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Abstract

Spaceborne remote sensing has enabled near-global mapping of the Earth’s topography.

However, satellite-derived digital elevation models (DEMs) are unsuited for modeling fine-

scale Earth surface processes due to their limited spatial resolution. To this day, fine-

resolution DEMs remain sparsely distributed across the planet owing to the technical chal-

lenges and substantial costs for producing densely sampled data sets. Over the last decade,

multispectral satellite imagery (MSI) has become widely available, providing abundant fine-

resolution data for monitoring the Earth’s surface. Although rendering no elevation infor-

mation, MSI has the potential to provide indirect fine-scale information about topography.

Statistical downscaling enables prediction of attributes at scales finer than that of the input

data. Multiple-point statistics (MPS) simulation is a powerful alternative for stochastic

downscaling due to its ability to replicate complex spatial patterns and assess the uncer-

tainty of the predictions. Conceptually, MPS simulation methods could be employed for

downscaling of coarse-resolution DEMs by extracting spatial information from available

fine-resolution DEMs and MSI of better-measured data sets. The application of MPS sim-

ulation for downscaling of DEMs is compelling, but there are many issues to be addressed.

Trends in elevation pose a challenge for stochastic downscaling of mountainous terrain.

MPS simulation algorithms are also notably difficult to parameterize, often requiring man-

ual parameter calibration. As a result, the integration of disparate data sources, such as

DEMs and MSI, into the downscaling becomes a daunting task.

Addressing these challenges requires the development of an automated data integra-

tion approach. In this thesis, a MPS-driven data integration framework for stochastic

downscaling of coarse-resolution DEMs is developed. The approach is composed of algo-

rithms designed for three primary tasks: the statistical downscaling of data sets with trends,

the automation of the downscaling process, and the integration of secondary data into the

downscaling. The first contribution of this thesis is a novel MPS-driven downscaling al-

gorithm with inbuilt capabilities for handling data sets with trends. Terrain elevation is

iv



modeled as a spatial signal expressed as the sum of a deterministic trend and a stochastic

residual component. The approach enables accurate downscaling of coarse-resolution DEMs

of either flat or steep terrain. The second contribution addresses the parametrization of the

MPS-driven downscaling algorithm. An automation routine is used to infer optimal algo-

rithm parameters by framing the parameter calibration task as an optimization problem.

The framework provides an efficient alternative for automatic generation of statistically ac-

curate fine-resolution DEMs. The third contribution builds upon the two aforementioned

developments by integrating finer-resolution MSI-sourced data as secondary information

into the downscaling process. Elevation and MSI data with varying spatial resolutions are

integrated based on a probabilistic framework. The approach enables to enhance the struc-

tural accuracy of the fine-resolution simulated DEMs and to reduce the inherent uncertainty

associated with the downscaling.

Developments in this thesis provide an efficient, low-cost alternative for fine-scale prob-

abilistic topographic mapping based on the integration of available finer-resolution terrain

and imagery data. Future research should focus on evaluating potential applications of

the downscaled DEMs for the study of Earth surface processes, the planning and design of

infrastructures, and the risk assessment of natural hazards.
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Résumé

La télédétection spatiale a permis une cartographie quasi globale de la topographie ter-

restre. Cependant, les modèles numériques d’élévation (MNE) dérivés des satellites ne sont

pas adaptés à la modélisation des processus de surface à petite échelle en raison de leur

faible résolution spatiale. À ce jour, les MNE à haute résolution sont répartis de manière

lacunaire sur la planète en raison des défis techniques et des coûts substantiels d’acquisition

d’un ensemble de données à cette haute résolution. Au cours de la dernière décennie,

l’imagerie satellitaire multispectrale (ISM) est devenue massivement disponible, fournissant

d’abondantes données d’observation de la surface terrestre à haute résolution. Bien qu’il

ne donne aucune information sur l’élévation, l’ISM a le potentiel de fournir des informa-

tions indirectes sur la topographie à haute résolution. L’interpolation statistique permet

de prédire les attributs à des échelles plus fines. Les simulations statistiques multipoints

(MPS) sont une alternative crédible pour l’amélioration stochastique de la résolution, en

raison de sa capacité à reproduire des modèles spatiaux complexes et à évaluer l’incertitude

des prévisions. Sur le plan conceptuel, les MNE basses résolution peuvent être amélioré

en ajoutant à l’aide de MPS les informations présentes dans des MNE et ISM a haute

résolution. L’application de MPS pour le downscaling stochastique des MNE est crédible,

mais de nombreux problèmes doivent être résolus. Les trends de l’altitude posent un

défi pour le downscaling stochastique du terrain montagneux. Les algorithmes de simu-

lation MPS sont également particulièrement difficiles à paramétrer, nécessitant souvent un

étalonnage manuel. Par conséquent, l’intégration de données disparates, telles que MNE et

ISM, devient une tâche ardue.

Relever ces défis nécessite le développement d’une approche automatisée d’intégration

des données. Dans cette thèse, un framework d’intégration de données basée sur les MPS

est développé pour le downscaling stochastique des MNE basse résolution. L’approche

est composée d’algorithmes conçus pour trois tâches principales: le downscaling statis-

tique des ensembles de données avec trends, l’automatisation du processus de downscaling
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et l’intégration des données secondaires dans le processus. La première contribution de

cette thèse est un nouvel algorithme MPS de downscaling avec la capacité de gérer des

données avec des trends. L’élévation du terrain est modélisée comme un signal spatialisé

exprimé comme la somme d’un trend déterministe et d’une composante résiduelle stochas-

tique. L’approche permet le downscaling des MNE de terrain plat aussi bien qu’escarpé. La

deuxième contribution traite de l’automatisation de la paramétrisation de l’algorithme, en

l’expriment comme un problème d’optimisation. Le framework fournit une alternative effi-

cace pour la génération automatique de MNE à haute résolution statistiquement correcte.

La troisième contribution s’appuie sur les deux développements susmentionnés en intégrant

des données ISM à haute résolution en tant qu’informations secondaires dans le processus

de downscaling. Les données d’élévation et radiométriques avec différentes résolutions spa-

tiales sont intégrées en utilisant une approche probabiliste. L’approche permet d’améliorer

la précision structurelle des MNE simulés et de réduire l’incertitude inhérente au downscal-

ing.

Les développements de cette thèse fournissent une alternative efficace et bon marché à

l’acquisition de donnée topographique à haute résolution basée sur l’intégration de données

de terrain et d’imagerie multispectraux à plus haute résolution. Les recherches futures

devraient se concentrer sur l’évaluation des applications potentielles des MNE à haute

résolution pour l’étude des processus de surface terrestre, la planification et la conception

des infrastructures, et l’évaluation des risques naturels.
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Chapter 1

Introduction

1.1 Problem setting and background

Terrain surface features play a fundamental role in regulating atmospheric, hydrologic, geo-

morphic, and ecological processes operating on, or near, the Earth’s surface (Wilson, 2012).

Our understanding of the physical nature and magnitude of these processes may be ad-

vanced by an accurate representation of the terrain surface. Topography, or hypsometry, is

the field of geoscience and planetary science concerned with the study of the shape and fea-

tures of land surfaces. Topography focuses on the measurement of land elevation relative to

mean sea level, while bathymetry concentrates on the measurement of the underwater depth

of lake and ocean floors. Geomorphometry is the branch of applied science concerned with

the acquisition, processing, representation, and quantitative analysis of terrain elevation

data (Wilson and Gallant, 2000; Li et al., 2005; Hengl and Reuter, 2008).

Spatial scaling has an important role in geomorphology and surface hydrology (Good-

child, 2011). Digital elevation models (DEMs) serve as the prime input data for many

terrain modeling studies, and their spatial resolution has a direct impact on several appli-

cations in geoscience and geotechnical engineering, such as hydrological modeling (Jarihani

et al., 2015), prediction of surface saturation zones (Barling et al., 1994), landscape erosion-

deposition models (Schoorl et al., 2000), sediment transport (Lane et al., 1996), hillslope

stability and landslide modeling (Montgomery and Dietrich, 1994; Claessens et al., 2005).

Remote sensing techniques have experienced a major technological evolution over the

1
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past decade enabling rapid and precise acquisition of fine-resolution DEMs. Yet, fine-

resolution data sets are relatively sparse and unevenly distributed across the planet. This

is mostly due to the technical limitations associated with different acquisition techniques.

Sensors designed to measure elevation data offer a wide range of spatial resolutions and

coverage capabilities. Terrestrial light detection and ranging (LiDAR) surveys, for example,

allow the acquisition of fine-resolution DEMs with centimeter- to millimeter-level precision,

but only within small spatial extents and often with dead ground problems (i.e. when parts

of the terrain are hidden from the observer due to topographic undulations) (Becker et al.,

2009; Doria and Radke, 2012). Consequently, carrying out extensive fine-resolution surveys

entails substantial costs. By contrast, satellite-mounted synthetic-aperture radar (SAR)

systems are able to gather elevation measurements over large areas, often with regular

repeat coverage, but with limited spatial resolution and precision (Wilson, 2012; Yamazaki

et al., 2017). These limitations prevent extensive characterization of terrain properties

and processes at scales finer than the spatial resolution provided by spaceborne imaging

sensors. In the last decade, however, fine-resolution multispectral satellite imagery (MSI)

has become widely available, providing abundant data for monitoring the Earth’s surface

(Gorelick et al., 2017). Although rendering no elevation information, fine-resolution MSI

may provide indirect information about topographic features at scales finer than the spatial

resolution of spaceborne DEMs.

Downscaling refers to an increase in the spatial resolution of remotely sensed images.

Statistical downscaling, in particular, plays an important role in science and engineering

because it enables prediction of spatial attributes at scales finer than that of the original

input data. Being an ill-posed problem, downscaling calls for a probabilistic framework

to address its inherent underdetermination (i.e. multiple fine-resolution images may cor-

respond to the same coarse-resolution image). Geostatistical simulation techniques offer a

suitable framework for downscaling owing to their excellent data conditioning capabilities,

relative low computational cost, and ability to provide uncertainty estimates for the predic-

tions. Casting downscaling as a probabilistic problem enables to propagate the impact of

the small-scale uncertainty about the imaged attribute to the response of a target physical

process or engineering workflow.

In the last decade, a specific branch of geostatistics, known as multiple-point statistics

(MPS) simulation, emerged as a powerful alternative for downscaling due to its ability to

replicate the complex low-entropy textures (i.e. textures characterized by spatial connec-

tivity between low and high values) often found in geophysical and remote sensing images.

Fine-resolution simulations of a target random field are constructed by stochastic transfer
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of fine-scale spatial structures from a better-informed training data set. This framework

could be potentially extended for the statistical downscaling of a coarse-resolution target

DEM by importing terrain elevation data from a better-measured area mapped at multiple

scales.

The application of MPS simulation for the downscaling of coarse-resolution DEMs is

compelling, but there are many issues to be addressed. Large-scale variations in the ampli-

tude of the imaged physical properties (e.g. changes in elevation of a mountainous DEM),

known as trends, pose a challenge for accurate modeling of fine-scale spatial structures.

Moreover, MPS simulation algorithms are notably difficult to parameterize, often requiring

manual parameter tuning and laborious sensitivity analyses. This task becomes even more

troublesome when one has to integrate a large number of disparate data sources with vary-

ing spatial resolution and quality (e.g. DEMs and MSI). Nonetheless, any type of additional

information about the target physical property should be integrated in order to produce

more accurate predictions and data-consistent models.

In this thesis, the emphasis is on challenges associated with the automatic integration

of different types of remote sensing data for the downscaling of coarse-resolution DEMs.

The aim of this thesis is to develop a novel framework for efficient, low-cost generation of

statistically accurate fine-resolution digital terrain models from limited information data in

the form of coarse-resolution DEMs and fine-resolution MSI. These challenges are tackled

from a geostatistical perspective. Numerical experiments illustrated by case studies are

validated using well-established and state-of-the-art spatial statistics. An analysis on the

impact of the resolved sub-pixel terrain features for modeling Earth surface processes, or

land surface parameters, is beyond the scope of this thesis.

Understanding the aforementioned challenges and objectives requires appreciation of

the importance of fine-resolution digital terrain data to the Earth sciences. Subsection 1.1.1

provides an overview on the principal digital terrain data acquisition techniques and data

products. Subsection 1.1.2 discusses the importance of fine-resolution DEMs for the study

of Earth’s surface processes and the risk assessment of natural hazards.

1.1.1 Digital terrain modeling

Over the past three decades, the acquisition and processing methods for gathering topo-

graphic data have evolved significantly (Wilson, 2012). Nowadays, digital elevation data
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may be acquired by a wide range of techniques. Nelson et al. (2009) define three gen-

eral classes of methods for data collection: i. ground survey techniques (e.g. electronic

theodolites, total stations, electronic distance measurement (EDM) devices, and global po-

sitioning system (GPS) units); ii. digitization of existing hardcopy topographic maps for

deriving contour lines, stream networks, and spot heights; and iii. remote sensing techniques

based on airborne and spaceborne systems using either active sensing, such as LiDAR and

interferometric synthetic aperture radar (InSAR), or passive optical sensing, such as pho-

togrammetric range imaging. Bathymetric data are commonly acquired with echosounders

(e.g. sonars) mounted on a vessel, or by airborne LiDAR systems.

Terrain elevation data can be clustered into four main formats: point clouds, con-

tours/breaklines, raster- and vector-based DEMs. DEMs are probably the most common

data structures used for production of digital relief maps. A DEM consists of a 2.5- or

3-dimensional numerical representation of the Earth’s (or another telluric planet, moon, or

asteroid) surface generated from elevation measurements. Typically, DEMs are represented

either as rasters (also known as heightmaps) or as vector-based triangular irregular networks

(TINs). Raster-type DEMs consist of dot matrix data structures in the form of regular grids

of square pixels. By contrast, TIN DEMs represent continuous surfaces by tessellation of

triangular facets. TIN data sets are often referred to as primary (or measured) DEMs,

whereas raster-type products are designated as secondary (or computed) DEMs. Although

TINs offer a more accurate, flexible, and compact alternative for the representation of ter-

rain features by allowing the generation of relief models with spatially variable data density,

raster-type DEMs are often preferred in various types of geographic information systems

(GIS) applications due to their computational convenience.

Most data providers and publications in the scientific literature use the term DEM as

a generic term for both digital surface models (DSMs) and digital terrain models (DTMs).

DEMs typically provide height information without any further definition about the surface

properties. DSMs represent the Earth’s surface including natural and man-made objects

on it, whereas DTMs represent only the bare ground surface (Li et al., 2005). DSMs are

commonly used, for example, as input data for landscape visualization and environmental

simulation (Lindquist et al., 2016), and wind flow modeling in urban areas (Li et al., 2019).

Applications of DTMs include hydraulic modeling for flood assessment (Lamichhane and

Sharma, 2018; Leitão and de Sousa, 2018), land-use studies (Tsai et al., 2018), and geological

and planetary mapping (Putri et al., 2019). In general, terrain elevation measurements taken

from satellites, airplanes, and unmanned aerial vehicles (UAVs) serve as input data to DSM

production. Computer algorithms must be applied to convert DSMs into DTMs (Li et al.,
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2005).

1.1.2 On the importance and sparsity of fine-resolution digital elevation

models

Terrain elevation data on Earth are unevenly distributed in space and time. To this day,

most of the Earth’s terrain surface is mapped at relatively coarse spatial and temporal reso-

lutions (Yamazaki et al., 2017). In many cases, coarse-resolution spaceborne DEMs (Wilson,

2012), such as the U.S. National Geospatial-Intelligence Agency (NGA) and NASA’s Shut-

tle Radar Topography Mission (SRTM30) 1-arc second near-global DEM (Farr et al., 2007)

and JAXA’s Earth Observatory Research Center (EORC) 1-arc second global digital sur-

face model ALOS World 3D-30m (AW3D30) (Tadono et al., 2016), comprise the only freely

available data products in remote regions across the planet. Spaceborne DEMs provide

essential data for the analysis of large-scale geological structures and surface processes but

are unsuited for small-scale landscape representation and hydrological simulations (Zhang

and Montgomery, 1994). Wechsler (2007) demonstrates that the spatial resolution of the

input DEM has a significant impact on multiple hydrologic parameters. Moreover, studies

in flood engineering suggest that the spatial resolution of DEMs plays a critical role in

hydraulic modeling for flood warning systems (Lamichhane and Sharma, 2018) and urban

flood assessment (Leitão and de Sousa, 2018).

Small-scale topography may play a fundamental role in modulating large-scale surface

processes in mountainous environments. The connectivity caused by rills and gullies, for

example, can affect surface water runoff and sediment flux in mountain drainage basins

(Lane et al., 2017). Fine-resolution DEMs are one of the most important data sources for

modeling fine-scale geomorphic processes (Hengl and Reuter, 2008). These products are

typically acquired using either ground or airborne systems (Wilson, 2012). The availability

of fine-resolution DEMs, coupled with geomorphometric approaches, expands the range of

applications of topography-based modeling, allowing detailed characterization of drainage

area, drainage patterns, and surface roughness, which is a proxy for sediment transport

impedance (Cavalli et al., 2013). The spatial resolution of these products enables accurate

extraction of drainage networks (McMaster, 2002), terrain derivatives (Kienzle, 2003), and

topographic indexes (Vaze et al., 2010; Mukherjee et al., 2013). Fine-resolution DEMs are

also important for the analysis of surface texture (Trevisani et al., 2012) and the spatial

patterns of saturated areas (Hoang et al., 2018), as well as for estimating snow accumulation

and melt (Sohrabi et al., 2019). The detailed mapping of topographic surfaces plays a
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fundamental role in the individuation of sediment source areas (Cavalli et al., 2013), as well

as for the quantitative modeling of sediment fluxes and connectivity (Brown et al., 2009;

Bishop et al., 2012).

The analysis and modeling of the Earth’s surface phenomena can also be biased if the

processes being investigated are influenced by details smaller than the spatial resolution of

the input DEM (Goodchild, 2011). Perron et al. (2008) analyzed two-dimensional Fourier

spectra derived from fine-resolution DEMs and showed that the spectral properties of land-

scapes can deviate in many important ways from the fractal scaling (Mandelbrot, 1974)

often assumed to describe topographic surfaces. The development of computer algorithms

for integrating coarse- and fine-resolution terrain elevation data would offer an efficient,

low-cost alternative for generating synthetic fine-resolution DEMs in remote and sparsely

populated regions, where typically only coarse-scale measurements are available.

1.2 Thesis statement

To address the aforementioned challenges, an automated data integration framework for

stochastic downscaling of coarse-resolution DEMs is proposed in this thesis. The proposed

approach provides a framework for addressing the problems of: i. MPS-driven downscaling

of two-dimensional images with trends, ii. automation of the downscaling process, and iii.

integration of finer-resolution secondary data in the form of MSI into the downscaling. The

thesis statement:

An automated data integration framework for stochastic downscaling of coarse-resolution

DEMs which provides an efficient, low-cost alternative for fine-resolution probabilistic ter-

rain mapping will contribute towards more accurate modeling of Earth’s surface processes

and risk assessment of natural hazards in sparsely-sampled regions across the planet.

The data integration approach is composed of algorithms for the statistical downscal-

ing of data sets with trends, automation of the downscaling process, and integration of

secondary information into the downscaling based on a probabilistic framework. The first

contribution of this thesis is a novel MPS-driven downscaling algorithm with inbuilt capa-

bilities for handling data sets with trends. Terrain elevation is modeled as a spatial signal

expressed as the sum of a deterministic trend and a stochastic residual component. This

enables accurate downscaling of coarse-resolution DEMs of either flat or steep terrain. The
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second contribution addresses the automation of the downscaling algorithm. An automa-

tion routine based on simulated annealing and cross-validation techniques is used to infer

optimal algorithm parameters by framing the parameter calibration task as an optimization

problem. The third contribution is the development of an approach for integrating available

finer-resolution MSI as secondary data to enhance the structural accuracy and reduce the

inherent uncertainty associated with the downscaling. Spatial information derived from

coarse- and fine-resolution DEMs and MSI is integrated based on a probability aggregation

framework.

1.3 Thesis outline

Chapter 2 establishes key concepts in statistical downscaling and geostatistics, and reviews

relevant literature on the application of geostatistical simulation to digital terrain modeling

and remote sensing. Other important topics which form the basis of the algorithms devel-

oped in this thesis, including the geostatistical modeling of data sets with trends and the

automation of MPS simulation methods, are discussed in this chapter.

Chapter 3 describes an MPS-driven algorithm for downscaling of two-dimensional dig-

ital images with trends. The method is illustrated by the downscaling of coarse-resolution

DEMs from the South-Western Alps and the Jura Mountains in Switzerland. The framework

introduces four novel aspects to MPS-driven downscaling: i. an inbuilt decomposition of

the random variable into a trend and a residual component; ii. a multiple-scale quasi-pixel-

based sequential simulation approach, iii. the application of kernel weighting techniques

for computing distances between data events; and iv. a probabilistic approach for inte-

grating coarse- and fine-resolution data based on a distance-to-probability transformation

function. Simulated realizations are benchmarked against experimental results obtained

from state-of-the-art two-point, multiple-point simulation, and deterministic interpolation

methods.

Chapter 4 presents an automation framework for MPS-driven downscaling of coarse-

resolution DEMs. The task of parameter optimization is cast as an optimization problem.

The approach relies on the combination of simulated annealing and K-fold cross-validation

techniques for optimizing the simulation parameters by minimization of a multiple-component

objective function. Guidelines on the formulation of an objective function in the context of

geomorphometry are discussed. The framework is demonstrated with an updated version of

the algorithm introduced in Chapter 3. Three case studies using DEMs of the Alaska Range,
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the Appalachians, and the Central Lowlands in South Australia illustrate the method.

Chapter 5 introduces an approach for integrating finer-resolution MSI to enhance the

statistical downscaling of coarse-resolution DEMs. Fine-resolution MSI data are incorpo-

rated as auxiliary data for resolving sub-pixel features on a given target coarse-resolution

DEM. Spatial and spectral information derived from DEMs and MSI are assimilated using

probability aggregation operations. The method is demonstrated with the downscaling al-

gorithm and the automation framework presented in Chapters 3 and 4, respectively. Case

studies with DEMs and MSI of the Colorado Plateau and the San Gabriel Mountains in the

Western United States illustrate the approach.

Finally, Chapter 6 contains the conclusions and recommendations. A brief summary

of the previous chapters is provided. Research implications beyond the scope of this thesis

are noted in this final chapter.

The three main Chapters (3 through 5) are each based upon scientific articles that have

been already published (Chapter 3) or that will be submitted (Chapters 4 and 5). Each

chapter has a preface that explains how it fits into the wider goals of the thesis.



Chapter 2

Fundamental concepts on

downscaling and stochastic

modeling

2.1 Statistical downscaling and data integration

Surface and subsurface surveys often need to estimate phenomena at scales finer than the

spatial resolution provided by imaging sensors. Downscaling refers to a decrease in the

pixel size of remotely sensed images (Atkinson, 2013). Conversely, upscaling refers to the

coarsening of the image spatial resolution. The two approaches are often required for

the integration of disparate data sets and for the calibration and validation of numerical

models in various applications. Downscaling methods, in particular, play an important role

in science and engineering because they enable performing predictions of spatial attributes

at finer resolution than that of the original input data. The spatial predictions are often

based on available fine-resolution data or prior knowledge about the small-scale variability.

Atkinson (2013) presents a comprehensive review of statistical downscaling techniques

in the context of remote sensing applications. The author classifies downscaling methods

in two main groups: area-to-point prediction and super-resolution mapping. Area-to-point

techniques focus on the prediction of continuous properties, whereas super-resolution map-

ping focuses on the prediction of categorical variables. Area-to-point methods can be sub-

divided into regression-type approaches (Stathopoulou and Cartalis, 2009; Pouteau et al.,

9



CHAPTER 2. FUNDAMENTAL CONCEPTS 10

2011), geostatistical estimation (Pardo-Igúzquiza et al., 2006, 2011), and geostatistical sim-

ulation (Kyriakidis and Yoo, 2005; Jha et al., 2013). Super-resolution mapping methods

rely on pixel swapping algorithms (Atkinson, 2005; Thornton et al., 2006), Hopfield neu-

ral networks (Tatem, 2002; Nguyen et al., 2005), artificial neural networks and wavelets

(Mertens, 2004), geostatistical simulation (Boucher and Kyriakidis, 2007; Boucher, 2009;

Mariethoz et al., 2011), and Markov random fields (Kasetkasem et al., 2005; Tolpekin and

Stein, 2009). In the field of computer vision, the term image super-resolution is generally

associated with the increase of the spatial resolution of a given coarse image by superposing

different views of the same scene.

Downscaling can be seen from an inverse problem perspective (Bertero and Boccacci,

1998), where the goal is to reconstruct an unknown fine-scale image from its corresponding

known coarse-scale counterpart. From a statistical point of view, the forward problem of

computing a coarse-resolution image from a given fine-resolution image is trivial as it may

consists of a simple averaging process (e.g. linear, geometric, harmonic). On the other

hand, downscaling a coarse-resolution image is an ill-posed problem because the upscaling

of different fine-resolution images may result in the same coarse-resolution image. For that

reason, any solution to downscaling calls for prior information, in the form of existing data,

or as a model of sub-pixel spatial structure, in order to limit the problem underdetermination

(Bertero and Boccacci, 1998; Boucher and Kyriakidis, 2007).

The prior sub-pixel structural model can assume the form of a mathematical model,

such as a parametric variogram model (Goovaerts, 1997), a finer-resolution training image

(Remy et al., 2009), or even a procedural algorithm linked to the parametric energy function

of a Markov random field model (Kasetkasem et al., 2005), capable of generating statistically

accurate scenarios, such that it allows to constrain a potentially large solution space. This

model might be inferred or calibrated using textural information from available fine-scale

analogs (Boucher and Kyriakidis, 2007; Boucher, 2009), or it may entirely rely on the

structural information from the coarse-resolution image itself based on some sort of scale

invariance assumption (Mariethoz et al., 2011). Note that the latter assumes a fractal

scaling property (Mandelbrot, 1974) between coarse and fine structures, which is not valid

in several applications (Gilbert, 1989; Perron et al., 2008). In some specific cases, where

the extent of the spatial structures to be resolved is much larger than that of the coarse

pixel (i.e. H-resolution type problem), other mechanisms based on a maximum spatial auto-

correlation hypothesis (Woodcock and Strahler, 1987; Atkinson, 2005) might be applicable.

Such model, however, is not flexible, and likely inappropriate for downscaling images in

which the size of the patterns or objects to be resolved are finer than the spatial resolution
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provided by the imaging sensor (i.e. L-resolution type problem) (Woodcock and Strahler,

1987; Atkinson, 2013).

After the prior structural model has been specified, a probabilistic framework is typi-

cally adopted as it offers the possibility to explore and model the inherent indetermination

of the downscaling process. It is fundamental to realize that producing a single downscaled

scenario does not reveal the uncertainty associated with its construction. In addition, the

fact that direct information of the attribute of interest at the target fine scale is often

non-existent, or is at best sparse, makes the task of reconstructing the unknown true fine-

resolution image virtually impossible. Therefore, rather than trying to obtain the “perfect”

prediction model which minimizes the per-pixel error with respect to the inaccessible true

fine-resolution image, one should attempt to generate a series of possible scenarios that

display the expected spatial features at the target fine scale, and analyze the variability

associated with such predictions.

To this end, the problem is resolved by generating multiple synthetic fine-resolution

images that are coherent with both the input coarse-resolution image and the prior fine-scale

structural model. This framework enables the estimation of the conditional probability

distribution of the attribute of interest, at any uninformed small-scale pixel, given the

available coarse-scale data and the pre-specified structural model. This can be extended

for determining the likelihood of the occurrence of specific spatial structures (i.e. a given

configuration of pixel values) by computing their frequency of occurrence over the ensemble

of simulated scenarios.

Nevertheless, the downscaling outputs themselves are seldom the end-goal of a study.

Often, the generated fine-resolution scenarios serve as input data to another process or a

more intricate chain of processes. The ensemble of simulated scenarios enables the deter-

mination of the uncertainty associated with the predictions, and the propagation of the

impact of the small-scale uncertainty to the response of a target physical process or engi-

neering simulation model (e.g. distributed runoff model, reservoir flow simulator, open-pit

optimizer, wildfire propagation simulator). Ultimately, this allows the end-user to capitalize

on such information and construct a probability distribution for the physical process or the

engineering workflow outputs within a Monte Carlo framework.



CHAPTER 2. FUNDAMENTAL CONCEPTS 12

2.1.1 Geostatistical simulation

Geostatistical simulation methods (Journel and Huijbregts, 1978; Goovaerts, 1997; Remy

et al., 2009; Mariethoz and Caers, 2014) are one of the most prominent approaches for

modeling spatially and temporally auto-correlated variables. These techniques are especially

useful for characterizing partially known phenomena, or when the available data is imperfect

or incomplete. Geostatistical methods find a wide range of applications owing to their

excellent data conditioning capabilities and relative low computational cost. In the context

of statistical downscaling, these techniques offer a suitable framework due to their ability

to generate multiple scenarios and provide uncertainty estimates for the predictions.

A fundamental concept of geostatistics, and all of statistics and probability theory, is

that of a random variable or random function. This model enables making uncertainty

assessment about a partially known attribute or property. Unlike a deterministic variable,

which takes only single outcome, thus leaving no room for uncertainty, a random vari-

able may take a series of possible outcomes, each with a certain probability (Goovaerts,

1997; Remy et al., 2009). Random function models do not represent any of the natural or

mechanistic processes responsible for generating the spatial and/or temporal distribution

of the data. The application of such models is simply a matter of convenience for describ-

ing and making inferences about phenomena that are often sparsely sampled and not fully

understood.

Another important aspect is the distinction between the concepts of estimation and

simulation. In estimation, each unknown is evaluated independently of other estimates.

Estimation aims at providing a minimum error variance prediction of any unsampled value.

As predictions essentially consist of weighted averages of the input data, estimates tend

to smooth out the original data variability. In this case, one is typically interested in

performing either local or global predictions of the conditional expected value (e.g. mean)

of the random variable under study. Conversely, simulation aims at characterizing the joint

spatial distribution of all unknowns. This relates to making an assessment of the spatial

variability and connectivity (i.e. texture) of the random variable in space and/or time.

In this thesis, the choice of a simulation framework is preferable as it enables to assess

the uncertainty of the model predictions, and reproduce the data variability and spatial

structure. This stems from the fact that the downscaled DEMs may serve as input data for

modeling physical processes in which the texture of the terrain surface has an impact on

the model outputs.
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2.1.2 Downscaling with two-point statistics

Geostatistical simulation techniques can be broadly grouped into three main families of

approaches: two-point, multiple-point, and object-based methods. Downscaling techniques

based on two-point and multiple-point statistics are discussed in the forthcoming subsec-

tions. Object-based simulation is not specifically addressed in this thesis, as related methods

are almost exclusively designed for niche-type applications, such as stochastic modeling of

predefined objects (e.g. subsurface geological structures) in the presence of scarce condi-

tioning data (Maharaja, 2008).

Two-point statistics techniques rely on parametric functions to generate simulated real-

izations of random fields (Kyriakidis and Yoo, 2005; Boucher and Kyriakidis, 2007; Liu and

Journel, 2009). The spatial structure of the random field is characterized through covari-

ance functions (Goovaerts, 1997), variogram models (Marcotte, 1996), or spatial entropy

(Renard and Allard, 2013). In spatial modeling problems, these statistics essentially de-

scribe the probability of having a given value at a certain position as a function of a known

value at another position. They allow characterization of spatial variability (i.e. roughness)

and the preferential anisotropy of spatial features.

Two-point simulation methods have been used for several applications in the downscal-

ing and integration of coarse- and fine-scale data (Journel, 1999; Kyriakidis and Yoo, 2005;

Boucher and Kyriakidis, 2007; Liu and Journel, 2009; Zagayevskiy and Deutsch, 2015). In

the context of terrain elevation modeling, these techniques have been employed for confla-

tion of DEMs and spot height measurements (Kyriakidis et al., 1999), and downscaling of

coarse-resolution DEMs using different kinds of auxiliary maps (Hengl et al., 2008). Nev-

ertheless, two-point methods assume that second-order statistics suffice to describe and to

model the spatial structure of the target random variable. Another aspect, often overlooked

in practice, is that these methods implicitly adopt the higher-order statistics (Dimitrakopou-

los et al., 2010) embedded in the simulation algorithms (Remy et al., 2009). These statistics

are generally high-entropy in character, which leads to maximization of the spatial disorder

beyond the input covariance function model (Journel and Deutsch, 1993).

These assumptions may not be entirely appropriate for modeling low-entropy Earth

textures that display connectivity between high and low data values, such as permeability

in porous media (Renard and Allard, 2013), geological structures (Strebelle, 2002), and

topographic features (Rasera et al., 2020b,a). Curvilinear structures, such as drainage net-

works and channelized systems, are better characterized with spatial connectivity metrics.
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Connectivity is often measured with multiple-point statistics and connectivity functions.

