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Abstract 

The phytochrome-interacting factor PIF3 has been proposed to act as a positive regulator of 

chloroplast development. Here we show that the pif3 mutant has a phenotype that is similar to the 

pif1 mutant, lacking the repressor of chloroplast development PIF1, and that a pif1pif3 double 

mutant has an additive phenotype in all respects. The pif mutants showed elevated 

protochlorophyllide levels in the dark and etioplasts of pif mutants contained smaller prolamellar 

bodies and more pro-thylakoid membranes than corresponding wild-type seedlings, similar to 

previous reports of constitutive photomorphogenic mutants. Consistent with this observation, pif1, 

pif3 and pif1pif3 all showed reduced hypocotyl elongation and increased cotyledon opening in the 

dark. Transfer of 4d-old dark-grown seedlings to white light resulted in more chlorophyll 

synthesis in pif mutants over the first 2h and analysis of gene expression in dark-grown pif mutants 

indicated that key tetrapyrrole regulatory genes such as HEMA1 encoding the rate-limiting step in 

tetrapyrrole synthesis were already elevated 2d after germination. Circadian regulation of HEMA1 

in the dark also showed reduced amplitude and a shorter, variable period in the pif mutants while 

expression of the core clock components TOC1, CCA1 and LHY was largely unaffected. Expression 

of both PIF1 and PIF3 was circadian regulated in dark-grown seedlings. It is proposed that PIF1 

and PIF3 are negative regulators that function to integrate light and circadian control in the 

regulation of chloroplast development.  
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\body 

Introduction 

Light is a major regulator of growth and development throughout the life cycle of the plant and 

this myriad of complex responses is mediated by different photoreceptor families. Responses to 

blue light are predominantly controlled by the cryptochrome and phototropin photoreceptors, 

while the phytochromes are responsible for regulating growth and development in response to red 

(R) and far-red (FR) light [1]. In Arabidopsis there are five phytochromes (phyA-E) that between 

them regulate responses such as germination, seedling and chloroplast development, plant growth 

and architecture and flowering. The mechanism by which the phytochromes regulate cellular 

processes is not yet understood, but remarkable progress has been made in recent years. 

Phytochromes are dimeric, photoreversible proteins that exist in the dark in the inactive Pr (R-

absorbing) form and are converted by light to the active Pfr (FR-absorbing) form [2]. Following 

light absorption phytochromes rapidly relocate to the nucleus where they control the response to 

light through two main mechanisms. Firstly, they act to exclude the E3-ubiquitin ligase, COP1, 

from the nucleus thereby preventing the degradation of the positive signalling factors HY5, HFR1 

and LAF1 [3]. Secondly, phytochromes bind to and target a family of bHLH proteins for 

degradation thus relieving repression of light responses such as inhibition of hypocotyl elongation 

and germination [4]. 

The first of these bHLH proteins to be identified as a phytochrome-interacting protein was PIF3 [5] 

which binds to both phyA and phyB in a light-dependent manner [6], but through different motifs 

[7,8]. Activation of phytochrome results in PIF3 phosphorylation [8] and subsequent degradation 

[9,10] in a mechanism that appears to be common to this class of signalling protein [11,12]. 

Although there seems to be broad agreement on what is known about the molecular events 

following phytochrome-interaction with PIF3, there is less certainty about how PIF3 is functioning 

in photomorphogenesis. From the outset PIF3 was proposed as a positive regulator of light signals 

as the hypersensitive poc1 mutant was initially described as a PIF3 overexpressor [13]. Subsequent 

analysis of PIF3 loss-of-function mutants demonstrated that PIF3 promoted hypocotyl elongation, 

suggesting that PIF3 is a negative regulator of seedling growth [14]. In contrast, PIF3 has been 

described as acting positively in the light regulation of chloroplast development [15] and this has 
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lead to the hypothesis that PIF3 has a dual function, acting early and positively as a transcription 

factor, while acting later to regulate phyB abundance and repress light-induced inhibition of 

hypocotyl elongation [16,17]. In contrast to the proposal for PIF3, other members of the PIF family 

appear to function predominantly as negative regulators [3,4]. This is clearly seen for PIF1 (PIL5) 

which negatively regulates phytochrome-mediated promotion of seed germination [18] through 

the repression of gibberellin biosynthesis genes [19] as well as acting to repress chlorophyll 

biosynthesis [20]. 

