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Longitudinal single-cell profiling of
chemotherapy response in acute
myeloid leukemia
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Raffaella Di Micco 1, Clelia Di Serio5, Ivan Merelli4, Monica Volpin 1,
Eugenio Montini 1, Fabio Ciceri3 & Bernhard Gentner 1,3,6

Acute myeloid leukemia may be characterized by a fraction of leukemia stem
cells (LSCs) that sustain disease propagation eventually leading to relapse. Yet,
the contribution of LSCs to early therapy resistance and AML regeneration
remains controversial. We prospectively identify LSCs in AML patients and
xenografts by single-cell RNA sequencing coupled with functional validation
by a microRNA-126 reporter enriching for LSCs. Through nucleophosmin 1
(NPM1) mutation calling or chromosomal monosomy detection in single-cell
transcriptomes, we discriminate LSCs from regenerating hematopoiesis, and
assess their longitudinal response to chemotherapy. Chemotherapy induced a
generalized inflammatory and senescence-associated response. Moreover, we
observe heterogeneity within progenitor AML cells, some of which proliferate
and differentiate with expression of oxidative-phosphorylation (OxPhos) sig-
natures, while others are OxPhos (low) miR-126 (high) and display enforced
stemness and quiescence features. miR-126 (high) LSCs are enriched at diag-
nosis in chemotherapy-refractory AML and at relapse, and their transcriptional
signature robustly stratifies patients for survival in large AML cohorts.

The treatment of patients with acute myeloid leukemia (AML) remains
a challenge, with 5-year survival rates around 30% (SEER Cancer stat
facts)1. Treatment failure may occur early (primary refractory disease
or early relapse, typically defined as a remission duration of less than
6months), or years after the endof treatment, with different biological
and clinical implications2. Early treatment failure is thought to be due
to resistance in disease subclones with high leukemia-regenerating
capacity surpassing the reconstitution kinetics of non-malignant

hematopoiesis. Relapse after the achievement of complete remission
most likely arises from minimal residual disease (MRD) persisting in a
dormant state or in sanctuary sites, where leukemia-regenerating and
immune-evasioncapacitiesmay gradually evolve over time3,4. Evidence
from retrospective, paired diagnosis-relapse sequencing studies sup-
ports the notion that therapy-resistant cells are often pre-existing at
diagnosis, but their prospective identification remains a challenge5,6. It
has been shown that, in about a third of AML cases, the late relapse
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clones could be traced back to rare populations of leukemia stem cells
(LSCs), which were hardly detectable in the leukemia bulk sample at
diagnosis7. Less often, clonally unrelated leukemiamay independently
arise on a substrate of pre-leukemic hematopoietic stem cells
(HSCs)8–12.

Knowledge on the cell biology and population dynamics of
relapse-promoting cells during chemotherapy is incomplete. The
classical LSC model, whereby chemotherapy-resistant LSCs accumu-
late during successive cycles of chemotherapy, has recently been
challenged. It has been suggested that LSCs are efficiently depleted by
cytarabine in vivo13–15 and undergo a rapid regenerative response in a
limited time window following chemotherapy leading to increasingly
aggressive leukemia re-growth and presenting a therapeutic vulner-
ability for the targeting of therapy-resistant AML14. Additionally, a
reversible state of cellular senescence has also been described to
actively contribute to disease persistence by reprogramming differ-
entiated residual tumor cells towards an enhanced stemness state with
increased in vivo propagating capacity upon escape from senescence-
induced proliferative block16. The interchange between primitive and
differentiated compartments would argue for substantial plasticity
within AML cells rather than a hierarchical LSCmodel characterized by
unidirectional differentiation. A direct demonstration of LSC plasticity
in response to chemotherapy is still pending and requires single-cell
analysis combined with stringent LSC identification methods and
clonal tracking.

We hypothesized that longitudinal studies of LSCs before and
early after chemotherapy with single-cell resolution would shed
further light on the cell population changes and underlying gene
expression profiles occurring during the treatment of AML patients.
We have previously generated microRNA (miRNA) profiles in func-
tionally validated human AML LSC fractions and developed a score
composed of 4 miRNAs that independently predicted patient
outcome17. As part of this score, miR-126 was tightly coupled with
LSC and HSC function, preserving their quiescent state and pro-
moting chemotherapy resistance17–20. Moreover, ectopic expression
of miR-126 in murine HSC may induce a miR-126 addicted acute
leukemia, underlining its oncogenic potential21. Lentiviral reporter
vectors allow live monitoring of miRNA activity in single cells22 and
may serve to identify LSCs when made responsive to LSC-specific
miRNAs17.

Focusing on NPM1-mutated (NPM1mut) AML as a model23, we here
show that themiR-126high cell subpopulation, revealed by an optimized
lentiviral miR-126 reporter, enriches for LSCs in xenografts, allowing
dynamic LSC monitoring before and after chemotherapy and genera-
tion of a transcriptional LSC signature in prospectively isolated LSCs.
This signature was highly predictive of patient outcome and identified
a circumscribed miR-126high LSC subpopulation in single-cell RNA
sequencing (scRNAseq) datasets, including a second subgroup of
AMLs characterized by chromosome 7 deletion and myelodysplasia-
related changes (del(7) AML). Single-cell analysis of longitudinal
patient samples and xenograft chemotherapy models revealed differ-
ential responses across AML blast clusters and provided sufficient
resolution to detect miR-126high LSCs with an inflammatory,
senescence-like and enhanced stemness profile persisting upon
induction chemotherapy.

Results
Induction chemotherapy shapes the transcriptional landscape
of AML
Toobtain anunbiased viewon intra-tumor heterogeneity (ITH) of AML
at diagnosis and following induction chemotherapy, we performed
droplet-based single-cell RNA sequencing (scRNAseq) on leukemia-
enriched BM cells from patients with AML (Fig. 1A and Supplementary
Fig. 1A). For PT06, peripheral blood instead of BM was available at
diagnosis. The study cohort included 10 patients with NPM1mut AML

(PT01, 02, 13: refractory disease; PT08, 09, 10, 15: early relapse at 3-6
months following complete remission (CR): PT06, 07, 12: long-termCR
beyond 34 months) and 3 patients with del(7) AML (PT11, PT17:
refractory disease; PT18: early relapse). Clinical characteristics and
post-sequencing cell recovery parameters are reported in Supple-
mentary Fig. 1B and Supplementary Data 1. To unambiguously distin-
guish malignant from non-leukemic cells, a particularly critical aspect
in post-chemotherapy samples where LSCs may hide within regener-
ating hematopoiesis by sharing surface markers with non-malignant
HSC, we determined the NPM1 mutational status or expression of the
module score of genes located on chromosome 7 in single cells,
respectively (see Methods). Both alterations unambiguously mark
leukemia cells and gave us confidence in excluding bias from HSC
contamination. Applying cluster-based assignment rules, the majority
of cells could be classified (Supplementary Fig. 1C and Supplementary
Data 1). We transplanted diagnosis samples from PT01 and PT06,
predicted to contain, respectively, a lowandhigh frequencyof residual
non-malignant progenitors, into sub-lethally irradiated NSGmice. The
sample from PT01 resulted in a progressively expanding leukemia
graft, while the sample from PT06 generated a multi-lineage graft
functionally confirming the presence of non-leukemic SCID-repopu-
lating cells (SRCs), validating our scRNAseq-based classification algo-
rithm (Supplementary Fig. 1D).

To investigate intra-tumor heterogeneity, we merged all 42,398
NPM1mut AML blasts into a single dataset, ran a harmonization process
to account for patient-driven variability (Supplementary Fig. 1E)24 and
performed UMAP dimensionality reduction25. Unsupervised clustering
(resolution = 0.6) identified 15 distinct clusters (cl.) distributed across
the AML landscape (Fig. 1B). Marker gene analysis (Supplementary
Fig. 1F, SupplementaryData 2) distinguished early progenitors (cl. 0, 11,
14) expressing several LSC-associated genes such asCD34,CD99,HOPX
and EGFL7, the host gene formiR-126;myeloid progenitors (cl. 1, 3, 13);
erythroid-like precursors (cl. 7, 9); actively cycling blasts (cl. 2, 10);
differentiating myelo-/monoblasts (cl. 5, 6, 4, 8) and a microcluster
with NK-like characteristics (cl. 12). Leukemic cells from individual
patients at diagnosis distributed differently within our NPM1mut AML
landscape, some predominantly mapping to the immature-like (PT01,
02, 06, 13) or the monocyte-like areas (PT07), and others showing a
broader representation across the whole landscape (PT08, 09, 10, 12,
15) (Fig. 1C). Pseudotime analysis traced a trajectory from early pro-
genitors to the monocyte-like cells, passing through the actively
cycling cluster, supporting a continuumof cell differentiation linked to
cell cycle entry (Fig. 1D).

Likewise, 33,308 del(7) AML cells were projected on a 2D UMAP
landscape, distinguishing a prominent early progenitor cell compart-
ment (cl. 0, 1, 5, 9), lymphoid-like clusters (cl. 2, 7), erythroid-like
clusters (cl. 3, 8), a cycling compartment (cl. 6), differentiatedmyeloid-
like cells (cl. 4) and a microcluster of NK-like cells (cl. 11) (Fig. 1E,
Supplementary Fig. 1G and Supplementary Data 2).

Next, we analyzed AML cells at day 14 or day 30 after induction
chemotherapy. In the NPM1mut cohort, we obtained 849 leukemic cells
from 8 patients at day 14, and 469 cells from 7 patients at day 30. Not
surprisingly, most cells were obtained from patients with refractory
disease (PT01, PT13; n = 1105), while few leukemic cells could be
recovered from patients who obtained morphologic CR but later
relapsed (PT08, PT09, PT10; n = 171) or remained in CR (PT06, PT07,
PT12; n = 42) until latest follow-up (Supplementary Data 1). Post-
chemotherapy leukemic cells prominently mapped to the progenitor
clusters, with enrichment in the erythroid-like clusters and accumu-
lation of cells bridging the early andmyeloid immature-like progenitor
area on day 30 (Fig. 2A, B). Next, to investigate coordinated tran-
scriptional responses to chemotherapy, we performed gene set
enrichment analysis (GSEA) for hallmark molecular database sig-
natures on post-chemotherapy anddiagnosis cells co-clusteringwithin
our AML landscape (Fig. 2C). Leukemia sampled on day 14 was
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Fig. 1 | Transcriptional landscape of human AML at single-cell resolution.
A Swimmer plots detailing the patients’ clinical course and timepoints selected for
scRNAseq (red diamonds). Top horizontal axis: days from diagnosis. CR1, first
complete remission. Rel1/2, first/second relapse; EM Rel, extramedullary relapse;
NR, no response; MLFS, morphologic leukemia-free state; FLA-Ida, Fludarabine
50mg/m2 D1-5, Cytarabine 1000mg/m2 q12h D1-5, Idarubicin 10mg/m2 D1-3, FLAG-
Ida, as before, with granulocyte colony stimulating factor 30MU D0-5; 3 + 7,
Cytarabine 100–200mg/m2 D1-7 and Daunorubicin 60mg/m2 D1-3; ICE, Idarubicin
12mg/m2 D1-3, Cytarabine 100mg/m2 D1-7, Etoposide 100mg/m2 D1-5; MAMAC(3)
5; m-Amsacrine 100mg/m2 D1-(3)5, Cytarabine 1000mg/m2 q12h D1-(3)5; A:
Cytarabine monotherapy, with the number indicating the cumulative dose in g/m2

(e.g. A16, Cytarabine 16 g/m2); HMA: hypomethylating agent; HSCT I/II, first/second
allogeneic hematopoietic stem cell transplantation; ASCT, autologous stem cell
transplantation. B All single-cell RNA sequencing plots are based on uniform

manifold approximation and projection (UMAP) embeddings; x-axis: UMAP_1, y-
axis UMAP_2. UMAP plot of NPM1mut AML cells colored by unsupervised clustering
(resolution 0.6) and labeled according to annotated cell phenotypes. n = 42,398
cells. C UMAP density plots of each patient’s AML blasts at diagnosis within the
NPM1mutAML landscape. Cells are colored according to the patient’s treatment
response: dark red for primary refractory, orange for relapse after CR, green for
persistent CR. D Pseudotime trajectory (black lines) and pseudotime (color gra-
dient) for AML cells at diagnosis projected onUMAP embedding. Trajectory root is
set from the centroid of CD34 transcript expressing cells (white dot). E Left: UMAP
plot of del(7) AML cells colored by unsupervised clustering (resolution 0.6) and
labeled according to annotated cell phenotypes. Right: UMAP density plots dis-
playing the distribution of each patient’s AML cells at diagnosis within the del(7)
AML landscape. Cells are colored according to the patient’s treatment response:
dark red for primary refractory and orange for relapse after CR. n = 33,308 cells.
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characterized by upregulation of MYC and E2F targets, as well as
oxidative-phosphorylation (OxPhos) hallmark signatures as compared
to diagnosis in all but the early progenitor clusters, consistent with an
early proliferative response. On the contrary, early progenitors
showed a depletion of OxPhos and cell cycle-related hallmarks, but
enrichment for inflammatory hallmarks (Fig. 2C). On day 30, residual
progenitors maintained low OxPhos & cell cycle hallmarks, along with
depletion of glycolysis-related hallmarks consistent with the

persistence of a metabolically inactive state, while the inflammatory
signature attenuated.

