surplus that one could posit, one combination (the Super-Humean hopes) will
be “true” in virtue of striking the optimal balance between simplicity and strength. In
this sense, the (apparent) geometry of space or spacetime supervenes, together with
the dynamical laws, on a purely relational, non-modal, and non-geometric ontology.

We should pause for a second to appreciate the implications of this view. It is to say
that space appears to be 3-dimensional, not because geometric relations instantiated
in the world are 3-dimensional, but because the contingent history of distance rela-
tions happens to be such that it can be most efficiently summarized in a 3-dimensional
representation. It is also to say, for instance, that when Einstein presented his theory
of relativity, he didn’t discover anything new about the nature of space and time, but
rather observed that the history of distance relations could be more efficiently sum-
marized in a 4-dimensional Lorentzian spacetime geometry. Ultimately, according to
the view of Esfeld, Vassallo, and Deckert, physics seems neither capable nor in charge
of informing us about the fundamental ontology of the world. Since they have estab-
lished that a) all empirical facts can be understood as facts about the configuration
of matter and b) facts about the configuration of matter can be conceived as facts
about distance relations between primitive matter points, it is unclear what empirical
evidence or scientific discoveries would compel them to revise their ontology.

Thus, I believe that by taking parsimony and Humean reductionism to an extreme,
Esfeld et al. actually demonstrate that Super-Humeanism as an a priori thesis is both
uninteresting and uncompelling since it is too promiscuous and universally applicable.
When all is said and done, there is one and only one line of reasoning that is used
to ground successful physical theories in her preferred ontology. I call it the Super-
Humean subterfuge:

Our physical description of the world exhibits the feature X because the
contingent, relational distribution of matter throughout the history of the
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universe happens to be such that the best system description exhibits the
feature X.

As suggested before, the problem with such reasoning is not that it couldn’t be coher-
ently defended, but that the arguments put forward in defense of Super-Humeanism
would seem to apply independent of what X stands for. If every part of a physical
theory can be delegated to the best system mythology, no part needs to affect their
ontological commitments.

Notably, the claim here is not that a priori everything could supervene on regulari-
ties in the relational distribution of matter. Qualia or normative facts almost certainly
don’t – but then they are also not within the scope of any physical theory. The basic
idea underlying Esfeld’s project is rather that a Humean mosaic made up of relational
configurations of matter is sufficient to ground all empirical facts that are the target of
naturalistic accounts; and that any other structure appearing in the formulation of a
physical theory can then be understood through its role in describing or summarizing
such a mosaic (or else it is superfluous).

In this sense, the metaphysics of Esfeld et al. is committed to naturalism (or even
physicalism) but it is not, despite their claims, naturalized metaphysics in the sense of
being guided or informed, in any significant way, by our best scientific theories. This
may seem like a mere methodological critique, unless we already took for granted that
only naturalized metaphysics is good metaphysics. However, a reasonable standard for
rejecting their proposal cannot be to show that it is strictly impossible or inconceivable
as an ontology of the natural world (I grant that it is not). Instead, focusing on Super-
Humeanism in the narrower sense as an interpretation of space or spacetime, I am going
to argue that structureless distance relations as a ground (or supervenience basis) of a
3-dimensional geometry of space, respectively a 4-dimensional geometry of spacetime,
must be rejected on the basis that it makes the latter atypical.

14.2 Space, lost

The Super-Humean strategy to ground physical theories in a minimal relational on-
tology was laid out by Nick Huggett (2006) in his relationalist (re)interpretation of
Newtonian mechanics. This will also serve as the test-case for our following discus-
sion. While Newtonian mechanics is no longer considered a fundamental theory, it is
still the preferred playground of many philosophers; and while it may not provide the
best system description of the world, it is still a very good and useful one. A possible
extension of Huggett’s regularity account to general relativistic spacetime is discussed
in Esfeld and Deckert (2017, Ch. 5) as well as in Vassallo and Esfeld (2016). By and
large, it is just an adamant application of the Super-Humean subterfuge; the following
objections will carry over accordingly.

I want to emphasize that my objections are targeted against the full-fledged Super-
Humeanism spelled out by Huggett and adopted by Esfeld et al. The aim of their
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regularity theory is essentially two-fold (the second being an escalation of the first):

1. To ground physical theories referring to an absolute background space or space-
time in a relationalist ontology without providing a relational reformulation of
the physical laws.

2. To reduce all geometric features of this background space – its dimension, symme-
tries, curvature etc. – to thin distance relations that carry no instrinsic geometric
structure.

These two points are not entirely independent: the more structure the fundamental
relations carry, the less flexible will the Super-Humean ontology be in accommodating
different background spaces described by different theories. In principle, a not-quite-so-
super Humean could let go of the second aim while still invoking Huggett’s regularity
theory to accomplish the first, i.e., postulate thicker spatial or spatio-temporal rela-
tions as the supervenience base of the absolutist physical description.1 Our following
discussion is primarily concerned with point 2, that is, with the Super-Humean claim
to get away without committing to bona fide geometric structures in her fundamental
ontology. In other words, the conflict here is not between relationalism and substan-
tivalism, but between a geometric and a non-geometric ontology, making the substan-
tivalist, the spacetime structuralist, and even the liberal relationalist à la Barbour or
Saunders (2013) unlikely allies against the Super-Humean minimalism.

To make precise what the Super-Humean relations are, we recall the definition
of Esfeld and Deckert (2017), who specify the relational structure instantiated by N
matter points by the following set of axioms. (For convenience, the matter points
are labeled by an index i ∈ {1, . . . , N}; the indices are, however, arbitrary and not
supposed to indicate a primitive identity of the matter points.)

i) Any two matter points stand in a distance relation that can be represented by a
positive real number rij ∈ R+, 1 ≤ i 6= j ≤ N .

ii) The relation is symmetric, i.e., rij = rji,∀1 ≤ i < j ≤ N .

iii) The numerical assignments satisfy the triangle inequality: rik ≤ rij + rjk.

