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Gene set enrichment analysis of pathophysiological pathways
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Polygenic risk prediction remains an important aim of genetic association studies. Currently, the predictive power of schizophrenia
polygenic risk scores (PRSs) is not large enough to allow highly accurate discrimination between cases and controls and thus is not
adequate for clinical integration. Since PRSs are rarely used to reveal biological functions or to validate candidate pathways, to fill
this gap, we investigated whether their predictive ability could be improved by building genome-wide (GW-PRSs) and pathway-
specific PRSs, using distance- or expression quantitative trait loci (eQTLs)- based mapping between genetic variants and genes. We
focused on five pathways (glutamate, oxidative stress, GABA/interneurons, neuroimmune/neuroinflammation and myelin) which
belong to a critical hub of schizophrenia pathophysiology, centred on redox dysregulation/oxidative stress. Analyses were first
performed in the Lausanne Treatment and Early Intervention in Psychosis Program (TIPP) study (n= 340, cases/controls: 208/132), a
sample of first-episode of psychosis patients and matched controls, and then validated in an independent study, the
epidemiological and longitudinal intervention program of First-Episode Psychosis in Cantabria (PAFIP) (n= 352, 224/128). Our
results highlighted two main findings. First, GW-PRSs for schizophrenia were significantly associated with early psychosis status.
Second, oxidative stress was the only significantly associated pathway that showed an enrichment in both the TIPP (p= 0.03) and
PAFIP samples (p= 0.002), and exclusively when gene-variant linking was done using eQTLs. The results suggest that the predictive
accuracy of polygenic risk scores could be improved with the inclusion of information from functional annotations, and through a
focus on specific pathways, emphasizing the need to build and study functionally informed risk scores.
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INTRODUCTION
Schizophrenia is a chronic and, in some cases, disabling mental
disorder characterized by disturbances in thought, perception,
emotion and behavior [1]. Schizophrenia affects around 0.7% of
the population [2] and genetic studies have provided evidence of
its high heritability (41–87%) [3] and polygenicity [4]. In recent
years, the emergence of well-powered genome-wide association
studies (GWASs) has provided novel insights into the etiology of
schizophrenia and shown that many common genetic variants
contribute to the risk of developing schizophrenia [4–7]. Based on
these GWAS results, a growing literature has examined polygenic
risk scores (PRSs) as indices of genetic risk for schizophrenia and
found that PRSs were able to differentiate individuals diagnosed
with schizophrenia from unaffected individuals at a group-level

but only explain 5.7% of variance in case-control status (on the
liability scale) [4]. Recently, PRS have been used to predict the risk
of being diagnosed with schizophrenia after having a first-episode
of psychosis, demonstrating one use, theoretically, for PRSs in
clinical health care settings [8, 9]. Despite these consistent and
statistically robust findings, the effects of the PRSs were not large
enough to allow high-accuracy discrimination of cases and
controls and consequently, not yet adequate to assist with clinical
decision making on a case-by-case basis [10]. Nevertheless, risk
prediction remains one of the primary aims of genetic studies [11]
and the question remains whether PRSs could be used, in the
future, for early intervention and targeted preventions. The
improvement of the predictive accuracy, and therefore clinical
utility of PRSs, may depend on several factors, but two important
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developments include: focusing on alleles within specific biologi-
cal pathways or gene sets associated with the disease of interest
and the prioritization of functional variants.
In terms of biological pathways associated with schizophrenia,

converging evidence from clinical and preclinical data highlights
the interaction between genetic and environmental risks that
leads to dysfunction during development in NMDAR-mediated
signalling, neuroimmune regulation/neuroinflammation, and
mitochondrial function. This dysfunction initiates “vicious circles”
centred on redox dysregulation/oxidative stress as one critical hub
of schizophrenia pathophysiology [12]. In addition, impairments of
the maturation and function of local parvalbumin-GABAergic
interneuron microcircuits and myelinated fibres of long-range
macrocircuitry are thought to cause the neural circuit synchroni-
zation abnormalities and cognitive, emotional, social and sensory
deficits characteristic of schizophrenia. Therefore, in this study we
considered the following pathophysiological pathways: (1) gluta-
mate [13–15], (2) oxidative stress [12, 16], (3) GABA/interneurons
(hereafter called interneurons) [17, 18], (4) neuroimmune/neuroin-
flammation (hereafter called neuroinflammation) [19–22] and (5)
myelin [23] (Fig. 1a).
In terms of functional variants, GWAS hits are found to be