In the del(7) cohort, we obtained 8970 cells at day 14 and 3930
cells at day 30, from 2 patients each. Differently from the NPM1mut

cases, del(7) AMLaccumulatedhighnumbersof differentiatedmyeloid
cells on day 14, which disappeared on day 30 (Fig. 2D, E). At the same
time, progenitor cells persisted,with the accumulation of clusters 10, 1,
and 5 byday30 (Fig. 2D, E).GSEAhighlighted a prominent proliferative
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response on day 14 with upregulation of MYC, E2F targets, cell cycle
checkpoints and OxPhos across all progenitor clusters, followed by a
depletion of these signatures on day 30 (Fig. 2F). Notably, blasts from
del(7) patients showed a persistently elevated inflammatory expres-
sion profile (Fig. 2F).

Taken together, longitudinal post-chemotherapy assessment
highlighted divergent (forNPM1mut AML) or time-dependent (for del(7)
AML) transcriptional responses in AML cell subpopulations char-
acterized by (1) early proliferation within a regenerating, Ox-Phoshigh

cell compartment and (2) cell cycle quiescence coupled to inflamma-
tory hallmarks within the early progenitor cell compartment.

Tracking LSCs after chemotherapy in xenograft models by
microRNA-126 activity
Next, we made use of a previously described microRNA reporter
(Fig. 3A), which allows prospective, flow cytometry-based identifi-
cation of LSC-enriched AML subpopulations in xenograft models,
based on high miR-126 activity17,22. We validated this approach on 4
NPM1mut primary AML samples (Supplementary Fig. 2A–C) and con-
firmed by limiting-dilution serial transplantation that leukemia-
initiating cell (LIC) frequency was enriched in the GFPlow/miR-126high

subfraction in all patients, indicating that single parameter selection
for miR-126 activity allows up to 20-fold LSC enrichment within
NPM1mut AML from a given patient (Fig. 3B and Supplementary
Fig. 3A). miR-126 activity strongly correlated with LIC frequency
across AML fractions from different patients (Spearman rho 0.93,
p-value 0.00013, Fig. 3C), indicating that miR-126 is associated with
LSC potential in a quantitative, and not just qualitative fashion. Dif-
ferently from surface markers with unknown function, miR-126 is
directly linked to LSC biology by regulating cell cycle progression
through downregulation of targets converging on PI3K/AKT/MTOR
and CDK3, thought to act on S/G2/M transit and G0 exit,
respectively17. Cell cycle analysis on 3 representative diseases con-
firmed depletion of miR-126high cells in the S/G2/M phase and
enrichment in G0 (PT01) or G1 (PT03, PT16) (Supplementary Fig. 3B).
We next hypothesized that themiR-126 reporter represented a useful
tool to gain insight into LSC function during induction chemotherapy
in xenografts derived from diseases selected for varying initial LSC
content (n = 5 diseases, 10-25 mice per patient sample; Fig. 3D). After
confirmation of AML engraftment by BM aspirate, mice were
assigned to a control or chemotherapy cohort (cytarabine 60mg/kg
on days 1–5; daunorubicin 1.5mg/kg on days 1–3)matched for human
CD45+ engraftment levels within each patient-derived xenograft
group (Supplementary Fig. 3E). We analyzed the mouse BM early
after chemotherapy (day 8) and showedmarked reduction of hCD45+

blasts in the treated mice (Fig. 3E), with a relative increase of
immunophenotypically primitive CD34+38- cells indicating that they
exhibited relative chemotherapy-resilience (Fig. 3F). While the pro-
portion of immunophenotypically defined LSCs increased, average
miR-126 activity of the total blast population was unchanged or
decreased (reflected by an increase in miR-126 reporter vector
transgene ratio) after chemotherapy (Supplementary Fig. 3F).

However, when looking at the distribution of miR-126 activity across
single cells, chemotherapy unmasked a small blast subpopulation
with very high miR-126 activity in xenografts derived from 2 patients
(PT01 and PT03), while the bulk of AML blasts downregulated miR-
126 activity compared to the control cohort, most evident in xeno-
grafts fromPT01, PT02 and PT15 (Fig. 3G and Supplementary Fig. 3G).
Interestingly, the samples from PT01 and PT03 were enriched in the
G0 cell cycle phase (Supplementary Fig. 3H) andmanifested a higher
LIC frequency in post-chemotherapy samples compared to controls,
while LIC frequency was reduced in samples from PT15, where miR-
126 activity decreased (Fig. 3H).

miR-126high subsets are characterized by lymphoid and stem cell
gene expression signatures
To gain further insights into the functional differences between miR-
126low and miR-126high cells in the presence or absence of che-
motherapy, we performed gene expression profiling of human AML
blasts from the BM of xenografted mice at steady-state and on day 8
after chemotherapy (n = 4 diseases, 5–12 mice per patient sample),
sorting the highest and lowest 15–20% GFP-expressing populations,
respectively (Supplementary Fig. 4A, Supplementary Data 3). After
batch correction for patient variability, principal component (PC)
analysis on the top 1000 most variable genes (Fig. 4A) showed a
separation driven by miR-126 activity (PC1, explaining 24% of the
dataset variance) and chemotherapy treatment (PC2, 14% variance).
GSEA revealed strong enrichment for previously reported HSC and
LSC signatures in miR-126high blasts, whereas progenitor cell-, mye-
loid differentiation- and cell cycle signatures were enriched in miR-
126low blasts (Fig. 4B). Moreover, the prognostically relevant “LSC17”
gene score26, as well as the LSC-associated gene ADGRG127 were more
highly expressed in the GFPlow/miR-126high subpopulations (Supple-
mentary Fig. 4B, C). We then investigated gene ontologies—biological
processes (GO-BP) differentially enriched within miR-126high and miR-
126low blasts (Fig. 4C). In addition to ontologies related to cell con-
tacts and signaling axes with known relevance in AML (G-protein
coupled receptors, phosphatidylinositol-mediated signaling, JAK-
STAT), GO-BPs characterizing miR-126high fractions prominently
contained lymphoid categories, and we confirmed strong and con-
sistent upregulation of bona fide lymphoid genes, including RAG1,
RAG2, CD79A, CD79B, ZAP70, IGH genes and CD7 in the individual
miR-126high samples across all 4 patients, irrespective of chemother-
apy (Supplementary Fig. 4D). On the other hand, miR-126low blasts
were enriched for features associated with differentiated myeloid
effector cells and cell cycle (Fig. 4C).

We next interrogated the transcriptomic data for chemotherapy-
related effects on AML blasts. Upon therapy, we found, in both miR-
126high LSCs and miR-126low blasts, an enrichment of hallmarks related
to inflammatory signaling, apoptosis, angiogenesis, KRAS signaling,
epithelial-mesenchymal transition and heme metabolism (Fig. 4D,
Supplementary Fig. 4E). Recent work has investigated the induction of
cellular senescence in AML cells by chemotherapy, associated
with cellular reprogramming through activation of the Notch/Wnt

Fig. 2 | Single-cell RNA sequencing of paired diagnosis/post-chemotherapy
samples reveals an early proliferative response alongside with persisting
quiescent progenitor blasts. A UMAP density plot showing distribution of
sequenced NPM1mut AML blasts at day 14 early post-chemotherapy (D14). n = 849
cells. B UMAP density plot showing distribution of sequenced NPM1mut AML blasts
at day 30 post-chemotherapy (D30). n = 469 cells. C Tile plot of normalized
enrichment scores (NES) from gene set enrichment analysis (GSEA) of hallmark
terms on differentially expressed genes (DEG) between D14 or D30 and diagnosis
(DX) blasts ofNPM1mut AML patients within the indicated clusters (cl., see Fig. 1B for
unsupervised clustering). Hallmarks (rows) are grouped by semantic similarity.
Columns represent single-cluster, single-patient comparisons between the speci-
fied timepoints and are grouped by cluster phenotype (P, progenitor blasts; E,

erythroid-like; C, cycling; M, myelo/monoblasts) and timepoint (Day 14; Day 30).
Non-significant enrichment results are plotted in light grey (Benjamini–Hochberg
adjusted p-value > 0.1). D UMAP density plot showing distribution of sequenced
del(7) AML blasts at day 14 early post-chemotherapy. n = 8970 cells. E UMAP den-
sity plot showing distribution of sequenced del(7) AML blasts at day 30 post-
chemotherapy. n = 3930. F Tile plot of normalized enrichment scores (NES) from
GSEAof hallmark terms onDEGbetweenD14 orD30 and diagnosis (DX) del(7) AML
blasts within the indicated clusters (cl., see Fig. 1E for unsupervised clustering). P,
progenitor blasts; L, LMPP-like blasts; E, erythroid-like; C, cycling; M, myelo/
monoblasts), timepoint (day 14; day 30). Non-significant enrichment results are
plotted in light grey (Benjamini–Hochberg adjusted p-value > 0.1).
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pathways15. Our data support a coherent induction of senescence-
associated gene signatures in AML blasts exposed to chemotherapy in
the xenograft model (Fig. 4E), which did not, however, result in a
general increase in LSCmarker expression (Supplementary Fig. 4B, C).

Overall, miR-126high cells in NPM1mut AML were characterized by a
gene signature enriching both for previously reported HSC/LSC and
lymphoid genes, at baseline and after chemotherapy. Chemotherapy
imposed an inflammatory and senescence-like response on AML blasts.
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Single-cell RNA sequencing of xenografts reveals persistence of
miR-126high LSCs with enhanced stemness features upon in vivo
chemotherapy
To gain further insights into the chemotherapy response of NPM1mut

AML subpopulations represented in the xenograft model, we per-
formed scRNAseq on BM AML blasts from control or treated mice on
day 8 from start of treatment (n = 4 AML, 3–7 mice per condition,
n = 96,931 cells) (Fig. 5A, Supplementary Fig. 5A, Supplementary
Data 4). After batch correction and unsupervised clustering, marker
gene analysis coupledwith reference-based annotations28,29 allowed us
to discriminate between clusters enriched in HSC-like blasts (cl. 1:
FAM30A, EGFL7, CD34, HOPX), progenitor blasts (cl. 0: IGFBP2, MYC,
MCM4,5,6,7, NASP, CDCA7; cl. 8: MYC, CENPF, PTTG1, HMGB1, CALR),
cycling progenitor blasts (cl. 2, 9), cycling GMP-like blast (cl. 4),
quiescent GMP-like blasts (cl. 7), erythroid-like blasts (cl. 5, 6),myeloid-
like blasts (cl. 3, 10) and plasmacytoid DC-like blasts (pDC, cl. 11)
(Fig. 5A, Supplementary Fig. 5A–C, Supplementary Data 5).

