
REVIEW
 CURRENT
OPINION The multifaceted nature of HIV tissue reservoirs
www.co-hivandaids.com
Riddhima Banga and Matthieu Perreau
Purpose of review

To underline the complexity and the heterogeneity of the HIV reservoir.

Recent findings

While lymphoid tissues (spleen, lymph nodes, gut-associated lymphoid tissue) harbor specific subsets of
specialized CD4þ T cells enriched in HIV-infected cells, non-CD4þ T cell reservoirs such as tissue-resident
macrophages and dendritic cells have also been implicated to contribute to viral persistence. Moreover,
studies have applied highly sensitive tools to detect transcriptional activity within HIV-infected cells during
prolonged ART and revealed a broader spectrum of transcriptional activity for proviruses than previously
thought. Finally, while a combination of factors might be involved in the regulation of HIV persistence
within different tissues and remains to be fully elucidated, recent results from autopsy samples of HIV-
infected ART suppressed individuals indicate extensive clonality of HIV reservoirs in multiple tissues and
suggest that the recirculation of HIV-infected cells and their local expansions in tissues may also contribute
to the complexity of the HIV reservoirs in humans.

Summary

HIV persistence in blood and multiple tissues despite long-standing and potent therapy is one of the major
barriers to a cure. Given that the HIV reservoir is established early and is highly complex based on its
composition, viral diversity, tissue distribution, transcriptional activity, replication competence, migration
dynamics and proliferative potential across the human body and possible compartmentalization in specific
tissues, combinatorial therapeutic approaches are needed that may synergize to target multiple viral
reservoirs to achieve a cure for HIV infection.
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Although antiretroviral therapy (ART) is undeniably
effective at blocking HIV replication to levels below
the detection limit of conventionally available
assays [1,2], neither early [3] nor prolonged treat-
ment is sufficient to cure HIV infection [4–6].
Indeed, upon treatment interruption, plasma viral
rebound occurs in majority of HIV-infected individ-
uals within a relatively short time frame, around 14–
21 days [7,8], demonstrating that HIV persists
despite ART. Historically, the quantification of
HIV-infected cells reliedmainly on either PCR-based
methods measuring viral nucleic acids [9–11] and/
or on viral outgrowth assays assessing viral compe-
tency [12,13]. These assessments supported the
paradigm that viral persistence was primarily asso-
ciated with quiescent yet inducible HIV infection of
long-lived resting memory CD4þT cells in the
blood, referred to as the ‘latent reservoir’ [4,5,14]
which was largely unchanging and stable over-time
[6,15]. In contrast to peripheral blood, secondary
lymphoid organs (such as the spleen, lymph nodes,
and gut-associated lymphoid tissues), where viral
extensively investigated [16,17]. This was mainly
attributed to twomajor reasons: limited accessibility
to tissue samples from individuals on ART due to
ethical considerations, and tissues were believed to
harbor HIV-infected cells actively expressing HIV
genes and viral transcripts, constituting an ‘active
reservoir’ susceptible to elimination – either directly
through viral cytopathic effects or through cell-
mediated immunity [18]. However, recent studies
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KEY POINTS

� Despite recent technological breakthroughs allowing
the single-cell proteo-genomic profiling of HIV-infected
cells, no evidence till date supports the presence of a
single phenotypic marker capable of effectively
distinguishing virally infected cells from uninfected cells.

� Increasing amount of studies support to presence of
replication-competent inducible HIV reservoir within
macrophages and dendritic cells isolated from distinct
tissues in the body, highlighting, the need of
considering these cellular reservoirs in cure-oriented
clinical trials.

