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ABSTRACT
Identification of tumor antigens presented by the human 
leucocyte antigen (HLA) molecules is essential for the 
design of effective and safe cancer immunotherapies that 
rely on T cell recognition and killing of tumor cells. Mass 
spectrometry (MS)-based immunopeptidomics enables 
high-throughput, direct identification of HLA-bound 
peptides from a variety of cell lines, tumor tissues, and 
healthy tissues. It involves immunoaffinity purification 
of HLA complexes followed by MS profiling of the 
extracted peptides using data-dependent acquisition, 
data-independent acquisition, or targeted approaches. 
By incorporating DNA, RNA, and ribosome sequencing 
data into immunopeptidomics data analysis, the 
proteogenomic approach provides a powerful means for 
identifying tumor antigens encoded within the canonical 
open reading frames of annotated coding genes and 
non-canonical tumor antigens derived from presumably 
non-coding regions of our genome. We discuss emerging 
computational challenges in immunopeptidomics data 
analysis and tumor antigen identification, highlighting key 
considerations in the proteogenomics-based approach, 
including accurate DNA, RNA and ribosomal sequencing 
data analysis, careful incorporation of predicted novel 
protein sequences into reference protein database, 
special quality control in MS data analysis due to the 
expanded and heterogeneous search space, cancer-
specificity determination, and immunogenicity prediction. 
The advancements in technology and computation is 
continually enabling us to identify tumor antigens with 
higher sensitivity and accuracy, paving the way toward the 
development of more effective cancer immunotherapies.

INTRODUCTION
T cell-based recognition of tumor cells 
requires presentation of tumor antigens by 
the human leucocyte antigen (HLA) mole-
cules. HLA class I (HLA-I) molecules that 
interact with CD8+ T cells present peptides 
derived mainly from proteasomal degrada-
tion of endogenous cytosolic proteins, while 
HLA class II (HLA-II) molecules expressed 
mainly on professional antigen presenting 
cells interact with CD4+ T cells and present 
peptides sampled from extracellular and 

intracellular proteins degraded via the endo-
somal pathway1 (figure 1). The repertoire of 
presented antigens, called the immunopepti-
dome, represents in real time the healthy state 
of cells. At the steady state, HLA-I and HLA-II 
immunopeptidomes consist of ‘normal’ self-
peptides. Through the tumorigenic process, 
normal cells gradually accumulate genetic 
and other molecular alterations that lead to 
abnormal expression of mutated and other 
tumor-associated proteins, resulting in the 
presentation of tumor-specific and tumor-
associated peptides, respectively, that can be 
specifically recognized as non-self by cytotoxic 
T cells through their T cell receptor, leading 
to T cell-mediated killing of cancer cells.2

Cancer immunotherapies harness such 
natural anticancer immunity. Therefore, 
the identification of the particular immu-
nogenic peptides that mediate spontaneous 
immune responses in patients with cancer, 
which can be unleashed by immune check-
point blockade therapies or primed through 
vaccination, is of great importance.3 In recent 
years, immunopeptidomics, the applica-
tion of mass spectrometry (MS) to identify 
HLA-bound peptides, coupled with novel 
experimental and computational proteog-
enomic approaches facilitated large-scale 
identification of various types of naturally 
presented tumor antigens4–8 (figure 2). The 
most common immunopeptidomics method-
ology is based on immunoaffinity purification 
of HLA complexes from detergent solubi-
lized lysates, followed by purification and 
separation of the peptides by high-pressure 
liquid chromatography and their subsequent 
measurement by state-of-the-art sensitive MS 
instrumentation. The resulting MS data files 
are analyzed by computational algorithms, 
leading to the identification of thousands 
of peptides from tens of millions of cells or 
tens of mgs of tissues. Indeed, HLA peptide 
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Figure 1  Schematic overview of the HLA-I and HLA-II presentation pathways enabling presentation of tumor antigens. APC, 
antigen presenting cell.

Figure 2  Antigen discovery with combining MS-based immunopeptidomics, genomics, transcriptomics and ribosomal 
footprinting. MS, mass spectrometry.
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sources that are cancer-associated or cancer-specific 
can have a key role in cancer biology and in immune 
recognition.

Computational techniques are integral to the discovery 
of tumor antigens in immunopeptidomics. This review 
specifically examines the fundamental computational 
challenges in analyzing immunopeptidomics data and 
identifying tumor antigens. We focus on recent advance-
ments in computational methods that enhance the sensi-
tivity, reliability, and accuracy of HLA peptide and tumor 
antigen identification. Prior to delving into the computa-
tional aspects, we provide a concise introduction to the 
diverse sources of tumor antigens and the proteomics 
technologies employed in immunopeptidomics charac-
terization. For in-depth information on these subjects, 
we refer readers to other recently published review arti-
cles.3 9 The primary objective of this review is to eluci-
date the critical role of computational approaches in 
immunopeptidomics-based tumor antigen discovery.

