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Abstract

Cardiac output (CO) and stroke volume (SV) are parameters of key clinical interest. Many

techniques exist to measure CO and SV, but are either invasive or insufficiently accurate in

clinical settings. Electrical impedance tomography (EIT) has been suggested as a noninva-

sive measure of SV, but inconsistent results have been reported. Our goal is to determine

the accuracy and reliability of EIT-based SV measurements, and whether advanced image

reconstruction approaches can help to improve the estimates. Data were collected on ten

healthy volunteers undergoing postural changes and exercise. To overcome the sensitivity

to heart displacement and thorax morphology reported in previous work, we used a 3D EIT

configuration with 2 planes of 16 electrodes and subject-specific reconstruction models.

Various EIT-derived SV estimates were compared to reference measurements derived

from the oxygen uptake. Results revealed a dramatic impact of posture on the EIT images.

Therefore, the analysis was restricted to measurements in supine position under controlled

conditions (low noise and stable heart and lung regions). In these measurements, ampli-

tudes of impedance changes in the heart and lung regions could successfully be derived

from EIT using ECG gating. However, despite a subject-specific calibration the heart-related

estimates showed an error of 0.0 ± 15.2 mL for absolute SV estimation. For trending of rela-

tive SV changes, a concordance rate of 80.9% and an angular error of −1.0 ± 23.0˚ were

obtained. These performances are insufficient for most clinical uses. Similar conclusions

were derived from lung-related estimates. Our findings indicate that the key difficulty in EIT-

based SV monitoring is that purely amplitude-based features are strongly influenced by

other factors (such as posture, electrode contact impedance and lung or heart conductivity).

All the data of the present study are made publicly available for further investigations.
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Introduction

The measurement of central hemodynamic parameters is of importance to manage critically ill

patients. An example are patients who undergo high-risk surgical procedures. In this group of

patients, the continuous post-surgical monitoring and early hemodynamic optimization has

shown to be very important as it results in significantly reduced mortality [1, 2]. The goal of

hemodynamic optimization is to ensure an adequate tissue perfusion and organ function. This

is achieved by continuous monitoring and manipulation of hemodynamic parameters (e.g.

SV, CO and oxygen saturation) via therapeutic interventions (including fluid challenge or

drug administration). Two central hemodynamic parameters of importance are the cardiac

output (CO) and the related stroke volume (SV), since they are closely linked with oxygen

delivery and the health of the heart. However, right heart thermodilution, which is considered

as the clinical reference method for CO measurement, requires highly invasive catheterization

and is known to cause complications without decreasing mortality [3]. Even though less

invasive and noninvasive measurement techniques are available [4, 5, 6], they do not fulfill the

requirements of an “ideal” hemodynamic monitoring device as defined by Vincent et al. [7]. A

recent meta-analysis of noninvasive CO monitoring devices by Joosten et al. [8] has found that

none of these devices is able to provide accurate enough measurements in clinical settings.

Therefore, the quest for the “ideal” CO monitoring devices continues. A potential technology

is electrical impedance tomography (EIT), which has been investigated in previous studies as a

low-cost and radiation-free medical imaging modality for the noninvasive and continuous

monitoring of SV [9, 10, 11, 12].

In brief, EIT consists of a belt of electrodes applied around the thorax, which measures

electrical impedances by injecting weak alternating currents [13, 14, 15]. These measure-

ments are transformed into tomographic images which represent changes in intra-thoracic

impedance. EIT is commonly used to monitor lung function in order to optimize regional

ventilation or to diagnose lung diseases [13]. In contrast, the EIT-based assessment of car-

diovascular activity is at an earlier stage of research [16]. The few studies published, which

address the estimation of SV and CO via EIT [9, 10, 11, 12] are described hereafter and all

raise the need for further investigations.

The EIT-based SV measurement was first reported by Vonk Noordegraaf et al. [9] in 2000.

In 23 patients and 11 healthy volunteers, they derived absolute SV values from the amplitude

of the temporal signal in the heart region and the duration of a cardiac cycle. In 2014 Pikke-

maat et al. [10] investigated the feasibility of estimating SV in 14 pigs via the heart-related

impedance change by using a subject-specific one-point calibration. In certain animals their

measurement was impaired by an unknown scaling of the heart amplitude, which they related

to variations in lung volume and also to craniocaudal displacement of the heart with respect to

the EIT electrode plane. While not available in the corresponding publication [10], in his thesis

[11], Pikkemaat also reports on the analysis of the lung-related impedance change zSVp . In

experiments where SV was modulated by changing the ventilation settings (the positive end-

expiratory pressure—PEEP), zSVp showed a higher correlation with SV (r = 0.69) when com-

pared to the heart-related impedance change zSVc (r = 0.64). On the other hand, when SV was

modified using dobutamine (a positive inotropic agent leading to a SV increase) zSVp correlated

less with SV (r = 0.61) than zSVc (r = 0.64). In contrast, in the very recent study by da Silva

Ramos et al. [12] EIT-based SV was successfully estimated from the systolic amplitude in the

lung region. In this study, large variations in SV were induced via hemorrhagic shock and sub-

sequent fluid challenges in twelve pigs. While they could show an acceptable trending ability

with 91.2% concordance rate, their absolute SV measurements were only accurate when taking

into account body dimensions (i.e. a subject-specific calibration).
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The abovementioned studies show contradictory outcomes (for EIT-based SV estimation

via the impedance changes in both the heart and lung region) and require a detailed investiga-

tion of this approach in human subjects. To this end, we performed a study on ten healthy

volunteers undergoing an experimental protocol resulting in large variations of SV. These vari-

ations were estimated using EIT and compared to noninvasive SV reference measurements

derived from the oxygen uptake _V O2
. In addition, to reduce undesirable influences of the

abovementioned craniocaudal heart displacement and to assure accurate image reconstruction

[17, 18] an improved EIT measurement setup was used. This setup consists of ECG-gated 3D

EIT in combination with an individual—subject-specific—reconstruction model generated by

means of a commodity 3D camera.