� Viral rebound upon ART cessation can originate from
multiple tissues in the body. In this context, multiple
factors can contribute to viral replication following ART
cessation, including anatomical and microanatomical
locations, the infected cell type, cellular phenotype,
half-life, the nature of the provirus, the potential for
transcriptional activity given the specific integration site,
and/or distribution of antiretroviral drugs within tissues.
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have played a pivotal role in unravelling the com-
plexity of the HIV reservoir in terms of its cellular
composition, tissue distribution, and transcrip-
tional activity [19].
CELL TYPES

Research efforts over the past 30 years have sought
to understand the complexity of the HIV reservoir
in order to facilitate the development of interven-
tions that could eradicate the HIV-infected cells (a
cure) or enable HIV seropositive individuals to
maintain suppressed viremia in the absence of
ART (a functional cure) [20,21]. In this context,
the qualitative and quantitative assessment of the
HIV reservoir in ART treated individuals has been
conducted by various research groups employing
diverse assays to measure the presence of viral
nucleic acids (such as total and integrated DNA,
or various forms of RNA) through PCR-based assays
either alone or with proviral sequencing, viral pro-
tein (p24) detection and/or with functional assess-
ments measuring viral competence through
culture-based viral outgrowth assays. In this regard,
pioneering studies demonstrated the presence of
HIV-infected cells (HIV DNAþ and/or RNAþ), albeit
at different frequencies, within various blood
CD4þT cell subsets [9–12,22–27]. However, it is
important to note that while PCR-based assays are
highly standardized, robust, and require fewer cells
as compared with culture-based methods, they fail
to distinguish between defective and replication
competent viruses [28].
1746-630X Copyright © 2024 The Author(s). Published by Wolters Kluwe
Alternative approaches, such as the use of cul-
ture-based quantitative viral outgrowth assays (Q-
VOAs) to assess the frequencies of HIV-infected cells
harboring inducible replication-competent provi-
ruses in treated individuals demonstrated a notable
enrichment within blood CD4þT cells expressing
CXCR3 [24,29] and CD32a [30]. Similarly, enrich-
ment was observed within lymph node (LN) CD4þT
cells expressing PD-1 [23], that is, LN Tfh cells
(Fig. 1) and CD32a [31] in the same individuals
during ART, although at significantly higher fre-
quencies within lymph nodes. Notably, Q-VOAs
are highly robust and could be instrumental for
measuring reservoir size in cure-oriented clinical
trials. However, Q-VOAs rely on large cell inputs
of highly purified cell populations in the limiting-
dilution format, the necessity for specific stimula-
tions to induce viral production, and potentially
underestimate the viral reservoir size due to the
assay’s sensitivity (reviewed in Eriksson et al. [28]).
Furthermore, elegant studies have demonstrated
that while around 10% of HIV-infected cells may
harbor intact proviruses in treated individuals, only
a small fraction (<5%) is induced to produce repli-
cation-competent viruses in vitro under routine VOA
laboratory settings [32].

Given these technical limitations, recent devel-
opments focused on alternative experimental strat-
egies targeted at the combined evaluation of both
the phenotype of HIV-infected cells and cellular
transcriptome at single cell level, as seen in the
PheP-seq assay [33]. Notably, these new advance-
ments provided an unprecedented high-resolution
analysis of proviral landscape of individual HIV-
infected cells during ART [33]. This analyses revealed
the presence of intact viruses within both tissue-
resident memory CD4þT cells - expressing CD127
and CD69þ T cell population and within circulating
resting CD4þT cells (central memory and effector
memory T cells) in lymph node tissues of treated
individuals [33], suggesting the capacity of these
cells to disseminate infection to other lymphoid
organs. Of note, these analyses did not provide
evidence supporting the presence of a single phe-
notypic marker capable of effectively distinguishing
virally infected cells from uninfected cells. There-
fore, future studies probing the efficacy of these
approaches to better identify and define the viral
reservoir characteristics would be crucial.

HIV DNA has also been readily detected within
local macrophages resident in several mucosal tis-
sues of ART treated individuals such as the gastro
intestinal tract [34–36], penile urethra [37], testes
[38] and vaginal tissues [39,40] or in tissue-resident
macrophages such as Kupffer cells in liver [41],
alveolar macrophages in lungs [42] and within
r Health, Inc. www.co-hivandaids.com 117