enriched in regulatory sequences. These variants do not directly
affect the coding sequence of a gene, suggesting that they may
play a fundamental role in disease by regulating the expression
levels or by affecting the splicing of genes instead [24–28].

Variants that influence gene expression are known as expression
quantitative trait loci (eQTLs).
Usually, PRSs do not account for biological functions nor focus

on candidate pathways, therefore, our aim was to investigate
whether the predictive ability of the schizophrenia PRS can be
improved by building genome-wide and pathway-specific PRSs
using single nucleotide polymorphisms (SNPs) and eQTLs (Fig. 1b)
in two first-episode psychosis case-control samples.

MATERIALS AND METHODS
Analyses were first conducted in a sample of patients recruited during a
first-episode of psychosis and ancestry-matched control subjects from the
city of Lausanne (TIPP study), and then validated in an independent first-
episode of psychosis cohort from the autonomous region of Cantabria in
northern Spain (PAFIP study) (Supplementary Table 1).

Participants
TIPP. Participants were recruited from the Treatment and Early Interven-
tion in Psychosis Program (TIPP), which offers 3 years of treatment to
patients aged 18–35 years [29]. Entry criteria to the program are: (1) aged
between 18 and 35, (2) residing in the catchment area (Lausanne and
surroundings; population about 300,000), (3) meeting threshold criteria for
psychosis, as defined by the “Psychosis threshold” subscale of the
Comprehensive Assessment of At Risk Mental States (CAARMS [30]) Scale
[29], (4) no psychosis related to intoxication or organic brain disease and
(5) intelligence quotient ≥70. Diagnosis was based on the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) [31] and
determined by expert consensus between a senior psychiatrist and a
senior psychologist, who reviewed patient files and also determined the
date a participant first met the threshold criteria for psychosis. Duration of
illness was defined as the time between reaching the psychosis threshold
for the first time and the time of assessment. Healthy controls, recruited
from similar geographic and sociodemographic areas through advertise-
ment, were assessed by the Diagnostic Interview for Genetic Studies [32]
and matched on gender, age and handedness. Major mood, psychotic or
substance-use disorder as well as having a first-degree relative with a
psychotic disorder were exclusion criteria for controls. The sample for the
present study comprised 339 patients and 168 controls. All the participants
in this study gave written informed consent in accordance with our
institutional guidelines (study and consent protocol approved by the Local
Ethical Committee: “Commission cantonale d’éthique de la recherché sur
l’être humain – CER-VD). The present analysis involves participants included
in the TIPP program between 2007 and the end of 2019 [11].

PAFIP. PAFIP is an epidemiological and longitudinal intervention program
of First-Episode Psychosis in Cantabria [33]. All referrals to PAFIP between
March 2001 and December 2014 were screened following these inclusion
criteria: (1) aged between 16 and 60 years, (2) living in the catchment area,
(3) experiencing their first-episode of psychosis and meeting DSM-IV
criteria for a diagnosis of schizophreniform disorder, schizophrenia,
schizoaffective disorder, brief reactive psychosis, or psychosis not
otherwise specified and (4) no prior treatment with antipsychotic
medication or, if previously treated, a total life-time of adequate
antipsychotic treatment of less than 6 weeks. DSM-IV criteria for drug or
alcohol dependence, intellectual disability and having a history of
neurological disease or head injury were regarded as exclusion criteria.
The diagnoses were confirmed through the administration of the
Structured Clinical Interview for DSM-IV (SCID–I) [34], conducted by an
experienced psychiatrist six months after the baseline visit. A personal or
family history of mental disorder were exclusion criteria for healthy
controls, who were recruited from the same geographical area. The sample
for the present study comprised 268 patients, for whom combined genetic
and psychiatric data were available, and 139 controls. All subjects provided
written informed consent prior to their inclusion in the study, which was
approved by the regional ethics committee (Clinical Research Ethics
Committee of Cantabria).

