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and Sakari Vanharanta1,3,7,9,*

SUMMARY

Lineage switching can induce therapy resistance in cancer. Yet, how lineage fi-
delity is maintained and how it can be lost remain poorly understood. Here,
we have used CRISPR-Cas9-based genetic screening to demonstrate that loss
of SMARCB1, a member of the SWI/SNF chromatin remodeling complex, can
confer an advantage to clear cell renal cell carcinoma (ccRCC) cells upon inhibi-
tion of the renal lineage factor PAX8. Lineage factor inhibition-resistant ccRCC
cells formed tumors with morphological features, but not molecular markers, of
neuroendocrine differentiation. SMARCB1 inactivation led to large-scale loss of
kidney-specific epigenetic programs and restoration of proliferative capacity
through the adoption of new dependencies on factors that represent rare
essential genes across different cancers. We further developed an analytical
approach to systematically characterize lineage fidelity using large-scale
CRISPR-Cas9 data. An understanding of the rules that govern lineage switching
could aid the development of more durable lineage factor-targeted and other
cancer therapies.

INTRODUCTION

Lineage-specific transcription factors (TFs), such as SOX10 andMITF inmelanoma, have emerged as a com-

mon class of essential genes in large-scale functional cancer cell line fitness screens.1,2 Clinically relevant

examples include estrogen and androgen receptors, which are well-established therapeutic targets in

breast and prostate cancer, respectively.3 The success of hormone therapies suggests that lineage factor

dependencies could be exploitable for clinical benefit also in non-hormone receptor-driven cancers. How-

ever, the cancer-relevant biology of lineage factors and the mechanisms that maintain lineage fidelity, i.e.,

the dependency of a cancer on the transcriptional lineage factor programs of its tissue of origin, in

advanced cancer clones remain poorly understood. It is also unclear what the long-term consequences

of lineage factor inhibition are, how lineage factor independence may arise, and how lineage switching,

or loss of lineage fidelity, an emerging mechanism of therapy resistance,4 is facilitated.

Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer with�300,000 diagnoses

and �100,000 deaths annually worldwide.5 Inactivation of the von Hippel-Lindau tumor suppressor gene

(VHL), seen in �90% of ccRCCs, is the only clonal genetic driver alteration in most ccRCCs.6 VHL loss leads

to stabilization of the hypoxia-inducible factors HIF1A and HIF2A, of which HIF2A is critical for ccRCC

development.7 Interestingly, HIF2A inhibitors have demonstrated efficacy against ccRCC in some patients,

but de novo and acquired resistance are common.8,9 The widespread and uniform expression of PAX8,10 a

well-established example of a lineage-specific transcription factor dependency,1,2,11–14 make PAX8 an

attractive alternative target for ccRCC therapy, especially given the redundancy between Pax8 and Pax2

in normal renal development in mice.12 Recent evidence suggests that in ccRCC cells PAX8 maintains

the expression of CCND1 and MYC, two canonical oncogenes that are required for ccRCC proliferation.14

PAX8 regulates CCND1 expression through a distal enhancer, the activity of which also depends on HIF2A,

whereas PAX8-dependentMYC expression involves the downstream mediator HNF1B, another renal line-

age factor.14
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Figure 1. SMARCB1 loss facilitates resistance to lineage factor inhibition in ccRCC cells

(A) A schematic of a pooled CRISPR-Cas9-based loss-of-function screen using an sgRNA library targeting chromatin regulators to identify genes capable of

modulating the dependency of ccRCC cell lines on PAX8 inhibition.

(B and C) Changes in sgRNA abundance over time, measured by calculating beta scores using the top three enriched sgRNAs per gene relative to day 0, from

two technical replicates. (B) The beta scores for the control arm of the screen versus the pooled experimental arm (P81/2). (C) The beta scores for each of the

experimental arms of the screen. Highlighted points have a beta score <-0.5 or >0.5 and a p value <0.05. p-value was calculated by permutation based

approach using MAGeCK.

(D) Genetic dependency data for 946 cell lines from the DepMap project. Distribution of CERES scores for the gene SMARCB1 and an example non-essential

gene (CNBD1). Kruskal-Wallis test.

(E and F) Competitive proliferation assays using 786-M1A Cas9 clone 6 (786-M1A-C6) cells expressing combinations of sgRNAs (Ctrl or S11/2) and inducible

shRNAs (Ctrl or P81/2), competed against cells with a PAX8 KD (P81/2). Three technical replicates per condition. (E) Doxycycline was added at day 0 (acute, A),

(F) cells were pre-treated for �1 month before the start of the assay (midterm, MT). Error bars are SD. Kruskal-Wallis test.
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While ligand-independent transcription factors lack active pockets where small-molecule inhibitors could

bind, emergingmodalities, such as proteolysis-targeting chimeras or protein-protein interaction inhibitors,

could expand the clinically druggable target space to include a broader set of transcription factors in the

future.15,16 Meanwhile, detailed functional genetic modeling in experimental systems could help evaluate

the potential of lineage factors as therapeutic targets. To understand the consequences of lineage factor

inhibition, we have used genetic screening to identify mechanisms that maintain lineage fidelity and PAX8

dependency in ccRCC cells. We find that loss of the SWI/SNF complex member SMARCB1 can facilitate the

development of resistance to PAX8 inhibition, giving rise to a strongly altered histological appearance

which displays morphological features of neuroendocrine differentiation but no molecular neuroendocrine

markers. The dedifferentiated phenotype relies on newly acquired dependencies on IRF2, BHLHE40, and

ZNFX1, which represent rare pan-cancer dependencies. Moreover, systematic analysis of hundreds of cell

lines revealed evidence of molecular mechanisms that may promote lineage factor inhibition resistance

across several different cancer lineages. We conclude that resistance to lineage factor inhibition follows

molecular logic that could be exploited for the prevention of lineage switching, potentially leading to

more sustained therapy responses to various anticancer agents.

RESULTS

SMARCB1 loss facilitates resistance to lineage factor inhibition in ccRCC cells

To identify genes that maintain the dependency of ccRCC cells on PAX8, we performed loss-of-function

screening on a PAX8 knockdown (KD) background in 786-M1A cells, a metastatic VHL mutant ccRCC cell

line,17 using a single guide RNA (sgRNA) library targeting chromatin regulators,18 key factors involved in

the maintenance of cellular identity (Figure 1A). To establish the optimal conditions for screening, we

derived a doxycycline-inducible Cas9 clone with high editing efficiency and validated that two short hairpin

RNAs (shRNAs) targeting PAX8 could effectively suppress PAX8 expression within 24 h and induce a

negative proliferative phenotype (Figures S1A–S1E). The shRNAs were co-expressed with a fluorescent re-

porter, which allowed us to monitor expression and select for cells that maintained PAX8 KD throughout

the experiment (Figure S1F). All genes and 98.5% of sgRNA were captured at the start of the screen and

there was a negative selection against known essential genes but not non-essential genes (Figures S1G–

S1I). The most enriched PAX8 KD condition (P81/2)-specific hit from the screen was SMARCB1, a member

of the SWI/SNF chromatin remodeling complex, which has a key role in chromatin landscape maintenance

in development and tissue homeostasis (Figures 1B and 1C).19 Three additional SWI/SNF complex

members were also specifically enriched in the PAX8 KD condition, of which ARID1A showed the strongest

enrichment (Figure S1J). ARID1A and SMARCB1 inactivation have recently been shown to reduce the sensi-

tivity of breast cancer cells to estrogen receptor inhibition,20,21 giving support to our findings in a second

cancer type. Interestingly, unlike ARID1A, and in contrast to its effect in our screen, SMARCB1 is a proto-

typical pan-cancer essential gene (Figures 1D, S1K, and S1L).

We validated the results from the screen by competitive cellular proliferation assays using two additional

SMARCB1 sgRNAs (S11/2) (Figures 1E and S1M). Acute PAX8 KD/SMARCB1 knockout (KO) (P81/2S11/2(A))

resulted in a proliferative rescue but the cells grew less stably and were sensitive to passaging. Given

time (�1 month, mid-term, MT), they began to grow more robustly (Figures 1F and S2A). SMARCB1 loss

thus provides an immediate proliferative advantage to PAX8 KD cells but with a significant stability

trade-off that can be selected against over time. Over a period of �2–3 months (long-term, LT), the

P81S11/2(LT) cells maintained a similar growth phenotype but cells without SMARCB1 KO (P81Ctrl) also

adapted to PAX8 suppression (Figures S2B and S2C). Critically, despite a partial proliferative rescue, a se-

lective pressure to regain PAX8 suppression was maintained in P81Ctrl(LT/MT) cells but not in their

SMARCB1 KO counterparts, as evidenced by the gradual loss of PAX8 shRNA expression in P81Ctrl

(LT/MT) cells (Figures 1G and S2D). Tumor growth in vivo was totally abrogated by PAX8 KD (P81Ctrl(A)),

Figure 1. Continued

(G) Escaper assay with three technical replicates using 786-M1A-C6 cells, showing the percentage of cells expressing the fluorophore dsRed as a measure of

PAX8 shRNA expression for cells pre-cultured on doxycycline for �1 month (MT), normalized to day 0. Cells were sorted at the beginning of the assay to

ensure a starting point of 100% dsRed. Error bars are SD.