Sources of tumor antigens
Tumor antigens arise from various mechanisms (figure 3). 
HLA bound peptides that are encoded within the canon-
ical open reading frames (ORFs) of coding genes are 
considered as canonical peptides and these have been 
widely explored. Canonical HLA bound peptides may 
result from post-translational events such as modifica-
tions, like phosphorylations.10 11 In addition, HLA bound 
peptides encoded in coding genes harboring somatic 
mutations, such as non-synonymous single-nucleotide 
variants (nsSNVs),4 nucleotide insertions or deletions 
(INDELs)12 and gene fusions,13 and alternatively spliced 
transcripts14 are also typically considered as canonical 
peptides if derived from canonical coding regions. In 
contrary, in recent years, proteogenomic-based immu-
nopeptidomics studies demonstrated that HLA bound 
peptides can be derived from presumably non-coding 
regions of our genome (also called alternative, cryptic, 
or dark-matter), from alterations in the genome, epig-
enome, transcriptome, translatome, and the proteome. 
For example, post-transcriptional events, such as alterna-
tive splicing leading to intron retention, non-canonical 

translation initiation and codon read-through, as well 
as translation of long non-coding RNAs (lncRNAs), 
pseudogenes and transposablea elements (TEs) have 
been reported to generate non-canonical HLA peptides, 
some of which were demonstrated to be tumor-specific 
and immunogenic.8 15 16 Furthermore, proteasomal 
splicing17 and amino acid substitutions associated with 
deficiencies in translation18 have been proposed as addi-
tional sources of HLA ligands. It is expected that once 
the existence of any of the above non-canonical sources 
will become more evident, common and thoroughly vali-
dated, they will gradually be considered and annotated as 
canonical.

Proteomics technologies used in immunopeptidomics 
characterization
Often, the collective identification and quantification of 
purified HLA peptides by MS is discovery oriented.19 20 
Data-dependent acquisition (DDA) MS approaches are 
commonly used because they generate high-quality refer-
ences of peptide tandem MS/MS fingerprints. Precursors 
for fragmentation in a DDA measurement are selected 
based on various factors, such as ion intensity and charge 
state, and therefore, DDA acquisition is ideal for confi-
dent identification, for example, when post-translational 
modifications (PTMs) or non-canonical sources are 
explored. While DDA methods often have low reproduc-
ibility between samples, labeling approaches overcome 
issues of low abundance samples and the resulting low 
quality of MS/MS spectra. For example, with tandem 
mass tag, individual samples are barcoded with an array of 
isobaric tags and combined for a single MS measurement. 
In immunopeptidomics, it has been shown to improve 
detection coverage and the identification of low abun-
dant peptides.21 Recently, a new approach demonstrated 
usage of recombinant heavy-isotope-coded peptide major 
histocompatibility complexes (hipMHCs) as internal 
standards for normalization correction to enhance 
reproducibility of immunopeptidomics measurements. 
hipMHCs are added to the samples at the beginning of 
the processing workflow, and are purified together with 
the endogenous complexes, hence, enabling accurate 

Figure 3  Various sources of tumor antigens. PTMs, post-translational modification.
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comparisons between different experimental conditions 
in both label-free and multiplexed labeled immunopepti-
domics analyses.19

In general, data-independent acquisition (DIA) is 
more suitable for comparative or differential immuno-
peptidomics. In DIA, all precursor ions are isolated and 
fragmented in an unbiased manner within shifted and 
overlapping isolation windows, therefore, peptide repro-
ducibility and quantification across multiple samples 
are greatly enhanced. Several immunopeptidomics 
studies optimized DIA acquisition parameters and the 
computation approach for peptide identification that 
required spectral libraries.19 22–25 This approach limits the 
discovery of novel or non-canonical peptides. Library-free 
approaches for DIA data analyses, and hybrid approaches 
that combine both spectral library and database search, 
have been developed and are used for proteomics studies. 
These will likely be adopted soon by the immunopeptid-
omics community as well to improve quantitative preci-
sion and increase the number of quantified HLA bound 
peptides.26 27

The most robust and accurate method to quantify a 
defined set of ions in complex peptide mixtures is by 
targeted MS approaches such as parallel reaction moni-
toring and selected reaction monitoring. Combined 
with spik-in of synthetic isotopically labeled counterpart 
peptides, these methods can validate the correct identifi-
cation of the endogenous peptides which is a critical step 
for determining the authenticity of novel and unexpected 
non-canonical peptides.8 Targeted MS methods can quan-
tify the abundance and copy number of specific HLA 
bound peptides on cell surfaces over time. For example, 
Croft et al28 quantified the presentation of eight vaccinia 
virus MHC-I peptides on infected cells. It is important 
to note that they found a complete disconnect between 
the peptides’ abundance and their immunodominance. 
Therefore, even in the case of non-self-peptides from 

pathogens, one should not assume that peptide abun-
dance is directly associated with its recognition by T cells.