Methods

Study protocol and study population

Ten healthy adult volunteers (9 male/1 female, weight: 68.9 ± 10.8 kg, height: 179.3 ± 8.2 cm,

BMI: 21.3 ± 2.0 kg/m2, age: 35.4 ± 4.1 years) were enrolled in the study, of which all provided

written informed consent. The study was approved by the local ethics committee of the canton

of Vaud, Switzerland (CER-VD, 2017-00709).

This study was performed in the physiology laboratory facilities at the Swiss Center of Elec-

tronics and Microtechnique (CSEM, Neuchâtel, Switzerland). There, the subjects underwent

an experimental protocol during approximately one hour including postural changes (lying

flat, lying with legs up, and sitting) and bicycle exercises (cycling in supine position). The thir-

teen tasks (T1 to T13) performed were expected to lead to SV variations as illustrated in Fig 1

and described hereafter. These SV variations are considered with respect to the baseline SV

level at the end of the three lying positions (T2, T6 and T13). While sitting (T1 and T12) a

lower SV is expected due to a decrease in cardiac preload. Similarly, while lying with legs up

(T3 and T7), a higher SV is expected. Moreover, after the transition from sitting to lying (T1 to

T2 and T12 to T13) a sharp increase of SV and subsequent decay to baseline is expected due to

the augmentation in cardiac preload caused by the sudden increase in central venous return

[19]. Finally, the cycling exercises in supine position (T4, T8 and T10) are expected to increase

the SV, with a further—but temporary—augmentation during recovery (T5, T9 and T11) fol-

lowed by a steady decrease (as reported by Cumming [20] and also known for upright exercise

[21]).

Data acquisition

First, the volunteers were equipped with 32 self-adhesive gel electrodes (BlueSensor T-00-S,

AMBU, Ballerup, Denmark), placed on two planes with 16 electrodes each: one above and

one below the nipple line, as shown in Fig 2a. Second, to obtain a subject-specific anatomical

model and the correct electrode positions, the 3D surface of the subject’s thorax was acquired

using a dedicated software (ReconstructMe, version 2.5.1034, PROFACTOR GmbH, Steyr-

Gleink, Austria) in combination with a 3D camera (Kinect XBOX 360, Microsoft, Redmond,

USA). An example of such a 3D image is shown in Fig 2b. Then, the 32 electrodes were con-

nected to a slightly modified version of the EIT SensorBelt (Swisstom AG, Landquart, Switzer-

land) [22] in combination with the BB2 EIT device (Swisstom AG, Landquart, Switzerland).

To achieve this connection, the conductive textile was disconnected from the active electrodes

and instead, commercially available ECG cables were attached and connected to the self-adhe-

sive gel electrodes. The electrodes were arranged as shown in Fig 2a, which results in the use of

the “square pattern with skip 4” as suggested by Grychtol et al. [23] for 3D EIT.
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An ECG was recorded using the ECG100C module (Biopac Systems, Inc., Goleta, USA).

Furthermore, CO reference measurements were performed via the oxygen uptake _V O2
and the

method described by Stringer et al. [24] using MetaMax 3B (CORTEX Biophysik GmbH, Leip-

zig, Germany). To this end, a mask was placed on the subject’s face to measure air flow and gas

exchange. This measurement setup is also illustrated in Fig 3.

Data preprocessing

First, EIT and hemodynamic data were manually aligned in the time domain with the help of

deliberate spikes induced via synchronous tapping on EIT and ECG electrodes at the begin-

ning and at the end of each recording. Then EIT samples were interpolated in the time domain

to correct for the sporadic loss of certain EIT frames. Furthermore, a clock drift between EIT

and ECG signals of around 0.1 s/h was observed and corrected for.

As also illustrated in Fig 3, EIT data was averaged via ECG-gated ensemble averaging [25,

chap. 3.5.1] to one representative cardiac cycle per measurement. To do so, all data were first

low-pass filtered (4th-order Butterworth with fc = 6.5 Hz), then high-pass filtered (4th-order

Butterworth with fc = 0.75 �HR/60, with HR as the current heart rate), and finally aligned to

the ECG’s R-peaks. To this end, the measurements of each of the thirteen tasks (T1 to T13 in

Fig 1) were split into one-minute sequences and each sequence was averaged to one cardiac

Fig 1. Temporal evolution of the experimental protocol consisting of the thirteen tasks (T1 to T13) illustrated on top and the expected changes in

SV shown below. The protocol comprises different postures such as sitting (T1 and T12), lying in supine position (T2, T6 and T13), lying with legs up

(T3 and T7), cycling in supine position (T4, T8 and T10) and the subsequent recovery periods (T5, T9 and T11).

https://doi.org/10.1371/journal.pone.0191870.g001

Fig 2. (a) Placement of the 32 gel electrodes used for EIT: two planes of 16 electrodes each are placed above and below the nipple line. (b) Example

image of the 3D camera and (c) the resulting 3D subject-specific model of the thorax including the electrodes (green circles). L1 to L5 illustrate the five

planes on which EIT data was reconstructed.

https://doi.org/10.1371/journal.pone.0191870.g002
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cycle as mentioned above. Due to strong movement artefacts, data from the cycling exercises

(T4, T8 and T10) were excluded from analysis.