Multiple-point statistics, such as multiple-point histograms (Boisvert et al., 2010) and high-

order spatial cumulants (Dimitrakopoulos et al., 2010), enable the calculation of conditional

probabilities by considering the joint spatial relationship between multiple data values.

2.1.3 Downscaling with multiple-point statistics

Multiple-point statistics (MPS) simulation methods (Remy et al., 2009; Mariethoz and

Caers, 2014) comprise an alternative category of algorithms designed for simulating com-

plex low-entropy Earth textures. These methods do not require the definition of an explicit

random function model. Rather, the task of generating a simulated realization is formulated

as a stochastic imaging problem. The structural model is typically referred to as a training

image. The training image consists of either an analog or a conceptual representation of

the phenomenon under study. They may be also fully computer-generated, obtained from

process-based forward simulation runs (Mackey and Bridge, 1992), event-based modeling

(Pyrcz et al., 2008), and unconditional object-based simulations (Maharaja, 2008). This

framework enables the reproduction of more complex textures because the structural model

is not limited to the descriptive capacity of a mere covariance function model, but it is in-

stead replaced by an extensive, and potentially rich, database of spatial patterns. In terrain

elevation modeling applications, the training image might be constructed from available

DEMs (Tang et al., 2015; Rasera et al., 2020b,a) or landscape evolution model outputs

(Coulthard, 2001; Tucker and Hancock, 2010).

Simulated realizations are produced following either a sequential simulation formal-

ism (Strebelle, 2002) or a stochastic optimization framework (Deutsch and Cockerham,

1994). Sequential simulation-driven algorithms derive the spatial structure and statistics

of the random field from the training image based on precomputed conditional probabil-

ity distributions (Guardiano and Srivastava, 1993; Strebelle, 2002), or by direct sampling

(Mariethoz et al., 2010). Spatial features are often simulated by resampling replicates from

the training image through template matching. Conversely, optimization-driven algorithms

rely on stochastic relaxation techniques and aim at minimizing an objective (or energy)

function measuring the dissimilarity between the target spatial characteristics and those of

a candidate realization generated using an iterative perturbation mechanism (Deutsch and

Cockerham, 1994; Deutsch and Wen, 2000).

Over the past decade, MPS simulation algorithms have found application in a di-

verse range of downscaling problems, such as super-resolution of land cover maps derived
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from satellite imagery (Boucher, 2009), downscaling based on scale-invariant multiple-point

statistics (Mariethoz et al., 2011), downscaling of climate modeling simulations (Jha et al.,

2013), and conditioning realizations to block-support data (Straubhaar et al., 2016). Ap-

plications relevant to the field of geomorphometry include the simulation of braided river

DEM time series (Pirot et al., 2014), terrain elevation data fusion (Tang et al., 2015), and

the downscaling of coarse-resolution DEMs (Rasera et al., 2020b,a).

2.1.4 Integrating fine-resolution data into the downscaling

Available fine-resolution data may be also integrated into the downscaling process. It en-

ables generation of alternative scenarios that are consistent with both coarse-scale measure-

ments and any additional, or previously mapped, fine-scale data. Such finer-resolution data

provide valuable information about the spatial and/or temporal position of the physical

property under study at the target resolution.

Additional fine-scale data can be obtained via direct surveys, archival data, or by

another finer-resolution imaging technique. Such measurements may consist of either “hard”

or “soft” data. Hard (or primary) data comprise direct measurements of the variable under

study at the exact sample locations. Conversely, soft (or secondary) data encompass any

type of indirect, and often less precise, measurement of the target variable. Disparate types

of data sets are generally integrated following a probabilistic framework (Journel, 2002;

Remy et al., 2009; Allard et al., 2012). Probabilities provide a unit-free, standardized, coding

of information, which facilitates the task of data integration. As opposed to deterministic

estimates, probabilities also include the information content of each individual data source

and the uncertainty of its contribution for determining the conditional probability of a given

event (Remy et al., 2009).

A classic example of fine-resolution data integration for the downscaling of remotely

sensed images consists of pan-sharpening (Du et al., 2007; Thomas et al., 2008; Yokoya

et al., 2017). Pan-sharpening techniques enable the creation of an artificial finer-resolution

product by merging the small-scale spatial information from a fine-resolution panchromatic

band (i.e. secondary data) with the spectral information content of coarser-resolution mul-

tispectral bands (i.e. primary data). Interestingly, the average scale ratio between primary

and secondary data in pan-sharpening contrasts with traditional subsurface geology data

integration problems (Deutsch and Wen, 2000; Liu and Journel, 2009; Straubhaar et al.,

2016). In subsurface exploration, the spatial resolution of the secondary data (e.g. geophys-

ical imagery, mining recovery, and reservoir production data) is often much coarser than
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the resolution of the primary data (e.g. core samples).

Examples of fine-scale data integration in geostatistical downscaling of remote sens-

ing imagery and topographic data include the assimilation of fine-scale GIS data, such as

delineated water bodies, road networks, and previously mapped impervious surfaces, in

super-resolution land cover mapping (Boucher and Kyriakidis, 2007; Boucher, 2009), mul-

tispectral image sharpening by cokriging (Pardo-Igúzquiza et al., 2006; Atkinson et al.,

2008; Pardo-Igúzquiza et al., 2011), downscaling of DEMs based on auxiliary maps with

regression kriging (Hengl et al., 2008), and the integration of point- and block-support data

in two-point statistics simulation and estimation (Liu and Journel, 2009; Zagayevskiy and

Deutsch, 2015).

2.2 Stochastic modeling in the presence of trends

Earth science data sets are often characterized by the presence of trends. Trends comprise

large-scale variations, usually with relatively low temporal and/or spatial frequencies, of

the physical property or attribute under study. Trends are commonly observed in various

types of data, including time series and continuous signals (e.g. hydrographs, seismograms),

piezometric data, geophysical and satellite imagery, and topographic data.

The most restrictive aspect of any probabilistic approach is the assumption of sta-

tionarity (Remy et al., 2009). Stationarity is a property of the random function model

which enables making predictions about the outcome of a partially known variable. In its

strictest sense, a stationary process is defined as a stochastic process whose unconditional

joint probability distribution is invariant under any translation of the spatial and/or tempo-

ral coordinate lag vectors. This implies that the parameters associated with the stochastic

process, such as its mean and variance, do not vary in space and/or time. Albeit extremely

restrictive, the hypothesis of stationarity is also what allows one to scan the data set for

replicates and to average them to infer the required statistics. Yet, in most cases, local

information about the phenomenon under study calls for deviations from rigorous theory

in order to account for the presence of trends in the data.

When dealing with trends, geostatistical methods usually model the target random

variable as the sum of two components: a smoothly varying deterministic trend component,

and a more rapidly varying stochastic residual component. The expected values of the

random variable are modeled by a trend function. The formulation of the trend model
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depends on the amount of available information and the type of problem in hand. In

interpolation problems, the trend model may consists of, for example, a polynomial function

of the spatial coordinates of the regionalized variable, or estimates of the random variable

local expectations based on a correlated auxiliary variable. In extrapolation, however,

predictions are attempted beyond the correlation range of any sample value. Naturally,

such predictions are subject to a greater degree of uncertainty, thus making the functional

type assumed for the trend model critical (Journel and Rossi, 1989).

In many applications, the physics underlying the studied phenomenon do not indicate

that the observed data dissociate into a low-frequency trend component and a higher-

frequency residual component (Journel and Rossi, 1989). This fact makes the choice of the

trend model less evident. The decision to decouple the observed data into two components

is most often subjective. Ultimately, such decision purely serves as a mathematical artifice

to boost the accuracy and precision of the predictive model. In some cases, the choice of a

particular trend model may be facilitated based on prior knowledge or indirect information

about the property or phenomenon under study. In the end, one should ensure that the

modeling decision does not yield biased estimates or affect the variability of the predictions.

The decomposition of the target random variable into two components can be either im-

plicit or explicit. The ordinary kriging estimator (Journel and Huijbregts, 1978; Goovaerts,

1997), for example, performs an implicit decomposition by filtering the mean from the sim-

ple kriging estimator and imposing that the kriging weights sum to one in order to account

for a locally variable expected value. Conversely, other estimators, such as kriging with a

trend (Journel and Rossi, 1989; Goovaerts, 1997), and kriging with a locally varying mean

(Goovaerts, 1997), rely on explicit trend function models. Although these methods enable

trends in the data to be handled, they all maintain the covariance function model asso-

ciated with the residual variable stationary. Such an assumption might not be suitable

if the modeled physical property displays trends in the spatial and/or temporal structure

of its corresponding residual component. The intrinsic random functions of order k ap-

proach (Dimitrakopoulos, 1990; Arroyo and Emery, 2015) is another alternative framework

for modeling regionalized variables with trends, however it is based on random fields whose

generalized increments of order k are assumed to be second-order stationary.

In the field of terrain elevation modeling, Rasera et al. (2020b,a) proposed a novel

MPS-driven downscaling algorithm which includes an explicit decomposition of the terrain

elevation data into a trend and a residual component at multiple scales. Both components

are inferred from the input data based on spatial low-pass filtering operations. The trend
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component is downscaled using a smooth deterministic interpolation, whereas the residual

variable is downscaled with a sequential simulation framework. The stationary assumption

for the residual component is relaxed by allowing an exhaustive search for replicates in the

training image. Once the simulation process is finished, the downscaled data are restored

by summing back together the trend and residual components at each scale.

2.3 Automation of multiple-point statistics simulation algo-

rithms

One of the main issues hindering a more widespread usage of MPS simulation methods in

practical applications is the difficulty associated with their parametrization. MPS algo-

rithm parameters are often non-intuitive and cumbersome to set up. Moreover, parameters

are algorithm-specific and their calibration is data dependent. In practice, extensive sensi-

tivity analyses are generally employed (Liu, 2006; Meerschman et al., 2013). In addition,

parameters must be re-calibrated if either the conditioning or training data are updated.

Nonlinear programming offers a potential framework for automatizing the calibration

of MPS simulation algorithms. Dagasan et al. (2018) applied the simulated annealing al-

gorithm (Kirkpatrick et al., 1983) to calibrate MPS simulation parameters. The approach

focuses on the minimization of the dissimilarity between pattern statistics from the condi-

tioning data and simulated realizations. The objective function employed in the study was

the Jensen-Shannon divergence between multiple-point histograms (Boisvert et al., 2010)

computed using the smooth histogram method (Melnikova et al., 2015). Baninajar et al.

(2019) proposed the application of a stochastic optimization framework for calibrating pa-

rameters based on a sub-sampling cross-validation scheme (Hastie et al., 2009). Several gaps

are randomly placed in the training image and subsequently simulated using the remaining

parts of the data set as training data. The algorithm parameters are optimized using the

simultaneous perturbation gradient approximation method (Spall, 1992) by minimizing the

mean-squared error between the realizations and the original reference data in the gaps.

Although the two aforementioned approaches provide efficient automation routines for

the determination of algorithm parameters, there are still several issues associated with

both frameworks. The reliance on only the conditioning data for calibrating parameters

may lead to biased pattern reproduction due to sample spacing, uneven sample density,

and preferential sampling. If the sampling grid is sparse relative to the rate of spatial

variation of a pattern, the reproduction of textural features finer than the sample spacing is



CHAPTER 2. FUNDAMENTAL CONCEPTS 19

not explicitly taken into account in the optimization process. To enforce the reproduction

of specific fine-scale structures, one must invoke external prior information in the form of a

finer-resolution training image or expert knowledge.

One of the main issues with sub-sampling cross-validation techniques is that only a

subset of the data is actually used for both training and validation. When dealing with

non-stationary data sets, this strategy might be inappropriate as not all relevant spatial

structures may be evaluated in the cross-validation process. In addition, the definition of

an optimal setup for the dimensions, placement, and the number of gaps can be challenging.

2.3.1 Algorithm parameters and hyperparameters

In this thesis, the machine learning (Hastie et al., 2009) nomenclature is adopted for dis-

cerning the parameters intrinsic to the simulation algorithm from the parameters associated

with the algorithm calibration or training process. The term parameter refers to a config-

uration variable that is internal to the simulation algorithm and whose value is calibrated

from either the training data, or the conditioning data, when the latter is available. By con-

trast, a hyperparameter consists of a configuration variable that is external to the algorithm

and whose value cannot be inferred from data.

Parameters are required by an algorithm in order to perform predictions. Fundamen-

tally, they are an inherent part of the predictive model, and their configuration directly

affects the predictive performance of the algorithm for a given data set. Algorithmic pa-

rameters are estimated from the training data, and are typically not set by the user. The

development of an automatic framework for parameter calibration is a topic addressed by

this thesis.

A hyperparameter is a parameter whose value is used to control the algorithm training

or learning process. As a result, they must be specified before the training phase commences.

Unlike algorithmic parameters, they are not inferred from data. Instead, they are often

calibrated for a specific problem and serve to aid the inference of the algorithm parameters.

Hyperparameters are commonly informed by the user, but they can also be estimated based

on heuristics (Claesen and Moor, 2015). Hyperparameter optimization is a trending topic

within the machine learning community because it is a crucial element for the development

of fully automated, self-configuring algorithms and learning strategies. A detailed discussion

on this topic is out of the scope of this thesis.



Chapter 3

Downscaling images with trends

using multiple-point statistics

simulation: An application to

digital elevation models

Trends in elevation pose a challenge for stochastic downscaling of mountainous DEMs as

they fundamentally violate the hypothesis of stationarity. This chapter proposes a solution

for the first objective of this thesis: i. MPS-driven downscaling of two-dimensional images

with trends.

In this chapter, a novel MPS downscaling algorithm with inbuilt capabilities for han-

dling data sets with trends is proposed. The algorithm is illustrated using DEMs of two

distinct mountain ranges. Terrain elevation is modeled as a spatial signal expressed as the

sum of a deterministic trend and a stochastic residual component. The data decomposition

enables the downscaling of steep terrains, and the MPS simulation framework offers a suit-

able alternative for reproduction of the low-entropy textures often present in fine-resolution

DEMs.

This chapter has been published as: Rasera, L.G., Gravey, M., Lane, S.N., and Mari-

ethoz, G. (2020). Downscaling images with trends using multiple-point statistics simulation:

An application to digital elevation models. Mathematical Geosciences, 52(2):145–187, and

20
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Rasera, L.G., Gravey, M., Lane, S.N., and Mariethoz, G. (2020). Correction to: Downscal-

ing images with trends using multiple-point statistics simulation: An application to digital

elevation models. Mathematical Geosciences, 52(2):189–189.

3.1 Introduction

Surface and subsurface investigations often need to estimate phenomena at scales finer than

the spatial resolution provided by imaging sensors. Downscaling methods are commonly

employed to achieve this. Atkinson (2013) provides an overview of statistical downscaling in

remote sensing. From a statistical perspective, downscaling is an ill-posed problem because

the upscaling of different fine-resolution images may result in the same coarse-scale image

(Bertero and Boccacci, 1998; Boucher and Kyriakidis, 2007). The problem is resolved by

producing multiple equiprobable synthetic fine-resolution images. This allows determination

of the uncertainty associated with the sub-pixel predictions, and propagation of the impact

of the fine-scale uncertainty to the response of a target transfer function. Therefore, the

goal is to produce a finer resolution version of the original image, which is coherent with its

low-resolution counterpart, and a given prior fine-scale structural model.

Geostatistical simulation provides a potential framework for stochastic downscaling

problems. Traditional covariance-based simulation methods (Goovaerts, 1997) have been

adapted for downscaling and integration of coarse- and fine-scale data (Journel, 1999; Kyr-

iakidis and Yoo, 2005; Boucher and Kyriakidis, 2007; Liu and Journel, 2009; Zagayevskiy

and Deutsch, 2015). Two-point simulation has also been applied for conflation and down-

scaling of terrain elevation data (Kyriakidis et al., 1999; Hengl et al., 2008). These methods

assume that the second-order statistics characterized through variogram models are suf-

ficient for describing the missing fine-scale structures. In addition, two-point statistics

simulation approaches implicitly adopt the higher-order statistics embedded in the simula-

tion algorithm (Remy et al., 2009). These higher-order statistics are often high-entropy in

character, which leads to maximization of the spatial disorder beyond the input variogram

model (Journel and Deutsch, 1993). Such assumptions may be inappropriate for modeling

low-entropy Earth textures that depict spatial connectivity between extreme data values,

such as permeability in porous media (Renard and Allard, 2013), curvilinear geological

structures (Strebelle, 2002), and topographic features including surface drainage networks

(Tang et al., 2015).

Multiple-point statistics (MPS) simulation (Remy et al., 2009) offers an alternative to
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two-point statistics simulation for modeling low-entropy textures. It does not require the

definition of an explicit random function model. Rather, the task of generating a simulated

realization is formulated as a stochastic imaging problem. The structural model is commonly

referred to as a training image, which consists of an analog or a conceptual representation of

the studied phenomenon. The spatial structure and statistics of the random field are then

extracted from the training image based on computed conditional probability distribution

functions (CPDFs) (Guardiano and Srivastava, 1993; Strebelle, 2002), or by direct sampling

(Mariethoz et al., 2010). Boucher (2009), Mariethoz et al. (2011), and Straubhaar et al.

(2016) proposed different applications of MPS simulation for downscaling problems.

Another common characteristic of Earth science data sets is the presence of trends.

Trends consist of large-scale variations, usually low spatial frequencies, of the physical

property under study. In these cases, the expected values of the random variables (RVs)

representing such properties are deemed unknown (Journel and Rossi, 1989). These local

expectations are often modeled with a trend function (e.g. a locally varying mean) that can

be a function of the spatial coordinates of the regionalized variable, or an estimate of the

expected value based on a correlated auxiliary variable. The RV is thus decomposed into

two components: a deterministic low-frequency trend and its associated complementary

stochastic higher-frequency residual. Tang et al. (2015) used a similar approach for digital

elevation data fusion based on MPS using a modified version of the simulation algorithm

developed by Zhang et al. (2006).

The necessity to infuse complex fine-scale features in non-stationary coarse-resolution

images requires the development of new statistical downscaling methods. In this contribu-

tion, we present a MPS simulation algorithm for downscaling coarse-resolution images with

trends. The approach is inspired by the concept of image pyramids introduced by Burt and

Adelson (1983) for image compression. Here, the pyramid data structure is adapted for

enhancing the spatial resolution of a given target coarse-scale image. The missing fine-scale

structures are imported from a multi-resolution training image, which contains structural

information at several scales. The multi-resolution training image is constructed from a

better-informed data set chosen based on additional prior information or expert knowledge.

The spatial resolution of the target image is gradually enhanced through a series of condi-

tional iterations of the downscaling algorithm. At each iteration, the algorithm generates

features at a specific sub-pixel scale, such that the simulation of finer resolution features is

conditioned to previously simulated coarser structures. This framework shares similarities

with the multiple-grid approach proposed by Tran (1994). To address the presence of trends

in the data set, at each scale, the input variable is decomposed into a trend and a residual
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component. The trend component is downscaled with a smooth deterministic interpolation

technique. The residual component is downscaled using a quasi-pixel-based sequential simu-

lation approach. Realizations of the sub-pixel residual variable are generated by integrating

coarse- and fine-scale information with a probability aggregation operator. After the simu-

lation of each pyramid level, the trend and residual components are summed back together,

and the procedure is repeated at the next scale. We illustrate the methodology with the

downscaling of digital elevation models (DEMs) in two mountain ranges in Switzerland.

The algorithm is benchmarked against two-point and multiple-point statistics simulation

techniques, as well as a deterministic interpolation method. Results are validated by a series

of statistical and structural metrics.

This chapter is organized as follows. In Section 3.2, we introduce the fundamental con-

cepts of the methodology. The proposed downscaling algorithm is described in Section 3.3.

In Section 3.4, we present the two case studies. The results are discussed in Section 3.5.

Finally, in Section 3.6, we summarize the methodology and outline future work.

3.2 Stochastic downscaling

This section presents the fundamentals of the stochastic downscaling method. Subsec-

tion 3.2.1 introduces the concept of representing multi-resolution imagery data as a stochas-

tic spatial signal. This signal can be decomposed into a deterministic low-frequency com-

ponent (trend), and a stochastic higher-frequency component (residual). The term spatial

frequency refers to a characteristic related to the scale of structural features on the image,

which is interpreted as the inverse of structure scale. The trend component describes smooth

large-scale structures on an image, whereas the residual component represents small-scale

features. The downscaling of the trend and the residual components are presented in Sub-

section 3.2.2. Subsection 3.2.3 describes the conditional simulation of the fine-scale residual

variable with the sequential simulation formalism. Subsection 3.2.4 focuses on the estima-

tion of local conditional probabilities from distances between conditioning and training data

events. Finally, the probability aggregation method for integrating coarse- and fine-scale

information is discussed in Subsection 3.2.5.
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3.2.1 Stochastic representation of imagery data

Let zV (u) be the sensor measurement of a physical property assigned to a coarse pixel V

centered at the location u on a target coarse-resolution image denoted by zV . In addition,

let zv(u) be the small-scale measurement of the same property on a fine pixel v indexed on

a target co-registered fine-resolution image zv. The coarse-to-fine resolution ratio between

zV and zv is defined as G =
√
|V |/|v|, where |V | and |v| are the areas of the coarse and fine

pixels, respectively. The notation is presented in Table 3.1.

In this contribution, we make the assumption that any coarse datum zV (ui) corresponds

to the linear average of the discrete set of G2 co-registered fine-resolution pixel values

zv(ui) = [zv(ug), g = 1, . . . , G2]

zV (ui) =
1

G2

G2∑

g=1

zv(ug) ∀i = 1, . . . , N, (3.1)

where zv(ui) is referred as a patch (a square array of fine-scale pixel values) centered at the

position ui (Fig. 3.1), and N is the total number of pixels on zV .

Figure 3.1: Pixels’ configuration for multiple coarse-to-fine resolution ratios. Left : reference
coarse pixel (G = 1). Middle left : co-registered patch of fine pixels (G = 2). Middle right :
co-registered patch of fine pixels (G = 3). Right : co-registered patch of fine pixels (G = 4).
Black dots indicate pixel centroids, red dots indicate patch centroids.

In geostatistics, zV (u) and zv(u) can be interpreted as realizations of the continuous

RVs ZV (u) and Zv(u), respectively. The RV Z(u) will be used to denote both ZV (u) and

Zv(u) in expressions dealing with attributes at the same scale. Here, we propose to model

Z(u) as a spatial signal composed of two variables

Z(u) = m(u) +R(u), (3.2)

where m(u) is a deterministic low-frequency signal (trend), and R(u) is a RV representing

its associated complementary stochastic higher-frequency signal (residual). It is assumed
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Table 3.1: Notation.

Notation Description

α probability aggregation weight for fine-scale data
β kernel weights normalizing constant
λ(hj) kernel weight as a function of hj
σ kernel shape parameter
φ(·) distance-to-probability transformation function
Ψ dual-resolution training image
Ω conditioning data
θ generic vector of algorithm parameters
Ψ multi-resolution training image
hj coordinates offset of the j-th node from u
D(u) local distance vector centered at u
Dk(u) k-th element of the local distance vector
Rv(u) multivariate fine residual RV centered at u
rv(u) fine residual patch centered at u
u data location
zv(u) fine generic patch centered at u
D(·) distance function
d(u) data event centered at u
F (·) MPS simulation algorithm
G coarse-to-fine resolution ratio
K number of data events for computing the local CPDF
m(u) trend value centered at u
m trend image
N number of pixels on zV and rV
n(u) number of pixels in the search neighborhood centered at u
qk rank of the k-th training data event
R(u) residual RV centered at u
r(u) residual value centered at u
r residual image
(s) superscript indicating simulated data
(t) superscript indicating training data
V subscript indicating coarse-scale data
v subscript indicating fine-scale data
Z(u) generic RV centered at u
z(u) generic datum value centered at u
z generic image
ˆ operator indicating estimated data

that R(u) is a spatially auto-correlated RV, that is, it has some sort of spatial structure.

An estimate of m(u) might be obtained by applying an appropriate spatial low-pass



CHAPTER 3. DOWNSCALING IMAGES WITH TRENDS 26

filter on z(u). The estimator m̂(u) is formulated as a weighted linear combination of z(u)

and its neighboring values {z(u + hj), j = 1, . . . , n} within a moving search window

m̂(u) =

n∑

j=0

λ(hj) z(u + hj) with

n∑

j=0

λ(hj) = 1, (3.3)

where hj is the set of n+ 1 coordinates lag vectors radiating from u, with z(u) = z(u + h0)

and n � N . The weights λ(hj) are precomputed based on a kernel and set as function of

hj . The value of r(u), which is interpreted as a realization of R(u), is the complement of

m̂(u).

3.2.2 Stochastic downscaling of images with trends

The goal of downscaling is to predict zv such that the prediction is coherent with zV and a

given prior fine-scale structural model. In order to access the uncertainty of such prediction,

a stochastic approach for downscaling is proposed. The objective is to estimate the unknown

true value zv(u) by generating S realizations of Zv(u), denoted as {z(s)v (u), s = 1, . . . , S},
conditioned to coarse-resolution observations on zV .

In practice, the fine-scale variables m̂v(u) and rv(u) cannot be directly computed be-

cause one has no knowledge of zv(u). As a result, mv(u) has to be estimated from neighbor-

ing coarse-scale data. The sub-pixel trend estimator m̂v(u) is thus obtained by downscaling

m̂V with a given deterministic interpolation method. Conversely, RV (u) is downscaled

through stochastic simulation. A MPS simulation algorithm F (·) is used to generate condi-

tional simulated realizations of Rv(u), denoted as r
(s)
v (u). This algorithm is parametrized

by: a vector of parameters θ associated with F (·), and a dual-resolution training image Ψ

which describes the spatial relationship between the coarse and fine scales

Rv(u|Ω) = F (θ,Ψ | Ω) 7→ {r(s)v (u | Ω), s = 1, . . . , S}, (3.4)

where |Ω refers to the conditioning to both coarse measurements assigned on zV and previ-

ously simulated fine-scale data on zv.

The dual-resolution training image is constructed from a pair of co-registered coarse

and fine-resolution images denoted by z
(t)
V and z

(t)
v , respectively. It consists of an extensive

multi-dimensional associative array listing all co-registered pairs of coarse and fine residual
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data events present on z
(t)
V and z

(t)
v . The residual training variables, indicated by r

(t)
V (u)

and r
(t)
v (u), respectively, are filtered out from z

(t)
V (u) and z

(t)
v (u) with Equation (3.2).

The simulated sub-pixel variable z
(s)
v (u) is reconstructed by rewriting Equation (3.2)

as follows

z(s)v (u) = m̂v(u) + r(s)v (u). (3.5)

Figure 3.2 summarizes the methodology. Rounded white rectangles indicate the coarse-

resolution target image and the training data. Processes are represented as gray rectangles

and intermediate data structures are depicted as rounded gray rectangles. The downscaled

image corresponds to the rounded black rectangle. The pre-processing step, indicated by

the dashed rounded rectangle, encompasses all the processes and data required for the

construction of the dual-resolution training image. This step is performed only once. The

spatial low-pass filtering and deterministic interpolation processes are identical for both

target and training images.

Figure 3.2: Methodology flowchart. The rounded white rectangles indicate the input images.
Processes are represented as gray rectangles and intermediate data structures are depicted
as rounded gray rectangles. The output downscaled image corresponds to the rounded black
rectangle.
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3.2.3 Downscaling with sequential simulation

Let Rv(ui) = [Rv(ug), g = 1, . . . , G2] denote the fine-resolution multivariate continuous RV

co-registered with rV (ui). Hence, the fine-scale residual patch rv(ui) is regarded as a joint

realization of Rv(ui). The downscaling of rV (ui) is performed by generating a series of

realizations of Rv(ui), denoted by r
(s)
v (ui), using sequential simulation (Goovaerts, 1997).

The multivariate conditional probability Pr{Rv(ui) = rv | Ωi−1} for i = 1, . . . , N is given

by the recursive Bayes relation

Pr{Rv(u1) = rv, . . . ,Rv(uN ) = rv | ΩN} (3.6)

= Pr{Rv(u1) = rv | Ω0} ·
N−1∏

i=2

Pr{Rv(ui) = rv | Ωi−1},

where | Ω0 refers to the conditioning of the first iteration of the downscaling to the initial

set of coarse observations, and | Ωi−1 to the conditioning of the i-th iteration to the i − 1

previously simulated patches of fine pixels and the initial low-resolution data. The index

sequence i = 1, . . . , N defines the simulation path. The conditional probability Pr{Rv(ui) =

rv | Ωi−1} is approximated by the simulation algorithm F (·) based on Ψ.

3.2.4 Computing local conditional probabilities

Let dV (ui) denote the coarse-resolution target data event centered at the location ui. This

data structure is comprised of the central value rV (ui) and its nV neighboring coarse values

dV (ui) = {rV (ui + hj), j = 0, . . . , nV }. (3.7)

A larger set of coordinates lag vectors is used to retrieve the co-registered fine-scale

conditioning data event dv(ui)

dv(ui) = {r(s)v (ui + hj), j = 1, . . . , nv(ui)}, (3.8)

where r
(s)
v (ui + hj) corresponds to the current set of previously simulated fine pixels that
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are collocated with dV (ui) (Fig. 3.3).

Figure 3.3: Pair of co-registered coarse- and fine-scale conditioning data events (G = 2).
Left : coarse-scale data event. Right : incomplete fine-scale data event. Black dots indicate
the data events’ centroids. White pixels with red crosses denote non-informed values, green
pixels indicate locations to be simulated.

Conditioning to the coarse information in dV (ui) is achieved by restricting the sampling

of training data events d
(t)
V (u) that minimize the coarse-scale distance function

D(dV (ui), d
(t)
V (u)) =

(
nV∑

j=0

λ(hj)
[
rV (ui + hj)− r(t)V (u + hj)

]2
)1/2

, (3.9)

where λ(hj) are the weights from a given kernel. Note that a kernel function that pro-

vides higher values for λ(h0) ensures better conditioning of the downscaling to the local

measurement zV (ui).

The reproduction of fine-scale spatial features is imposed by the minimization of the

additional distance function

D(dv(ui), d
(t)
v (u)) =

(
nv(ui)∑

j=1

λ(hj)
[
r(s)v (ui + hj)− r(t)v (u + hj)

]2
)1/2

, (3.10)

where d
(t)
v (u) corresponds to a fine-resolution training data event. Equation (3.10) ensures

the sampling of compatible training data events by taking into account previously simulated

fine-scale data.

In order to combine the two different sources of information given by Equations (3.9)

and (3.10), both distances are converted into conditional probabilities. Most distance-based

MPS simulation methods implicitly adopt a distance-to-probability transformation function.
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Simulation algorithms that rely on a threshold distance value as a criterion for accepting

a given training data event, for example, assume a uniform local CPDF. As proposed by

Hoffimann et al. (2017), the local CPDFs can also be defined as a function of the distances

between data events. In this case, the transformation function φ(·) needs to be defined

explicitly such that conditional probabilities can be assigned to each candidate training

data event. Probabilities are made inversely proportional to the distances to a given target

data event.

The transformation function φ(·) also has to take into account the relative dispersion

of distance values within the local pool of candidates. If all the K candidates are equally

compatible with the conditioning data, the local CPDF should resemble a uniform distribu-

tion. By contrast, if only a small number of training data events is similar, the assignment

of higher probabilities should be preferentially limited to this set of data events. This also

applies to the opposite scenario (i.e. when several training data events are significantly

dissimilar to the local conditioning data).

The coarse-scale conditional probability is thus expressed as

Pr{Rv(ui) = r(t)v (uk) | dV (ui)} ∝ φ(D(ui)), (3.11)

where r
(t)
v (uk) refers to the central patch of d

(t)
v (uk), and D(ui) is a (K×1) local vector that

stores the distances between dV (ui) and the set of K best training data events {d(t)V (uk), k =

1, . . . ,K} (i.e. the training data events that minimize Eq. (3.9)). Note that Equation (3.11)

is also used to estimate Pr{Rv(ui) = r
(t)
v (uk) | dv(ui)}.

3.2.5 Integrating coarse- and fine-scale information

To simulate structures from the training image that are compatible with the conditioning

data, we integrate the local conditional probabilities derived from coarse- and fine-scale

information with the log-linear pooling operator (Allard et al., 2012). The conditional

probability Pr{Rv(ui) = rv | Ωi−1} in Equation (3.6) is approximated by

Pr{Rv(ui) = rv | Ωi−1} ≈ Pr{Rv(ui) = r(t)v (u) | dV (ui), dv(ui)} (3.12)

∝ Pr{Rv(ui) = r(t)v (uk) | dV (ui)}1−αi · Pr{Rv(ui) = r(t)v (uk) | dv(ui)}αi ,
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where αi =
∑nv(ui)

j=1 λ(hj).