Genetic data
TIPP. Genome-wide genotyping was performed in two batches using the
Infinium OmniExpress-24 v1.3 SNP array. Nuclear DNA was extracted from
whole blood of all participants. Genotypes from both batches were called
using GenomeStudio Software [35]. Both batches underwent the same
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Fig. 1 Workflow analysis. Panel a shows a schematic representation
of the concept proposed in this paper, showing the reciprocal
interaction between mitochondria, NMDAR, neuro-immune system,
dopamine on one hand and the complex redox regulation/oxidative
stress on the other. We focused on five pathways (glutamate,
oxidative stress, GABA/interneurons (hereafter called interneurons),
neuroimmune/neuroinflammation (hereafter called neuroinflamma-
tion) and myelin). Panel b summarizes the experimental set up used
for five different pathways. For each pathway, we defined the
corresponding biological mechanisms and used them as keywords
that were entered into the GSEA platform to retrieve the
corresponding gene sets. The gene sets were then manually parsed
to keep only those more pertinent to each pathway. For each gene
set we defined (1) those SNPs that mapped to the gene set and (2)
those SNPs that were eQTLs at least for one gene of the set.
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quality controls and imputation procedures. Batch 1 included 266 patients
and batch 2 included 241 individuals (73 patients+ 168 controls).
Duplicate individuals, and first and second degree relatives, were identified
and then removed by computing pair-wise genomic kinship coefficients,
using KING [36]. Subjects were excluded from the analysis in case of a
genotype call rate less than 95%. To account for possible population
stratification, we computed principal component analysis (PCA) using
PLINK [37] with default options and excluded individuals who did not
segregate with European samples based on principal component analysis.
A total of 165 patients on batch 1 and 175 individuals (43 patients+ 132
controls) on batch 2 passed QC thresholds. Quality control for single
nucleotide polymorphisms (SNPs) was performed using the following
criteria: monomorphic (or with minor allele frequency (MAF) < 1%), call
rates less than 95%, deviation from the Hardy-Weinberg equilibrium (HWE)
(p < 1 × 10−6). Phased haplotypes were generated using SHAPEIT2 [38, 39].
Imputation was performed using minimac3 [40] and the Haplotype
Reference Consortium (HRC version r1.1) [41] hosted on the Michigan
Imputation Server [40]. We used imputed allele dosages for all SNPs to
avoid genotyping missingness. A MAF > 1% and an imputation quality Rsq
>0.3 was required for the inclusion of the variants into further analyses. In
order to identify, and eventually reduce, any batch effect introduced by
the two genotyping batches, we performed a negative control GWAS
where the outcome was defined as the batch membership (“control”=
batch1, “case”= batch2) and using cases only to avoid removing true
association signals. In this way we could identify and remove 566 SNPs (at
a false discovery rate (FDR) < 5%), which showed significant difference in
allele frequency between the batches.

PAFIP. Genome-wide genotyping was performed using the Illumina Infinium
PsychArray. Nuclear DNA was extracted from whole blood of all participants.
Genotypes were called using GenomeStudio Software [35]. The original sample
consisted of 407 samples (268 patients+ 139 controls). SNPs and individuals
were excluded if their call rate was below 98%. Likewise, SNPs withMAF < 0.5%
were removed. Participants whose genetic sex did not match self-reported sex
in the clinical documentation were excluded. Duplicate samples and first- and
second-degree relatives, were identified and then removed after computing
their pairwise identity-by-descent values with PLINK [23]. To account for
possible population stratification, we computedMDS components using PLINK
[23] with default options and excluded individuals who did not segregate with
European samples based on principal component analysis. Subjects with
heterozygosity value >3.81 SD were also removed. SNPs with a HWE p value
<1 × 10−4 or a MAF < 1% were excluded, followed by palindromic SNPs and
SNPs with a MAF deviation >10% with respect to EUR reference populations. A
total of 359 samples passed quality control. Prephasing and imputation were
performed using, respectively, eagle [42] andMinimac4 [26] and the Haplotype
Reference Consortium (HRC version r1.1) [27] hosted on the Michigan
Imputation Server [26]. We used imputed allele dosages for all SNPs to avoid
genotyping missingness. A MAF > 1% and an imputation quality Rsq >0.3 was
required for the inclusion of the variants into further analyses.