FIGURE 1. Schematic representation of potential HIV tissue reservoirs in the body: The figure represents the complexity of the
HIV reservoir in terms of its cellular composition, broad anatomical distribution and transcriptional status during ART. Major
HIV reservoirs depicted include: blood, lymphoid tissues, i.e. spleen, lymph nodes, gut-associated lymphoid tissues (GALT),
bone marrow, lungs, genitourinary systems and central nervous system (CNS). Proposed cellular reservoirs within blood and
tissues are depicted. Cell types are color-coded; HIV-infected cells are depicted harboring integrated HIV DNA;
transcriptionally active HIV-infected cells are shown with dashed red lines. ‘cTfh’ refers to circulating T follicular helper cells;
‘GI’ refers to gastrointestinal tract. ‘M’ refers to male genitourinary system and ‘F’ refers to female genital tract.
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microglial cells and perivascularmacrophages in the
brain [43] by RNA and DNAscope in situ approaches.
However, viral RNAhas been demonstrated predom-
inantly within vaginal [39] and urethral macro-
phages [44] of ART suppressed individuals.
Moreover, cells harboring inducible replication
competent HIV has been shown to be specifically
enrichedwithin urethralmacrophages isolated from
ART suppressed individuals undergoing elective
gender reassignment surgery [44] as compared to
118 www.co-hivandaids.com
CD3þ penile urethral cells of the same individuals,
suggesting the major contribution of these cells to
the total reservoir in these tissues (Fig. 1). Interest-
ingly, recent evidences indicated that tissue macro-
phages may persist long-term through self-renewing
capacity [45], were relatively resistant to viral cyto-
pathic effects [46] and to cytotoxic T lymphocytes
(CTL) killing [47], and could contain inducible rep-
lication competent viruses, highlighting their con-
tribution as relevant tissue reservoirs [37].
Volume 19 � Number 3 � May 2024
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The data regarding dendritic cells (DCs) as
potential cellular reservoirs are rare, mainly due to
the low frequencies and scarce availability of tissues,
and therefore the high reliance on experiments
performed either on blood or on in-vitro-derived
cells. Notably, within lymph nodes, two distinct
populations of myeloid DCs can be identified on
the basis of their original tissue location, that is,
‘resident DCs’ and ‘migratory DCs’. In particular, LN
resident DCs differentiate in, and spend their entire
lives within LN tissues. On the other hand, migra-
tory DCs can migrate from peripheral tissues (e.g.,
from the genital mucosa to the inguinal draining
LNs) bearing antigens. In this context, a recent study
evaluated the presence of HIV-infected LN-derived
myeloid DCs during HIV infection and under sup-
pressive ART. The study demonstrated that despite
detectable levels of antiviral restriction factors
within LN DC subpopulations, a large number of
individual proviral DNA sequences isolated from LN
DCs were genome intact. Moreover, HIV-infected
LN DCs harboring inducible and infectious replica-
tion-competent HIV could be detected despite years
of suppressive therapy, highlighting their potential
role as a yet underestimated cellular source of HIV
within LN tissues (Fig. 1) [48

&&

]. Moreover, CD1aþ

vaginal epithelial DCs harboring integrated HIV
DNA could be detected in female genital tract of
virologically suppressed women, suggesting that
tissue DCs could also serve as potential cellular
reservoirs in vivo [49]. However, the potential mech-
anisms associated with the detection of HIV-
infected DCs despite ART remain to be elucidated
with possibilities including replenishment through
the proliferation of precursor DCs.

HIV infection of hematopoietic precursor or
progenitor cells capable of differentiating into dis-
tinct cell lineages have also been described [50]
(Fig. 1) (discussed in Herd et al. [51]). However,
the data regarding the potential susceptibility of
hematopoietic precursor or progenitor cells isolated
directly ex vivo from bone marrow tissue to HIV
infection has long been debated mainly due to
conflicting results obtained in part because of insuf-
ficient samples, insufficient cell purities, different
experimental approaches, the use of differentiation
and growth factors, HIV vectors used, infection
strategy, and HIV readouts used in different studies
[51]. Notably, a recent study detected identical
genome intact sequences in hematopoietic progen-
itor cells isolated directly ex vivo from ART treated
individuals using near-full genome proviral
sequencing, and suggested their survival to be
linked with cellular proliferation [52]. Moreover,
clonal proviral sequences obtained from progenitor
cells and their daughter cells showed a large
1746-630X Copyright © 2024 The Author(s). Published by Wolters Kluwe
homology to virion-sequences obtained from resid-
ual plasma viremia, suggesting the contribution of
this compartment to residual plasma viremia during
ART [52]. Although few, these studies support the
possibility that bone marrow compartment may
serve as a relevant and a less explored tissue reservoir
in ART treated HIV-infected individuals.
ANATOMIC SITES