To investigate population-specific dynamics upon chemotherapy,
we compared the proportion of each cluster to control xenografts.
While steady-state control AMLs displayed enrichment for progenitor
and cycling populations, chemotherapy radically reshaped AML, with
an expansion of the more differentiated myeloid and, especially,
erythroid-like blasts (Fig. 5B, E). On the other hand, the proportion of
HSC-like blasts remained unchanged. We next mapped miR-126high

blasts onto our scRNAseq landscape, using 2 complementary
approaches. First, miR-126 sensor-transduced, sorted GFPlow/miR-
126high blasts localized most strongly on the HSC-like cluster 1, with
some signal present also in the activated/cycling progenitor clusters,
the pDC-like and the erythroid clusters (Fig. 5C). The latter two cell
types have been previously associated to miR-126 activity in healthy
hematopoiesis, even though to a lower degree than HSC22,30. Secondly,
we mapped the previously identified transcriptional signature of miR-
126high cells (126High, Supplementary Data 3), based on 989 upregu-
lated genes (FDR <0.05) with respect to miR-126low blasts, on our
scRNAseq data reaching similar conclusions (Fig. 5D). Generally,
chemotherapy-exposed AML displayed a bimodal distribution of
126High expression, reminiscent of our previously described miR-126
activity reporter (Fig. 3G), with decreased average expression (right
shift) from most blasts while preserving a demarcated subpopulation
of blasts with high 126High module score (Fig. 5F).

To explore cluster-specific transcriptional responses to che-
motherapy, we calculated enrichment scores for GSEA hallmarks for
each single cluster, comparing, within a given cluster, treatment-
exposed to treatment-naïve blasts. In line with our bulk RNA sequen-
cing results, chemotherapy-induced inflammatory and senescence-
associated responses mainly driven by TNF/NFKB and interferon sig-
naling, along with p53, UV and DNA repair pathway activation across

most AML clusters (Fig. 5G, H). Moreover, we observed divergent
chemotherapy responses in the progenitor/immature compartments,
reminiscent of the day 14 samples from NPM1mut patients (see Fig. 2C).
The progenitor clusters 0 and 8 showed enrichment for energy-related
pathways and cell cycle genes. EdU (5-ethynyl-2′-deoxyuridine) incor-
poration confirmed early proliferation of AML blasts after che-
motherapy also within the miR-126high LSC-enriched subpopulation
(Fig. 5I),which nonethelessmaintained a constantly highproportion of
cells in the G0 cell cycle phase (Fig. 5J).

scRNAseq may provide a higher resolution to further dissect the
miR-126high compartment. We hypothesized that the 126High+ HSC-like
cluster 1, which differed from most other clusters by downregulation
of OxPhos and MYC proliferative responses upon chemotherapy
exposure, may contain dormant LSCs with increased resistance to
stress-induced activation (Fig. 5G). We therefore searched, within this
cluster, for genes specifically enriched in chemotherapy-exposed
samples as compared to controls. Several LSC-associated genes,
including CD34, CD36, CD99,GUCY1A1, TNFRSF4, as well asDNTT, were
significantly more expressed after chemotherapy (Fig. 5K, Supple-
mentary Data 5). Next, we increased the clustering resolution thus
subdividing cluster 1 into 3 subclusters, denominated 5′, 6′ and 19′
(Supplementary Fig. 5D). Subcluster 5′was depleted, while subclusters
6′ and 19′ were enriched by chemotherapy (Fig. 5L). Again, we found
multiple LSC-associated genes among the top 10 marker genes char-
acterizing cluster 6′ (Fig. 5M, Supplementary Data 5). Moreover, the
HSC latency-associated gene INKA131 was highly expressed in clusters
6′ and 19′, while the cell cycle kinaseCDK632, a robustmarker for active
HSC32–34 was mostly detected in cluster 5′, suggesting that the former
two clusters represented more dormant LSC states.

We treated miR-126 reporter+ AML cells from PT16 in vitro with
IACS-010759 (IACS)35, a selective mitochondrial electron transport
chain complex I-inhibitor, alone or in combination with AraC che-
motherapy. IACS-treated cells had higher miR-126 activity (Supple-
mentary Fig. 5E–G), consistent with preferential depletion of
OxPhoshigh miR-126low progenitors. IACS-treated cells showed strongly
enhanced repopulation activity when transplanted into NSG mice as
compared to the mock-treated group, underlining the functional
relevance of these miR-126high OxPhoslow LSCs, at least in NPM1mut AML
(Fig. 5N).

miR-126high LSCs at diagnosis correlate with AML outcome
Next, we mapped the miR-126high gene signature (126High) (Supple-
mentary Data 1) from the AML xenograft study onto the patients’
single-cell landscapes described in Fig. 1. Cells positive for 126High
were predominantly found in the early immature progenitor clusters in
both NPM1mut and del(7) AML (Fig. 6A). This may be expected from the
presence of gene sets enriched in HSC/LSC signatures. However, also

Fig. 3 | LentiviralmiRNA-126 reporter allows prospective enrichment of LSCs in
patient-derived AML xenografts and reveals AML subpopulations with diver-
gingmiR-126 activity upon chemotherapy. AmiR-126 reporter vector schematic:
GFP and mCherry/NGFR are coordinately expressed by a promoter with bidirec-
tional activity. The GFP 3′UTR is tagged with 2miR-126 target sites resulting inmiR-
126high cells downregulating GFP compared to the untagged control (mCherry/
NGFR) and being identifiable by flow cytometry within the GFPlow gate. B Limiting-
dilution transplantation estimate of leukemia-initiating cell (L.I.C.) frequency for
sorted GFPhigh/miR-126low and GFPlow/miR-126high populations. Barplot: mean, error
bars: ±95% CI. # denotes failure to reach a limiting dose for PT02’s GFPlow sub-
population. C Correlation of L.I.C. frequency and miR-126 activity (1/TransGene
Ratio) in xenotransplanted AML (n = 10). Spearman rho correlation coefficient and
p-value are reported. D Mice engrafted with miR-126 reporter transduced NPM1mut

AML were allocated into treated or control groups matching for AML burden
(Supplementary Fig. 3E). Treated mice received daunorubicin/cytarabine che-
motherapy. Control mice received equivalent saline doses. Mice were euthanized
on day 8, when persisting AML was analyzed. E Day 8 absolute number of AML

blasts in the BMof control (Ctrl) or treated (Treat) mice. n = 78 PDX from 5 patients
over 7 independent experiments. Comparisons were performed by linear-mixed
effects (LME) models accounting for mice injected with the same donor and
experimental replicates. Adjusted p-values with Holm’s correction are reported.
Data are presented as standard Tukey boxplots: center line: median; box: inter-
quartile range; whiskers: IQR*1.5. F Percentage of transduced hCD34+38- immature
blasts in the BM of Treat or Ctrl PDX. n, statistical testing and boxplot definition as
per panel E. GmiR-126 sensor vector TransGene Ratio (1/miR-126 activity) of day 8
residual BM AML from Treat (red) or Ctrl (grey) mice. Experimental replicates for
PT01 and PT03 are displayed in the plot inlets.H Limiting-dilution transplant of day
8 BM AML cells recovered from Treat or Ctrl PDX. Proportion of non-engrafted
mice (log) as a function of transplanted cell doses for the Treat (red line) or Ctrl
group (grey line), with respective CI (dotted lines). Down-pointing triangles indi-
cate doses with 100% engraftment. L.I.C. frequency estimation and p-values are
reported below each plot. Engraftment was evaluated in the BM (top) or spleen
(bottom) of recipient mice. Source data are provided as a Source Data file.
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the gene sets related to lymphocyte function co-localizedwith the LSC
profile (Supplementary Fig. 6A). On the contrary, the signature con-
taining the genes depleted in miR-126high cells (126Low) overlapped
with the region containingmonocyte-like CD14+/64+ blasts, supporting
a differentiation gradient from miR-126high LSCs to miR-126low blasts
(Supplementary Fig. 6B). While the LSC17 gene signature alsomapped
to the immature-like area, it provided a less clear demarcation of intra-
tumor heterogeneity compared to our miR-126 derived gene lists
(Supplementary Fig. 6C). Notably, in pre-treatment diagnosis samples,
our 126High gene set was expressed both in a higher proportion of

AML cells and to higher levels in patients with refractory disease or
early relapse compared to patients, who obtained long-term remis-
sion (Fig. 6B).

To further confirm that the 126High gene signature measured at
diagnosis was associated with patient outcome, we analyzed publicly
available datasets encompassing multiple AML subtypes with respect
to overall survival (OS). We first reduced our signature to 24 infor-
mative genes by selecting those with a significant correlation (Spear-
man rho >0.3, Bonferroni p < 0.05) between their expression and that
of the overall gene signature in our NPM1mut scRNAseq dataset

PT01

PT02

PT03

PT16

A B

Expression Z-score

C

D E

Fig. 4 | miR-126high LSCs co-express stem cell and lymphoid transcriptional
profiles and up-regulate inflammatory signaling upon chemotherapy.
A Principal component analysis (PCA) on the top 1000most variable genes prior to
(left) or after batch correction for patient-derived variability (right). Samples are
coded for sorted GFP subpopulations (green: GFPlow, grey: GFPhigh) and treatment
groups (circles: control, triangles: chemotherapy-treated mice). n = 31 PDX from 4
patients. B Enrichment plot of Gene Set Enrichment Analysis (GSEA) of indicated
gene lists within DEGs between GFPlow/miR-126high and GFPhigh/miR-126low blasts.
Normalized Enrichment Score (NES) and q-value are reported for each signature.
C Heatmap of agglomerated z-scores for selected Gene Ontology—Biological Pro-
cesses (GO-BP) enriched terms (rows), grouped by semantic similarity, from the
comparison of GFPlow/miR-126high vs. GFPhigh/miR-126low populations in over-

representation analysis (ORA). Each column represents a sorted sample. Treatment
group, patient ID and GFP population are annotated on top. n = 62 samples from 31
PDX from 4 patients. D Heatmap of agglomerated z-scores for enriched Hallmark
gene sets (MSigDB H group) (rows) from the chemotherapy-treated vs. control
comparison in GFPlow/miR-126high blasts only. Each column represents a sorted
sample. Treatment group, patient ID and GFP population (GFPlow) are annotated on
top. n = 31 samples from 31 PDX from 4 patients. E Heatmap of agglomerated z
scores for enriched senescence-associated gene signatures (rows) from the
chemotherapy-treated vs. control blast comparison. Each column represents a
sorted sample. Treatment group, patient ID and GFP population (GFPlow or GFPhigh)
are annotated on top. n = as per panel A. Source data are provided as a Source
Data file.
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(SupplementaryData 3). Next, we estimatedCox’s proportional hazard
model with lasso penalty on the standardized intensity of the tran-
scripts on 3 independent AML datasets separately, encompassing
n = 767, n = 337 and n = 161 non-M3 AML patients, respectively. In all
three datasets, the two corresponding risk groups (obtained with the
median split of the linear combination of the genes of the model)

showed clearly separated survival curves (log-rank p < 0.0001) (Sup-
plementary Fig. 6D, Supplementary Data 6). To identify and validate
our risk groups, we used n = 767 patients from themicroarray study as
a training set, and n = 337 patients from the OSHU RNAseq dataset as
the testing set, where 20 of the 24 signature genes could be inter-
rogated, as compared to 15 in the TCGA dataset. To compare gene
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expression data obtained by different platforms, we performed a
stringent quartile-based categorization of the expression data of each
patient into −1 (downregulated, below the 1st quartile), 0 (normal,
between the 1st and 3rd quartile) and 1 (upregulated, above the 3rd
quartile). By applying the Cox’s proportional hazardsmodel with lasso
penalty on the categorized expression data of the training set, we
identified two risk groups with clearly demarcated OS (log-rank
p <0.0001) and confirmed a significant association with OS (log-rank
p =0.0343), also when applied to the test cohort (Fig. 6C).