Esfeld and Deckert also require that the matter points are individuated by the distance
relations (thereby insisting on what has become known as absolute discernibility). That
is, the matter points have no intrinsic identity, but any two points are numerically dis-
tinct by virtue of standing in a different relation to at least one other matter point. To
this end, the authors must add a fourth postulate, excluding symmetric configurations
in which some particles would no longer be absolutely discernible. While this combi-
nation of relationalism and moderate ontic structural realism comes with its own set

1I don’t want to go into a deep metaphysical discussion about thin versus thick relations; I am merely
using the terminology to distinguish between the minimalistic relations of Huggett and Esfeld, that
are constrained only by the triangle inequality, and other relational accounts in which the fundamental
relations carry more geometric structure, e.g., a 3-dimensional direction in addition to a distance.
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of interesting problems (most notably: what provides for the identity of the matter
points over time, as the configuration of distance relations changes?), those are beyond
the scope of this discussion. What matters for our purposes is that the above axioms
are very weak, essentially emulating the general mathematical definition of a “metric.”
To repeat: fundamentally, there is nothing about the distance relations that would
make them 3-dimensional or Euclidean, or put any other constraints on the dimension,
curvature or topology of the physical geometry.

According to the Super-Humean regularity theory, the fact that Newtonian me-
chanics is formulated on a 3-dimensional Euclidean space only means that this geo-
metric representation – together with the laws of Newtonian mechanics – strikes a good
balance between simplicity and strength in summarizing the history of structureless
distance relations. The candidates for the best system thereby vary not only with
respect to the dynamical laws, but also with respect to the background space (qua
mathematical structure) used to represent or embed the history of distance relations
in the first place. Such an embedding has to preserve only the distances between the
matter points since there is no other structure to preserve. That is, if we denote the
history of distance relations by rij(λ), with an arbitrary “time” parameter λ, the rep-
resentation of the matter points as trajectories qi(λ) in some metric space (M,d) must
satisfy d(qi(λ), qj(λ)) = rij(λ). All other things being equal, a lower-dimensional space
M and higher degree of symmetry are preferred on the grounds of simplicity (Huggett,
2006, p. 54), but the fact that space appears to be 3-dimensional, and at least locally
Euclidean, is purely contingent according to the Super-Humean account.

I agree with Belot (2000, p. 10) that such an interpretation “is arrant knavery: a
cheap instrumentalist rip-off of Newtonian theory,” but I doubt that one can shame
the Super-Humean into yielding any ground. Instead, I will make the case that the
Super-Humean reduction of Euclidean space is, by reasonable standards, empirically
inadequate.

What the account fails to acknowledge, is that it is no trivial matter to embed
such a relational network into 3-dimensional Euclidean space. It is always possible to
embed a triplet of particles: the result is simply a triangle (or a line, in the degenerate
case) whose side-lengths correspond to the distances between the matter points. The
triangle inequality – which the distance relation must satisfy by definition – is sufficient
to ensure the existence of such an embedding. However, in order to embed four, or
five, or six matter points, additional constraints on the distance relations would have
to be satisfied, which would be purely accidental upon the Super-Humean view. A
similar observation was made by (Maudlin, 2007a, pp. 87-89), who argues that the
substantivalist, but not the relationalist, can explain such constraints, in particular
the basic triangle inequality that the relationalist has to accept as an axiom (while
the substantivalist can derive it from the concept of “path lengths”). I am not con-
cerned about the status of the triangle inequality but want to elaborate on the case of
multiple particles, that is, on the additional constraints that are not even axioms but
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mere contingencies upon the Super-Humean account. On this basis, I will defend the
thesis that the most basic empirical fact about space, namely its low dimensionality,
is not just unexplained by the regularity theory but should be regarded as a falsifying
instance.

To illustrate why the embedding of multiple matter points into 3-dimensional Eu-
clidean space requires additional constraints, assume we got lucky and were able to
embed four matter points while preserving their mutual distances. Embedding a fifth
matter point now corresponds, pictorially speaking, to determining the point of inter-
section of four spheres in 3d-space (each centered around one of the existing matter
points with radius equal to its distance to the fifth). However, four spheres in 3-
dimensional Euclidean space do not have a point of intersection, unless their radii
happen to satisfy additional algebraic relations. In general, we would have to move
into 4-dimensional space to faithfully represent the distance relations between all five
matter points. And the larger the network of distance relations, the more (and more
specific) constraints on the relations must be satisfied to fit a given configuration into
a 3-dimensional geometry.

More precisely, embedding N points into d-dimensional Euclidean space amounts
to assigning d(N − 1) coordinates. (Without loss of generality, we can fix one particle
to the origin of the coordinate system, leaving N−1 points with d coordinates each. In
fact, accounting for global rotations, we have only d(N−1)− 1

2d(d−1) relational degrees
of freedom – and one less if we factor out absolute scale – but these corrections are
negligible for the following estimates.) On the other hand, there are

(N
2
)

= 1
2N(N −

1) distance relations between N matter points, amounting to the same number of
quadratic equations for the coordinates as we want to realize the relations as Euclidean
distances on Rd. (The coordinates of two points x, y ∈ Rd with distance r must satisfy
the quadratic equation (x1 − y1)2 + . . . + (xd − yd)2 = r2.) In conclusion, as soon as
N > 2d, the system is overdetermined and will not admit any solution at all unless
roughly 1

2N(N − 1)− d(N − 1) = (1
2N − d)(N − 1) ≈ 1

2N
2 additional constraints are

satisfied.