(H) Hematoxylin and eosin (H&E) staining of tumors formed by Ctrl.Ctrl and P81S11(LT) cells, respectively.

(I) Boxplot of PAX8-centered CERES dependency score for VHL-mutant RCC lines from the DepMap project, which are either WT (n = 13) or mutant for

ARID1A (n = 1) or SMARCB1 (n = 3). Kruskal-Wallis test. For boxplots, center line shows the median, the box bounds represent the first and third quartiles,

and the whiskers extend to the highest and lowest values. See also Figures S1 and S2.
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partially rescued for P81Ctrl(LT) cells and completely rescued for P81S11(LT) cells, which were transduced

with the more efficient SMARCB1 sgRNA (Figures S1M, S2A, and S2H). P81S12(LT) cells, on the other

hand, showed only weak tumorigenicity (Figure S2E). Histological analysis revealed a high-grade ccRCC

phenotype with sarcomatoid dedifferentiation in the control cells, characteristic of the 786-M1A cells.17

On the other hand, tumors arising from the PAX8 KDbackground presented as high-grade undifferentiated

carcinomas, with extensive areas of necrosis and morphological appearance reminiscent of neuroendo-

crine differentiation, in keeping with a large-cell phenotype, but no morphological evidence of rhabdoid

dedifferentiation (Figures 1H and S2F). In agreement with the in vitro data, P81Ctrl(LT) tumors displayed

also areas of the original histology, possibly indicating the presence of escapers from PAX8 KD. However,

immunohistochemical and RNA analyses did not detect expression of typical neuroendocrine markers spe-

cifically associated with the PAX8 KD-resistant phenotype (Figure S2G). Interestingly, a similar phenotype,

morphological neuroendocrine features without molecular neuroendocrine markers, has recently been

described in an experimental mouse-derived renal carcinoma model that displays molecular features of

an aggressive ccRCC subtype.22

To expand our study to additional ccRCC models, we took a systematic approach and identified VHL

mutant ccRCC cell models which have a non-synonymous and predicted damaging or TCGA/COSMIC hot-

spot SMARCB1 (n = 3) or ARID1A (n = 1) mutation from the cell line encyclopedia (CCLE)23 and compared

their PAX8 inhibition sensitivity to their SMARCB1/ARID1A wild-type (WT) counterparts (n = 13) using loss-

of-function data from the cancer dependency map project (DepMap).24 In line with the findings from our

screen, SMARCB1/ARID1Amutant lines showed strong resistance to PAX8 KO compared to their WT coun-

terparts (Figure 1I). However, there were also two VHL mutant cell lines that showed similar resistance to

PAX8 KO but did not have a SMARCB1 or ARID1A mutation, indicating that PAX8 inhibition resistance

can arise through several mechanisms. In line with this, PAX8 depletion in UOK101 cells, another VHL

mutant ccRCC cell line, resulted in quick emergence of a resistant population which maintained the essen-

tial status of SMARCB1 (Figures S2H and S2I). In sum, inactivation of SMARCB1, a generally essential gene

in cancer cells, is associated with lineage factor independence in ccRCC, but other mechanisms of lineage

factor independence also exist.

Large-scale alterations in enhancer activation states upon SMARCB1 loss

To understand the role of SMARCB1 in PAX8 inhibition resistance, we performed RNA sequencing (RNA-

seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) to measure changes

in the transcriptome and chromatin accessibility upon SMARCB1 loss. We detected differentially ex-

pressed genes across conditions, with more gene expression changes in the P81S11/2(MT/LT) conditions

compared to P81Ctrl(A) (Figure 2A and Tables S1, S2, S3, S4, S5, and S6). In accordance with the prolif-

erative phenotype, we found that SMARCB1 loss triggered an increase in proliferative gene signatures

(MYC_V1, MYC_V2, G2M, E2F), which increased over time (Figure 2B). The hallmark apoptosis signature

was also reduced in the comparison between acute and long-term SMARCB1 KO, supporting our obser-

vation that SMARCB1 simultaneously triggers heightened proliferation and instability, and over time

clones which can tolerate SMARCB1 loss are selected for (Figure 2B). From our ATAC-seq experiment,

we detected �72,000 high confidence peaks in total across conditions, with control and P81Ctrl(A) having

a similar number of peaks and P81S11/2(LT) having substantially less (Figure S3A). There was a large pro-

portion of differentially accessible regions in the SMARCB1 KO conditions compared to the control,

18,414 in total, 13,892 of which had lower accessibility (LA) and 4,522 higher accessibility (HA)

(Figures 2C, S3B, and S3C). P81S11(LT) and P81S12(LT) showed a similar overall pattern of altered DNA

accessibility (Figure 2C), but the changes were more pronounced in P81S11(LT) cells (Figure S3B). As ex-

pected, increased chromatin accessibility was associated with increased gene expression whereas

reduced chromatin accessibility was associated with reduced gene expression (Figures 2D, 2E, S3D,

and S3E). We annotated the differentially accessible regions based on their location in the genome

and found that the majority were intronic and intergenic and that there was a statistically significant un-

derrepresentation of promoter annotations (Figures 2F and 2G). To test whether these regions were en-

hancers, we looked for an overlap with markers of active chromatin. A re-analysis of H3K27ac and

H3K4me1 chromatin immunoprecipitation sequencing data in 786-M1A cells25 showed a typical bimodal

distribution of average signal flanking the center of the ATAC-seq peaks for both LA and HA regions

(Figures S3F and S3G). In summary, SMARCB1 KO triggers large-scale enhancer re-programming in as-

sociation with resistance to PAX8 suppression.
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Figure 2. Large-scale alterations in enhancer activation states upon SMARCB1 loss

(A) MA plots of RNA-seq differential expression analysis from 786-M1A-C6 cells. Gene expression fold change was calculated relative to shRen/sgNTC

(Ctrl.Ctrl) cells. Highlighted points have an FC > 1.5 or <(-1.5) and p.adjust <0.05. Adjusted p values calculated with DEseq2.

(B) Gene set enrichment analysis (GSEA) using the hallmarks collection from mSigDB, for different comparisons as indicated on the left. Highlighted points

(purple/cyan) have a p.adjust <0.05.

(C) Heatmaps showing normalized ATAC-seq signal +/� 2kb centered on summits of differentially accessible (DA) regions, defined by Ctr.Ctrl vs. P81S11/2
(FC > 2 or <(-2), p.adjust <0.001). Top panels show the average signal for higher accessible and lower accessible regions.

(D and E) Correlation of ATAC-seq and transcriptional changes, for Ctrl.Ctrl(A) vs. P81S11/2(LT). Downregulated genes near lower accessibility regions in (D).

Upregulated genes near higher accessibility regions in (E). Left y axis, the ratio of the number of downregulated/upregulated genes found within windows

created around lower/higher accessible regions compared to the number of expressed genes (universe) also found within the windows. Right y axis, p value,

one-tailed hypergeometric test. Matched Ctrl peaks for LA and HA regions were generated from the consensus list of all peaks merged across conditions.

(F) Stacked bar plots of genomic annotations for LA and HA regions from comparisons Ctrl.Ctrl(A) vs. P81Ctrl(A), P81S11(LT), and P81S12(LT) (FC > 2 or <(-2),

p.adjust <0.001).

(G) Percentage of regions annotated as a promoter in the consensus list of all peaks merged across conditions (dark gray) and lower and higher accessible

regions from (F). Two-tailed hypergeometric test. See also Figure S3 and Tables S1, S2, S3, S4, S5, and S6.
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Dedifferentiation in lineage factor inhibition-resistant ccRCC cells

Enhancers are key mediators of lineage specification and the SWI/SNF complexes have been demon-

strated to maintain tissue-specific enhancers,26,27 suggesting the possibility that lineage re-programming

or dedifferentiation could underlie PAX8 inhibition resistance following SMARCB1 KO. To test this hy-

pothesis, we first performed motif analysis for our differentially accessible peak sets. As expected, the

PAX motif was highly enriched in the LA set using both known and de novo motif analysis for

P81S11/2(LT) and P81Ctrl(A) (Figures 3A and S4A–S4D). Interestingly, the most specifically enriched motif

for the P81S11/2 HA peak set was CTCF/BORIS, which has been linked to the formation of SMARCB1

mutant rhabdoid tumors and the maintenance of a naive pluripotent stem cell state28,29 (Figures 3B

and S4E–S4H).
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Figure 3. Loss of accessibility at lineage-specific gene regulatory elements in lineage factor inhibition-resistant ccRCC cells

(A and B) Ranked plots of DNA motif analysis using a database of known motifs for the already defined (A) lower and (B) higher accessibility regions, from

Ctrl.Ctrl(A) vs. P81S11/2(LT). p-values calculated using Homer.

(C and D) Ranked plots of overlap analysis between cluster-specific peak sets generated from (Figure S5A) and lower (C) and higher (D) accessible region

sets, from Ctrl.Ctrl(A) vs. P81S11/2(LT). One-tailed hypergeometric test.

(E) Heatmaps showing normalized ATAC-seq signal +/� 2kb centered on peak summits for the ENCODE adult kidney cluster region set.

(F and G) An example region of lost ATAC-seq signal at the CDH6 (F) and the SLC16A7 (G) loci.