The weight αi controls the relative importance of previously simulated fine-resolution

data during the aggregation process, based on the number of informed fine pixels and the

kernel weights λ(hj). The value of αi changes throughout the simulation process. In the

beginning of the simulation, conditional probabilities derived from coarse-resolution data

tend to dominate the shape of the aggregated CPDFs, however as the simulation progresses

and r
(s)
v becomes more populated, the importance of fine-scale conditional probabilities

gradually increases.

3.3 Algorithm

The following section aims at presenting the MPS simulation algorithm developed for down-

scaling. The simulation framework is later generalized as a multi-scale iterative process

which allows the downscaling to handle large coarse-to-fine resolution ratios.

Algorithm 1 summarizes the downscaling of the target coarse-resolution image zV using

sequential simulation. The vector of algorithmic parameters θ includes information related

to the kernel function parameters for the spatial low-pass filters and distance functions, and

the number of candidate training data events K used for computing the local CPDFs. For

reproducibility, a seed is used to initialize a pseudo-random number generator which defines

the order of the simulation path and the sampling of local CPDFs. Multiple conditional

simulated realizations are generated by feeding the algorithm different random seeds.

Initially, the residual image rV is extracted from zV with Equation (3.2), and the fine-

scale trend image m̂v is estimated from m̂V using a deterministic interpolation method.

For each coarse pixel rV (ui) visited along the simulation path, the algorithm retrieves

its corresponding pair of co-registered conditioning data events and computes the distance

function in Equation (3.9) for all training data events stored in Ψ with fast Fourier transform

(FFT) (Kwatra et al., 2003). The K best training data events are then sorted in ascending

order according to the coarse-scale distance function. Subsequently, the distances between

dV (ui) and this subset of training data events are stored in D(ui), which is later used

to estimate the local CPDF. The same procedure is repeated for the co-registered fine-

resolution conditioning data event, however, only for those K preselected locations. Once

the simulation is finished, z
(s)
v is restored with Equation (3.5) (line 12 of Algorithm 1).

When the coarse-to-fine resolution ratio is large (e.g. G > 3), Algorithm 1 has to be
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Algorithm 1 Downscaling with sequential simulation

input: a target coarse-resolution image zV , a vector of algorithmic parameters θ, and
the dual-resolution training image Ψ

output: a conditional simulated realization z
(s)
v

1: Compute rV and m̂v

2: Generate a path visiting rV (ui), i = 1, . . . , N
3: for each rV (ui), i = 1, . . . , N along the path do
4: Retrieve the data events dV (ui) and dv(ui)

5: Compute D(dV (ui), d
(t)
V (u)) for all training data events in Ψ

6: Retrieve the K-best pairs of coarse and fine training data events

7: Compute D(dv(ui), d
(t)
v (uk)) for k = 1, . . . ,K

8: Estimate Pr{Rv(ui) = r
(t)
v (uk) | dV (ui), dv(ui)}, k = 1, . . . ,K

9: Draw a simulated patch r
(s)
v (ui) from the local CPDF

10: Add r
(s)
v (ui) to r

(s)
v

11: end for
12: z

(s)
v ← m̂v + r

(s)
v

13: return the conditional simulated realization z
(s)
v

adapted to allow a better reproduction of the different structures that can be found over a

range of scales in r
(t)
v . To this end, we adopt a multi-scale iterative process based on smaller

magnification factors. The downscaling of zV is done through a series of hierarchical con-

ditional simulations. This is accomplished by constraining simulations at finer resolutions

to previously simulated coarser outputs. The process is interrupted when the downscaled

image reaches a target spatial resolution of size |v′| which is the fine pixel size of the finest

dual-resolution training image available. Note that this iterative procedure entails replacing

Ψ with a vector of dual-resolution training images.

The multi-scale downscaling of the target image zV is summarized in Algorithm 2. The

simulation of the sub-pixel residual variable is performed at multiple scales based on a series

of conditional iterations of Algorithm 1. At the end of each iteration, the output realization

z
(s)
v is assigned as the new target coarse-scale image (line 3 of Algorithm 2). The process is

repeated until the desired target spatial resolution is reached.
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Algorithm 2 Multi-scale downscaling with sequential simulation

input: a target coarse-resolution image zV , a vector of algorithmic parameters θ, and
the multi-resolution training image Ψ

output: a conditional simulated realization z
(s)
v

1: while |V | > |v′| do
2: Perform Algorithm 1 using the appropriate Ψ stored in Ψ

3: zV ← z
(s)
v

4: end while
5: return the conditional simulated realization z

(s)
v

3.4 Case studies

The methodology is demonstrated with illustrative examples using DEMs from two moun-

tain ranges in Switzerland. Our MPS-based downscaling method is used to generate fine-

resolution conditional simulations. The coarse- and fine-resolution DEMs of both study

areas consist of coarsened versions of the Swisstopo swissALTI3D DEM (Wiederkehr and

Möri, 2013) produced with linear upscaling. Although there is a natural degree of similar-

ity between both data sets as they originate from universal tectonic and surface processes,

such as orogeny and mass wasting, they represent very distinct geomorphological settings.

The maximum amplitude of the trend component in the two case studies is vastly different:

In the Western Alps example it reaches 1.5 km, whereas in the Jura Mountains case it is

only 300 m. The two mountain ranges are also characterized by contrasting landforms.

The Western Alps are dominated by steep gradients, debris cones, and braided drainage

systems, while the Jura Mountains are predominately karsts with lower gradients mainly

driven by dissolution processes.

In Subsection 3.4.1, we define the kernel used for generating the weights for the spatial

low-pass filter and distance functions as well as the distance-to-probability transforma-

tion function. The estimation of the sub-pixel trend image and the construction of multi-

resolution training images are also discussed. Subsection 3.4.2 describes the setup of the

other downscaling methods used for benchmarking. The statistical and structural metrics

used to validate the results are discussed in Subsection 3.4.3. Subsection 3.4.4 presents an

example using DEMs of the Western Alps, and Subsection 3.4.5 illustrates the method with

DEMs from the Jura Mountains.
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3.4.1 Kernels and distance-to-probability transformation function

In both case studies, a normalized Gaussian radial basis function is used for computing the

kernel weights for the spatial low-pass filter (Eq. (3.3)) and distance functions (Eqs. (3.9)

and (3.10))

λ(hj) =
1

2πσ2β
exp

(
− ‖hj − h0‖22

2σ2

)
, (3.13)

where σ is the kernel shape parameter, and β is the normalizing constant (i.e. the sum of

all kernel weights).

The transformation function φ(·) assigns conditional probabilities to the local pool

of candidate training data events. This function should be flexible enough to allow the

sampling of either a large or a small portion of the K candidate training data events.

The availability of a large pool of candidates for sampling is desirable for generating sub-

pixel variability in the simulated realizations. However, a more thorough sampling might

be important to enforce the reproduction of less frequent features present in the training

image.

Based upon the aforementioned criteria, we formulated the following distance-to-probability

transformation function

φ(Dk(ui)) ∝
(

Dk(ui)−min (D(ui))

max (min (D(ui)), c)
+ 1

)−qk
, (3.14)

where Dk(ui) = D(dV (ui), d
(t)
V (uk)) or Dk(ui) = D(dv(ui), d

(t)
v (uk)), c is a small constant

inserted in the denominator to avoid division by zero, and qk corresponds to the rank of

d
(t)
V (uk) or d

(t)
v (uk) after the sorting operation.

Note that Equation (3.14) allows one to consider a variable number of candidate train-

ing data events at each location to be simulated. If all the distances stored in D(ui) are

similar, a larger set of the K training data events is considered for sampling. Conversely, if

such distances are significantly dissimilar, only the most compatible data events are likely

to be drawn. The numerator of the base term in Equation (3.14) measures the dispersion

within the pool of candidates by computing the difference in distance units between all the

K elements against the best candidate training data event. The denominator converts the
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absolute values into relative measurements towards the smallest element in the set. The

exponent −qk scales the base such that higher conditional probabilities are assigned to the

training data events that minimize the numerator. Adding +1 to the base term allows

assigning uniform probabilities if all candidate training data events have roughly the same

distance to the target data event. Computed conditional probabilities are later re-scaled to

sum up to one.

The algorithm is driven by three parameters: one kernel shape parameter for the spatial

low-pass filter denoted by σF , another shape parameter for the distance functions σD, and

the number of candidate training data events K. Additionally, we compute m̂v(u) and

m̂
(t)
v (u) by downscaling the coarse-scale trend estimates with bicubic interpolation. At each

scale, the decomposition between trend and residual is done using a spatial low-spatial filter

with a radius that is proportional to the pixel size of the current coarse-scale. The sequential

simulation process is performed using a random path.

In both examples, the multi-resolution training images are built directly from z
(t)
v

by linear upscaling. A discussion about the criteria for selecting input data to generate

the dual-resolution training image is out of the scope of this work. In geomorphological

applications, the training image can be built from a better-informed analog data set. In

other research areas, where analogs are not commonly available, artificial training images

may have to be employed.

3.4.2 Benchmarking against other techniques

The proposed algorithm is benchmarked against the two-point statistics area-to-point sim-

ulation method (Kyriakidis and Yoo, 2005), the direct sampling MPS simulation algorithm

(Mariethoz et al., 2010), and the bicubic interpolation method (Keys, 1981). In order to

carry a fair comparison between techniques, zV is detrended prior to simulation. Real-

izations are conditioned to both rV and previously simulated fine-resolution data. The

downscaled DEMs are then restored by addition of the estimated trend component m̂v

computed with bicubic interpolation.

The downscaling by area-to-point simulation is performed with the error simulation

framework (Journel and Huijbregts, 1978; Liu and Journel, 2009). As the simulation

paradigm only applies to Gaussian variables, the reproduction of the fine-scale target his-

togram must be achieved through post-processing. The empirical CDF of r
(t)
v is used as

source distribution for a normal score transform. The histogram transformation morphs this
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empirical CDF into a zero mean Gaussian distribution with unit variance through quantile

mapping. An artificial coarse-scale Gaussian variable is constructed through linear upscal-

ing of the transformed version of r
(t)
v . The histogram transformation is then applied to

rV using the previous Gaussian distribution as target CDF. Note that this approximation

inherently introduces conditioning errors since the upscaling function between the original

coarse- and fine-resolution residuals is actually non-linear. Unlike the trended component,

each coarse-residual pixel value does not necessarily corresponds to the arithmetic mean of

its co-registered fine residual patch due to the trend removal operation. Unconditional fine-

resolution realizations of a zero mean Gaussian process are generated with the FFT moving

average simulation algorithm (Ravalec et al., 2000). The inference of the fine-scale (i.e.

point-support) variogram model is carried out as a two-step process. The first part consists

of inferring the shape of the variogram model near the origin (i.e. for lags smaller than the

coarse pixel size). This is performed based on the Gaussian transform of r
(t)
v . The second

step is the inference of the variogram model geometric anisotropy, which is calibrated based

on the transformed version of rV . Each conditional realization is then back-transformed

into the original variable space using the empirical CDF of r
(t)
v as target distribution.

Downscaling with the direct sampling algorithm can be seen as a conditional simulation

problem with an exhaustive secondary variable. The two required pre-processing steps are

the resampling of the coarse-scale DEMs (in order to have co-located neighbors for both

primary and secondary variables) and the variable normalization operations. In this study,

rV and r
(t)
V are resampled at the fine-scale pixel size using nearest neighbor interpolation.

The target and training residual DEMs are normalized using a min-max scaling. The

minimum and maximum values are extracted from the training data. After simulation,

output realizations are re-scaled.

Although not a geostatistical technique, the bicubic interpolation method is widely

used in practical applications owing to its capability for generating smooth surfaces with

a short processing time. Interpolations are performed based solely on zV . Its application

to the data sets hereby studied is straightforward, and it provides a reference point for

comparison and analysis of the results.

3.4.3 Validation

The downscaled DEMs are evaluated based on a series of statistical and structural metrics.

The reproduction of the reference fine-scale terrain elevation probability distribution is

verified with empirical cumulative distribution functions (CDFs). The conditioning quality
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of the simulations to the input coarse data is quantified based on the average mean error

(ME) and root-mean-square error (RMSE) between the reference coarse-resolution DEMs

and the upscaled realizations. The structural accuracy of the downscaling is assessed by

computing empirical variograms, high-order cumulant maps (Dimitrakopoulos et al., 2010),

probability of connection curves, and the mean structural similarity (SSIM) index (Wang

et al., 2004) between simulated realizations and the reference residual DEMs. The topology

of the realizations is described using the Euler characteristic. Detailed information about

the probability of connection function and the Euler characteristic, and their application for

the evaluation of continuous random fields can be found in Renard and Allard (2013). All

the validation metrics, with exception of the ME and RMSE, are computed on the residual

DEMs to remove the effect of large-scale topographic structures.

3.4.4 The Western Alps example

This example considers DEMs from a portion of the Western Swiss Alps. The topography

in this region is characterized by a rough terrain with steep natural slopes, high altitude

peaks, and glacially carved valleys. The reference DEMs and their respective residual DEMs

are shown in Figure 3.4. The coarse DEM has dimensions of 64× 64 pixels, and each pixel

has size of 32 × 32 m, which is approximately the spatial resolution of the 1-arc second

near-global DEM produced from the U.S. National Geospatial-Intelligence Agency (NGA)

and NASA’s Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007). The medium

and fine DEMs have dimensions of 128 × 128 pixels and 256 × 256 pixels, with pixel sizes

of 16 × 16 m and 8 × 8 m, respectively. The footprint of the DEMs is roughly 4 km2.

The coarse DEM is used for conditioning, while the medium- and fine-resolution DEMs are

used for validation of the simulations. The residual DEMs were computed using a spatial

low-pass filter with σF = 64 m. Negative relief features in the residual variable represent

gullies and drainage networks, whereas positive relief structures correspond to cliffs and

mountain ridges.

Figure 3.5 illustrates the training DEMs and their respective residual DEMs. These

DEMs are from a neighboring area that shares similar topographic features with the ref-

erence data set. The training data set has a larger footprint than the target area (≈ 16

km2). The training DEMs should be extensive enough to include the expected range of

relevant structural patterns to be determined. The coarse-, medium-, and fine-resolution

DEMs have the following dimensions: 128× 128 pixels, 256× 256 pixels, 512× 512 pixels,

respectively, with the same pixel size configuration of the reference data set. The training
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Figure 3.4: The Western Alps reference DEMs. Top left : coarse-resolution DEM. Top
center : coarse-resolution residual DEM. Top right : coarse-resolution zoom. Middle left :
medium-resolution DEM. Middle center : medium-resolution residual DEM. Middle right :
medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center : fine-resolution
residual DEM. Bottom right : fine-resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 8×. Green boxes highlight the magnified area.
Colorbars’ unit is m.

residual DEMs are displayed using the same spatial low-pass filter setup. Table 3.2 lists

summary statistics from the target and training coarse-resolution DEMs used in both case

studies. Note that all residual DEMs show similar mean values, but the training DEMs



CHAPTER 3. DOWNSCALING IMAGES WITH TRENDS 39

have higher variance and range than their corresponding target data sets.

Table 3.2: Summary statistics of the target and training coarse-resolution DEMs from the
Western Alps and the Jura Mountains examples.

Example Data set Mean SD Min. Max.

Western Alps Target −0.38 5.94 −34.71 31.19
Training −0.11 7.81 −57.04 60.26

Jura Mountains Target −0.05 2.84 −14.66 13.11
Training −0.03 4.30 −18.00 27.66

Values are in residual elevation (in m)

An ensemble of 20 simulated realizations with a magnification factor of 4× was gener-

ated based on two iterations of the algorithm. Since the pixel sizes of the multi-resolution

training DEMs are all multiples of 2, the magnification factor per iteration was set equal

to G = 2. The search window used by the spatial low-pass filter and the retrieval of data

events at the coarse scale has dimensions of 5 × 5 pixels. The size of the corresponding

fine-resolution search window is 10× 10 pixels.

The parameters used for the two iterations of the downscaling of the Western Alps

example are listed in Table 3.3. Parameters were chosen such that the algorithm performs

reasonably well for both data sets. Typically, they may be inferred from the dual-resolution

training image through cross-validation. The spatial low-pass filter kernel shape parameter

σF is calibrated in order to generate an auto-correlated residual. The simulation of the

fine-resolution residual component is only feasible if the spatial low-pass filter is applied

to zV prior to its interpolation. This leads to a significant improvement in the structural

accuracy of the simulated realizations. The distance functions’ kernel shape parameter

σD is set such that the central pixel of the coarse-scale data events receives roughly half

of the sum of the kernel weights. The weight given to the central pixel directly affects

the conditioning quality of the downscaling to the target DEM. The number of candidate

training data events K is adjusted to achieve a trade-off between the structural accuracy of

the simulated realizations, sub-pixel variability, and computational efficiency.

The downscaling by area-to-point simulation is performed using a global search neigh-

borhood. The fitted variogram model consists of a normalized anisotropic k-Bessel model

whose parameters are listed in Table 3.4. The direct sampling algorithm parameters are

configured to enforce the scanning of the entire training image. The normalized accep-

tance threshold is set to a small value to maximize the structural quality of the output
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Table 3.3: Algorithm parameters used in the Western Alps and Jura Mountains examples.

Parameter Unit G = 2 G = 4

σF m 64 32
σD m 16 8
K – 20 20

realizations. Table 3.5 lists the algorithm parameters used for the Western Alps and Jura

Mountains examples. A standard configuration setup is employed which includes the use

of an isotropic search radius for the retrieval of data events, and the L2 norm for distance

computation. The exponent in the distance function is set to zero. For a detailed descrip-

tion of the algorithm and its parameters, the reader is referred to Mariethoz et al. (2010)

and Meerschman et al. (2013).

Table 3.4: Area-to-point simulation parameters used in the Western Alps and Jura Moun-
tains examples.

Example Parameter Unit G = 2 G = 4

Western Alps σF m 64 64
Variogram model – k-Bessel k-Bessel
Max. range m 22.4 20.8
Min. range m 19.2 17.6
Azimuth ◦ 90 90
Shape parameter – 2 2

Jura Mountains σF m 64 64
Variogram model – k-Bessel k-Bessel
Max. range m 65.6 65.6
Min. range m 40.0 40.0
Azimuth ◦ 90 90
Shape parameter – 1 1

Figures 3.6–3.9 illustrate two realizations and interpolations of the sub-pixel DEMs

and their corresponding residual topographies generated with the four benchmarked tech-

niques. Summary statistics for the downscaling results are listed in Table 3.6. Statistical

and structural validation metrics for the realizations and interpolations are depicted in

Figures 3.10–3.13 and Table 3.7. The empirical CDFs, directional variograms, Euler char-

acteristic, and connectivity curves for the proposed method, area-to-point simulation, and

direct sampling algorithm are displayed as min-max envelopes generated from 20 realiza-

tions (Figs. 3.10 and 3.11). Statistics and validation metrics calculated from simulated
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Table 3.5: Direct sampling algorithm parameters used in the Western Alps and Jura Moun-
tains examples.

Variable Parameter Unit G = 2 G = 4

σF m 64 64
Training image scanning fraction – 1.0 1.0

Coarse Normalized acceptance threshold – 0.005 0.005
Max. search radius Number of pixels 5 10
Max. neighborhood size Number of pixels 9 21

Fine Normalized acceptance threshold – 0.005 0.005
Max. search radius Number of pixels 5 10
Max. neighborhood size Number of pixels 8 20

realizations consist of the mean values plus or minus one standard deviation.

Statistically, the medium- and fine-resolution DEMs generated with the proposed down-

scaling algorithm are the closest to the reference data set when compared to the realizations

produced by other techniques (Table 3.6). However, a systematic underestimation of the

reference standard deviation values is observed. Figure 3.6 illustrates reproduction of low-

entropy patterns characterized by the spatial connectivity between high and low residual

elevation values. These structures can be observed in the reference fine-resolution residual

DEM (Fig. 3.4). The area-to-point simulation realizations overestimate the standard devi-

ation and spread of the reference residual DEMs (Table 3.6). This is likely a consequence

of the mismatch between the probability distributions of the fine-scale residuals from the

training image and the reference data set. The histogram transformations are based on the

empirical CDF of the fine-resolution training image which has a larger range than the fine-

scale reference histogram (Table 3.6). As expected, area-to-point simulation realizations

have a higher degree of spatial entropy. Simulated textures tend to disconnect high and low

residual elevation values (Fig. 3.7). Realizations also exhibit high-frequency structures in

areas that are predominantly bland in the reference fine-resolution residual DEM (Figs. 3.4

and 3.7). The direct sampling realizations have slightly lower variance than the results pro-

duced by the proposed algorithm. The bicubic interpolation predictions consist of blurred

representations of the fine-scale reference DEM (Fig. 3.9). The spatial smoothing caused

by the interpolation process is also observed in the summary statistics, characterized by the

underestimation of the variance and the sample minimum and maximum (Table 3.6).

On average, the proposed algorithm generates fine-resolution terrain models that are

consistent with the coarse-scale conditioning data. The average ME and RMSE between
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the reference coarse-resolution DEM and the upscaled realizations are smaller than the

ones produced by the direct sampling and bicubic interpolation (Table 3.7). The area-

to-point simulation realizations have the smallest RMSE for both magnification factors.

However, they produce similar ME values. The scatter plots in Figs. 3.10 and 3.11 reveal

an unbiased dispersion between the reference coarse-resolution residual elevation and the

coarse-scale conditioning error for realizations generated with the proposed algorithm. The

direct sampling error dispersion is somewhat higher. Negative correlation between the refer-

ence residual elevation and the conditioning errors for the upper and lower ends is observed

(Figs. 3.10 and 3.11). By contrast, area-to-point simulations provide precise reproduction

of intermediate coarse-resolution measurements but they generate a positive correlation

towards low and high values. The bicubic interpolation results clearly show a negative

correlation between the conditioning errors and the coarse residual elevation (Figs. 3.9 and

3.10).

Structural validation metrics reveal that the proposed downscaling method is more

effective at reproducing the reference fine-scale variability and sub-pixel structures. This is

reflected in the agreement between the simulations and the reference data in the directional

variograms, Euler characteristic, and probability of connection plots (Figs. 3.10 and 3.11).

Area-to-point simulations generate more variability and are unable to reproduce the spatial

connectivity of fine-scale residuals. It is also evident that the bicubic interpolation method

underestimates the sub-pixel variability and does not reproduce the topology and the con-

nectivity of the reference residual DEMs. The direct sampling realizations tend to generate

less variability when compared to the proposed algorithm and have issues for reproducing

the Euler characteristic curves for residual elevation values within the interval between −10

and 10 m for G = 4. However, it is worth noting that the proposed algorithm seems to

underestimate the reference negative Euler number values for residual elevation thresholds

within the interval from −10 to 10 m (Figs. 3.9 and 3.10). In addition, similarly to the

other stochastic techniques, simulated realizations tend to produce erratic fluctuations in

the probability of connection for residual elevation values under −15 m and over 15 m for

G = 4 (Fig. 3.10). This is most likely to be due to random noise inherent to the simula-

tion process and its respective propagation across scales (i.e. in the following iterations).

As a result, the structural accuracy of the realizations is expected to deteriorate at higher

magnification factors.

The bicubic interpolation estimates have the highest mean SSIM for both the medium-

and fine-resolution predictions whereas the area-to-point simulated realizations display the

smallest scores (Table 3.7). Stochastic methods will generally yield lower SSIM as they
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do not aim to minimize the local variance of the predictions. The bicubic interpolation

produces smooth surfaces devoid from noise. Withal, the resulting textures are deprived

from the sub-pixel patterns imported from the dual-resolution training image. Figures 3.12

and 3.13 show the mean absolute error (MAE) between the simulated and the reference sub-

pixel residual elevation third- and fourth-order cumulant maps. The spatial templates used

for computing the experimental cumulants are displayed next to the maps. As expected,

the MPS-based approaches outperform the other two methods. The MAE generated at

short lags configurations by both MPS methods are approximately one order of magnitude

smaller than the MAE produced by area-to-point simulation and bicubic interpolation.

The proposed approach tends generate larger small-scale errors in the third-order cumulant

map compared to the direct sampling algorithm. This is likely caused by edge artifacts

between adjacent simulated patches. Nevertheless, the scenario is reversed in the fourth-

order cumulant MAE map.

Table 3.6: Summary statistics of the downscaled DEMs from the Western Alps example.

G Mean SD Min. Max.

Training 2 −0.12 8.99 −63.69 72.44
Reference 2 −0.45 6.83 −40.54 37.37
Proposed method 2 −0.44± 0.00 6.67± 0.01 −40.08± 1.16 37.35± 1.69
Area-to-point 2 −0.44± 0.00 7.10± 0.01 −54.63± 2.89 55.96± 3.20
Direct sampling 2 −0.45± 0.00 6.57± 0.02 −39.32± 2.01 38.74± 2.92
Bicubic 2 −0.45 6.19 −34.62 31.48
Training 4 −0.11 8.89 −63.33 85.03
Reference 4 −0.41 6.76 −41.43 37.36
Proposed method 4 −0.41± 0.00 6.55± 0.02 −42.07± 1.98 40.07± 2.38
Area-to-point 4 −0.41± 0.00 7.06± 0.02 −57.93± 2.84 60.96± 3.80
Direct sampling 4 −0.42± 0.00 6.42± 0.01 −43.59± 1.52 40.39± 1.90
Bicubic 4 −0.42 5.95 −35.23 31.38

Numbers represent average statistics plus or minus one standard deviation over 20
realizations. Values are in residual elevation (in m)



CHAPTER 3. DOWNSCALING IMAGES WITH TRENDS 44

Table 3.7: Validation of the Western Alps example.

G ME1(cm) RMSE2(cm) SSIM3

Proposed method 2 0.90± 0.76 58.62± 1.17 0.914± 0.001
Area-to-point 2 −1.24± 0.37 40.63± 0.94 0.883± 0.003
Direct sampling 2 1.50± 0.82 86.43± 1.50 0.893± 0.002
Bicubic 2 1.33 68.05 0.932
Proposed method 4 1.13± 0.80 60.15± 1.00 0.877± 0.002
Area-to-point 4 −1.44± 0.58 46.98± 1.18 0.832± 0.002
Direct sampling 4 1.24± 0.66 67.17± 1.20 0.875± 0.001
Bicubic 4 1.68 79.45 0.897

1 mean error; 2 root-mean-square error; 3 structural similarity; Val-
ues represent average statistics plus or minus one standard deviation
over 20 realizations
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Figure 3.5: The Western Alps training DEMs. Top left : coarse-resolution DEM. Top
right : coarse-resolution residual DEM. Middle left : medium-resolution DEM. Middle right :
medium-resolution residual DEM. Bottom left : fine-resolution DEM. Bottom right : fine-
resolution residual DEM. The residual component of the trended DEMs has a vertical
exaggeration factor of 8×. Colorbars’ unit is m.
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Figure 3.6: The Western Alps downscaled DEMs produced with the proposed algorithm.
Top left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right :
coarse-resolution zoom. Middle left : simulated medium-resolution DEM. Middle center :
simulated medium-resolution residual DEM. Middle right : medium-resolution zoom. Bot-
tom left : simulated fine-resolution DEM. Bottom center : simulated fine-resolution residual
DEM. Bottom right : fine-resolution zoom. The residual component of the trended DEMs
has a vertical exaggeration factor of 8×. Green boxes highlight the magnified area. Color-
bars’ unit is m.
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Figure 3.7: The Western Alps downscaled DEMs produced with area-to-point simulation.
Top left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right :
coarse-resolution zoom. Middle left : simulated medium-resolution DEM. Middle center :
simulated medium-resolution residual DEM. Middle right : medium-resolution zoom. Bot-
tom left : simulated fine-resolution DEM. Bottom center : simulated fine-resolution residual
DEM. Bottom right : fine-resolution zoom. The residual component of the trended DEMs
has a vertical exaggeration factor of 8×. Green boxes highlight the magnified area. Color-
bars’ unit is m.
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Figure 3.8: The Western Alps downscaled DEMs produced with direct sampling. Top left :
coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : simulated medium-resolution DEM. Middle center : simulated
medium-resolution residual DEM. Middle right : medium-resolution zoom. Bottom left :
simulated fine-resolution DEM. Bottom center : simulated fine-resolution residual DEM.
Bottom right : fine-resolution zoom. The residual component of the trended DEMs has a
vertical exaggeration factor of 8×. Green boxes highlight the magnified area. Colorbars’
unit is m.



CHAPTER 3. DOWNSCALING IMAGES WITH TRENDS 49

Figure 3.9: The Western Alps downscaled DEMs produced with bicubic interpolation. Top
left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : interpolated medium-resolution DEM. Middle center : inter-
polated medium-resolution residual DEM. Middle right : medium-resolution zoom. Bottom
left : interpolated fine-resolution DEM. Bottom center : interpolated fine-resolution resid-
ual DEM. Bottom right : fine-resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 8×. Green boxes highlight the magnified area.
Colorbars’ unit is m.
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Figure 3.10: Validation of the Western Alps example (G = 2). Top left : sub-pixel empirical
CDFs. Top right : scatter plots between reference coarse residual elevation and conditioning
error. Middle left : sub-pixel empirical variograms along the X axis. Middle right : sub-pixel
empirical variograms along the Y axis. Bottom left : fine-scale Euler characteristic. Bottom
right : fine-scale probability of connection.
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Figure 3.11: Validation of the Western Alps example (G = 4). Top left : sub-pixel empirical
CDFs. Top right : scatter plots between reference coarse residual elevation and conditioning
error. Middle left : sub-pixel empirical variograms along the X axis. Middle right : sub-pixel
empirical variograms along the Y axis. Bottom left : fine-scale Euler characteristic. Bottom
right : fine-scale probability of connection.
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Figure 3.12: MAE between simulated and reference third- and fourth-order cumulant maps
from the Western Alps example (G = 2). Top: third-order cumulant MAE maps for a
proposed method, b area-to-point simulation, c direct sampling, and d bicubic interpolation.
Colorbar unit is m3. Bottom: fourth-order cumulant MAE maps for e proposed method, f
area-to-point simulation, g direct sampling, and h bicubic interpolation. Colorbar unit is
m4.
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Figure 3.13: MAE between simulated and reference third- and fourth-order cumulant maps
from the Western Alps example (G = 4). Top: third-order cumulant MAE maps for a
proposed method, b area-to-point simulation, c direct sampling, and d bicubic interpolation.
Colorbar unit is m3. Bottom: fourth-order cumulant MAE maps for e proposed method, f
area-to-point simulation, g direct sampling, and h bicubic interpolation. Colorbar unit is
m4.
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3.4.5 The Jura Mountains example

The second case study uses DEMs from a subset of the Jura Mountains. This sub-alpine

mountain range is characterized by karst topography and relative low-gradient landforms

when compared to the Western Alps example. Figure 3.14 illustrates the reference DEMs

and the residual terrain elevation models. The training trended and residual DEMs from a

neighboring analog area are depicted in Figure 3.15. The spatial low-pass filter configuration

for obtaining the residuals, the DEMs dimensions, pixel sizes, footprints are identical to the

ones presented in Subsection 3.4.4.

A set of 20 conditional simulations was generated using the same multi-scale iterative

downscaling approach and parameters setup used in the Western Alps case study (Table 3.3).

The area-to-point simulation and the direct sampling algorithm parameters used for this

example are listed in Tables 3.4 and 3.5, respectively. Simulated realizations and estimates

are shown in Figures 3.16–3.19. Summary statistics are listed in Table 3.8. The statistical

validation metrics are depicted in Table 3.9 and Figures 3.20–3.23.

The results for the Jura Mountains example confirm the ones from the Western Alps

case study. The proposed MPS algorithm outperforms the other techniques for the majority

of validation metrics. The method is able to reproduce relatively well the fine-scale terrain

elevation probability distributions for both magnification factors (Table 3.8 and Figs. 3.20,

3.21). The area-to-point simulated realizations generate more variability than the reference

data set. Similarly to the previous example, this is most likely caused by the reliance on the

training image fine-scale empirical CDF for the histogram transform. The conditioning ME,

RMSE in Table 3.9 and the error dispersions displayed in the scatter plots for both medium-

(Fig. 3.20) and fine-resolution (Fig. 3.21) predictions are akin to the results presented in

Subsection 3.4.4, although the magnitude of the errors is significantly smaller. The proposed

approach generates the smallest ME for both magnification factors, and the highest SSIM

values among the stochastic simulation methods (Table 3.9).

The structural accuracy of the downscaled DEMs produced by the different techniques

are also akin to the Western Alps case study. Notwithstanding, the loss of fine-scale vari-

ability is significantly less pronounced in this example. The relative differences between

the standard deviations of the reference and simulated DEMs is approximately halved (Ta-

ble 3.8). This can also be observed in the improved match between the empirical variograms

(Figs. 3.20 and 3.21). The Euler characteristic and probability of connection plots indicate
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that the proposed algorithm generates less random noise. Underestimation of negative Eu-

ler numbers within the range of −5 to 5 m is evident after two iterations of the algorithm.