The majority of studies addressing the HIV reservoir
have been performed in peripheral blood CD4þT
cells from treated individuals (Fig. 1) [6,9,22,28,
32,53,54]. Although these studies have yielded key
insights into the HIV reservoir, circulating CD4þT
cells represent <2% of total body CD4þT cells at a
given instance [55], with the majority of them
located within secondary lymphoid organs. In this
context, there is a growing recognition of the sig-
nificance of tissue microenvironments in studying
the viral reservoir and assessing cure interventions.
Indeed, HIV-infected cell fate (survival, prolifera-
tion, elimination, migration and renewal-capacity)
within different tissues might be influenced bymul-
tiple parameters whichmay be specific to tissues and
distinct from blood [7,17,19,56,57]. In particular,
different tissues may harbor specific spatial organ-
ization, cellular and cytokine milieu [58]; variation
in viral expression levels [23,48

&&

,59,60]; anatomical
compartments harboring specific immune effector
mechanisms to clear infected cells expressing viral
RNA and/or protein [61–63] and finally differential
ART drug penetration [59,64].

The characterization of tissue reservoirs has
been performed using multiple approaches includ-
ing either through virological and/or phenotypic
evaluation of HIV-infected cells using flow/mass
cytometry [23,24,31,48

&&

,65], imaging platforms
[7,60,66] and/or through alternative approaches
after direct isolation ex vivo under various scenarios,
from SIV-infected macaques [60] or HIV-infected
individuals on ART [23,24,48

&&

,65], SIV-infected
macaques [66] or HIV-infected individuals after ana-
lytical treatment interruption [7], and more
recently, in autopsy samples fromHIV-infected indi-
viduals [67

&

,68]. Notably, these studies have dem-
onstrated that HIV DNA and/or RNA are detected
within multiple tissues, consistent with the infec-
tion of multiple tissue-resident and circulating cell
types. However, lymphoid tissues (lymph nodes,
GALT and spleen) are the predominant sites of
HIV infection and persistence of cells with replica-
tion competent virus.

Lymphnodes (LNs) represent distinct compart-
ments containing phenotypically and functionally
specialized cell subsets as compared to blood. LNs
r Health, Inc. www.co-hivandaids.com 119
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are dynamic and highly structured tissues, consist-
ing of strategically prepositioned LN resident cells
within micro-anatomical niches and recirculating
cells. The differential location of LN cell subsets
within the micro-anatomical niches is associated
with distinct cell phenotypes and molecular and
functional signatures [19] and different ART drug
penetration [59]. In this context, classical in situ
hybridization-based approaches in ART SIV NHP
models [60], and more recently, the profiling of
phenotype of HIV-infected cells and cellular tran-
scriptome at single cell level have indicated that
while HIV DNA harboring cells can be detected
within both LN extra-follicular and follicular areas
[33], transcriptionally active SIV/HIV RNAþ cells
are mainly detected within B cell follicles in LNs.
Interestingly, SIV/HIV RNAþ was associated with
two distinct cell types including [23,69–71]: fol-
licular dendritic cells (FDCs) that are not infected
but can bind and retain intact HIV virions within a
nondegradative cycling compartment for pro-
longed periods of time and transmit infectious
particles to CD4þT cells [70,71] or HIV/SIV
infected T follicular helper cells (Tfh) (Fig. 1). Nota-
bly, SIV/HIV infected Tfh cells were enriched in
multiple virological setting including in HIV vire-
mic controllers [72], SIV-infected elite controller
macaques [69], HIV viremic individuals and ART-
treated aviremic HIV-infected individuals [23,31].
The enrichment of HIV-infected Tfh cells poten-
tially involves nonmutually exclusive phenomena
that are not yet fully identified, including: hetero-
geneous ART drug penetration (particularly pro-
tease inhibitors) into distinct areas of LN tissues
with limited combined exposure to all infected
cells, potentially allowing for environments where
low-level, intermittent viral replication can occur
[59]; likelihood of maintenance of HIV-infected
cells containing replication-competent viruses
through both long-term survival and clonal expan-
sion [53,73–76], without necessarily inducing
viral expression; relatively low accessibility of
GCs to HIV/SIV-specific cytotoxic CD8þT cells,
thereby allowing viral reservoirs that reside in
these microenvironments to escape CTL elimina-
tion [73,74,76–78], and enrichment of regulatory
T cells and DCs expressing immunomodulatory
molecules cytokines such as TGF-b and interleukin
(IL)-10 and plasmacytoid DCs secreting type I
interferon that contribute to promote viral latency
in the LN paracortex and relative exclusion from
germinal center areas (Fig. 1) [19].