Given the controversy in the role of PIF3 we have re-evaluated the function of PIF3 in chloroplast 

development through careful examination of the phenotype of pif3 and a pif1pif3 double mutant. 

Our results show that PIF3 acts similarly and additively to PIF1 to repress chloroplast 

development and chlorophyll synthesis in the dark. Interestingly the pif1pif3 showed a broader 

range of constitutively photomorphogenic phenotypes in keeping with roles for the PIF proteins as 

global repressors of photomorphogenesis. 

Results 

pif1 and pif3 accumulate protochlorophyllide in the dark 

To further understand the role of PIF3 in early seedling development we constructed a pif1pif3 

double mutant using an independently isolated pif3 T-DNA insertion allele that is identical to pif3- 

1 [14] and a new pif1 allele designated pif1-101 (see SI text and Fig S6). The PIF1 protein has 

previously been shown to repress chloroplast development and protochlorophyllide (Pchlide) 

synthesis in the dark [20]. To test whether PIF3 might be acting similarly we followed 

accumulation of Pchlide in pif1, pif3 and the pif1pif3 double mutant (Fig 1A). All lines showed an 

increase in Pchlide. This increase was clearly detectable 2½ d after germination andat all time 

points the response of the pif1pif3 double mutant appeared additive to that of pif1 and pif3. 

Analysis of Pchlide in the pif1-2 and pif3-3 alleles resulted in almost identical results (Fig S7A). 

Since the pif3-3 allele contains no detectable transcript [15] or protein [17], this result is consistent 

with the phenotype of pif3 mutants being due to loss of PIF3 function. In our experiments, seeds 

were routinely germinated following 2h white light (WL), a treatment reported to have no longer 
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term effects on seedling growth in the dark [21]. Nevertheless, we checked whether this short 

pretreatment contributed to the pif mutant response. As shown in Fig S8A, Pchlide was also 

elevated in the pif1pif3 double mutant even after germination in complete darkness. The increase in 

Pchlide was not simply due to an increased rate of germination as all genotypes showed at least 

95% germination by day one in these experiments (data not shown). 

pif1 and pif3 mutants have a constitutively photomorphogenic phenotype 

In addition to the effects on Pchlide accumulation we also observed that dark-grown pif mutant 

seedlings had open cotyledons and had lost their apical hook (Fig 1B). This response was observed 

in the majority, but not all, of the single mutant seedlings, but was more consistent and stronger in 

the pif1pif3 double mutant. Moreover, it was not due to the WL pre-treatment as seedlings 

germinated completely in the dark showed the same response (Fig S8B). To test whether pif mutant 

seedlings showed the full constitutive photomorphogenic phenotype we also measured hypocotyl 

lengths of dark-grown seedlings. In all cases pif mutants were shorter in the dark compared to WT 

with the pif1pif3 double mutant again showing an additive phenotype (Fig 1C). This was also true 

in the absence of the WL pre-treatment (Fig S8C). Finally, one distinctive feature of constitutively 

photomophorphogenic seedlings such as cop1 is that they show a partially-developed chloroplast 

in the dark that is characterised by a reduced prolamellar body (PLB) and increased prothylakoid 

membranes [22]. We therefore examined etioplasts in dark-grown pif mutant seedlings (Fig 2A-D). 

After 4d dark WT etioplasts showed a characteristic, highly regular PLB with little pro-thylakoid 

development (Fig 2A). In contrast both pif1 and pif3 etioplasts showed increased membrane 

development and PLBs that were generally reduced in size (Fig 2B,C). The most significant 

differences to WT were seen with the pif1pif3 double mutant where PLB size was severely reduced 

and prothylakoid membranes were extensive, although no membrane stacking was observed (Fig 

2D). In some cases no PLB was observed at all in pif1pif3 double mutant seedlings, although full-

size PLBs were detected occasionally (data not shown). 