AML cells mapping to miR-126high LSC clusters enrich during
chemotherapy and at relapse
Next, we sought to more precisely localize miR-126high LSCs within the
early immature progenitor compartment in longitudinal patient sam-
ples throughout induction chemotherapy. To increase the resolution
within the early immature compartment of NPM1mut AML, we per-
formed subclustering of the early progenitor clusters at diagnosis (cl.
0, 11, 14) (Fig. 6D). Expression of the top 10 marker genes from the
xenograft LSC subcluster 6′, which was enriched after chemotherapy
(see Fig. 5L), indicated subclusters 0″ and 1″ as the respective coun-
terparts in patients (Fig. 6E). Indeed, these 2 subclusters showed
strongest expression of the 126High signature (Fig. 6E), were
INKA1+CDK6low/neg and expressed genes implicated in WNT-MYC self-
renewal programs (TCF4)36,37, inflammatory and anti-apoptotic
responses (TNFRSF4)38, epigenetic/post-transcriptional gene regula-
tion (NEAT1)39–41 and niche interactions (CD36)42 (Supplementary Fig.
6E, Supplementary Data 2). Notably, early progenitor cells in diagnosis
samples from patients obtaining a persistent CR were depleted of
cells belonging to subclusters 0″ and 1″, in stark contrast to diagnosis
samples from relapse/refractory patients (Fig. 6D). Chemotherapy
radically reshaped the LSC compartment, with a progressive increase
of 126High signature positive cells and almost exclusive detection of
cells within the miR-126high LSC cluster 1″ in day 14 and day 30 samples
(Fig. 6D). Similarly, within the immature-like clusters (cl. 10, 1, and 5)
enriched after chemotherapy in the del(7) cohort (see Fig. 2E), cluster
10 had the highest expression of the 126High signature and the PDX
LSC markers from subcluster 6′ (Fig. 6F).

To further corroborate the relevance of these 126High LSCs, we
performed scRNAseq on relapse samples from 4 patients withNPM1mut

AML. Distribution of 126High signature expressionwas shifted towards
higher module scores in the relapses, including 2 cases where paired
diagnosis-relapse samples were available (Fig. 6G). Notably, while

126High LSC were mostly predicted to be non-cycling in the diagnosis
samples ofNPM1mut AML, 3 out of 4 relapse samples showed significant
cell cycle activity also in the 126High compartment (Fig. 6H). These
data suggest a co-existence of stemness and proliferation programs in
relapsed disease, as opposed to diagnosis, as also reflected in theGSEA
hallmarks showing enrichment for proliferative, oxidative phosphor-
ylation, DNA repair pathways, and depletion of inflammatory, apop-
totic and p53 responses throughout all clusters (Fig. 6I Relapse vs
Diagnosis).

PT08 underwent reinduction chemotherapy (FLAG-IDA) and
showed disease persistence, with the emergence of a complex kar-
yotype. We performed scRNAseq on NPM1mut blasts collected on day
30 of reinduction chemotherapy. Persistent disease was further enri-
ched for 126High+ cells (Fig. 6G, J), which now constituted themajority
of leukemic cells and were predicted to be mostly in a quiescent state
(Fig. 6H) with enrichment for hypoxia, stress responses, inflammatory
and KRAS signaling, and depletion of proliferative pathways and oxi-
dative phosphorylation (Fig. 6I, Rel NR vs Rel), reproducing the
behavior observed in NPM1mut persistent HSC-like blasts at day 14 (see
Fig. 2C) and of del(7) progenitor blasts, which reacquired quiescence
on day 30 post-induction chemotherapy (see Fig. 2F).

Overall, our data support the notion that LSC states persist
throughout early chemotherapy in patients, may be exploited as
markers for risk prediction and are enriched at relapse.

Discussion
We here performed extensive single-cell analysis ofNPM1mut and del(7)
AML populations from 15 representative patients at multiple time-
points, uncovering early patterns of response within the blast and LSC
compartments following induction chemotherapy. We show that LSCs
persist after induction chemotherapy in patients with treatment fail-
ure, exhibiting inflammatory gene signatures and consolidating amiR-
126high state. The 2molecular AML subtypeswe studied differed in their
hierarchical structure, with del(7) AML showing a more shallow, stem
cell dominant hierarchy and NPM1mut AML maintaining a myeloid dif-
ferentiation trajectory under homeostatic conditions, the latter more
closely mimicking non-malignant hematopoiesis. Indeed, evidence for
a persisting, OxPhoslow quiescent LSC state after chemotherapy was
mostly evident within NPM1mut samples. Very recently, a quiescent
LSPC cellular state has been described in scRNAseq of AML patient
samples43. Deconvolution analysis of bulk RNA sequencing from
functionally characterized AML samples has established a correlation

Fig. 5 | Single-cell RNA sequencing of xenografts reveals persistance of miR-
126high LSCs with enhanced transcriptional features of stemness upon in vivo
chemotherapy. AUMAP plot of day 8 BM AML blasts from treated or control PDX,
colored by unsupervised clustering at resolution = 0.6. Dashed lines show manual
annotation of clusters. n = 96,931 cells from 35 PDX from 4 patients. B UMAP
density plots of AML blasts from control (top, black) or treated (bottom, red)
xenografts. C UMAP density plots of sorted GFPlow/miR-126high blasts from control
(top) or treated (bottom) xenografts.D 126High signature expression in scRNAseq
AML blasts from control (top) or treated (bottom) xenografts. E Enrichment (right)
or depletion (left) of scRNAseq cluster abundance in treated AML compared to the
average abundance of each cluster in control xenografts from the same donor.
n = 35 PDX from 4 patients over 4 independent experiments. Data are presented as
standard Tukey boxplots (center line: median, box: interquartile range, whiskers:
IQR*1.5). F Ridge plot of 126High signature expression across cells in scRNAseq
from treated (red) or control (grey) xenografts. Single-cell events are displayed in
the underlying rug plots. G Tile plot of normalized enrichment scores (NES) from
GSEAofhallmark termsonDEGsbetweenblasts from treated vs. control xenografts
within the indicated clusters (see Fig. 5A for unsupervised clustering). Hallmarks
(rows) are grouped by semantic similarity. Columns are ordered by decreasing
126High expression. Non-significant enrichment results are plotted in light grey
(Benjamini–Hochberg adjusted p-value > 0.1). H Same as G but for senescence-
associated gene signatures. I Percent of day 8 EdU-incorporating BM blasts within

sortedGFPhigh orGFPlow AML cells from treated PDX. n = 16 PDX from3patients over
3 independent experiments. Comparisons between paired groups were performed
with the two-sided pairedWilcoxon test. For PT01 and PT03 (n ≤ 5 with a minimum
two-sided p-value=0.0625), a bootstrap sampling-based nonparametric test was
employed and p-values are marked in italics. n = 16 PDX from 3 patients over 3
independent experiments. Data are presented asmean± SD. J Percent of G0GFPlow/
miR-126high blasts at baseline (B/L) or after in vivo chemotherapy (Treat). n and
statistical comparisons anddatapresentation asper panel I.KVolcanoplot of DEGs
between treated vs. control in cluster 1 AML blasts. Top 12 genes by log2FC with
increased expression in treated blasts are labelled (red). L Enrichment (right) or
depletion (left) of LSC subclusters in treated AML compared to the average
abundance of each cluster in control xenografts from the same donor. n = 35 PDX
from 4 patients over 4 independent experiments. Standard Tukey boxplots: center
line: median, box: interquartile range, whiskers: IQR*1.5. M Expression of top 10
marker genes for LSC subclusters 5′, 6′, 19′ and of HSC-latency-associated genes in
LSC subclusters. Dot size reflects percentage of cells expressing the queried gene
(columns), color scale represents relative gene expression within the subclusters
(rows). N Longitudinal evaluation of AML engraftment within mice transplanted
with PT16 AML blasts treated ex-vivo with an OxPhos inhibitor (IACS-010759) or
solvent (Mock-treated). n = 6 PDX from 1 patient over 1 experiment. Source data are
provided as a Source Data file.
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between this quiescent state and LIC activity across a broad range of
AML subtypes43, suggesting a more general relevance of our findings.

By leveraging on miR-126 as a key LSC master regulator17, we
demonstrate prospective LSC enrichment based on miR-126 activity
from AML xenografts, with a tight association between miR-126
activity and leukemia-initiating capacity. Subpopulation-specific

transcriptional profiling of miR-126high LSCs uncovered, along with
canonical stem cell programs, a previously underappreciated bias
towards lymphoid transcriptional programs and expression of genes
involved in the molecular machinery for V(D)J rearrangement (i.e.
DNTT, RAG2). Recently, a specific role for terminal deoxynucleotidyl
transferase (DNTT) in the acquisition of NPM1 mutations and FLT3

MCEP P P P CE
Relapse vs Diagnosis Rel NR vs Rel

months
0 50 100 150

Score:     ≤ median;     > median
p<0.0001, HR:1.83 [1.54-2.17]

Training: GSE12417 & GSE37642
<

avivruSllarevO

1.0

0.8

0.6

0.4

0.2

0.0

months
0 20 40 60 80 100

Score:     ≤ median;     > median
p=0.0343, HR:1.41 [1.03-1.95]

Tes�ng: OHSU

avivruSllarevO

1.0

0.8

0.6

0.4

0.2

0.0

'' ''
''

''''

''

Persistent CR Relapse Refractory

LSC at AML diagnosis:

LSC post CT:

126High:

del(7) AML

BA

UMAP_1

U
M

AP
_2

NPM1mut AML

% pos: 44% 40% 33% 4% 8%.0%1.0%6%7%22 %22

Refractory Sustained CRRelapse post-CTX

NPM1mut AML

86.1% 33.2% 31.1%

-0.10

-0.05

0.00

0.05

PT11 PT17 PT18

126High Signature
del(7) AML

C

D E

F G H

I J

Diagnosis
Relapse

Diagnosis
Relapse

Diagnosis
Relapse - NR

DX D1
4

D3
0

RE
L

RE
L

N
R

Article https://doi.org/10.1038/s41467-023-36969-0

Nature Communications |         (2023) 14:1285 11



internal tandem duplications has been hypothesized in AML44,45, and
our data linking this gene specifically to the LSC compartment may
further support a role of LSCs for the development and progression of
AML. Our findings also extend the rationale for investigating lymphoid
marker-directed immunotherapies, e.g. against CD746 and TNFRSF4
(OX-40), as their expressionwithin the LSC compartmentmaybemore
pervasive than currently thought.

While some recent data have supported a link between LSCs and
relapse7, few studies have addressed the molecular mechanisms and
dynamics of early therapy resistance13–15,47. Administration of cytar-
abine chemotherapy to mice xenografted with AML has highlighted
the emergence of a leukemia regenerative response characterized by
oxidative phosphorylation-dependent, proliferating blasts devoid of
stem cell signatures, termed leukemia-regenerating cells (LRC)13,14. In
our hands, we confirmed the presence of a proliferating, OxPhoshigh

AML population, both in xenografts and in patients following induc-
tion chemotherapy. Single-cell analysis, both by the miR-126 reporter
and unbiased scRNAseq in xenografts and patients, provided us with a
high cellular resolution. InNPM1mut AML,wewereable todiscriminate a
regenerative response within themore committed blast compartment
from a rare subpopulation of LSCs that expressedmaster regulators of
a WNT-MYC developmental program37, showed an inflammatory
response, persisted in a quiescent state upon chemotherapy and cor-
related with increased LIC frequency in serial xenografts, which would
have beenmissed if residual AMLwere analyzed in bulk. This divergent
response between committed progenitors and LSC is reminiscent of
recently published work in solid cancer, where two distinct types of
persister cells were described to emerge from distinct lineages: non-
proliferating cells, which expressed IFNα & NOTCH signatures and
relied on cholesterolmetabolism, and proliferating cells dependent on
fatty acid oxidation48.

The combined induction of inflammation and cell cycle arrest in
response to stress have been portrayed as cardinal features of pre-
mature senescence49. Recently, cellular senescencehasbeendescribed
to induce reprogramming towards cancer stemness through theWNT/
β-catenin axis in several mouse models16, and senescence-like resilient
cells have been linked with AML recurrence15. Our xenograft data
suggest that senescence-like responses occur in residual AML, but in
already established, persisting LSCs, offering alternative explanations
to progenitor reprogramming for AML recurrence. Future work will
address to what degree the inflammatory response induced by che-
motherapy is causally linked to enhanced stemness features, either
through cell autonomous or paracrine crosstalk between miR-126low

differentiated blasts and miR-126high LSCs, or whether it represents a

by-stander effect. Indeed, when comparing transcripts differentially
expressed between chemotherapy- and un-treated cells specifically
within the highly refined LSC cluster 6′ (Supplementary Data 2), we
noted, among other stemness genes, induction of MLLT3, a recently
described HSC self-renewal regulator50. Thus, chemotherapy may
further potentiate stemness features in LSCs. Interestingly,MLLT3 also
acts as a master regulator of human erythroid andmegakaryocyte fate
decision acting through GATA1 regulation51, possibly explaining the
accumulation of erythroid-like AML clusters upon chemotherapy.
Longitudinal fate tracing studies will be required to formally prove the
hierarchical relationships and plasticity between LSCs, early and late
progenitors and LRC states, and their relative contribution to relapse.