Genome-wide and pathway-specific polygenic risk scores
An overview of the experimental setup describing all the steps from the
pathophysiological hub to the calculation of the risk scores is shown in
Fig. 1b. In total, we derived eighteen polygenic risk scores (PRSs): three
genome-wide risk scores (GW-PRSs) and fifteen pathway-specific risk
scores (pathway-PRSs). PRS differed in terms of which variants were
included: (1) single nucleotide polymorphisms (SNPs), (2) expression
quantitative trait loci (eQTLs) from the GTEx database or (3) and eQTLs
from the MetaBrain database (see methods paragraph “Expression
quantitative trait loci (eQTLs) databases”). For the GW-PRSs, we either
used all the SNPs available in our dataset (GW-PRSSNPs), all the eQTLs listed
in the GTEx database (GW-PRSeQTLs), or all the eQTLs listed in the MetaBrain
database (GW-PRSeQTLs). For the pathway-PRSs, we identified five pathways
and the genes included within those pathways (see methods paragraph
“Pathways selection”). For the pathway-PRSs, we either used the SNPs
which were mapped to each of the pathways (inclusive of a 50-kb flanking
buffer), the eQTLs, listed in the GTEx database, associated with genes that
mapped to the pathways, or the eQTLs, listed in the MetaBrain database,
associated with genes that mapped to the pathways.

Pathways selection
We focused on five pathophysiological pathways of interest [12]: (1)
glutamate, (2) oxidative stress, (3) interneurons, (4) neuroinflammation and
(5) myelin. For each pathway, we defined the corresponding biological

mechanisms and used them as keywords that were entered into the GSEA
platform to retrieve the corresponding gene sets [43]. The keywords we
defined are: (1) glutamate, NMDA for the glutamate pathway, (2)
antioxidant, redox, oxidative stress, ROS, mitochondria for the oxidative
stress pathway, (3) GABA, interneuron, extracellular matrix for interneurons
pathway, (4) astrocyte, microglia for the neuroinflammation pathway and
(5) myelin, oligodendrocytes for the myelin pathway (Fig. 1a). The gene
sets were then manually parsed to keep only those pertinent to each
pathway. We then merged the gene sets belonging to the same pathway,
and found 627, 1355, 1347, 1657 and 195 genes for pathways 1 to 5
respectively (Supplementary Tables 2,5-9).

Expression quantitative trait loci (eQTLs) databases
Functional variants used to derive GW-PRSeQTLs and pathway-PRSeQTLs
were identified through two different databases: (1) Genotype-Tissue
Expression v8 (GTEx) [44] and (2) MetaBrain [45]. In each database, we
considered only cis-eQTLs of the adult brain cortex tissue (cis-eQTLs were
defined as SNPs that reside within 1 Mb of the transcription start site) and
only used European samples (GTEx v8: n= 250, MetaBrain: n= 2970).
Before calculating the risk scores, we filtered the GTEx and MetaBrain
databases in order to keep only those eQTLs that showed a nominally
significant association (p value <0.05) with any gene at the genomic level
(GW-PRSeQTLs) or at least with one of the selected genes at pathway level
(pathway-PRSeQTLs).