However, the erratic fluctuations in the connectivity curves for small and large residual el-

evations are much less pronounced (Fig. 3.21). The noise reduction might be related to the

fact that the topography in this region is not as rugged as in the Western Alps. The spatial

patterns in the training DEMs are generally smoother and, consequently, less noise is prop-

agated throughout the simulation process. The area-to-point simulation and the bicubic

interpolation method are unable to the reproduce the fine-scale variability present in the

reference data, and cannot adequately mimic the topology and the spatial connectivity of

the sub-pixel residual variable (Figs. 3.20 and 3.21). The proposed algorithm and the direct

sampling realizations tend to produce similar Euler characteristic and connectivity curves

for G = 2 (Figs. 3.20). However, these curves start to differentiate themselves when G = 4.

The proposed algorithm managed to outperform all the other methods in the reproduction

of high-order statistics. Figures 3.22 and 3.23 reveal that the approach generates the small-

est MAE between the simulated and the reference third- and fourth-order cumulant maps

for both magnification factors. Fine-scale errors in the third- and fourth-order cumulant

maps are roughly one order of magnitude lower than the ones produced by other techniques.

Table 3.8: Summary statistics of the downscaled DEMs from the Jura Mountains example.

G Mean SD Min. Max.

Training 2 −0.04 4.93 −21.57 34.30
Reference 2 −0.06 3.25 −18.09 15.88
Proposed method 2 −0.06± 0.00 3.20± 0.00 −17.64± 0.65 15.93± 0.70
Area-to-point 2 −0.06± 0.00 3.42± 0.01 −17.87± 0.38 17.33± 0.73
Direct sampling 2 −0.06± 0.00 3.16± 0.00 −16.68± 0.25 16.59± 0.90
Bicubic 2 −0.06 3.05 −14.54 14.65
Training 4 −0.04 4.76 −21.65 38.56
Reference 4 −0.05 3.16 −19.22 16.21
Proposed method 4 −0.05± 0.00 3.10± 0.00 −18.13± 0.84 16.97± 0.83
Area-to-point 4 −0.05± 0.00 3.34± 0.01 −18.18± 0.37 18.10± 1.11
Direct sampling 4 −0.05± 0.00 3.06± 0.00 −17.69± 0.25 16.86± 1.00
Bicubic 4 −0.05 2.91 −15.00 14.26

Numbers represent average statistics plus or minus one standard deviation over 20
realizations. Values are in residual elevation (in m)
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Table 3.9: Validation of the Jura Mountains example.

G ME1(cm) RMSE2(cm) SSIM3

Proposed method 2 −0.07± 0.20 21.75± 0.39 0.936± 0.001
Area-to-point 2 0.66± 0.24 18.32± 0.59 0.840± 0.003
Direct sampling 2 −0.42± 0.37 29.86± 0.66 0.914± 0.002
Bicubic 2 0.19 25.42 0.946
Proposed method 4 0.00± 0.21 22.04± 0.43 0.906± 0.001
Area-to-point 4 0.62± 0.25 19.72± 0.58 0.803± 0.003
Direct sampling 4 −0.59± 0.25 23.73± 0.27 0.893± 0.001
Bicubic 4 0.24 29.94 0.917

1 mean error; 2 root-mean-square error; 3 structural similarity; Val-
ues represent average statistics plus or minus one standard deviation
over 20 realizations
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Figure 3.14: The Jura Mountains reference DEMs. Top left : coarse-resolution DEM. Top
center : coarse-resolution residual DEM. Top right : coarse-resolution zoom. Middle left :
medium-resolution DEM. Middle center : medium-resolution residual DEM. Middle right :
medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center : fine-resolution
residual DEM. Bottom right : fine-resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 2×. Green boxes highlight the magnified area.
Colorbars’ unit is m.
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Figure 3.15: The Jura Mountains training DEMs. Top left : coarse-resolution DEM with
trend. Top right : coarse-resolution residual DEM. Middle left : medium-resolution DEM
with trend. Middle right : medium-resolution residual DEM. Bottom left : fine-resolution
DEM with trend. Bottom right : fine-resolution residual DEM. The residual component of
the trended DEMs has a vertical exaggeration factor of 2×. Colorbars’ unit is m.
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Figure 3.16: The Jura Mountains downscaled DEMs produced with the proposed algorithm.
Top left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right :
coarse-resolution zoom. Middle left : simulated medium-resolution DEM. Middle center :
simulated medium-resolution residual DEM. Middle right : medium-resolution zoom. Bot-
tom left : simulated fine-resolution DEM. Bottom center : simulated fine-resolution residual
DEM. Bottom right : fine-resolution zoom. The residual component of the trended DEMs
has a vertical exaggeration factor of 2×. Green boxes highlight the magnified area. Color-
bars’ unit is m.



CHAPTER 3. DOWNSCALING IMAGES WITH TRENDS 60

Figure 3.17: The Jura Mountains downscaled DEMs produced with area-to-point simula-
tion. Top left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top
right : coarse-resolution zoom. Middle left : simulated medium-resolution DEM. Middle cen-
ter : simulated medium-resolution residual DEM. Middle right : medium-resolution zoom.
Bottom left : simulated fine-resolution DEM. Bottom center : simulated fine-resolution resid-
ual DEM. Bottom right : fine-resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 2×. Green boxes highlight the magnified area.
Colorbars’ unit is m.
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Figure 3.18: The Jura Mountains downscaled DEMs produced with direct sampling. Top
left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : simulated medium-resolution DEM. Middle center : simulated
medium-resolution residual DEM. Middle right : medium-resolution zoom. Bottom left :
simulated fine-resolution DEM. Bottom center : simulated fine-resolution residual DEM.
Bottom right : fine-resolution zoom. The residual component of the trended DEMs has a
vertical exaggeration factor of 2×. Green boxes highlight the magnified area. Colorbars’
unit is m.
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Figure 3.19: The Jura Mountains downscaled DEMs produced with bicubic interpolation.
Top left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right :
coarse-resolution zoom. Middle left : interpolated medium-resolution DEM. Middle cen-
ter : interpolated medium-resolution residual DEM. Middle right : medium-resolution zoom.
Bottom left : interpolated fine-resolution DEM. Bottom center : interpolated fine-resolution
residual DEM. Bottom right : fine-resolution zoom. The residual component of the trended
DEMs has a vertical exaggeration factor of 2×. Green boxes highlight the magnified area.
Colorbars’ unit is m.
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Figure 3.20: Validation of the Jura Mountains example (G = 2). Top left : sub-pixel
empirical CDFs. Top right : scatter plots between reference coarse residual elevation and
conditioning error. Middle left : sub-pixel empirical variograms along the X axis. Mid-
dle right : sub-pixel empirical variograms along the Y axis. Bottom left : fine-scale Euler
characteristic. Bottom right : fine-scale probability of connection.
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Figure 3.21: Validation of the Jura Mountains example (G = 4). Top left : sub-pixel
empirical CDFs. Top right : scatter plots between reference coarse residual elevation and
conditioning error. Middle left : sub-pixel empirical variograms along the X axis. Mid-
dle right : sub-pixel empirical variograms along the Y axis. Bottom left : fine-scale Euler
characteristic. Bottom right : fine-scale probability of connection.
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Figure 3.22: MAE between simulated and reference third- and fourth-order cumulant maps
from the Jura Mountains example (G = 2). Top: third-order cumulant MAE maps for a
proposed method, b area-to-point simulation, c direct sampling, and d bicubic interpolation.
Colorbar unit is m3. Bottom: fourth-order cumulant MAE maps for e proposed method, f
area-to-point simulation, g direct sampling, and h bicubic interpolation. Colorbar unit is
m4.
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Figure 3.23: MAE between simulated and reference third- and fourth-order cumulant maps
from the Jura Mountains example (G = 4). Top: third-order cumulant MAE maps for a
proposed method, b area-to-point simulation, c direct sampling, and d bicubic interpolation.
Colorbar unit is m3. Bottom: fourth-order cumulant MAE maps for e proposed method, f
area-to-point simulation, g direct sampling, and h bicubic interpolation. Colorbar unit is
m4.
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3.5 Discussion

Results demonstrate that the proposed method is able to downscale coarse images with

trends and reproduce target fine-scale statistics. Simulations in both case studies are un-

biased regarding conditioning to coarse-resolution measurements. Fine-scale topological

properties such as the Euler characteristic and the probability of connection curves are also

relatively well reproduced. Results also indicate good reproduction of second-, third-, and

fourth-order statistics.

The exhaustive scanning of the training image for the K best training data events allows

the proposed framework to handle non-stationary data sets. This is often the case when one

has to deal with non-constructed training images or simulate non-repetitive structures. The

distance-to-probability transformation function improves the reproduction of less frequent

spatial structures and values by assigning higher conditional probabilities to the training

data events that are more compatible with the local conditioning data. At the same time,

it also allows the algorithm to generate variability on output realizations whenever multiple

compatible data events are available in the training image. Building each local CPDF based

upon the distance-to-probability transformation function is particularly important within

the proposed iterative downscaling framework. Since fine-scale features are conditionally

simulated based on previously simulated data, the propagation of errors across scales can

potentially compromise the simulation of finer resolution features. The framework is also

particularly suitable for simulating textures that might contain both repetitive and non-

repetitive structures. Conversely, traditional two-point statistics simulation methods infer

the variogram model and histogram transformations using all available data. Therefore,

they have trouble reproducing location-specific patterns and statistics. This also extends to

MPS simulation algorithms which compute conditional probabilities based upon the entire

training image.

Although the realizations globally honor the statistics and structural properties of

the reference data, not all fine-scale features can be recovered on the downscaled DEMs.

Visually, it is noticeable that the texture of the realizations (Figs. 3.6 and 3.16) tends

to be less sharp than the corresponding textures found on the reference fine-resolution

DEMs (Figs. 3.4 and 3.14). While the algorithm is to be able to generate realizations that

depict the same type of variogram structures present in the reference fine-resolution DEMs,

simulations tend to underestimate the variability of the reference data. This is a common

problem for conditional MPS simulations. Straubhaar et al. (2016) reported the same

phenomenon while running simulations constrained to block data, and Oriani et al. (2017)
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experienced a similar effect when simulating rainfall fields conditioned to weather state

variables and DEMs. In our experiments, this effect is more evident when downscaling high-

complexity terrains, such as the Western Alps example. One possible reason for this variance

underestimation is that many of the structures to be recovered are significantly smaller than

the pixel size of the coarse-resolution image. In the super-resolution mapping literature,

such scenario is classified as an L-resolution type problem (Atkinson, 2009). Results indicate

that some of these structures cannot be properly simulated when relying solely on coarse-

scale observations and previously simulated data. Imposed local conditioning constrains

combined with the finite size of the training image may also play a role in preventing

proper reproduction of such features. The addition of auxiliary fine-scale covariates (e.g.

high-resolution remote sensing imagery) might improve the simulation of these sub-pixel

features. Further work is required to determine the magnification factor limits for different

types of terrain and data sets.

3.6 Conclusions

This contribution presents a novel MPS simulation algorithm for downscaling images with

trends. The method is illustrated with examples using DEMs from two geomorphologi-

cally distinct mountain ranges in Switzerland. Results show that the method is capable

of generating fine-resolution realizations that honor the input coarse-resolution image and

reproduce key structural properties and statistics.

To address the presence of trends in the data sets, the target variable is decomposed into

a trend and a residual component at multiple scales. The trend component is downscaled

with a deterministic interpolation method. The sub-pixel residual variable is simulated

with a multi-scale sequential simulation framework. In order to improve the conditioning

to coarse-scale data, we propose the adoption of kernel weighting when computing the

distances between target and training data events.

We have introduced a new approach for integrating different support data in the context

of distance-based MPS simulation. The proposed framework is well-suited for simulating

images with non-repetitive structures, such as DEMs. The generality of the framework

also offers the possibility to streamline the integration of other types of covariates. The

transformation of distances between multivariate data events (with possibly different units

or orders of magnitude) into probabilities facilitates the integration of multi-sensor data.

The proposed scheme also eases the implementation of error/bias control systems (e.g. servo
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systems) (Remy et al., 2009) through direct manipulation of conditional probabilities.

Future work will explore the conflation of auxiliary variables to improve the quality and

reduce the uncertainty associated with the downscaling process. The development of strate-

gies to mitigate the generation of random noise on simulated realizations without causing

loss of variability has particular importance for applications where the spatial structure of

the downscaled image has an effect on the transfer function response. Particular effort will

be put also on the development of an automated calibration procedure of the algorithm

parameters based on a given training image. Additional research topics that should be

investigated are the formulation of a quantitative criterion for selecting the training image,

the evaluation of different distance-to-probability transformation functions and their impact

on the structural quality and variability of simulated realizations, and the adaptation of the

algorithm for supporting tridimensional data sets.



Chapter 4

An automation framework for

downscaling of digital elevation

models with multiple-point

statistics simulation

MPS simulation algorithms are notably difficult to parameterize, often requiring manual

parameter tuning and laborious sensitivity analyses. Automation of these algorithms is of

central importance for the design and operation of efficient, low-cost alternatives for fine-

resolution probabilistic terrain mapping. This chapter addresses the second objective of

this thesis: ii. automation of the downscaling process.

In this chapter, an automation framework for MPS-driven downscaling algorithms is

proposed. The approach is demonstrated with the algorithm introduced in Chapter 3.

An automation routine based on simulated annealing and cross-validation techniques is

used to infer optimal algorithm parameters by framing the parameter calibration task as an

optimization problem. The approach relies on the training data set for automatic calibration

of the algorithm parameters prior to the downscaling of the coarse-resolution target DEM.

This chapter will be submitted to Mathematical Geosciences as an original research

article. Therefore, readers must be aware of potential differences between the future publi-

cation and this chapter.

70
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4.1 Introduction

Fine-resolution digital elevation models (DEMs) are essential for the study of Earth’s sur-

face processes. A compilation of studies on the effect of DEM spatial resolution and its

impact on a wide range of hydrologic derivatives can be found in Wechsler (2007). Fine-

resolution DEMs are more appropriate for landscape representation and hydrological sim-

ulations (Zhang and Montgomery, 1994). The spatial resolution of DEMs also plays a

significant role in hydraulic modeling for flood warning systems (Lamichhane and Sharma,

2018) and urban flood assessment (Leitão and de Sousa, 2018). The extraction of drainage

networks (McMaster, 2002), terrain derivatives (Kienzle, 2003), topographic indexes (Vaze

et al., 2010; Mukherjee et al., 2013), analysis of surface texture (Trevisani et al., 2012),

spatial patterns of saturated areas (Hoang et al., 2018), and the accuracy of snow estimates

(Sohrabi et al., 2019) are also affected by the spatial resolution of the input DEM. Nev-

ertheless, most of Earth’s topography is mapped at relatively coarse spatial and temporal

resolutions (Yamazaki et al., 2017). Spaceborne DEMs (Wilson, 2012) are one of the most

common data sources for characterizing Earth’s relief structures. Although useful for large-

scale terrain analysis, satellite-derived DEMs are often not suitable for modeling fine-scale

phenomena.

Statistical downscaling is one of the main approaches for enhancing the spatial reso-

lution of digital images. An overview of different techniques in the field of remote sensing

can be found in Atkinson (2013). Being an ill-posed problem, downscaling can be ade-

quately addressed with stochastic methods (Bertero and Boccacci, 1998). Geostatistical

simulation-based techniques (Goovaerts, 1997) are of special interest owing to their condi-

tioning capabilities and relatively short processing time. By generating multiple scenarios,

one can assess the uncertainty associated with the predictions and propagate it through-

out subsequent models (e.g. transfer functions). Traditional two-point statistics techniques

characterize spatial heterogeneity through covariance function models (Kyriakidis and Yoo,

2005; Boucher and Kyriakidis, 2007; Liu and Journel, 2009). These methods have been

applied for conflation of terrain elevation data (Kyriakidis et al., 1999) and downscaling of

coarse-resolution DEMs with auxiliary maps (Hengl et al., 2008). The main issue associated

with their application for modeling terrain elevation data is the limited ability of the vari-

ogram to describe non-stationary and low-entropy textures. Multiple-point statistics (MPS)

(Remy et al., 2009) consists of a branch of geostatistics concerned with the characterization

and simulation of such types of structures. MPS algorithms describe the spatial variability
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through the usage of an analog data set known as a training image. Realizations of ran-

dom fields are generated as a stochastic imaging process. An algorithm is used to identify

and transfer similar spatial features from the training image based on template matching.

This enables a better description and simulation of complex textures. Examples of MPS-

driven downscaling methods are the approches developed by Boucher (2009), Mariethoz

et al. (2011), Straubhaar et al. (2016) and (Rasera et al., 2020b,a). Applications of MPS

in geomorphometry include the simulation of braided river DEM time series (Pirot et al.,

2014), terrain elevation data fusion (Tang et al., 2015), and downscaling of coarse-resolution

DEMs (Rasera et al., 2020b,a).

One of the main challenges for practical application of MPS simulation methods is their

parametrization. MPS algorithm parameters are often non-intuitive and cumbersome to set

up. Parameters are algorithm-specific and their calibration is data dependent. As a result,

extensive sensitivity analyses are often employed (Liu, 2006; Meerschman et al., 2013). In

addition, parameters must be re-calibrated if either the conditioning or training data are

updated. Nonlinear programming provides a potential framework for automatizing the cal-

ibration of MPS algorithms. Baninajar et al. (2019) proposed the application of stochastic

optimization for automatic parameter calibration based on a sub-sampling cross-validation

setting. Multiple gaps are randomly placed in the training image and subsequently simu-

lated using the remaining parts of the image as training data. The algorithm parameters

are optimized using the simultaneous perturbation gradient approximation method (Spall,

1992) by minimizing the mean-squared error between the realizations and the original ref-

erence data in the gaps. Dagasan et al. (2018) applied the simulated annealing algorithm

(Kirkpatrick et al., 1983) for calibration of MPS simulation parameters. The approach

aims at minimizing the dissimilarity between pattern statistics from the conditioning data

and the simulated realizations. The objective function used in the study was the Jensen-

Shannon divergence between multiple-point histograms (Boisvert et al., 2010) using the

smooth histogram method (Melnikova et al., 2015).

The two aforementioned schemes provide a mathematical framework for the determi-

nation of algorithm parameters and efficient alternatives for parameter calibration tasks.

Yet, there are several issues associated with both approaches. The framework proposed by

Baninajar et al. (2019) is grounded on sub-sampling cross-validation, which means that not

all available data are used for both training and validation. This strategy might be inap-

propriate if the training image is non-stationary, as not all relevant spatial structures may

be used for cross-validation. In addition, defining the dimensions, placement, and number

of gaps in the training image can be challenging. The approach presented by Dagasan et al.
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(2018) relies solely on the conditioning data for calibrating parameters. This may lead to

biased pattern reproduction due to sample spacing, uneven sample density, and preferen-

tial sampling. If the sampling grid is sparse relative to the patterns’ spatial variation, the

reproduction of textural features finer than the sample spacing is not explicitly taken into

account in the optimization process. In order to control the reproduction of fine-scale struc-

tures, external prior information must be injected in the form of a finer-resolution training

image or expert knowledge.

In this contribution, an automatic calibration framework for MPS-based downscaling

is proposed and presented in the context of geomorphometric applications. The developed

approach addresses the main shortcomings of the aforementioned parameter calibration

strategies by providing a robust alternative for handling of non-stationary data sets, and

an explicit control over the reproduction of spatial structures finer than the sampling grid

size. The procedure is illustrated with an updated version of the stochastic downscaling

algorithm developed by Rasera et al. (2020b,a). The algorithm parameters are inferred from

the training data using cross-validation. An optimization process combines the simulated

annealing algorithm (Kirkpatrick et al., 1983) and the K-fold cross-validation technique

(Hastie et al., 2009; Pohjankukka et al., 2017) for estimating the set of downscaling pa-

rameters that minimizes an objective (or energy) function. This function evaluates the

statistical and structural accuracy of the simulated realizations. It is defined as a dissimi-

larity measure between the reference spatial features in the training data and those of the

realizations. The minimization of the system’s energy ultimately results in the maximiza-

tion of the structural similarity between the downscaling realizations and the fine-resolution

training data. Guidelines for the formulation of the objective function are discussed. The

proposed framework is demonstrated by case studies using DEMs from the Alaska Range,

the Appalachian Mountains, and the Central Lowlands in South Australia.

This chapter is organized as follows. In Section 4.2, we introduce an updated version of

the MPS-driven downscaling algorithm originally developed by (Rasera et al., 2020b,a) and

its associated parameters. Section 4.3 reviews the K-fold cross-validation and the simulated

annealing techniques, and discusses the proposed automatic parametrization framework.

Section 4.4 documents the algorithm parametrization and the downscaling results for the

three case studies. Finally, in Section 4.5, we conclude the chapter by summarizing the

framework and outlining future research topics.
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4.2 Stochastic downscaling of digital elevation models with

multiple-point statistics

This section introduces the stochastic framework for representing terrain elevation data

and the MPS algorithm developed by Rasera et al. (2020b,a) for downscaling of images

with trends. Subsection 4.2.1 introduces the modeling of digital terrain elevation data

as a stochastic spatial signal. The MPS simulation algorithm for downscaling DEMs is

described in Subsection 4.2.2. Novel functionalities of the algorithm are also discussed. For

more information about the method the reader is referred to Rasera et al. (2020b,a).

4.2.1 Stochastic representation of terrain elevation data

In this work, elevation data in raster-type DEMs are represented as a stochastic spatial

signal. This signal can be decomposed into two variables: a deterministic low-frequency

trend, and a stochastic higher-frequency residual. The trend component encompasses large-

scale topographic structures, such as mountains and valleys, whereas the residual represents

small-scale geomorphic features like ridgelines and drainage networks.

Let zV denote a coarse-resolution target DEM, with zV (u) being the terrain elevation

at the coarse pixel V centered at the location u, where u = [x, y] corresponds to a two-

dimensional position vector in a projected Cartesian coordinate system. In addition, let

zv(u) be the fine-resolution elevation measurement assigned to a fine-resolution pixel v in

a co-registered fine-resolution DEM represented by zv. The coarse-to-fine resolution ratio

between zV and zv is defined as G =
√
|V |/|v|, where |V | and |v| are the areas of the coarse

and fine-resolution pixels, respectively.

In a geostatiscal framework, the measurements zV (u) and zv(u) are interpreted as

realizations of the continuous random variable Z(u)

Z(u) = m(u) +R(u), (4.1)

where Z(u) denotes either coarse or fine random variables ZV (u) and Zv(u); m(u) is its de-

terministic trend component; and R(u) is its associated complementary stochastic residual

component.

In practice, Z(u) also has an intrinsic measurement error component ε(u). This term
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represents errors related to the remote sensing acquisition method, local terrain surface

properties, and the DEM generation process itself. In most cases, ε(u) can only be assessed

by validation against a more accurate data set (Kolecka and Kozak, 2014; Mukul et al.,

2017). For simplification purposes, we assume that the contribution of the error component

is negligible (i.e. ε(u) ≈ 0). An overview of the different types of measurement errors found

in spaceborne DEMs and error filtering techniques is provided by Yamazaki et al. (2017).

The trend m(u) is estimated by applying an appropriate spatial low-pass filter on z(u).

The estimator m̂(u) is defined as a weighted linear combination of z(u) and its neighboring

data {z(u + hj), j = 1, . . . , n} lying within a search radius ρ

m̂(u) =

n∑

j=0

λ(hj) z(u + hj) with

n∑

j=0

λ(hj) = 1, (4.2)

where hj corresponds to the set of n+ 1 coordinates lag vectors that radiate from u, with

z(u) = z(u + h0), and λ(hj) are weights given by a kernel function. A realization of R(u),

represented by r(u), is the complement of m̂(u).

The weights λ(hj) of the spatial low-pass filter are computed using a Gaussian radial

basis function kernel

λ(hj) =
1

2πσ2β
exp

(
− ‖hj − h0‖22

2σ2

)
, (4.3)

where σ > 0 is the kernel shape parameter, and β > 0 is the normalizing constant, which

corresponds to the sum of all kernel weights.

4.2.2 Downscaling terrain elevation with multiple-point statistics simu-

lation

A new version of the MPS downscaling algorithm developed by Rasera et al. (2020b,a) is ap-

plied for enhancing the spatial resolution of DEMs. The updated algorithm offers additional

functionalities for scanning the training data set, parametrizing the distance functions, and

customizing the integration of coarse- and fine-scale data. The algorithm relies on a pair

of co-registered coarse- and fine-resolution training DEMs from an analog to construct a

dual-resolution training data set. This data structure describes the correspondence between
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coarse- and fine-scale topographic patterns. The target DEM spatial resolution is gradually

magnified by a series of conditional iterations of the algorithm. In the first iteration, re-

alizations are conditioned to the coarse-resolution target DEM, whereas in the subsequent

iterations, they are conditioned to previous iteration outputs. The simulation of sub-pixel

features is conducted by direct transfer of fine-scale information from the dual-resolution

training data to the target DEM.

Fundamentally, the goal is to predict the fine-scale variables m̂v(u) and Rv(u), so

that Zv(u) may be reconstructed with Equation (4.1). As m̂v(u) and Rv(u) cannot be

directly computed, their inference is based on an interpolated version of m̂V and prior

information in the dual-resolution training data. The downscaling of m̂V (u) is performed

with the bicubic interpolation method (Keys, 1981), thus allowing to obtain its fine-scale

counterpart m̂v(u). The residual variable RV (u) is downscaled with a quasi-pixel-based

simulation scheme (Rasera et al., 2020b,a). The MPS simulation algorithm F (·) is used

to generate S conditional simulated realizations of the fine-resolution multivariate random

variable Rv(u), denoted as r
(s)
v (u), s = 1 . . . , S

Rv(u) = F (θ,Ψ | Ω) 7→ {r(s)v (u), s = 1, . . . , S}, (4.4)

where θ is the (L× 1) vector of algorithmic parameters associated with F (·), Ψ is the dual-

resolution training data built from z
(t)
V and z

(t)
v , | Ω denotes the conditioning to available

coarse information and previously simulated fine-resolution data, and r
(s)
v (u) consists of a

fine-resolution simulated residual patch (i.e. a square array of residual elevation values).

This contribution focuses on developing an automatic framework for inferring θ.

The flowchart in Figure 4.1 illustrates the DEM downscaling algorithm. The parametriza-

tion of the spatial low-pass filters and the bicubic interpolation processes is identical so that

compatible terrain elevation data can be compared and transferred to the target DEM. Un-

der the assumptions that ε(u) ≈ 0 and Z(u) corresponds to the average sensor response

over its associated pixel, an artificial coarse-resolution training DEM may be constructed by

linear upscaling of the input fine-resolution training DEM. The residual variables derived

from the training DEMs are used to assemble the dual-resolution training data set.

The simulation of sub-pixel topographic structures that are consistent with both coarse-

resolution conditioning data and training data is attained through a template matching

framework. Residual spatial patterns are represented as data events. A data event comprises

a set of spatially arranged residual elevation values centered at a reference location u.
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Figure 4.1: Downscaling algorithm flowchart (modified from Rasera et al. (2020b,a)). Pro-
cesses are represented as gray rectangles. Intermediate data structures are depicted as
rounded dark gray rectangles. Column-shaped black polygons on the left edge of processes
boxes indicate the required input parameters.

Coarse-resolution data events are denoted as dV (ui) = {rV (ui + hj), j = 0, . . . , nV }, i =

1, . . . , N , where N is the number of pixels in rV . For each extracted conditioning data

event, a search procedure for the κ-most similar training data events is carried out, where

κ is a pre-specified parameter.

Local conditioning to coarse-resolution information is performed by restrictive sampling

of training data events that minimize the coarse-scale distance function

D(dV (ui), d
(t)
V (u)) =

(
nV∑

j=0

λ(hj)
[
rV (ui + hj)− r(t)V (u + hj)

]2
)1/2

, (4.5)

where λ(hj) are kernel weights calculated with Equation (4.3), and d
(t)
V (u) = {r(t)V (u +
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hj), j = 0, . . . , nV } is a given coarse-resolution training data event. The number of pixels

stored in the data events is defined based on the search radius ρ.

To impose control on the reproduction of sub-pixel features extracted from the dual-

resolution training DEM, an additional distance function is computed. This function en-

forces the preferential sampling of compatible fine-scale training data events by taking into

account previously simulated data dv(ui) = {r(s)v (ui + hj), j = 1, . . . , nv(ui)}

D(dv(ui), d
(t)
v (u)) =

(
nv(ui)∑

j=1

λ(hj)
[
r(s)v (ui + hj)− r(t)v (u + hj)

]2
)1/2

, (4.6)

where d
(t)
v (u) corresponds to a fine-resolution training data event. Equations (4.5) and (4.6)

can be efficiently computed over the entire dual-resolution training data by performing

convolutions in the frequency domain using the fast Fourier transform (FFT) algorithm

(Kwatra et al., 2003).

The search for training data events is initially determined by coarse-resolution data

as they are exhaustively known in rV . As a result, the retrieval of fine-scale training data

events is conditioned to the set of κ candidate coarse-resolution training data events. As the

simulation progresses, r
(s)
v becomes increasingly populated with previously simulated data.

This information may turn useful for prediction due to its higher spatial resolution. For each

coarse pixel visited along the sequential simulation path, the data stored in its co-registered

fine-resolution conditioning data event are analyzed. At this point, the algorithm may switch

the hierarchy of the training data events search procedure. The alteration is contingent to

the quantity of data and their positioning relative to the pixel to be downscaled. If the

scanning process is swapped favoring fine-scale information, the selection of co-registered

pairs of coarse- and fine-scale training data events is primarily controlled by previously

simulated data instead. The scanning process is altered if

αi =

nv(ui)∑

j=1

λ(hj) ≥ ξ, (4.7)

where 0 ≤ ξ ≤ 1 is a control parameter.

Information derived from Equations (4.5) and (4.6) is integrated by converting the
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distances between data events into local conditional probabilities through a distance-to-

probability transformation function Φ(·) (Rasera et al., 2020b,a; Hoffimann et al., 2017).

The local coarse-scale derived conditioning probability is expressed as

Pr{Rv(ui) = rv | dV (ui)} ∝ Φ(DV ), (4.8)

where DV is a (κ× 1) vector which stores the coarse-scale distance function outputs asso-

ciated with dV (ui). Fine-scale conditional probabilities are computed in a similar fashion.

The formulation of Φ(·) is described in Rasera et al. (2020b,a).

Fine-resolution data are simulated by sampling local conditional probability distribu-

tion functions (CPDFs). Probabilities derived from coarse- and fine-scale data are aggre-

gated with the log-linear pooling operator (Allard et al., 2012). The local probability ag-

gregation weight for fine-resolution data, denoted by αi, can be either dynamic (i.e. defined

as a function of the kernel weights associated with the neighboring informed fine pixels) or

static (i.e. set to a constant value α, ∀i = 1, . . . , N) based on a second control variable χ

αi =





∑nv(ui)
j=1 λ(hj), ifχ = true

α, otherwise
(4.9)

consequently, the weight for coarse-scale data is calculated as 1−αi. Note that the dynamic

weighting scheme implies that the probability aggregation weights are modulated by the

fine-resolution kernel and the sequential simulation path.

Table 4.1 summarizes the algorithm parameters and typical values for their lower and

upper bounds when downscaling DEMs with nominal pixel size of 30 × 30 m. The search

radius ρ used to retrieve data events is shared by the spatial low-pass filter and the two

distance functions. The next three parameters, denoted by σL, σC , σF , correspond to the

kernel shape parameter in Equation (4.3), which is used by the spatial low-pass filter, and

both coarse- and fine-resolution distance functions (Eqs. (4.5) and (4.6)), respectively.
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Table 4.1: Parameters of the downscaling algorithm.

θ Bounds Description

ρ [30, 109] Search radius for retrieving data events (m)
σL [4, 1024] Spatial low-pass filter kernel parameter (m)
σC [4, 1024] Coarse-scale distance function kernel parameter (m)
σF [4, 1024] Fine-scale distance function kernel parameter (m)
κ [2, 64] Number of candidate training data events
ξ [0, 1] Threshold for switching training data events search
χ Boolean Dynamic probability aggregation weights
α [0, 1] Fine-scale probability aggregation weight (if χ = false)

4.3 Automatic calibration of downscaling parameters with

K-fold cross-validation and optimization by simulated

annealing

This section presents the framework developed for automatic calibration of the downscaling

algorithm parameters as a function of the dual-resolution training data. The approach relies

on the combined application of a spatial variant of the K-fold cross-validation technique and

the simulated annealing algorithm. A key aspect of the methodology is the formulation of

the objective function for evaluating the statistical and structural quality of the downscaled

DEMs. Subsection 4.3.1 provides an introduction to the K-fold cross-validation approach,

and explains it usefulness for assessing the predictive performance of spatial simulation

techniques. The formulation of the objective function is discussed in Subsection 4.3.2. An

algorithm inspired by the work of Deutsch and Cockerham (1994) for calibrating the weights

of multiple-component objective functions is presented in Subsection 4.3.3. Subsection 4.3.4

provides an overview of the simulated annealing technique. In Subsection 4.3.5, we describe

the application of the simulated annealing algorithm for the optimization of the downscaling

parameters using the K-fold cross-validation framework.

