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SUMMARY

The endoplasmic reticulum (ER) unfolded protein
response (UPRer) pathway plays an important role
in helping pancreatic b cells to adapt their cellular
responses to environmental cues and metabolic
stress. Although altered UPRer gene expression ap-
pears in rodent and human type 2 diabetic (T2D) is-
lets, the underlying molecular mechanisms remain
unknown. We show here that germline and b cell-
specific disruption of the lysine acetyltransferase
2B (Kat2b) gene in mice leads to impaired insulin
secretion and glucose intolerance. Genome-wide
analysis of Kat2b-regulated genes and functional as-
says reveal a critical role for Kat2b in maintaining
UPRer gene expression and subsequent b cell func-
tion. Importantly, Kat2b expression is decreased in
mouse and human diabetic b cells and correlates
with UPRer gene expression in normal human islets.
In conclusion, Kat2b is a crucial transcriptional regu-
lator for adaptive b cell function during metabolic
stress by controlling UPRer and represents a prom-
ising target for T2D prevention and treatment.

INTRODUCTION

The endoplasmic reticulum (ER) is a crucial organelle necessary

to maintain protein folding and secretory capacity. Defective ER

function or prolonged ER stress impairs glucose homeostasis

and is associated with the development of peripheral insulin

resistance and impaired b cell function, two major contributors

to the pathogenesis of diabetes (Walter and Ron, 2011; Wang

and Kaufman, 2012). Several lines of genetic evidence suggest
C
This is an open access article under the CC BY-N
that the transition between an obese, insulin-resistant state to

type 2 diabetes (T2D) is triggered by b cell failure, due to both

a partial loss of b cell mass and an impaired b cell function (Muoio

and Newgard, 2008). Interestingly, obese patients maintaining b

cell compensation are protected from T2D, suggesting that the

mechanisms controlling this particular stage of diabetes pro-

gression is crucial for the evolution to diabetes (Weir and Bon-

ner-Weir, 2004).

Pancreatic b cells adapt their secretory capacity to metabolic

challenges by activating the ER unfolded protein response

(UPRer), particularly during diet-induced obesity (Eizirik and

Cnop, 2010). The UPRer orchestrates complex signaling path-

ways in specialized secretory cells undergoing ER stress (Hetz,

2012). Typically, the UPRer is composed of three transmembrane

ER stress sensors, ATF6, IRE1 and PERK, that transduce

signaling pathways and, finally, modify the expression of key

genes leading to adaptive responses and recovery from ER

stress (Back and Kaufman, 2012). A growing body of evidence

suggests that alteration in the expression of UPRer genes may

lead to b cell failure and contribute to diabetes development

(Cnop et al., 2012; Rabhi et al., 2014). Recent studies in mouse

and human diabetic islets implicate altered expression of these

markers (Chan et al., 2013; Engin et al., 2014; Kennedy et al.,

2010; Laybutt et al., 2007). However, the upstream regulators

responsible for the modulation of UPRer gene expression are

currently unknown.

Gene expression relies on the epigenetic status of histones,

transcription factors, and their coregulators, allowing cell adap-

tation to metabolic change (Kelly and Scarpulla, 2004; Mouchir-

oud et al., 2014). Adapted responses to different environmental

metabolic cues are controlled through the balance between

acetylation and deacetylation of specific histonemarks and tran-

scription factors (Menzies et al., 2016; Mihaylova and Shaw,

2013; Zhao et al., 2010). This process involves the antagonistic

activity of the chromatin-modifying enzymes lysine/histone
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deacetylase (KDAC) and lysine/histone acetyl transferase (KAT).

Accumulating evidence suggests important roles for KDACs in

the control of glucose homeostasis (Mihaylova and Shaw,

2013), notably by regulating endocrine pancreatic development

(Haumaitre et al., 2008; Lenoir et al., 2011) and b cell function

and survival (Lundh et al., 2012; Plaisance et al., 2014). So far, lit-

tle is known about themetabolic role of KAT, in particular KAT2B.

In this study, we investigated the effect of germline and b cell-

specific Kat2b deficiency on glucose homeostasis and insulin

secretion. We find that loss of Kat2b induces defects in insulin

secretion and glucose intolerance. We further establish direct

links among Kat2b, UPRer gene expression, and insulin secre-

tion. We also demonstrate that KAT2B expression is defective

in T2D islets, providing an unsuspected mechanistic link among

KAT2B, UPRer signaling, the ER stress response, and b cell func-

tion during metabolic stress.

RESULTS AND DISCUSSION

Germline and b Cell-Specific Kat2b Deficiency Impairs
Glucose Tolerance and Insulin Secretion in Mice
To elucidate the role of KAT2B in glucose homeostasis, we first

investigated the metabolic phenotype of Kat2b-deficient mice

(Kat2b �/�) (Maurice et al., 2008; Yamauchi et al., 2000). Body

weight and size of Kat2b �/� mice under a chow diet was

reduced when compared to controls (Figures S1A and S1B).

The reduced body size was not caused by changes in Igf-1

levels, as liver Igf-1mRNA levels and serum Igf-1 concentrations

were unchanged (Figures S1C and S1D). Kat2b-deficient mice

displayed a slight elevation of blood glucose values that was

associated with a decrease in plasma insulin levels (Figures 1A

and 1B). Insulin sensitivity was similar between both genotypes

(Figure 1C), indicating that hyperglycemia in Kat2b �/� mice

may result from insulinopenia. Kat2b �/� mice tended to

respond to intraperitoneal glucose tolerance tests (ipGTTs; Fig-

ures 1D and 1E; p = 0.06), despite decreased insulin secretion in

response to glucose (Figure 1F). In contrast to mice fed a regular

diet, Kat2b �/�mice fed a high-fat diet (HFD) developed hyper-

glycemia (Figure 1G), insulinopenia (Figure 1H), and impaired

glucose tolerance (Figures 1I and 1J). Impaired glucose homeo-

stasis was correlated with a significant reduction of glucose-

stimulated insulin levels (Figure 1K), despite moderate weight

gain (Figure S1E; p < 0.01). Insulin sensitivity was similar be-

tween Kat2b+/+ and Kat2b �/� mice fed an HFD (Figure 1L).

We next found that KAT2B protein co-localizes with insulin in

healthy rodent islets (Figures 1M, S1F, and S1G). We then inves-

tigated glucose-stimulated insulin secretion (GSIS) in isolated

pancreatic islets from Kat2b �/� mice. Although Kat2b deletion

did not affect the total insulin content (Figure S1H), it reduced

GSIS by 56% (Figure 1N). Reduction of GSIS was further

confirmed in Min6 cells in which Kat2b expression was silenced

using interfering RNAs (Figures S1I and S1J). Islet histology (Fig-

ure S1K) and cell number and surface area (Figure 1O) were

similar in chow-fed Kat2b �/� mice. However, islet size of

Kat2b �/� mice fed an HFD was significantly reduced when

compared to controls (Figure 1O; p < 0.001; Figure S1K). Reduc-

tion of islet size was correlated with an increased proportion of

small islets (Figure S1L). The number of a and b cells per islet
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and circulating glucagon levels were similar for both diets (Fig-

ures S1M–S1P). With an HFD only, a significant decrease in b

cell area was observed in Kat2b �/� pancreata compared to

controls (Figure 1P; p < 0.001; Figure S1M), suggesting that

Kat2b is required for b cell compensation in obesity and associ-

ated insulin resistance.