(H and I) Normalized mRNA expression of CDH6 (H) and SLC16A7 (I) as determined by RNAseq. Adjusted p values determined by DESeq2. Error bars are SD.

See also Figures S4 and S5.
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To functionally annotate the differentially accessible enhancers in PAX8 inhibition-resistant cells, we down-

loaded 504 DNAase open chromatin profiles from the ENCODE project, spanning a range of adult and

developmental cell types, and clustered the samples into tissue-specific clusters (Figure S5A). We derived

sets of peaks that showed specificity for each cluster and ran an overlap analysis with our differentially

accessible regions. The kidney-specific clusters were most enriched for the lower accessibility peaks sets

for both P81Ctrl and P81S11/2 (Figures 3C and S5B). However, the global loss of signal at these peak sets

was substantially greater for P81S11/2 compared to P81Ctrl, suggesting that SMARCB1 loss triggers a wide-

spread loss of renal epithelial epigenetic identity (Figure 3E). This was supported by specific genomic loci

harboring known proximal tubule marker genes as defined by single-cell RNA-seq experiments, for

example, CDH6 and SLC16A730 (Figures 3F–3I). The higher accessibility peaks for P81S11/2 overlapped

most strongly with an IPS/progenitor cluster, which was not significantly enriched in the P81Ctrl higher

accessibility regions (Figures 3D and S5C–S5F).

The global loss of the renal epithelial signal in conjunction with the gain of IPS/progenitor features at the chro-

matin accessibility level supports the notion that SMARCB1 may maintain a lineage-differentiated cellular

state, the loss of which promotes PAX8 inhibition resistance. To test this at the level of gene expression, we

used the mSigDB cell-type-specific signature collection (C8), supplemented with a signature that we derived

from SMARCB1 re-introduction experiments in rhabdoid tumor cell lines.31 The two most significantly down-

regulated signatures in the SMARCB1 KO lines were from renal proximal tubules, the proposed origin of

ccRCC (Figure 4A). The loss of renal transcriptional identity followed a similar pattern to the chromatin acces-

sibility changes: PAX8 KD alone showed a negative enrichment for the proximal epithelial signature C4 but

failed to reach significance (p < 0.05) and P81S11/2(A) showed significant downregulation of the signature

which reduced further over time (P81S11/2(LT)) (Figures 4B and 4C). Similarly, PAX8 KD alone induced a positive

enrichment of the rhabdoid SMARCB1 signature, but significance was only reached when SMARCB1 was also

knocked out (Figures 4A, 4D, and 4E). Upregulated and downregulated signatures derived from our RNA-seq

data were also significantly positively and negatively enriched, respectively, in the SMARCB1 mutant ccRCC

cell lines in the CCLE dataset, suggesting that a similar mechanism accounts for the PAX8 inhibition insensi-

tivity in thesemodels (Figure 4F). In summary, PAX8 inhibition-resistant ccRCC cells display a global reduction

in the kidney-specific cis-regulatory and transcriptional programs in favor of a dedifferentiated state which

shares molecular features of SMARCB1 loss in pediatric rhabdoid tumors.

Acquired requirement of rare transcriptional dependencies in lineage factor inhibition-

resistant ccRCC cells

PAX8 inhibition resistance was associated with changes in the cellular lineage state, suggesting the possi-

bility that the role of PAX8 in supporting ccRCC growth had been replaced by alternative transcriptional

lineage factors. We therefore performed a second CRISPR-Cas9 screen targeting known and predicted

TFs using the P81S11/2(LT) cell lines (Figure 5A). As expected, constructs targeting essential genes were

depleted and those targeting non-essential genes were neither enriched nor depleted (Figure S6A). We

identified three new dependencies which had no phenotype in the control cells, IRF2, BHLHE40, and

ZNFX1 (Figures 5B, S6B, and S6C), all of which were expressed in cells prior to SMARCB1 loss (Figure S6D).

IRF2 is a member of a TF family which regulates Toll-like receptor signaling, hematopoietic differentiation,

and the expression of interferons (IFNs) and their target genes.32,33 Similar to the role of PAX8 in renal

development and ccRCC, IRF2 plays an important role in cancers originating from the plasma cell lineage

(Figures 5C and S6E). In line with IRF2’s role in regulating IFNs, compared to P81Ctrl cells, there is a strong

increase in both interferon-alpha and gamma gene sets from the hallmarks collection in P81S11/2 cells

(Figures 5D and S6F). BHLHE40 is a ubiquitously expressed stress-responsive transcription factor that is

important in several physiological responses including differentiation, tumorigenesis, and response to hyp-

oxia.34 The mutation of VHL and the stabilization of HIF2A protein is a key tumorigenic event in ccRCC, and

HIF2A perturbation RNA-seq has placed BHLHE40 downstream of HIF2A signaling.35 In line with this,

BHLHE40 dependency shows tissue specificity for RCC, and P81S11/2 cells maintain strong HIF2A signaling

when compared to P81Ctrl cells (Figures 5E, S6G, and S6H). In the DepMap cohort, approximately half of

the VHLmutant ccRCC lines are sensitive to BHLHE40 KO, and interestingly, this includes all the SMARCB1

mutant lines (Figure 5F). Furthermore, the dependency of ccRCC cells on BHLHE40 anti-correlates with

PAX8 dependency (Figure S6I). ZNFX1 is a ubiquitously expressed, IFN-stimulated SF1 helicase capable

of detecting viral dsRNA. Unlike IRF2 or BHLHE40, dependency on ZNFX1 is not associated with a particular

lineage. Instead, there are a small number of cell lines across multiple lineages which show a strong depen-

dency on ZNFX1, including TUHR10TKB, one of the three SMARCB1 mutant ccRCC lines (Figure 5G).
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PAX8 maintains ccRCC proliferative capacity by supporting the expression of MYC.14 Furthermore,

compared to P81Ctrl(A) cells, P81S11/2(LT) cells showed increased MYC expression levels based on our

RNA-seq data (Figure 5H). This suggested that IRF2, BHLHE40, and ZNFX1 could contribute to

P81S11/2(LT) proliferative fitness by maintaining optimal levels ofMYC expression.We tested this possibility

by targeting IRF2 and BHLHE40, the two strongest P81S11/2(LT)-specific hits from our TF screen (Figure 5B)

using two sgRNA constructs in P81S12(LT) cells and a wild-type Cas9-expressing 786-M1A-derived clone

(Figures S6J and S6K). As expected, IRF2 and BHLHE40 inhibition reduced the proliferation of

P81S12(LT), but not the wild-type control cells (Figure S6L). However, MYC expression was activated by in-

hibition of IRF2 and BHLHE40 in P81S12(LT) cells, but not in control cells (Figure 5I). These results are in line

with the observations that IRF2 and BHLHE40 can function as transcriptional repressors36,37 and that cancer

cells require an optimal level of MYC activity for maximal proliferative capacity.38

De novo resistance to lineage factor inhibition across cancer types

The finding that some ccRCC cell lines were insensitive to PAX8 inhibition without known inhibitory chal-

lenge on PAX8 (Figure 1I) suggested that lineage factor independence could emerge naturally during

tumor evolution and that this could be associated with specific molecular features. To test this possibility

systematically, we developed an analytical approach to evaluate the prevalence of lineage factor inde-

pendence and its molecular determinants across different cancer lineages in large-scale CRISPR-Cas9

loss-of-function data from the cancer DepMap dataset (Figure 6A). Briefly, we identified lineage-specific

0

1

2

0

2

4

N
ES

-l
og

10
(p

ad
j)

NES
padj

SMARCB1 signature
D

-4 4
NES

-2 0 2

0

1

2
Kidney C3 PT S2

Kidney C4 PT S2

SMARCB1 
signature

n = 266

-l
og

10
(p

ad
j)

A

R
ES

-0.6

-0.4

-0.2

0.0

Rank

NES = -1.93
padj = 0.01

Kidney C4 PT S2

C

-2.0

-1.0

0.0

-4

-2

0

N
ES

NES

-l
og

10
(p

ad
j)

padj

Kidney C4 PT S2
B

P8
1.
Ct

rl(
A)

P8
1S
1 1/

2(
A)

P8
1S
1 1/

2(
LT

)

R
ES

0.0

0.2

0.4

0.6

Rank

NES = 1.87
padj = 0.01

SMARCB1 signature

E

CtrlvP81S11/2 (up)

CtrlvP81S11/2 (dn)

SMARCB1 signature

Kidney C4 PT S2

Kidney C3 PT S2

-4 0 4

qvalue < 0.05

log2FC

F

P8
1.
Ct

rl(
A)

P8
1S
1 1/

2(
A)

P8
1S
1 1/

2(
LT

)

Figure 4. Dedifferentiation at the transcriptional level in lineage factor inhibition-resistant ccRCC cells

(A) Volcano plot of GSEA with cell-type-specific transcriptional signatures from mSigDB collection 8, supplemented with a SMARCB1 signature (see STAR

Methods), for the comparison Ctrl.Ctrl(A) vs. P81S11/2(LT). Highlighted points (purple/cyan) have a p.adjust <0.05.

(B) Kidney proximal tubule C4 signature normalized enrichment scores (NES) from GSEA, for Ctrl.Ctrl(A) vs. P81Ctrl(A), P81S11/2(A), and P81S11/2(LT).

(C) GSEA plot of Kidney proximal tubule C4 signature for Ctrl.Ctrl(A) vs. P81S11/2(LT).