Besides, the continuous CO measurements were divided by the instantaneous HR and

averaged in the same one-minute intervals to obtain SV reference values SVRef. It has to

be noted that the CO reference device (MetaMax 3B) does only provide absolute CO

values (in L/min) if the maximal oxygen uptake ( _V O2 � max) is known for each subject, i.e.

CO ¼ _V O2
= 57:21þ 104:7

_V O2
_V O2 � max

� �
[24]. Since _V O2 � max was not evaluated in the present

experimental protocol, it was estimated using the model suggested by Jackson et al. [26]:

_V O2 � max ¼ 56:363 þ 1:921 � PAS � 0:381 � A � 0:754 � BMIþ 10:987 � Sð Þ
W

1000
½L=min� ð1Þ

Where PAS denotes the physical activity on the NASA/JSC scale [26], A the age in years,

BMI the body mass index in kg/m2, S the sex (0 female, 1 male), and W the weight in kg.

Subject-specific EIT image reconstruction

For each volunteer, a subject-specific model for EIT image reconstruction was created. To do

so, the 3D surface of the thorax scan (acquired as described before and shown in Fig 2b) was

processed in Blender (version 2.78c, Blender Foundation, Amsterdam, the Netherlands) by

cropping parts not located in the EIT planes of interest (e.g. arms and neck) and transformed

to a triangulated mesh. The electrode positions were then manually located in the 3D scan.

The thorax mesh was further resampled and smoothed using OpenFlipper (version 3.1, Com-

puter Graphics Group, RWTH Aachen, Germany) [27]. Finally, the electrodes were placed

on the mesh using the approach proposed by Grychtol and Adler [28] and implemented in

EIDORS [29]. An example of such a subject-specific thorax model is shown in Fig 2c.

EIT data were reconstructed using the 3D GREIT algorithm [23] onto images with 32 × 32

× 5 voxels. The five image planes L1 to L5 used for reconstruction (see Fig 2c) are equally

spaced at a distance of half the spacing between the two electrode planes. L2 is placed at the

height of the upper, L4 at the height of the lower, and L3 in between the two electrode planes.

The algorithm was trained using roughly 10,000 targets located on eleven equidistantly spaced

levels: at each voxel location (on the five image planes L1 to L5) plus six more planes (one

located above L1, four in between L1 and L5, and one below L5). To focus image reconstruc-

tion on the three central image planes (L2 to L4) the seven target planes located in the middle

contain twice as much targets than the two uppermost and lowermost target planes. To achieve

a comparable noise performance (independent of the geometry of the subject’s thorax) each

Fig 3. Block diagram of the measurement setup and the first processing steps resulting in ECG-gated EIT images (Imgs) and the regions of heart

(ROIH) and lung (ROIL).

https://doi.org/10.1371/journal.pone.0191870.g003
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algorithm was set to have a fixed image SNR (SNR¼ 6:5� 10� 3) [30], which compares to an

average noise figure of 0.53 [31, 32].

For each subject an individual background conductivity σBG was used for the reconstruc-

tion model. σBG was obtained by finding the closest fit (in terms of absolute error) between

simulated voltages on the thorax model with homogeneous σBG and the temporal average of

measured raw EIT voltages during baseline (defined as the last minute of task T2). The differ-

ence EIT images were then reconstructed with respect to the baseline and σBG was added

to each voxel. In this way, an approximative but simple absolute EIT reconstruction was

performed.

Data analysis

In the present study we tested four hypotheses (H1 to H4), namely whether EIT can be used to

either estimate absolute SV (H1 and H2) or to trend relative changes of SV (H3 and H4). For

H1 and H3 we used a subject-independent and for H2 and H4 a subject-specific calibration.

This analysis is detailed in the current section and illustrated and briefly described in Fig 4.

First, from each EIT image sequence of the one-minute averages, the heart and lung regions

were determined using the following algorithms: the heart was detected as described in [33,

34] and the lungs via the algorithm proposed by Proença et al. [35, 36]. For each subject an

average heart and lung region was calculated and used for the subsequent calculations. To this

end, the current ROI (ROIi
H or ROIi

L) of the measurement i was averaged to the per-subject

average (ROIH or ROIL), i.e. ROIH or ROIL contain the biggest connected regions of heart or

lung voxels which are present in at least 50% (determined heuristically) of the individual ROIs.