To further demonstrate the cell-autonomous function of Kat2b

on insulin secretion, we generated b cell-specific Kat2b

knockout mice by crossing Kat2bLox/Lox with RIP-Cre mice (Her-

rera, 2000) (hereafter referred as Kat2bb�/�; Figure S2A). Kat2b

gene expression analysis on isolated islets demonstrated an

efficient recombination upon b cell-specific Cre recombinase

expression at the Kat2b locus (Figure 2A), but not in other meta-

bolic organs including hypothalamus, liver, or adipose tissues

(Figure S2B). Bodyweight and fasting glucose levels were similar

among all genotypes (Figures 2B and 2C, respectively). As

observed in the germline Kat2b �/� mice, the b cell-specific

deletion of Kat2b resulted in glucose intolerance (Figures 2D

and 2E). The Kat2bb�/� mice had blunted insulin release

30 min after intraperitoneal glucose administration (Figure 2F),

whereas their systemic insulin sensitivity was preserved (Fig-

ure 2G). Challenging Kat2bb�/� mice with an HFD resulted in

moderate body weight gain (Figure 2H) and normal fasting

glucose levels (Figure 2I). However, Kat2bb�/� mice fed an

HFD were glucose intolerant (Figures 2J and 2K), with defective

insulin secretion after intraperitoneal glucose administration

(Figure 2L), but remained sensitive to insulin (Figure 2M).

Although we cannot rule out off-target effects during our small

interfering RNA (siRNA) experiments, these results suggest

that Kat2b modulates insulin secretion in a cell-autonomous

manner and may contribute to b cell compensation during meta-

bolic stress.

Kat2b Directly Regulates an UPRer Gene Program
Necessary for Proper Insulin Secretion
Kat2b directly regulates insulin gene expression in response to

glucose through the acetylation of histone H4 (Sampley and Oz-

can, 2012). However, isolated islets from Kat2b +/+ and �/�
mice showed no difference inmRNA levels of key genes involved

in insulin synthesis (Ins1, Ins2, Pdx1, and Mafa), maturation

(Pcsk1, Pcsk2, and Cpe), or secretion (Slc30a8, Kcnj11, Abcc8,

andChgA; Figure S3A). As Kat2b is a transcriptional coregulator,

we performed chromatin immunoprecipitation sequencing

(ChIP-seq) in murine isolated islets and showed that DNA motifs

present in regions bound by Kat2b were those recognized by

several transcription factors, including Pax4, Creb1, Atf4, Atf6,

Ddit3 (Chop), and Xbp1 (Table S1). Recent evidence demon-

strated that altered expression of genes involved in UPRer im-

pairs insulin secretion and b cell function (Back and Kaufman,

2012). We hypothesized that this pathway may be controlled

by Kat2b, and we focused our ChIP-seq analysis on the ER.

Gene Ontology (GO) analysis revealed an enrichment of se-

quences bound byKat2b involved in different cellular and biolog-

ical regulations, including the cellular response to a stimulus, the

metabolic process, or response to stress (Table S2). GO analysis

revealed that many genes controlling ER functions (p = 6.4 3

10�13), the ER stress response (p = 0.0027), and UPRer signaling

(p = 0.039; Table S2) are Kat2b targets. Consistently, Kat2b



Figure 1. Loss of Kat2b in Mice Causes Glucose Intolerance and Insulinopenia

(A and B) 16-hr fasting and refed blood glucose levels (A) and refed serum insulin levels (B) in 12-week-old control (Ka2b +/+) and mutant (Kat2b �/�) mice

(n = 4–7).

(C) blood glucose levels during intraperitoneal insulin tolerance test (ipITT) in mice fed normal chow (n = 6).

(D–F) ipGTT (D), area under the curve (AUC) of ipGTT (E), and serum insulin levels at the indicated times after intraperitoneal injection of glucose (F) (n = 6).

(G and H) 16-hr fasting and refed blood glucose levels (G) and refed serum insulin levels (H) in Kat2b +/+ and �/� mice fed an HFD for 13 weeks (n = 7�10).

(I–L) Blood glucose levels during ipGTT (I), AUC of ipGTT with an HFD (J), serum insulin levels at the indicated times after intraperitoneal injection of glucose (K),

and blood glucose levels during ipITT in mice fed an HFD (L) (n = 7–10).

(M) Immunofluorescence analysis of pancreatic sections showing co-expression of Kat2b (green) and insulin (red) in mouse pancreatic islets. Nuclei are stained

with Hoechst reagent (scale bar, 100 mm).

(N) Insulin secretion from islets isolated from Kat2b +/+ (gray bars) and �/� (red bars) mice in the presence of 2.8 mM and 20 mM glucose. Results were

normalized to total insulin content (n = 3).

(O) Quantification of islet area inKat2b +/+ and�/� pancreata of mice fed normal chow or an HFD (n = 5 animals per condition). All individual values are plotted on

the graph.

(P) Quantification of relative insulin-positive area from pancreatic sections of Kat2b +/+ and �/� mice fed chow and an HFD.

All values are expressed as means ± SEM; *p < 0.05, **p < 0.01, and ***p < 0.001.
occupies the promoters of several genes controlling UPRer activ-

ity, including Xbp1, Hspa5 (BiP), Atf4, and Atf6 (Table S3;

Figure S3B).

As ER homeostasis is critical for maintaining b cell function

(Fonseca et al., 2011), we investigated how impairedUPRer regu-

lation in Kat2b�/� islets led to defective insulin secretion. It was

previously shown that treatment with chemical chaperones,

such as taurine-conjugated ursodeoxycholic acid (TUDCA) and

4-phenyl butyric acid (4-PBA), alleviates ER stress and prevents

glucose-induced b cell dysfunction (Tang et al., 2012). Treatment

with both TUDCA and 4-PBA partially rescued GSIS in isolated

pancreatic Kat2b �/� islets (Figure 3A), suggesting that UPR

dysfunction could be responsible for insulin secretion defects.
In Kat2b-silenced Min6 cells, treatment with both molecules

also restored GSIS (Figure S3C). In accordance with ChIP-seq

data, the expression of UPRer genes was decreased in isolated

Kat2b �/� islets (Figure 3B). This effect was further observed

in Kat2b �/� mice fed an HFD (Figure 3C), concomitantly with

associated decreased expression of key b cell genes such as

Mafa, Ins2, and Cpe (Figure S3D). Decreased expression of

several UPRer genes was confirmed in Kat2bb�/� islets (Fig-

ure 3D). Kat2b silencing in Min6 cells further showed UPRer

pathway impairment (Figure S3E) and decreased expression of

b cell genes (Figure S3F). Therefore, these findings suggest

that Kat2b is an upstream transcriptional regulator of UPRer

markers in murine pancreatic islets and Min6 insulinoma cells.
Cell Reports 15, 1051–1061, May 3, 2016 1053



Figure 2. Impaired Glucose Tolerance in Mice with a b Cell-Specific Knockout of Kat2b

(A) Kat2b mRNA levels in islets isolated from control (Rip-Cre/+ and Kat2bb+/+) and b cell-specific mutant (Kat2bb�/�) mice.

(B and C) Body weight (B) (n = 9–14) and 16-hr fasting blood glucose levels (C) (n = 11) in Rip-Cre/+, Kat2bb+/+, and Kat2bb�/� mice fed normal chow.