Greening of pif1 and pif3 is dependent on the time of transfer to white light 
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When grown in the dark for 4d before transfer to WL pif1pif3 double mutants failed to green over 

the next 24h with pif1 and pif3 showing only moderate greening during this period (Fig 3A, S9). An 

identical result was observed with the pif1-2 and pif3-3 alleles (Fig S7B,C) and has been observed 

previously for pif1 [20]. Interestingly, detailed examination of the time course following transfer to 

WL showed that at 2h pif1, pif3 and the pif1pif3 double mutant had more chlorophyll than WT, but 

that this was already reversed after 4h WL (Fig 3B). In contrast to the situation after 4d dark, 

seedlings transferred to WL after 2d dark were able to green with the pif1pif3 double mutant 

accumulating the most chlorophyll (Fig 3C). The pif1-2 and pif3-3 alleles were also able to green 

more efficiently under these conditions (Fig S7B,C) and this ability was gradually lost as seedlings 

aged at transfer to WL (Fig 3C, Fig S7C). The timecourse of chlorophyll loss following transfer to 

WL and the effect of increasing the dark period on subsequent greening ability is consistent with 

the loss of chlorophyll in the pif mutants being due to photo-oxidative destruction rather than 

reduced synthesis. To test this we examined the effect of different WL fluences on chlorophyll 

levels in WT and pif mutant seedlings. As shown in Fig 3D, as the fluence rate increased the 

relative loss of chlorophyll in the pif mutants also increased compared to WT, consistent with 

photo-oxidation being the primary cause of chlorophyll deficiency in the pif mutants.  

We examined chloroplast ultrastructure in WT and pif mutant seedlings following transfer to WL 

after 2d or 4d dark (Fig 2E-L). WT chloroplasts were already well developed 24h after transfer 

from 2d dark with some thylakoid stacking evident at this stage, although in some cases a residual 

PLB was observed (Fig 2E). Consistent with the chlorophyll data there was no evidence of any 

repression of chloroplast development in pif1, pif3 and pif1pif3 mutants and in all cases it appeared 

that there was more thylakoid stacking than in WT (Fig 2F,G,H). No residual PLBs were observed 

in pif1, pif3 or pif1pif3 under these conditions. The situation after transfer to WL from 4d dark was 

more complex. Development of WT chloroplasts was similar to that seen after transfer from 2d 

dark (Fig 2I). In contrast, pif1 and particularly pif1pif3 double mutants contained chloroplasts with 

poorly defined membrane structure and no evidence of granal stacking (Fig 2J,L). The appearance 

of the chloroplasts was reminiscent of chloroplasts damaged through pigment-induced photo-

oxidative stress (e.g. [23]) and was not due to problems of fixation as other structures in these 

sections were well defined (for example the mitochondrion to the right of the chloroplast in Fig 2L). 
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Chloroplasts in the pif3 mutant were generally more similar to WT in appearance than for pif1 or 

pif1pif3 (Fig 2K) consistent with the higher levels of chlorophyll in pif3 at this time point. 

pif1 and pif3 affect the expression of tetrapyrrole biosynthesis genes in the dark 

To understand the basis of the increase in Pchlide we followed the expression of HEMA1 encoding 

glutamyl tRNA reductase, the rate limiting step in tetrapyrrole synthesis [24]. Expression was 

measured at 6h timepoints from 1¼ d after germination using real-time RT-PCR. HEMA1 

expression was strongly induced in all pif mutants relative to WT at 2d and 3d after germination 

with the response severely diminished or lost at days 4 and 5 (Fig 4A). The response in the pif1pif3 

double mutant was again equivalent to both single mutants combined. We also analysed two 

additional genes shown to be key regulatory targets in the tetrapyrrole pathway, CHLH encoding 

the H subunit of Mg-chelatase and the chelatase regulator GUN4 [25-27]. Both genes showed a 

similar pattern with the strongest peak 3d after germination, high expression after 2d and little 

induction if any after 4d (Fig 4B). Analysis of GUN4 expression in the pif1-2 and pif3-3 alleles gave 

similar results when measured 3d and 4d after germination (Fig S7D). Examination of glutamyl 

tRNA reductase protein levels showed an increase in pif1, pif3 and the pif1pif3 double mutant by 2d 

dark (Fig 4C). 

The profile of the relative induction of HEMA1 in the pif mutants is quite unusual with sharp 

peaks 2d and 3d after germination, but no induction at 2½ d. To understand the basis for this we 

plotted the level of HEMA1 mRNA relative to YLS8 for WT and the pif mutants independently (Fig 

4D). This analysis revealed two main observations. Firstly, HEMA1 expression was generally 

higher at early time points in pif1, pif3 and pif1pif3 compared to WT. Secondly, and most strikingly, 