(D) SMARCB1 signature NES from GSEA, for Ctrl.Ctrl(A) vs. P81Ctrl(A), P81S11/2(A), and P81S11/2(LT).

(E) GSEA plot of SMARCB1 signature for Ctrl.Ctrl(A) vs. P81S11/2(LT).

(F) Ridge plot of GSEA result from the comparison of ccRCC CCLE lines, SMARCB1 wild type vs. mutant from Figure 1I, using the SMARCB1, proximal tubule

C3/C4 and upregulated and downregulated genes from Ctrl.Ctrl(A) vs. P81S11/2(LT). See STAR Methods for signature generation.
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Figure 5. Acquired requirement of rare transcriptional dependencies in lineage factor inhibition-resistant ccRCC cells

(A) Schematic overview of a CRISPR-Cas9 screen to look for new transcriptional dependencies in PAX8 KD/SMARCB1 KO cells.

(B) The beta scores for the control arm (Ctrl.Ctrl) of the screen versus the pooled experimental arm (P81S11/2(LT)). Beta scores were calculated using the fold

change of the top three depleted sgRNAs per gene relative to the plasmid library, from two replicates. p-value calculated by permutation method using

MAGeCK.

(C) Genetic dependency data from the DepMap project. IRF2 centered CERES dependency score of multiple myeloma (MM) cell lines (n = 21) versus cells

from all other lineages (n = 767). Kruskal-Wallis test.

(D) GSEA plot of interferon-gamma response signature from mSigDB hallmarks collection for P81Ctrl(A) vs. P81S11/2(LT).

(E) Genetic dependency data from the DepMap project. BHLHE40-centered CERES dependency score for RCC cell lines (n = 23) versus cells from all other

lineages (n = 765). Kruskal-Wallis test.

(F) VHL-mutant ccRCC DepMap cell lines ranked by BHLHE40-centered CERES dependency score. SMARCB1 and ARID1A mutant cell lines from Figure 1I.

(G) Genetic dependency data from the DepMap project. ZNFX1-centered CERES dependency scores across 25 lineages, with R10 cell lines per lineage.

CCA: cholangiocarcinoma, ALL: acute lymphoblastic leukemia, AML: acute myeloid leukemia, EWS: Ewing sarcoma, BRC: breast carcinoma, BRDC: breast

ductal carcinoma, Gli: Glioma, CRC: colorectal adenocarcinoma, ESCC: esophageal squamous cell carcinoma, GA: gastric adenocarcinoma, RCC: renal cell

carcinoma, HCC: hepatocellular carcinoma, LMT: lung mesothelioma, NSCLC: non-small-cell lung cancer, SCLC: small-cell lung cancer, NHL: non-Hodgkin
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TF dependencies by comparing the dependency score (CERES score) for each TF in a particular lineage

against the CERES score for the same TF in cell lines pooled from all other lineages, creating a lineage de-

pendency (LD) score for each TF in each lineage context. The distribution of the LD scores showed that for

most TFs there was no specific dependency in a particular lineage, but there was a rare set of TFs which

showed very strong specificity (Figure 6B). We identified specific TF dependencies in 17 of 25 lineages

(LD score < (�1.2), p < 0.05) (Figure S7A).

The relative cellular dependency on individual TFs varied within lineages. In some instances, cells de-

pended strongly on the lineage factor, for example PAX8 in RCC, MITF in melanoma, and IRF4 in multiple

myeloma (MM) (Figure S7A). In contrast, the dependency on TCF3 in acute lymphoblastic leukemia and

non-Hodgkin lymphoma was considerably weaker (Figure S7A). In addition, some of the TFs with low LD

scores were pan-lineage dependencies that were particularly depleted in certain lineages. These genes

had a low median CERES score across all cell lines, the clearest example being RELA (Figure S7B); RELA

was depleted in all 17 lineages but preferentially in MM (Figure S7C). To focus the analyses on the strongest

lineage dependencies while accounting for the possibility that there are de novo resistant cell lines, we

included genes with an overall low CERES score (R50% of cell lines within a lineage with CERES score

of%�0.5, Figure S7D) and excluded pan-cancer dependencies (median CERES%�0.2 across all cell lines,

Figure S7E), leaving ten different lineages including hematological, epithelial, and neuroectodermal ma-

lignancies, sarcomas, and melanomas (Figure S7F and Table S7).

We then sought to uncover examples of de novo resistance to lineage factor inhibition. The LD scores re-

vealed a strong bimodal distribution (Figure 6C), which was maintained at the cell line level with LD scores

averaged for each cell line (Figure S7G), supporting the idea that a subset of cell lines was resistant to line-

age factor inhibition. Using a distribution-informed cutoff of average CERES score > �0.45, we identified

examples of lineage-resistant cell lines in all ten lineages (Figure 6D), allowing the comparison between

resistant and sensitive cell lines using permutation-based statistics (Figure 6E). Interestingly, we detected

instances of both acquired and lost dependencies in the lineage factor inhibition-resistant cell lines (Fig-

ure 6E). For example, in melanoma, TP53 KO cells are enriched among MITF-dependent cells, in line

with its known tumor suppressive role, but in MITF-independent cells the enrichment is less strong (Fig-

ure 6F). The reduced CERES score for TP53 in MITF-independent melanoma cells suggests it may already

be downregulated or inactivated, thereby facilitating a transition to anMITF-independent state. In line with

this, there is an increase in the proportion of TP53 mutations in MITF-independent melanoma cell lines

(47% vs. 28%) and a reduction in TP53 mRNA expression (Figures 6G and S7H).

Other examples include rhabdomyosarcoma cells resistant to PAX3 or both PAX3 andMYOD1 KO that had an

enhanced dependency on MYC compared to lineage sensitive lines (Figure 6H). The enhanced dependency

on MYC raises the possibility that PAX3/MYOD1-independent cell lines have enhanced MYC activity which

promotes lineage factor resistance. In line with this,MYC trends toward higher expression in lineage-resistant

cell lines (Figure S7I). In addition to changes in the genetic dependency profiles between resistant and

sensitive cell lines, usingmRNAexpression data, it was possible tomeasure changes in the transcriptional pro-

grams. For example, differential expression analysis between lineage-resistant and sensitive neuroblastoma

cell lines, coupled with gene set enrichment analysis using the hallmarks collection, revealed a very strong up-

regulation in the epithelial-mesenchymal transition signature (Figure S7J), paralleling the observation that a

mesenchymal-like primary neuroblastoma subgroupwith features of highly aggressivemesenchymal glioblas-

toma exists in humans.39 In summary, the prevalent lineage factor inhibition resistance across different cancer

lineages is associated with specific molecular features and acquired genetic dependencies.

DISCUSSION

Transcriptional lineage factor dependencies are observed across a range of malignancies, making them

an attractive target class for therapy development, but what maintains lineage fidelity in advanced

Figure 5. Continued

lymphoma, OA: ovarian adenocarcinoma, EPC: exocrine pancreatic cancer, NB: neuroblastoma, MM: multiple myeloma, Mel: melanoma, RMS:

rhabdomyosarcoma, UATN: upper aerodigestive tract neoplasm, BC: bladder carcinoma, EAC: endometrial adenocarcinoma.

(H) MYC expression as determined by RNA-seq. Adjusted P-value by DESeq2.

(I)MYC expression as determined by quantitative RT-PCR in the indicated cell lines after IRF2 and BHLHE40 inactivation by CRISPR-Cas9. M1A clone 11 is a

Cas9-expressing clonal derivative of 786-M1A cells. p-values calculated using one-way ANOVA. See also Figure S6.
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cancers, and how cancer cells react to long-term lineage factor inhibition have remained unclear. We

demonstrate that ccRCC cells can overcome their dependency on the renal lineage factor PAX8 through

a dedifferentiation process that can be enhanced by SMARCB1 loss. SMARCB1 maintains the kidney-

specific enhancer program and its inactivation results in the loss of renal transcriptional and epigenetic

identity, altering the cellular context and reducing the requirement for PAX8. Two additional SWI/SNF

complex members were enriched in our screen, including ARID1A, the loss of which can facilitate hor-

mone therapy resistance in breast cancer.20,21 SMARCB1 loss can also promote hormone independence

in breast cancer cells,20 and alterations in the SWI/SNF complex have been linked to androgen indepen-

dence in prostate cancer.40 This suggests that resistance mechanisms to lineage-targeted therapy may

converge on SWI/SNF complex members and that our findings in ccRCC may be generalizable to other

cancers.
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Figure 6. Systematic molecular definition of lineage factor inhibition resistance across cancer lineages

(A) Schematic outlining the analytical pipeline used to identify lineage factor inhibition-resistant cell lines across cancer types, and uncover sharedmolecular

features.

(B) Frequency distribution of the maximum possible LD (i.e., most negative) score for each TF. For example, PAX8 has the strongest lineage-specific

dependency score in RCC and so the PAX8 LD score in the RCC context is plotted here.

(C) Frequency distribution of the CERES score for filtered LDs, in each cell line of their respective lineage. Distribution statistically deviated from normal

determined using Shapiro Test.