(D–F) ipGTT measuring the levels of glucose (D), the corresponding AUC (E) and insulin (F) at the indicated times after intraperitoneal injection of glucose in

5-month-old Rip-Cre/+ (black triangles and bars, n = 11), Kat2bb+/+ (white circles and bars, n = 11), and Kat2bb�/� (green squares and bars, n = 11).

(G) ipITT measuring levels of glucose at the indicated times after intraperitoneal injection of insulin in mice fed normal chow (n = 11).

(H) Body weight gain under HFD feeding of Rip-Cre/+ (n = 8), Kat2bb+/+ (n = 6), and Kat2bb�/� (n = 10).

(I) 16 hr fasting blood glucose levels in Rip-Cre/+ (n = 4), Kat2bb+/+ (n = 10), and Kat2bb�/� (n = 11) mice fed an HFD for 16 weeks.

(J–L) ipGTT measuring the levels of glucose (J), the corresponding AUC (K), and serum insulin (L) at the indicated times after intraperitoneal injection of glucose in

Rip-Cre/+ (black triangles and bars, n = 11), Kat2bb+/+ (white circles and bars, n = 11), and Kat2bb�/� (green squares and bars, n = 11) mice fed an HFD for

16 weeks.

(M) ipITT measuring the levels of glucose at the indicated times after intraperitoneal injection of insulin in mice fed an HFD (n = 6–11).

All values are expressed as mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001.
Germline or b cell-specific Atf6-deficient (Atf6b�/�) mice have

decreased insulin secretion (Engin et al., 2014; Usui et al.,

2012). The striking similarity between the Kat2b �/� mice

and Atf6-deficient mice prompted us to focus on the regulation

of the Atf6 gene by Kat2b. In agreement with our ChIP-seq and

qPCR data, luciferase-based reporter studies confirmed that

Kat2b potentiates the promoter activity of the Atf6 gene

construct in Min6 cells (Figure 4A). This transcriptional effect

relied on Kat2b acetyltransferase activity. A Kat2b construct

deleted of its HAT domain was unable to stimulate the lucif-

erase gene (Figure 4A). Importantly, rescue of Atf6 expression

in Kat2b �/� islets (Figures 4B and S4A) and in Kat2b-silenced
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Min6 cells (Figures 4C and S4B) restored glucose-stimulated

insulin secretion in these cells, demonstrating that Atf6 medi-

ated the observed effects of Kat2b on insulin secretion. To

further evaluate the contribution of Kat2b to the ER stress

response, we treated Min6 cells with the ER stress inducer

thapsigargin (TG). This treatment did not modulate Kat2b

mRNA levels (Figure 4D), but it rapidly increased Kat2b protein

levels (Figures 4E and 4F). The rise of Kat2b abundance by TG

was confirmed at lower doses (Figure S4C) and in cells

exposed to the lipotoxic agent palmitate (Figure S4D). Interest-

ingly, we identified a potential upstream open reading frame

(uORF) within the Kat2b gene that may contribute to this



Figure 3. Modulation of UPRer Signaling in Murine Kat2b �/� b Cells Is Required for Insulin Secretion

(A) Effects of TUDCA and 4-PBA treatments on glucose-stimulated insulin secretion from Kat2b +/+ and �/� isolated islets (n = 3).

(B and C) mRNA levels of UPRer genes in islets isolated from Kat2b +/+ and �/� mice fed chow (B) or an HFD (C) (n = 4–5).

(D) mRNA levels of UPRer genes in islets isolated from Rip-Cre/+, Kat2bb+/+, and Kat2bb�/� mice fed chow (n = 3).

Data are shown as mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001.
regulation (data not shown). In contrast to Kat2b, TG increased

Atf6 mRNA levels (Figure 4G). This induction was lowered upon

Kat2b silencing, suggesting that Kat2b may contribute to Atf6

regulation under stress conditions (Figure 4G). ChIP-qPCR in

Min6 cells confirmed Kat2b binding on the Atf6 promoter (Fig-

ure 4H). The regulation of the Atf6 promoter by Kat2b was inde-

pendent of histone H3 acetylation, since no modulation of the

H3ac, H3K9ac, or H3K14ac epigenetic marks was observed

upon Kat2b silencing in Min6 cells (Figure S4E). The Pdx1

promoter was, however, modulated by Kat2b-dependent acet-

ylation of histone H3 (Figure S4E). This suggests that the regu-

lation of Atf6 promoter activity may operate through the acety-

lation of non-histone proteins. Moreover, recruitment of Kat2b

on the Atf6 promoter was increased in the presence of TG (Fig-

ure 4H). To further study the contribution of Kat2b in UPRer

signaling, activation of several key UPRer proteins was moni-

tored upon reduction of Kat2b levels. Silencing of Kat2b

decreased the amount of total PERK, phosphorylated PERK,

Hspa5, phosphorylated IRE1a, and its target, spliced Xbp1

and Atf6, in response to TG treatment (Figure 4I). Altogether,

these data suggest that Kat2b is a permissive transcriptional

co-activator controlling several branches of the UPRer pathway

under both basal and stress conditions. Our results also

emphasize that Kat2b mostly affects the Atf6 branch of the

UPRer. The regulation of the Kat2b uORF by the PERK-eIF2a

arm of the UPR is currently unknown but might represent a

mechanistic link between ER-stress-dependent UPRer activa-

tion and the regulation of UPRer target genes targeted by

Kat2b.
Decreased Kat2b Expression in Rodent and Human T2D
Islets
We then quantified Kat2b expression in rodents and human

diabetic islets. Kat2b expression was significantly reduced in

20-week-old db/db pancreatic islets compared to non-diabetic

db/+ mice (Figures 5A and 5B). Immunofluorescence assays on

formalin-fixed human pancreatic sections showed that insulin-

producing b cells and non-b cells expressed KAT2B (Figure 5C).

Islet transcriptomics analysis in T2D subjects from two inde-

pendent datasets demonstrated a significant decrease of

KAT2B mRNA levels compared to normal glycemic controls

(GEO: GSE20966; Marselli et al., 2010; and GEO: GSE38642;

Taneera et al., 2012; Figures 5D and 5E, respectively). More-

over, KAT2B expression in human islets was inversely corre-

lated with the long-term glucose control marker glycated he-

moglobin A1c (HbA1c; Figure 5F). By analyzing fresh human

islets isolated from four T2D donors and four normoglycemic

subjects (see Table S4 for donor information), we confirmed

that KAT2B expression was decreased in T2D (Figure 5G).

Some UPRer pathways are defective in human T2D islets; Engin

et al., 2014; Kennedy et al., 2010). In this respect, KAT2B

expression, ABCC8, SLC30A8, CPE, PDX1, and UPRer genes

DDIT3 (CHOP), HERPUD2, HSP90B1 (GRP94), EDEM1, and

DNAJC3 (p58IPK) were concomitantly decreased in T2D islets

(Figure 5H). In human islets, KAT2B and the expression of

genes controlling UPRer and b cell function were positively

correlated (Figure 5I). Moreover, KAT2B, UPRer and b cell func-

tion genes are part of the same gene cluster (Figure 5J).