Second, a variety of features were extracted from the EIT images: 1. ΔσH, the systolic heart

amplitude as the difference of maximum vs minimum in the temporal signal of the heart

region; 2. ΔσL, the systolic lung amplitude, same as ΔσH but for the lung region; 3. tStdH, the

heart amplitude as the standard deviation (STD) of the temporal signal in the heart region; 4.

tStdL, the lung amplitude, same as tStdH but for the lung region; 5. tStdG, the global amplitude

as the STD of the temporal signal of the sum over all voxels; 6. σG, the global conductivity as

the mean absolute value of all voxels; 7. VT, the average tidal volume as the peak-to-peak respi-

ratory amplitude from the sum signal over all voxels. The latter two were calculated prior to

ensemble averaging and high-pass filtering.

Then, assuming a linear relationship between changes in SV and these features, various lin-

ear models were trained and evaluated to test the following four hypotheses:

Fig 4. Block diagram of the data analysis. To test the four hypotheses (H1 to H4), different features were extracted from the EIT images and potential

outliers with high noise or unstable heart and lung ROIs were removed. Then, the ability to estimate SV with these features via a linear model was

evaluated by means of Bland-Altman analysis (absolute SVEIT in H1 and H2) or four-quadrant plot analysis (relative ΔSVEIT in H3 and H4).

https://doi.org/10.1371/journal.pone.0191870.g004
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(H1) Absolute SV with subject-independent calibration: For each subject a linear model

was trained using all other subjects via leave-one-out cross-validation. The resulting

performance was evaluated by means of absolute error �Abs (in mL) between SVEIT and

SVRef resulting from Bland-Altman analysis [37] and correlation coefficient r between

SVEIT and SVRef. Measurements were considered as acceptable if r� 0.7 (educated

guess) and the 95% limits of agreement of �Abs did not exceed ±24 mL (= ±30%—the

error reported for thermodilution measurements [38]—of the average SVRef).

(H2) Absolute SV with subject-specific calibration: This is identical to the first hypothesis

(H1), except that a linear model was trained for each subject individually.

(H3) Trending of relative SV with subject-independent calibration: For this and the next

hypothesis, the features as well as the reference SV were set relative to an initial baseline

(The baseline state was defined as the average of the measurements having the three—

educated guess—lowest values of SVRef). This leads to the measurement of changes

ΔSVEIT which are compared to changes in the reference ΔSVRef by means of four-quad-

rant plot analysis [38, 39]. To this end, we quantify the trending ability by means of (1)

the angular error �α and (2) the angular concordance rate CR. (1) �α is defined as the

angle between the identity line (ΔSVEIT = ΔSVRef) and the line from the origin to the

point (ΔSVRef, ΔSVEIT); (2) CR represents the percentage of measurements with an

angular error within a given threshold of �α� ±30%, which is more restrictive than the

traditional concordance rate (including all measurements lying in the 1st and 3rd quad-

rant). For each subject a linear model was trained using all other subjects via leave-one-

out cross-validation. Measurements with CR� 92%, a bias of �α� ± 5˚ and its 95% lim-

its of agreement� ± 30˚, were considered as acceptable, according to the thresholds

suggested by Critchley et al. [40]. The exclusion zone of the four-quadrant plot was set

to ±30˚—the error for thermodilution measurements [38].

(H4) Trending of relative SV with subject-specific calibration: This is identical to the third

hypothesis (H3), except that a linear model was trained for each subject individually.

Finally, to limit the analysis to reliable data, four data quality measures were introduced:

(1) a similarity measure JH for the heart region of interest (ROI) comparing the current

ROIi
H of the measurement i to the per-subject average ROIH via the so-called Jaccard index

(JH ¼ jROIi
H \ ROIHj=jROIi

H [ ROIHj) [41]; (2) the same similarity measure as JH but for the

lung ROI denoted as JL; (3) NH and (4) NL as signal quality indicators estimating the average

noise level in the heart and lung region from the relative deviation of each pulse used for

ensemble averaging. More details concerning these quality measures can be found in [34].

Only measurements with JH� 75%, JL� 75%, NH > 2.0 and NL > 2.0 were considered for

analysis. The threshold of NL and NH were determined based on visual analysis of ensemble

averaged signals.

Moreover, the raw EIT data of subject S07 showed severe issues with electrode contact

impedance leading to corrupted EIT images. It was therefore completely removed from

analysis.

Results and discussion

General overview of EIT data

Fig 5 exemplifies respiratory activity of each volunteer by means of standard deviation (SD)

images. The strongest respiratory activity can be observed at the lower electrode plane (L4) or

in between the two planes (L3). Moreover, the two lung lobes appear separated in the lower
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image planes (L3 to L5) and more unified in the upper planes (L1 to L2), which is comparable

to the observations by Karsten et al. [42].