(D) Tukey plot of the average CERES score of each LD in their respective lineage. Sensitive and resistant lines are identified using the cutoff identified in

(B) and (C), average CERES > �0.45. For boxplots, center line shows the median, the box bounds represent the first and third quartiles, and the whiskers

extend to the highest and lowest values no higher of lower than 1.5 * IQR. ALL: acute lymphoblastic leukemia, AML: acute myeloid leukemia, EWS: Ewing

sarcoma, RCC: renal cell carcinoma, NHL: non-Hodgkin lymphoma, NB: neuroblastoma, MM:multiple myeloma, Mel: melanoma, RMS: rhabdomyosarcoma,

EAC: endometrial adenocarcinoma.

(E) Summary of acquired dependency analysis across different cancer lineages. FDR calculated using permutation-based statistics. Highlighted points satisfy

FDR<0.1.

(F) Boxplot of the CERES score of lineage-sensitive (i.e., lineage factor dependent, n = 30) and resistant (i.e., lineage factor independent, n = 19) cell lines

from the melanoma lineage for TP53 KO. FDR calculated using permutation-based statistics. For boxplots, center line shows the median, the box bounds

represent the first and third quartiles, and the whiskers extend to the highest and lowest values.

(G) Stacked bar plot representing the proportion of TP53mutations in lineage-sensitive (n = 30) and resistant (n = 19) cell lines from the melanoma lineage.

p-value generated using Fisher’s exact test.

(H) Boxplot of the CERES score of lineage-sensitive (i.e., lineage factor dependent, n = 6) and resistant cell (i.e., lineage factor independent, n = 4) lines from

the rhabdomyosarcoma lineage for MYC KO. FDR calculated using permutation-based statistics. For boxplots, center line shows the median, the box

bounds represent the first and third quartiles, and the whiskers extend to the highest and lowest values. See also Figure S7.
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The SWI/SNF ATP-dependent chromatin remodeling complexes interact with various transcription and

chromatin factors to regulate chromatin architecture and gene activation.19 Three distinct SWI/SNF com-

plex subtypes with characteristic subunit complements have been described: the BRG1/BRM-associated

factor complexes (BAFs), the polybromo-associated BAF complexes (PBAFs), and the non-canonical BAF

complexes (ncBAFs).41 SMARCB1 is a member of the BAF and PBAF complexes but not of the ncBAF com-

plex and it regulates enhancer activation states in various cell types.31,41 Interestingly, SMARCB1 loss does

not destabilize the BAF and PBAF complexes, but it changes their chromatin distribution through altering

their interaction with nucleosomes.42 Enhanced lineage switching upon SMARCB1 loss could reflect re-dis-

tribution of SWI/SNF complexes across the chromatin. More than 20% of human cancers harbor mutations

in SWI/SNF complex members, but the mutation frequencies vary widely between different tumor types,43

highlighting the relevance of SWI/SNF complex subtype-specific mechanisms in different cancers. We find

that ARID1A and SMARCB1 mutations are associated with reduced PAX8 dependency in ccRCC cell lines.

As our work focused on SMARCB1, additional experimental analysis would be needed to test whether

ARID1A or other SWI/SNF complex members have similar functions in lineage fidelity maintenance in

ccRCC. Mutations in ARID1A and/or SMARCB1 are also present in �5% in human ccRCCs,44,45 indicating

that reduced lineage factor dependency as described by our results may develop naturally in some

ccRCCs. Moreover, PBRM1, another SWI/SNF complex member, is inactivated clonally in �40% of

ccRCCs.6 Possible effects of PBRM1 loss on lineage factor activity warrants further investigation in models

that recapitulate the earliest stages of ccRCC development.

Biallelic SMARCB1 mutations are frequently observed in malignant rhabdoid tumors (MRTs) and atypical

teratoid rhabdoid tumors, which are aggressive and poorly differentiated pediatric tumors that occur pre-

dominately in the kidney or soft tissue and central nervous system, respectively.46 However, MRTs in the

kidney originate from a different cell type than ccRCCs suggesting that the molecular similarities of

PAX8 inhibition-resistant ccRCC cells and rhabdoid tumors is likely to reflect the shared SMARCB1 muta-

tion status and general dedifferentiation rather than the acquisition of a rhabdoid ccRCC phenotype.47,48 In

line with this, the xenograft tumors formed by PAX8 inhibition-resistant ccRCC cells did not display histo-

logical features of rhabdoid dedifferentiation.

We find that PAX8 inhibition resistance in ccRCC cells is associated with a dramatic change in tumor histology

with acquired features of morphological neuroendocrine differentiation, a phenotype not commonly seen in

adult renal tumors.49 However, even though some reports have described the expression of neuroendocrine

markers in renal cancer,50 the tumors formed by PAX8 inhibition-resistant cells did not specifically express

molecular neuroendocrine markers. Interestingly, a similar phenotype has recently been described in a

mouse-derived experimental Vhl-mutant renal cancer model.22 Neuroendocrine differentiation is associated

with androgen deprivation resistance in prostate cancer51 and EGFR inhibition resistance in lung cancer.52Mo-

lecular features of neuroendocrine differentiation have also been more generally detected in a subset of

different cancer types and in association with advanced disease.53 Neuroendocrine differentiation and

morphologically similar but molecularly distinct dedifferentiation processes as described here may therefore

represent a broadly shared mechanism of resistance toward different growth inhibitory insults, ranging from

inhibition of hormone and oncogene signaling to direct lineage factor inhibition.

Analogous to the identification of newly acquired dependencies in lineage factor-resistant ccRCC cells, the

androgen-independent state in prostate cancer and neuroendocrine differentiation more generally can result

in the acquisition of new transcription factor dependencies.53,54 The newly acquired dependencies are unlikely

to be selected purely stochastically. Rather, the high expression of IRF2, BHLHE40, and ZNFX1 already before

PAX8 inhibition indicates that the cells were primed to become dependent on these factors upon lineage fac-

tor inhibition. Akin to the tissue-specific patterns of mutations in cancer, tissue-specific mechanisms are also

likely to determine which acquired dependencies are most likely to emerge from lineage factor inhibition in

different tissues. Our results suggest that IRF2 and BHLHE40may contribute to the optimization of MYC levels

in PAX8 inhibition-resistant cells, although other explanations for their role in maintaining proliferative fitness

remain possible at this stage. An understanding of the underlyingmechanisms could help predict and prevent

resistance to lineage factor-targeted therapies. An alternative approach would be to target directly the

possibly shared pro-tumorigenic pathways downstream of lineage factors and acquired dependencies.

Our systematic pan-cancer analysis detected frequent occurrence ofde novo lineage factor resistance in the

absence of direct lineage factor inhibition in most cancer lineages. This is supported by reports of lineage
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plasticity in response to multiple treatment modalities including chemotherapy, MAPK-targeted therapy,

and immunotherapy, aswell as environmental cues such as hypoxia and inflammation.4,55–61Wealso identify

sharedmolecular features among lineage-evaded cancer clones in several cancer types, suggesting that the

development of lineage factor inhibition resistance can follow pre-determinedmolecular logic. However, in

line with the detailed analysis of PAX8 inhibition resistance in ccRCC, resistance to lineage factor inhibition

seems to develop via multiple molecular routes even within a specific lineage.

In conclusion, our study demonstrates that SMARCB1 is a key regulator of the renal enhancer program,

which defines the context in which PAX8 is required for tumor growth. Resistance to PAX8 suppression

can be achieved through multiple routes and it is linked to dedifferentiation, a dramatically altered tumor

morphology and acquired dependencies on previously dispensable transcriptional regulators. The associ-

ation between neuroendocrine differentiation and resistance to different genetic and pharmacological

anticancer approaches indicates that therapeutic enhancement of lineage fidelity could be helpful in

combatting acquired drug resistance in several different cancer contexts.

Limitations of the study

Our results are based on the analysis of human cancer cell lines and xenografts. Even though the cell lines

carry genetic alterations that are also commonly seen in human tumors, we cannot exclude the possibility

that our observations are specific to the cell lines studied. Detailed analyses on a larger set of cell lines and

human tumors would be necessary to understand how broadly applicable our results are. Our analysis of

the large cancer DepMap dataset that contains hundreds of cell lines, the largest currently available data-

set, revealed putative mechanisms of lineage factor independence in cell lines derived frommultiple tumor

types. However, larger CRISPR-Cas9 datasets would be needed for more robust interrogation of lineage

factor independence across cancers. Finally, the strongly dedifferentiated histological phenotype

observed in the tumors formed by PAX8 inhibition-resistant cells was not associated with the expression

of neuroendocrine markers, even though it exhibited morphological features of neuroendocrine differ-

entiation. It therefore remains unclear whether the phenotype is truly related to neuroendocrine differen-

tiation as described in other tumor types. Current therapies do not target renal lineage factors in the clinic.

The molecular consequences of lineage factor inhibition in human patients thus remain unclear at this

point.
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(2013). Epigenetic expansion of VHL-HIF
signal output drives multiorgan metastasis in
renal cancer. Nat. Med. 19, 50–56. https://doi.
org/10.1038/nm.3029.

18. Zaini, M.N., Patel, S.A., Syafruddin, S.E.,
Rodrigues, P., and Vanharanta, S. (2018).
Endogenous HIF2A reporter systems for
high-throughput functional screening. Sci.
Rep. 8, 12063. https://doi.org/10.1038/
s41598-018-30499-2.