Themain scope of our studywas to investigate the early effects of
chemotherapy on AML populations. Nevertheless, we extended our
scRNAseq analysis to a limited number of relapse samples. In line with
published studies7,52, relapse samples were characterized by a more
shallow hierarchy and an enrichment in the proportion of LSCs. In
contrast to the diagnosis samples, we found that relapsed NPM1mut

AML and del(7) AML showed more active proliferation and metabolic
rewiring, as evidenced by a uniform upregulation of oxidative-
phosphorylation hallmarks among all disease clusters. This is con-
sistent with a recent report that inhibition of the electron transport
chain with mubritinib was effective in poor-outcome AML, but not
chemotherapy-sensitive disease53, highlighting a relapse- and, possi-
bly, AML subtype-specific LSC vulnerability. Our data suggest that
therapeutic targeting of oxidative phosphorylation, at least at the level
of ETC complex I inhibition, may not be effective in NPM1mut AML
patients with induction failure, where Ox-Phos hallmarks were down-
regulated in persisting LSCs.

The persistence of dormant LSC upon chemotherapy, as sug-
gestedbyour study, implies that cytotoxic chemotherapy alone,which
preferentially targets proliferating progenitors, is insufficient in curing
thesepatients, alsowhen sequential cycles of high-dose chemotherapy
are administered to progressively recruit LSCs into cycle, rendering
them potentially susceptible to chemotherapy. Indeed, a recent ran-
domized controlled trial has shown feasibility and rapid achievement
of CR in the sequential high-dose chemotherapy arm, with improve-
ments in outcomes in AML subgroups for young patients with favor-
able risk54. Although, the benefit was least evident in intermediate-risk
patients, particularly in patients with NPM1 mutations, where we
hypothesize that the persistence of quiescent miR-126high LSCs, resi-
lient to proliferative exhaustion even under the regenerative pressure
imposed by chemotherapy or, even sustained by chemotherapy-
induced senescence-like transcriptional states, may explain the lack of

Fig. 6 | miR-126high gene signature identifies a subset of chemotherapy-resilient
LSCs enriched in refractory and relapsed AML. AMapping of 126High signature
on UMAP plots of NPM1mut (top, n = 32,194 cells) or del(7) (bottom, n = 21,650 cells)
AML cells at diagnosis. B Violin plots of 126High signature expression at diagnosis
for each patient, colored by treatment response (dark red: primary refractory,
orange: early relapse, green: persistent CR). Percent of cells with 126High> 0 are
reported below each violin plot. C Kaplan–Meier plot for overall survival of AML
patients within the training (GSE12417 n = 240 and GSE37642 n = 527 newly diag-
nosed AML patients) and testing (OSHU) gene expression datasets. Log rank test p-
value and Cox’s proportional hazards model with lasso penalty hazard ratios (HR)
with 95% confidence interval are reported. Red line: 126High signature > median;
black line: 126High signature ≤ median. D Top-left: UMAP plot of LSC subclusters
colored by unsupervised clustering at resolution = 0.6. Bottom-left: Violin plot of
126Highmodule scoreswithin LSC subclusters. Right: Density UMAPplot of LSCs at
diagnosis grouped by outcome categories (green: persistent CR, orange: early
relapse, dark red: primary refractory) or at sampled timepoints (diagnosis, Day 14
andDay 30).E Expression of the top 10marker genes for LSC subcluster 6′ from the
PDX scRNAseq dataset, HSC latency genes and 126High signature across NPM1mut

AML LSC subclusters (0″, 1″, 2″ 3″, 4″ and 5″). Dot size represents the percentage of
cells expressing the queried gene (columns), color scale represents relative gene

expression within the subclusters (rows). F Same as E for del(7) AML LSC clusters
(0, 1, 5, 9 and 10).G 126High signaturemodule score distribution within a balanced
pool of AML blasts at diagnosis from all non- refractory patients (non Ref. AML –

DX), in paired DX-relapse (REL) -post-reinduction (REL NR) samples from PT08, in
paired DX-REL samples from PT15 and in REL samples from PT19 and PT20.
H Predicted cell cycle phase distribution within sequenced AML blasts grouped by
126High signature expression (126High > 0POS, 126High≤0NEG) inDX,RELorREL
NR samples from the indicated patients. I GSEA on DEG between REL and DX (left)
or REL NR and REL (right) in NPM1mut AML blasts assigned to the indicated clusters
(cl., see for unsupervised clustering). The tile plot shows the normalized enrich-
ment scores (NES), where rows are hallmark terms and columns represent single-
cluster, single-patient comparisons between the specified timepoints. Hallmarks
(rows) are grouped by semantic similarity. Columns are grouped by cluster phe-
notype (P, progenitor blasts; E, erythroid-like; C, cycling; M, myelo/monoblasts)
and timepoint. Non-significant enrichment results are plotted in light grey (adjus-
ted p >0.1). J Top: UMAP density projection of blasts at relapse (blue) or diagnosis
(grey) on theNPM1mut AML landscape for PT15. Bottom: UMAPdensity projectionof
blasts at relapse (blue), relapse refractory to reinduction (dark blue), or diagnosis
(grey) on the NPM1mut AML landscape for PT08.
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benefit of intensified chemotherapy regimens. Combining targeted
agents with activity in dormant LSC with chemotherapy directed
against the proliferating leukemia bulk may improve response rates.
Proof-of-concept therapeutic inhibition of miR-126 has recently been
shown in PDX models of core-binding factor AML55. Moreover, the
additionof theBCL2 inhibitor Venetoclax, thought tobe active in LSCs,
tohigh-dose chemotherapy has shownpromising clinical results56,57. As
such combinations often come with increased toxicity, a personalized
approach with careful patient selection becomes instrumental. Drug
sensitivity testing in relation to the cellularAMLhierarchy composition
has provided an initial framework for personalized selection of tar-
geted agents43.

We here provide further evidence of the complexity and impor-
tance of non-genetic drivers to the development of therapy resistance
and proliferation in cancer. While the classical LSC model has been
extensively characterized in steady-state and relapseAML, the role and
persistence of LSC early after induction chemotherapy has been
recently challenged13–15. Our work exploits high-resolution single-cell
analysis to provide evidence for a “classical” LSC model in NPM1mut

AML, where non-response/relapse was strongly correlated to a high
proportion of quiescentmiR-126high LSC already present at diagnosis. A
weakness of our study is the relatively limited number of patients and
the lack of longitudinal monitoring of single LSCs, as a direct
demonstration that relapse unequivocally derives from a quiescent
LSC persisting through induction chemotherapy. Nevertheless, our
work provides a framework to stratify patients based on the presence
of a miR-126high LSC component readily detectable in scRNAseq data
and forms a starting point to identify therapeutic targets for their
eradication. Prospective clinical implementation of targeted single-cell
approaches to quantify miR-126high LSCs at diagnosis represents a
promising next step to improve stratification of patients with
intermediate-risk AML.

Methods
Research presented within this study has been approved by an insti-
tutional reviewboard (Comitato EticoOspedale SanRaffaelediMilano,
protocol N°RPC, v2 22/01/2019). All animal procedures were per-
formed according to protocols approved by the Animal Care and Use
Committee of the San Raffaele Hospital (IACUC #807, #923, #1102)
and communicated to the Italian Ministry of Health and local autho-
rities according to the Italian law.

miRNA reporter vectors
miR-126 sensor lentiviral vector constructs were designed and pro-
duced as previously described22,58. Briefly, miRNA target sequences for
miR-126 were cloned into the 3′ UTR of eGFP, downstream of a hPGK
promoter in a bidirectional lentiviral vector expressing mCherry or
dNGFR. miRNA activity can be assessed by flow cytometry analysis in
live cells as the relative downregulation of GFP fluorescence compared
to mCherry or dNGFR fluorescence. Third-generation LVs were pro-
duced by transient four-plasmid cotransfection into HEK-293T cells
and concentrated by ultracentrifugation, as previously described59. LV
titers, determined on HEK-293T cells by limiting dilution, ranged from
109 to 1010 TU/ml with infectivity from 104 to 105 TU/ng of p24.

Cell lines
HEK-293T cells were cultured in Iscove’s modified Dulbecco’s medium
(Corning) supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Euroclone), 100 IU/ml penicillin/streptomycin and 2%
glutamine.

Primary human AML samples
Primary AML patient samples were collected between 2005 and 2021
at the Ospedale San Raffaele Biobank (Milan, Italy). Informed consent
to biobanking of peripheral blood and bone marrow cells had been

previously signed by all patients. The research proposal has been
reviewed and approved by an institutional review board (Comitato
EticoOspedale SanRaffaele diMilano, protocolN°RPC, v2 22/01/2019).
Samples obtained for routine diagnostic or monitoring purposes were
processed by density gradient centrifugation and mononuclear cells
were frozen in liquid nitrogen until use.

Cell culture and transduction
Bonemarrow or peripheral bloodmononuclear cells were thawed and
cultured at a concentration of 5 × 106 cells/ml in X-VIVO 15 (Lonza
BE04-418), 20% BIT9500 (StemCell Technologies #09500), SCF
(Peprotech 100ng/ml), FLT3L (Peprotech 100ng/ml), TPO (Peprotech
50 ng/ml), IL-3 (Peprotech 10 ng/ml), IL-6 (Peprotech 10 ng/ml) and
G-CSF (Peprotech 10 ng/ml), L-glutamine (Lonza 4mM) and penicillin/
streptomycin (100 UI/ml). Cells were plated at concentrations of 5 ×
106 cells/ml for lentiviral transduction at a multiplicity of infection of
20. Cells were washed and transplanted by tail vein injection into NSG
or NSGW41 mice within 24–36 h from thawing.

Ex-vivo treatment of primary human AML blasts
Thawed primary human AML blasts were cultured on irradiated stro-
mal feeder cell layers with cytokine- and SR1- (1uM) supplemented
media. Live blast purification was achieved by magnetic bead-based
dead cell removal prior to culture (Miltenyi # 130-090-101). Fresh
media was added every 2–3 days and cells were re-plated prior to
reaching 70–80% confluence. After 12 h of preconditioning, IACS-
010759, diluted inDMSO, was added to a final concentration of 30 nM.
Similarly, Cytarabine, diluted in PBS, was added to a final concentra-
tion of 100ng/ml. Equivalent volumes of PBS andDMSOwere added to
the mock-treated conditions. Cells were harvested at Day 5 post-
culture and analyzed by flow cytometry and transplanted into
recipient-irradiated female NSG mice.

RNA extraction and miRNA ddPCR
Total RNA was extracted with miRNeasy Micro Kit (Qiagen #217084)
following manufacturer instructions. cDNA synthesis was performed
using miRCURY LNA miRNA RT Kit (Qiagen #339340) following the
company’s guidelines for miRNA profiling. ddPCR was performed
using EvaGreen supermix (Bio-Rad #1864034) and one of the fol-
lowing miRCURY LNA PCR primer sets (Qiagen): hsa-miR-126-3p (ID
204227), hsa- let-7a-5p (ID 205727), hsa-miR-16-5p (ID 205702),
SNORD24 (ID 206999), SNORD48 (ID 203903), UniSP6 (ID 203956).
cDNA input for miRNA ddPCR quantification ranged from 50 to
80pg/well. Artificial RNA spike-in (UniSP6) was added to cDNA
synthesis and assessed to monitor RT reaction efficacy. After droplet
generation with Biorad Automated DG (#1864101), PCR was per-
formed immediately with the following protocol: 95 °C for 5min
(ramp 2 °C/s), 40x cycles of 95 °C for 30 s and 56 °C for 1min, three
final steps at 4 °C for 5min, 90 °C for 5min, and a 4 °C indefinite hold.
Data was acquired with Biorad QX200 Droplet Digital PCR System
and analyzed with Biorad QuantaSoft Analysis Pro Software. miRNA
expression was normalized by dividing the absolute concentration of
miRNA by the geometric mean of four normalizers (miR-16,
SNORD24, SNORD48, Let-7a). Each value is derived from the average
of two replicate wells. The normalized value was multiplied by
reaction volume (22 μl) and divided by the cDNA input to obtain a
normalized concentration of miRNA (NV/ng cDNA).