Fig 6 shows ECG-gated EIT images by the example of one measurement (last minute of the

first recovery sequence—task T5) for the nine subjects analyzed. One can observe that the

potential heart regions (blue-white with Δσ< 0) are located in the middle (L3) or lower image

plane (L4). On the contrary, the potential lung regions (red-yellow with Δσ> 0) are more pres-

ent in the upper (L2) or middle image plane (L3). This is in line with the anatomy (i.e. the

large pulmonary arteries are located more cranial when compared to the heart, which itself is

lower, sitting right on the diaphragm) and observations by Smit et al. [43] who use a high belt

placement for cardiovascular EIT of the lungs. Besides, when compared to the other subjects,

S08 and S09 show only little activity in the heart with respect to the lung region. It is assumed

Fig 5. 3D EIT images showing the respiration by means of standard deviation (SD) images on the five planes L1 (highest) to L5 (lowest) for the

nine volunteers (a) to (i), in supine position. The images of each subject (each column) were scaled to an individual color scale and show the last

minute in the first recovery sequence (task T5). Prior to SD calculation the images were filtered using a 2nd-order Butterworth bandpass with fc = {0.04,

0.5} Hz.

https://doi.org/10.1371/journal.pone.0191870.g005

Fig 6. ECG-gated 3D EIT images showing the conductivity difference (end systole vs end diastole) on the five planes L1 (highest) to L5 (lowest)

for the nine volunteers (a) to (i), in supine position. The images of each subject (each column) were scaled to an individual color scale and show the

average of the last minute in the first recovery sequence (task T5).

https://doi.org/10.1371/journal.pone.0191870.g006
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that for these subjects the lower electrodes were placed too high which decreases the sensitivity

in the heart region. A video of the same data is available in S1 Video.

The ECG-gated EIT images shown in Fig 7 represent different tasks of the same subject.

One can observe a significant difference in spatial conductivity distribution between the fol-

lowing three groups of recordings: (1) sitting in (a) and (j), (2) lying with legs up in (c), and (3)

the remaining recordings in supine position. These differences were observed for all subjects

and are hypothesized to stem from posture-induced heart and lung displacement as well as

gravity-induced liquid redistribution in the lungs. On the other hand, when limiting the analy-

sis to the third group of recordings (i.e. all tasks in supine position, except for lying with legs

up), the spatial conductivity distribution remains comparable while mainly the amplitude

changes.

The high variability observed between these three groups could lead to changes in the ROIs

and also their amplitudes which are not necessarily related to changes in SV. Therefore, to

limit our analysis to more controlled scenarios and to make it comparable with previous stud-

ies [9, 10, 12] (all measured in supine position), only measurements of the last group were con-

sidered, i.e. those recorded in supine position (T2, T5, T6, T9, T11 and T13). From the nine

subjects remaining for analysis (S07 was excluded as mentioned before), a total of 242 one-

minute sequences were available. From these, 11 (4.5%) and 4 (1.7%) were excluded because

of a too high noise level in the heart (NH > 2.0) and lungs (NL > 2.0), respectively. Then, 76

(31.4%) and 0 were excluded due to too high variability of the heart (JH < 75%) and lung

region (JL < 75%), as specified in the methods section. The remaining 151 (62.4%) one-minute

sequences represent controlled measurements (low noise, stable heart and lung regions, all

acquired in supine position), which were further used to investigate the feasibility of EIT-

based SV monitoring as presented in the next four sections.

Hypothesis 1: Absolute SV with subject-independent calibration

In the current and the following section we report on the feasibility of EIT to determine abso-

lute values of SV (in mL).

Fig 7. ECG-gated 3D EIT images showing the conductivity difference (end systole vs end diastole) on the five planes L1 (highest) to L5 (lowest)

for a selection of ten measurements (a) to (j) of volunteer S05. All images are shown in a common color scale. Note that the last line in the title below

each task name indicates the time range (relative to the start of the corresponding task) over which the one-minute average was performed to obtain

one representative cardiac cycle.

https://doi.org/10.1371/journal.pone.0191870.g007
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Row (H1) in Table 1 shows the overall performance (in terms of absolute error �Abs and

correlation coefficient r) for a selection of features tested when using a subject-independent

(leave-one-out) calibration. One can observe that for none of the eight features an acceptable

performance can be achieved. This confirms our previous observations and the findings by

other researchers [10, 12] that a subject-specific calibration is required for absolute SV

estimation.

Subject-specific performances for hypothesis (H1) are given in the appendix in S1 Table.

Hypothesis 2: Absolute SV with subject-specific calibration

Row (H2) in Table 1 shows the overall performance when using a subject-specific calibration.

When concentrating the analysis on the five amplitude features (ΔσH, tStdH, ΔσL, tStdL, tStdG),

one can observe that all of the overall errors have limits of agreement exceeding the ±24 mL

threshold (= ±30% of the average SVRef as specified in the methods section). Moreover, except

for ΔσH, no uniform calibration could be found with either all positive or negative calibration

coefficients (marked with a (†)). The relationship between SVEIT and SVRef of the feature ΔσH

is shown in Fig 8a. One can observe that at least for subject S03, SVEIT does not at all follow the

changes in SVRef. This particular case of S03 is illustrated in more detail in Fig 9 (Middle) by

means of the temporal evolution of SVRef in comparison to the two features related to the heart

amplitude (tStdH and ΔσH). The same figures for the remaining subjects are available as sup-

porting information in S1 to S8 Figs. It is obvious from these findings that—for the present

data—changes in the heart-related amplitude (tStdH or ΔσH) are not solely related to changes

in SV. This is in line with the findings from simulations [33], that the EIT heart signal is influ-

enced by other factors and—among others—scaled with the heart-lung-conductivity contrast

(difference of heart vs lung conductivity).