Silencing of KAT2B expression in healthy human islets
Cell Reports 15, 1051–1061, May 3, 2016 1055



Figure 4. Kat2b Controls Several Branches of the UPRer Signaling in Insulin-Producing Cells

(A) Min6 cells were transiently co-transfected with the Atf6 promoter luciferase construct in the absence (pCI) or presence of Kat2b (pCI-KAT2B) and catalically

inactive KAT mutant (pCI-KAT2B DHAT). Results were normalized to b-galactosidase activity.

(B) Insulin secretion from Kat2b +/+ and�/� isolated islets transfected with pCDNA3-FLAG (flag) or pCDNA3-hATF6-FLAG (hATF6). Results were normalized to

insulin content.

(C) Glucose-stimulated insulin secretion from control (siCont) and Kat2b silencing (siKat2b) in Min6 cells transduced with a control adenovirus (AdGFP) or en-

coding human ATF6 (AdATF6).

(D) mRNA levels of Kat2b in Min6 cells transfected with control (siCont) or Kat2b siRNA (siKat2b) and treated with vehicle (�) or thapsigargin (TG).

(E and F) Western blot assay (E) and quantification (F) showing increased Kat2b protein levels after treatment with 2.5 mM TG at different time points. Actin was

used as a loading control. Quantification was performed using ImageJ software.

(G) mRNA levels of Atf6 in Min6 cells transfected with control (siCont) or Kat2b siRNA (siKat2b) and treated with vehicle (�) or thapsigargin (TG).

(H) ChIP-qPCR demonstrating binding of Kat2b to the Atf6 promoter in Min6 cells under basal and ER stress (TG) conditions.

(I) Western blot assay showing protein levels of several UPRer markers in control (siCont) or Kat2b silenced (siKat2b) Min6 cells treated or not with TG.

Data are shown as mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001.
decreased GSIS (Figures 5K and 5L) with a concomitant

decrease in ATF6 and XBP1 mRNA levels (Figure 5M). Interest-

ingly, analysis of ChIP-seq data from ENCODE (http://genome.

ucsc.edu/ENCODE/) showed that KAT2B binds to numerous

UPRer genes in human cell lines, including ATF6, XBP1,

ATF4, HSPA5, DDIT3, and HERPUD2 (Figures S5–S7). These

results are reminiscent of our ChIP-seq analysis in murine

pancreatic islets. Formaldehyde-assisted isolation of regulatory

elements (FAIRE)-sequencing (Giresi et al., 2007) and DNase-

sequencing (Crawford et al., 2006) data further revealed that

these UPRer chromatin regions were associated with regulatory

activities in pancreatic human islets (Figures S5–S7). In combi-

nation, these results strongly support the existence of a link be-

tween KAT2B and UPRer gene expression in human islets and

correlate defective KAT2B expression with T2D status in hu-

man pancreatic islets.

Our results suggest that KAT2B is likely to be an important

mediator of insulin secretion and b cell adaptation during

metabolic stress. Indeed, both germline and b cell-specific

deletion of Kat2b in the mouse induces glucose intolerance
1056 Cell Reports 15, 1051–1061, May 3, 2016
and defective insulin secretion. Although we cannot rule out

that Kat2b modulates other pathways involved in b cell func-

tion, our data from rodent models suggest that Kat2b directly

regulates UPRer gene expression. We found in human islets a

robust association between the expression of this lysine ace-

tyltransferase and crucial genes involved in insulin secretion

and in b cell adaptive responses. By regulating UPRer

signaling pathways, KAT2B can be considered a critical tran-

scriptional regulator of b cell function, especially after meta-

bolic stress (Figure 6). The decrease of KAT2B expression in

T2D islets and the inverse correlation with HbA1C levels

further suggest a potential role for KAT2B during the onset

of T2D.

During obesity, b cells need to adapt their insulin secretory

capacity in response to nutrient overload by progressively ex-

panding their islet cell mass (Weir and Bonner-Weir, 2004). Un-

der diabetogenic conditions, Kat2b �/� mice are unable to

compensate (Figure 1). ob/ob mice and hyperglycemic db/db

mice display differential regulation of the adaptive UPRer (Chan

et al., 2013). The expression of UPRer genes is induced in islets

http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/


Figure 5. Kat2B Expression Is Decreased in db/db and Human T2D Islets

(A and B) Immunofluorescencemicroscopy analysis (A) and quantification (B) of pancreatic sections from 20 weeks old control (db/+) and obese diabetic (db/db)

mice showing expression of Insulin and Kat2b. Analysis was performed on two independent experiments using 5 animals of each genotype and representative

images are shown (scale bar, 20 mm).

(C) Immunostaining of pancreas sections demonstrating KAT2b expression in normal human b cells (insulin, red) and non-b cells (scale bar, 12.5mm).

(D and E) Correlation betweenKAT2B and T2D in humans. KAT2B expression is downregulated in pancreatic islets isolated from T2D patients. Analyses in (D) are

based on human dataset GEO: GSE20966. The decreased expression of KAT2B in diabetic patients is confirmed in another independent human dataset in (E)

(GEO: GSE38642).

(F) The expression levels of KAT2B are negatively correlated with Hba1C, a marker of T2D. Analyses are based on human dataset GEO: GSE38642.

(G) KAT2B mRNA levels in control and T2D human islets (n = 4).

(H) Custom gene-set analysis showing enrichment of ER stress and insulin production related transcripts downregulation in diabetic patients in human dataset

GEO: GSE20966.

(I and J) To evaluate a possible link between KAT2B expression and key ER stress regulators and factors regulating insulin production, a correlation analysis

with gene expression data from human pancreatic islets was performed using Pearson correlation coefficient. The positive correlation coefficient obtained

allows us to establish a correlation matrix (I) and interaction network (J) showing correlations between KAT2B and genes involved in ER stress and insulin

production. Positive and statistically significant Pearson’s correlation coefficients are represented by blue edges, while negative coefficients are represented

by red (r = 0.5–1.0).

(K) KAT2B mRNA levels from control (siCont) and KAT2B silenced (siKAT2B) human islets (n = 3).

(L) GSIS from control (siCont) and KAT2B silenced (siKAT2B) human islets (n = 3). Values were normalized per islet equivalent.

(M) mRNA levels of INSULIN (INS), GLUCAGON (GCG), SOMATOSTATIN (STT) and UPRer genes in control (siCont) and KAT2B silenced (siKAT2B) human islets

(n = 3).

Values in (B), (D), (E), (G), (K), (L), and (M) are expressed as means ± SEM; *p < 0.05, **p < 0.01, and ***p < 0.001.
of non-diabetic ob/ob mice, whereas it progressively decreases

in diabetic db/db mice, linking UPRer failure with progression to

diabetes (Chan et al., 2013). Our observations that Kat2b levels

are decreased in b cells of db/db mice suggest a molecular

mechanism linking defective glucose homeostasis and UPRer

in these mice.
In conclusion, our study suggests that Kat2b contributes to the

maintenance of efficient UPRer levels in b cells to ensure an

efficient adaptive response to stressful conditions, such as those

inflicted by obesity and metabolic stress. Therefore, it is our

expectation that the evidence presented here will guide the ratio-

nale and design of future therapeutic strategies by incorporating
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Figure 6. A Schematic Model Summarizing

the Role of KAT2B in b Cells during Obesity

and Metabolic Stress and Its Role in UPRer

Regulation
KAT2B-targeted drugs against T2D and related disorders such

as obesity.