For our universe, N is estimated to be about 1080. Hence, the number of geometric
constraints that would have to be satisfied – purely accidentally – for a network of
Super-Humean relations to be embeddable into 3-dimensional Euclidean space is at
least of the order 10160. Yet, the Super-Humeans ask us to believe that this epic
coincidence obtains not only within one particular configuration, but that the trillions
of trillions of trillions of constraints happen to be preserved over time, as the distance
relations between the matter points change. Mind you, according to their metaphysics,
there is nothing in the ontology that would make it necessary for these constraints to
be satisfied in any configuration, let alone propagate with the dynamics.

To put it the other way around: by assuming a 3-dimensional space in which the
matter points move – that is, a real physical space that constraints their motion, not
just a mathematical construct that describes it – we explain about 10160 dynamical
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constraints that the Super-Humean accepts as bare facts. This is a successful reductive
explanation if there ever was one.

Let’s phrase these observations as a proper typicality statement. The ontologically
possible Super-Humean configurations form an abstract space of dimension ≈ 1

2N
2.

The configurations that could be embedded into a d-dimensional Euclidean space form
a submanifold of dimension ≈ dN . For d� N , such configurations are clearly atypical,
most obviously in the dimensional sense and then also in the sense that they form a set
of measure zero with respect to any absolutely continuous measure. The same holds
(modulo some measure-theoretic subtleties) if we consider ontologically possible worlds,
i.e., trajectories in the respective configuration spaces rather than instantaneous con-
figurations. For all the reasons discussed in the previous section, Super-Humeanism
must, therefore, be rejected as a metaphysical account of the low-dimensional space or
spacetime that we actually live in.

I imagine a Super-Humean response to go somewhat like this: Admittedly, we
cannot give a deeper metaphysical explanation for why the history of distance relations
is such that it can be represented on a 3-dimensional Euclidean space. But you, as a
“substantivalist,” cannot give any deeper metaphysical explanation for why space is 3-
dimensional (and at least locally Euclidean), rather than 4 or 5 or 17,000 dimensional.
Of course, the 3-dimensional representation of the world contains a lot of information
about the history of distance relations, but this is precisely what makes this geometry
part of the best system. In other words, all those algebraic relations that hold between
the particle distances are part of the regularities that we find in the world, and they
are summarized in our 3-dimensional representation of the (Newtonian) laws, which
thus provides the kind of unifying explanation that we should expect from science.

Prima facie, this Humean response may have some persuasive power, but it is
based on a completely false equivalence. Obviously, a substantivalist or a liberal rela-
tionalist (who admits thicker relations as fundamental) postulates an absolute space,
respectively some geometric structure, as a physical and metaphysical primitive. She
thereby accepts certain facts about the geometry of the world as primitive, such as
the fact that space has 3 dimensions rather than 4 or 5 or 17,000. But every theory
needs some primitives. And the geometry of space or spacetime is arguably so basic
to our conception of the world, and so informative about the possible configurations
of matter in it, that it is a more than reasonable choice as an ontological primitive.
The Super-Humean doesn’t deny that space or spacetime are real in some sense – that
there are true geometric facts about the world – but she claims to provide a reductive
account of these facts. It is she who must, therefore, deliver on her promises. The
Super-Humean reduction, however, fails since it has to assume an exceedingly special
configuration of distance relations throughout the history of the universe to account
for even the most basic geometric facts.

One reason why we should not accept such an account as successful is that it
“reduces” a small number of simple primitive facts to a huge number of complicated
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primitive facts. One reason why we cannot accept such an account as successful is
that we would give up on any means to test a theory about what exists in the world
against any facts that we could possibly know about the world if we admitted that the
actual world need not look anything like a typical one that the ontology can possibly
constitute.

14.3 Empirical Adequacy in Metaphysics

Against this backdrop, I claim that the Super-Humean account of space is not just
explanatorily deficient but empirically inadequate. Remember that when embedding
N points in a d-dimensional Euclidean space, we have the freedom to choose d(N −
1) coordinates, while having to solve for 1

2N(N − 1) quadratic equations expressing
the distance relations between the matter points. This means that given a typical
set of distance relations, the dimension of the lowest-dimensional space into which
it can be embedded will be of the order d ≈ 1

2N , with N ≈ 1080! In this sense,
the metaphysical theory of Super-Humeanism makes a prediction, namely that space
should look extremely high-dimensional (if it has any meaningful geometric structure
at all). Since the opposite is true, and we seem to live in 3-dimensional space or
4-dimensional spacetime (even the 10- or 11-dimensional spaces required by string
theory would count as very low-dimensional in this context), we must conclude that
a Super-Humean ontology of structureless distance relations doesn’t fit the world that
we experience.

I have, of course, raised an analogous objection against the regularity view of laws,
showing that a typical Humean world has no law-like regularities in the first place.
But the non-Super-Humean can at least with some credibility carry the banner of
empiricism. She can argue that she and her opponent agree on all concrete physical
facts in the world and disagree only about the status of modality. And this allows
her to make the case – though ultimately unsuccessful – that since we have no direct
empirical access to modal relations, we should go with the deflationary, i.e., more
parsimonious account. The Super-Humean, however, is in an even worse position with
respect to space or spacetime. She and her opponent – be it the substantivalist or
the liberal relationalist à la Barbour – do not agree on the concrete physical facts in
the world. For her opponents, the spatial relations instantiated in the world (be it
fundamentally between particles or between particles in virtue of occupying certain
points in space) carry more geometric structure, characterized not only in terms of
distances but also in terms of 3-dimensional directions. And it is these thick relations
– not the thin relations – to which we have the most direct empirical access. We
experience objects as having a shape and a location – not only a distance – relative to
one another. Hence, even the Super-Humean must admit that it is the 3-dimensional
representation, not the unordered list of primitive distance relations, that has the most
intimate connection to our manifest image of the world. And then the Super-Humeans
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can call their relations “spatial” all they want. What they have in their ontology is
not space, as commonly understood and experienced, but a much more impoverished
notion; starving thin relations that can only emulate spatial relations for the price of
assuming an utterly atypical configuration throughout the history of the universe.