In vivo xenotransplantation experiments
NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) and NSGW41 (NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ KitW41/W41) femalemicewere purchased fromCharles River
Laboratories (Calco, IT) and held in specific pathogen-free conditions
with a 12 hour dark-light cycle, standardized temperature (22 ± 2 °C)
and humidity (55 ± 5%). All animal procedures were performed
according to protocols approved by the Animal Care and Use

Article https://doi.org/10.1038/s41467-023-36969-0

Nature Communications |         (2023) 14:1285 13



Committee of the San Raffaele Hospital (IACUC #807, #923, #1102)
and communicated to the Italian Ministry of Health and local autho-
rities according to the Italian law. Primary leukemic blasts were sus-
pended in 200μl PBS and transplanted by tail vein injection into 6-10
week old NSG or NSGW41 recipients. NSG mice were sub-lethally
irradiated (150-200 rad) 12-24hours prior to transplantation. Disease
engraftment wasmonitored by periodic tail-vein or retro-orbital blood
sampling. At sacrifice, 16 ± 2weeks after transplantation if not specified
otherwise, bone marrow cells were harvested by crushing femurs and
tibiae under sterile conditions, filtered through a 40-μm cell strainer
and resuspended in ice cold PBS + 2% FBS. Splenocyteswere recovered
by smashing whole spleens through a 40-μm cell strainer and resus-
pended in ice cold PBS + 2% FBS.

Integration site analysis
Genomic DNA (gDNA) was extracted using the QIAamp DNA Micro
Kit from Qiagen (ID: 56304), according to manufacturer’s instruc-
tions and quantified with Qubit dsDNA HS Assay (Cat: Q32851) with
Qubit Fluorometer (ThermoFisher Scientific). To retrieve lentiviral
vector integration sites we adopted a sonication-based linker-medi-
ated (LM) PCR method described previously60,61. Briefly, for each
sample 20–900ng of gDNA was fragmented by ultrasonication with
Covaris E220 (Covaris Inc., Woburn MA) to obtain fragments with an
average size of 1000 bp. The fragmented DNA was split into three
technical replicates and subjected to end repair and A-tailing using
the NEBNext Ultra Library Prep Kit for Illumina (New England Bio-
Labs, Ipswich, MA), followed by ligation of a custom-made linker
cassette using the NEBNext Ultra DNA Library Prep Kit for Illumina
(New England BioLabs Ipswich, MA), as by the manufacturer’s
instructions. The custom-made linker cassettes harbor an 8
nucleotide-long barcode used for sample identification, a 12 random
nucleotide sequence used for quantification purposes and sequences
required for Read 2 Illumina paired-end sequencing. Ligated frag-
ments were subjected to exponential amplification: The first PCR was
performed using primers specific for the lentiviral vector LTR and the
linker cassette with the following conditions: initial denaturation at
95 °C for 5′, denaturation 95 °C for 1′, annealing 60 °C for 45″, elon-
gation 72 °C for 1′30″, for 35 cycles and final elongation for 10′ at
72 °C. The amplification products were then re-amplified with addi-
tional 10 PCR cycles using a primer specific for the linker cassette and
primers complementary to the LTR containing an 8 nucleotide-long
barcode, 12 random nucleotides and sequences compatible for Read
1 Illumina sequencing following the same PCR conditions as pre-
viously described. The resulting libraries were quantified by qRT-PCR
using the KAPA Library Quantification Kit Illumina platforms (Kapa
biosystems), according to the manufacturer’s instructions. Libraries
were sequenced using the Illumina HiSeq platform (Illumina, San
Diego, CA). Processing of sequencing data, sequence quality analysis
and IS Identification were performed by y-TRIS, a graph-based gen-
ome-free alignment tool based on the generation of consensus
sequences, as described62. Datasets were pruned from potential
contaminations and false positives between each primary mouse and
from IS deriving from unrelated secondary mice. Each IS was used as
marker to track an individual clone.

In vivo chemotherapy experiments
For chemotherapy experiments, mice (NSGW41) were treated with
1.5mg/kg Daunorubicin hydrochloride (Pfizer) by tail vein injection on
days 1, 2, and 3. Cytarabine (Hospira) was administered at a dose of
60mg/kg by subcutaneous injection on days 1 to 5 of the treatment
regimen. Both drugs were prepared in saline and mice weight was
checked daily for proper dosing. Control animals received equal dose
of saline solution. Mice were allocated to treatment or control groups
with equal AML burden based on a pre-treatment bone marrow aspi-
rate evaluation of human AML chimerism. Litter mates were divided

into both groups. For EdU (5-ethynyl-2′-deoxyuridine) incorporation
assays, mice received daily intraperitoneal injections of EdU (Ther-
moFisher Scientific # E10187, 50mg/kg bodyweight) fromday 4 to day
7 of the in vivo treatment cycle.

Limiting-dilution assays
Limiting-dilution assays (LDA) were performed as previously
described63. Briefly, primary human AML cell were thawed or recov-
ered from donor xenograft BM and FACS sorted for GFPhigh vs GFPlow

LDA experiments. Sorting cell yield was counted, washed twice in PBS,
serially diluted and aliquoted in order to obtain the defined transplant
cell dose per group for tail-vein injection in NSGW41 or sub-lethally
irradiatedNSGmice.Humanengraftmentwasmonitoredwith periodic
blood sampling. Mice were euthanized at 16 ± 2 weeks post-transplant
(primary endpoint) or in case of human engraftment in PB > 80%. Cells
harvested from bone marrow or spleen at euthanasia were stained for
hCD45, mCD45, hCD34, hCD38 and NGFR (for experiments with
dNGFR-expressing miRNA reporters). Hierarchical gating was per-
formed as follows: Singlets (FSC-H vs FSC-A), Physical parameters
(FSC-A vs SSC-A), human cells (hCD45 vs mCD45), transduced cells
(GFP vs mCherry or NGFR). Mice with human cell engraftment higher
than 0.1% by flow cytometry analysis on total bone marrow or spleen
cellularity (Physical gate) were scored as engrafters. LIC frequency
estimation was calculated with the statmod R package (v 1.4.34) using
the limdil function with a confidence of 0.95.

Flow cytometry
Immunophenotypic analysis was performed using one of the following
instruments: BD FACSCanto II, BD LSRFortessa II, BD FACSymphony
A5, Beckman Coulter Cytoflex S or Beckman Coulter Cytoflex LX.
Antibodies used for immunophenotypic analysis are listed in Supple-
mentary Data 7. Cells were incubated with a human (Miltenyi Biotec,
#130-059-901, dilution 2:100) and mouse FcR blocking reagent (BD
#553141, dilution 1:100) prior to staining with antibody cocktail. All
steps were performed at 4 °C in PBS 2% FBS. Data were analyzed with
FCS Express 6 and 7 (DeNovo Software). Staining for cell cycle analysis
was performed by fixing and permeabilizing cells with the
eBioscience™ Foxp3 / Transcription Factor Staining Buffer Set as per
manufacturer’s indications, followed by 30min incubation at +4oC
with human FcR blocking reagent (Miltenyi Biotec, #130-059-901,
dilution 2:100) and overnight staining at +4oC with Ki67-AF647 (BD
#558615, dilution 2:100). Samples were acquired on the FACSymphony
A5with lowflowrates after additionofHoechst 33342. Staining for EdU
incorporationwas performedwith theClick-iT™Plus EdUPacificBlue™
Flow Cytometry Assay Kit (TermoFisher Scientific #C10636) following
the manufacturer’s indications.

Fluorescence-activated cell sorting
For GFP population sorting, freshly recovered or vitally frozen
xenograft-derived bone marrow cells were thawed in RPMI 20% FBS,
washed, pelleted and resuspended in MACS buffer (Miltenyi Biotec,
130-091-221) for cell count by trypan blue exclusion and staining. Dead
cells were excluded with Annexin V staining. Sorting gates were
defined based on the top and bottom 10–15% GFP/NGFR or GFP/
mCherry fluorescence ratio on the human AML miR-126 sensor-trans-
duced population (hCD45+/NGFR or mCherry+). Sorted cells were
counted and diluted for transplantation. For single-cell RNA sequen-
cing, leukemia was enriched by a patient-tailored combination of
markers capturing as broadly as possible the entire leukemic popula-
tion capturing either progenitors (CD34+ and/or CD117+) or myeloid
cells (negatively selected as CD34-CD117-CD3-CD19-CD235a-) (Supple-
mentary Fig. 1A). AML patient bone marrow mononuclear cells
were thawed and processed as described above. After incubation
with FcR blocking reagent, cells were stained either with sorting
strategy 1 (CD45 APC-eFluor780, CD34 PE, CD38 PerCP-Cy5.5),
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2 (CD45 PerCP-Cy5.5, CD34 APC, Annexin-V Pacific Blue, CD117 PE-Cy7,
CD3 FITC, CD235a FITC, CD19 FITC) or 3 (CD45 PerCP-Cy5.5, CD34
APC, CD33 VioBlue, CD117 PE-Cy7, CD3 FITC, CD235a FITC, CD19 FITC,
Annexin-V FITC) for 30minutes on ice (Supplementary Fig. 1A). PT01
and PT06, timepoints DX and D14, were sorted with strategy 1, as the
totality of leukemia cells expressed either CD34 or CD117. PT01 (D30),
PT02 (DX, D30), PT07 (DX, D14), PT08 (DX, D14, D30, REL, REL_NR),
PT09 (DX, D14), PT10 (DX, D14) were sortedwith strategy 2, in order to
exclude non-myeloid cells whichmade up a relevant proportion of the
sample especially at post-therapy timepoints (B, T and GlyA+ erythroid
cells). PT12 (DX, D14), PT13 (DX, D14, D30), PT15 (DX, REL), PT19 (REL),
PT20 (REL), PT11 (DX, D30), PT17 (DX, D14, D30) and PT 18 (DX, D14,
D30) were sorted with strategy 3. For strategies 2 and 3, the residual
lineage negative CD34-CD117- fraction was included in scRNAseq
analysis when the blast cluster did not fully express CD34 or CD117 in
order to capture a more comprehensive picture of AML subpopula-
tions. Cells were sorted with a BD FACS Aria Fusion SORP under sterile
conditions at 4 °C in 1.5ml DNA LoBind Eppendorf tubes or 5ml
polypropylene round-bottom tubes. Recovered cells were resus-
pended in known volume and counted with trypan blue for vitality
when FACS cell recovery was >10,000 cells.

RNA sequencing
Sequencing libraries were produced with SMART-Seq v4 Ultra Low
Input RNA Kit (Takara Bio USA, Mountain View, CA, USA), as per the
manufacturer’s instructions. Briefly, 1 ng of input RNA was reverse
transcribed with switch oligos for full-length cDNA conversion and
amplification by PCR (8 cycles). Next-generation sequencing libraries
were prepared using Nextera library prep kit (Illumina). Libraries were
sequenced on Illumina platform with single-read SBS technology.
Approximately 30 million 75-nucleotide-long reads per sample were
generated. After quality check with fastQC, a preprocessing step
including trimming and adapter removal using TrimGalore (v0.5.0)
wasperformed. Trimmed readsweremapped to theGRCh38 reference
genome assembly provided by the 10X reference data repository
(refdata-cellranger-GRCh38-3.0.0) using STAR (v2.7.0d) setting the
parameter outFilterMultimapNmax to the value of 1 in order to con-
sider only uniquelymapped reads. The gene transfer file with exon and
transcripts intervals provided by the 10X (refdata-cellranger-GRCh38-
3.0.0.gtf) was used as the reference gene annotation file in order to
ensure the best cross-compatibility with scRNAseq. Post-alignment
metrics, including coverage distribution across gene length and per-
centage of reads mapping to exons were collected by using Qorts
(v1.3.6). Reads were assigned to genes by using feature counts (v1.6.3),
with the parameter minOverlap set to 10 and discarding
chimeric reads.