EXPERIMENTAL PROCEDURES

Materials and Oligonucleotides

Chemicals, unless stated otherwise, were purchased from Sigma-Aldrich.

Anti-INS (ab7842), anti-ATF6 (ab11909), anti-KAT2B (ab96510 for immunoflu-

orescence, ab12188 for ChIP), and Igg (ab37415 ChIP grade) antibodies were

from Abcam; anti-KAT2B (sc-13124 for western blot), anti-actin (sc-1616), and

anti-Xbp-1 antibodies were from Santa Cruz Biotechnology; anti-glucagon

was from Sigma-Aldrich; and anti-PERK (C33E10), phospho-PERK (16F8),

phospho-IRE1a (14C10), and anti-Hspa5 (C50B12) were from Cell Signaling.

The oligonucleotides sequences used for various experiments are listed in Ta-

ble S5. Plasmids with Kat2b cDNA were kindly provided by Drs. L.K. Linares

and C. Gongora, and ATF6-pGL3 construct was kindly provided by Pr. Yosh-

ida. The adenovirus encoding human ATF-6 has been described elsewhere

(Sharma et al., 2015).

Animal Experiments

Mice were maintained according to European Union guidelines for the use of

laboratory animals. In vivo experiments were performed in compliance with

the French ethical guidelines for studies on experimental animals (animal house

agreement no. A 59-35015, Authorization for Animal Experimentation no.59-

350294, project approval by our local ethical comitttee no. CEEA 482012).

Germline Kat2b-deficient mice were previously described (Duclot et al., 2010),

and experiments were performed on CD1 strains. All experiments were per-

formed with male mice. Mice were housed under a 12-hr light/dark cycle and

given a regular chow (A04;Safe). For HFD studies, 5-week-oldmicewere placed

on a D12492 diet (60% of calories from fat; Research Diet) for 13 weeks. Meta-

bolic phenotyping experiments were performed according to the EMPRESS

protocols. Intraperitoneal glucose and insulin tolerance tests (ITTs) were per-

formed as previously described (Annicotte et al., 2009) on 16-hr-fasted animals

for ipGTT and 5-hr-fasted animals for ITT. Glycemia was measured using the

Accu-Check Performa (Roche Diagnostics). Circulating insulin levels were

measured using the Ultrasensitive Insulin ELISA kit (Mercodia). Circulating Igf-

1 levels were measured on fed animals using an Igf-1 ELISA kit (Sigma-Aldrich).

Kat2b floxed (Kat2bL2/L2) mice were generated by homologous recom-

bination in 129Sv embryonic stem (ES) cells according to standard pro-
1058 Cell Reports 15, 1051–1061, May 3, 2016
cedures (Argmann et al., 2005). The karyotype

was verified and several correctly targeted ES

cell clones were injected into blastocysts from

C57BL/6J mice. These blastocysts were trans-

ferred into pseudopregnant females, resulting

in chimeric offspring that were mated to female

C57BL/6J mice that express Flp recombinase

under the control of the ubiquitous cytomega-

lovirus promoter (Rodrı́guez et al., 2000).

Offspring that transmitted the mutated allele,

in which the selection marker was excised,

and that lost the Flp transgene (Kat2bL2/WT

mice) were selected and backcrossed for over

ten generations with C57BL/6J mice. The con-

genic mice carrying the floxed Kat2b allele

were thereafter mated with rat insulin II pro-

moter (RIP)-Cre mice (Herrera, 2000) and then

further intercrossed to generate pure mutant

RIPcreTg/0/Kat2bL2/L2 mice. A PCR genotyping

strategy was subsequently used to identify
RIPcreTg/0/Kat2b+/+, RIPcreTg/0/Kat2bL2/L2, and RIPcre0/0/Kat2bL2/L2

mice.

Immunofluorescence, Immunohistochemistry, and Morphometry

Immunofluorescence and immunohistochemistry were performed exactly as

described previously (Annicotte et al., 2009; Blanchet et al., 2011). Pancreatic

tissues were fixed in 10% formalin, embedded in paraffin, and sectioned at

5 mm. H&E staining was performed using classical protocols. For immunofluo-

rescence microscopy analyses, after antigen retrieval using citrate buffer,

5-mm formalin-fixed pancreatic sections were incubated with the indicated an-

tibodies. Immunofluorescence staining was revealed by using a fluorescein-iso-

thiocyanate-conjugated anti-rabbit (for Kat2b; Life Technologies) or anti-guinea

pig (for insulin co-staining with glucagon), Alexa-conjugated anti-mouse (for

glucagon) or anti-guinea pig (for insulin co-staining with Kat2b) secondary anti-

bodies. Nuclei were stained with Hoechst. For morphometric analysis, three to

ten animals from each genotype were analyzed, and images were processed

and quantified using ImageJ software by an observer blinded to experimental

groups. Human pancreatic sections were obtained from Biochain.

Pancreatic Islet Studies

Human pancreatic tissue was harvested from brain-dead, non-diabetic, and

T2D adult human donors (Table S4). Isolation and islet culture were performed

as described elsewhere (Kerr-Conte et al., 2010). For mouse islet studies, pan-

creata were digested by type V collagenase (C9263; 1.5 mg/ml) for 20 min at

37�C as described previously (Annicotte et al., 2009). Briefly, after digestion

and separation in a density gradient medium, islets were purified by handpick-

ing under a macroscope. For insulin secretion tests, approximately ten islets

were exposed to either 2.8 mMor 20mMglucose in Krebs-Ringer bicarbonate

HEPES buffer containing 0.5% fatty-acid-free BSA. Insulin released in the me-

dium was measured 1 hr later using the Ultrasensitive Insulin ELISA kit. Data

are expressed as a ratio of total insulin content. For mRNA and protein quan-

tification, islets were isolated as described above and snap-frozen for further

processing. For ATF-6 rescue experiments, isolated islets were transfected as

described previously (Annicotte et al., 2009).

Cell Culture, Transfections, Adenoviral Transduction, and

Treatments

Min6 cells were cultured in DMEM (Gibco) with 15% fetal bovine serum,

100 mg/ml penicillin-streptomycin, and 55 mM beta-mercaptoethanol. Cell



were transfected with siRNA targeting mouse Kat2b ON-TARGETplus

SMARTpool (Thermo Scientific) and mouse non-targeting negative controls

using Dharmafect1 (GE Dharmacon). Mouse islets andMin6 cells were treated

as described previously (Wali et al., 2014) with TUDCA (0.5 mM) and 4-PBA

(2.5 mM) for 48 hr and subjected to GSIS. Min6 cells were treated with TG

(0.5–2.5 mM; Sigma) to induce ER stress and then with BSA-conjugated palmi-

tate (1.5 mM) for 24 hr. Transient transfection were performed using Lipofect-

amine 2000 (Life Technologies) following the manufacturer’s instructions.

Luciferase assays were performed 48 hr post-transfection and normalized to

b-galactosidase activity. For rescue experiments using adenoviral infection,

Min6 cells were transduced at a MOI of 50 for 4 hr; cells were then washed

and cultured for 48 hr before GSIS tests. Experimental data as presented

are means of at least three independent experimental experiments.

ChIP and ChIP Sequencing

ChIP-qPCR assays were performed as described previously (Annicotte et al.,

2009). Briefly, proteins fromMin6 cells were formaldehyde crosslinked to DNA.