When taking into account the global conductivity σG to normalize the systolic heart ampli-

tude ΔσH (i.e. SVEIT = κ0 + κ1 � ΔσH + κ2 � ΔσH/σG) the absolute error can be reduced to ±10.45

mL as shown in Fig 8b and listed in Table 1(H2). It is known from simulations [33] that the

EIT heart amplitude is scaled by the aforementioned heart-lung-conductivity contrast (HLC).

As σG contains information about the lung conductivity, it is hypothesized that it serves as a

rough estimate of the HLC and thus allows for correction of this scaling. While the exact

Table 1. Overall performance for a selection of features and the four hypotheses. (H1) absolute SV via subject-independent calibration, (H2) absolute SV via subject-

specific calibration, (H3) relative SV via subject-independent calibration, and (H4) relative SV via subject-specific calibration. (H1) and (H2) are evaluated in terms of

absolute error �Abs and correlation coefficient r between SVEIT and SVRef. (H3) and (H4) are evaluated in terms of angular error �α and angular concordance rate CR

between ΔSVEIT and ΔSVRef. The (†) indicates unrealistic solutions with calibrations coefficients not having identical sign for all subjects. Cell shadings indicate whether

the acceptance criteria (see methods section) are met (green), not met (red), or met but with unrealistic calibration coefficients (yellow). The errors �Abs and �α are given as

Mean ± Std and the 95% limits of agreement correspond to [Mean − 1.96 � Std, Mean + 1.96 � Std].

Absolute SV Trending of Relative SV

(H1) Hypothesis 1 (H2) Hypothesis 2 (H3) Hypothesis 3 (H4) Hypothesis 4

�Abs (mL) r (1) �Abs (mL) r (1) �α (˚) CR (%) �α (˚) CR (%)

ΔσH −0.5 ± 28.2 −0.424 0.0 ± 15.2 0.813 −5.3 ± 25.2 76.9 −1.0 ± 23.0 80.9

tStdH −1.0 ± 27.3 0.023 (†) 0.0 ± 14.3 0.836 −4.9 ± 26.5 73.8 (†) −3.9 ± 21.5 83.3

ΔσL −0.4 ± 27.3 −0.023 (†) 0.0 ± 15.8 0.796 −12.1 ± 20.3 70.4 (†) −0.2 ± 22.5 84.6

tStdL −0.5 ± 28.1 −0.341 (†) 0.0 ± 17.1 0.755 −17.4 ± 16.7 70.2 (†) −5.8 ± 20.4 91.5

tStdG (†) −0.5 ± 28.2 −0.710 (†) 0.0 ± 16.8 0.766 (†) −15.6 ± 25.7 73.3 (†) 2.0 ± 24.2 74.4

ΔσH, ΔσH/σG −1.7 ± 30.4 −0.365 0.0 ± 10.4 0.917 −1.9 ± 20.4 83.9 1.0 ± 17.5 87.7

ΔσL, ΔσL/σG (†) −0.4 ± 28.4 −0.050 0.0 ± 10.3 0.920 −1.7 ± 21.7 84.2 1.3 ± 16.7 93.0

VT −0.4 ± 24.7 0.371 0.0 ± 9.7 0.929 −1.5 ± 18.5 89.8 −0.4 ± 15.3 94.7

https://doi.org/10.1371/journal.pone.0191870.t001
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physiological background is not fully understood, it still shows that normalizing ΔσH by σG can

lead to improved results. A similar reduction in error can be achieved when normalizing the

lung amplitude by σG. A possible reason might be that the lung amplitude estimates are simi-

larly affected by changes in global conductivity and thus require normalization.

Fig 8. SVEIT vs SVRef for a subject-specific calibration in hypothesis (H2) with the features (a) ΔσH or (b) ΔσH and
DsH
sG

.

https://doi.org/10.1371/journal.pone.0191870.g008

Fig 9. (Top) Example of temporal evolution of reference stroke volume (black) and heart rate (red) for the entire protocol comprised of tasks T1 to T13

(see Fig 1) for subject S03. The beginning of each task is marked with a dashed vertical line and the particular tasks considered for analysis are shaded in

light (lying) or dark gray (recovery). (Middle) One-minute averages used for analysis showing SVRef and two EIT features: the systolic heart amplitude

(ΔσH) and the temporal standard-deviation of the heart signal during one full cardiac cycle (tStdH). (Bottom) Tidal volume VR (blue) measured by the

reference device (MetaMax 3B) and the one-minute averages of the global conductivity feature σG (green).

https://doi.org/10.1371/journal.pone.0191870.g009
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However, it needs to be mentioned that in the current protocol the EIT-derived tidal vol-

ume VT is highly correlated with changes in SV (average corr. coefficient �r ¼ 0:85, range

r 2 [0.59, 0.96]) as also shown by the low absolute error for VT in Table 1(H2). At the same

time the global conductivity σG is influenced by the tidal volume VT (VT ") σG #). Nonethe-

less, σG has other influencing factors such as the content of liquid in the lungs (e.g. blood or

water), the posture (including the position of the torso and the arms [44]) and the contact

impedance of EIT electrodes (i.e. varying external pressure on electrodes can lead to changes

in global conductivity [45]). Based on the current protocol, it can neither be excluded nor fully

confirmed that using the normalized heart (ΔσH/σG) or lung amplitudes (ΔσL/σG) leads to an

improved estimation of SV (as in this protocol the latter is highly correlated to VT which in

turn is related to 1/σG).