Additional cell types, such as tissue resident
macrophages in other sites (such as microglial cells
in brain), astrocytes, hematopoietic progenitor cells,
among others, in which HIV DNA or RNA has been
120 www.co-hivandaids.com
detected however inducible replication-competent
HIV has only been recovered in limited scenarios
and with extreme difficulty (Fig. 1) [52,79,80]. In
this context, it is important to note that because of
limited access to human tissue, there is sparse sam-
pling ofmany tissue types (i.e., spleen) thatmay also
harbor CD4þT cells with replication-competent
virus [67

&

] and addition technical complexities asso-
ciated with sampling of tissues and the assessment
of replication competence by Q-VOAs, have limited
the sensitivity of assessments performed to date in
various tissues. Therefore, understanding the com-
position and frequency of the replication-compe-
tent reservoirs across different anatomic sites
remains a critical issue for future cure-oriented
interventional studies.
SPECTRUM OF TRANSCRIPTIONAL
ACTIVITY AND REPLICATION
COMPETENCE

HIV-infected cells in blood were frequently consid-
ered as ‘transcriptionally silent’, primarily due to the
absence of detectable HIV RNA in most instances, as
assessed by PCR methodologies. However, recently,
breakthrough assays were developed that either
allowed the profiling of individual proviral chromo-
somal integration site and transcriptional activity
with increased sensitivity (PRIPseq) [81

&&

], evalua-
tion of transcriptional activity in individuals under
temporary ART initiated during primary HIV infec-
tion by distinct cell-associated HIV RNA-based
measurements [82], or evaluation of transcriptional
activity directly ex vivo in CD4þT cells from fully
suppressed individuals at single-cell level by RNA-
flow-FISH [83

&&

]. These studies have independently
supported the detection of a broad spectrum of
transcriptional activity directly ex vivo under these
conditions. Furthermore, they have also high-
lighted the power of assessing quantitative and
qualitative nature of transcriptional activity directly
ex vivo as a tool to predict features of HIV-specific
immune responses in vivo and viral rebound post-
ART cessation [82,83

&&

].
Transcriptional activity within infected CD4þT

cells at a specific point is suggested to be associated
with several factors including the presence or not of
transcriptional blocks arising at various stages dur-
ing transcription – such as in initiation, elongation
and in multiple splicing in resting CD4þT cells, due
to both host-related and virus-related factors [84].
Based on these observations, it is conceivable that
diverse mechanisms influencing the levels of tran-
scriptional activity may exist within distinct cell
types, tissues, and anatomical compartments as
compared to blood (Fig. 1).
Volume 19 � Number 3 � May 2024
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Multiple mechanisms have been proposed for
the persistence of transcriptionally active HIV-
infected CD4þT cells under long-term during
ART. Amongst these, proviral integration within
nongenic locations has been strongly associated
with significantly weaker viral transcriptional
activity, likely because of nonpermissive features
of the chromatin at or near the chromosomal inte-
gration site as opposed to those integrationswithin
chromosomal locations surrounded by activating
epigenetic chromatin signals in their immediate
chromatin proximity (observed for both intact
and defective proviruses) [85]. The authors high-
lighted an intriguing aspect, emphasizing the prob-
ability of detecting an expanded clone that
contained both transcriptionally silent and active
proviruses [81