After homogeneization, lysis, and DNA sonication, proteins were immunopre-

cipitated using purified immunoglobulin G or anti-KAT2B antibodies. After

washing, DNA-protein complexes were eluted and crosslinking was reversed

by heating the samples at 65�C for 16 hr. DNA was then purified using a Ma-

cherey-Nagel NucleoSpin Gel and PCR purification kit, and ChIP-qPCR was

performed using promoter-specific primers. All ChIPs and qPCRs were

repeated three times.

ChIP assays were performed in triplicate on �600 mouse isolated islets us-

ing the True MicroChIP kit (Diagenode) following the manufacturer’s protocol.

ChIP-seq libraries were prepared using NEBNext-Ultra kits (New England Bio-

labs) following the manufacturer’s instructions. DNA libraries were quantified

by Qubit (Invitrogen) and sequenced using a Hiseq 2500 instrument in sin-

gle-end 50-bp reads (Illumina).

ChIP-Seq Data Analysis

ChIP-seq was performed in triplicate. Short DNA reads were aligned against

the mouse mm9 reference genome using Bowtie 2 (Langmead and Salzberg,

2012). Only unique aligned reads were analyzed. The mapped replicates were

merged and chromatin binding sites were identified using model-based anal-

ysis of ChIP-seq (MACS) (Zhang et al., 2008). Input DNAwas used as a control,

and parameters recommended for analysis of ChIP-seq data were applied

(Feng et al., 2011). ChIP-seq experiments were visualized with the UCSC

Genome browser as described elsewhere (Robertson et al., 2007). Peak sum-

mits were annotated to gene products by identifying the nearest RefSeq tran-

scription start site using Peak2gene. Raw and processed ChIP-seq data have

been deposited to Gene Expression Omnibus (GEO: GSE78860).

Public functional genomics data used in this study were downloaded from

the GEO and are listed in Table S6. Human ChIP-seq data were obtained

from ENCODE and visualized using the UCSC Genome browser as described

above.

RNA Extraction, Measurements, and Profiling

Total RNA was extracted from cells and tissues using TRIzol reagent (Life

Technologies) as described previously (Annicotte et al., 2009; Blanchet

et al., 2012). mRNA expression was measured after reverse transcription by

real-time qPCR with FastStart SYBR Green master mix (Roche) according to

the manufacturer’s recommendations and gene-specific oligonucleotides.

Mouse real-time qPCR results were normalized to endogenous cyclophilin

reference mRNA levels, and human results were normalized to TATA-box

binding protein (TBP). Results are expressed as the relative mRNA level of a

specific gene expression using the formula 2�DCt.

Protein Extracts and Immunoblot Analysis

Immunoblot was performed as described previously (Blanchet et al., 2012).

Briefly, cells were washed using cold PBS and lysis was performed by using

50 mM Tris-HCl (pH 8), 137 mM NaCl, 10% glycerol, 1% NP-40 and phospha-

tase, protease, and deacetylase inhibitors (Sigma-Aldrich) on ice. Western

blotting was performed using 30 mg of proteins loaded on SDS-PAGE precast

gel (Bio-Rad). After electrotransfer, the membrane was blocked for 1 hr at

room temperature with 5% nonfat milk in 0.1% Tween Tris-buffered saline
(TTBS) buffer. Membranes were then incubated overnight at 4�C with primary

antibodies as indicated in blocking buffer containing 5%nonfatmilk at the dilu-

tion specified by the manufacturers. Membranes were then incubated with the

secondary antibody conjugated with the enzyme horseradish peroxidase. The

visualization of immunoreactive bands was performed using the enhanced

chemiluminescence plus western blotting detection system (GE Healthcare).

Quantification of protein signal intensity was performed by volume densitom-

etry using ImageJ 1.47t software (NIH).

Human Islet Expression Data and Correlation Studies

To identify transcriptomic datasets from human pancreatic islets, GEO anal-

ysis from the NCBI was performed using ‘‘human islet T2D’’ as keywords

and filtered with ‘‘Datasets.’’ Three datasets were obtained, and two were

selected based on the highest number of samples (GEO: GSE38642; Taneera

et al., 2012; and GEO: GSE20966; Marselli et al., 2010). Datasets were down-

loaded from the GEO and analyzed with Gene Set Enrichment Analysis (GSEA;

http://software.broadinstitute.org/gsea/) as described previously (Ryu et al.,

2014). Correlation studies were based on Pearson’s correlation coefficient

and represented using R.

Statistical Analysis

Data are presented asmean ±SEM. Statistical analyses were performed using

an unpaired two-tailed Student’s t test, one-way ANOVA with a least signifi-

cant difference Bonferroni post hoc test or two-way ANOVA with Bonferroni

post hoc tests, as appropriate, using GraphPad Prism software. Differences

were considered statistically significant at p < 0.05 (*p < 0.05, ** p < 0.01,

and *** p < 0.001).

ACCESSION NUMBERS

The accession number for the raw and processed ChIP-seq data reported in

this paper is GEO: GSE78860.
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merman, Mélanie Besegher, and Delphine Taillieu, for animal care. We

acknowledge Dr. Emilie Caron for helpful discussions. We thank the Depart-

ment of Histology from the Lille Medicine Faculty, in particular M.H. Gevaert

and R.M. Siminski, for histological preparations. We are indebted to the
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Supplemental informations 
 

Supplemental figures and legends 
 

Supplemental Figure S1, related to Figure 1. Effect of Kat2b deficiency on 

β−cell mass and function. (A-B) Body weight (A) and size (B) of Kat2b +/+ and -/- 

mice under chow. (C-D) Liver mRNA (C) and circulating Igf-1 (D) levels in Kat2b +/+ 

and -/- mice. (E) Body weight gain under high fat diet feeding of Kat2b +/+ and -/- 

mice. (F-G) Immunofluorescent experiments on pancreatic sections from Kat2b +/+ 

and -/- mice. IgGs (F) and Kat2b -/- (G) sections were used as negative controls for 

Kat2B antibody validation (scale bar, 12.5µm). (H) Insulin content of Kat2b +/+ and -/- 

isolated islets. (I) mRNA levels of Kat2b expression after silencing of Kat2b by siRNA 

in Min6 cells. (J) Glucose stimulated insulin secretion assay on Kat2b silenced Min6 

cells. (K) Representative haematoxylin and eosin stainings on pancreatic sections of 

mice fed normal chow or HFD (scale bar, 200µm). (L) Islet areas were normalized to 

total pancreatic areas and were distributed following their frequency from mice fed 

chow or HFD as indicated. (M) Immunostaining of pancreas sections showing nuclei 

labeling (Hoechst), insulin positive β cells and glucagon positive α cells on Kat2b +/+ 

and -/- mice fed chow and HFD (scale bar, 100µm). (N-O) Quantification of glucagon 

(N) and insulin (O) positive cells per islet. (P) Circulating glucagon levels in Kat2b +/+ 

and -/- mice fed chow. Data are shown as mean ± SEM. ** p <0.01 and *** p <0.001. 

 

Supplemental Figure S2, related to Figure 2. β−cell specific invalidation of 

Kat2b in mice. (A) Gene targeting and conditional deletion of exon 11 of the Kat2b 

gene. Maps of the Kat2b genomic locus (Kat2b +/+), the floxed allele with (+neo, 

target allele) or without the neomycin cassette (−neo, Kat2b ß+/+), and after Cre 

recombination (Kat2b ß-/-) are represented. (B) Relative expression of Kat2b gene in 

different tissues obtained from Kat2b ß+/+ and Kat2b ß-/- mice. All values represent 

mean ± SEM. * p <0.05. 