HEMA1 expression was out of circadian phase in the pif mutants compared to WT seedlings. While 

expression of HEMA1 oscillated with a period close to 24h in WT seedlings, pif1, pif3 and pif1pif3 all 

showed a reduction in the amplitude of oscillation and a period of oscillation that was variable 

ranging from about 12h to 22h for pif1pif3 (Fig 4D). To test whether the circadian clock is 

functioning normally in dark-grown pif mutant seedlings, we examined the expression of the 

central clock genes CCA1, TOC1 and LHY in the same samples (Fig S10A-C). No major changes in 

expression were observed for all three genes indicating that the clock is still functional under these 
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conditions. We also examined the expression of another circadian-regulated gene, CAX1, that is 

not involved in chloroplast development. Circadian expression of this output gene was unaffected 

in the pif mutants (Fig S10D) indicating that pif1 and pif3 might specifically affect circadian 

regulation of chloroplast-related genes. Finally, we investigated the circadian regulation of PIF1 

and PIF3 at this developmental stage. PIF1 and PIF3 showed a robust circadian rhythm in dark-

grown seedlings with a similar phase to that of HEMA1 (Fig 4E). 

pif mutants still show light induction of tetrapyrrole biosynthesis genes 

Since PIF3 has been proposed to function positively in the light induction of nuclear-encoded 

chloroplast genes we followed gene expression after transfer to 24h WL, a time at which 

chlorophyll levels are severely reduced in the mutants. Although as noted before expression was 

higher in the dark for HEMA1, CHLH and GUN4 in all pif mutant lines, all three genes were light 

induced to a similar degree and the final expression level of these genes in the light was still higher 

in pif1, pif3 and pif1pif3 than in WT (Fig 4F, S11). We also tested whether pif mutants could respond 

to monochromatic lights sources and over shorter time periods. As shown in Fig S7, induction of 

GUN4 and CHLH was still apparent in pif1-2 and pif3-3 after 4h FR and 8h R light treatments. 

Discussion 

PIF3 is a negative regulator of chloroplast development 

The data presented here are consistent with PIF3 functioning as a repressor of chloroplast 

development in the dark. Pchlide synthesis was higher in pif3 than WT seedlings (Fig 1A) and 

initial rates of chlorophyll synthesis were also greater (Fig 3B,C). pif3 seedlings also showed more 

advanced development of etioplasts and chloroplasts (Fig 2). In these respects the pif3 mutant 

behaved identically to the pif1 mutant, which has previously been identified as a negative 

regulator of chloroplast development [20]. Consistent with these observations the pif1pif3 double 

mutant showed an additive phenotype. Previously the pif3 mutant had been described as showing 

inhibition of chloroplast development [15] and the hypothesis that PIF3 acts positively early in 

signal transduction (and negatively in the longer term) is still current [16,17]. Our data suggest that 
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for the earliest stages of chloroplast development and for the target genes we have analysed (Fig 4) 

that this is not the case. As discussed later there are possible explanations for the previously 

reported loss of induction of chloroplast genes in pif3 [15,17], but the observations that 

overexpression of PIF3 is not sufficient for induction of phytochrome-regulated genes and that 

DNA-binding of PIF3 in the dark is required [17] are certainly consistent with a role for PIF3 as a 

repressor. Moreover, the phytochrome-interacting PIF proteins have generally been shown to be 

acting as repressors not activators of photomorphogenic responses [3,4,28] and our results are 

therefore consistent with a common molecular mechanism for this class of signalling protein. 

The reason for the previous misinterpretation of the pif3 mutant phenotype is that seedlings 

transferred to WL after 4d dark showed a reduced level of chlorophyll compared to WT (Fig 3). 

This response, which is identical for pif1 and exaggerated in a pif1pif3 double mutant, is most likely 

due to photo-oxidative destruction of chlorophyll. Our results are entirely consistent with this 

explanation as the loss of chlorophyll is dependent on the length of the dark period prior to 

transfer (and therefore the degree of excess Pchlide production), the fluence rate of WL and the 

time of WL exposure. Misregulation of the tetrapyrrole synthesis pathway commonly leads to a 

photobleaching phenotype (e.g. [29,30]) and over accumulation of Pchlide is well established as 

leading to photo-oxidative damage [29], for example in the FR block of greening response [31].  