Differential gene expression on RNA sequencing data
Data preprocessing, exploration, and differential gene expression
(DGE) analyses were performed with DESeq2 (v1.26.0) R packages.
Explorative data analysis was carried out by Principal Component
Analysis (PCA) on regularized log-transformed data. Two samples
(PT01, mouse A3 GFPlow and mouse A1 GFPlow), with abnormal post-
alignment metrics and behaving as outliers in PCA plots and TGR
distribution, were discarded along with their paired GFPhigh samples
(PT01, mouse A1 and A3 GFPhigh). DGE analysis was performed with
the Wald test (p.adj Benjamini–Hochberg correction <0.05) by cor-
recting for patient variability. We assessed the overall transcriptomic
differences between GFPlow and GFPhigh samples & the transcriptomic
differences between treated and control samples. The comparison
between GFPlow vs GFPhigh samples produced 1957 DEGs; of these, 989
had log2FC > 0 (overexpressed in the GFPlow samples) and were
included in the 126High signature; the remainder 968 genes with
log2FC < 0 were included in the 126Low signature (Supplementary
Data 3). DGE between treated and control conditions produced 3559

DEGs; 1768 upregulated and 1791 downregulated (Supplementary
Data 3). DGE results from subset-specific comparison are reported
in Supplementary Data 3. Genes with a corrected p-value
(Benjamini–Hochberg correction) <0.05 were considered differen-
tially expressed.

DGE results were inspected by performing Over Representation
Analysis (ORA) and Gene Set Enrichment Analysis (GSEA). We queried
several databases including Gene Ontology, KEGG, Reactome and
Molecular Signatures Database (MSigDB). Both analyses were per-
formed using clusterProfiler (v3.8.1) package. We implemented a data
analysis workflow that allows to remove terms redundancy (applicable
to GO terms) by pruning redundant terms according to semantic
similarity with the simplify function from the GOSemSim package
(v2.10.0). The algorithm iteratively decreases the cut-off of the simplify
function until it reaches a number of terms less than 70 (for GO sets
starting with less than 70 terms this step is omitted). Reduced GO
terms are clustered based on the calculation of a kappa score between
each pair of terms. For each pair an incidence matrix reporting the
number of DEGs is constructed and a kappa score is calculated. The
final output is a matrix of kappa scores reflecting the degree of simi-
larity weighted for the different length of compared DEG vectors. A
heatmap with hierarchical clustering on redundancy-reduced terms is
then produced by using the pheatmap R package (Supplementary
Fig. 8A, B).

Single-cell RNA sequencing of longitudinalNPM1mut AML patient
samples
Sorted BM (PB for PT06 at diagnosis) mononuclear cell subsets were
counted and pooled with conservation of their relative frequency,
while loading at least 500 cells for the less abundant subpopulations.
Cells were then resuspended at the appropriate concentration for
loading into the Chromium 10X single-cell 3′ Gene Expression v2 or v3
chip according to the manufacturer’s protocol. 3′ gene expression
libraries construction and sequencing on Illumina platforms NextSeq
or NovaSeq S1 were performed following the manufacturer’s indica-
tions. Sequenced libraries were demultiplexed and processed by Cell
Ranger Single-Cell Software Suite (version 3.1.0, 10X Genomics) using
GRCh38 reference genome and gene annotations (v3.0.0) provided by
the manufacturer. From primary patient samples, we retrieved 98,443
cells over 38 samples with a median of 54,856mean reads per cell and
4129 Unique Molecular Identifier (UMI) median counts per cell. Of
these, 42,398 cells were classified as blasts by our NPM1-MF algorithm.

Feature-barcodes filtered matrices from Cell Ranger were used as
input for Seurat R package64,65 (version 3.2.3). Seurat objects were
merged in a single full dataset. Cells with a mitochondrial count ratio
higher than 0.2 and <100 or >7000 expressed genes were removed
from the dataset. UMI counts were log normalized and scaled for a
factor of 10,000. The top 20% most variable genes were selected for
downstream analysis. Cell cycle scores were assigned with the Cell-
CycleScoring function using a reference gene lists66. We scaled data
and regressed out unwanted variability by passing UMI count, percent
of mitochondrial genes and cell cycle difference defined variables to
the vars.to.regress argument. Cell cycle difference was defined as the
difference between S phase and G/2M phase module scores. Down-
stream analysis was performed on the top 100 principal components
(PCA). In order to reduce patient-related and 10x chemistry version
(v2 vs v3) bias, we performed data integration using the Harmony
package (v1.0)24. Further analyses were performed on a subset of the
full dataset, based on single-cellNPM1mutation detection (see below),
retaining all cells labeled as AML. Briefly, UMAP dimensionality
reduction25 and clustering were performed with default parameters
using the first 80 Harmony components. Modularity optimization was
performed using classic implementation of the Louvain algorithm.
Clustering resolution of 0.6 was used for downstream analysis. Mar-
kers identificationwasperformedwith FindAllMarkers function setting
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a logFC threshold of 0.25 and a minimum percentage of cells expres-
sing the gene greater than 25% in at least one of the compared clusters.
Genes were considered markers of a specific cluster if their p-values
returned by Wilcoxon Rank Sum test were <1e10−5. Bulk RNA seq-
derived gene signatures (126High and 126Low) were mapped on
scRNAseq data by calculating the average expression level of each
program at single-cell level, subtracted by the aggregated expression
of a control feature set with the AddModuleScore function.

Single-cell RNA sequencing of longitudinal del(7) AML patient
samples
AML blasts were counted and resuspended at the appropriate con-
centration for loading into the Chromium 10X single-cell 3’ Gene
Expression v3 chip according to the manufacturer’s protocol. 3′ gene
expression libraries construction and sequencing on Illumina NovaSeq
S2 were performed following the manufacturer’s indications.
Sequenced libraries were demultiplexed and processed by Cell Ranger
Single-Cell Software Suite (version 6.1.1, 10X Genomics) using GRCh38
reference genome and gene annotations (v3.0.0) provided by the
manufacturer. We retrieved 44,170 cells over 8 samples with a median
of 51,705 mean reads per cell and 9976 Unique Molecular Identifier
(UMI) median counts per cell. We first ran a preliminary analysis using
Seurat R package (v 3.2.3) on each single-patient dataset indepen-
dently to discriminate AML cells (characterized by monosomy of
chromosome 7 (Chr 7)) from their normal hematopoietic counterpart
(non-AML).We leveraged theAddModuleScore function for evaluating
the expression level of a Chr 7 signature by using as input gene list all
genes located on it. The observed distribution of Chr 7 module scores
in the datasets followed a bimodal distribution allowing us to classify
cells as AML or non-AML by running a k-means clustering (n = 2) on the
vector of Chr 7 signature scores and labelling cells in the high score
group as non-AML and those in the low score group as AML (Supple-
mentary Fig. 7D). We then subset the full dataset with AML-only cells.
Single-cell data analysis was performed using the same workflow
described forNPM1mut AMLs, except for harmony batch removal which
accounted for both patient- and timepoint-dependent batch effects
(orig.ident variable) and for dimensionality reduction computed on
the top 30 Harmony corrected principal components.

Single-cell RNA sequencing of treated and control AML
xenografts
Freshly isolated BMmononuclear cells from control or chemotherapy-
treated xenografts at day 8 from the start of treatment were sorted for
isolation of bulk human AML cells or sorted miR-126 reporter GFPlow

blasts (Supplementary Fig. 4A). Cells were sorted with a BD FACS Aria
Fusion SORP under sterile conditions at 4 °C in 1.5ml DNA LoBind
Eppendorf tubes or 5ml polypropylene round-bottom tubes. Recov-
ered cells were resuspended in known volume and counted with try-
pan blue for vitality when FACS cell recovery was >10,000 cells. Cells
from sorted xenografts were then stained with TotalSeq-B Hashtag
reagents (BioLegend) following the manufacturer’s indications for
pooling of different xenografts and sorted populations (Bulk or GFPlow

blasts) from the same AML patient prior to single-cell RNA sequencing
chip loading. Pooled samples were then resuspended at the appro-
priate concentration for loading into the Chromium 10X single-cell 3′
Gene Expression and Feature Barcoding v3 chip according to the
manufacturer’s protocol. 3′ gene expression (GEX) and feature bar-
code (FBC) libraries were sequenced on Illumina platformsNovaSeq S1
or S2 following the manufacturer’s indications. GEX and FBC libraries
were demultiplexed andprocessed byCell Ranger Single-Cell Software
Suite (version 5.1.0, 10x Genomics) using GRCh38 reference genome
and gene annotations (v3.0.0) provided by the manufacturer. We
obtained 130,288 cells over 16 samples from4different donorswith an
average of 8143 cells for sample, 42,353 mean reads per cell, 2956
median genes per cell, 21,555 total expressed genes and 10,330 mean

UMI per cell (as detailed in Supplementary Data 4). scRNAseq gene
expression data analysis was characterized by the following steps:
preprocessing of single libraries, HTO demultiplexing to recover cell
IDs belonging to single xenografts and sorted subpopulations, and
analysis of the full dataset. Feature-barcodes filtered matrices from
Cell Ranger (GEX and FBC) were used as input for Seurat. Each sample
was pre-processed and cells with mitochondrial count ratios higher
than 0.15 or a number of features greater than 7000 were removed.
Next, for each sample we performed HTO demultiplexing in order to
remove doublets and classify each cell with its hash.id for proper
labeling of xenograft and population of origin. We leveraged the HTO
demux pipeline as detailed in the Seurat vignette. We applied a CLR
normalization usingmargin 2 for all samples except for three forwhich
we applied margin 1. HTODemux function was run with positive.-
quantile = 0.99 parameter. To overcome the presence of background
noise and false positives, we setup a custom algorithm that allows to
refine the results provided by HTODemux function. For each expres-
sed HTO, it selects cells classified with a certain hash.ID, calculates a
medoid from tSNE coordinates of such population and retrieves the
range-limit coordinates (x and y) from the medoid according to 0.98
quantile of median Cartesian distances of cells to medoid. Doublets
and singlets that do not fall within these boundaries are discarded,
whereas singlets and or hashtag negative cells that lay within these
boundaries are classified with the currently investigated hashtag ID
(hash.ID). A tSNE plot with a box drawn with selected cells is produced
as visual assessment of classification. We iteratively apply this proce-
dure for each sample and hashtag. Metadata related to refined hash.ID
for each sequenced cell was then added to the GEX Seurat object of all
samples merged together. We then processed and analyzed the full
merged GEX dataset in similar fashion to that described for the patient
scRNAseq dataset. Briefly, UMI counts were log normalized and scaled
for a factor of 10,000. Top 20% most variable genes were selected for
downstreamanalysis and datawas scaled and unwanted variability was
regressed out by passing UMI count, percent of mitochondrial genes
and cell cycle difference within the vars.to.regress argument. Top 70
PC from PCA analysis were used for dimensionality reduction and
patient-derived batch effect was removed by running harmony inte-
gration using DonorID as batch variable. Clustering resolution of 0.6
was used for downstream analysis and resolution 1.2 for investigation
of LSC subclusters. Markers identification was performed with Fin-
dAllMarkers function setting a logFC threshold of 0.25 and aminimum
percentage of cells expressing the gene greater than 25% in at least one
of the compared clusters.

Cell type annotation
Cell type annotation was inferred by using the SingleR package29

(v1.1.11), with several independent reference annotation datasets,
including the Human Primary Cell Atlas67, Blueprint68, Encode69 and
published literature28. We performed a double annotation using for
each dataset both main labels and refined labels. Cell labels were then
imported in the Seurat object.