Computational analysis of untargeted immunopeptidomics 
data
A typical untargeted immunopeptidomics experiment 
may generate hundreds of thousands of MS/MS spectra, 
which need to be analyzed by computational tools to iden-
tify peptides presented by HLA molecules. Commonly 
used methods for peptide identification include data-
base searching, spectral library searching, and de novo 
sequencing.29 Database searching involves comparing the 
experimentally acquired MS/MS spectra against theoret-
ical spectra derived from in silico digestion of a reference 
protein database, such as Ensembl, Refseq, or UniProt. 
Spectral library searching is similar to database searching, 
but instead of searching against a reference protein data-
base, the method searches against a reference library of 
previously identified spectra. De novo sequencing involves 
predicting the sequence of peptides directly from the MS 
data without the use of a reference database or library. 
False discovery control is critical in peptide identification 
from MS data. By adding incorrect, ‘decoy’ sequences or 
spectra to the search space, the target-decoy approach 
provides a simple but powerful method for false discovery 
rate (FDR) estimation in database searching30 and spec-
tral library searching.31 Effective control of FDR remains 
challenging in de novo sequencing.

In DDA immunopeptidomic data analysis, database 
searching is the most widely used method (figure  4). 
Database searching tools, such as Comet,32 MS-GF+,33 
X!Tandem,34 MaxQuant,35 and Mascot,35 36 can be used 
for such analysis. These search engines can only include 
a small number of prespecified PTMs in database 
searching, referred to as closed search. The more recently 
developed open search engines, such as MSFragger37 
and open-pFind,38 allow unbiased identification of all 

Figure 4  Typical workflows for the analysis of DDA and DIA immunopeptidomic data. DDA, data-dependent acquisition; DIA, 
data-independent acquisition; FDR, false discovery rate; HLA, human leucocyte antigen.
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PTMs on HLA-bound peptides from non-PTM-enriched 
samples.11 39 It has been shown that the choice of search 
engine has a significant impact on the number of 
peptides that can be confidently identified from the same 
DDA experiment,39 40 and the overlap among peptides 
identified by different search engines is moderate.41 This 
may suggest inferior sensitivity of these search engines, 
which are originally developed for the analysis of shotgun 
proteomics data.

In shotgun proteomics, proteins are digested into 
peptides by trypsin or other enzymes before LC-MS/
MS analysis,42 and the sequence specificity of enzyme 
cleavage enables an enzyme-specific search within a 
constrained database search space. Because immunopep-
tidomic experiments do not require enzymatic digestion, 
a non-enzyme-specific search in a much larger search 
space leads to lower sensitivity in peptide identification.43 
Several computational methods have been developed 
to address this challenge. Based on the assumption that 
immunopeptidomes contain a limited number of recur-
ring peptide motifs corresponding to HLA specificities, 
MS-Rescue learns sequence motifs based on peptides 
identified from high-scoring peptide-spectrum matches 
(PSMs) and then uses the learned information to rescue 
PSMs with relatively lower scores but a high motif score.44 
Using a semisupervised machine learning model imple-
mented in Percolator,45 MHCquant rescores Comet iden-
tified PSMs by incorporating features not initially used in 
PSM scoring.46 With the advancements of deep learning 
in proteomics,47 it is now possible to accurately predict 
many peptide features, such as retention time and frag-
ment ion intensity using deep learning tools such as 
Prosit,48 AutoRT,49 DeepMass50 and pDeep.51 Incorpo-
rating deep learning derived features in Percolator-based 
PSM rescoring has been shown to significantly improve 
peptide identification in the analysis of DDA immuno-
peptidomics data.41 52

In DIA experiments, because all precursor ions within 
an isolation window are fragmented together, the highly 
complex fragment ion mass spectra complicate peptide 
identification. Although methods have been developed to 
first deconvolute the complex MS/MS spectra and then 
perform database searching, spectral library searching 
is a preferred method in DIA data analysis (figure  4). 
Tools for library-based DIA data analysis include Open-
SWATH,53 Spectronaut,54 Skyline,55 DIA-NN,56 Encyclo-
peDIA,57 MaxDIA,58 PEAKS59 among others. Some of 
these tools can also be run in a library-free mode. Due to 
its user-friendly features, Spectronaut is a popular choice 
in DIA data analysis. More recent tools such as DIA-NN 
leverages deep learning to improve peptide identifica-
tion. Several benchmarking studies have been performed 
to evaluate DIA data analysis pipelines in the context of 
proteomics and phosphoproteomics.60–63 In the most 
recent study using the latest versions of DIA-NN, Spectro-
naut, MaxDIA and Skyline, DIA-NN is recommended for 
global DIA proteomic data analysis given the overall supe-
rior performance and the open-access feature, whereas 