To sum up more systematically, let us return to the promiscuousness of the Super-
Humean subterfuge discussed before. That a proposal for a fundamental ontology of
the natural world can, in principle, fit our experience and scientific description is an
extremely low bar that saves us neither from arbitrariness nor from absurdity. In
principle, one can postulate any ontology, provided that it affords enough degrees of
freedom to tweak, and assume that these degrees of freedom are arranged in precisely
such a way as to instantiate (or be in some sense isomorphic to) whatever structures
are identified in nature. The question we must ask is therefore: what distinguishes
a serious and plausible candidate for ontology from a mere metaphysical prejudice?
Or, in other words: what distinguishes a legitimate application of the subterfuge from
one that is trivial, spurious, and ad hoc? A few possible criteria come to mind, and
Super-Humeanism fails all of them:

1. We can require that the fundamental ontology matches, in some sense, the struc-
tures or objects appearing in the formulation of our best physical theories. This
criterion – marking the still dominant methodology in naturalized metaphysics
in the Quinean tradition – is explicitly rejected by Super-Humeans in general and
Esfeld et al. in particular. Hence, it is not surprising that their account fails in
this respect: no successful physical theory is formulated in terms of structureless
distance relations between bare matter points, and arguably none ever will be.

2. We can require that our actual world resembles not just a particularly special
and fine-tuned model of our metaphysical theory but a typical one. Humeans,
in general, must reject this criterion, and Super-Humeanism fails it in a par-
ticularly spectacular fashion since a typical world formed and held together by
structureless distance relations would not look anything like a material world in
a low-dimensional space or spacetime.

Note, on the other hand, that for a substantivalist, the apparent truism that
“space looks 3-dimensional because it actually is 3-dimensional” involves just such
a typicality reasoning. It is possible – though highly atypical – in a 3-dimensional
Newtonian universe that all particles move on a 2-dimensional hyperplane. Such
a world would appear 2-dimensional to the hypothetical flatlanders living in
it. It is equally conceivable and physically possible that we are 3-dimensional
“flatlanders” living in a higher-dimensional Euclidean space. The postulate of a
3-dimensional space matches the appearance of a 3-dimensional space not because
it makes the latter necessary but because it makes it typical.

3. We can require that the connection between ontology and experience is, in some
sense, direct, simple, and robust. In other words, this is to insist on a reasonably
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short cognitive distance between our manifest and scientific image of the world.
(The terms “manifest image” and “scientific image” go back to Sellars (1962); for
an interesting discussion along these lines, see Maudlin (1997)). Some version of
this criterion is, in fact, the main argument for primitive ontology theories, which
postulate a local ontology in 3-dimensional space or 4-dimensional spacetime,
against functionalist approaches such as wave-function realism that try to connect
our experience of the world to a more abstract description of physical reality by
some sort of functionalist emergence.

Esfeld and collaborators attempt to carry the banner of the primitive ontol-
ogy program. Their terminology can easily suggest that the “Leibnizian dis-
tance relations” are just the intuitive spatial relations that we perceive between
macroscopic objects, and that the objects themselves can be straightforwardly
conceived of as a collection of primitive matter points. For the reasons just dis-
cussed, this would be quite misleading. The connection between the network of
distance relations and our experience of the material world is not direct. It is
provided in terms of best system representation of the history of distance rela-
tions, not in terms of the fundamental ontology. The connection is not simple.
It must take the detour of the best system account, a highly complex procedure
of trying and comparing different summaries and representations of the entire
history of the universe. And the connection is not robust. It relies on an ex-
tremely special and meticulously fine-tuned arrangement of the Humean mosaic,
and even a small perturbation of this arrangement would lead to a radically
different appearance of the world.

The criteria for ontology that Esfeld et al. announce to follow is “parsimony – together
with empirical adequacy.” However, as we have just seen, the Super-Humean account
is empirically adequate only by standards that render the criterion itself trivial; that
is, in the sense in which any ontology could be postulated as the supervenience base of
our scientific description of the world if it is just sufficiently complex and fine-tuned,
and if the supervenience relations are sufficiently indulgent (as Humean supervenience
is). Which leaves us with parsimony as the only success of their “minimalist ontology.”

This is not good enough. Humeans who are guided by a principle of parsimony
seem to believe that postulates about what there is in the world are costly, while
assumption about how it is come for free. But the two issues cannot be disentangled
since we cannot pass rational judgment on one without the other. Parsimony may be
a good criterion for the what question, but we need additional criteria, such as the
ones proposed above, to judge it in conjunction with a how hypothesis. To postulate a
parsimonious ontology and then assume that this ontology is arranged however it needs
to be to get the phenomena right is too cheap to lend any credibility to the ontological
claims. And delegating the how questions entirely to physics, which should inform
us how the fundamental entities are arranged in space and time, doesn’t work either,
unless we take our ontological hints from science, as well. Physics per se doesn’t
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inform us about Super-Humean relations because no established physical theory is
about Super-Humean relations.

The broader philosophical point, of which I hope to have convinced the reader, is
that we must assess the empirical adequacy of a metaphysical theory by sufficiently
robust standards – or else the criterion itself becomes trivial. Typicality is one of the
standards I have proposed. Our world must match, in the relevant respects, a typical
(or at least not atypical) model of the ontology. As argued in earlier chapters, this is
to follow the good example of natural sciences, if not a necessity of thought.