4.3.1 The K-fold cross-validation approach

Cross-validation comprises a group techniques used for assessing the accuracy and preci-

sion of predictive models. The objective of cross-validation is to evaluate the predictive

performance of a model or algorithm when dealing with external data (i.e. data not used

to calibrate it). It is also useful for identifying problems such as overfitting and estimation
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bias (Cawley and Talbot, 2010). Cross-validation methods may be employed for selecting

predictor variables, model parameters, and parameter calibration tasks. Poorly calibrated

spatial simulation algorithms, for example, can lead to systematic over- or underestimation

of target statistics and biased textural reproduction. Within a cross-validation setting, the

calibration is performed based on conditioning data, or an external data set, when the for-

mer is not available or is only sparsely informed. The data set is divided in two parts: the

training set and the validation set. The training set is used to train the predictive model

or algorithm, whereas the validation set serves to assess its performance.

In this contribution, we explore the application of a non-exhaustive cross-validation

technique known as K-fold cross-validation (Hastie et al., 2009). This method is of par-

ticular interest due to the way it divides the training data set. Geographical variables

are often spatially auto-correlated. As a result, when dealing with such data sets, stan-

dard cross-validation methods will produce optimistically biased prediction performance

estimates (Pohjankukka et al., 2017). Exhaustive cross-validation techniques, such as the

leave-one-out method (Hastie et al., 2009), excel at calibration for local prediction (e.g.

least-squares estimation), but are not well-suited for evaluating textural reproduction if the

spatial resolution of the conditioning data or the sampling grid is coarser than the support

of the simulated realizations. Moreover, cross-validating a single simulated value at a time

does not account for the reproduction of the joint spatial relationship between neighboring

simulated data (i.e. image texture).

In K-fold cross-validation, the training data set is segmented into K subsamples of

equal size named folds. A given target fold (i.e. the validation set) is temporarily removed,

and the remaining K − 1 folds (i.e. the training set) are used to train the algorithm. The

algorithm is executed in the target fold and the predictions are subsequently evaluated by

comparison against the validation set. The process is repeated for the remaining folds.

Each fold consists of a continuous subset of the input data set. This is critical for spatial

modeling as structural properties, such as spatial variability and connectivity, often have to

be evaluated over large domains and at different scales. Additionally, unlike sub-sampling

cross-validation methods, all available data are systematically used for training and vali-

dation. This is particularly valuable for obtaining robust prediction performance estimates

when dealing with non-stationary data sets.

The training and validation sets, denoted as τ = {τk, k = 1, . . . ,K} and υ = {υk, k =

1, . . . ,K}, respectively, are generated with intersection and set difference operators between

the coarse- and fine-resolution training DEMs and a K-fold cross-validation template. The
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template f = {fk, k = 1, . . . ,K} defines the layout and geometry of the folds. The k-th

validation set υk is defined as

υk = {z(t)V , z(t)v } ∩ fk, k = 1, . . . ,K (4.10)

where fk denotes the k-th target fold. The corresponding training set τk is given by

τk = υck = {z(t)V , z(t)v } \ υk, (4.11)

where \ is the difference operator.

Figure 4.2 illustrates a 4-fold cross-validation setup. The template is constructed based

on a quadrant partitioning scheme. For all four configurations, the training data set is

composed by co-registered coarse- and fine-resolution information from three different folds.

The coarse-scale data in the validation set condition the downscaling. The fine-resolution

data are only used to evaluate the structural quality of the simulated realizations.

Whenever determining a value forK it is important to consider the resulting dimensions

of the folds with regard to the scale of the spatial structures being modeled. For uncon-

ditional simulation, the folds should be at least equal or larger in size than the biggest

structures to be simulated. Otherwise, the reproduction of long-range spatial correlations

will not be explicitly evaluated. For conditional simulation with an exhaustive secondary

variable, this is less severe because covariates will generally describe the large-scale spatial

structures. Consequently, farther data will be less informative for prediction. In downscal-

ing, we are mostly concerned with resolving the missing fine-scale features. Therefore, the

size of the folds might not be equally important as the coarse-resolution variable is typically

known over the entire simulation domain. A basic guideline, for example, would be to use

a spatial correlation function, such as the range of the empirical variogram, or connectivity

function, as a reference metric to define an appropriate minimum fold size.
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Figure 4.2: Illustrative example of a 4-fold cross-validation setup.

4.3.2 Formulating the multiple-component objective function

The calibration of the downscaling algorithm with optimization by simulated annealing

requires the formulation of an objective function. This function measures the similarity

between realizations and the validation data set. The objective function aims at describing

key statistical and structural properties sought in the output realizations. These attributes

may be numerically described by a single or multiple metrics. Often numerical models must

meet several specifications for a target application, including consistency with various types

of conditioning data and additional prior information. Statistical downscaling algorithms

have to achieve at least two basic requirements: i. generate fine-resolution images that honor

the coarse-resolution data, and ii. reproduce a given prior fine-scale structural model. In
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the presented MPS-driven downscaling framework, the dual-resolution training data is the

structural model itself.

The simulation of fine-resolution DEMs that are both consistent with available coarse-

scale measurements and exhibit the small-scale topographic features found in the training

data entails the formulation of a multiple-component objective function as these conditions

can seldom be evaluated by a single metric. Two fundamental concepts for describing

spatial heterogeneity are spatial variability and connectivity. Spatial variability is commonly

characterized with two-point statistics, such as covariance functions, variograms (Marcotte,

1996), or spatial entropy (Renard and Allard, 2013). Two-point statistics describe the

probability of having a given value at a certain position as a function of a known value at

another position. This metric can be used to describe terrain roughness and the preferential

anisotropy of geomorphic features.

Curvilinear structures, such as drainage networks, are better characterized with spa-

tial connectivity metrics. Connectivity is usually measured with multiple-point statistics,

static connectivity functions, and topological properties. Multiple-point statistics, such as

multiple-point histograms (Boisvert et al., 2010) and high-order spatial cumulants (Dim-

itrakopoulos et al., 2010), compute conditional probabilities based on the analysis of the

joint spatial relationship between multiple values. These statistics require the definition of

spatial templates for analyzing different data configurations. Static connectivity (Renard

and Allard, 2013) refers to the probability of having at least two pixels with identical values

adjacent to each other. Renard and Allard (2013) proposed an adaptation of this metric for

evaluating continuous random fields. In this approach, the continuous image is segmented

into a series of binary images based on thresholding operations. The probability of having

connected pixels is computed for each individual binary image and represented as a function

of the truncation thresholds. Another important metric is the Euler number (Pratt, 1991).

It consists of a topological invariant used to describe the shape or structure of a topological

space. In two-dimensional binary images, the Euler number corresponds to the total num-

ber of objects in an image minus the number of holes in these objects. This property can

be used to characterize continuous images by applying a series of thresholding operations

in similar fashion to the static connectivity function (Renard and Allard, 2013).

In this work, we formulate a multiple-component objective function based on four

metrics deemed important for DEM spatial analysis. The component objective functions

associated with these criteria are described below. A multiple-component objective function

O can be expressed as a linear combination of C component objective functions
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O =
C∑

c=1

wcOc, c = 1, . . . , C (4.12)

where Oc is the component objective function of the c-th component, and wc is its corre-

sponding weight.

Conditioning realizations to coarse-scale observations ensures that the simulated sub-

pixel DEMs are coherent with the target DEM. Therefore, the first component objective

function consists of the root-mean-square error (RMSE) between upscaled realizations and

the residual coarse-resolution target DEM

O1 =

(
1

N

N∑

i=1

[
r
(s)
V (ui)− rV (ui)

]2
)1/2

, ∀ i = 1, . . . , N (4.13)

where r
(s)
V (ui) for i = 1, . . . , N is the upscaled simulated terrain elevation, and rV (ui) is

the reference coarse-resolution elevation. If the upscaling function is not explicitly defined,

the relationship between the coarse- and fine-scales is implicitly borrowed from the dual-

resolution training data. In this case, r
(s)
V (ui) corresponds to the central pixel value of its

source coarse-resolution training data event.

Short-range empirical variogram maps (Marcotte, 1996) are employed to describe fine-

scale topographic roughness and preferential anisotropy. The second component objective

function is a weighted RMSE between the fine-scale variogram maps of the residual elevation

simulations and the validation set

O2 =

(
J∑

j=0

λ(hj)

[
γ̂
(s)
v (hj)− γ̂v(hj)

γ̂v(hj)

]2)1/2

, (4.14)

where γ̂
(s)
v (hj) and γ̂v(hj) denote the simulated and validation empirical variograms, respec-

tively, for the coordinates lag vector hj , j = 0, . . . , J , and λ(hj) is the weight associated

with hj . Typically, λ(hj) = ‖hj − h0‖−22 . Larger weights are commonly given to short lags

as they are associated with small-scale features of the residual component. The normaliza-

tion by γ̂v(hj) makes the objective function consider only relative errors between the two

maps. This is necessary as the residual-to-trend amplitude ratio depends on the low-pass

filter kernel shape parameter.
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The reproduction of complex residual features in the simulated realizations, such as

channelized systems, is evaluated with two connectivity metrics. Proper reproduction of

these structures is critical because they exert direct control on surface processes. The

third component objective function is based on the RMSE between the simulated and the

validation fine-resolution connectivity functions

O3 =

[
1

2Q

Q∑

q=1

([
Γ(ι(s)q )− Γ(ιq)

]2
+
[
Γc(ι(s)q )− Γc(ιq)

]2)
]1/2

, (4.15)

where Γ(ι
(s)
q ) and Γ(ιq) are the probabilities of connection computed from the fine-resolution

simulated and reference binary indicator maps ι
(s)
q and ιq, respectively, associated with the

residual elevation threshold rq; with Γc(ι
(s)
q ) and Γc(ιq) being the probabilities calculated

based on the complement of the indicator maps.

The indicator transform for generating the binary maps is defined as

ιq(u, rq) =





1, if rv(u) ≥ rq
0, otherwise

q = 1, . . . , Q (4.16)

where rq, q = 1, . . . , Q are the different thresholds applied to the residual. The thresh-

old values are selected based on quantiles from the validation set fine-resolution empirical

cumulative distribution function (CDF).

The fourth component objective function consists of the RMSE between sub-pixel Euler

characteristic curves of the simulated and the validation residuals

O4 =

[
1

2Q

Q∑

t=1

([
φ(ι(s)q )− φ(ιq)]

2 + [φc(ι(s)q )− φc(ιq)
]2)

]1/2
, (4.17)

where φ(ι
(s)
q ) and φ(ιq) correspond to the simulated and the reference Euler numbers, respec-

tively, and φc(ι
(s)
q ) and φc(ιq) are their associated values computed from the complementary

maps. As with the previous component objective function, thresholds are extracted from

the quantiles of the validation set fine-resolution empirical CDF.
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4.3.3 Weighting the component objective functions

The component objective functions can be potentially measuring metrics with different

units or orders of magnitude. As a result, the calibration of the weights wc, c = 1, . . . , C

often demands extensive sensitivity analyses. Ideally, the weights should ensure that each

component objective function receives equal importance in the decision making process.

However, predefined weights may be assigned to each component based on a priori criteria.

To address this issue, we propose an adaptation of the perturbation mechanism in-

troduced by Deutsch and Cockerham (1994) for automatic adjustment of the weights in

Equation (4.12). The concept resides in estimating wc, c = 1, . . . , C so that, in average,

each component objective function has approximately equal contribution in the global ob-

jective function output. The rationale is to adjust the weights such that they are inversely

proportional to the expected variability of their associated component objective functions.

Therefore, calibrated weights should attenuate the impact of components with greater vari-

ability, and amplify the effect of small changes in less variable component objective func-

tions.

In practice, the statistical dispersion of each component objective function cannot be

calculated analytically, but it may be numerically approximated by performing a large

number (e.g. 103) of independent stochastic perturbations. For each p-th perturbation,

the downscaling algorithm is executed using a random set of parameters θ(p), and all C

component objective functions are subsequently evaluated with K-fold cross-validation.

The variability of each component is computed as

var(Oc) =

(
1

P

P∑

p=1

∣∣∣O(p)
c − Ōc

∣∣∣
ν
)1/ν

, c = 1, . . . , C (4.18)

where O
(p)
c is the component objective function of the p-th perturbation, Ōc is the mean

component objective function computed over all P perturbations, and ν is an exponent

parameter.

The contribution of each component is equalized by making the weights inversely pro-

portional to the output of Equation (4.18)
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wc =
λc

var(Oc)
, c = 1, . . . , C with

C∑

c=1

λc = 1, (4.19)

where λc controls relative importance of the c-th component.

Algorithm 3 summarizes the weight calibration process. We seek a representative esti-

mate of the variability of each component objective function by drawing a random ensemble

of parameter vectors θ(p), p = 1 . . . , P with Latin hypercube sampling (McKay et al., 1979).

To reduce computational cost, as MPS simulation runs are fairly expensive, at each per-

turbation, the downscaling algorithm is executed for only one of the K cross-validation

configurations selected at random (lines 3 and 4 of Algorithm 3). For reproducibility, an

initial seed may be provided to the pseudo-random number generator.

Algorithm 3 Calibration of the objective function weights

input: the training set τ , the validation set υ, the multiple-component objective func-
tion O, the number of perturbations P , the exponent ν

output: the calibrated weights wc, c = 1, . . . , C

1: Draw the set of parameters θ(p), p = 1, . . . , P with Latin hypercube sampling
2: for each p-th perturbation do
3: Select one of the K folds at random
4: Execute the downscaling algorithm F (θ(p), τk | υk)
5: Compute the component objective functions O

(p)
c , c = 1, . . . , C

6: end for
7: Compute var(Oc), c = 1, . . . , C
8: Compute wc, c = 1, . . . , C
9: return the calibrated weights wc, c = 1, . . . , C

4.3.4 The simulated annealing technique

In this work, the downscaling parameters are optimized with simulated annealing (Kirk-

patrick et al., 1983). The simulated annealing technique is a metaheuristic designed to

approximate the global optimum (i.e. minimum or maximum) of an objective function.

Metaheuristics are particularly suited for providing approximate solutions to complex global

optimization problems, especially when dealing with incomplete or uncertain information

(Bianchi et al., 2009). Furthermore, these methods do not make any assumptions about the

objective function response surface. Gradient-based optimization techniques, for example,

require that the objective function is differentiable. In addition, many of these algorithms

are prone to be trapped in local minima. In that regard, metaheuristics are more robust.



CHAPTER 4. AN AUTOMATION FRAMEWORK FOR DOWNSCALING 89

However, there is no guarantee that the global optimum may ever be found. Typically,

multiple runs are performed to ensure a sufficiently good approximation.

The simulated annealing algorithm is based on an analogy with a heat treatment used

in metallurgy and materials science. Annealing refers to the process in which a solid material

undergoes heating without changing its phase so that its molecules can reorder into a lower

energy crystalline structure. The probability that any two molecules may swap positions

follows the Boltzmann distribution. Technically, the name simulated annealing only applies

when the acceptance probably is based on this distribution (Kirkpatrick et al., 1983). Over

time, however, the term has become used to describe a wider group of methods grounded

on the principle of stochastic relaxation (Deutsch and Cockerham, 1994). This concept

is explored in simulated annealing as a prescription for accepting or rejecting a target

perturbation (thermal vibration). The most common acceptance criterion is the one used

by the Metropolis algorithm (Metropolis et al., 1953), wherein a perturbation is accepted if

the energy is decreased. Otherwise, it is accepted with a certain probability. The acceptance

probability distribution is given by

Pr{accept | ∆O, T} =





1, if ∆O ≤ 0

exp (−∆O/T ), otherwise
(4.20)

with ∆O = O′ −O, where O corresponds to the current energy, O′ is a candidate solution,

and T is the temperature.

A fundamental aspect of simulated annealing is the cooling schedule. It defines how

T decreases as a function of time (i.e. time steps or cycles). At high temperatures, any

solution, regardless of its quality, can be potentially accepted. This results in the exploration

of the objective function response surface. As T decreases, the likelihood of accepting worse

solutions lessens (Eq. (4.20)). In this phase, the algorithm focuses on refining the search for

the global minimum until a ground state is reached. Several cooling strategies have been

proposed (Nourani and Andresen, 1998). In practice, monotonically decreasing functions

are more commonly used owing to their lower computational cost. In a geometric cooling

schedule, the temperature T (t) for a given cycle t is calculated as

T (t) = T0 ζ
t with 0 < ζ < 1, (4.21)

where T0 is the initial temperature, and ζ is the reduction factor.
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The temperature T decreases once a number of accepted target perturbations Paccept

is reached. To avoid very slow cooling rates, at any given temperature, a maximum num-

ber of perturbations per cycle Pmax > Paccept is set. The algorithm is terminated if ei-

ther a convergence criterion is met, say a low |∆O|, or the efforts to reduce the energy

become discouraging. Other simulated annealing hyperparameters may include the num-

ber of neighboring states, the candidate generation function (also known as perturbation

scheme), and additional convergence criteria, such as a minimum global objective function,

a global maximum number of perturbations, and a target proportion of accepted perturba-

tions (Goovaerts, 1997). Restart procedures are generally implemented. In restarting, the

simulated annealing algorithm is allowed to move back to a solution that was significantly

better than the current state. The process can be triggered by several criteria. The cooling

schedule may also be re-initiated.

4.3.5 Parameter optimization by simulated annealing

In this subsection, the algorithm for calibrating the downscaling parameters with simulated

annealing and K-fold cross-validation is presented. The main assumption of the proposed

scheme is that the downscaling parameters can be inferred from the training DEMs, and

subsequently used to enhance the target DEM spatial resolution. The downscaling algorithm

is trained using the dual-resolution training data as it contains information at both scales.

The procedure enables the algorithm to find an optimal parameter setup as fine-resolution

training data can be used to assess the quality of simulated realizations.

The flowchart in Figure 4.3 depicts the automatic parameter calibration process. The

input data comprise the coarse- and fine-resolution training DEMs, theK-fold cross-validation

template, and the multiple-component objective function. The training and validation sets

are generated in a pre-processing phase with intersection and difference operations between

the template and the training DEMs. The downscaling algorithm is executed in cross-

validation mode, and its outputs are systematically evaluated with the multiple-component

objective function. The optimization is terminated when any of the stopping criteria are

met.

The parameter optimization process consists of a nonlinear multivariate problem. To

address that, the K-fold cross-validation method is adapted such that the optimization of

the multiple-component objective function is not performed on each fold individually, but

rather on all the K folds as a whole. By relying on the entire the dual-resolution training

data, a more robust estimate of θ can be obtained. To this end, Equation (4.12) is modified
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as follows

Ō =
K∑

k=1

C∑

c=1

ak wcO
(k)
c , (4.22)

where Ō represents the averaged global objective function, O
(k)
c is c-th component objective

function associated with the k-th fold, and ak is a weight linked to the k-th fold cross-

validation setup enabling the algorithm to accommodate irregular-sized folds.

A dimensionless cooling schedule (i.e. T0 = 1) is adopted by re-scaling Equation (4.22)

based on its initial evaluation

Ō =
1

Ō(0)

K∑

k=1

C∑

c=1

ak wcO
(k)
c , (4.23)

where Ō(0) is the initial averaged objective function output.

A pseudocode for the optimization by simulated annealing is presented in Algorithm 4.

The simulated annealing hyperparameters, denoted by η, are summarized in Table 4.2. For

reproducibility, an initial seed may be prescripted. The sequential simulation path fed to the

downscaling algorithm is randomized after each realization to avoid overfitting θ for a given

path (lines 4 and 10 of Algorithm 4). Faster cooling schedules may be used by employing

perturbation schemes based on specific probability distribution functions (PDFs). In the

proposed approach, the perturbation scheme responsible for proposing neighboring states θ′

comprises a series of L one-dimensional PDFs (one per parameter) which vary as a function

of T (line 19 of Algorithm 4). The probability of assigning a parameter proposal θ
(p)
l as a

candidate θ′l is computed with the Cauchy PDF

Pr{θ′l ← θ
(p)
l | θl, T} =

1

πγβ


 γ2
(
θ
(p)
l − θl

)2
+ γ2


 , l = 1, . . . , L (4.24)

where θl ∈ θ, γ = T ×max(θl) > 0 is the scale parameter, with max(θl) denoting the upper

bound of the l-th parameter, and β > 0 is a normalizing constant. The Cauchy PDF its

particularly useful because of its fat tails, which facilitate escaping from local minima (Szu

and Hartley, 1987).
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During the early stages of the optimization, the algorithm explores large-scale struc-

tures in the objective function response surface as the perturbation PDFs are stretched. As

T decreases, the PDFs narrow down, and the focus shifts towards surveying local fine-scale

features. At this point, candidate solutions neighboring the current state θ are more likely

to be sampled. U ∼ U [0, 1] denotes a random number drawn from a uniform distribution

bounded between 0 and 1. The optimization is executed with a single neighboring state.

The stopping criteria consist of a maximum number of attempted perturbations

Pattempt = Nstop × Pmax, (4.25)

where Nstop is the stopping number (usually set at 2 or 3), or if the following convergence

criterion is satisfied

|∆Ō| ≤ δ, (4.26)

where δ is the convergence constant.

Restart procedures are based on several criteria, which may include a fixed number of

perturbations, or whether the current energy Ō is too high compared to the best solution

recorded so far. In the proposed algorithm, the simulated annealing is restarted if the

former type of condition holds

P (t) = Pmax, (4.27)

where P (t) is the current number of attempted perturbations at the t-th cycle.

Table 4.2: Simulated annealing hyperparameters.

η Description

T0 Initial temperature
ζ Reduction factor
Paccept Number of accepted target perturbations
Pmax Maximum number of perturbations
Nstop Stopping number
δ Convergence constant
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Algorithm 4 Parameter optimization by simulated annealing

input: the training set τ , the validation set υ, the objective function O, the perturba-
tion PDFs, the simulated annealing hyperparameters η

output: the calibrated downscaling parameters θ

1: Let T ← T0 and Ō ← +∞
2: Sample θ in the parameter space at random
3: for each k-th fold, k = 1, . . . ,K do
4: Execute the downscaling algorithm F (θ, τk | υk)
5: end for
6: Compute the initial averaged objective function Ō(0)

7: while stopping criteria have not been met do
8: Sample θ′ with the perturbation PDFs
9: for each k-th fold, k = 1, . . . ,K do

10: Execute the downscaling algorithm F (θ′, τk | υk)
11: end for
12: Compute the averaged objective function Ō′

13: Draw U ∼ U [0, 1]
14: if Pr{∆Ō, T} ≥ U then
15: Let θ ← θ′ and Ō ← Ō′

16: end if
17: if Paccept or Pmax is reached then
18: Reduce T according to the cooling schedule
19: Update the perturbation PDFs
20: Reset perturbation counters

21: end if
22: end while
23: return the calibrated downscaling parameters θ
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Figure 4.3: Automatic parameter calibration flowchart. Rounded white rectangles indicate
input data and functions. Processes are represented as light gray rectangles. The dark gray
diamond indicates a conditional decision operation. The calibrated downscaling parameters
are indicated by the rounded black rectangle.
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4.4 Case studies

In this section, we demonstrate the automatic parameter calibration framework with il-

lustrative examples of DEMs from three distinct topographic settings: The Alaska Range,

in the south-central Alaska; the Central Appalachians, in eastern North America; and the

Central Lowlands, in South Australia. Subsection 4.4.1 presents the target and training

DEMs. Subsection 4.4.2 shows the calibration of the weights of the multiple-component

objective function. Subsection 4.4.3 illustrates the optimization of the downscaling algo-

rithm parameters for each data set. In Subsection 4.4.4, we perform the downscaling of the

coarse-resolution target DEMs using the parameters inferred from the training data, and

validate the results with statistical and structural metrics.

4.4.1 Target and training data sets

The proposed framework is demonstrated with freely available DEMs. The target and

training data sets comprise coarsened versions of three fine-resolution source DEMs: the

Polar Geospatial Center at the University of Minnesota ArcticDEM (Porter et al., 2018),

Geoscience Australia’s Australian 5 m DEM (Geoscience Australia, 2015), and the USGS

National Map 3DEP 1 m DEM (Sugarbaker et al., 2017). Table 4.3 lists the DEMs used in

each illustrative example. A summary of the acquisition periods, sensing techniques used

to produce the DEMs, and spatial resolution of the aforementioned products is provided.

Table 4.3: Source DEM products.

Example Source product Sensing Sensor Nominal
year(s) type pixel size (m)

Alaska Range ArcticDEM 2015-2016 Optical 2× 2
Appalachians 3DEP 1 m DEM 2016-2023 LiDAR 1× 1
Central Lowlands Australian 5 m DEM 2001-2015 LiDAR 5× 5

The approach is illustrated with artificial coarse-resolution target DEMs in order to

eliminate the effect of measurement errors into the downscaling process. Numerical experi-

ments based on non-artificial target DEMs are presented in Appendix A.1. The non-artificial

target data sets include a corrected version of the 1-arc second near-global DEM from the

U.S. National Geospatial-Intelligence Agency (NGA) and NASA’s Shuttle Radar Topog-

raphy Mission (SRTM30) (Farr et al., 2007; Geoscience Australia, 2015), JAXA’s Earth
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Observatory Research Center (EORC) 1-arc second global digital surface model ALOS

World 3D-30m (AW3D30) (Tadono et al., 2016), and the USGS National Map 3D Eleva-

tion Program (3DEP) 1-arc second DEM (Sugarbaker et al., 2017).

The target, training, and reference DEMs are generated by linear upscaling of the

source finer-resolution DEMs (Table 4.3). The downscaling is conditioned to the coarse-

resolution target DEMs. The reference DEMs are only used for validation. The dimensions

and nominal pixel sizes of the coarse-, medium-, and fine-resolution data sets are listed in

Table 4.4. The footprints of the target/reference and training DEMs are approximately

3.69 and 14.75 km2, respectively.

Table 4.4: Coarse-, medium-, and fine-resolution DEMs.

Data set Spatial Dimensions Nominal
resolution (pixels) pixel size (m)

Target Coarse 64× 64 30× 30
Reference Medium 128× 128 15× 15

Fine 256× 256 7.5× 7.5
Training Coarse 128× 128 30× 30

Medium 256× 256 15× 15
Fine 512× 512 7.5× 7.5

Figures 4.4–4.6 display the target and training DEMs for the Alaska Range, the Ap-

palachian Mountains, and the Australian Central Lowlands case studies. Only the coarse-

resolution target DEMs and the fine-resolution training DEMs are shown. The training

DEMs are selected from neighboring sites with similar geomorphic features to their respec-

tive target data sets. The residual DEMs are computed based on a spatial low-pass filter

with ρ = 90 m and σL = 600 m (Figs. 4.4–4.6). Positive structures in the residual rep-

resent ridgelines and crags in the landscape, whereas negative features denote rivers and

gully networks. A brief description of the geomorphological settings of the three illustrative

examples is provided below.

The Alaska Range is a relatively narrow mountain range located in south-central

Alaska. The range is part of the American Cordillera, and extends for 650 km in an east-

west direction, from Lake Clark at west, to the White River in Canada’s Yukon Territory

at its easternmost end. The regional climate is characterized by heavy snowfalls that feed a

number of glaciers. The terrain is marked by glacial valleys and steep natural slopes. The

Appalachians are an ancient mountain range in eastern North America formed almost a
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half-billion years ago. The range is 160 to 480 km wide and runs 2,400 km southwestward

from the island of Newfoundland, in southeastern Canada, to the U.S. state of Alabama.

Over time, the mountain range experienced significant natural erosion. In the present day,

the topography is characterized by a series of alternating ridgelines and fluvial valleys. The

Central Lowlands cover one-fourth of mainland Australia, stretching south-northward from

the Murray-Darling basin to the Gulf of Carpentaria. The landscape features extremely

flat, low-lying plains of sedimentary rock, large deserts, and salt pans. The region is home

to the lowest landforms in Australia, with an average height of less than 200 m.

The three case studies represent distinct geomorphic scenarios. The DEMs of the

Alaska Range and Appalachian Mountains examples feature high-amplitude trend compo-

nents with peak-to-peak amplitudes of approximately 700 and 250 m in the target data sets,

and 1 km and 400 m in the training data, respectively (Figs. 4.4 and 4.5). By contrast, the

trend in the Central Lowlands DEMs has a peak-to-peak amplitude of only 50 m (Fig. 4.6).

Summary statistics of the coarse-resolution residual DEMs are listed in Table 4.5. Residu-

als have mean values of approximately zero, and their variability is somewhat proportional

to the amplitude of their associated trend components. Two out of the tree training data

sets have higher standard deviation (SD) and range values than their corresponding target

data sets. This is an important aspect to be considered when choosing the training DEMs,

as MPS algorithms are unable to generate simulated values outside the range of the fine-

resolution training data empirical PDF. Only the Central Lowlands example does not abide

to this guideline. The MPS-driven downscaling algorithm herein used is especially robust

to this type of scenarios owing to its inbuilt capabilities for handling non-stationary data

sets.

Table 4.5: Summary statistics of the coarse-resolution DEMs from the Alaska Range, the
Appalachians, and the Central Lowlands examples.

Example Data set Mean SD Min. Max.

Alaska Range Training 0.04 6.76 −34.77 40.43
Target −0.37 5.61 −20.99 32.86

Appalachians Training 0.08 3.52 −16.29 18.01
Target 0.03 2.77 −9.45 15.46

Central Lowlands Training −0.02 2.11 −5.96 11.44
Target −0.02 3.26 −7.68 11.79

Values are in residual elevation (in m)
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Figure 4.4: The Alaska Range example target and training DEMs. Top left : coarse-
resolution target DEM. Top right : coarse-resolution target residual DEM. Bottom left :
fine-resolution training DEM. Bottom right : fine-resolution training residual DEM. Color-
bars’ unit is m.
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Figure 4.5: The Appalachians example target and training DEMs. Top left : coarse-
resolution target DEM. Top right : coarse-resolution target residual DEM. Bottom left :
fine-resolution training DEM. Bottom right : fine-resolution training residual DEM. Color-
bars’ unit is m.
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Figure 4.6: The Central Lowlands example target and training DEMs. Top left : coarse-
resolution target DEM. Top right : coarse-resolution target residual DEM. Bottom left : fine-
resolution training DEM. Bottom right : fine-resolution training residual DEM. Colorbars’
unit is m.
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4.4.2 Calibration of the component objective function weights

The multiple-component objective function presented in Subsection 4.3.2 is employed in

all three examples. The component objective functions weights are calibrated with Algo-

rithm 3. The stochastic perturbation hyperparameters for the magnification factors of 2×
and 4× are listed in Table 4.6. For all three case studies, we define a 16- and a 64-fold cross-

validation setup for G = 2 and G = 4, respectively. The K-fold cross-validation templates

are generated using a quadrant-recursive partitioning scheme. The component objective

function weights need to be calibrated at each magnification as the sub-pixel structures to

be resolved have different scales.

Table 4.6: Stochastic perturbation hyperparameters.

η G = 2 G = 4

K 16 64
P 4× 103 4× 103

ν 1 1

Figure 4.7 presents the convergence curves associated with the calibration of the com-

ponent objective functions weights for the three case studies. The plots display the evolution

of the component weights estimates as a function of the number of perturbations. Values

are normalized to facilitate comparison among the components. In general, the data sets

exhibit similar convergence patterns. Estimates tend to wildly fluctuate during the initial

perturbations but as the number of perturbations increases they gradually stabilize (roughly

after 3× 103 perturbations).

The calibrated component objective functions weights are listed in Table 4.7. A uniform

distribution is assumed for the prior weights λc. In the three examples, the third compo-

nent objective function, which is associated with the connectivity function, was granted the

highest weights for both magnification factors. This component has the smallest response

dispersion, thus, it receives larger weights to compensate for its lesser variability. By con-

trast, the fourth component objective function received the smallest weights due to the large

variations in the RMSE between the simulated and reference Euler characteristic curves.

The mean absolute deviations of the first and second component objective functions lie

somewhere between the third and fourth components. Note that the relative contribution

of each component to the total sum of weights varies per magnification factor (Table 4.7).
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Table 4.7: Calibrated component objective function weights.