The pif1pif3 double shows a constitutively photomorphogenic phenotype 

One interesting phenotype we observed for the pif1pif3 double mutant was that it showed a 

moderate constitutive photomorphogenic response in dark-grown seedlings (Fig 1). This response 

was seen even when seeds were kept in complete darkness post imbibition (Fig S8). Further 

investigation demonstrated that both pif1 and pif3 single mutants showed a similar, but less 

pronounced response. A shorter hypocotyl in the dark has been seen previously for pif3 [14,18] 

and pif1 [32] and a similar phenotype with expanded cotyledons, hook opening and hypocotyl 

inhibition was recently observed for pif1, pif3 and a pif1pif3 double mutant [28]. In this case the 

authors reported a synergistic interaction between PIF and PIF3 in contrast to the additive 

phenotype reported here. A constitutive photomorphogenic phenotype of the pif1pif3 double 

mutant is expected based on the stronger, dominant negative phenotype of overexpressed 
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truncated PIF1 [12]. Presumably, in this case the PIF1 protein is interfering with the function of 

additional PIFs including PIF4 and PIF5 [28]. Interestingly, constitutive activation of phytochromes 

in the dark also results in this phenotype, which could result from Pfr-mediated degradation of 

multiple PIFs [33]. However, it remains to be seen whether the pif1pif3 double mutant still requires 

the presence of seed Pfr (produced during seed set) to reveal the response. In our assays we saw all 

aspects of the phenotype in seedlings that had only seen light during seed plating, before the seeds 

had fully imbibed, and Leivar et al [28] were unable to block the pif1 and pif1pif3 response even 

with a FR light treatment immediately after plating. 

PIF1 and PIF3 repress the expression of key chlorophyll synthesis genes 

The rate limiting step for Pchlide (and chlorophyll) synthesis is the enzyme glutamyl tRNA 

reductase [24]. Light regulation of this step is mediated through changes in expression of the 

HEMA1 gene [34] and HEMA1 is one of a small group of highly regulated tetrapyrrole genes 

including CHLH and GUN4 [25,27]. The substantial increase in HEMA1 expression and consequent 

increase in glutamyl tRNA reductase protein can fully account for the observed increase in Pchlide 

levels in the pif1 and pif3 mutants. It was previously suggested that the increased in tetrapyrrole 

synthesis in pif1 was due to a subtle downregulation of the ferrochelatase gene (FCII) and a 

concomitant upregulation of the heme oxgenase HO3 resulting in less free heme and less inhibition 

of glutamyl tRNA reductase activity [35], the opposite of the phenotype of the phytochrome 

chromophore-deficient mutants in which the heme branch of the pathway is almost completely 

blocked [36]. We have not tested these genes directly, but as HO3 has exceptionally low expression 

in seedlings and its loss has no impact on chromophore synthesis in the presence of HO1 [37], it is 

unlikely that these changes make more than a minor contribution compared to the substantial 

increase in levels of the rate-limiting enzyme of the pathway. One reason that previous studies did 

not observe the changes seen here is that microarrays using dark-gown pif1 [35] and pif3 [15] and 

their follow-up analyses were all performed using seedlings that had been grown for 4d in the 

dark. As is clear from our current studies (Fig 4, S7D) differences between WT and the pif mutants 

are minor at this time.  

PIF1 and PIF3 may function in the output from the circadian clock 
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We observed that both the pif1 and pif3 mutations affected circadian regulation of HEMA1, CHLH 

and GUN4. HEMA1 and CHLH have previously been shown to be circadian regulated in the light 

[25], but this is the first demonstration of circadian regulation for GUN4. The altered clock 

regulation of HEMA1 was not due to a major defect in the circadian clock as the pif mutants did 

not have a strong effect on the expression of the core clock components CCA1, LHY and TOC1. The 

control output gene CAX1, a H+/Ca2+ antiporter [38] unrelated to chloroplast function, was also 

unaffected, suggesting that PIF1 and PIF3 function specifically in circadian control of genes 

involved in chloroplast development. A circadian clock has previously been shown to be 

functional in dark-grown Arabidopsis seedlings with entrainment initiated through changes in 

temperature or imbibition [39] and can be observed just 2d after imbibition [39] or even earlier [40]. 

Moreover, the importance of this clock in controlling chloroplast development is supported by the 

observation that a range of clock mutants fail to green normally following transfer to WL [40]. We 

therefore propose that PIF1 and PIF3 function in circadian control of chloroplast development as 

shown in the model in Fig 5. Furthermore, we favour a role for the PIF proteins in the output from 

the clock. Although phytochrome has a major role in the entrainment of the circadian clock by 

light [41] it has previously been shown PIF3 does not play a significant role in controlling light 

input or function of the clock [15,42,43]. Although we cannot completely rule out a role in 

entrainment, the apparent specificity of the response for chloroplast development genes suggests 

otherwise.  

