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ABSTRACT

The international Functional Annotation Of the
Mammalian Genomes 4 (FANTOM4) research collab-
oration set out to better understand the tran-
scriptional network that regulates macrophage
differentiation and to uncover novel components of
the transcriptome employing a series of high-
throughput experiments. The primary and unique
technique is cap analysis of gene expression
(CAGE), sequencing mRNA 50-ends with a second-
generation sequencer to quantify promoter activities
even in the absence of gene annotation. Additional
genome-wide experiments complement the setup
including short RNA sequencing, microarray gene
expression profiling on large-scale perturbation
experiments and ChIP–chip for epigenetic marks
and transcription factors. All the experiments are
performed in a differentiation time course of the
THP-1 human leukemic cell line. Furthermore, we
performed a large-scale mammalian two-hybrid
(M2H) assay between transcription factors and moni-
tored their expression profile across human and
mouse tissues with qRT-PCR to address combina-
torial effects of regulation by transcription factors.
These interdependent data have been analyzed
individually and in combination with each other and
are published in related but distinct papers.
We provide all data together with systematic
annotation in an integrated view as resource for the

scientific community (http://fantom.gsc.riken.jp/4/).
Additionally, we assembled a rich set of derived
analysis results including published predicted and
validated regulatory interactions. Here we introduce
the resource and its update after the initial release.

INTRODUCTION

A wide range of molecular basis encoded in the genomes
has been addressed with the progress of technologies in
molecular biology. We have focused on the landscape of
the mammalian transcriptome and revealed its striking
complexity including a substantial population of non-
coding RNA and frequently occurring sense/antisense
transcription (1–4). Despite these efforts it still remains
a major challenge to fully understand the processes
responsible for determining the shape of the transcriptome.

In Functional Annotation of the mammalian genomes 4
(FANTOM4), an international collaborative research
project, we focused on the differentiation process of a
human myeloid leukemia cell line to deepen the under-
standing of the complex layers of the transcriptome and
to reverse-engineer the transcriptional regulatory network
in a data-driven manner (5–8). We performed a series of
high-throughput experiments using second-generation
sequencing together with microarrays to follow the time
course of the differentiation process as well as systematic
perturbations on a large-scale to characterize the tran-
scriptional regulatory network (7). Furthermore, we
addressed the combinatorial roles of transcription
factors in human and mouse based on a large-scale
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screening of physical interactions among transcription
factors (6). These big data obtained from a wide range
of experiments were analyzed individually as well as in
combination and published in related but distinct papers
while all results are closely connected. We comprehensive-
ly provide all our produced data together with detailed
annotation to facilitate easy visual inspection and to
allow obtaining parts of or the whole data set for global
analysis (9). By this, we provide a basis for further experi-
ments and facilitate additional analyses in cellular differ-
entiation. Here we introduce the resource and its update
after the initial release.

DATA CONTENT

We overview the whole set of experiments with their
analysis and describe various ways to access the data
subsequently. After our initial release of the FANTOM
web resource (9) we added several data sets and made
them visible to external systems (see below). All the
data content together with the available interfaces are
summarized in Table 1 and updates since our initial
release are indicated.

Transcriptional states during a cellular differentiation

We selected a human myeloid leukemia cell line, THP-1
(10), as a model of macrophage differentiation. Upon
stimulation with phorbol myristate acetate (PMA), the
THP-1 cells cease proliferation, become adherent and
differentiate into a mature monocyte- and macrophage-
like phenotype. We conducted a set of high-throughput
experiments on this model system.
The primary technology employed is the cap analysis of

gene expression (CAGE) with a next generation sequencer
(termed deepCAGE), which identifies active transcription
starting site (TSS) and quantifies their activities even in
the absense of gene annotation by sequencing mRNA
50-ends in a high-throughput way (11–13). We sequenced
24 millions mRNA 50-ends (CAGE tags) over the differ-
entiation time course, consisting of six time points in
biological triplicates. Promoter activities are quantified
by counting the CAGE tags aligned to the reference
genome and normalized to fit a power-law distribution
(14). We developed motif activity response analysis
(MARA) on the promoter activities profiled by CAGE
over the differentiation time course, which leads to the
prediction of transcriptional regulatory interactions as
well as the identification of key transcription factors (7).
Predicted regulatory interactions for the THP-1 time
course profiles are available from the FANTOM web
resource while MARA analysis based on microarray
gene expression data is available at SwissRegulon (15).
We complemented the transcriptome characterization

with qRT–PCR profiling for around 2000 transcription
factors (16), gene expression microarrays as well as small
RNA sequencing. In particular, the small RNA
sequencing lead to the discovery of tinyRNAs (8) and to
the accurate identification of RNA editing (17). The
profiling of RNA polymerase II binding and histone
acetylation (H3K9) with ChIP–chip on genome tiling
arrays revealed unique epigenetic patterns surrounding
core promoters (18). ChIP–chip experiments on a
promoter tiling arrays were also performed to investigate
genomic binding sites of PU.1, SP1, EGR-1 and IRF8
(7,19,20). Furthermore, we profiled copy number vari-
ation of the THP1 cells to assess the difference of the
genome of THP1 cells from the reference genome (21).