complementary performance of DIA-NN and Spectro-
naut is reported in phosphoproteomic data analysis.63 
For immunopeptidomic data analysis, a recent bench-
marking study comparing DIA-NN, PEAKS, Skyline and 
Spectronaut shows that PEAKS and DIA-NN provides 
higher sensitivity and reproducibility whereas Skyline and 
Spectronaut provides higher specificity, and the combina-
tion of multiple tools provides the greatest coverage while 
a consensus approach leads to the highest accuracy.64

In addition to software selection, the choice of spectral 
libraries is also an important consideration in library-based 
DIA data analysis. Experimental libraries constructed 
from DDA analysis of the same or similar samples under 
comparable LC-MS/MS settings are routinely used in DIA 
data analysis. However, this approach is time-consuming, 
consumes more materials, and limits the identifica-
tion by DIA to the peptides identified by DDA. In silico 
libraries created through deep learning tools that predict 
fragment ion intensity and retention time for peptide 
sequences address these limitations and have been shown 
to achieve similar or better performance in DIA data 
analysis.65 This is particularly attractive in the immuno-
peptidomic analysis of small and precious clinical samples 
such as tumor tissue biopsies. Efforts have been made to 
benchmark DIA analysis tools and their combinations 
with library construction methods based on tryptic MS 
data,61 63 similar benchmarking analysis based on immu-
nopeptidomic data would be very helpful.

Identification of tumor antigens
Novel protein sequences resulting from cancer-specific 
aberrations at genomic, transcriptomic, and transla-
tional levels are promising sources of tumor antigens. 
The proteogenomics approach66 that incorporates DNA 
sequencing, including whole exome sequencing (WES) 
and whole genome sequencing (WGS), RNA sequencing 
(RNA-seq), and ribosome sequencing (Ribo-seq) data 
into MS-based proteomics and immunopeptidomics data 
analysis provides a powerful means for identifying tumor 
antigens. This approach has been widely used in database 
searching-based analysis of DDA immunopeptidomics 
data by generating customized protein databases that 
extend the reference protein database to include novel 
protein sequences predicted based on WES, WGS, RNA-
seq, or Ribo-seq data.3 Recently, codon reassignment 
during translation has also been reported as a source 
of neoantigens, which can also be identified through 
searching immunopeptidomics data against customized 
protein databases including novel protein sequences 
derived from the codon reassignment of interest.18 For 
DIA data analysis, RT and fragment ion intensity can be 
predicted for sequences in the customized protein data-
bases using deep learning tools, and the predicted RT 
and MS/MS spectra can be used for the identification of 
both canonical and non-canonical peptides.22 There are 
several key considerations in the proteogenomics-based 
approach, including accurate DNA, RNA and ribosomal 
sequencing data analysis, carefully designed plans for 
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incorporating predicted novel protein sequences into 
reference protein database, special quality control in MS 
data analysis due to the expanded and heterogeneous 
search space, cancer-specificity determination for the 
identified HLA peptides, and immunogenicity predic-
tion. Figure 5 provides a schematic overview of the tumor 
antigen identification workflow, and related computa-
tional tools are summarized in online supplemental table 
1.

Analysis of DNA, RNA, and ribosome sequencing data
WES data are the most frequently used for the identifi-
cation of coding DNA sequence variants such as nsSNVs 
and INDELs. In a benchmarking study evaluating 

the performance of four popular short read aligners 
(Bowtie2,67 BWA,68 Isaac,69 and Novoalign) and nine 
variant calling and filtering methods (Clair3,70 DeepVar-
iant,71 Octopus,72 GATK,73 FreeBayes,74 and Strelka275) 
using 14 ‘gold standard’ WES and WGS datasets, Deep-
Variant consistently showed the best performance and 
the highest robustness.76 Analysis of WES data from tumor 
and matched germ line (eg, blood) samples enable the 
identification of somatic variants, which are the sources 
of the traditionally considered tumor-specific neoanti-
gens. Many computational tools have been developed 
for somatic mutation calling from WES data,77–83 and a 
systematic benchmarking study from the ICGC-TCGA 

Figure 5  Schematic overview of the tumor antigen identification workflow. DDA, data-dependent acquisition; DIA, data-
independent acquisition; FDR, false discovery rate; HLA, human leucocyte antigen; INDELs, nucleotide insertions or deletions; 
nnSNVs, non-synonymous single-nucleotide variants; ORFs, open reading frames; PSMs, peptide-spectrum matches; 
PTMs, post-translational modifications; TEs, transposable elements; WES, whole exome sequencing; WGS, whole genome 
sequencing.