The other standard was what I described as a reasonably short cognitive distance
between the fundamental ontology and our manifest image of the world. This is not
quite the same as saying that the ontology itself is intuitive. What we must be able
to intuitively grasp is how the theory ultimately connects to the world that we ex-
perience, even if it describes a fundamental reality that diverges radically from our
experience. At some point, manifest and scientific image must meet closely enough
that the remaining gap can be easily jumped by our intellect. This is where the wave
function or quantum state functionalism of Everettian quantum mechanics failed, and
Esfeld’s “bare matter point functionalism” fails in a similar fashion.

Esfeld and collaborators deserve much credit for pushing the Humean project to its
limits, following the principle of parsimony summarized in Frank Jackson’s armchair
metaphysics credo that the methodology “is not that of letting a thousand flowers
bloom but rather that of making do with as meagre a diet as possible.” (Jackson
(1994, p. 25), requoted in Esfeld and Deckert, 2017). Unfortunately, the proposed
“minimalist ontology” is not just meagre but starving. It is isolated from any input
from empirical sciences and fails as a metaphysical foundation of space or spacetime,
both as given to us by basic intuition and as described by our most successful physical
theories. In the end, the radicality of Esfeld’s program demonstrates that while it may
be true that we don’t have direct empirical access to intrinsic properties, or necessary
connections, or the geometry of spacetime, renouncing all of them at once leaves us
with an ontology that is too impoverished to match the world that we experience.
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Chapter 15

Special Science Laws

In this chapter, we will discuss the special sciences, in particular the reduction of
special science laws to fundamental physical laws as typical regularities. We will focus
mostly on the example of biology because more specialized sciences, e.g., social or
economic ones, begin to involve human agency (but see Wagner (2020) for a discussion
of typicality in this context), while the boundary between physics and chemistry can
be blurry.

15.1 Ontology of Special Sciences

The view of special science laws that I am about to sketch is ontologically reductive.
The fundamental ontology of the world is that of fundamental physics. Genes or
tigers or economic markets are nothing over and above this physical ontology, but
have to be located in it by means of a functionalist analysis. My view, however, is not
explanatorily reductive. Biological phenomena are much better explained in biological
terms than in terms of atomic trajectories, let’s say. Special sciences thus exist not
only as a poor substitute for physics, as long as certain systems are too complex for
us to provide a complete physical description, but have explanatory autonomy.

To account for this autonomy, I will, in fact, take some hints from Super-Humeanism.
The basic idea is that theoretical concepts need not refer directly to (fundamental)
properties or entities in the world but may supervene on the regularities as part of
their best systematization. While I found this metaphysical strategy untenable when
applied to reduce fundamental physical laws and spacetime structure, it strikes me as
plausible in the context of special sciences, which deal with non-fundamental laws and
entities. In brief, my view is the following:

1. There are genuine biological regularities in the world.

If we think of regularities in terms of complexity theory, that is, roughly in terms
of compressible data sets (Kolmogorov complexity), we have already seen that
they are highly language-dependent – if we are talking about finite data sets, as
we arguably are in the special sciences. In this sense, there are regularities in
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the world that can only be identified, or at least systematized, in the language of
biology (rather than the language of physics), even though they are instantiated
in the physical ontology.

While biological terms are in principle translatable into physical terms – by
suitable functional definitions or Ramseyfication – the functional definition of a
gene, or a cell, or a tiger in terms of elementary particles is extremely complex.
The translation into the language of physics would thus come at very high costs
in terms of simplicity as we try to identify and systematize biological regularities.
In addition, there is the issue of multiple realizability (see, e.g., Esfeld and Sachse
(2007) for a good discussion), that is, one and the same biological term may be
realized by different physical states in different instances. Hence, at least in
the complexity-theoretic sense, a set of physical events may not instantiate any
regular pattern at all (the data set may be “incompressible”, or nearly so), unless
we introduce appropriate biological terms and macro-variables.

2. What makes “genes” part of biological laws is their role in the best systematization
of biological regularities.

For the best system, I adopt (for now) the Mills-Ramsey-Lewis criterion of strik-
ing an optimal balance between simplicity and strength. I am open, even sympa-
thetic, to including additional metrics (such as the “cognitive distance” between
scientific and manifest image, see Ch. 14) but this is beyond the scope of the
present discussion.

In any case, since we are concerned with the systematization of genuine biological
regularities in the sense discussed above, the “nomic status” of the theoretical
entity gene is provided by biology. This status is what distinguishes genes from
spurious or unnatural concepts à la grue emeralds that could also be defined in
functional physical terms.

This Humean view corresponds essentially to Loewer’s “package deal account”
(Loewer, 2007b), according to which the laws and the “natural” properties they
are referring to supervene together on the regularities as part of their best sys-
tematization.

3. However: Every concrete proposition about genes (and every biological proposi-
tion, in general) has a physical truth-maker.

Any proposition about the constitution, behavior, or interaction of biological
entities is ultimately a proposition about the physical world and thus made true
or false by physical facts. In particular, every biological system is also a physical
system and must, therefore, obey the laws of physics. No true biological law
could ever contradict the physical laws.

In the upshot, there is nothing over and above the physical facts that makes a
biological fact a fact (this is the reductive part of the account). But there is, in
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the sense explained in points 1 and 2, something beyond physics that makes a
fact a biological fact – with emphasis on the logos part (this being the autonomy
of the special sciences).