19. Mathur, R., and Roberts, C.W. (2018). SWI/
SNF (BAF) Complexes: Guardians of the
Epigenome. Annu. Rev. Cancer Biol. 2,
413–427. https://doi.org/10.1146/annurev-
cancerbio-030617-050151.

20. Nagarajan, S., Rao, S.V., Sutton, J.,
Cheeseman, D., Dunn, S., Papachristou,
E.K., Prada, J.E.G., Couturier, D.L., Kumar,
S., Kishore, K., et al. (2020). ARID1A
influences HDAC1/BRD4 activity, intrinsic
proliferative capacity and breast cancer
treatment response. Nat. Genet. 52,
187–197. https://doi.org/10.1038/s41588-
019-0541-5.

21. Xu, G., Chhangawala, S., Cocco, E., Razavi,
P., Cai, Y., Otto, J.E., Ferrando, L., Selenica,
P., Ladewig, E., Chan, C., et al. (2020).
ARID1A determines luminal identity and
therapeutic response in estrogen-receptor-
positive breast cancer. Nat. Genet. 52,
198–207. https://doi.org/10.1038/s41588-
019-0554-0.

22. Rappold, P.M., Vuong, L., Leibold, J.,
Chakiryan, N.H., Curry, M., Kuo, F., Sabio, E.,
Jiang, H., Nixon, B.G., Liu, M., et al. (2022). A
Targetable Myeloid Inflammatory State
Governs Disease Recurrence in Clear-Cell
Renal Cell Carcinoma. Cancer Discov. 12,
2308–2329. https://doi.org/10.1158/2159-
8290.CD-21-0925.

23. Ghandi, M., Huang, F.W., Jané-Valbuena, J.,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Secondary anti-mouse DAKO Cat# P 0447; RRID:AB_2617137

Secondary anti-rabbit DAKO Cat# P 0448; RRID:AB_2617138

PAX8 Santa Cruz Cat# Sc-81353; RRID:AB_1127048

b-actin Abcam Cat# ab8227; RRID:AB_2305186

SMARCB1/SNF5 Bethyl laboratories Cat# A301-087A; RRID:AB_2191714

MUC1 Abcam Cat# ab109185; RRID:AB_10862483

SYP Abcam Cat# ab16659; RRID:AB_443419

NSE Antibodies Cat# A95480; RRID:AB_881756

Chemicals, peptides, and recombinant proteins

Fugene 6 Promega E269A

Polybrene MiliporeSigma TR1003G

Puromycin Invivogen ant-pr-1

Hygromycin Invivogen ant-hg-1

Blasticidin Invivogen ant-bl-05

RIPA lysis buffer Sigma-Aldrich R0278

Protease inhibitor cocktail Sigma-Aldrich 4693132001

NuPAGE LDS sample buffer Invitrogen NP0007

b-mercaptoethanol Sigma-Aldrich 444203

PVDF membrane Millipore IPVH00010

Immobilon Classico Western HRP substrate Millipore WBLUC0100

TaqMan reagents Thermo-Fisher 4352405

Taqman probe PAX8 Thermo-Fisher Hs00247586_m1

Taqman probe TBP Thermo-Fisher Hs00427620_m1

DNA ScreenTape Analysis: D1000 reagents Agilent 5067-5583

NEBNext PCR master mix NEB M0541S

AMPureXP Agencourt A63880

KAPA HiFi HotStart ReadyMix Roche KK5603

Agencourt AMPure XP Beckman-Coulter A63880

D5000 reagents Agilent 5067-5592

Critical commercial assays

MycoAlertTM Mycoplasma Detection Kit Lonza LT07-318

PierceTM BCA Protein Assay Kit Thermo-Fisher 23225

RNeasy Mini Kit Qiagen 74004

High-Capacity cDNA Reverse Transcription Kit Thremo-Fisher 4368814

Agilent RNA Nano 6000 Kit Agilent 5067-1511

QuantSeq 3 mRNA-Seq Library Prep Kit FWD for Illumina Lexogen 129-131

PCR Add-on Kit for Illumina Lexogen 020.96

Nextera DNA library preparation kit Illumina FC-121-1030

minElute PCR purification kit Qiagen 28004

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Sakari Vanharanta (sakari.vanharanta@helsinki.fi).

Materials availability

The plasmids used in this study are listed in the key resources table. Derivatives of gifted plasmids were

generated by restriction enzyme cloning. The Broad institute tool (https://portals.broadinstitute.org/

gpp/public/analysis-tools/sgrna-design) was used to design sgRNAs and standard methods were used

for cloning into pKLV2. Sequences for shRNA were taken from Fellmann et al., 201362 and the restriction

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

QIAamp DNA mini kit Qiagen 51304

Qubit dsDNA HS assay kit Thermo-Fisher Q33230

Deposited data

Raw data This study GEO:GSE183354

Cell line dependency data, gene

expression and mutation data

DepMap https://depmap.org/portal/

download/

Annotations for ENCODE candidate cis-regulatory

elements for normal and cancer biosamples

SCREEN https://screen.encodeproject.org/

Experimental models: Cell lines

786-M1A From J. Massagué, MSKCC, New York, USA RRID: CVCL_VR30,

UOK101 From M. Linehan UOB Tumor Cell Line Repository,

National Cancer Institute, Bethesda, MD

RRID: CVCL_B076

Experimental models: Organisms/strains

Athymic nude mice Charles River Laboratory 490 (Homozygous)

Oligonucleotides

Non-targetting control (NTC18):

GAGTGTCGTCGTTGCTCCTA

This paper N/A

SMARCB1 (sgRNA_1): GTTCTACATGATCGGCTCCG This paper N/A

SMARCB1 (sgRNA_2): GTTCTACATGATCGGCTCCG This paper N/A

IRF2 (sgRNA_1): GCATGCGGCTAGACATGGGT This paper N/A

IRF2 (sgRNA_2) ACAACTTGGCAAATGTCTGG This paper N/A

BHLHE40 (sgRNA_1): GGGTAGGAGATCCTTCAGCT This paper N/A

BHLHE40 (sgRNA_2): AGACCTACAAATTGCCGCAC This paper N/A

Renilla (shRenilla): CAGGAATTATAATGCTTATCTA This paper N/A

PAX8 (sh1503): ATCCATTATTAACACAACTCTA This paper N/A

PAX8 (sh786): ACCGACTAAGCATTGACTCACA This paper N/A

Recombinant DNA

Plasmid: pCW-Cas9 Eric Lander, David Sabatini Addene ID 50661

Plasmid: LT3-Cas9-Blast This paper N/A

Plasmid: pKLV2-U6-gRNA(BbsI)-PGKpuro-2A-BFP Kosuke Yusa Addgene ID 67974

Plasmid: pKLV2-U6-gRNA(BbsI)-PGKhygro-2A-mCherry Kosuke Yusa Addgene ID 67977

Plasmid: LT3-eGFP-miRE-PGK-puro Johannes Zuber N/A

Plasmid: LT3-dsRed-miRE-PGK-Venus Johannes Zuber N/A

Plasmid: psPAX2 Didier Trono Addgene ID 12260

Plasmid: pMD2.G Didier Trono Addgene ID 12259
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enzymes, EcoRI-HF and XhoI, were used for cloning into the miRE vectors.62 The materials are available

from the lead contact upon request.

Data and code availability

d All RNA-seq and ATAC-seq files have been made available via the Gene Expression Omnibus and are

publicly available as of the date of publication. Accession numbers are listed in the key resources table.

This paper analyzes existing, publicly available data. Public resources that have been analyzed in this pa-

per are listed in the key resources table.

d The code used in this paper and related information are available from the lead contact upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal studies

All animal protocols were approved by the Home Office (UK) and the University of Cambridge Animal Wel-

fare and Ethical Review Body (PFCB122AA). Five to seven-week-old athymic female nude mice (Charles

River Laboratories) were injected subcutaneously with 500 000 cells in each flank, using 100mL of 1:1

PBS/Matrigel Matrix (BD). Tumor growth was measured by calliper and tumor volume was calculated as fol-

lows, V= (length x width2) x 0.5.

Cell lines

The human ccRCC cell lines used were 786-M1A and UOK101. 786-M1A cells, metastatic derivatives of

786-O cells, respectively, were obtained from J. Massagué (MSKCC, New York, USA) and they have

been previously described.17 The UOK101 cell line was obtained from M. Linehan (the UOB Tumor Cell

Line Repository, National Cancer Institute, Bethesda, MD). Renal cancer cells were cultured in RPMI-

1640 medium (Sigma) supplemented with 1% (v/v) penicillin-streptomycin (P/s) and 10% (v/v) fetal bovine

serum (FBS). Human embryonic kidney HEK293T cells were cultured in DMEM medium (ThermoFisher Sci-

entific) supplemented with 1% P/S and 10% FBS. Cell line identity was authenticated by short-tandem

repeat profiling. Mycoplasma negativity was confirmed by the MycoAlertTM Mycoplasma Detection Kit

(Lonza, LT07-318) or by qRT-PCR (PhoenixDx� Mycoplasma Mix).

METHOD DETAILS

Drug treatment

Doxycycline (Sigma) was diluted in RPMI media to a final concentration of 0.1, 0.3, 0.6, or 1mg/ml (as spec-

ified in results) from a stock concentration of 1mg/ml, before adding to the cells. Doxycycline infusedmedia

was replenished every 2-3 days depending on the length of the treatment.