https://dx.doi.org/10.1136/jitc-2023-007073
https://dx.doi.org/10.1136/jitc-2023-007073
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DREAM Somatic Mutation Calling Challenge showed 
that an ensemble of computational pipelines always 
outperforms the best individual pipeline with regard 
to both sensitivity and specificity.84 WES prioritizes the 
coverage of annotated coding genes. If non-canonical 
coding regions predicted from RNAseq or ribosomal data 
(see below) are of interest, using WGS data for somatic 
mutation calling can provide better coverage of these 
regions.15

RNASeq data provides comprehensive information on 
nucleotide variation and transcript identity and abun-
dance, both are useful for sample specific customized 
database construction.85 RNA-level SNVs reflect not only 
DNA variations but also RNA-editing events. Driven by 
a post-transcriptional regulatory process, RNA editing 
derived peptides can be presented by HLA and elicit 
immune responses.86 General transcript assembly tools 
such as Cufflinks87 and StringTie88 report both annotated 
and novel transcripts from RNA-seq data. Specialized 
computational tools have also been developed to identify 
specific types of aberrantly expressed transcripts. Gene 
fusion is an important source of neoantigens.89 Fusion 
RNAs may arise from chromosomal rearrangements 
or aberrant RNA splicing, and both can be identified 
from RNA-seq data. A study benchmarking 23 tools for 
fusion prediction using simulated and real RNA-seq data 
identified STAR-Fusion,90 Arriba,91 and STAR-SEQR90 
as the fastest and most accurate for fusion detection on 
cancer transcriptomes.90 Intron retention is another 
source of neoantigens in cancer92 and can be detected 
from mRNA-seq data using tools such as IRFinder.93 Due 
to frequent global loss of DNA methylation in human 
cancers, aberrant expression of transcripts derived 
from endogenous TEs represents another source of 
tumor antigens.94 95 Accurate identification and quanti-
fication of TE-derived transcripts in short-read RNA-seq 
data can be challenging due to the repetitive nature of 
their sequences. REdiscoverTE94 has been developed to 
address this challenge, and long-read RNA-seq may enable 
more accurate analysis of expressed TEs. Circular RNAs 
resulting from back-splicing events during pre-mRNA 
splicing can be identified and quantified by CIRIquant.96 
CircRNAs are frequently dysregulated in cancer cells.97 
Although lacking a 5′ cap, they can be translated using 
cap-independent mechanisms,98 raising their potential as 
a source of tumor antigens.

Ribo-seq provides experimental information on the 
actively translated regions of the genome, revealing the 
existence of thousands of ORFs within long non-coding 
RNAs (lncRNAs) and regions of protein-coding genes 
that were previously thought to be untranslated (UTRs). 
Translated sequences identified by Ribo-seq that have not 
already been annotated by reference annotation projects 
are known as Ribo-seq ORF, non-canonical ORF, alter-
native ORF, novel ORF, or when less than 100 amino 
acids in size, small ORF or short ORF.99 Ribo-seq ORFs 
are infrequently identified in shotgun proteomics data, 
possibly due to unstable protein products. Interestingly, 

in an effort to identify proteomic evidence from Peptide-
Atlas for Ribo-seq ORFs, the majority of observed peptide 
evidence was found in immunopeptidomics datasets,99 
suggesting unstable source proteins could serve as a 
source of HLA peptides. Indeed, searching immunopep-
tidomics data against generic or sample-specific Ribo-seq 
inferred reference protein databases enabled the iden-
tification of many HLA-I bound peptides.8 15 The major 
computational challenge in detecting translation using 
Ribo-seq data is the discrimination of the signal obtained 
with genuine ribosome footprints from mapping arti-
facts and other RNA fragments. Computational tools 
have been developed to address this challenge using 
different approaches.100 For example, ribotricer detects 
actively translating ORFs by directly leveraging the three-
nucleotide periodicity of Ribo-seq data.101 RiboHMM uses 
a hidden Markov model,102 RibORF uses a Support Vector 
Machine classifier,103 and PRICE uses an EM algorithm104 
to detect translating ORFs. Ribo_TISH is able to use 
Ribo-seq data enriched at starts of initiation in addition 
to regular Ribo-seq data.105 Predictions from different 
computational tools may differ considerably, and it is 
not easy to benchmark these tools because of the lack of 
gold standard sets of translated ORFs. A recent commu-
nity-led effort has produced a standardized catalog of 
7264 human Ribo-seq ORFs,99 which provides a unified 
resource to facilitate Ribo-seq research and will benefit 
the integration of non-canonical ORFs into immunopep-
tidomics data analysis.