 

Supplemental Figure S3, related to Figure 3. Kat2b modulates UPRer signaling  
in murine pancreatic islets. (A) Relative expression of relevant β-cell enriched 

genes in islets isolated from Kat2b +/+ and -/- mice fed a chow diet. (B) ChIP-seq 



analysis in mouse islets identifies chromatin binding of Kat2b to its target genes 

Xbp1, Hspa5 (BiP), Atf4 and Atf6 involved in the UPRer, as described in the 

Experimental Procedures section. Briefly, after sequencing, reads were aligned to a 

reference genome, peaks were visualized using UCSC Genome browser to identify 

Kat2b bound genes. (C) Effects of TUDCA and 4-PBA treatments on glucose-

stimulated insulin secretion from control (siCont) and Kat2b silencing (siKat2b) in 

Min6 cells. (D) Relative expression of relevant β-cell enriched genes in islets isolated 

from Kat2b +/+ and -/- mice fed HFD. (E-F) Relative expression of relevant UPRer (E) 

and β-cell function (F) genes in control (siCont) or Kat2b silenced (siKat2b) Min6 

cells. All values represent mean ± SEM. * p <0.05; ** p <0.01 and *** p <0.001. 

 

Supplementary Figure S4, related to Figure 4. Validation of ATF6 rescue 

experiments in Min6 cells and increased Kat2b protein levels upon stress. (A) 

Relative expression of the human ATF6 gene in islets isolated from Kat2b +/+ and -/- 

mice transiently transfected with an empty vector (pCI) or an expression vector 

expressing human ATF6 (pCI-ATF6). (B) Western blot assay showing the protein 

levels of Kat2b, ATF6 and actin from control (siCont) and Kat2b silencing (siKat2b) in 

Min6 cells transduced with an control adenovirus (AdGFP) or encoding human ATF6 

(AdATF6). (C-D) Western blot assay showing increased Kat2b protein levels after TG 

at different concentrations (C) or 1.5mM palmitate treatment for 24 hours (D). Actin 

was used as a loading control. (E-F) ChIP-qPCR demonstrating global acetylation of 

histone H3 (AcH3), acetylation on lysine 9 (AcH3K9) or lysine 14 (AcH3K14) of the 

Atf6 (E) and Pdx1 (F) promoters in control (siCont) or Kat2b silenced (siKat2b) Min6 

cells. 

 

Supplementary Figure S5 to S7, related to Figure 5. KAT2B binds to chromatin 

of UPRer genes in human cell lines. (A-B) ChIP-seq analysis from ENCODE data 

showing KAT2B binding and open chromatin regions associated with regulatory 

activity (DNase1 (Crawford et al., 2006) and FAIRE-seq (Giresi et al., 2007)) on 

human (S5A) ATF6, (S5B) XBP1, (S6A) ATF4, (S6B) HSPA5, (S7A) DDIT3 and 

(S7D) HERPUD2 genes. KAT2B chip-seq peaks were obtained from GSM393947 (T 

lymphocytes) and GSM831007 (K562 cell line). DNAse1-seq (GSM586891) and 

FAIRE-seq (GSM1026917) ChIP-seq data were obtained from human pancreatic 

islets. Red arrows indicate the direction of transcription. Encode data were visualized 



using the UCSC Genome browser to identify peak profiles and their corresponding 

genes. 

  



 

Supplemental tables 

 

Supplemental Table S1, related to Figure 3. DNA-responsive element bound by 

Kat2b in isolated islets. 

 

Supplemental Table S2, related to Figure 3.  Gene ontology analysis of ChIP-seq 

data. 

 

Supplemental Table S3, related to Figure 3.  List of Kat2b target genes involved in 

UPRer obtained after functional enrichment analysis of ChIP-seq data using g:profiler. 

 

Supplemental Table S4, related to Figure 5. Donor informations 

 

Supplemental Table S5, related to Figure 2, 3, 4, 5, S1, S2, S3 and S4.  List of 

oligonucleotides used in qRT-PCR and ChIP-qPCR analyses. 

 

Supplemental Table S6, related to Figure 5, S5, S6 and S7. List of data sets used 

in bioinformatical analyses. 
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#"gene chrom start stop peak score
Aars 8 113534882 113534984 MACS_peak_72058 72.56
Amfr 8 96492296 96492414 MACS_peak_71535 54.75
Atf3 1 192944961 192945042 MACS_peak_5658 53.07
Atf4 15 80072002 80072475 MACS_peak_27438 199.26
Atf6 1 172624501 172624613 MACS_peak_5039 64.60
Atf6b 17 34754982 34755120 MACS_peak_32030 77.82
Bak1 17 27140646 27140753 MACS_peak_31797 60.11
Bax 7 52728577 52728678 MACS_peak_65634 53.10
Bfar 16 13674200 13674306 MACS_peak_28485 75.80
Casp12 9 5352861 5352977 MACS_peak_72799 62.92
Ccnd1 7 152155992 152156145 MACS_peak_68634 95.86
Creb3l1 2 91795098 91795259 MACS_peak_40857 92.27
Creb3l2 6 37279477 37279597 MACS_peak_59686 61.30
Creb3l3 10 80559047 80559159 MACS_peak_8071 51.11
CREBRF 17 26832471 26832579 MACS_peak_31789 50.41
Ddit3 10 126765143 126765253 MACS_peak_9462 58.62
Derl1 15 57703000 57703136 MACS_peak_26820 67.12
Derl3 10 75348714 75348822 MACS_peak_7923 66.35
Dnajc3 14 119330505 119330625 MACS_peak_25075 53.61
Eif2ak2 17 79241906 79242036 MACS_peak_33369 65.19
Eif2ak3 6 70788465 70788566 MACS_peak_60750 62.15
Eif2ak4 2 118207375 118207516 MACS_peak_41592 76.56
Ep300 15 81411924 81412048 MACS_peak_27475 59.75
Ern1 11 106263714 106263823 MACS_peak_12615 50.04
Ern2 7 129314808 129314913 MACS_peak_67968 51.54
Ero1l 14 45891706 45891828 MACS_peak_22925 52.90
H47 7 73229273 73229375 MACS_peak_66337 60.75
Herpud1 8 96909128 96909233 MACS_peak_71542 67.72
Hspa5 2 34580993 34581117 MACS_peak_39197 59.75
Ifng 10 117864304 117864403 MACS_peak_9200 67.84
Nck1 9 100388513 100388623 MACS_peak_75579 51.93
Nck2 1 43477679 43477785 MACS_peak_1163 51.16
Nfe2l2 2 75521714 75521834 MACS_peak_40367 61.30
Nkx3P1 14 69803685 69803819 MACS_peak_23665 98.25
Parp16 9 65089706 65089829 MACS_peak_74573 52.55
Ppp1r15a 7 52777778 52777971 MACS_peak_65637 88.62
Ptpn1 2 167740396 167740499 MACS_peak_43023 52.31
Ptpn2 18 67866477 67866585 MACS_peak_35678 58.21
Rnf121 7 109146055 109146137 MACS_peak_67367 60.65
Serp1 3 58328397 58328520 MACS_peak_45138 60.13
Stc2 11 31247176 31247294 MACS_peak_10457 62.10
Stub1 17 25935067 25935178 MACS_peak_31753 54.75
Vapb 2 173578373 173578492 MACS_peak_43203 58.77
Xbp1 11 5448837 5448890 MACS_peak_9641 58.92
Yod1 1 132602734 132602850 MACS_peak_3889 62.92

Supplementary Table 3 : List of Kat2b target genes involved in UPRer obtained after functional enrichment 
analysis of ChIP-seq data using g:profiler.