Lentiviral transduction

The plasmid of interest and the viral packaging plasmids psPAX2 and pMD2.G were co-transfected into

HEK293T cells using Fugene 6 (Promega E269A) according to the manufacturer’s protocol. Viral superna-

tants were harvested 48h following transfection and filtered through a 0.45mM PVDG sterile filter. One day

prior to transduction 2.53105 cells were seeded on a 6-well plate. Immediately before transduction, the

mediumwas changed to RPMI containing 6-8mg/mL Polybrene (Millipore). Fresh or frozen viral supernatant

was added to the cells accordingly. 24h after transduction the media was changed to fresh RPMI. Antibiotic

selection media were added two days post-transduction: 4mg/ml puromycin (Invivogen), 800mg/ml hy-

gromycin (Invivogen) or 25mg/ml blasticidin (Invivogen).

Immunoblotting

Cell pellets were washed once with ice-cold PBS and lysed with RIPA lysis buffer (Sigma) containing 1x pro-

tease inhibitor cocktail (Sigma): cells were incubated on ice for 30m and vortexed every 10m, followed by

centrifugation at 14,000 RPM at 4�C. The protein lysate (supernatant) was collected and quantified using

the PierceTM BCA protein assay kit (Thermo Scientific), before being stored at -80�C. For immunoblotting,

10ml of protein (15-30mg) was added to 4ml of loading buffer (Invitrogen, NuPAGE) and 1 of b-mercaptoe-

thanol (Sigma) and topped up to a total volume of 20ml with H2O. Samples were boiled at 95�C for 5m and
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then centrifuged for 20s. Following centrifugation, samples were loaded onto a polyacrylamide gel along-

side a precision plus protein standards kaleidoscope ladder (BIO-RAD) and run at 80V for 15m followed by

100V for 2h. Proteins were transferred onto a PVDF membrane (Millipore) for approximately 2-3h at 100V.

The membrane was subsequently blocked in 5% milk (dissolved in 0.1% PBS-Tween, PBST) for 1h. For

immunoblotting, primary antibodies were diluted in 5% milk and incubated overnight with the membrane

at 4�C. Membranes were washed three times with PBST before incubation with the secondary anti-mouse

(DAKO, cat no. P 0447, 1:10,000) or anti-rabbit antibodies (DAKO, cat no. P 0448, 1:5000) conjugated to

horseradish peroxidase (HRP) for 2h. Membranes were washed three times with PBST and were developed

with LuminataTM Classico Western HRP substrate (Millipore) using a film processor. The following primary

antibodies were used: PAX8 (Santa Cruz, cat no. Sc-81353.,1:250), b-actin (Abcam, cat no. ab8227,

1:20,000), SMARCB1/SNF5 (Bethyl laboratories, cat no. A301-087A, 1:2500).

Immunohistochemistry

Tumor xenografts were collected and fixed overnight in 4% paraformaldehyde, washed, embedded in

paraffin, and sectioned. MUC1 (Abcam, ab109185, 1:500), SYP (Abcam, ab16659,1:200) and NSE (Anti-

bodies, A95480, 1:100) staining was performed in a Bond-Max instrument (Leica) using Bond Polymer

Refine Detection reagents (Leica) according to the manufacturer’s protocol (IHC Protocol F).

Reverse transcription and PCR

Cells were pelleted at 500g for 3m and stored at -80�C before processing. RNA was extracted using the

RNeasy Mini Kit (Qiagen), according to the manufacturer’s instructions. Reverse transcription-PCR was per-

formed using the High-Capacity cDNA Reverse Transcription Kit (Thermo Scientific) to generate cDNA

from 500ng of RNA. The StepOnePlusTM Real-Time PCR instrument (Thermo Scientific) was used with

TaqMan reagents (Thermo Scientific). Samples were run in triplicate, normalized to the housekeeping

gene TATA-box binding protein (TBP), and analyzed using the double delta Ct method. Taqman probes

used: PAX8 (Hs00247586_m1) and TBP (Hs00427620_m1).

In vitro proliferation assays

6 x 103 786-M1A cells were seeded in triplicate on a 24-well cell culture plate and analyzed using the

IncuCyte ZOOMTM instrument (Essen Bioscience). Bright-field images were acquired in 9 independent lo-

cations within each well every 2 hours. Confluency was measured by applying a predefined cell-specific

mask to each image, which distinguished the cells from the background. For competition assays,

dsRED/eGFP was used to gate all cells expressing an shRNA, and BFP/eGFP/mCherry was used tomeasure

the abundance of two co-cultured cell populations. The proportion of the competing cell populations was

measured by flow cytometry on an LSR Fortessa (BD Biosciences) and compared to day 0. The following

gating approach was used: FSC-A, FSC-W, SSC-A to distinguish single cells from debris, and then dsRed

(561nm, 610/20nm), mCherry (532nm, 610/20nm), BFP (405nm, 450/50nm) or GFP (488nm, 515/20nm), venus

(488, 530/30) channels for discriminating between cell populations.

Fluorescence-activated cell sorting and analysis

Fluorescence-activated cell sorting was performed using a BD LSRFortessa flow cytometer. FlowJo soft-

ware (BD Biosciences) was used to analyze flow cytometry data and generate plots (Figure S8). Fluores-

cence-activated cell sorting was carried out by the Flow Cytometry Core Facility at the Cambridge Institute

for Medical Research.

RNA-sequencing

A total of four replicates per condition in 6 well plates were seeded 24 hours before library preparation. The

cells were lysed on ice in buffer RLT (RNeasy Plus Mini Kit Qiagen). Total RNA was extracted using the

RNeasy Mini Kit (Qiagen), according to the manufacturer’s instructions. RNA quality was determined using

Agilent RNA Nano 6000 kit (Agilent 5067-1511) and RNA concentration was determined using a NanoDrop

1000 Spectrophotometer. Library preparation was performed using the QuantSeq 3 mRNA-Seq Library

Prep Kit FWD for Illumina and PCR Add-on Kit for Illumina (Lexogen), with 300ng input RNA. The size of

the final libraries was determined using the Agilent 4200 TapeStation System using the high sensitivity

D1000 reagents (5067-5592). The concentration of the libraries was determined using the Qubit Flex Fluo-

rometer (Thermo Fisher). The libraries were pooled in equimolar concentrations and submitted for deep

sequencing on the Illumina HiSeq4000 platform (SE50).
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RNA-sequencing analysis

The processing of the FASTQ files to a read count table was performed on the BlueBee� Genomics Plat-

form. Reads were trimmed using Bbduk (v35.92) from the bbmap suite, aligned with STAR aligner (v2.5.2a)

to hg38, and counted using HTSeq-count (v0.6.0). Differentially expressed (DE) genes were determined

from the read counts table using DESeq2 (v1.26.0).63 The custom rhabdoid signature was generated using

common DE genes upon SMARCB1 re-introduction in TTC1240 and G401 cell lines, which satisfied

log2FC < -0.5 and padj < 0.05.31 The top 500 up and down-regulated genes with a padj < 0.05 upon

SMARCB1 KO were used to generate gene signatures for validation with CCLE expression data. Gene

set enrichment analysis with custom and mSigDB (v7.2.1) signatures was performed using the R package

ClusterProfiler (v3.14.3).64 Data wrangling and presentation (MA plots) were achieved using the R packages

Tidyverse (v1.3.0) and ggpubr (v0.4.0), respectively.

ATAC-sequencing

786-M1A cells were treated with 0.6mg/ml doxycycline for 6 days before harvesting at 70% confluency. On

the day of harvest, cells were trypsinized, counted, nuclei extracted, and 50,000 cells were used for the

ATAC-seq protocol.65 ATAC libraries were generated with the Illumina Nextera DNA library preparation

kit (FC-121-1030) and purified for amplification with the minElute PCR purification kit (Qiagen 28004).

The libraries were amplified for a total of 8-12 cycles using custom Nextera PCR primers and NEBNext

PCR master mix (NEB M0541S). The amplified libraries were purified using Agencourt AMPureXP reagents

(A63880), profiled on the Agilent 4200 TapeStation System using the high sensitivity D5000 reagents (5067-

5589), pooled in equimolar concentrations, and submitted for sequencing on the Illumina HiSeq4000 plat-

form (SE50).

ATAC-sequencing analysis

Adapters and low-quality bases (quality < 20) were trimmed from read ends using cutadapt (version 2.10).

Reads were mapped to hg38 using BWA (version 0.7.17). Low quality reads (mapping quality < 20) and

reads mapping to ENCODE blacklisted regions and regions other than chr1-22, chrX and chrY were

removed using deepTools2.66,67 Reads were corrected for Tn5 offset (+ve strand: +4bp, -ve strand:

-5bp). Peaks were called using MACS2 (version 2.2.7.1) with the following parameters ‘‘-f BAM –bdg -g

2913022398 –nomodel –nolambda –shift -100 –extsize 200’’.68 A consensus peak file for DE analysis was

generated by extending peak summits to a fixed 501bp window (using BEDtools v 2.30.0), ranking called

peaks by their qvalue, and iterating down the list, removing any overlapping peaks with a lower qvalue.