Incorporating predicted sequences into reference protein 
database
Novel peptide sequences resulting from nsSNVs and 
in-frame INDELs can be generated by replacing the 
affected amino acids in the canonical reference protein 
sequence. DNA sequencing is better suited for calling 
somatic mutations than RNA-Seq, but their combination 
can help prioritize somatic mutations that are expressed 
at the RNA level, which are required for protein produc-
tion. Many studies include only somatic mutations in 
novel peptide sequence generation; however, neglecting 
nearby germline variants may result in missed opportu-
nities for identifying potential neoantigens.106 How to 
handle nsSNV combinations in customized database 
generation and MS data analysis remains an open ques-
tion. Comet has been extended to automatically analyze 
global amino acid variants encoded in the PSI extended 
FASTA format,107 but this feature has rarely been used 
in immunopeptidomics studies. In addition to nsSNVs, 
codon reassignment during translation or translational 
infidelity may also lead to novel peptide sequences.18 108 
In this case, the translational alterations of interest could 
be introduced globally during reference protein database 
construction, but the canonical sequences should also 
be kept in the database to avoid false positive identifica-
tions caused by the lack of competition from canonical 
sequences109 Out-of-frame INDELs cause frameshifts 
to coding sequence, which can lead to novel protein 
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sequences. Of note, frameshift mutations frequently lead 
to premature termination codon (PTC), and PTC-bearing 
transcripts are often degraded by nonsense-mediated 
decay (NMD). Therefore, integration of matched RNA-
seq data would be useful to identify PTC-bearing tran-
scripts escaping NMD, which is a promising source of 
neoantigens.110 111

To generate protein databases from RNA-seq data, 
assembled transcripts can be in silico translated into 
amino acid sequences. For stranded RNA-seq data, which 
provides information about the directionality of the 
transcripts, a three-frame translation is performed. A six-
frame translation is required for unstranded RNA-seq 
data, which lacks information about the directionality of 
the transcripts. These processes vastly increase the data-
base size. To reduce database size, transcript abundance 
could be used to filter out lowly expressed transcripts that 
are unlikely to produce detectable HLA peptides.

Ribo-seq data provide information about the correct 
coding frame for each transcript and are well suited for 
the de novo reference protein database construction. 
Some ribosome profiling methods focus on translation 
initiation and enrich ribosomes at the start of translation 
initiation for analysis.105 In this case, localization of start 
codons identified from such experiments can be inte-
grated with de novo assembled transcripts to generate 
customized protein databases.112

Computational tools and workflows have been devel-
oped to facilitate customized database construction, such 
as CustomizedProDB,113 JUMPg,114 PROTEOFORMER,115 
and pgdb.116

Tumor antigens generated from post-translational processes
Post-translational processes such as PTMs and proteo-
somal splicing further expand the landscape of tumor 
antigens. Comprehensive identification of modified 
peptides from non-PTM enriched immunopeptidomics 
experiments requires the use of open search engines. 
Systematic application of open-pFind to 43 published 
human immunopeptidomic datasets identified 55 710 
modified HLA class I peptides and 92 203 modified HLA 
class II peptides.39 Similarly, applying the MSFragger-
based Protein Modification Integrated Search Engine to 
HLA I immunopeptidomics data from 210 samples iden-
tified thousands of modified HLA class I peptides.11 To 
characterize a specific type of modified peptides, PTM-
specific peptide enrichment, such as enrichment of 
phosphorylated peptides with immobilized metal affinity 
chromatography, can be used.117

Proteasomal spliced peptides (PSPs), generated by the 
proteasome through the splicing of two distinct peptide 
fragments, were first reported by Hanada et al in 2004.118 
PSPs have been shown to be presented on HLA mole-
cules and to induce antigen-specific T cell responses in a 
melanoma patient119 and hence their large-scale identifi-
cation through MS has become an active area of research. 
However, there are several important challenges associ-
ated with MS-based identification of PSPs. PSPs can be 

generated from all possible combinations of peptide frag-
ments resulting in an enormous space search. Database 
size inflation subsequently compromises FDR calculations 
leading to propagation of false identifications.17 Indeed, 
first studies reported that PSPs comprise 30%–40% of 
the immunopeptidomes,120 121 yet following reanalysis of 
these datasets, incorporating de novo sequencing and 
researching techniques estimated an upper bound values 
of around 3%.122 A dedicated search program called 
Neo-Fusion, was created for discovering spliced peptides 
in tandem MS data,123 by using two separated ion data-
base searches to identify the two halves of each spliced 
peptide, and then to infer the full spliced sequence. With 
this tool, a recent study independently reported again the 
identification of potential PSPs that represented less than 
3.1% of the total canonical peptidome.124