Perturbation of potential regulators

The transcriptional changes observed during the differen-
tiation time course reflect the underlying transcriptional
regulatory network that maintains the stable state of the
cells before and after differentiation and defines the tran-
sition between these stable states. We further performed
perturbation experiments of known and likely key regula-
tors to elucidate the network architecture beyond the level
that can be obtained from the differentiation alone.
First, we individually perturbed 52 transcription factors

by small interfering RNA (siRNA) knockdown. Since
around half of the transcription factors were chosen
based on the results of the deepCAGE MARA analysis
we employed them as validation experiments. We addition-
ally over-expressed microRNAs (miRNAs), regulatory
small RNAs that reduce gene expression of targeted

Table 1. Content of the FANTOM web resource

Data set Availability

CAGE
THP-1 6 time points� 3 replicatesa E, G, F, Uc

Human 127 RNAs G, F, Uc

Mouse 206 RNAs G, F, Uc

Gene expression microarray
THP-1 10 time points� 3 replicatesa E, G, F
THP-1 siRNA knock downs for 52 transcription
factors� 3 replicates

E, G, F

THP-1 over expression of 12 miRNAs� 3 replicates Ec, Gc, Fc

qRT–PCR for transcription factors
THP-1 10 time points� 2 replicatesb E, G, F
Human 34 tissues� 1–2 Replicates Fc

Mouse 20 tissues� 1–2 Replicates Fc

Small RNA
THP-1 8 time points� 1 replicate G, F, Uc

ChIP–chip (whole genome tiling array)
H3K9Ac, THP-1 two time points� 3 replicates G, F, Uc

RNA pol II ChIP–chip, THP-1 two time
points� 1 replicates

G, F, Uc

ChIP–chip (promoter tiling array)
PU.1, THP-1 two time points� 2 replicates G, F, Uc

SP1 ChIP–chip, THP-1 two time points� 2 replicates G, F, Uc

EGR1 ChIP–chip, THP-1 one time points Gc, Fc, Uc

IRF8 ChIP–chip, THP-1 one time points Gc, Fc, Uc

Copy number variation array
THP-1 one time points G, Fc, Uc

Regulatory interactions based on:
Transcriptional regulation predicted with MARA E, Fc

siRNA preturbation E, Fc

FANTOM4 ChIP–chip (PU.1, SP1) E, Fc

Public ChIP–chip or ChIP-seq E, Fc

Literacture mining E, Fc

miRNA target prediction E, Fc

Physical interaction (PPI) between transcription factors E, Fc

aThe same cellular batches (ID:RIKEN1,3 and 6) are profiled.
bThe same cellular batches (ID:RIKEN1 and 3) are profiled.
cUpdate after the first release, which inlcludes newly added data and
newly available interfaces.

E: EdgeExpressDB, G: Genome Browser, F: Data files, U: UCSC
Custome Tracks.
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genes in a wide range of biological processes, by
introducing over-expression vectors (22). The series of
perturbation experiments was performed in biological trip-
licates and followed by profiling gene expression with
microarray.

Physical interactions between transcription factors and
their precise expression across tissues

Transcription factors typically form complexes with the
same or other transcription factors, with histone modi-
fiers, cofactors and with regulatory DNA regions to
directly or indirectly control expression of targeted
genes. To investigate combinatorial effects of transcrip-
tion factor complexes, we screened for physical inter-
actions (protein–protein interactions) among human
transcription factors and among mouse transcription
factors in a large-scale mammalian two-hybrid (M2H)
assay. We additionally profiled transcription factor ex-
pression across 34 human tissues and 20 mouse tissues
with qRT–PCR. Analysis of these data demonstrated the
conservation of physical interactions between the two
species and highlighted the importance of transcription
factor complexes for determining cell fate (6).

Regulatory interactions

We assembled a wide range of regulatory interactions in
the course of the analysis on the data sets above. As val-
idation for the MARA predicted transcriptional regula-
tory interactions, we compiled a list of genes responding
to siRNA perturbation experiments and a list of genes
bound by transcription factors based on our experiments
above as well as other publicly available large-scale experi-
ments. Furthermore, we screened over 1000 publications
to extract 440 manually curated regulatory interactions
between regulators where we required that the interactions
were validated with EMSA or ChIP in human cells. We
provide the corresponding Pubmed IDs as evidence for the
interaction. We obtained ElMMo (23) miRNA target pre-
dictions from the MirZ web server (24) and complemented
with genes responding to our miRNA over expression
described above.