This proposal for the ontological status of non-fundamental entities has certain
similarities to Dennett’s notion of “real patterns” (Dennett, 1991). I hesitate to adopt
it for several reasons, however. First, because the word “pattern” may carry the
connotation of something abstract, while I am pretty sure of genes, and damn sure of
tigers, that they are concrete entities. Second, my view is quite conservative in that it is
reductive, specific to special natural sciences, and (as I will explain below) hierarchical.
On the other hand, the main focus of Dennett (1991) are beliefs which fall into the
mental/normative domain with respect to which I do not advocate for a reductive
view, while in more recent literature, “real patterns” are usually tied to radically non-
reductionist and non-hierarchical metaphysics (“rainforest realism,” see Ladyman and
Ross (2007)), or used for functionalist arguments in physics that I consider spurious
(see, e.g., Wallace (2003) and our discussion of wave function functionalism in Ch. 12).

Finally, the concept of real patterns has often been invoked in debates about various
forms of realism, and I don’t feel like I have much to contribute to these debates, nor
that they are particularly productive for our present purposes. Genes are real, of
course, but they are not fundamental. If we want to call them patterns, then they are
patterns instantiated in the physical ontology. (Whether the correct relation between
a gene and, let’s say, a configuration of elementary particles is one of identity or
grounding is a too subtle metaphysical question for me.) But the same is true of grue
emeralds if the term, with a proper functional definition, succeeds in referring at least
once. Their different status is due to the fact that genes figure in biological laws, while
grue emeralds do not figure in gemological ones.

There is certainly a pragmatic element involved in this distinction (genes are not
“more real” than grue emeralds, the concept is just more useful). However, here I
would share in the Humean hope that one candidate theory is objectively best in its
respective domain, whether or not we are able to decide it in practice. I am not positive
that this hope is true, but even less convinced of the need to concede to relativism. If
two biologists disagree about which part of a DNA sequence is the gene for blue eyes,
then they either disagree about the meaning of “gene” or (more likely) one of their
theories will strike a better balance between simplicity and strength in systematizing
blue-eye heredity.

That said, my claims to originality are fairly limited, as my ontological views are
drawing a lot from Dennett’s real patterns, Loewer’s package deals, and the Canberra
plan for metaphysics (see Esfeld (2020) for a recent discussion). Notably, though, I am
comfortable with using Humean, functionalist, and maybe even pragmatist strategies in
my discussion of special sciences because it is rooted in the assumption of a fundamental
physical ontology and fundamental (anti-Humean) laws. What I find untenable, if not
unintelligible, are real patterns or (Super-)Humeanism “all the way down.”
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15.2 Probability and Causation in Special Sciences

I now want to relate this discussion of special sciences with our previous analysis of
probability and causation in terms of typicality. Indeed, I believe that causal expla-
nations are much more relevant to special sciences than to (fundamental) physics.
There is, however, a prima facie tension between the view that biological entities or
properties are causally efficacious and the view that they are ontologically reducible
to micro-physical entities or properties. What does it mean, for instance, that a gene
mutation increases the fitness of a certain biological form when the survival and repro-
ductive success of every individual is determined by the physical dynamics guiding its
microscopic constituents and the initial conditions of the universe? When there exists,
in principle, a complete description of natural evolution in terms of atomic trajecto-
ries? It may seem like the biological explanation is either wrong or redundant – unless
we had a genuine case of causal overdetermination.

Now, I do not share the latter worry because I don’t believe that there are fun-
damental causal relations in physics. If the dynamical laws are bi-deterministic, then
the complete specification of the physical state of the world at one time entails and
necessitates its complete state at any other time. But this is not a causal relation, if
only for the fact that it is symmetric.

As argued in Ch. 10, causal relations can hold between two macrostates A and
B in that one macrostate makes the other typical: Typ(B | A) while ¬Typ(B). Such
macrostates can be specified in biological (or other special science) terms. Indeed, since
we have insisted that biological predicates allow for a translation into the language of
physics, they can be conceived as coarse-graining functions on the microscopic state
space, i.e., as Boltzmannian macro-variables. We can thus apply our previous physical
analysis of probability and causation.

For instance, the fact that an individual has developed the phenotypical trait P
makes it typical that S : it survives long enough to reproduce in the environmental
conditions E.

Typ(S | E ∨ P ), ¬Typ(S | E) (15.1)

Or, if {a1, ..., aN} is a population with genotype A and {b1, ..., bM} a population
with genotype B (i.e., two statistical ensembles), then the reproduction rate of A may
typically be greater than the reproduction rate of B. More formally:

Typ

 1
N

N∑
i=1

S(ai) >
1
M

M∑
j=1

S(bj)

 . (15.2)

Typicality here is still understood in the usual physical sense of a phenomenon
obtaining “for nearly all possible (initial) micro-conditions” (but note the remarks
about the context-dependence of typicality in the following section). In the upshot,
there is no need for “causal emergentism” or a new source of “randomness.” Causal
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explanations in the special sciences are a form of causal physical inference, as discussed
in Ch. 10. And objective probabilities in the special sciences mean the same as physical
probabilities, namely typical relative frequencies.

15.3 Special Science Laws as Typicality Laws

Special science laws are generally understood as ceteris paribus laws (CP-laws). In
contrast to fundamental physical laws, they are not universally true but hold under
specific circumstances which exclude interfering factors. The main problem with this
concept of (exclusive) CP-laws is that it seems impossible to provide a complete spec-
ification of all interfering factors to be excluded (in particular in the language of the
respective science) without essentially falling into the tautology that L is true except
in circumstances in which it isn’t. Hence the charge that CP-laws are in danger of
being either false or trivial (see Hempel (1988) and, in particular, Lange (1993)).

It seems to me that this problem arises mostly from attempts to model the concept
of special science laws after fundamental physical laws, when they should be really
understood as typical regularities. Thermodynamic laws would have been a better
example to follow if Boltzmann’s reduction to statistical mechanics had been more
widely appreciated.