Example G w1 w2 w3 w4

Alaska Range 2 0.2007 (3) 1.6552 (22) 5.7346 (75) 0.0235 (<1)
4 1.0717 (13) 0.4042 (5) 6.4955 (81) 0.0113 (<1)

Appalachians 2 0.4179 (5) 1.9792 (23) 6.3329 (72) 0.0230 (<1)
4 2.6775 (26) 1.0027 (10) 6.7586 (65) 0.0120 (<1)

Central Lowlands 2 0.6586 (7) 2.1155 (22) 7.0144 (71) 0.0304 (<1)
4 5.4776 (44) 1.0097 (8) 5.9399 (48) 0.0152 (<1)

Values in parentheses give the approximate percentage of the contribution of
each component to the total sum of weights
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Figure 4.7: Calibration of the component objective functions weights. a the Alaska Range
example (G = 2), b the Alaska Range example (G = 4), c the Appalachians example
(G = 2), d the Appalachians example (G = 4), e the Central Lowlands example (G = 2), f
the Central Lowlands example (G = 4). Components: #1 – coarse-scale conditioning; #2
– empirical variogram map; #3 – probability of connection; #4 – Euler characteristic.
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4.4.3 Optimization of the downscaling algorithm parameters

The quality of the approximation to the objective function’s global minimum is propor-

tional to the optimization run-time. Therefore, slower cooling schedules are expected to

give better approximations than faster cooling strategies as they allow the algorithm more

time to explore the solution space. The drawback is that they entail a larger number of

perturbations. This is notably critical to MPS simulation algorithms because of their high

computational cost.

In order to accelerate the optimization process, we create a bounded discrete parameter

space. To further reduce the optimization run-time, this space is unevenly sampled for spe-

cific algorithm parameters. The reason is that the structural quality of the simulations does

not vary significantly when some parameters lie at certain ranges of the parameter space.

This applies to all kernel shape parameters (i.e. σL, σC , σF ) and the number of candidate

training data events κ. Assigning different large values to the kernel shape parameter does

not visibly affect the simulated realizations due to limited length of the search radius ρ

(Table 4.1). Typically, ρ is much smaller than the target DEM dimensions (Table 4.4). A

similar effect is observed if κ is set as a large number. For the sizes of the DEMs presented

in the case studies, differences between small values (e.g. κ < 10) may heavily impact the

structural quality of the simulations, but for larger values (e.g. κ > 100), they do not.

Hence, these parameters can be densely sampled around their lower bounds, and sparsely

sampled towards their upper bounds. The remaining algorithm parameters are sampled

uniformly.

To handle the preferential sampling of certain dimensions of the parameter space, the

term
(
θ
(p)
l − θl

)2
in the denominator of Equation (4.24) is modified. Rather than computing

it in the original parameter units, computations are executed based on the indexes of the

elements within the vector discretizing a given dimension. This enables the algorithm to

safely explore the objective function response surface at low temperatures by minimizing

the risk of accidentally getting trapped at a sparsely sampled sector in the parameter space.

The Cauchy PDF scale parameter γ is also made proportional to the length of the vector

instead of being based on the parameter upper bound value (Eq. (4.24)).

The optimization of the downscaling parameters is performed with Algorithm 4. The

K-fold cross-validation templates used in Subsection 4.4.2 are also employed in the opti-

mization process. Table 4.8 lists the simulated annealing hyperparameters used in the three

illustrative examples. Figure 4.8 displays the convergence curves of the multiple-component



CHAPTER 4. AN AUTOMATION FRAMEWORK FOR DOWNSCALING 105

objective functions and the simulated annealing cooling schedules. The approximated global

minima and restarts are indicated in the plots. The optimization processes took roughly 900

to 1,100 perturbations to terminate given the pre-specified hyperparameters configuration

(Table 4.8). The optimizations related to the first iteration of the algorithm required less

perturbations than the ones for the second iteration. Each process restarted at least once,

except the first magnification of the Central Lowlands example. This optimization process

was interrupted relatively earlier since it managed to reach the convergence criterion around

the 400th perturbation.

Table 4.8: Simulated annealing hyperparameters.

η G = 2 G = 4

K 16 64
T0 1 1
ζ 0.9 0.9
Paccept 10 10
Pmax 100 100
Nstop 3 3
δ 1× 10−4 1× 10−4

Table 4.9 lists the optimized downscaling parameters for each case study and magni-

fication factor. The calibrated parameters appear to cluster around an optimal setup but

also reveal several differences among data sets and scales. The parameter configurations are

primarily characterized by a search radius ρ with length ranging from 2 to 4 coarse pixels.

The spatial low-pass filter’s shape parameter σL is set to fairly high values, which yields

nearly flat kernels. These kernels produce highly auto-correlated residual components that

appear to enhance the structural accuracy of the simulated realizations. The kernels associ-

ated with the coarse-scale distance functions have their centroids concentrating at least half

of the sum of the weights. However, striking differences are observed between the kernels

of the coarse- and fine-resolution distance functions based on the magnification factor. The

parameter configurations associated with G = 2 gravitate towards setups where σC > σF ,

whereas G = 4 favors configurations with σC < σF . Results suggest that the optimal num-

ber of candidate training data events κ is both data- and scale-dependent. For G = 2, the

optimal setup is κ ≤ 12, but for G = 4, κ is significantly larger. This parameter is notably

sensitive to the non-stationarity of the residual and the size of the training data set. At

the second iteration, the sheer number of training data events rises, hence the number of

potential replicates for any given data event is expected to increase. Ultimately, this allows

the algorithm to relax the value for κ. Although a direct function of the distance function
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kernel, the scanning hierarchy control variable ξ appears to systematically assume values

larger than 0.6. This result suggests that at any given scale, the coarse-resolution data will

more often dictate the retrieval and simulation of fine-scale data. This is rather logical if

one considers that the coarse-resolution residual comprises the only source of co-registered

information available at every uniformed fine-resolution pixel. Finally, the choice of either

a static or a dynamic weighting scheme, and the probability aggregation weight for the

fine-scale data, which are controlled by χ and α, respectively, appear to be data dependent.

Table 4.9: Optimized downscaling algorithm parameters.

Example G ρ σL σC σF κ ξ χ α

Alaska Range 2 90 446 11 6 12 0.78 false 0.95
4 55 69 14 137 56 0.93 true -

Appalachians 2 109 388 16 11 4 0.65 true -
4 30 194 7 37 34 0.80 true -

Central Lowlands 2 68 832 17 6 5 0.81 false 0.85
4 45 169 8 16 23 0.98 false 0.39
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Figure 4.8: Objective functions and simulated annealing cooling schedules. Top row : the
Alaska Range example. Middle row : the Appalachians example. Bottom row : the Central
Lowlands example. Approximated global minima are indicated by the green circles with a
cross. Vertical dashed lines denote restarts.
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4.4.4 Simulation and validation

Figures 4.9–4.14 illustrate the reference DEMs and sample downscaling realizations of the

three case studies. Both trended and residual versions of the DEMs are displayed. The

residual DEMs are computed with the same spatial low-pass filter used in Figures 4.4–4.6.

The DEMs are shown in three different spatial resolutions (Table 4.4). Detailed views of

the terrain features are given by zooms of selected areas in the residual DEMs. The green

boxes highlight the magnified areas (Figures 4.9–4.14).

Table 4.10 lists the statistics describing the conditioning quality of simulated realiza-

tions to the coarse-resolution target residual DEMs. Statistics characterize both systematic

and random errors. Random errors (i.e. precision related) are described with the standard

deviation of error (SDE) and the Pearson’s linear correlation coefficient (r). Systematic

errors (i.e. accuracy related) are characterized using the mean error (ME), and the slope

of the regression line (m) calculated based on the reduced major axis (RMA) regression

model. The RMA regression is preferred over the ordinary least squares model because it

assumes that “m” is independent of “r”, thus making it a true estimate of bias. Statis-

tics are computed based upon the upscaled simulated realizations and the coarse-resolution

target residual DEMs. The conditioning MEs and SDEs associated with each realization

are computed by accumulating at each iteration the mismatch between the centroids of

the target data events and their corresponding source data events in the training data.

Table 4.10 statistics represent average values plus or minus one standard deviation over

20 realizations. Results show that the downscaling outputs adequately honor the target

residual DEMs. Average MEs are close to zero, and the mean SDEs do not exceed 1 m. As

expected, the second magnification (G = 4) systematically produces higher SDEs because of

the propagation of errors across iterations. Slight underpredicion (m > 1) and deterioration

in the reproduction of the coarse-resolution residual data (r < 1) are observed.

Summary statistics of the medium- and fine-resolution reference and simulated residual

DEMs are listed in Table 4.11. The sub-pixel residual DEMs are computed with the same

spatial low-pass filter used in Subsection 4.4.1. In general, realizations reproduce fairly well

both medium- and fine-resolution reference statistics for all three examples. The standard

deviations of the simulated realizations are underestimated by a narrow margin of only 1

to 2%. The reference minima and maxima are reasonably well reproduced, except for the

second iteration of the Alaska Range example, which reveals slight underestimation, and

for realizations of the Central Lowlands examples, that underestimate the reference minima

(Table 4.11).
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Table 4.10: Conditioning to coarse-resolution residual data.

Example G ME1(cm) SDE2(cm) m3 r4

Alaska Range 2 −0.15± 0.33 17.28± 15.17 1.00± 0.00 1.00± 0.00
4 0.26± 1.60 79.81± 64.00 1.05± 0.00 0.93± 0.01

Appalachians 2 0.04± 0.23 11.91± 9.01 1.01± 0.00 1.00± 0.00
4 −0.02± 0.54 28.42± 18.90 1.03± 0.00 0.79± 0.04

Central Lowlands 2 −0.49± 0.34 31.96± 20.65 1.02± 0.00 1.00± 0.00
4 −1.02± 0.45 65.14± 28.78 1.01± 0.00 0.95± 0.01

1 mean error; 2 standard deviation of error; 3 RMA regression slope;
4 Pearson’s linear correlation coefficient; Values represent average statistics plus or
minus one standard deviation over 20 realizations

Figures 4.15–4.17 illustrate the structural validation of the downscaled DEMs. The

validation metrics comprise spatial statistics employed by the second, third, and fourth

component objective functions. These include directional variograms, Euler characteristic

curves, and connectivity functions. Results are displayed for the two magnification factors.

All spatial statistics refer exclusively to the residual DEMs to filter out the effect of large-

scale structures present in the trend components. Green curves denote the reference data,

whereas simulated realizations are indicated in black. The envelopes represent the range

covered by 20 simulated realizations.

The reference structural statistics are well reproduced for the three data sets and both

magnification factors. However, systematic underestimation of the contributions of the ref-

erence empirical variograms, and issues in the reproduction of high-amplitude spikes in the

reference Euler characteristic curves, notably for the Alaska Range and the Appalachians

examples, are observed (Figs. 4.15 and 4.16). Accurate reproduction of the reference con-

nectivity functions at low and high residual values appears to be particularly challenging.

Optimization of the weighting schemes associated with the component objective functions

could further enhance the reproduction of these statistics. Realizations of the Central

Lowlands example replicate extremely well the reference Euler characteristic curves, but

underestimate to a larger extent the contribution of the empirical variograms for G = 2

compared to the other two examples (Fig. 4.17). This might indicate a potential conflict

between accurate reproduction of two-point and high-order statistics.

Results suggest that an exact reproduction of the reference spatial statistics becomes

harder at higher magnification factors. The relative terrain spatial complexity may play

a significant role in the structural accuracy of the downscaling process. Rough and steep
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terrains, such as the Alaska Range example and, to a lesser degree, the Appalachians, are

comparatively more difficult to downscale than areas of smooth topography, such as the

Central Lowlands example. In addition, the Central Lowlands case study, in particular,

demonstrates that the approach is capable of handling scenarios in which the training data

may have smaller dispersion than that of the target DEM.
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Figure 4.9: The Alaska Range example reference DEMs. Top left : coarse-resolution DEM.
Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom. Middle
left : medium-resolution DEM. Middle center : medium-resolution residual DEM. Middle
right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center : fine-
resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight the
magnified area. Colorbars’ unit is m.
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Figure 4.10: The Alaska Range example downscaled DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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Figure 4.11: The Appalachians example reference DEMs. Top left : coarse-resolution DEM.
Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom. Middle
left : medium-resolution DEM. Middle center : medium-resolution residual DEM. Middle
right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center : fine-
resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight the
magnified area. Colorbars’ unit is m.
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Figure 4.12: The Appalachians example downscaled DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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Figure 4.13: The Central Lowlands example reference DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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Figure 4.14: The Central Lowlands example downscaled DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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4.5 Conclusions

MPS simulation has proven to be an effective tool for statistical downscaling of DEMs.

However, one of the main issues hindering a more widespread application of MPS simulation

algorithms is the difficulty linked to their parametrization. To address that, we developed

an automated framework for calibrating MPS-driven algorithms with specific focus on DEM

downscaling. In the proposed approach, the K-fold cross-validation and simulated annealing

techniques are used for optimizing a set of algorithm parameters based on a dual-resolution

training data set. The parameter calibration process is framed as an optimization problem,

where the goal consists of minimizing an objective function which evaluates the dissimilarity

between simulations and the fine-resolution training data. The framework is demonstrated

with an updated version of the downscaling algorithm originally proposed by Rasera et al.

(2020b,a). Three case studies with different DEM products illustrate the method.

In the initial part of this contribution, we introduced two novel functionalities of the

downscaling algorithm. These functionalities include: i. the customization of the training

data events search procedure; and ii. the customization of the weighing scheme for integrat-

ing coarse- and fine-resolution data. In addition, the new version of the algorithm enables

the parametrization of the coarse- and fine-scale distance functions with independent ker-

nels. Another minor upgrade is the definition of a single search radius to parametrize both

the trend filtering and the retrieval of data events operations.

The reliance on the K-fold cross-validation technique makes the proposed parame-

ter calibration framework notably suited for handling non-stationary and spatially auto-

correlated data sets, such as DEMs. The approach also allows systematic use of the entire

training data set for both training and validation, which provides a more accurate pre-

diction performance estimate. The simulated annealing technique is particularly useful as

it enables tackling non-differentiable objective functions that might contain multiple local

minima. Although prior configuration of the optimization hyperparameters is required, this

task is significantly easier and less sensitive than the calibration of the simulation algorithm

itself.

An essential aspect of the framework is the formulation of the objective function. The

objective function serves to evaluate statistical and textural properties deemed important

for a given application. In this work, the inherent complexity of topographic patterns calls

for the formulation of a multiple-component objective function. This allows considering

different complementary spatial statistics to more accurately characterize such textures. It
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is important to note that the “optimal” parameter setup is entirely subject to the chosen

objective function. Therefore, the choice of different objective functions implies distinct

optimal parameter configurations.

Results demonstrate that the automation algorithm is capable of determining an opti-

mal parameter setup for a given data set. Numerical experiments reveal that the calibrated

parameters enable to generate statistically accurate fine-resolution realizations provided

that the quality of the coarse-resolution target DEM has not been severely compromised

by measurement errors. Please refer to Appendix A.1 for an analysis of the impact of

measurement errors in the target DEM into the downscaling process.

In our opinion, the benefits offered by the automation framework far outweight the

computational burden associated with running MPS simulations within an optimization

setting. In most cases, the approach provides a more efficient alternative than having to

perform extensive sensitivity analyses. We strategically reduce the optimization run-time

by implementation of a temperature-dynamic simulated annealing perturbation scheme and

a uneven discretization of the parameter space. Once the calibration process is finalized,

the optimized parameters can be reused for downscaling multiple DEMs, as long as the

target and training data sets are believed to share similar sub-pixel topographic patterns.

Future work should focus on refining and further develop the proposed framework us-

ing different component objective functions and optimization algorithms. Additional experi-

ments with different folding strategies, and other cross-validation techniques must be carried

out. The determination of the algorithm’s hyperparameters is a subject not addressed in

this contribution. Hyperparameter optimization (Claesen and Moor, 2015) is fundamental

for the development of fully-automated, self-tuning algorithms. Future research should also

analyze the effect of different hyperparameter configurations on the quality of the approxi-

mation of global minima.

Data and code availability

The ArcticDEM was provided by the Polar Geospatial Center at the University of Min-

nesota under NSF-OPP awards 1043681, 1559691, and 1542736. The 3DEP 1 m DEM is

made available by the U.S. Geological Survey. All 3DEP products are public domain. The

Australian 5 m DEM is made available by Geoscience Australia under the Creative Com-

mons Attribution 4.0 International Licence. MATLAB codes and data sets used in the case
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studies will be provided on GitHub (https://github.com/lgrasera).



Chapter 5

Integrating fine-resolution satellite

imagery into the downscaling of

digital elevation models

Data integration methods combine disparate data sources to produce more accurate predic-

tions and data-consistent models. Available fine-resolution MSI may be used as secondary

information to enhance the structural quality and limit the inherent uncertainty of the

stochastic downscaling of coarse-resolution DEMs. This chapter develops the third objec-

tive of this thesis: iii. integration of finer-resolution secondary data in the form of MSI into

the downscaling.

In this chapter, a probabilistic data integration framework is proposed and illustrated

by building upon the MPS-driven downscaling algorithm proposed in Chapter 3. The

automation framework introduced in Chapter 4 is used to perform the calibration of al-

gorithm parameters and integration of multiple data sources. The approach provides an

efficient alternative for integration of different types of remote sensing data with varying

spatial resolution.

This chapter will be submitted to Earth and Space Science as an original research arti-

cle. Therefore, readers must be aware of potential differences between the future publication

and this chapter.
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5.1 Introduction

Most of the Earth’s terrain features are mapped at relatively coarse spatial and temporal

resolutions (Yamazaki et al., 2017). Spaceborne DEMs (Wilson, 2012) comprise the main,

and in many cases, the only available data products in remote regions across the planet.

Although useful for the analysis of large-scale structures, spaceborne DEMs are unsuited for

small-scale landscape representation and hydrological simulations (Zhang and Montgomery,

1994). Wechsler (2007) showed that the spatial resolution of DEMs has a significant impact

on multiple hydrologic derivatives. The spatial resolution of DEMs also plays a critical

role in hydraulic modeling for flood warning systems (Lamichhane and Sharma, 2018) and

urban flood assessment (Leitão and de Sousa, 2018). Small-scale surface processes are more

appropriately modeled with ground- and unmanned aerial vehicle-derived fine-resolution

DEMs (Wilson, 2012). The spatial resolution of these products enables a more accurate

extraction of drainage networks (McMaster, 2002), terrain derivatives (Kienzle, 2003), and

topographic indexes (Vaze et al., 2010; Mukherjee et al., 2013). Other applications for

fine-resolution DEMs include the analysis of surface texture (Trevisani et al., 2012), spatial

patterns of saturated areas (Hoang et al., 2018), and snow estimates (Sohrabi et al., 2019).

Nevertheless, fine-resolution DEMs are relatively sparse and unevenly distributed across the

planet.

Statistical downscaling is one of the most prominent approaches for enhancing the spa-

tial resolution of remote sensing data (Atkinson, 2013). Geostatistical simulation methods

(Goovaerts, 1997; Remy et al., 2009) are widely used, in particular, because of their data

conditioning capabilities, relatively low computational cost, and most importantly, their

ability to provide uncertainty estimates for the spatial predictions. Being an ill-posed prob-

lem, any solution to downscaling calls for prior information, in the form of extant data,

or as a model of sub-pixel texture, in order to minimize the problem underdetermination

(Bertero and Boccacci, 1998; Boucher and Kyriakidis, 2007). Two-point statistics methods

rely on spatial covariance function models to generate simulated realizations of random

fields (Kyriakidis and Yoo, 2005; Boucher and Kyriakidis, 2007; Liu and Journel, 2009).

These techniques have found application in conflation of terrain elevation measurements

and different types of auxiliary data (Kyriakidis et al., 1999; Hengl et al., 2008). Al-

though useful, these methods are not entirely appropriate for modeling the non-stationary

low-entropy textures often present in DEMs (Rasera et al., 2020b,a) because of the lim-

ited capacity of the variogram to capture higher-order statistics (Dimitrakopoulos et al.,

2010). Multiple-point statistics (MPS) (Remy et al., 2009) comprise an alternative group
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of geostatistical algorithms specifically designed for simulating such type of textures. MPS

algorithms simulate spatial features by resampling replicates from a better-informed analog

training data set through a template matching framework. Simulated realizations are gener-

ated following either a sequential simulation formalism (Strebelle, 2002) or an optimization

process (Deutsch and Cockerham, 1994). Examples of MPS-driven downscaling methods

include Boucher (2009), Mariethoz et al. (2011), Straubhaar et al. (2016) and Rasera et al.

(2020b,a). Applications in the field of geomorphometry include the simulation of braided

river DEM time series (Pirot et al., 2014), terrain elevation data fusion (Tang et al., 2015),

and downscaling of coarse-resolution DEMs (Rasera et al., 2020b,a).

Available fine-resolution hard and soft data may be also integrated into the down-

scaling process. Examples relevant to remote sensing and geomorphometry include the

integration of fine-scale geographical information systems data (e.g. delineated water bod-

ies, road networks, previously mapped impervious surfaces) in super-resolution land cover

mapping (Boucher and Kyriakidis, 2007; Boucher, 2009), multipectral image sharpening by

cokriging (Pardo-Igúzquiza et al., 2006; Atkinson et al., 2008; Pardo-Igúzquiza et al., 2011),

downscaling of DEMs based on auxiliary maps with regression kriging (Hengl et al., 2008),

and the integration of point- and block-support data in two-point statistics simulation and

estimation (Liu and Journel, 2009; Zagayevskiy and Deutsch, 2015). In the last decade,

fine-resolution multispectral satellite imagery (MSI) have become widely available, provid-

ing extensive information for monitoring the Earth’s surface (Gorelick et al., 2017). Despite

rendering no elevation information, fine-resolution satellite images can be potentially used

as a proxy for resolving sub-pixel terrain features on coarse-resolution DEMs. The con-

cept shares similarities with pan-sharpening algorithms (Du et al., 2007; Thomas et al.,

2008; Yokoya et al., 2017). Pan-sharpening methods create a more informative product

by combining the small-scale spatial information from a fine-resolution panchromatic band

with the spectral information content of coarser-resolution multispectral bands. However,

unlike pan-sharpening, the fusion of DEM and MSI data differs substantially because the

textural information in an optical image is not easily translatable into terrain elevation

measurements due to the complex non-linear relationship between both variables.

In this contribution, we investigate the possibility of integrating fine-resolution MSI to

enhance the statistical downscaling of coarse-resolution DEMs. In the presented data inte-

gration framework, fine-resolution satellite imagery is incorporated as soft data for resolving

sub-pixel terrain features in a coarse-resolution target DEM. The approach contrasts with

subsurface geology data integration methods (Deutsch and Wen, 2000), where the spatial
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resolution of the soft data (e.g. geophysical imagery) is typically much coarser than the res-

olution of the hard data (e.g. core samples) and the numerical model itself (i.e. geological

model). The proposed framework is illustrated with the MPS downscaling algorithm devel-

oped by Rasera et al. (2020b,a,c). Rather than formulating a geostatistical model to describe

the correspondence between the coarse- and fine-scale structures, an MPS simulation algo-

rithm is used for resampling similar structures from on a fully-informed training data set

that contains co-registered terrain and imagery data at multiple scales. The training data

set is ultimately used for optimizing the algorithm parameters, and subsequent downscal-

ing of a coarse-resolution target DEM which also has co-registered fine-resolution imagery

data. Information derived from the DEMs and MSI is integrated using the log-linear pool-

ing operator (Allard et al., 2012). The parametrization of the downscaling algorithm and

the data integration are carried out using the automation framework developed by Rasera

et al. (2020c). The method is illustrated by two case studies in the Western United States

(the Colorado Plateau and the San Gabriel Mountains) using the USGS National Map 3D

Elevation Program (3DEP) 1 m DEM (Sugarbaker et al., 2017), and the EU Copernicus

Programme/European Space Agency (ESA) 10 m resolution Sentinel-2 MSI Level-2A data

products (Sudmanns et al., 2019).

The chapter is structured as follows. Section 5.2 provides an overview of the MPS-

driven downscaling algorithm proposed by Rasera et al. (2020b,a). Section 5.3 addresses

the integration of terrain elevation and satellite imagery data based on a probability ag-

gregation framework. In Section 5.4, we illustrate the algorithm with two case studies.

Lastly, Section 5.5 summarizes the results and concludes the chapter with general thoughts

on alternative data integration methodologies.

5.2 Downscaling digital elevation models with multiple-point

statistics simulation

The following section presents the building blocks of the MPS-driven downscaling algorithm

developed by Rasera et al. (2020b,a). Subsection 5.2.1 introduces the concept of representing

terrain elevation data as a stochastic spatial signal. Subsection 5.2.2 frames the downscaling

problem using the sequential simulation formalism. In Subsection 5.2.3, we describe an

approach for computing local conditional probabilities from distances between data events

through a distance-to-probability transformation function.
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5.2.1 Stochastic representation of terrain elevation data

Let zV (u) be the terrain elevation measurement assigned to a coarse-resolution pixel V

centered at the location u on coarse-resolution DEM indicated by zV , where u = [x, y]

corresponds to a position vector in a projected Cartesian coordinate system. In addition,

let zv(u) denote the terrain elevation on a fine-resolution pixel v indexed on a co-registered

fine-resolution DEM zv. The coarse-to-fine resolution ratio between zV and zv is expressed

as G =
√
|V |/|v|, where |V | and |v| indicate the surface areas of the pixels. The notation

is presented in Table 5.1.

The terrain elevation on gridded DEMs can be modeled as a stochastic spatial signal.

In this framework, zV (u) and zv(u) are interpreted as realizations of the continuous random

variables ZV (u) and Zv(u)

Z(u) = m(u) +R(u) + ε(u), (5.1)

where Z(u) denotes either ZV (u) or Zv(u); m(u) is a deterministic low-frequency trend

component; R(u) is its associated stochastic high-frequency residual; and ε(u) is an intrinsic

measurement error component.

The spatial frequency is interpreted as the inverse of the scale of features on the DEM.

The trend accounts for large-scale topographic structures, whereas the residual encompasses

small-scale features. The term ε(u) comprises local errors associated with the remote sensing

acquisition method, georeferencing, terrain properties, and the DEM generation process

itself. Typically, ε(u) can only be estimated by validation against a more accurate data

set (Kolecka and Kozak, 2014; Mukul et al., 2017). For simplification purposes, we assume

that the contribution of ε(u) is negligible (i.e. ε(u) ≈ 0). Yamazaki et al. (2017) provides

an overview on the different types of measurement errors present on spaceborne DEMs and

related error filtering techniques.

The trend m(u) is estimated by applying an appropriate spatial low-pass filter on z(u).

The estimator m̂(u) is defined as a weighted linear combination of z(u) and its neighboring

data {z(u + hj), j = 1, . . . , n} located within a search radius ρ

m̂(u) =
n∑

j=0

λL(hj) z(u + hj) with
n∑

j=0

λL(hj) = 1, (5.2)



CHAPTER 5. INTEGRATING FINE-RESOLUTION SATELLITE IMAGERY 129

Table 5.1: Notation.

Notation Description

β kernel weights normalizing constant
ε(u) measurement error centered at u
λ(hj) kernel weight as a function of hj
σ kernel shape parameter
φ(·) distance-to-probability transformation function
Ψ dual-resolution training data
Ω conditioning data
θ vector of algorithm parameters
Ψ multi-resolution training data
hj coordinates offset of the j-th node from u
D(u) local distance vector centered at u
d(u) data event centered at u
Rv(u) multivariate fine residual random variable centered at u
rv(u) fine residual patch centered at u
u data location
w vector of probability aggregation weights
zv(u) fine elevation patch centered at u
A generic event
B spectral band random variable
d generic data source
D(·) distance function
F (·) MPS simulation algorithm
G coarse-to-fine resolution ratio
m(u) trend value centered at u
m trend component
N number of pixels on zV and rV
n(u) number of pixels in the search neighborhood centered at u
P (·) pooling operator
R(u) residual random variable centered at u
r(u) residual value centered at u
r residual component
(s) superscript indicating simulated data
(t) superscript indicating training data
V subscript indicating coarse-scale data
v subscript indicating fine-scale data
w generic weight
Z(u) elevation random variable centered at u
z(u) elevation value centered at u
z elevation signal
ˆ operator indicating estimated data
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where hj is the set of n+1 coordinates lag vectors that radiate from u, with z(u) = z(u+h0),

and λL(hj) are the weights given by a kernel function. The datum r(u) is interpreted as a

realization of R(u), and corresponds to the complement of m̂(u) (Eq. (5.1)) .

5.2.2 Downscaling with sequential simulation

The objective is to generate predictions of the fine-resolution variables m̂v(u) and Rv(u), so

that Zv(u) can be restored with Equation (5.1). Unfortunately, m̂v(u) and Rv(u) cannot

be directly computed as Zv(u) is unknown. To limit the problem underdetermination, we

resort on estimating both variables indirectly based on the interpolation of m̂V and by

providing a prior sub-pixel textural model in the form of a finer-resolution training DEM.

Under the assumption that the fine-scale trend is a smooth surface, m̂v is estimated by

resampling m̂V (u) at a finer resolution with the bicubic interpolation method (Keys, 1981).

The residual Rv(u) is simulated by downscaling RV (u) with a quasi-pixel-based simulation

approach (Rasera et al., 2020b,a). An MPS algorithm F (·) is used to generate conditional

simulated realizations of the fine-resolution multivariate random variable Rv(u) co-located

with rV (u), denoted as {r(s)v (u), s = 1 . . . , S}

Rv(u) = F (θ,Ψ | Ω) 7→ {r(s)v (u), s = 1, . . . , S}, (5.3)

where θ is the vector of algorithmic parameters associated with F (·); Ψ is the dual-resolution

training data assembled from two co-registered training DEMs denoted by z
(t)
V and z

(t)
v ; | Ω

denotes the conditioning to the original coarse and previously simulated fine-resolution data;

and r
(s)
v (u) consists of a (G×G) fine-resolution simulated residual patch.

The spatial resolution of Rv is gradually magnified following a series of conditional

iterations of the algorithm in a pyramid-based fashion (Burt and Adelson, 1983). Simulated

realizations of Rv(ui) are generated based on a sequential simulation framework (Goovaerts,

1997). The multivariate conditional probability Pr{Rv(ui) = rv | Ωi−1} for i = 1, . . . , N is

given by the recursive Bayes relation

Pr{Rv(u1) = rv, . . . ,Rv(uN ) = rv | ΩN} (5.4)

= Pr{Rv(u1) = rv | Ω0} ·
N−1∏

i=2

Pr{Rv(ui) = rv | Ωi−1},
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where | Ω0 refers to the conditioning of the downscaling to the input coarse-scale data,

and | Ωi−1 to the conditioning of the i-th iteration to the i − 1 previously simulated fine-

resolution residual patches and the original coarse-resolution data. The index sequence i =

1, . . . , N defines the simulation path. The conditional probability Pr{Rv(ui) = rv | Ωi−1}
is approximated based on F (·) and the dual-resolution training data Ψ.

5.2.3 Computing local conditional probabilities

The simulation of sub-pixel residual features is achieved by direct transferring of fine-

resolution patches from training data set to the target DEM. The conditioning to coarse-

and fine-scale data events, denoted by de(ui) = {de(ui + hj), j = 1, . . . , Je(ui)}, where

de(ui + hj) indicates a data value associated with a generic variable e, is performed by

preferential sampling of candidate training data events d
(t)
e (u) that minimize a pattern

dissimilarity metric (i.e. a distance function)

D(de(ui),d
(t)
e (u)) =

( ∑

∀ j if ‖hj−h0‖22≤ ρ
λe(hj)

[
de(ui + hj)− d(t)e (u + hj)

]2
)1/2

, (5.5)

where λe(hj) are weights given by a kernel function associated with the variable e, with
∑

j λe(hj) = 1. Note that the number of pixels retained within a data event is a function

of the search radius ρ and the spatial resolution of the input variable. Equation (5.5) can

be efficiently computed for all data events stored in Ψ by performing convolutions in the

frequency domain using the fast Fourier transform (FFT) algorithm (Kwatra et al., 2003).

In order to integrate information derived from multiple variables, Hoffimann et al.

(2017) and Rasera et al. (2020b,a) proposed, in the context of MPS simulation, the con-

version of distances between data events into conditional probabilities based upon an em-

pirical transformation function. The rationale is to define local probabilities for sampling

each training data event as a function of its distance to a reference target data event. The

structural accuracy of simulated realizations is maximized by the formulation of a transfor-

mation function φ(·) which grants higher probabilities to training data events that minimize

Equation (5.5). In this study, we employ the transformation function introduced by Rasera

et al. (2020b,a), which enables computing conditional probabilities as follows



CHAPTER 5. INTEGRATING FINE-RESOLUTION SATELLITE IMAGERY 132

Pr{Rv(ui) = rv | Ω(e)
i−1} ≈ Pr{Rv(ui) = r(t)v (uk) | de(ui)} ∝ φ (De(ui)) , (5.6)

where r
(t)
v (uk) corresponds to the central patch of the fine-resolution residual data event

d
(t)
Rv

(uk), Ω
(e)
i−1 is the conditioning data associated with the variable e, and De(ui) is a

(K × 1) vector storing the distances between the local conditioning data and the set of

training data events {d(t)
e (uk), k = 1, . . . ,K}, with K being a user-defined parameter.

5.3 Integrating fine-resolution satellite imagery data into the

downscaling

This section discusses the merging of conditional probabilities derived from the coarse- and

fine-resolution residual DEMs and MSI data into the downscaling process. Subsection 5.3.1

introduces the framework for data integration based on probability aggregation operators.