Polygenic risk scores calculation
Polygenic risk scores were derived using the “standard weighted allele”
method implemented in PRSice-2 [46], using standardized effect sizes from
a large GWAS on schizophrenia that included mostly individuals of
European descent [4]. Linkage disequilibrium (LD) clumping was
performed to retain only data for independent SNPs (r2 < 0.1, 1 Mb
window). For GW-PRSs, in the main analyses, we applied a GWAS p value
threshold (pt) ≤ 0.05, as previous work suggests that this is the optimum
threshold for discriminating between schizophrenia cases and controls [5].
We also performed a sensitivity analysis using a pt ≤ 1. For each pathway-
PRS, we used PRSet [46] to calculate a competitive p value which indicates
its level of enrichment over a random set of SNPs of the same size. We
performed 10,000 permutations for each pathway-PRS and counted how
many random set of SNPs (x) outperformed the association strength of the
pathway-PRS with early psychosis case-control status. We then calculated
competitive p values as x/10,000 to be able to obtain p values as low as
1 × 10−4. By default, PRSet derives pathway-PRSs at pt ≤ 1, to avoid the PRS
containing only a small portion of SNPs within the pathway, which can
happen when more stringent pt thresholds are used. In the main pathway-
PRSs analysis, we applied a pt ≤ 1 as suggested by PRSet authors, and, in a
sensitivity analysis, applied a pt ≤ 0.05.

Statistical analysis
Case-control status (dependent variable) was regressed on the polygenic
risk scores (GW-PRSs and pathway-PRSs) using logistic regressions and the
first five ancestry-informative genetic principal components were included
as covariates. The variance explained by the PRS (Nagelkerke r2) was
calculated by subtracting the r2 of the null model (containing only the
covariates) to the r2 of the full model (containing PRS+ covariates). The
variance explained by the PRS was transformed to a liability scale, using
the r2 coefficient proposed by Lee et al. [47] and a population prevalence
of 0.7%. The area under the receiver operator characteristic curve (AUROC)
was calculated in a model with no covariates using the pROC R package
[48]. For the analyses involving the eighteen PRSs, the significance level
was set to p= 0.0027 (0.05/18) according to the Bonferroni correction for
multiple testing.

RESULTS
A total of 692 participants from 2 separate studies were included
in the analysis; 259 were women (37.4%) and the mean (SD) age at
study interview was 29.5 (9.15) years.

Genome-wide polygenic risk scores prediction
In the TIPP sample, GW-PRSs were significantly associated with
early psychosis case-control status with similar odds ratios for GW-
PRSSNPs, GW-PRSeQTLs based on GTEx, and GW-PRSeQTLs based on
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MetaBrain (OR= 2.12, 95% CI= 1.61–2.81, OR= 2.10, 95%
CI= 1.60–2.75 and OR= 2.06, 95% CI= 1.56–2.70, respectively;
Supplementary Table 3 and Supplementary Figure 1). Similarly, in
the PAFIP sample, GW-PRSs were significantly associated with
early psychosis case-control status using GW-PRSSNPs, GW-PRSeQTLs
based on GTEx, and GW-PRSeQTLs based on MetaBrain (OR= 2.73,
95% CI= 2.03–3.67, OR= 2.30, 95% CI= 1.76–3.02 and OR= 2.27,
95% CI= 1.72–2.98, respectively; Supplementary Table 4 and
Supplementary Figure 2). The GW-PRSs predictive power and the
variance explained by the polygenic scores on the liability scale
were also similar within each sample (Supplementary Tables 3-4
and Supplementary Figs. 1–2). Sensitivity analyses using GW-PRSs
with a pt ≤ 1 showed a similar pattern and, as expected, were
significantly associated with early psychosis status (Tables 1–2 and
Figs. 2–3).

Pathway-specific polygenic risk scores prediction
Pathway-PRSSNPs did not show any significant enrichment in either
the TIPP or the PAFIP samples. In the TIPP sample, pathway-
PRSeQTLs based on GTEx showed an enrichment for the oxidative
stress, interneurons and neuroinflammation pathways (associated
to early psychosis case-control status respectively: OR= 1.73, 95%
CI= 1.35–2.22, OR= 1.73, 95% CI= 1.35–2.20 and OR= 1.79, 95%