Special quality control in non-canonical peptide identification
One challenge in proteogenomics-based identification 
of non-canonical HLA-bound peptides from immuno-
peptidomics data is accurate FDR control. This challenge 
is illustrated above for PSPs, but it is common for other 
types of non-canonical peptides. In general, predicted 
non-canonical proteins are less likely to produce HLA-
bound peptides than canonical proteins, and different 
types of predictions also come with different levels of 
confidence. For example, predictions based on Ribo-seq 
data are more reliable than those based on RNA-seq 
data. Accordingly, direct application of the target-decoy 
strategy without discriminating canonical and different 
types of non-canonical peptides would result in an under-
estimate of the true FDR for non-canonical peptides, 
thereby raising the possibility of false-positive non-
canonical peptide identifications.

To address this limitation, two alternative methods for 
estimating FDR have been developed: the separate FDR 
method and the multistage FDR method. The separate 
FDR method calculates FDRs for canonical and different 
types of non-canonical peptides separately, whereas the 
multistage FDR method requires multiple stages of anal-
ysis. In the first stage, MS/MS data are matched against a 
database with canonical proteins, and confidently iden-
tified spectra are removed. Each following stage involves 
matching the remaining spectra against the group of 
non-canonical proteins with the highest confidence and 
calculating the FDR based on the search results. For 
both approaches, when the number of identifiable non-
canonical peptides is small, FDR estimation may be inac-
curate. The multistage FDR is further vulnerable to false 
negatives because an MS/MS spectrum generated from 
a non-canonical peptide may be incorrectly matched to 
a canonical peptide in the first stage and excluded from 
the downstream analysis.

Due to the challenges in accurate FDR control, addi-
tional validation steps could be taken to further assess 
or reduce errors. First, machine learning and especially 
deep learning models enable accurate prediction of 
many peptide features such as retention time, fragment 
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ion intensity, and HLA binding affinity.48–51 125–127 If these 
predictions are not already used in the step of peptide 
identification, they can provide independent assessment 
of the novel peptide identifications. Second, traditional 
database searching methods consider only a small number 
of protein modifications due to search complexity, and 
the target-decoy based FDR estimation lacks rigorous 
quality control for individual PSMs. False positives can 
occur when a spectrum matched to a novel peptide is actu-
ally derived from a canonical peptide containing a chem-
ical or PTM not accounted for in the database searching. 
This problem can be potentially addressed by a peptide-
centric analysis. By shifting the focus from interpreting all 
observed MS/MS spectra in a study to validating a small 
number of candidate novel peptide identifications, this 
approach provides statistical assessments for individual 
PSMs and also enables comprehensive examination of 
peptide modifications to reduce false discoveries. Origi-
nally demonstrated in PepQuery128 for tryptic proteomic 
data analysis, this approach has also been modified for 
the analysis of immunopeptidomics data.49 In addition 
to these computational methods, quality assessment can 
also be achieved by manual examination of the PSMs 
using visualization tools such as PDV.129 Finally, targeted 
proteomic analysis with spiked-in heavy-isotope labeled 
peptides can provide ultimate experimental validation of 
the selected novel peptides.

Cancer-specificity determination
Cancer specificity and immunogenicity are key require-
ments of clinically actionable tumor antigens. Neoan-
tigens resulting from somatic mutations are the most 
confident group of cancer specific antigens because 
cancer specificity is determined during somatic mutation 
calling in which tumor sequences are directly compared 
with germline sequences. However, most somatic muta-
tion derived neoantigens are patient specific, limiting 
their potential application as targets of prefabricated 
vaccines or T cell products.

Cancer specificity of non-canonical antigens resulting 
from transcriptional, translational, and post-translational 
aberrations are more difficult to determine. One 
approach is to perform parallel omics analysis on tissue-
matched normal samples to assess cancer-specificity of the 
non-canonical proteins predicted by RNA-seq or Ribo-seq 
data or cancer-specificity of non-canonical epitopes iden-
tified from immunopeptidomics data. Elimination of 
non-canonical proteins predicted by RNA-seq or Ribo-seq 
can be performed by removing them from the custom-
ized databases used for immunopeptidomics data analysis 
or by removing non-canonical epitopes that are mapped 
to proteins with expression evidence in normal samples. 
The former approach may significantly reduce the search 
space in immunopeptidomics data analysis, but it could 
potentially lead to false positive cancer-specific peptide 
identifications because the spectra supporting a cancer-
specific peptide identification may have better match to 
another peptide that are expressed in both tumor and 

normal samples. Subtraction of non-canonical epitopes 
that are not cancer specific may also leverage public 
databases and the analysis may be extended to include 
all non-immune privileged tissues. The TCGA130 and 
CPTAC131 132 datasets can be used to assess differential 
abundance of non-canonical proteins at RNA and protein 
levels across many cancer types. Gene expression of the 
source genes of non-canonical epitopes across different 
healthy tissues can be further investigated using the 
GTEx datasets.133 Moreover, immunopeptidomics data 
generated from non-cancerous samples, such as those 
from the HLA Ligand Atlas134 and the caAtlas,39 provide 
comprehensive references for assessing tumor specificity 
of non-canonical epitopes.