In our experiments PIF1 and PIF3 showed a robust circadian regulation in dark-grown seedlings 

suggesting that clock regulation of PIF function is via circadian control of expression. Analysis of 

multiple circadian microarray experiments suggests that PIF1, but not PIF3, expression is under 

circadian control [44]. However, a low amplitude circadian rhythm has also been observed 

previously for PIF3 using a PIF3:LUC+ reporter construct [43]. Within the resolution of our 

experiments the PIF genes appear to cycle in the same circadian phase as HEMA1 precluding a 

simple mechanism of circadian regulated PIF repression of HEMA1 expression. However, a small 

difference in phase could still permit such a mechanism. Alternatively, since both PIF1 and PIF3 

have been shown to interact directly with TOC1 [45] a model in which the clock controls PIF 

function through direct protein interaction is also plausible. 
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In summary our results show that both PIF1 and PIF3 are negative regulators of chloroplast 

development that function to integrate light and circadian control of this critical process. Exactly 

how they achieve this will be the focus of future studies. 
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Experimental Procedures 

Plant growth conditions 

Arabidopsis (Arabidopsis thaliana L.) seeds were imbibed at 4°C for 2d in darkness, followed by 2h 

WL (110 µmol.m-2.s-1) and returned to darkness at 23°C indicating the start of the respective 

experiment (unless otherwise stated).  

Phenotypic analyses 

For hypocotyl measurements 15 Arabidopsis seedlings were measured and the longest 10 

averaged for one biological repeat. For Pchlide measurements 100 µg seedling material was 

extracted twice in acetone:0.1M NH4OH, 90:10 (v/v) as described previously [36]. Chlorophyll was 

also measured as described previously [27]. Cotyledon samples for transmission electron 

microscopy were prepared and examined as previously [36]. Numerous plastids in at least two 

independent samples were viewed for each genotype and experimental condition and 

photographs were taken of representative plastids. 
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Gene expression analyses 

RNA extraction and real-time RT-PCR methods were exactly as described previously [27], with 

one exception (see SI Text). To assess the expression of genes between genotypes at different time 

points, the absolute C(t) value of the YLS8 control gene was subtracted from the absolute value of 

the experimental gene for each biological replicate, and the average C(t) value for all biological 

replicates used for comparison between genotypes. For primers see SI Text. Protein extraction and 

immunoblotting were conducted exactly as described previously [27,36] with 50 seedlings 

extracted in 100 µl SDS extraction buffer.  
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Figure legends 

Fig. 1. Dark-grown phenotype of pif mutant seedlings. (A) Pchlide accumulation in WT and pif 

mutant seedlings in darkness. (B) Cotyledons of WT and pif mutant seedlings after 4d dark. (C) 

Hypocotyl growth of WT and pif mutant seedlings in darkness. Values shown in (A) and (C) are 

the mean ± SE of 4 and 3 independent experiments, respectively. Photographs shown in (B) are 

representative and at the same scale. 

Fig. 2. Plastid ultrastructure in pif mutant seedlings. Transmission electron micrographs of plastids 

from WT (A,E,I), pif1 (B,F,J), pif3 (C,G,K) and pif1pif3 (D,H,L) seedlings. Seedlings were grown for 

4d dark (A-D), 2d dark followed by 1d WL (110 µmol.m-2.s-1) (E-H) or 4d dark followed by 1d WL 

(I-L). Bar corresponds to 500 nm (A-D) or 1 µm (E-L). 

Fig. 3. Light-grown phenotype of pif mutant seedlings. (A) Chlorophyll accumulation in WT and 

pif mutant seedlings following transfer to 110 µmol.m-2.s-1 WL after 4d dark. (B) Chlorophyll levels 

in WT and pif mutant seedlings following 4d dark treatment and either 2 or 4h WL. (C, D) 

Chlorophyll levels in WT and pif mutant seedlings after 8h WL following different dark periods 

(C) or following 4d dark and transfer to 1d WL of different fluence rates (D). Values shown are the 

mean ± SE of 4 independent experiments.  