To ground explanations, predictions, and counterfactuals, an effective (not funda-
mental) law need not state conditions that make its instances necessary. It only has to
be specific enough about its domain – and tolerant enough of small fluctuations – to
make the regularities typical. A limited number of definite ceteris paribus clauses will
thus belong to the description/systematization of the respective regularity (including
the macro-conditions we have to conditionalize on), while the indefinable range of other
potential interferences is negligible by virtue of being atypical events. The understand-
ing of special science laws as typical regularities (and in the framework adopted from
statistical mechanics) thus leads naturally to a similar conclusion as that expressed by
Marc Lange (2002):

To discover the law that all F ’s are G, ceteris paribus, scientists obviously
must understand what factors qualify as ‘disturbing’. But they needn’t
identify all of the factors that can keep an F from being G. They needn’t
know of factors that, when present, cause only negligible deviations from
strict G-hood, or factors that, although capable of causing great departures
from G-hood, arise with negligible frequency in the range of cases with
which the scientists are concerned. (p. 411)

There are also parallels – as well as important differences – between the typicality view
and normality theories which understand CP-laws as laws that hold under normal con-
ditions, that is, simply put “conditions that normally, usually, mostly obtain” (Spohn,
2008, p. 278). Spohn ultimately rejects this characterization, taking a more epistemic
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turn to explicate normality conditions in terms of doxastic states and degrees of belief
(more precisely, “ranking functions”; see, e.g., Spohn (2002, 2014)). Both definitions of
normality differ from typicality. On the one hand, typicality refers first and foremost
to what obtains for most possible micro-conditions, i.e., in most nomologically possi-
ble worlds, not to what obtains most of the time in the actual world. It is a theorem,
rather than a definition, that a repeatable typical event will typically obtain most of
the time. On the other hand, what is typical does not depend on anyone’s expectations
or beliefs. It is the other way round: typicality facts guide rational expectations and
beliefs.

15.4 The Hierarchy of Sciences

The theory of a hierarchy of modern sciences, often attributed to Auguste Comte
(1830), has great intuitive appeal. While the issue can become messy and controversial
when one gets into the weeds – and the structure of science is arguably more like a
branching tree than a pyramid – it seems by and large correct to say that biological
facts reduce to chemical facts, and chemical facts reduce to physical ones. The various
levels of this hierarchy are often associated with different scales of size or complexity,
different degrees of generality or fundamentality, and sometimes (more judgementally)
different degrees of rigor and predictive uncertainty. Here, I want to argue that this
hierarchy of sciences is well captured and explained by different “levels” of typicality.

We have already discussed the context-sensitivity of typicality. Simply put, de-
pending on the relevant set of propositions, there may be a different scale of ε such
that a proposition P is typical if µ(P ) > 1− ε with respect to a designated typicality
measure µ. And it seems plausible that this “threshold” for typicality is very high
in the context of physics, lower in the context of chemistry, lower still for proposi-
tions relevant to biology, and so on. All propositions are ultimately translatable into
physical proposition, leading to a partition of the fundamental microscopic state space
into macro-regions. However, which macro-regions are considered “large” or “small”
is relative to the particular partition, that is, the context of scientific reasoning.

It is only in a very loose sense that we could associate these “levels of typicality”
with (unsharp) degrees of belief. What matters is the rationality principle that we have
associated with typicality: A regularity that is typical in the biological context does
not require further biological explanation, but may be reducible to typical chemical
or physical regularities. And an atypical biological phenomenon requires, in the first
place, additional biological explanation (or may compel us to reject our biological
theory), but will not, in general, challenge our fundamental theories of physics.

This hierarchy has not just an intuitive appeal but a basis in mathematics if we
think of regularities in statistical terms. As we pass to larger and larger scales and
more and more specialized sciences, we are dealing with ever-smaller sample sizes.
Oversimplified: social regularities are instantiated in systems of ∼ 102 − 109 people,
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physiological regularities are instantiated in systems of ∼ 106 − 1014 cells, and macro-
physical regularities are instantiated in systems of ∼ 1020 − 1080 elementary particles.
If we think schematically in terms of the law of large numbers

P (|relative frequency− theoretical mean| > ε) = δ .
const.

ε2N
, (15.3)

we see that smaller sample size N means greater “uncertainty,” that is, both a broader
range ε of typical values, and a larger measure δ of the atypical events. In other words,
it is not just an epistemic or methodological issue that biological predictions seem less
reliable and precise than, e.g., thermodynamic ones. The fundamental laws of nature
and the very scope of the respective regularities make it so.

Remark (Mentaculus account of special science laws). I am not sure if the Humean
Mentaculus discussed in Ch. 5 allows for a similar conclusion. Loewer (2012a) pro-
vides an account of special science laws based on Humean probabilities for individual
events, which are understood as the measure of the set of initial micro-conditions of the
universe (in the Past Hypothesis macro-region) realizing the respective (macro-)event.
In contrast to the typicality theory of probability, there is then no sense in which the
Humean chance of a singular political event (let’s say) would be less sharp than the
Humean chance of a singular physical event. Physicists may be more confident than
political scientists, but the Mentaculus has a definite, unwavering opinion about every-
thing. That said, despite our different views about laws and probabilities, I very much
concur with Loewer’s approach in recognizing Boltzmannian statistical mechanics as
the appropriate framework for understanding the emergence of special science laws
from physics.

There is another way to understand the hierarchy of sciences, not by reducing each
special science directly to physics, but by reducing each higher-level theory to the next
lower level.