This produced a consensus peak file containing the coordinates of the most significant peak called at a

particular locus. The read count table was generated by extending reads to the modal length of 250bp

and counting the number of uniquely mapped reads falling within consensus peaks using RSamtools

(v2.2.3). Peaks were filtered for –log10(q)<20 and differentially accessible (DA) peaks (FC+/-2 and

padj<0.001) were determined using DESeq2.63 Homer (v4.11) was used for de novo and known motif

enrichment analysis on +/- 50bp flanking the summits of DA regions, compared to a set of high confidence

unchanged regions.69 The R package ChIPseeker (v1.22.1) was used to determine genomic annotations for

peaks. To determine the correlation between gene expression and epigenetic changes, sequentially larger

windows around LA and HA peaks were created with GenomicRanges (v1.38.0), and a hypergeometric

based test (pHyper) was used to determine whether genes captured within these windows were signifi-

cantly enriched for down or up-regulated genes, respectively. EAseq (v1.111) was used to determine genes

that fell within these windows (GColoc function) and to create a set of matched controls (Controls func-

tion).70 For data visualization, EnhancedVolcano (v.1.4.0) was used for volcano plots and EAseq (v1.111)

was used for genomic tracks, heatmaps, and metagene plots.70

Pooled CRISPR-Cas9 screening

Cells were transduced with a lentiviral library at a lowMOI (<0.3) to ensure 1000x sgRNA representation. An

MOI of <0.3 was used so that >85% of cells had a single sgRNA integration. After 48h following transduc-

tion, the cells expressing the integrated library were selected for with puromycin or hygromycin for 5 days.

For doxycycline naive cells, the screen was initiated after antibiotic selection by supplementing themedium

with 0.6mg/ml doxycycline to induce the expression of Cas9, otherwise, the screen was considered to have

started 24h post-transduction. Cells were cultured for 17-21 days after screen initiation and two replicates

at various time points were collected for each condition. For time points that required FACS, enough cells

to ensure >130x coverage were harvested, otherwise, >500x coverage was maintained. Day 17 of the
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chromatin regulator screen was the only time point that required sorting. Given that the primary focus of

this screen was to look for enriched hits and that the initial coverage was �1000x, an sgRNA coverage of

130x was tolerated. Genomic DNA was isolated using the QIAamp DNA mini kit (Qiagen 51304) and li-

braries were created by amplifying the cassette containing the sgRNAs using KAPAHiFi HotStart ReadyMix

(Roche) and custom primers71 adapted for pKLV2. Libraries were purified using Agencourt AMPure XP

(Beckman-Coulter A63880) beads, profiled using the Agilent 4200 TapeStation System using the high sensi-

tivity D1000 reagents (5067-5592), quantified using the Qubit dsDNA HS assay kit (Thermo) and pooled in

equimolar concentrations for sequencing on the Illumina HiSeq4000 platform (SE50). FASTQ files from

sequencing were aligned to the sgRNA library and counted, using the command mageck count (v0.5.9),

which tolerated no mismatches. Raw fold changes from normalized counts were calculated for each sgRNA

construct for each gene, compared to Day 0 or the plasmid library. The top performing 3 sgRNAs (depleted

or enriched depending on context) for each gene averaged across the experimental screen arm (i.e. P81/2

for the TF screen) were used to calculate the final beta scores (normalized FC) for each gene. Beta scores

were calculated using mageck mle (v0.5.9) with the normalization method set to median and permutations

set to 1000.

The encyclopedia of DNA elements (ENCODE) analysis

DNAse I hypersensitivity profiles for cell lines (n=97), adult primary cells and tissues (n=125), and embryonic

tissues (n=282) were downloaded from SCREEN (https://screen.encodeproject.org/), with chromatin

accessibility annotations (open/closed) determined for each of the 926,535 candidate cis-regulatory re-

gions (cCREs) identified by the ENCODE project. For clustering, the top 250,000 most variable regions

across samples were selected to generate a pairwise Pearson correlation matrix. To identify clusters, sam-

ples were first ranked based on the number of other samples with which they highly correlated (PCC>0.6).

Starting with the top-ranked sample, all samples which correlated (PCC>0.6) were identified and labelled

as cluster 1. These samples were then removed from the matrix, the matrix was re-ranked and cluster 2 was

identified by the same means. This process was repeated until the size of the cluster dropped below a cut-

off of five samples. This resulted in 21 clusters, incorporating 376/504 samples. Clusters were given a bio-

logical annotation based on their sample composition, and clusters which could not be annotated were

removed (n=1). Cluster-specific cis-regulatory regions were defined as peaks that were present in 80%

of cluster samples and appeared in no more than two additional clusters. Overlap analysis between cluster

peaks sets and +/-25bp flanking the summit of DA regions from this study was performed using the R pack-

age ChipPeakAnno, requiring a stringent 100% overlap.

Cancer cell line encyclopedia (CCLE)

Mutational and gene expression data were downloaded from the DepMap portal (https://depmap.org/

portal/download/). Differential expression analysis with raw RNA-seq counts was performed as above. Bial-

lelic inactivation of the essential gene VHL is a truncal initiation event in ccRCC, RCC cell lines were consid-

ered ccRCC if they had a ‘damaging’ or ‘other non-conserving’ mutation in VHL, which also corresponded

with resistance to VHL KO (CERES > -0.5). To prioritize functionally relevant mutations in ARID1A and

SMARCB1, ‘damaging’ or ‘other non-conserving’ with a TCGA or COSMIC hotspot were considered.

Pan-cancer lineage dependency (LD) analysis

Genome-wide CRISPRcas9 genetic dependency data for 946 cell lines was downloaded from the DepMap

project (www.depmap.org/portal/).72,73 The list of�18,000 genes was filtered for�1,600 TFs, as defined by

Lambert et al.74 The Lineage of a cell line was defined by their lineage annotation (e.g., skin) and lineage

subtype annotation (e.g., melanoma). Of the 81 defined lineages (e.g., skin_melanoma), 56 were

removed because they were underrepresented (<10 cell lines). A lineage dependency score (LDscore) for

each TF in each lineage context was calculated according to: LDscore = mean(CERES)lineage x - mean

(CERES)remaining lineages. The LDscore was a measure of how specific a particular transcriptional dependency

was to a certain lineage context; a larger negative score denotes a stronger andmore specific dependency.

Simultaneously, the Kruskal-Wallis statistical test in conjunction with a Benjamini Hochberg correction was

implemented to derive a corresponding p value for each LDscore. To define putative core regulatory cir-

cuitry (CRC) for each of the 25 lineages, three levels of filtering were applied. (1) Based on the distribution

of maximum LDscores for each TF, a cut-off of LDscore <-1.2 and a p-value < 0.05 was implemented. The dis-

tribution of maximum LDscores was plotted by selecting the lowest possible LDscore for each TF. For

example, PAX8 and HNF1B had the most negative LDscore in the RCC lineage context, and so these scores

were used. (2) Examples of LDs that were strong cellular dependencies were selected by filtering for
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putative LDs for which the majority (>50%) of cell lines in their respective lineage had a CERES score of

% -0.5. (3) Putative LDs which were pan-cancer dependencies but were more strongly depleted in a partic-

ular lineage were also removed. This was accomplished by using a plot of the distribution of the median

CERES score across all cell lines for each putative LD. Based on the bimodal distribution of the data, a

cut-off medianCERES >-0.2 was identified (Figure S7E). After filtering, CRC predictions were available

for 10/25 lineages. To identify lineage-resistant cell lines within each of the 10 lineages, a distribution of

the averaged CERES scores of LDs in each cell line of their respective lineage was plotted (Figure 6C).

Based on the bimodal distribution of the data, a cut-off of average CERES score > -0.45 was used to identify

lineage-resistant cell lines.

A permutation-based statistical method was used to identify acquired transcriptional dependencies or lack

of dependencies in lineage resistant versus lineage sensitive lines within each lineage. (1) Compute the

observed effect size using Cohen’s D (lineage resistant vs lineage sensitive) relative to each TF. (2) Create

a permuted dataset by randomly dividing cell lines into sensitive and resistant whilst maintaining the orig-

inal number of observations for each of the two categories. (3) Compute the effect size with the permuted

data. (4) Repeat steps 2 and 3 1000 times. (5) For each feature i(i= 1,.,n), compute the FDR associated to its

observed effect size:

FbDRi =
expected number of false positives

number of true positives
=

E
hPn

j = 1I
����xpermj

���R ��xobsi

���i
Pn

j = 1I
����xobsj

���R ��xobsi

���

The numerator is the mean (over the 1000 permutations) number of false positives (features with absolute

effect size greater than or equal to the absolute observed effect size of feature). The denominator is the

number of observed features with absolute effect size greater than or equal to the absolute observed effect

size of feature. (6) The q value associated to each feature was computed as:

q � valuei = min
j s:t:

���xobsj

���R jxobsi j
FbDRj

and a threshold of 0.1 was used to call significant features.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R. The Kruskal-Wallis test was used for competitive proliferation as-

says and comparison of dependency data between subtypes. For Kaplan-Meier curves of tumour free pro-

gression, the logrank test was used. The hypergeometric distribution (phyper) test was used to measure

significance of ATAC/DNAse I, gene set, and genomic region overlaps. Pearson correlation was used for

correlation analysis. The Wilcoxon test was used for gene expression comparison. For all tests, a p-value

of <0.05 was considered significant.
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