Immunogenicity in human subjects is an important 
determination of cancer specificity. Computational 
prediction of immunogenic peptides has been an active 
research area, and multiple computational models 
have been developed during the past decades. A recent 
benchmarking study135 evaluating seven publicly avail-
able models shows that none of them perform substan-
tially better than random or offer clear improvement 
beyond HLA ligand prediction for predicting immuno-
genic peptides from an emerging virus such as severe 
acute respiratory syndrome coronavirus 2. For identifying 
immunogenic neoantigens, several models, including 
Gao et al,136 NetTepi,137 PRIME,138 and the eluted ligand 
(netMHCpan_EL) and binding affinity (netMHCpan_
BA) predictions from NetMHCpan 4.0125 performed 
better than random, but all with suboptimal performance 
scores, suggesting considerable room for improvement. 
Immunogenicity of the prioritized tumor antigens can 
be further experimentally evaluated using IFN-gamma 
ELISpot assay or other approaches.

Concluding remarks and future directions
The field of cancer immunopeptidomics is rapidly evolving 
due to experimental and computational advancements, 
as well as its integration with cancer-specific aberrations 
identified from DNA, RNA, and ribosome sequencing 
data. While early studies were focused on neoantigens 
derived from somatic mutations, recent research has 
emphasized the importance of non-canonical antigens as 
a broader source of tumor antigens. Consequently, our 
understanding of naturally presented tumor antigens 
has expanded significantly, presenting new prospects for 
cancer immunotherapy.

Despite exciting advancements, sensitive and accu-
rate identification of tumor antigens from immuno-
peptidomics data remain challenging. Indeed, most of 
the MS/MS spectra generated in immunopeptidomics 
experiments cannot be mapped to peptides based on the 
existing algorithms. Proteogenomics-based novel peptide 
sequence identification can benefit from new DNA, RNA, 
and ribosome sequence data analysis algorithms. Even 
for the most extensively studied topics such as variant 
calling from WES data, significant improvements are still 
being continuously made through new algorithms such as 
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DeepVariant.76 These new advancements should be incor-
porated into immunopeptidomics data analysis pipelines. 
Moreover, due to intratumor heterogeneity, leveraging 
single cell RNA-seq data may enable identification of 
tumor antigen source genes expressed in a subset of cells 
and their inclusion in customized databases to allow even-
tual detection in the immunopeptidome.8 New proteomics 
data analysis algorithms can also improve MS/MS spectra 
identification rate. It has been shown that many MS/
MS spectra are chimeric spectra, and algorithms such as 
CHIMERYS139 could be used to support interpretation 
of such spectra. De novo peptide sequencing also holds 
great potential in discovering novel peptide sequences. A 
new platform integrating deep learning-based solutions 
of spectral library search, database search, and de novo 
sequencing has been shown to boost sensitivity on both 
DDA and DIA immunopeptidomics data.140 To facilitate 
new method development, it is critical to make immu-
nopeptidomics data publicly available and follow the 
FAIR principle141 in data sharing. Meanwhile, it is equally 
important to make computational pipelines used in 
published studies available. Because computational pipe-
lines for tumor antigen discovery usually involve many 
components, it is useful to dockerize individual analytical 
components and implement the pipeline using workflow 
languages to improve reproducibility and reusability. 
Several databases, such as SysteMHC Atlas,142 HLA Ligand 
Atlas,134 and caAtlas39 have made antigens identified from 
a large amount of immunopeptidomics data on healthy 
or cancer samples easily available to the public through 
dedicated web portals. Combining these resources into a 
unified platform would be highly beneficial.

One major obstacle to the clinical translation of immu-
nopeptidomics is the limited availability of clinical mate-
rials. Advanced proteomics technologies, such as ion 
mobility separation-based timsTOF MS, have the potential 
to detect HLA-presented peptides with higher sensitivity, 
which is critical when the available material is limited, as 
in core needle biopsies. Moreover, to enable multiomics 
analysis based on small clinical samples, it is crucial to 
develop standardized sample preparation protocols to 
enable such analysis. Close collaboration among exper-
imentalists, computational biologists, oncologists, and 
clinicians is essential to realizing the clinical potential of 
tumor antigens identified from immunopeptidomics. By 
working together, we can overcome the challenges of clin-
ical translation and advance the field toward personalized 
cancer immunotherapy.
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