&&

] in suppressed individuals. This
suggests the possibility that the transcriptionally
active cellsmay survive over-timebyoutcompeting
host-related immune selection forces despite ART
or through intrinsic features of survival and
reduced susceptibility to host-mediated elimina-
tion [81

&&

,85].
Indeed, the transcriptional status of a cell

may change over-time, impacting the fate of an
HIV-infected cell and therefore the frequency of
total cells harboring transcription at a given time.
Cellular factors such as activation (spontaneous
or antigen-driven) and/or migration through tis-
sues may induce a threshold of transcription
adequate for virus-mediated cytolysis or immune
recognition, and therefore promote the elimina-
tion of infected cells. On the contrary, homeostatic
or antigen-driven clonal expansion of cells harbor-
ing or not transcriptional activity may in-turn
increase the frequency of HIV-infected cells that
may or may not at a later stage become transcrip-
tionally active. Taken together, it appears that the
dynamic and evolving nature of transcriptionally
active proviruses under the influence of host-medi-
ated selection pressure necessitates longitudinal
evaluation.
COMPARTMENTALIZATION

The various immune environments, immunologi-
cal selection forces and ART drug penetration
capacities within specific tissues (such as within
LNs,GALT, andCNS)may foster viral compartmen-
talization as well as evolution of viral sequences,
allowing for new cell types to be infected. In this
regard, to better understand the relationship
between circulating proviruses and those present
in tissues, studies have focused on the assessment
of phylogenetic relationship between individual
proviral sequences isolated from the tissues and
1746-630X Copyright © 2024 The Author(s). Published by Wolters Kluwe
from blood CD4þT cells [8,24,65,67
&

]. Notably,
these studies have indicated the possibility of three
states of virus in tissue when compared to the
blood: equilibrated (where virus in the blood and
tissue are very similar), compartmentalized (where
blood and tissue viral populations are distinct,
indicating separately evolving populations in these
compartments), and clonal amplification (where a
single variant is greatly expanded within a com-
partment). In this context, while proviral compart-
mentalization has been observed in some studies
(liver [86], testes [87], female genital tract [88],
central nervous system (CNS) [89]), many others
did not observe viral compartmentalization (gut
[90], LNs [24,65], CNS [91]). The contrasting results
obtained might be explained at least in part by the
compartments compared the type of samples com-
pared, that is, cells isolated from ART treated indi-
viduals or biopsies [91] and/or the techniques
used, that is, bulk versus single genome proviral
sequencing of a part of viral genome (HIV env
[68,92] versus other regions [93,94]) or near full-
length sequencing [67

&

,91]. Importantly, an ele-
gant study performed an extensive characteriza-
tion of genetic compartmentalization of proviral
sequences present in multiple tissues obtained
from autopsies of HIV-infected individuals using
near full-length proviral genome sequencing [67

&

].
Notably, compartmentalization analyses restricted
to distinct proviruses per tissue, revealed no evi-
dence for compartmentalization [67

&

]; on the other
hand, several analyzed tissue reservoirs (secondary
lymphoid organs, lungs, liver and genital tract)
harbored large clones (both defective and intact
proviruses) that were often shared between distinct
tissues (such as lymph nodes, GALT, spleen, liver,
lungs; Fig. 1), suggesting a re-circulation of HIV-
infected cells between lymphoid and effector tis-
sues even after prolonged ART [67

&

].
CONCLUSION

More than 30years of research demonstrated that
the HIV reservoir is heavily complex in nature and
involves multiple cell types located in multiple tis-
sues. In addition, the HIV reservoir is probably
heavily dynamic in terms of renewal potential, cell
migratory potential but also in terms of transcrip-
tional activity. In this context, the recent develop-
ment of single-cell and single-viral genome
approaches, will probably bring valuable insights
into tissue reservoirs.
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