CI= 1.39–2.31), whereas analyses based on MetaBrain showed an
enrichment for the glutamate, oxidative stress and neuroinflam-
mation pathways (associated to early psychosis case-control status
respectively: OR= 1.72, 95% CI= 1.34–2.21, OR= 1.79, 95%
CI= 1.40–2.29 and OR= 1.81, 95% CI= 1.41–2.33) (Table 1 and
Fig. 2). In the PAFIP sample, pathway-PRSeQTLs based on both GTEx
and MetaBrain showed an enrichment for the oxidative stress
pathway (associated to early psychosis case-control status
respectively: OR= 2.10, 95% CI= 1.63–2.71 and OR= 2.00, 95%
CI= 1.56–2.58) (Table 2 and Fig. 3). In the TIPP study, the
polygenic variance of oxidative stress pathway-PRSeQTLs on the
liability scale in case-control status, was 3.0% and 2.9% for GTEx
and MetaBrain respectively, accounting in each database for
69.8% of the polygenic variance on the liability scale of the
respective GW-PRSeQTLs. In PAFIP study, the polygenic variance of
oxidative stress pathway-PRSeQTLs on the liability scale in case-
control status, was 4.8% and 5.4% for GTEx and MetaBrain
databases, accounting for 45.2% and 52.0% of the polygenic
variance on the liability scale of the respective GW-PRSeQTLs. In the
TIPP study, the AUROC of the oxidative stress pathway-PRSeQTLs on
the case-control status was 0.64 and 0.66 for GTEx and MetaBrain
respectively, accounting for 96% and 100% of the predictive
power of the two GW-PRSeQTLs calculated on the same databases.

Fig. 2 Results for the TIPP study and polygenic risk scores (GW-PRSs and pathway-PRSs) analyses at pt ≤ 1. Early psychosis status
(dependent variable) was regressed on the polygenic risk scores using logistic regressions and including the first five ancestry-informative
genetic principal components as covariates. Horizontal bars show the Odds Ratio estimates (OR), and error bars indicate 95% confidence
intervals (95% CI).

Fig. 3 Results for the PAFIP study and polygenic risk scores (GW-PRSs and pathway-PRSs) analyses at pt ≤ 1. Early psychosis status
(dependent variable) was regressed on the polygenic risk scores using logistic regressions and including the first five ancestry-informative
genetic principal components as covariates. Horizontal bars show the Odds Ratio estimates (OR), and error bars indicate 95% confidence
intervals (95% CI).
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In PAFIP study, the AUROC of the oxidative stress pathway-
PRSeQTLs was 0.68 and 0.67 for GTEx and MetaBrain databases,
accounting for 97% and 95% of the predictive power of the two
GW-PRSeQTLs calculated on the same databases. Sensitivity
analyses showed a similar pattern (Supplementary Tables 3-4
and Supplementary Figs. 1–2).

DISCUSSION AND CONCLUSION
The present study is, to our knowledge, the first to investigate the
ability of both genome-wide (GW-PRSs) and pathways (pathway-
PRSs) schizophrenia polygenic risk scores to discriminate early
psychosis case-control status. In addition, we compared PRS
derived using SNPs and brain cortex eQTLs. We found that GW-
PRSs were significantly associated with the early psychosis status
regardless of whether SNPs or eQTLs were used. In addition, the
only pathway based PRS that showed a replicated association with
early psychosis status was the oxidative stress pathway derived
using eQTLs.
Although all the GW-PRSs could predict the early psychosis

status, the GW-PRSSNPs showed slightly stronger association,
probably due to a higher number of genetic variants (~ 31.9%
more genetic variants compared to GW-PRSeQTLs).
We focused on five pathways (glutamate, oxidative stress,

interneurons, neuroinflammation and myelin) which belong to a
“central hub” in schizophrenia pathophysiology [12]. Among the
pathway-PRSs tested, we only found enrichment for the oxidative
stress pathway-PRS, and only when exclusively using functional
SNPs. This supports the idea that redox dysregulation/oxidative
stress plays a critical role in pathophysiology of schizophrenia
[12, 18, 49, 50].
Notably, in the TIPP study, the predictive power of oxidative