The conditioning of the simulated realizations to fine-resolution satellite imagery as soft data

is described in Subsection 5.3.2. Subsection 5.3.3 provides a summary of the algorithm.

5.3.1 Data integration with probability aggregation operators

Probability aggregation methods (Clemen and Winkler, 1999; Allard et al., 2012) provide a

general framework for combining multiple estimates of an event A obtained from different

data sources {de, e = 1, . . . , E} with unknown dependences. A pooling operator denoted by

P (·) is used to approximate the conditional probability Pr{A | d1, . . . , dE} based on several

individual conditional probabilities Pr{A | de}

Pr{A | d1, . . . , dE} ≈ P (Pr{A},Pr{A | d1}, . . . ,Pr{A | dE}), (5.7)

where Pr{A} is the prior probability.

An overview of different pooling operators can be found in Allard et al. (2012). Among

the available methods, the log-linear pooling operator stands out as being one of the most

popular approaches. This operator is based on the multiplication of probabilities
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Pr{A | d1, . . . , dE} ∝ Pr{A}1−
∑E

e=1 we

E∏

e=1

Pr{A | de}we , (5.8)

Allard et al. (2012) demonstrate that the log-linear pooling decomposition is exact if

there is one weight we per combination {A | d1, . . . , dE}. The weights we are computed as

follows

we =
ln Pr{de | A,Ωe−1}

ln Pr{de | A}
, (5.9)

where Ωe−1 = {d1 ∩ · · · ∩ de−1}.

Yet, in most cases, the denominator in Equation (5.9) is unknown, therefore, the weights

have to be approximated. If we = 1, the numerator and denominator of Equation (5.9)

become equal, and the data {de, e = 1, . . . , E} are assumed independent conditionally to

A. When
∑E

e=1we = 1 the prior distribution Pr{A} in Equation (5.8) vanishes and the

pooling preserves the unanimity property. This implies that, if all individual conditional

probabilities are equal, the pooling aggregation results in the same probability.

5.3.2 Integrating hard and soft data into the downscaling

Available fine-resolution data may be also integrated in the downscaling process. This

enables generating alternative scenarios that are consistent with both coarse-scale measure-

ments and any additional, or previously mapped, fine-scale data. Such data can be obtained

via direct surveys, archival data, or by another finer-resolution imaging technique. These

measurements may consist of either “hard” or “soft” data. Hard (or primary) data comprise

direct measurements of the target variable at the exact sample locations. Conversely, soft

(or secondary) data encompass any type of indirect, and often less precise, measurement of

the primary variable. Disparate data sets are generally integrated following a probabilistic

framework (Journel, 2002; Remy et al., 2009; Allard et al., 2012). Probabilities provide a

unit-free, standardized, coding of information, which facilitates the task of integrating data.

Let Ωhd
i−1 denote the available conditioning hard data (i.e. coarse- and fine-resolution

residuals) at the i-th iteration of the sequential simulation. In addition, let Ωsd indicate a

co-registered multivariate soft data set represented by a fine-resolution orthorectified MSI.

In the algorithm, the distinction between hard and soft data is solely based on a hierarchical
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criterion for sampling the training data set. Coarse- and fine-resolution hard data events

offer direct and reliable information about terrain features, therefore they are used to control

the retrieval of training data events. Consequently, the MSI serves only as an auxiliary

source of textural information for resolving sub-pixel structures. If the satellite imagery

proves to be informative (i.e. enhances the structural accuracy of simulated realizations),

the retrieval of data events is relaxed by the algorithm self-calibration process, and allows

considering a larger number of candidate training data events K.

The log-linear pooling operator is used to merge the conditional probabilities derived

from the coarse- and fine-scale residual variables and the spectral bands Bl to estimate the

posterior probability Pr{Ai | Ωhd
i−1,Ω

sd}, with Ai = {Rv(ui) = r
(t)
v (uk)}, through the use of

the vector of aggregation weights w = [wRV
, wRv , {wBl

, l = 1, . . . , L}]

Pr{Ai | Ωhd
i−1,Ω

sd} ∝∼
N∏

i=1

{
Pr{Ai | dRV

(ui)}wRV · Pr{Ai | dRv(ui)}wRv · (5.10)

L∏

l=1

Pr{Ai | dBl
(ui)}wBl

}
,

Note that we eliminate the prior probability Pr{Ai} by imposing the following constrain

on the aggregation weights wRV
+ wRv +

∑L
l=1wBl

= 1. This is equivalent to assuming a

uniform prior distribution, which has no influence on the aggregation process.

In our implementation, w can be either static or dynamic. In a static setting, the

weights are fixed throughout the progress of the simulation. By contrast, if the weighting

scheme is set to dynamic, w(ui) is allowed to vary as a function of the data surrounding the

location ui. This accounts for the varying amount of information available for the residual

variable throughout the sequential simulation. If a dynamic weighting scheme is chosen, wRv

becomes a function of the fine-resolution residual kernel weights {λRv(hj), j = 1, . . . , n(ui)}

wRv(ui) =

n(ui)∑

j=1

λRv(hj), (5.11)

where n(ui) denotes the local number of informed fine-scale residual pixels. The remaining

elements in w(ui) are re-scaled accordingly.
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5.3.3 Algorithm

The flowchart in Figure 5.1 illustrates the main processes included in the downscaling

and data integration framework. The residuals extracted from the training DEMs and

the spectral bands from the fine-resolution MSI are used to construct the dual-resolution

training data set. The spatial low-pass filters applied to the target and training DEMs have

the same parametrization so that compatible residual data can be compared and transferred

to the target DEM.

Algorithm 5 shows a pseudocode for the data integration framework. The retrieval

of training data events is regulated by either the coarse- or fine-resolution residual based

on the search control parameter ξ ∈ [0, 1] (line 8 of Algorithm 5). If wRv(ui) ≥ ξ, the

conditioning fine-resolution residual data event has enough information to lead the retrieval

of training data events. Otherwise, the training data events are selected based on the coarse-

resolution residual. If the algorithm calibration process reveals that a dynamic probability

aggregation scheme enhances the statistical quality of the downscaling outputs, the Boolean

control variable χ is used to activate the local updating of w(ui) (line 16 of Algorithm 5).

After the simulation process is terminated, z
(s)
v is restored with Equation (5.1) (line 23 of

Algorithm 5). For reproducibility, an initial seed may be specified to initialize the pseudo-

random number generator which defines the simulation path and the sampling of the local

conditional probability distribution functions (CPDFs). For further magnification, one can

iterate Algorithm 5 using the fine-resolution output of the previous iteration as input for

the following iteration (i.e. zV ← z
(s)
v ). Note that this entails replacing Ψ by a vector

of dual-resolution training data sets. We recommend performing iterations with G ≤ 3,

otherwise artifacts might appear in the realizations.

Table 5.2 provides a list with all the algorithm parameters and their typical lower and

upper bounds for downscaling a target DEM with nominal pixel size of 30×30 m. The search

radius ρ is shared by the spatial low-pass filter and all distance functions. The effective

search radius can be potentially modulated by the kernel function. In this study, the kernel

parameter associated with the spatial low-pass filter and distance functions corresponds to

the standard deviation of a normalized Gaussian radial basis function

λ(hj) =
1

2πσ2β
exp

(
− ‖hj − h0‖22

2σ2

)
, (5.12)

where σ > 0 is the shape parameter, and β > 0 is the normalizing constant (i.e. the sum of
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Algorithm 5 Downscaling and data integration with sequential simulation

input: the initial hard data Ωhd
0 , the soft data Ωsd, a vector of algorithmic parameters

θ, and a dual-resolution multivariate training data set Ψ

output: a conditional simulated realization z
(s)
v

1: Compute rV and m̂v

2: Generate a path visiting rV (ui), i = 1, . . . , N
3: for each rV (ui), i = 1, . . . , N along the path do
4: for each e-th variable, e = 1, . . . , E do
5: Retrieve the local conditioning data event de(ui)

6: Compute D(de(ui),d
(t)
e (u)) for all training data events in Ψ

7: end for
8: if wRv(ui) ≥ ξ then
9: Retrieve the K-best fine-resolution residual training data events

10: else
11: Retrieve the K-best coarse-resolution residual training data events

12: end if
13: for each of the remaining E − 1 variables do
14: Retrieve the K co-registered training data events

15: end for
16: if χ = true then
17: Compute the probability aggregation weights w(ui)

18: end if
19: Estimate Pr{Rv(ui) = r

(t)
v (uk) | Ωhd

i−1,Ω
sd}, k = 1, . . . ,K

20: Draw a simulated patch r
(s)
v (ui) from the local CPDF

21: Add r
(s)
v (ui) to r

(s)
v

22: end for
23: z

(s)
v ← m̂v + r

(s)
v

24: return the conditional simulated realization z
(s)
v



CHAPTER 5. INTEGRATING FINE-RESOLUTION SATELLITE IMAGERY 137

all kernel weights).

Table 5.2: Algorithm parameters.

θ Bounds Description

ρ [30, 109] Search radius for retrieving data events (m)
σL [4, 1024] Spatial low-pass filter kernel parameter (m)
σRV

[4, 1024] Coarse residual distance function kernel parameter (m)
σRv [4, 1024] Fine residual distance function kernel parameter (m)
σB [4, 1024] Spectral band distance function kernel parameter (m)
K [2, 64] Number of candidate training data events
ξ [0, 1] Threshold for switching training data events search
χ Boolean Dynamic probability aggregation weights

wRV
[0, 1] Coarse residual probability aggregation weight

wRv [0, 1] Fine residual probability aggregation weight
wB [0, 1] Spectral band probability aggregation weight
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5.4 Case studies

In the following section, we demonstrate the algorithm by two case studies. The advan-

tages offered by the integration of fine-resolution secondary information into the down-

scaling are investigated by conducting numerical experiments with and without MSI data.

Subsection 5.4.1 presents the target and training data sets. Subsection 5.4.2 details the

parametrization of the algorithm. The downscaling results and their statistical validation

are presented in Subsection 5.4.3.

5.4.1 Target and training data sets

The proposed data integration framework is illustrated with two freely available data prod-

ucts: the USGS National Map 3DEP 1 m DEMs (Sugarbaker et al., 2017), and the EU

Copernicus Programme/ESA 10 m resolution Sentinel-2 Level-2A multispectral imagery

(Sudmanns et al., 2019). The Level-2A products correspond to bottom of atmosphere

(BOA) reflectance orthoimages derived from the associated Level-1C top of atmosphere

reflectance data sets. To minimize the propagation of measurement errors, often present

in spaceborne DEMs (Yamazaki et al., 2017), into the downscaling, we demonstrate the

approach with artificial coarse-resolution target DEMs generated by linear upscaling of

the 3DEP 1 m DEMs. Table 5.3 provides additional information on the aforementioned

data products. Appendix A.1 illustrates the framework using the 3DEP 1-arc second DEM

(Sugarbaker et al., 2017) as coarse-resolution target DEM.

Table 5.3: Data products.

Product Sensing Data Sensor Nominal
years type type pixel size (m)

3DEP 1 m 2016-2023 DEM LiDAR 1× 1
Sentinel-2 Level-2A 2017-2024 MSI Optical 10× 10

The method is demonstrated by executing two iterations of the algorithm. Under the

assumptions that ε(u) ≈ 0 and the data in the DEMs correspond the average sensor re-

sponse over their associated pixels, artificial training and reference DEMs with different

spatial resolutions are constructed by linear upscaling of the original 3DEP 1 m DEMs.

Both target and training MSI derive from Sentinel-2 Level-2A data products. The dimen-

sions and nominal pixel sizes of the coarse-, medium-, and fine-resolution DEMs and MSI



CHAPTER 5. INTEGRATING FINE-RESOLUTION SATELLITE IMAGERY 140

are listed in Table 5.4. The medium-resolution MSI data sets are produced by linear up-

scaling of the original Sentinel-2 imagery, whereas the fine-resolution MSI are resampled

with bicubic interpolation. The medium- and fine-resolution reference DEMs serve to val-

idate the downscaling outputs. The footprints of the target/reference and training DEMs

correspond to 3.69 and 14.75 km2, respectively.

Table 5.4: Coarse-, medium-, and fine-resolution DEMs and MSI.

Data set Spatial Data Dimensions Nominal
resolution type(s) (pixels) pixel size (m)

Target Coarse DEM 64× 64 30× 30
Target/Reference Medium DEM/MSI 128× 128 15× 15

Fine DEM/MSI 256× 256 7.5× 7.5
Training Coarse DEM 128× 128 30× 30

Medium DEM/MSI 256× 256 15× 15
Fine DEM/MSI 512× 512 7.5× 7.5

The MSI consists of composites assembled by merging of spatially overlapping images

acquired between the years of 2017 and 2019. The downscaling is conditioned to information

derived from the spectral bands 4 and 8. The two bands correspond to the red and near-

infrared (NIR) wavelengths, centered at 664.6 and 832.8 nm, and with bandwidths of 31

and 106 nm, respectively. Four additional bands are generated and added to each data set

by computing the normalized difference vegetation index (NDVI) and applying the Sobel–

Feldman operator on all three bands. The Sobel–Feldman operator is used to remove trends

and highlight high-frequency features in the optical imagery. Table 5.5 provides a summary

of the variables considered in the study.

Table 5.5: Hard and soft variables.

Variable Type Description

RV Hard Coarse-scale residual elevation (m)
Rv Fine-scale residual elevation (m)
B1 Soft BOA reflectance – Red
B2 BOA reflectance – NIR
B3 NDVI
B4 BOA reflectance – Red (Sobel–Feldman filtered)
B5 BOA reflectance – NIR (Sobel–Feldman filtered)
B6 NDVI (Sobel–Feldman filtered)
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In this contribution, directional effects in the MSI due to surface reflectance anisotropy

(Hügli and Frei, 1983; Feingersh et al., 2010; Wen et al., 2018) and changes in the solar and

viewing geometry are ignored. Reflectance intensity values in satellite imagery can vary as

a function of the spatial anisotropy of the target of interest and the angular geometry of

the illumination source and observation at the time of the measurements, hence intensity

values will depend on the position of the target within the swath of the sensor and the time

of passage of the satellite over the imaged area. Moreover, light-occlusion effects caused

by mountainous terrain (e.g. shadows casted by mountains) have a substantial impact on

reflectance values. The usage of composite images and spectral band ratios attenuates these

effects to some degree, but does not eliminate them as this form of anisotropy is also often

spectrally dependent.

The method is illustrated by two case studies in the Western United States, including

terrain and imagery data from the Colorado Plateau, in Western Colorado, and the San

Gabriel Mountains, in Southern California. Figures 5.2–5.5 show the target and training

DEMs, and two of their associated fine-resolution composite images (Red and NIR bands).

Only the coarse-resolution target DEMs and fine-resolution training DEMs are displayed.

The target and training data sets are extracted from neighboring sites which exhibit similar

geomorphic features. Brief descriptions of the geological and geomorphological settings for

both study areas are provided below.

The Colorado Plateau is one of the constituents of the Intermontane Plateaus located

in the Western United States, and it is roughly centered on the Four Corners region. It is

predominately made up of a high desert characterized by the presence of buttes, gorges, and

deeply incised meandering rivers. The San Gabriel Mountains are part of the Transverse

Ranges, and lie between the Los Angeles Basin and the Mojave Desert. The mountain

range was originally a large fault block that was uplifted and later dissected by various

rivers and washes. The present-day topography is characterized by rolling peaks and rugged

mountainous terrains, which includes a large number of canyons.

The residual DEMs are computed using a spatial low-pass filter with ρ = 90 m and

σL = 600 m. Positive features of the residual variable indicate crags and ridgelines, while

negative structures represent rivers and gully networks. The examples present two disparate

scenarios for the downscaling algorithm. The Colorado Plateau example residual DEMs are

primarily characterized by relatively smooth textures and localized sharp curvilinear gradi-

ents. Several of the main features in the landscape, such as the meanders, are substantially

larger than the target DEM pixel size. The peak-to-peak amplitude of the trend component
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for both target and training data sets does not exceed 300 m. By contrast, the San Gabriel

Mountains example residual DEMs display rough textures, predominately dominated by

dendritic drainage patterns and ridgeline structures. Many of these features tend to be

finer than, or equal to, the spatial resolution of the target DEM. The peak-to-peak ampli-

tudes of the target and training data sets surpass 0.5 and 1 km, respectively. Descriptive

statistics of the coarse-resolution residual DEMs are given in Table 5.6.

Table 5.6: Summary statistics of the coarse-resolution DEMs from the Colorado Plateau
and the San Gabriel Mountains examples.

Example Data set Mean SD Min. Max.

Colorado Plateau Training 0.00 8.25 −30.54 65.25
Target −0.48 7.14 −26.03 27.97

San Gabriel Mountains Training 0.02 10.06 −40.52 34.47
Target 0.26 10.60 −27.54 28.63

Values are in residual elevation (in m)
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Figure 5.2: The Colorado Plateau example coarse-resolution target DEM and fine-resolution
MSI. Top left : coarse-resolution DEM. Top right : coarse-resolution residual DEM. Bottom
left : fine-resolution BOA reflectance orthoimage (Red). Bottom right : fine-resolution BOA
reflectance orthoimage (NIR). DEM colorbars’ unit is m. MSI colorbars’ unit is digital
number.
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Figure 5.3: The Colorado Plateau example fine-resolution training DEM and MSI. Top left :
fine-resolution DEM. Top right : fine-resolution residual DEM. Bottom left : fine-resolution
BOA reflectance orthoimage (Red). Bottom right : fine-resolution BOA reflectance orthoim-
age (NIR). DEM colorbars’ unit is m. MSI colorbars’ unit is digital number.
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Figure 5.4: The San Gabriel Mountains example coarse-resolution target DEM and fine-
resolution MSI. Top left : coarse-resolution DEM. Top right : coarse-resolution residual
DEM. Bottom left : fine-resolution BOA reflectance orthoimage (Red). Bottom right : fine-
resolution BOA reflectance orthoimage (NIR). DEM colorbars’ unit is m. MSI colorbars’
unit is digital number.
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Figure 5.5: The San Gabriel Mountains example fine-resolution training DEM and MSI.
Top left : fine-resolution DEM. Top right : fine-resolution residual DEM. Bottom left : fine-
resolution BOA reflectance orthoimage (Red). Bottom right : fine-resolution BOA re-
flectance orthoimage (NIR). DEM colorbars’ unit is m. MSI colorbars’ unit is digital
number.
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5.4.2 Algorithm parametrization

All input parameters required by the downscaling algorithm and data integration process

are automatically inferred from the training data using the calibration framework proposed

by Rasera et al. (2020c). The approach relies on the coalescence of the K-fold cross-

validation (Hastie et al., 2009; Pohjankukka et al., 2017) and simulated annealing techniques

(Kirkpatrick et al., 1983) for optimizing the algorithm parameters. As all variables are

exhaustively known over the training data set, this information can be used within a cross-

validation setting to calibrate the parameters by minimization of an objective function. The

objective function measures the structural dissimilarity between simulated realizations and

the validation data in the training data set.

The structural quality of the simulated fine-resolution residual component cannot be

accurately assessed based on a single statistic due to the inherent complexity of topographic

patterns. Therefore, several complementary statistics are used to improve the characteri-

zation of simulated sub-pixel textures during cross-validation. In this work, we employ the

multiple-component objective function introduced by Rasera et al. (2020c). The function

measures the local and structural accuracy of the simulated residual component based on

four component objective functions, which include: i. the root-mean-square error (RMSE)

between the upscaled realizations and the coarse-resolution validation data, ii. the weighted

RMSE between fine-scale empirical variogram maps (Marcotte, 1996), and iii. the RMSE

between fine-resolution connectivity and iv. Euler characteristic curves (Renard and Allard,

2013) between realizations and the validation set. The first component objective function

evaluates whether simulations are coherent with the input coarse-resolution residual data

(i.e. local accuracy). The remaining objective functions measure the dissimilarity between

textural properties of the realizations and the validation data (i.e. structural accuracy).

The global objective function is formulated as a linear combination of the four components.

The contribution of the weights associated with each component is numerically estimated

using a stochastic perturbation algorithm inspired by the approach proposed by Deutsch and

Cockerham (1994). The rationale consists of equalizing the contribution of the components

by making their weights inversely proportional to the statistical dispersion of their corre-

sponding objective functions. A detailed description on the objective function components

and the weight equalization process is provided by Rasera et al. (2020c).

Table 5.7 lists the calibrated weights of the component objective functions for the two

illustrative examples. The equalization process consisted of executing a total of 4×103 inde-

pendent perturbations per iteration, using 16- and 64-fold cross-validation setups for G = 2
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and G = 4, respectively. Results reveal similar weight distributions among components

objective functions for the two conditioning data configurations (i.e. downscaling with and

without MSI data). However, the relative distribution of weights among components varies

significantly according to the data set and magnification factor.

Table 5.7: Calibrated component objective function weights.

Example Data G w1 w2 w3 w4

Colorado DEM 2 0.1495 (2) 1.4486 (23) 4.7742 (75) 0.0239 (<1)
Plateau 4 0.5998 (9) 0.0835 (1) 5.6776 (89) 0.0104 (<1)

DEM/MSI 2 0.1454 (2) 1.4396 (23) 4.7797 (75) 0.0231 (<1)
4 0.5606 (9) 0.0873 (1) 5.8773 (90) 0.0104 (<1)

San Gabriel DEM 2 0.1204 (2) 1.8394 (26) 5.0493 (72) 0.0208 (<1)
Mountains 4 0.5609 (6) 1.2787 (14) 7.4343 (80) 0.0103 (<1)

DEM/MSI 2 0.1177 (2) 1.8665 (26) 5.2002 (72) 0.0202 (<1)
4 0.5329 (6) 1.4106 (15) 7.3925 (79) 0.0104 (<1)

Values in parentheses give the approximate percentage of the contribution of each com-
ponent to the total sum of weights

The proposal mechanism for generating candidate weights w is based on a uniform sam-

pling of a probability simplex (Rubin, 1981). The parameter optimization process, however,

requires the candidate generation mechanism to take into account a temperature-dynamic

simulated annealing perturbation scheme, which is used to speed up the optimization. To

this end, at each perturbation, the probabilities for sampling randomly generated candidate

weights w are computed based on a target probability distribution function (PDF) whose

shape (i.e. spread) is a function of the temperature. Individual probabilities are set as a

function of the distance between a given candidate w and the current state weight vector.

The configurations of the parameter optimization process for the two iterations are

listed in Table 5.8. The same cross-validation templates used in the calibration of the

component objective functions’ weights are employed for both magnification factors. The

simulated annealing is executed using a dimensionless geometric cooling schedule with a

temperature reduction factor of 0.9. The temperature is reduced if either a predefined

number target perturbations is accepted, or a maximum number of attempted perturba-

tions is reached. When the latter condition is triggered, the simulated annealing is restarted,

but the cooling schedule is not re-initiated. The optimization is terminated if either a max-

imum number of restarts has been reached (i.e. stopping number) or the objective function

satisfies the convergence criterion (i.e. the absolute energy difference between the last two

perturbations is less than or equal to the convergence constant). The perturbation scheme



CHAPTER 5. INTEGRATING FINE-RESOLUTION SATELLITE IMAGERY 149

is based on the Cauchy PDF. Figures 5.6 and 5.7 display the objective function convergence

curves and cooling schedules for the two illustrative examples. The approximated global

minima and simulated annealing restarts are indicated in the plots by the green circles with

a cross and the vertical dashed lines, respectively.

Table 5.8: Configuration of the parameter optimization by simulated annealing.

Hyperparameter G = 2 G = 4

Number of folds 16 64
Initial temperature 1 1
Cooling schedule function Geometric Geometric
Reduction factor 0.9 0.9
Number of accepted target perturbations 10 10
Maximum number of perturbations 100 100
Stopping number 3 3
Convergence constant 1× 10−4 1× 10−4

Table 5.9 lists the optimized downscaling and data integration parameters for each case

study and conditioning data configuration. The parameter setups are linked to the global

minima shown in Figures 5.6 and 5.7. Overall, specific patterns can be observed in the

calibrated parameter setups. The search radius ρ appears to be proportional to the target

scale. The spatial low-pass filter’s shape parameter σL is often substantially larger than

ρ. This configuration yields essentially flat kernels, which favors the generation of highly

spatially auto-correlated residuals. This underlines the importance of spatial information

for accurate reproduction of the target sub-pixel structures in the downscaling outputs.

For G = 2, the coarse-scale distance function’s kernels attribute more than half of the

sum of the weights to their centroids. For G = 4, however, these kernels are significantly

flatter. A similar pattern is observed for the fine-scale distance function’s kernels, but

those systematically display higher standard deviations than their coarse counterparts. The

number of candidate training data events K reveals a scale-dependent behavior, as the

algorithm tends to relax its value at higher magnification factors. Nonetheless, such behavior

is not observed for the second magnification of the Colorado Plateau example with MSI

data. The control variable ξ gravitates towards values above 0.7. This indicates that

the coarse-scale residual most often dictates the training data event retrieval process. The

choice of either a static or a dynamic probability aggregation weighting scheme, represented

by χ, does not show a clear pattern. The probability aggregation weights assigned to

each variable appear data- and scale-dependent. The weights given to the orthoimages

associated with the red and NIR bands suggest that they may provide valuable textural
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information for the first and second iterations of the algorithm, respectively. The Sobel–

Feldman filtered NDVI orthoimage for the Colorado Plateau example, in particular, is

likely an informative secondary data source owing to its substantial contribution in the

probability aggregation process. Finally, the distance functions’ kernel shape parameters

associated with the different bands appear to be proportional to the scale being simulated.

Table 5.9: Optimized downscaling and data integration parameters.

θ Colorado Plateau San Gabriel Mountains

DEM DEM/MSI DEM DEM/MSI

G = 2 G = 4 G = 2 G = 4 G = 2 G = 4 G = 2 G = 4

ρ 90 34 68 43 68 45 68 48
σL 194 18 256 416 776 256 111 274
σRV

11 7 12 12 11 10 13 10
σRv 14 79 17 13 16 17 74 60
σB1 – – 776 128 – – 30 49
σB2 – – 832 274 – – 15 111
σB3 – – 158 39 – – 955 147
σB4 – – 256 104 – – 45 6
σB5 – – 158 28 – – 891 223
σB6 – – 74 21 – – 42 194
K 5 42 5 4 8 17 3 26
ξ 0.85 0.95 0.98 0.88 1.00 0.75 0.96 0.93
χ false true true true true false false true

wRV
0.36 – 0.17 0.10 – 0.00 0.15 0.25

wRv 0.64 – 0.13 0.06 – 1.00 0.10 0.04
wB1 – – 0.20 0.05 – – 0.26 0.04
wB2 – – 0.05 0.47 – – 0.16 0.28
wB3 – – 0.00 0.10 – – 0.05 0.19
wB4 – – 0.08 0.07 – – 0.16 0.06
wB5 – – 0.04 0.05 – – 0.07 0.06
wB6 – – 0.33 0.10 – – 0.05 0.08
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Figure 5.6: Objective functions and simulated annealing cooling schedules of the Colorado
Plateau example. Top row : Optimization without MSI data. Bottom row : Optimization
with MSI data. Approximated global minima are indicated by the green circles with a cross.
Vertical dashed lines denote restarts.
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Figure 5.7: Objective functions and simulated annealing cooling schedules of the San Gabriel
Mountains example. Top row : Optimization without MSI data. Bottom row : Optimization
with MSI data. Approximated global minima are indicated by the green circles with a cross.
Vertical dashed lines denote restarts.
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5.4.3 Simulation and validation

Figures 5.8–5.10 and 5.12–5.14 display the reference and downscaled DEMs for the Colorado

Plateau and the San Gabriel Mountains examples. Figures illustrate the DEMs at three

different spatial resolutions. First-row subplots show the coarse-resolution target DEMs.

The second- and third-row subplots display their corresponding medium- and fine-resolution

reference and simulated residual DEMs. Zooms of specific areas in the residual DEMs are

placed on the third column of each figure. Magnified areas are indicated in the residual

DEMs by the green boxes. Figures 5.11 and 5.15 place the medium- and fine-resolution

magnified areas in the residual DEMs and the co-registered fine-resolution target MSI (Red

and NIR bands) side-by-side. Visual validation of the sample realizations from the Colorado

Plateau example (Figs. 5.9–5.11) suggests that the integration of fine-resolution MSI into

the downscaling process seems to enhance the reproduction of sub-pixel features on the

simulated DEMs. Resolved textures of realizations constrained to MSI data exhibit com-

paratively sharper gradients and less unstructured noise than the ones generated without

secondary data. The advantages offered by the integration of MSI into the downscaling are

less evident for the San Gabriel Mountains example (Figs. 5.13–5.15). Nonetheless, simu-

lated drainage networks appear slightly more defined in the realizations conditioned to the

secondary data.

Table 5.10 lists statistics describing the conditioning quality of simulated realizations

to the coarse-resolution target residual DEMs. Statistics represent average values plus

or minus one standard deviation over 20 realizations, and outline random and systematic

errors related to discrepancies between the upscaled simulated realizations and the coarse-

resolution target residual DEMs. Random errors (i.e. precision related) are described with

the standard deviation of error (SDE) and the Pearson’s linear correlation coefficient (r).

Systematic errors (i.e. accuracy related) are characterized using the mean error (ME), and

the slope of the regression line (m) calculated based on the reduced major axis regression

model. The ME and SDE of each realization are calculated by accumulating the mismatch

between the centroids of the target data events and their corresponding source data events

in the training data at each iteration. Results demonstrate that simulated realizations ad-

equately honor the target residual DEMs. However, conditioning errors tend to increase at

higher magnification factors due to error propagation effects. For G = 4, simulations not

constrained to MSI underestimate the input coarse-resolution data, whereas realizations

conditioned to secondary data are prone to produce slight overestimation. Although the

integration of fine-resolution MSI into the downscaling process appears to induce a small

positive coarse-scale conditioning bias for G = 4, statistics also reveal that it might improve
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the precision of the conditioning. Realizations not constrained to MSI, and previous exper-

iments with different DEMs (Rasera et al., 2020c), suggest that the algorithm has a natural

tendency to underestimate the coarse-scale target data.

Table 5.10: Conditioning to coarse-resolution residual data.

Example Data G ME1(cm) SDE2(cm) m3 r4

Colorado DEM 2 −0.16± 0.28 17.20± 10.76 1.00± 0.00 1.00± 0.00
Plateau 4 0.65± 0.81 53.36± 38.44 1.02± 0.01 0.75± 0.06

DEM/MSI 2 −0.43± 0.00 27.60± 0.00 1.00± 0.00 1.00± 0.00
4 −4.00± 0.23 255.65± 14.86 0.97± 0.00 0.88± 0.02

San Gabriel DEM 2 0.06± 0.33 16.02± 14.21 1.00± 0.00 1.00± 0.00
Mountains 4 1.96± 2.92 193.45± 110.51 1.03± 0.00 0.89± 0.02

DEM/MSI 2 1.04± 0.00 66.49± 0.00 1.00± 0.00 1.00± 0.00
4 0.15± 0.34 19.73± 12.21 0.98± 0.00 0.94± 0.01

1 mean error; 2 standard deviation of error;
3 RMA regression slope; 4 Pearson’s linear correlation coefficient; Values represent average
statistics plus or minus one standard deviation over 20 realizations

Summary statistics for the medium- and fine-resolution simulated DEMs are presented

in Table 5.11. Numerical experiments show that the simulated realizations accurately re-

produce the medium- and fine-resolution empirical PDFs. Realizations underestimated the

reference standard deviations by a very small margin. Although fine-scale variance underes-

timation is a known problem of MPS-driven downscaling methods (Straubhaar et al., 2016;

Rasera et al., 2020b,a), inconsistencies between the simulation and reference statistics could

be related, at least in part, to the limited size of the training data set.

Figures 5.16 and 5.17 illustrate the structural validation of the downscaled DEMs. The

validation metrics comprise the same spatial statistics employed in the multiple-component

objective function used for the parameter optimization and data integration process. Statis-

tics include directional variograms, Euler characteristic, and connectivity functions. All

statistics are computed on the residual component in order to filter out large-scale trends.

Results are displayed for the two magnification factors. Green curves denote the reference

data. Simulated realizations with and without MSI data are indicated by the black and

blue curves, respectively. The envelopes represent the range covered by 20 realizations. Re-

sults suggest that the integration of finer-resolution MSI enhances the structural accuracy

of downscaling outputs, as seen by the improvement in the reproduction of Euler charac-

teristic and probability of connection curves for both examples. Nevertheless, for G = 4,
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empirical variograms associated with the realizations conditioned to secondary information

reveal that the long-range variability is comparatively lower than for those not conditioned

to the MSI. This suggest that the additional constrain imposed by secondary data might

favor the reproduction of higher-order statistics over two-point statistics.