It is helpful to start with an intra-physical example. We can describe a ball as a
rigid Newtonian body with 6 degrees of freedom (3 for the position of its center of
mass and 3 rotational degrees of freedom). This is a very coarse-grained description,
ignoring the internal (microscopic) degrees of freedom of the object. Technically, we
are thereby passing from the microscopic phase space of ∼ 1024 particles to a reduced
or effective 12-dimensional phase space of the ball (6 degrees of freedom and the con-
jugated momenta), which is good enough to account for most mechanical regularities.
In doing so, we are implicitly assuming that each configuration in the reduced phase
space is realized by typical micro-states, disregarding micro-conditions for which the
ball would suddenly decay, or shoot off an ultra-fast particle while veering in the op-
posite direction, or perform other shenanigans. Such atypical micro-states would cease
to realize a “ball” in the sense relevant to the higher-level theory. On the other hand,
if we consider a system of N balls (or “hard spheres”) their common effective phase
space (12N -dimensional) will be equipped with its own natural measure that allows
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us to make typicality statements with respect to the initial positions and (angular)
momenta of the balls.1

A similar thing happens as we go from elementary physics to molecular physics, to
chemistry, to biology, and so on. In the right combinations and under the right envi-
ronmental conditions, typical configurations of quarks realize nucleons, typical config-
urations of nucleons and electrons realize atoms, typical configurations of O,N,H,C
atoms realize cytosine, guanine, adenine or thymine molecules, and typical configu-
rations of those nucleobases (plus deoxyribose and some organic phosphates) realize
DNA. In each step, we are passing to a reduced state space, ignoring internal degrees
of freedom by assuming typical behavior of the more microscopic constituents.

Admittedly, as we move further away from physics and into more qualitative terri-
tory, it becomes questionable whether we still have a meaningful state space, a quan-
titative conception of a system’s degrees of freedom and dynamics that would allow
us to formulate precise typicality statements. But taken with a grain of salt, we can
say that chemical regularities are instantiated by typical physical systems (more pre-
cisely: physical systems of the right kind that behave in a typical manner), biological
regularities are instantiated by typical chemical systems (of the right kind), medical
regularities are instantiated by typical biological systems (of the right kind), and so
on and so forth. In each step, we are multiplying the possibilities of atypical events
on the lower levels, which is another way to understand the increase of “uncertainty”
– in the sense of a broader range of typical values – and in the size of the “exception
sets” of initial micro-conditions on the fundamental micro-physical level.

15.5 Is Life Atypical?

In addition to our previous considerations, it is also interesting to note that many
specialized sciences seem to deal only in conditional typicality. For instance, economic
regularities may be typical given the existence of market economies (with more or less
rational agents), but to claim that the existence of markets itself is a typical feature
of a physical universe seems like a stretch. (Pace Marx, a period of capitalism is
not that “inevitable.”) On the other hand, physics and maybe chemistry discover also
phenomena that are typical tout court – which is another way to see why these sciences
are more fundamental.

And what about biology? Is the very existence of biological phenomena an atypical
feature of our universe? This is a profound and challenging question, not least because
it concerns our place as intelligent2 life forms in the cosmos. The main issue, to be
clear, is not whether life is ubiquitous in our universe, but whether typical universes
allowed by the fundamental laws of nature contain any (complex) life forms at all.

1A single ball also has a natural, stationary phase space measure but no interesting statistical
regularities.

2Although here, I’ll be less concerned with the “intelligence” part and bracket the issue of phenom-
enal consciousness altogether.
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I don’t have much expertise to offer on the question itself, but by and large, three
resolutions seem plausible:

1. The existence of life in the universe is typical because the thermodynamic evolu-
tion of the universe – the way in which entropy typically increases – is somehow
conducive to the creation of complex subsystems with self-replicating entities
that get Darwinian evolution started. (A much-noted exploration of this idea is
due to England (2013). Erwin Schrödinger’s What is Life? (1944) was highly
influential in relating the question of life to thermodynamic considerations.)

2. The existence of life is typical – or at least not atypical – merely because of
the “large numbers.” That is, even though the environmental conditions and
the physical processes necessary for the origin of life are extremely special, the
universe is so big (and so old) that they are bound to occur somewhere.

3. Life is atypical, requiring very fine-tuned initial conditions of the universe.

Let’s assume, for the sake of argument, that the last conclusion is correct and the
existence of biological life turns out to be atypical according to the fundamental theories
of physics. What would the implications be? Wouldn’t the fact that our very existence
is atypical undermine the rationality of typicality arguments altogether? I believe that,
based on typicality reasoning, two different stances could be taken.

The first would simply accept that the phenomenon of life is a challenge to our
current best theories. We cannot be content with the fact that life doesn’t require
a flat-out violation of the physical laws; its atypicality compels us to look additional
theoretical principles – or better theories – that make life not atypical. Some may
appeal to a (strong) anthropic principle to meet the explanatory burden (see Barrow
and Tipler (1986) for a classical reference), but I don’t see much value in it.

The other option is more sobering: From the point of view of fundamental physics,
the existence of life is an atypical feature of our universe, but it is not a bona fide
physical phenomenon, i.e., not the kind of phenomenon that physics must be able to
explain. It is rather an acceptably brute fact – consistent with the fundamental laws
of nature but purely accidental. To me, this option (if correct) would point to much
more than a pragmatic division of labor between physics and biology. It would mean
that the existence of life – our existence – is insignificant in the great cosmic scheme
of things, a footnote in the book of nature.

The idea that our universe is fine-tuned for life is, of course, a popular argument for
God, at least a deistic one, who does not have to intervene in the course of nature but
set up things very carefully. If the reader will indulge the religious imagery, I would
put it the other way around: The question whether God, upon creating the universe,
cared about the existence of human beings (more than, let’s say, about the exact shape
of a certain sand dune changing in the wind), depends on whether God set up laws
that make the evolution of intelligent life forms typical.
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