stress pathway-PRSeQTLs on the case-control status, accounted for
up to 100% of the predictive power of the respective GW-PRSeQTLs,
whereas in the PAFIP study, the predictive power, accounted up to
97% of the predictive power of the respective GW-PRSeQTLs.
This highlights the critical role of cis-regulatory elements eQTLs,

both genome-wide and within the oxidative stress pathway, which
are potentially driven by gene-environment interactions. Elam
et al. in 2019 first reported how risk scores, computed from
functional candidate SNPs mapped to genes, may be more
predictive than data-driven approach PRSs when examining
childhood aggression as the trait of interest [51]. Here, instead
of only analyzing pre-determined pathways or gene sets derived
from databases, we took advantage of the existing literature
which has identified a “central hub” where genetic and environ-
mental risks converge, and are thought to be involved in
schizophrenia.
Experimental and translational evidences highlight the

crucial role of either Glutamate/NMDAR hypofunction [13, 14]
or neuroimmune dysregulation [20, 21]/ neuroinflammation
[22], initiating “vicious circles” centred on oxidative stress
during neurodevelopment [12]. These processes would amplify
one another in positive feed-forward loops, leading to
persistent impairments of the maturation and function of local
parvalbumin-GABAergic neurons microcircuits and myelinated
fibres of long-range macrocircuitry. This is at the basis of neural
circuit synchronization impairments and cognitive, emotional,
social and sensory deficits characteristic of schizophrenia
[12, 16, 18, 52]. Our findings support the proposal that the
interaction of genes and environment within these functional
pathways is a pathophysiological mechanism which leads to the
emergence of schizophrenia, placing the emphasis on oxidative
stress.
The results of the present study need to be viewed in the light

of several limitations. Firstly, the limited sample sizes in the two
studies could have led to reduced statistical power, low accuracy
of discriminative ability (AUROC) and an inability to detect true

associations of small effect sizes (i.e. through simulations we
found that the statistical power of PAFIP to replicate the
association found in TIPP on oxidative stress pathway-PRSeQTLs is
49% and it would require a sample size of 500 to reach 81%).
Secondly, the GTEx database has a small sample size, and this may
account for differences between PRSeQTLs deriving using GTEx and
MetaBrain. Third, we limited our analyses to the expression
quantitative trait loci (eQTLs), excluding other types of quantita-
tive trait loci like (e.g. methylation quantitative trait loci (mQTLs) or
protein quantitative trait loci (pQTLs)). Fourth, PRSs were built
using effect sizes derived from GWAS on schizophrenia and not
from a GWAS on early psychosis. When a robust GWAS on early
psychosis becomes available, it will be important to update these
analyses.
Notably, the main advantages in using early psychosis data are:

(1) to avoid chronicity and long-term treatment that can be
confounding factors for causal mechanisms, and (2) take
advantage of the dynamic/plasticity of the early phases in order
to modulate patient trajectories towards early detections and
intervention or treatment [53, 54].
One current imperative of GWAS studies is to ‘translate’ the

reported statistical genomic associations and to derive biological
mechanisms; that is, to identify causal genes or ‘causal’ biological
pathways [55] that underlie reported statistical genomic associa-
tions [56]. We reported here a reversed strategy, starting from
known biological pathways which belong to a critical hub of
schizophrenia pathophysiology, centered on redox dysregulation/
oxidative stress [12]. These biological pathways have been
observed in numerous preclinical models based on genetic and
environmental schizophrenia risk factors [49] and validated in
patients [19, 57–64].
Our results highlight the critical role clinically-associated

functional variants and the focus on specific pathways associated
with the disease in the predictive accuracy with polygenic risk
scores.
This could also represent a potential strategy towards defining

cohorts based on individuals at high/low thresholds of pathway-
specific PRS. As a pathway-specific score involves fewer variants, it
could be more stable [65] and highlights interesting subsets of
individuals for molecular/functional research, where the generic
genome-wide “disease risk” score would be noisier. Taken
altogether, the results from our analyses emphasize the need to
build and study functionally informed risk scores which, after
validation in larger cohorts, could improve the precision of patient
stratification and personalized therapy.
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