Subject-specific performances for hypothesis (H2) are given in the appendix in S2 Table.

Hypothesis 3: Relative SV with subject-independent calibration

In the current and the following section we report on the feasibility of EIT to perform trending

of SV, that is following the relative change ΔSVEIT (in %) with respect to an initial baseline

value.

The performances obtained for a subject-independent (leave-one-out) calibration are listed

in Table 1(H3). For none of the features tested, an acceptable trending performance can be

obtained. An example is given in Fig 10a for the normalized lung amplitude (ΔσL, ΔσL/σG)

which leads to the best performance in terms of CR (when not considering VT).

Subject-specific performances for hypothesis (H3) are given in the appendix in S3 Table.

Hypothesis 4: Relative SV with subject-specific calibration

The performances obtained when using a subject-specific calibration are listed in Table 1(H4).

While the four simple features (tStdH, ΔσL, tStdL and tStdG) do not lead to realistic calibration

factors with a same sign, ΔσH does. However, none of these features fulfill the trending require-

ments in terms of �α and CR. This also applies to the normalized versions of (ΔσH, ΔσH/σG)

and (ΔσL, ΔσL/σG). Even though they have a CR very close to or above the acceptable 92%, they

both exceed the acceptance threshold in terms of 95% limits of agreement with [-33.3, 35.3]˚

and [-31.4, 34.0]˚, respectively. The latter is also shown in Fig 10b.

Subject-specific performances for hypothesis (H4) are given in the appendix in S4 Table.

Limitations and future work

The present study is limited in that it was performed on healthy volunteers which restricts the

reference SV to be measured with noninvasive devices. The SV reference measurement device

used is not considered as gold standard [38], as simply no noninvasive gold standard exists.

Nonetheless, it is possibly among the most accurate when requiring continuous and noninva-

sive measurements on healthy subjects performing physical exercise. Besides, in the current

experimental protocol, the tidal volume VT is highly correlated to SV (mainly during post-

exercise recovery). In addition, the reference method used to estimate SV relies on the mea-

surement of the oxygen uptake _V O2
which in turn is related to VT. Therefore it is unclear

whether this does not even exacerbate the high correlation between VT and SV. To either con-

firm or reject our hypothesis that σG is useful for normalizing ΔσH and ΔσL —and not simply

because it is related to VT —a different experiment protocol should be designed, where SV is

less correlated to VT.
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The subject-specific EIT reconstruction model used was acquired in sitting position while

EIT images were mainly analyzed in supine position. In addition, big differences in the spatial

conductivity distribution were observed in EIT images between sitting and supine. To exclude

the potential influence of the reconstruction model on these differences, an additional model

in supine position (e.g. via MRI scans) should be created. Besides, when aiming for EIT-based

SV in different body positions, a deeper understanding of the observed differences is crucial.

One could further criticize the manual synchronization performed between EIT and ECG.

However, its accuracy was first tested in the laboratory and the error has shown to be below

two EIT frames (< ± 40 ms). Moreover, all ensemble averaged sequences were visually verified

for physiological meaningful time delays. Even though this approach is sufficient for ampli-

tude-based measures used in the present study, it is not accurate enough for EIT-based timing

measures [35, 46] which necessitates an EIT system synchronously measuring ECG [47].

Another limitation of the present study is that it is heavily biased in gender (9 males vs 1

female). Even though no substantial difference in accuracy could be observed for the one

female volunteer (S02) when compared to the male volunteers (see S1 to S4 Tables), this needs

to be investigated in a larger and more heterogeneous (in terms of gender) population. Future

studies should analyze potential differences in performance of EIT-derived SV related to gen-

der as it was observed in previous studies for tidal ventilation [48].

Conclusion

In this work, we investigated the EIT-based estimation of SV in healthy subjects and compared

it to reference measurements derived from the oxygen uptake _V O2
. Large variations in SV

were induced via postural changes and recovery after supine cycling exercise. To minimize

known influences of heart and belt displacement on EIT-based SV, 3D EIT with self-adhesive

gel electrodes in combination with a subject-specific reconstruction model was applied.

The ECG-gated 3D EIT images show large differences in spatial conductivity distribution

between sitting, lying with legs up and supine position. To limit the analysis to very isolated

Fig 10. Trending ability of ΔSVEIT vs ΔSVRef shown by means of four-quadrant plots for the combination of the two features ΔσL and
DsL
sG

and (a) a

subject-independent calibration for hypothesis (H3) or (b) a subject-specific calibration for hypothesis (H4). The exclusion zone was set to ±30%.

https://doi.org/10.1371/journal.pone.0191870.g010

Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D EIT in healthy volunteers

PLOS ONE | https://doi.org/10.1371/journal.pone.0191870 January 26, 2018 13 / 19

https://doi.org/10.1371/journal.pone.0191870.g010
https://doi.org/10.1371/journal.pone.0191870


and constant settings, only measurements in supine position were considered and 38.4% of the

remaining measurements were excluded due to high noise or unstable heart or lung regions.

The temporal amplitudes in the heart (ΔσH and tStdH) [9, 10], the lungs (ΔσL and tStdL) [11,

12], or in the entire image (tStdG) were calculated but none of them showed an accurate rela-

tion to the reference SVRef. Therefore, we cannot confirm the recent observations made in pig

experiments [10, 11, 12], despite having used a subject-specific 3D EIT measurement setup to

minimize effects of electrode displacement or out-of-EIT-plane movement of the heart.