Fig. 4. Expression of tetrapyrrole synthesis genes in pif mutant seedlings. (A) Real-time PCR data 

showing expression of HEMA1 in dark-grown pif mutant seedlings. Data is presented as the fold 

difference from WT after normalizing to the control gene YLS8. (B) GUN4 and CHLH expression as 

for (A). (C) Glu-TR protein levels in WT and pif mutant seedlings following 2d dark. One of two 

repeat experiments with similar results is shown and equal protein loading was confirmed by 

staining of duplicate gels (data not shown). (D) Expression of HEMA1 in dark-grown WT and pif 

mutant seedlings replotted from (A). (E) Expression of PIF1, PIF3 and HEMA1 in dark-grown WT 

seedlings. (F) Expression of HEMA1 in WT and pif mutants following either 3d dark (filled 

symbols) or 2d dark + 1d WL (110 µmol.m-2.s-1; open symbols). Vertical bars indicate the level of 

light induction. Values shown are the mean ± SE of ≥3 independent experiments. 
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Fig. 5. Model for regulation of tetrapyrrole synthesis genes and chloroplast development in pif 

mutant seedlings. 



1 2 3 4 5

Fl
uo

re
sc

en
ce

/m
g 

fr
es

h 
w

ei
gh

t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

WT (Col)
pif1
pif3
pif1pif3

A

0 1 2 3 4 5

H
yp

oc
ot

yl
 le

ng
th

 (m
m

)

0

2

4

6

8

10

12

14

16

WT (Col)
pif1
pif3
pif1pif3

C
WT      pif1 pif3   pif1pif3

B

Time (d)

Time (d)

Figure 1



Figure 2



C
hl

or
op

hy
ll 

(n
g/

se
ed

lin
g)

0

10

20

30

40

WT (Col)
pif1
pif3
pif1pif3

C
hl

or
op

hy
ll 

(%
 o

f W
T)

0

10

20

30

40

pif1
pif3
pif1pif3

C
hl

or
op

hy
ll 

(n
g/

se
ed

lin
g)

0

1

2

3

4

5

6

C
hl

or
op

hy
ll 

(n
g/

se
ed

lin
g)

0

2

4

6

0 5 10 15 20 25

C
hl

or
op

hy
ll 

(n
g/

se
ed

lin
g)

0

10

20

30

40 WT (Col)
pif1
pif3
pif1pif3

2h WL 4h WL

WT     pif1    pif3  pif1pif3 WT     pif1    pif3  pif1pif3

B

C

A

D

10 110             310
Fluence rate (�mol.m-2.s-1)

2          3     4
Length of dark pre-treatment (d)

Time (d)

Figure 3



C
(t)

 d
iff

er
en

ce
 fr

om
 Y

LS
8

-5

-4

-3

-2

-1

0

1

2

3

Dark
Light

HEMA1

WT        pif1       pif3     pif1pif3

1 2 3 4 5

C
(t)

 d
iff

er
en

ce
 fr

om
 Y

LS
8

-5

-4

-3

-2

-1

0
pif1
pif3
pif1pif3
WT (Col)

Time (d)
1 2 3 4 5

-2

-1

0

1

2

3

4

5
pif1
pif3
pif1pif3
WT Expression

Time (d)
1 2 3 4 5R

el
at

iv
e 

ex
pr

es
si

on
 (f

ol
d 

ch
an

ge
 fr

om
 W

T)

-2

-1

0

1

2

3

4

5

6
pif1
pif3
pif1pif3
WT Expression

GUN4 CHLH

1 2 3 4 5

R
el

at
iv

e 
ex

pr
es

si
on

 (f
ol

d 
ch

an
ge

 fr
om

 W
T)

-2

0

2

4

6

8
pif1
pif3
pif1pif3
WT expression

A

B

C
2d�DGlu�TR

WT     pif1   pif3    pif1pif3

D

Time (d)

1.5 2.0 2.5 3.0

C
(t)

 D
iff

er
en

ce
 fr

om
 Y
LS
8

-8

-6

-4

-2

HEMA1
PIF1
PIF3

E F

Time (d)

Time (d)

Figure 4



HEMA1
GUN4

PIF1
PIF3

Clock

temperature

imbibition

light

Chloroplast
development

Figure 5


	Serveur Académique Lausannois SERVAL serval.unil.ch
	Author Manuscript
	Faculty of Biology and Medicine Publication
	Published in final edited form as:
	Manuscript File #1
	Figure 1
	Figure 2
	Figure 3
	Figure  - 4
	Figure  5