Age BMI HBa1c
Control'islet 46 19 5.6
Control'islet 51 21.8 N.D.
Control'islet 46 19 6.2
Control'islet 48 21 5.9
Diabetic'islet 59 37.7 7
Diabetic'islet 56 40.1 9.5
Diabetic'islet 62 32.7 7.5
Diabetic'islet 58 32.9 7.2

Supplementary Table 4 : Donor informations



Data set type Data set ID URL link reference
human islet expression GSE38642 http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4337Taneera J, et al. Cell Metab 2012 Jul 3;16(1):122-34. PMID: 22768844
human islet expression GSE20966 http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS3782Marselli L,  et al. PLoS One 2010 Jul 13;5(7):e11499. PMID: 20644627
human ChIP-seq GSM393947 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM393947Wang Z, et al. Cell 2009 PMID: 19698979 
human ChIP-seq GSM831007 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM831007Ram O, et al. Cell 2011 PMID: 22196736 
human ChIP-seq GSM586891 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM586891Stitzel ML, et al. Cell Metab. 2010 PMID: 21035756 
human ChIP-seq GSM1026917 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1026917Paul DS, et al. Genome Res. 2013 PMID: 23570689 

Supplementary Table 5 : List of data sets used in bioinformatical analyses.



Gene name Gene symbol Species Primer 
lysine acetyltransferase 2B Kat2b mouse GGCGTGTACTCCGCCTGCAA

AGGGCATGGCTACAGCTTCGAC
Insulin1 Ins1 mouse GCCAAACAGCAAAGTCCAGG

GTTGAAACAATGACCTGCTTGC
Insulin2 Ins2 mouse CAGCAAGCAGGAAGCCTATCT

CAGGTGGGAACCACAAAGGT
Pancreatic and duodenal homeobox 1 Pdx1 mouse ATTGTGCGGTGACCTCGGGC

GATGCTGGAGGGCTGTGGCG
v-maf musculoaponeurotic fibrosarcoma 

oncogene family, protein A (avian) Mafa mouse TCCGACTGAAACAGAAGCGG
CTCTGGAGCTGGCACTTCTC

proprotein convertase subtilisin/kexin type 1 Pcsk1 mouse TGATGATCGTGTGACGTGGG
GGCAGAGCTGCAGTCATTCT

proprotein convertase subtilisin/kexin type 1 Pcsk2 mouse AAAGATGGCGCTGCAACAAG
TTGCCCAGTGTTGAACAGGT

carboxypeptidase E  Cpe mouse AAACTTACAGCCTCCGCTCC
CAAGCTCAAAGTCCACCCCA

solute carrier family 30 (zinc transporter), 
member 8 Slc30a8 mouse

GGCTATCCTCACTGATGCGG
ACCGAGGATCTCTGCTCGATA

potassium channel, inwardly rectifying subfamily 
J, member 11 Kcnj11

mouse
CACAAGCTGGGTTGGGGGCTC
TGCCCCTCAGCTGGGTTCTGC

ATP-binding cassette, sub-family C 
(CFTR/MRP), member 8 Abcc8 mouse

TGTCATCCGGGTGCGGAGGT
GAAAGCGCACCCCCAGGTCC

chromogranin A  ChgA mouse CGGGCAAGTTTTTGCCCTTC
TGACTTCCAGGACGCACTTC

islet amyloid polypeptide Iapp mouse GATATTGCTGCCTCGGACCA
GGGTTGCTACCACTTCTGACA

protein tyrosine phosphatase, receptor type, N Ptprn mouse AAGGTTCCGGTGATGGACAC
ACGTGAAACCTGTACGGGAG

activating transcription factor 6 Atf6 mouse CATGTGGTGAATGTGCTGCC
CACAGCGATATCCGAACCCA

DNA-damage-inducible transcript 3 Ddit3 mouse CTGCCTTTCACCTTGGAGAC
CGTTTCCTGGGGATGAGATA

protein phosphatase 1, regulatory (inhibitor) subunit 15APpp1r15a mouse GAGATTCCTCTAAAAGCTCGG
CAGGGACCTCGACGGCAGC 

heat shock 70kDa protein 5 (glucose-regulated 
protein, 78kDa) Hspa5 mouse

CATGGTTCTCACTAAAATGAAAGG
GCTGGTACAGTAACAACTG 

heat shock protein 90kDa beta (Grp94), member 
1 Hsp90b1

mouse
AATAGAAAGAATGCTTCGCC 
TCTTCAGGCTCTTCTTCTGG 

activating transcription factor 4 Atf4 mouse ATGGCCGGCTATGGATGAT 
CGAAGTCAAACTCTTTCAGATCCATT 

DnaJ (Hsp40) homolog, subfamily C, member 3 Dnajc3 mouse TCCTGGTGGACCTGCAGTACG 
CTGCGAGTAATTTCTTCCCC 

X-box binding protein 1 spliced Xbp1s mouse GAGTCCGCAGCAGGTG 
GTGTCAGAGTCCATGGGA 

X-box binding protein 1 Xbp1t mouse GAGCAGCAAGTGGTGGATTT 
CCGTGAGTTTTCTCCCGTAA 

ER degradation enhancer, mannosidase alpha-
like 1

Edem1
mouse

AAGTCTCAGGAGCTCAGAGTCATTAA 
CGATCTGGCGCATGTAGATG 

endoplasmic reticulum oxidoreductase beta Ero1b mouse GGGCCAAGTCATTAAAGGAA 
TTTATCGCACCCAACACAGT 

protein disulfide isomerase family A, member 4 Pdia4 mouse AGTCAAGGTGGTGGTGGGAAAG 
TGGGAGCAAAATAGATGGTAGGG 

Lysine acetyltransferase 2B KAT2B human GGTGAAGAGCCATCAAAGCG
GACTCGCTGTAAGTCTGCCA

Insulin hIns human AGCCTTTGTGAACCAACACC
GCTGGTAGAGGGAGCAGATG

Glucagon hGlucagon human CATTCACAGGGCACATTCAC
CGGCCAAGTTCTTCAACAAT

Somatostatine hSST human AGCTGCTGTCTGAACCCAAC
CCATAGCCG GGTTTGAGTTA

Supplementary Table 6 : List of oligonucleotides used in qRT-PCR and ChIP-qPCR analyses.



Activating.transcription.factor.6 hATF6 human AGCAGCACCCAAGACTCAAAC
GCATAAGCGTTGGTACTGTCTGA

X-box binding protein 1 spliced hXBP1t human CCGCAGCAGGTGCAGG
GGGGCTTGGTATATATGTGG

X-box binding protein 1 hXBP-1s human CCTTGTAGTTGAGAACCAGG
GGGGCTTGGTATATATGTGG

CHIP_qPCR Atf6 promoter mouse CCCATGGCTTGACATCTGCT
GACCTCGTTCTCTGGAAGGC
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