Based on findings from simulations [33], the heart amplitude ΔσH normalized by the

global conductivity σG was included as a feature. The resulting linear combination

(SVEIT ¼ k0 þ k1 � DsH þ k2 �
DsH
sG

) leads to more promising results. That is an overall error

of 0.0 ± 10.4 mL for absolute SV with a subject-specific calibration. When aiming for the

trending of relative changes in SV with the same type of calibration, we achieve a performance

of �α = 1.0 ± 17.5˚ and CR = 87.7%. Similar results were obtained when using the lung ampli-

tude normalized by σG, i.e. SVEIT ¼ k0 þ k1 � DsL þ k2 �
DsL
sG

. In contrast, both absolute and rel-

ative SV do not seem to be feasible when using a subject-independent calibration.

However, in the current protocol, SV is highly correlated to the tidal volume VT, which in

turn is related to σG. The current findings should therefore be considered with caution since

the normalization attempts suggested might primarily lead to a satisfactory outcome because

of the relation between VT and σG. To either confirm or reject our hypothesis that ΔσH or ΔσL

normalized by σG lead to reliable SV estimates, a different experiment protocol is required,

where SV is less correlated to VT.

In conclusion, we could show that even with a subject-specific 3D EIT setup on healthy vol-

unteers, purely amplitude-based features are very unlikely to provide feasible SV estimates in

experimental conditions as they are influenced by other factors (such as lung and heart con-

ductivity, posture and electrode contact impedance). While the normalization of the heart or

lung amplitudes via the global conductivity shows promise on the current data, this approach

requires confirmation in different experimental protocols.

All the data of the present study are made publicly available (see S1 File) for further

investigations.
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S1 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S01. See

caption of Fig 9 for details.

(PDF)

S2 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S02. See

caption of Fig 9 for details.
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S3 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S04. See

caption of Fig 9 for details.

(PDF)

S4 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S05. See

caption of Fig 9 for details.
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S5 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S06. See

caption of Fig 9 for details.

(PDF)
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S6 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S08. See

caption of Fig 9 for details.

(PDF)

S7 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S09. See

caption of Fig 9 for details.
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S8 Fig. Temporal evolution of SVRef, heart rate and EIT-based features for subject S10. See

caption of Fig 9 for details.

(PDF)

S1 Table. Absolute SV via subject-independent calibration on healthy volunteers. Subject-

specific and overall performance for a selection of eight features (a) to (h) and hypothesis (H1)

absolute SV via subject-independent calibration. The performance between SVEIT and SVRef is

evaluated in terms of absolute error �Abs and correlation coefficient r. The (†) indicates unreal-

istic solutions with calibrations coefficients not having identical sign for all subjects. Cell shad-

ings indicate whether the acceptance criteria (see methods section) are met (green), not met

(red), or met but with unrealistic calibration coefficients (yellow).

(PDF)

S2 Table. Absolute SV via subject-specific calibration on healthy volunteers. Subject-spe-

cific and overall performance for a selection of eight features (a) to (h) and hypothesis (H2)

absolute SV via subject-specific calibration. The performance between SVEIT and SVRef is eval-

uated in terms of absolute error �Abs and correlation coefficient r. The (†) indicates unrealistic

solutions with calibrations coefficients not having identical sign for all subjects. Cell shadings

indicate whether the acceptance criteria (see methods section) are met (green), not met (red),

or met but with unrealistic calibration coefficients (yellow).

(PDF)

S3 Table. Relative SV via subject-independent calibration on healthy volunteers. Subject-

specific and overall performance for a selection of eight features (a) to (h) and hypothesis (H3)

relative SV via subject-independent calibration. The performance between ΔSVEIT and ΔSVRef

is evaluated in terms of angular error �α and angular concordance rate CR. The (†) indicates

unrealistic solutions with calibrations coefficients not having identical sign for all subjects. Cell

shadings indicate whether the acceptance criteria (see methods section) are met (green), not

met (red), or met but with unrealistic calibration coefficients (yellow).

(PDF)

S4 Table. Relative SV via subject-specific calibration on healthy volunteers. Subject-specific

and overall performance for a selection of eight features (a) to (h) and hypothesis (H4) relative

SV via subject-specific calibration. The performance between ΔSVEIT and ΔSVRef is evaluated

in terms of angular error �α and angular concordance rate CR. The (†) indicates unrealistic

solutions with calibrations coefficients not having identical sign for all subjects. Cell shadings

indicate whether the acceptance criteria (see methods section) are met (green), not met (red),

or met but with unrealistic calibration coefficients (yellow).

(PDF)

S1 Video. Video of ECG-gated 3D EIT for each subject. Sequence of images showing the car-

diosynchronous conductivity change on the five image planes L1 (highest) to L5 (lowest) for

the nine volunteers (a) to (i), in supine position. For each subject (i.e. each column) the images

were scaled to an individual color scale and show the average of the last minute in the first
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recovery sequence (task T5). The cardiac cycle of each subject was normalized to 60 bpm. The

video speed is half the real speed. The difference images shown are relative to the minimum of

each voxel.

(AVI)

S1 File. Data and scripts.

(TXT)
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