NPM1 mutation detection
Acquisition of the NPM1 mutation is considered a transforming event
converting pre-leukemia to an LSC70, and this “trunk mutation” is
maintained during clonal evolutionmaking it a suitable MRDmarker71.
Due to its genomic location near the 3′ end of the gene, the NPM1
mutation hotspot may be directly captured and sequenced in single-
cell 3′ gene expression libraries72. We employed a purpose-developed
strategy (NPM1 Mutation Finder, NPM1-MF) to discriminate NPM1
mutation status at the single-cell level in 3′ scRNAseq datasets on the
assumption that the presence of a single mutant transcript is
enough to define a cell as leukemic, while the opposite is not true
for the classification of non-AML cells. The NPM1 mutation A
is defined as a TCTG tetranucleotide TCTG duplication at locus
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chr5:171410540-171410543 (NM_002520.6(NPM1): c.860_863dup
(p.Trp288fs)). In order to detect partial mutational patterns that occur
at read boundaries, we searched for the following patterns:
TCTCTGTCTGGC, GATCTCTGTCTGG$, GATCTCTGTCTG$, GATCTC
TGTCT$, GATCTCTGTC$, ^CTCTGTCTGGCAG, ^TCTGTCTGGCAG,
^CTGTCTGGCAG, ^TGTCTGGCAG, ^GTCTGGCAG, where ^ denotes
that the read begins with the next character, and $ that the read ends
with the previous character. NPM1-MF considers the UMI counts sup-
porting either NPM1 mutant or WT allele to classify cells as MUT (≥1
UMI for the mutant allele); WT (>5 WT transcripts, no mutant tran-
scripts), ND–notdetected (cellswith≤ 5WT transcripts andnomutant
transcripts) or NoCall (cells without coverage over the NPM1mutation
region). Eachpatientwas first analyzed separately. Asweobserved that
NPM1mutant cells didnot co-cluster withwild type cells, we calculated
for each cluster the relative abundanceof NPM1-MF defined categories
(MUT, WT, ND, NoCall) (Supplementary Fig. 7A–C, Supplementary
Data 1). We extended the definition of AML to all cells belonging
to clusters with the following sequential criteria: (1) MUT ≥ 40%,
extend definition to whole cluster; (2) 20% ≤ MUT<40% and
WT< 5%, extend definition to whole cluster; (3) 10% ≤ MUT< 20% and
WT< 5%, extend to whole cluster if cells exhibit myeloid lineage mar-
kers and the majority are NoCall; (4) 5% ≤ MUT< 10% and WT=0%,
extend towhole cluster if cells exhibitmyeloid lineagemarkers and the
majority are NoCall; (5) MUT< 5%, consider only MUT cells as AML.
We then excluded all WT classified cells from further analysis. To
complement this classification for clusters with high ND/NoCall cells,
we investigated cell type composition by SingleR BluePrint + Encode
correlations and confirmed myeloid/monocytic lineage for AML clus-
ters and non-myeloid lineages for normal hematopoietic clusters
(Supplementary Fig. 7A–C). By cluster-based assignment rules, the
majority of cells could be unambiguously classified. Within a given
cluster, cells in which mutant NPM1 transcripts were detected were
transcriptionally very similar to cells, in which insufficient read counts
were obtained due to known limitations of the scRNAseq technology
(Supplementary Fig. 1C), confirming accurate leukemia cell classifica-
tion and reliable cluster-based AML annotation. A total of 42,398 cells
from 10 patients were classified as AML.

Pseudotime analysis
Pseudotime trajectory inference was performed with Monocle
package73 (version 3) as described in the official vignette. To maintain
the previously calculated UMAP embedding from the Seurat analysis,
we imported a cell dataset (CDS) containing PC and UMAP embedding
annotations from the AML rds. Partitioning and clustering performed
by monocle were skipped and associated data slots were replaced by
setting the partition variable to 1 and cluster variablewith the vector of
clusters obtained from analysis in Seurat. After learning the graph by
disabling partitions, we ordered the cells by leveraging the get_ear-
liest_principal_node helper function to identify root start amongst
CD34+ progenitor blasts (defined as CD34 UMI ≥ 1).

Over-representation analysis (ORA)
Cluster marker genes were investigated by ORA with the ClusterPro-
filer R package74 on GO categories including biological process (BP),
cellular components (CC) and molecular functions (MF). Briefly, we
used the ego function, setting as query genes the cluster’smarkers and
as gene universe the genes expressed in the dataset under analysis. GO
terms with an adjusted p-value (Benjamini–Hochberg correction)
<0.05 were considered significantly enriched. Query and universe
genes sets were converted from gene symbols to ENTREZID with the
bitr function in DOSE package (v3.10.2).

Gene Set Enrichment Analysis (GSEA)
As post-chemotherapy timepoints exhibited high cell number varia-
bility between different patients and heterogeneous cell phenotype

distribution, we decided to perform intra-cluster comparisons
between timepoints for each eligible patient using the FindMarkers
function, setting test.use = wilcox, a logFC threshold of 0 and
return.thresh parameter equal to 1 in order to output all genes for
which the test was performed.Only intra-cluster comparisons between
groups with at least 5 cells were considered for differential gene
expression analysis. Downstream analyses were carried out on the full
output marker gene list, ranked by decreasing logFC with positive
values indicating higher expression in post-chemotherapy timepoints.
We performed Gene Set Enrichment Analysis using the GSEA function
of ClusterProfiler R package74 (v3.8.1) focusing only on the hallmarks
gene set v7.0 (fromMutSigDB) and GO genesets. GSEA results from all
comparisons were combined into a single matrix of Normalized Enri-
ched Scores (NES). A custom heatmap was produced by using ggplot2
R package (v3.2.1) ordering the terms (rows) by biological function
similarity and comparisons (columns) by patient outcome category
and median 126High signature expression value for that cluster. For
the xenograft dataset, we performed GSEA analysis on clusters
obtained at resolution 0.6. GSEA test was performed for each set of
markers obtained from findallmarkers setup accordingly to retrieve all
genes for which the test was performed (as stated above). Custom tile
plots were produced from the GSEA results.

Gene-signature correlations
To restrict the 126High signature to a lower number of informative
genes, we identified which gene(s) provided a higher contribution to
the overall signature module score value in scRNAseq data. As com-
monly done in reliability analysis, we performed an item-test correla-
tion analysis, by computing the Spearman’s rho correlation coefficient
between eachgene (scaledata value) included in the 126High signature
and themodule score of the 126High signature across all NPM1mut AML
cells analyzed. A high correlation supports that the gene is a good
“contributor” of the module score of the entire signature. The infor-
mative genes in the signature were defined as those with a positive
non-negligible (rho > 0.3) significant (Bonferroni-corrected p value <
0.05) Spearman correlation. Spearman’s correlation coefficient was
computedby using the corr.test function of the psychpackage (v 2.1.6)
and Bonferroni correction for adjusting for multiple testing was
applied. This analysis produced a reduced 24-gene signature (Sup-
plementary Data 3), which was applied for survival analysis on pub-
lished microarray and RNA sequencing data.

Data preparation and survival analysis on published datasets
To test if the identified 24-gene signature could stratify patients with
respect to overall survival, we used three public datasets including two
AML microarray gene expression datasets (GSE12417, and GSE37642)
and two AML RNA sequencing datasets TCGA75 and OSHU cohorts76.
ReadAffy from affy R package (v1.66.0) was used to create probe
expression matrices from rawmicroarray data. Distinct matrices were
produced accordingly to the microarray platform used. In particular,
for both datasets, GPL570 and GPL96 were used. For each matrix, a
standard preprocessing workflow including background correction
and normalization was performed with rma function included in the
affy package. We combined all matrices together using the probes
common to both platforms. Full expression matrix was then batch-
corrected (variables: combination of dataset and array) using the
Combat function in the sva R package (v3.36.0). We then produced a
gene expression matrix by calculating the median expression value of
the probes associated with the same entrezID. In order to retrieve the
highest number of valid genes names from the gene sets of interest
provided as symbols, we converted them into entrezID using the
convertSymbol function from the aliases2entrez R package (v0.1.1).
RNAseq expression matrices from TCGA PanCan (RSEM batch nor-
malized) and OSHU (Counts per million—CPM) datasets were used
separately due to their different measurement units. The presence of
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alternative genes aliases was manually curated. The evaluation of the
initial 24-gene list was performed in two ways: first, we assessed whe-
ther the gene list was associated with overall survival (OS) within the
three datasets independently (Supplementary Fig. 6D) and, second, we
exploited the gene list to first derive and then validate two risk groups
for OS (Fig. 6C). To assess the association of the gene list with OS, we
estimated a Cox’s proportional hazards model with lasso penalty
(implemented in the glmnet R package) on the standardized intensity
of the available genes, separately for each of the three datasets, which
expressed a different number of genes fromour signature: (i) 20 genes
in the microarray dataset, (ii) 24 in the OSHU dataset, (iii) 19 in the
TCGA. The lassomethod (among the penalized regressionmethods) is
widely used to overcome the multicollinearity issue caused by the
usual correlations among genes belonging to the same signature,
providing a further variable reduction. The penalty parameter lambda
of the model was defined as the one minimizing the error obtained
with a 10-fold cross-validation. The linear combination of the genes
estimated from themodel was then categorizedwith themedian value
obtained in the data defining two risk groups, with the purpose of
showing the association of the linear combination with OS. The asso-
ciation of the two groups with OS was then assessed by estimating the
corresponding Kaplan–Meier curves and testing their difference with
the log-rank test and by estimating the hazard ratio with Cox’s pro-
portional hazard regression. For the definition and validation of risk
groups defined from the initial 24-gene list, only genes present in both
the training and testing datasets could be used. Therefore, for this
assessment, we considered only the microarray and the OSHU data-
sets, which have 20 genes of the list in common (the genes common to
all three datasets were only 15, whichwould have led to a higher loss of
information). The microarray dataset was used as training set, due to
the higher sample size. Due to the high heterogeneity of data among
platforms and measurements, we used a training-testing procedure
based on categorized expression data. In detail, for each patient, the
expression data were categorized, by using their own quartiles: −1
(downregulated) if lower than the 1st quartile, 1 (upregulated) if
greater than the 3rd quartile, 0 (normal expression) if between the 1st
and 3rd quartile. In the training phase, the Cox proportional hazards
regression with lasso penalty was applied on the categorized micro-
array data to derive a linear combination of genes, which was then
categorized with themedian for defining two risk groups. By using the
same linear combination of the genes and cut-off, the two risk groups
were then defined in the testing set. They were compared with respect
to OS with the log-rank test and their hazard ratio was estimated by
Cox’s proportional hazard regression.

Other statistical methods
Data were summarized as median ±interquartile (IQR) range, mean ±
s.e.m., or mean ± SD depending on data distribution. Inferential tech-
niques were applied in the presence of adequate sample sizes (n ≥ 5),
otherwiseonlydescriptive statistics are reported. Two-sided testswere
performed. For comparing numerical variables between paired sam-
ples, theWilcoxon test for paired samples was applied and, in the case
of multiple testing p-values were adjusted with Holm’s correction.
Since for n = 5, the minimum achievable two-sided p-value of the Wil-
coxon test for paired samples is 0.0625, another nonparametric test
based on bootstrap sampling was employed for conditions with such
sample size (function boot.t.test in theMKinfer R package). For data in
Fig. 3E, F and Supplementary Fig. 3E, F, comparisons between groups
were performedbyusing linearmixed effects (LME)models to account
for mice with the same donor and for replicate experiments. In each
analysis, in order to meet the assumption of normality of the residuals
of the model, when necessary, an appropriate transformation was
applied to the response variable and, eventually, a few outliers were
not included in the analysis. For testing differences betweengroups for
each patient or testing overall differences between groups, a post-hoc

analysis was performed by using the R package phia and, in the former
case, by also applying Holm’s correction in order to account for mul-
tiple testing. Figure 3E: The response variable y (absolute BM AML
cells) was used with the square root transformation—one outlier was
removed from the analysis: Patient PT03-Replicate B-Mouse B3- group
Control. Figure 3F: The response variable y (percent CD34+38- AML
blasts) was used with the cube root transformation. Two outliers were
removed from the analysis: Patient PT03-Replicate A-Mouse A3-group
Treated and Patient PT16-Replicate A-Mouse B1-group Treated. Sup-
plementary Fig. 3F: The response variable y (AML TGR) was used with
the ordered quantile normalization transformation. One outlier was
removed from the analysis: Patient PT15-Replicate A-Mouse C1-group
Control.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA sequencing data generated in this study have been deposited in
the GEO database under accession code GSE185993 under public
access. In addition, all processed single-cell RNA sequencing data can
be accessed and queried through our online, interactive user interface
[http://www.bioinfotiget.it/mnaldini_natcomm2023/]. All data acces-
sed fromexternal sources and prior publications have been referenced
in the text, GSE12417, GSE37642. Source data are provided with
this paper.

Code availability
Code used for the generation of results reported in this manuscript is
available at the following GitLab repository [http://www.bioinfotiget.
it/gitlab/custom/mnaldini_natcomm2023].
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