All CAGE data including other tissues and conditions

Several million CAGE tags were produced by us from a
wide range of tissues and conditions of human and mouse
in the transition between the FANTOM3 and the
FANTOM4 project (13,25). Re-mapping all of these
data to the same genome assemblies used in FANTOM4
(hg18 for human and mm9 for mouse) lead us to the
finding that retrotransposon transcription substantially
regulates the transcriptional output of the mammalian
genome (5). We consistently aggregated all data into
CAGE tag cluster, a unit of CAGE tags overlapping on
the genome (25), by this facilitate the access to one of the
largest resources of TSSs. We additionally provide the
converted coordinates of FANTOM3 tag cluster data
(26) to enable comparison to our earlier results.

DATA ACCESS

Graphical user interfaces and data archive

We prepared multiple ways to access the different data
types for visual inspection and for analysis. Graphical
user-interfaces facilitate immediate visualization of data
and analysis results (Figure 1). The Generic Genome
Browser (GBrowse) (27) provides a genome-based view
of our data (9). To furthermore facilitate interpretation
of the data, we prepared an instance of the
EdgeExpressDB (28) to view regulatory interactions
combined with expression profiles in an integrated way.

For further bioinformatics analysis in addition to
manual inspection we prepared an archive of data files
including a standardized description of metadata (such
as experimental protocols and parameters, conditions, re-
lationship between samples) as well as the processed data
describing the transcriptional input, output and regulatory
interactions. For all experiments we adopted the sample
and data relationship format (SDRF), a standardized way
to describe details of analysis in a tab-delimited file. SDRF
is proposed as a part of MAGE-tab (29) employed by
ArrayExpress (30), and now employed by ISA-tab (31)
covering more wide range of omics data. A graphical rep-
resentation of the meta-data is available via
SDRF2GRAPH (32) to facilitate the understanding of
the complex details, in particular, the relationship
between samples and data sets.

The entire set of meta-data is useful to understand the
whole experiments completely, but it also requires efforts
to understand the contents instead. An essential part of
the meta-data coupled with data file itself would help a
wide range of specific analysis. From this perspective we
adopted a simple tab-delimited format where the meaning
of the columns are described in the file header following a
minimal set of rules. We termed this data description
scheme as order switchable column table (OSC table)
format, and its specification is available from the web
resource while the file at the same time is self-explanatory.

Figure 1. Structure of the FANTOM web resource. Schematic repre-
sentation of the structure of FANTOM web resource and its inter-
actions with other databases.
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Access from external systems

On top of the tightly connected interfaces and the primary
data archives within our system, the integration with other
relevant resources outside of our system enables research-
ers to view our data in a different and even wider context.
Our data is visible through the RIKEN integrated
database of mammals on the SciNetS (Scientists’
Networking System) (33), which indexes a wide range of
data resources and connects them based on the semantic
web framework (34) using structured ontologies. We also
provide our data in the UCSC Genome Browser (35)
bigWig and bigBed file format. This way, other genome
browsers, applications or command line tools can point to
our large indexed binary data sets and import details from
specific genomic regions avoiding the need to transfer all
data from a track. Using the UCSC Genome Browser to
overlay data produced from the ENCODE project (http://
www.genome.gov/10005107) with FANTOM data is one
example of jointly inspecting both data in an interface
many researchers are familiar with. Conversely, the
Gbrowse running in the FANTOM web resource can be
pointed to the UCSC data files or other data sources to
facilitate an integrated view.

FUTURE DEVELOPMENT

We successfully assembled and updated a set of
genome-wide experiments performed and published by
the FANTOM consortium into a single web resource.
This provides an integrated view and resource of all
FANTOM data covering a wide range of aspects of tran-
scriptome complexity. With the recognition that the tran-
scriptome exceeds previously assumed complexity, the
importance of an accurate understanding of transcription-
al regulation is increased. Cell reprogramming reports, in
particular, emphasize this need with the goal to manipu-
late the transcriptional state of cells to drive the transition
between cell types at will. We keep developing new
technologies such as nanoCAGE to facilitate the identifi-
cation of promoters from very small sample sizes (�10 ng
of total RNA) and CAGEscan linking promoters and
internal exons by adopting mate-pair sequencing (36).
Additionally, we will keep updating our FANTOM web
resource with related data to improve our efforts to
provide a baseline for currently available data.
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