The integration of fine-resolution MSI can potentially limit the inherent indetermina-

tion of the downscaling because it may provide indirect information about the underlying

fine-scale topography. This uncertainty is intrinsically associated with the downscaling pro-

cess due to the lack of information at the target scale. Note that it does not account for

another source of uncertainty related to the choice of the prior sub-pixel structural model

(i.e. the training data set). Figures 5.18 and 5.19 display medium- and fine-resolution

post-processing maps with the pixel-wise mean (known as E-type) and standard deviation

(referred as SD-type) of 20 realizations, for the two illustrative examples and data con-

figurations. E-type maps provide estimates of the local expected value of residual PDF

associated with each pixel, and SD-type maps enable visualization of the spread of those

PDFs. Table 5.12 lists summary statistics of the SD-type maps for the two examples and

data configurations. Statistics comprise the mean and the standard deviation of each SD-

type map, as well as their relative changes induced by the integration of MSI into the

downscaling process.

Results indicate that the assimilation of MSI into the downscaling reduces the uncer-

tainty of sub-pixel predictions, which is observed by the negative change in the SD-type

mean. Differences are more evident for the San Gabriel Mountains example (Fig. 5.19 and

Table 5.12), where many of the residual structures to be determined are finer than the tar-

get DEM pixel size. Uncertain areas appear to be primarily associated with steep changes

in the gradient of the residual component. The reduction of sub-pixel uncertainty in the

Colorado Plateau example is subtle, becoming more apparent in the second magnification

(Fig. 5.18 and Table 5.12). By contrast, in the San Gabriel Mountains example it reveals a

more heterogeneous pattern (Fig. 5.19), which is expressed as a positive change in the spread

of both medium- and fine-resolution SD-type maps (Table 5.12). The reduced uncertainty

observed in the SD-type maps from realizations conditioned to the MSI indicates that the

secondary information constrains the sampling of the local CPDFs (line 20 of Algorithm 5)

by narrowing down the local pool of candidate training data events.
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Figure 5.8: The Colorado Plateau example reference DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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Figure 5.9: The Colorado Plateau example downscaled DEMs (without MSI data). Top left :
coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-resolution
residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM.
Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green
boxes highlight the magnified area. Colorbars’ unit is m.
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Figure 5.10: The Colorado Plateau example downscaled DEMs (with MSI data). Top left :
coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-resolution
residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM.
Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green
boxes highlight the magnified area. Colorbars’ unit is m.
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Figure 5.12: The San Gabriel Mountains example reference DEMs. Top left : coarse-
resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution
zoom. Middle left : medium-resolution DEM. Middle center : medium-resolution residual
DEM. Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom
center : fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes
highlight the magnified area. Colorbars’ unit is m.
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Figure 5.13: The San Gabriel Mountains example downscaled DEMs (without MSI data).
Top left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right :
coarse-resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-
resolution residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-
resolution DEM. Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution
zoom. Green boxes highlight the magnified area. Colorbars’ unit is m.
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Figure 5.14: The San Gabriel Mountains example downscaled DEMs (with MSI data). Top
left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-resolution
residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM.
Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green
boxes highlight the magnified area. Colorbars’ unit is m.
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Table 5.12: SD-type statistics.

Example Data G Mean SD Change (%)

(m) (m) Mean SD

Colorado DEM 2 0.91 0.86 – –
Plateau 4 1.15 1.01 – –

DEM/MSI 2 0.88 0.82 −3.39 −5.12
4 1.03 0.91 −11.08 −9.18

San Gabriel DEM 2 1.71 0.71 – –
Mountains 4 1.94 0.63 – –

DEM/MSI 2 1.30 0.81 −24.04 +14.48
4 1.68 0.65 −13.26 +3.79
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5.5 Conclusions

Satellite MSI provides extensive information of Earth’s surface features at relatively fine

spatial resolution. In this contribution, we investigate the possibility of enhancing the

structural accuracy of the downscaling of spaceborne coarse-resolution DEMs by integration

of finer-resolution co-registered MSI data. The data integration framework is demonstrated

using the MPS-driven downscaling algorithm developed by Rasera et al. (2020b,a). MSI is

integrated as secondary data following a probabilistic framework. All data integration and

downscaling parameters are inferred from a dual-resolution training data set based on the

automation framework proposed by Rasera et al. (2020c). The approach is demonstrated

by two cases studies in the Western United States using the USGS 3DEP 1 m DEM and

the EU/ESA Sentinel-2 MSI Level-2A data products.

Results suggest that the assimilation of fine-resolution MSI into the downscaling im-

proves the structural accuracy of simulated realizations and the precision of their condition-

ing to coarse data at higher magnification factors. Post-processing of realizations revealed

that the integration of secondary data caused the reduction of the uncertainty related to

sub-pixel predictions. The spatial uncertainty at the target scale appears to be primarily

associated with changes in the gradient of the residual topography. Improvements in terms

of structural accuracy and uncertainty reduction become more evident when the secondary

data provides textural information finer than the spatial resolution of the target DEM.

Further experiments with different parameter optimization configurations and data

sets must be conducted to more accurately determine the benefits of integrating MSI data

into the downscaling process. Determining the extent of the advantages and drawbacks

may be strongly case-dependent. Factors such as reflectance anisotropy induced by rough

topography and geometric errors in the MSI may compromise its usability. Moreover, optical

imagery of forested and urbanized areas, for example, will provide little to no information

about the ground surface topography. Vegetation and man-made structures effectively

conceal the underlying bare ground surface features and are likely to bring no information

to the data integration process.

Future research could focus on the integration of surface reflectance-corrected MSI

and fine-scale DEM source data into the downscaling process. Anisotropic reflectance in

mountainous terrain optical imagery could be potentially normalized for the training MSI

based on the fine-resolution training DEM, information about the orbital characteristics of

the sensor platform, and the product metadata properties in a pre-processing step. The
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reflection model, or the corrected reflectance patterns in the training data, could be subse-

quently extrapolated to the target MSI prior to downscaling using some sort of regression

or stochastic simulation technique. The integration of textural information from available

fine-scale DEM source data can be used for enhancing the structural accuracy of the down-

scaling. Elevation source data may consist of either raster-type data, such as fine-resolution

InSAR imagery (e.g. Sentinel-1 data), or point-support data, such as LiDAR point clouds

and spot height measurements.

Data and code availability

The 3DEP 1 m DEM is made available by the USGS. All 3DEP products are public domain.

Sentinel-2 Level-2A products are provided by the EU Copernicus Programme/ESA and

regulated under EU law. The use of Sentinel data is governed by the Copernicus Sentinel

Data Terms and Conditions. MATLAB codes and data sets used in the case studies will be

provided on GitHub (https://github.com/lgrasera).



Chapter 6

Concluding remarks

This last chapter summarizes and proposes future developments of the work presented in this

thesis. Limitations of the proposed framework are also noted. This thesis makes three main

contributions to the fields of applied geostatistics and probabilistic terrain mapping. The

algorithms developed in this thesis addressed the problems of: MPS-driven downscaling

of coarse-resolution images with trends, the automation of the downscaling process, and

the integration of finer-resolution secondary data into the downscaling. Combined, these

algorithms provide an efficient, low-cost alternative for fine-resolution stochastic terrain

mapping. Section 6.1 recaps the problem and the aim of the thesis. Each of the three

primary contributions is subsequently reviewed. Section 6.2 outlines future research ideas.

6.1 Conclusions

Fine-resolution DEMs are essential for quantifying Earth surface processes and for appli-

cation of Earth system models. Over the past two decades, spaceborne remote sensing

missions, such as the NGA and NASA’s SRTM (Farr et al., 2007) and JAXA’s EORC

ALOS World 3D (Tadono et al., 2016), have executed near-global mapping of the topogra-

phy of the Earth’s surface. These missions provided freely available coarse-resolution DEMs

that have enabled the study and modeling of large-scale atmospheric, hydrological, and geo-

morphic processes. However, due to their limited spatial resolution, satellite-derived DEMs

are inappropriate for determining small-scale topography and land surface phenomena. To

this day, fine-resolution DEMs remain unevenly and sparsely distributed across the planet

owing to the technical challenges and elevated financial costs for producing densely sampled

172



CHAPTER 6. CONCLUDING REMARKS 173

data sets.

This thesis developed a novel MPS-driven data integration framework for downscaling

coarse-resolution DEMs based on available finer-resolution analogs. Being an ill-posed prob-

lem, downscaling calls for a stochastic approach to resolve its inherent under-determination

(i.e. multiple fine-resolution DEMs may correspond to the same coarse-resolution DEM).

Geostatistical simulation provides a suitable methodological framework for downscaling as

it enables rapid generation of statistically accurate scenarios, and the assessment of the

uncertainty associated with the predictions. In practice, downscaling is seldom the end

goal per se. Simulated realizations often serve as input to physical and engineering for-

ward models. In most cases, the texture of the simulated scenarios has a critical impact

on the forward model response; hence, an accurate reproduction of the fine-scale variability

and connectivity is of utmost importance. To limit the problem inherent indetermination,

any downscaling technique requires the definition, either explicitly or implicitly, of a prior

fine-scale structural model to describe the expected spatial features at the target scale.

MPS methods, in particular, excel at simulating complex low-entropy textures that are of-

ten found in DEMs. These methods consider the joint spatial correlation between multiple

data values, and prior structural information based upon a better-informed analogous train-

ing data set. The proposed MPS-driven downscaling and data integration framework was

demonstrated by various case studies using DEMs from different geomorphological settings.

The following subsections summarize the three main contributions of this thesis.

6.1.1 MPS-driven downscaling of images with trends

Chapter 3 introduced the building blocks of the MPS-driven downscaling method. One of

the most challenging aspects for statistical modeling of topographic data is the presence

of large-scale trends. Trends in the data violate the stationarity hypothesis of statistical

modeling, and entail an explicit decomposition of the target variable into a determinis-

tic low-frequency trend component, and a stochastic higher-frequency residual component.

The trend component is downscaled based on a smooth interpolation method, whereas a

quasi-pixel-based sequential simulation scheme is used to downscale the residual variable.

Such decomposition allows the algorithm to handle the inherent non-stationarity of topog-

raphy, and more accurately model its spatial structure and variability. The method relies

on an iterative pyramid-based framework to gradually enhance the spatial resolution of the

target DEM. This ultimately provides a better reproduction of the spatial connectivity at

the target scale. The structural model is materialized by a dual-resolution training data set,
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which describes the correspondence between the known coarse-scale data (available in the

target DEM) and the missing fine-scale features. The method also introduced the applica-

tion of kernel weighting for computing distances between data events, and the formulation

of a probabilistic framework for integrating coarse- and fine-resolution information. The

former provides better conditioning to local coarse-resolution data and improves the overall

structural accuracy of the downscaling outputs, and the latter eases the task of integrat-

ing disparate data sources. The approach was benchmarked against three state-of-the-art

methods. Experimental results obtained from two case studies showed that the proposed

algorithm outperformed the other methods in most of the validation statistics.

6.1.2 Automation of the downscaling process

Chapter 4 described a framework for automatizing the downscaling of coarse-resolution

DEMs in the context of MPS simulation. The technical challenges associated with the

calibration of MPS algorithm parameters are one of the main factors hindering a more

widespread use of these methods in practical applications. To address this issue, this chapter

presented a training data-driven scheme for automatic parameter calibration. The approach

frames the calibration task as an optimization problem by combining the K-fold cross-

validation and the simulated annealing techniques. A fundamental aspect of the framework

is the formulation of the objective function. The objective function defines the sought-after

structural properties for the downscaling outputs by measuring the dissimilarity between

target statistics from candidate simulated realizations and those of a given validation data

set. In this contribution, the objective function was formulated based on local and struc-

tural accuracy criteria. Note that such criteria are subjective, and may vary according to

the application and the field of study. The application of the K-fold cross-validation tech-

nique allows accurate prediction performance estimates during the parameter calibration

process and evaluation of the reproduction of non-stationarity structures in the training

data. The simulated annealing algorithm offers robustness for optimizing non-differentiable

objective functions with multiple local minima. The three illustrative examples of distinct

topographic settings and DEM products demonstrated the applicability of the framework.
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6.1.3 Integration of fine-resolution secondary data into the downscaling

Finally, Chapter 5 addressed the integration of finer-resolution secondary data into the

downscaling process. Finer-resolution MSI is integrated for enhancing the structural ac-

curacy of the downscaling of coarse-resolution DEMs. The objective is to investigate the

potential of using the textural information of finer-resolution MSI as a proxy to resolve

sub-pixel topographic features in the target coarse DEM. All downscaling and data in-

tegration parameters are inferred using the automation routine presented in Chapter 3.

The method provides a practical alternative for automatic assimilation of multiple data

sources. Disparate data are integrated following a probabilistic framework based on prob-

ability aggregation operations. The approach was illustrated by two case studies in the

Western United States. Results suggest that the integration of finer-resolution MSI into

the downscaling can potentially enhance the structural accuracy of simulated realizations

and reduce the uncertainty of sub-pixel predictions. Future research must be conducted

in order to refine the data integration process and explore alternative ways of assimilating

surface reflectance-corrected MSI and fine-scale DEM source data.

6.2 Future research ideas

In this final section, future research topics that could help to develop further the ideas in-

troduced in this thesis in relation to improving the structural accuracy of the downscaling

outputs and strategies for assimilating data with varying quality are outlined. Approaches

for generation of data- and application-consistent fine-resolution DEMs (i.e. models that

also accurately reproduce the response of a target transfer function) are discussed in com-

parison.

6.2.1 Accounting for coarse data uncertainty

In this thesis, it is assumed that measurement errors in the coarse-resolution target DEMs

are negligible. In practice, such an assumption is unrealistic as all data products contain

an intrinsic error component. Spaceborne DEMs, in particular, are significantly affected

by measurement errors (Yamazaki et al., 2017). Errors arise from various sources, which

may include the data acquisition method, local terrain surface properties, and the DEM

generation process itself. Moreover, errors in DEMs are often systematic (i.e. spatially auto-

correlated), which complicates their detection and treatment. Effectively, measurement
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errors can only be assessed by validation against a more accurate data set (Kolecka and

Kozak, 2014; Mukul et al., 2017).

Ideally, the uncertainty arising from errors in the data should be accounted for by

the downscaling and data integration process. If possible, one should always attempt to

characterize these errors if the quality and amount of data are sufficient for inferring an

error model. Systematic errors may be either removed by direct data manipulation using

spatial and spectral analysis filters, or explicitly modeled and subsequently attenuated with

regression or factorial kriging analyses (de Carvalho et al., 2019). Once systematic errors

have been filtered out from data, random errors may be accounted in the downscaling

process by setting tolerance intervals for the conditioning to coarse-resolution data based

on a parametric (e.g. Gaussian) stochastic error model.

6.2.2 Servo-system for bias correction of coarse data conditioning

One of the limitations of the proposed downscaling method is the limited accuracy of condi-

tioning of simulated realizations to the input coarse-resolution data. Resampling methods,

such as MPS simulation algorithms, are subject to generate biases in data conditioning and

reproduction of spatial statistics because of the finite size of the training data set. The

dearth of replicates for a given target data event can potentially induce to a bias in the

conditioning to the input coarse-resolution target DEM. This bias could be mitigated with

either optimization-based post-processing algorithms (Deutsch and Cockerham, 1994), or

corrected “on the fly” using a servo-system (Remy et al., 2009).

The developed probabilistic data integration framework is generic enough to easily ac-

commodate a servo-system mechanism. A servo-system consists of an automatic mechanism

that uses error-sensing negative feedback to correct the action of a process. In the devel-

oped algorithm, such a system can be implemented using the mismatch with respect to

some target statistics, such as the RMSE between simulated and conditioning coarse data,

to manipulate the local conditional probabilities dynamically so as to sample individual

candidate training data events. The system does not necessarily need to be tied to coarse

data reproduction, but can be linked to any constraint for which the error can be incremen-

tally computed along the sequential simulation path. The servo-system could be used to

improve the reproduction of a target fine-scale empirical variogram or connectivity function,

for example. Note that a transformation function for converting errors into probabilities

needs to be specified. Since local and structural accuracy are two conflicting goals in spatial

interpolation, a potential negative side effect is that the gain in the reproduction of coarse
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data can trigger the appearance of artifacts in the simulated realizations, thus undermining

their structural accuracy.

6.2.3 Hyperparameter optimization

An important topic of further research is the automatic inference of the algorithm hyperpa-

rameters. Hyperparameter optimization is currently a trending topic in the realm of machine

learning (Claesen and Moor, 2015), but it is yet an unexplored subject within the geostatis-

tical community. The estimation of hyperparameters is fundamental for the development of

fully-automated, self-tuning algorithms and learning strategies. Existing hyperparameter

optimization approaches in machine learning and control theory commonly rely on grid or

random search methods, as well as heuristics, employed within a cross-validation setting

(Bergstra and Bengio, 2012).

6.2.4 Integration of reflectance-corrected MSI and DEM source data

In Chapter 5, surface reflectance anisotropy in the MSI due to irregular topography and

the solar and viewing geometry were ignored. Light-occlusion effects caused by mountain-

ous terrain also have a substantial impact on reflectance values. Composite images and

spectral band ratios attenuate these effects to some degree but do not eliminate them. Re-

flectance correction models must be applied to effectively mitigate them (Hügli and Frei,

1983; Feingersh et al., 2010; Wen et al., 2018). However, the application of these models

within the proposed framework is challenging. Normalization of anisotropic reflectance re-

quires information on the orbital characteristics of the sensor platform, imagery metadata

properties, and most importantly, fine-resolution elevation data. This could be performed

directly on the training MSI, but an indirect correction would have to be applied on the

target MSI. Regression or stochastic simulation techniques would have to be used to extrap-

olate the reflection model, or the normalized reflectance patterns from the training data, to

the target MSI prior to downscaling. Future experiments with reflectance-corrected MSI are

particularly important because they will allow quantification of the impact of reflectance

anisotropy in the data integration process.

Case studies were demonstrated with relatively coarse-resolution, freely available im-

agery data. However, finer-resolution satellite imagery that requires payment has sub-metric

spatial resolution and could be used instead. Note that these products must be properly

georeferenced, orthorectified, and radiometrically corrected prior to data integration.
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Another subject of future research could be integration of available DEM source data

into the downscaling process. This additional information can comprise either raster-type

data, such as InSAR imagery, or point-support data, such as LiDAR point clouds and

spot height measurements. Fine-resolution InSAR imagery (e.g. Sentinel-1 data) may be

easily incorporated into the downscaling and can provide additional textural information to

enhance the determination of sub-pixel features in the target DEM. Point-support elevation

source data comprise very fine-resolution hard data that should be exactly reproduced by

the downscaling process. The main challenge for integrating this kind of data sets is the fact

that they must be migrated and interpolated into regular grids in order to be assimilated

by standard MPS simulation algorithms.

Numerical experiments in this thesis were limited to a maximal magnification factor

of 4×. Further work needs to be conducted to determine the magnification factor limits

for different types of terrain and data sets. The integration of finer-resolution primary and

secondary data into the downscaling may push towards higher magnification factors as more

information at the target scale will be available.

6.2.5 Transfer function-oriented downscaling

Recall the following paragraph from Section 1.1:

In this thesis, the emphasis is on challenges associated with the automatic integration of

different types of remote sensing data for the downscaling of coarse-resolution DEMs. The

aim of this thesis is to develop a novel framework for efficient, low-cost generation of sta-

tistically accurate fine-resolution digital terrain models from limited information data in the

form of coarse-resolution DEMs and fine-resolution MSI. These challenges are tackled from

a geostatistical perspective. Numerical experiments illustrated by case studies are validated

using well-established and state-of-the-art spatial statistics. An analysis on the impact of

the resolved sub-pixel terrain features for modeling Earth surface processes, or land surface

parameters, is beyond the scope of this thesis.

The developed framework is a contribution towards more accurate modeling of Earth

surface process and risk assessment of natural hazards. The proposed approach is viable for

many applications but it is by no means complete or perfect. In this thesis, terrain features

are described and modeled based on spatial statistics. These criteria may not be enough for

accurate reproduction of other fine-scale spatial properties more relevant to specific Earth

surface processes, such as runoff or sediment transport, for example. Future research must
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evaluate whether the downscaling outputs reproduce these processes sufficiently in order to

be actually useful for particular scientific and engineering problems. These studies would

also likely need to post-process realizations to smooth out some of the undesired small-scale

variability introduced by the downscaling process.

The physical realism required by certain applications may also entail the formulation

of a transfer function-oriented objective function. In this case, statistics associated with

land surface parameters (e.g. flow accumulation, wetness index, sediment connectivity),

which consist of proxies to specific surface processes, could be included in the objective

function in order to fine-tune the downscaling for a specific problem. In this framework,

the algorithm self-calibration process would attempt finding an optimal parameter setup

that minimizes the component objective function associated with some dissimilarity metric

between the reference and simulated response of a target transfer function. Note that all

the aforementioned land surface parameters involve re-trending of the simulated DEMs.

Both flow accumulation and the wetness index, for example, would entail specific K-fold

cross-validation partitioning schemes. The cross-validation template could be generated by

computing the watershed transform on the training DEM so that folds are coherent with

the expected geometries of catchments and drainage patterns. The component objective

function associated with the transfer function must be carefully designed. The mismatch

between the reference and the simulated transfer function empirical CDFs, for example,

does not explicitly account for the spatial structure of the transfer function output. In this

case, additional statistics describing either the fine-scale residual elevation or the transfer

function spatial structure have to be computed.



Appendix A

Numerical experiments with

non-artificial coarse-resolution

target DEMs

This appendix documents additional numerical experiments related to the illustrative ex-

amples presented in Chapters 4 and 5. Supplementary experiments aim to demonstrate the

developed downscaling and data integration framework with non-artificial coarse-resolution

target DEMs and to evaluate the impact of the measurement errors in the DEMs into the

downscaling process.

Section A.1 introduces the DEM products used as target data sets. Section A.2 iden-

tifies and describes the measurement errors in the target DEMs. Errors are computed

based on artificial coarse-resolution reference DEMs constructed from more accurate finer-

resolution products. Results are presented and analyzed in Section A.3.

A.1 DEM products

The coarse-resolution DEM products used as target data include a corrected version of

the 1-arc second near-global DEM from the U.S. National Geospatial-Intelligence Agency

(NGA) and NASA’s Shuttle Radar Topography Mission (SRTM30) (Farr et al., 2007),

JAXA’s Earth Observatory Research Center (EORC) 1-arc second global digital surface

model ALOS World 3D-30m (AW3D30) (Tadono et al., 2016), and the USGS National Map

180
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3D Elevation Program (3DEP) 1-arc second DEM (Sugarbaker et al., 2017). The corrected

SRTM30 DEM, entitled DEM-S (Geoscience Australia, 2015), is a post-processed product

released by Geoscience Australia. The DEM represents the ground surface topography and

is limited to the Australian continent. The product was generated by application of an

adaptive smoothing process on the original SRTM30 DEM to reduce noise and improve the

representation of surface features. The filtering process was preferentially applied to flat

and noisy areas.

The training and reference data sets comprise coarsened versions of three fine-resolution

DEMs: the Polar Geospatial Center at the University of Minnesota ArcticDEM (Porter

et al., 2018), Geoscience Australia’s Australian 5 m DEM (Geoscience Australia, 2015), and

the USGS National Map 3DEP 1 m DEM (Sugarbaker et al., 2017). Table A.1 contains

a summary of the acquisition periods, sensing techniques used to produce the DEMs, and

spatial resolution of the aforementioned products.

Table A.1: DEM products.

DEM product Sensing Sensor Nominal
year(s) type pixel size (m)

AW3D30 2006-2011 Optical 30× 30
SRTM30 (DEM-S) 2000 Radar 30× 30
3DEP 1” DEM 2016-2023 LiDAR 30× 30
ArcticDEM 2015-2016 Optical 2× 2
Australian 5 m DEM 2001-2015 LiDAR 5× 5
3DEP 1 m DEM 2016-2023 LiDAR 1× 1

Table A.2 lists the DEMs used as target, training, and reference data in each illustrative

example. The coarser-resolution products are used as target DEMs, while the remaining

finer-resolution DEMs serve as training data. The reference DEMs are built from the

same data products used as training data, but they are only used for validation. The

reference and training DEMs are generated by linear upscaling of the source finer-resolution

DEMs (Table A.1). The downscaling is conditioned to the coarse-resolution target DEMs.

Inconsistencies between target, training and reference DEMs due to different acquisition

periods, sensing techniques, and measurement errors are not taken into account in this

study. The dimensions and nominal pixel sizes of the coarse-, medium-, and fine-resolution

DEMs are identical to the examples presented in Chapters 4 and 5.
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Table A.2: Target, training, and reference data sets.

Example Target Training/Reference

Alaska Range AW3D30 ArcticDEM
Appalachians 3DEP 1” DEM 3DEP 1 m DEM
Central Lowlands SRTM30 (DEM-S) Australian 5 m DEM
Colorado Plateau 3DEP 1” DEM 3DEP 1 m DEM
San Gabriel Mountains 3DEP 1” DEM 3DEP 1 m DEM

Figures A.1–A.3 display the target DEMs for the Alaska Range, the Appalachian Moun-

tains, and the Australian Central Lowlands case studies. Figures A.4 and A.5 show the

coarse-resolution target DEM and fine-resolution MSI of the Colorado Plateau and the San

Gabriel Mountains examples. The training DEMs and target/training MSI correspond to

the data sets used in the case studies of Chapters 4 and 5. The residual DEMs are computed

based on a spatial low-pass filter with ρ = 90 m and σL = 600 m (Figs. A.1–A.5). Summary

statistics of the coarse-resolution residual DEMs are listed in Table A.3.

Figure A.1: The Alaska Range example target DEM. Left : coarse-resolution target DEM.
Right : coarse-resolution target residual DEM. Colorbars’ unit is m.
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Figure A.2: The Appalachians example target DEM. Left : coarse-resolution target DEM.
Right : coarse-resolution target residual DEM. Colorbars’ unit is m.

Table A.3: Summary statistics of the coarse-resolution DEMs.

Example Data set Mean SD Min. Max.

Alaska Range Training 0.04 6.76 −34.77 40.43
Target −0.38 5.36 −23.34 27.04
Reference −0.37 5.61 −20.99 32.86

Appalachians Training 0.08 3.52 −16.29 18.01
Target 0.03 2.71 −9.13 14.54
Reference 0.03 2.77 −9.45 15.46

Central Lowlands Training −0.02 2.11 −5.96 11.44
Target −0.02 1.50 −4.20 5.25
Reference −0.02 3.26 −7.68 11.79

Colorado Plateau Training 0.00 8.25 −30.54 65.25
Target −0.49 7.06 −26.60 30.40
Reference −0.48 7.14 −26.03 27.97

San Gabriel Mountains Training 0.02 10.06 −40.52 34.47
Target 0.24 10.09 −26.63 27.10
Reference 0.26 10.60 −27.54 28.63

Values are in residual elevation (in m)
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Figure A.3: The Central Lowlands example target DEM. Left : coarse-resolution target
DEM. Right : coarse-resolution target residual DEM. Colorbars’ unit is m.
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Figure A.4: The Colorado Plateau example coarse-resolution target DEM and fine-
resolution MSI. Top left : coarse-resolution DEM. Top right : coarse-resolution residual
DEM. Bottom left : fine-resolution BOA reflectance orthoimage (Red). Bottom right : fine-
resolution BOA reflectance orthoimage (NIR). DEM colorbars’ unit is m. MSI colorbars’
unit is digital number.
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Figure A.5: The San Gabriel Mountains example coarse-resolution target DEM and fine-
resolution MSI. Top left : coarse-resolution DEM. Top right : coarse-resolution residual
DEM. Bottom left : fine-resolution BOA reflectance orthoimage (Red). Bottom right : fine-
resolution BOA reflectance orthoimage (NIR). DEM colorbars’ unit is m. MSI colorbars’
unit is digital number.
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A.2 Characterization of measurement errors

Figures A.6 and A.7 reveal the discrepancies between the coarse-resolution target and refer-

ence DEMs. The maps display the relative errors (with the trend) and the absolute residual

errors (without the trend) for the five data sets. Errors are computed based on the reference

DEMs. The reference data sets provide a more accurate representation of the underlying

“true” topography, and therefore are used for identifying errors and validating the down-

scaling outputs. Figures A.6 and A.7 evidentiate substantial spatial auto-correlation of the

error components. Artifacts originating from either the data acquisition process, or the

DEM interpolation procedure, are also noticeable. Tables A.4 and A.5 summarize statistics

of the errors in both trended and residual versions of the coarse-resolution target DEMs.

The target data sets based on the 3DEP 1-arc second DEM, used in the Appalachians,

the Colorado Plateau, and San Gabriel Mountains examples, are the most accurate among

the five products as they contain the lowest systematic bias and highest precision for both

trended and residual DEMs (Tables A.4 and A.5). Nonetheless, the magnitude of the errors

in the residual component appears to be positively correlated with its variability (Table A.3)

and the relative terrain complexity (Figs. A.6 and A.7). The Appalachians example target

DEM, in particular, displays acquisition artifacts in the form of horizontal and vertical

stripes arranged in a semi-regular pattern (Fig. A.6). A subtle quasi-horizontal stripes

pattern can also be observed in the San Gabriel Mountains target DEM (Fig. A.7).

The Alaska Range example target DEM exhibits significant negative offset bias (Fig. A.6

and Table A.4), with ME of −1.75% and relative errors reaching up to −4%, respectively.

Its corresponding residual DEM displays underestimation bias and lower precision (Ta-

ble A.5). Absolute errors can reach up to 15 m, which corresponds to almost 50% of the

peak amplitude of its residual component (Table A.5, Figs. A.1 and A.6). The target DEM

also reveals acquisition artifacts in the form of a gridding pattern, which is more visible in

the rugged parts of the terrain.

The Central Lowlands example target DEM is by far the worst product in terms of

quality (Tables A.4 and A.5). This is quite apparent by visual inspection of Figures A.3

and A.6. Relative errors in the data may reach up to ±14%, with absolute errors in the

residual component ranging from −100 to +50% of the target peak amplitude (Table A.5,

Figs. A.3 and A.6).

All target DEMs display a systematic underestimation bias. Overall, measurement

errors appear to be composed by at least three distinct types of systematic errors and an
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intrinsic random error component (i.e. speckle noise). The first systematic error component

is primarily related to large variations in the terrain gradient. The second component

appears to be associated with acquisition artifacts. The third type of systematic error

consists of a negative offset bias that is limited to the Alaska Range example target DEM

(Fig. A.6). Errors in the coarse-resolution target DEMs are expected to deteriorate the

reproduction of the sub-pixel statistics and structural metrics by simulated realizations

as they will propagate throughout the downscaling process. The iterative and sequential

nature of the algorithm make it especially susceptible to error propagation effects.

Table A.4: Error statistics of the coarse-resolution target trended DEMs.

Example ME1(%) SDE2(%) m3 r4

Alaska Range −1.75 111.86 1.00 1.00
Appalachians −0.00 0.03 1.00 1.00
Central Lowlands −1.25 79.89 1.28 0.96
Colorado Plateau −0.00 0.17 1.00 1.00
San Gabriel Mountains 0.00 0.17 1.00 1.00

1 mean error; 2 standard deviation of error;
3 RMA regression slope;
4 Pearson’s linear correlation coefficient

Table A.5: Error statistics of the coarse-resolution target residual DEMs.

Example ME1(cm) SDE2(cm) m3 r4

Alaska Range −0.80 51.21 1.05 0.91
Appalachians 0.02 1.00 1.02 0.99
Central Lowlands −0.34 21.72 2.17 0.82
Colorado Plateau −0.17 11.09 1.01 0.98
San Gabriel Mountains −2.11 135.26 1.05 0.98

1 mean error; 2 standard deviation of error;
3 RMA regression slope;
4 Pearson’s linear correlation coefficient
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Figure A.6: Errors in the coarse-resolution target DEMs. Top row : relative error (%)
and absolute residual error (m) in the Alaska Range example DEM. Middle row : relative
error (%) and absolute residual error (m) in the Appalachians example DEM. Bottom row :
relative error (%) and absolute residual error (m) in the Central Lowlands example DEM.
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Figure A.7: Errors in the coarse-resolution target DEMs. Top row : relative error (%) and
absolute residual error (m) in the Colorado Plateau example DEM. Bottom row : relative
error (%) and absolute residual error (m) in the San Gabriel Mountains example DEM.



APPENDIX A. ADDITIONAL NUMERICAL EXPERIMENTS 191

A.3 Simulation and validation

Subsections A.3.1 and A.3.2 present the simulation results for the case studies associated

with Chapters 4 and 5, respectively. For detailed information about the training data sets,

and the downscaling algorithm and data integration parameters used in the experiments,

please refer to these two chapters. Subsections A.3.3 summarizes the main findings of the

numerical experiments.

A.3.1 Alaska Range, Appalachians, and Central Lowlands examples

Figures A.8–A.10 show sample downscaling realizations of the Alaska Range, the Appalachi-

ans, and the Central Lowlands examples. The residual DEMs are generated using the same

spatial low-pass filter used in Figures A.1–A.5. The coarse-resolution reference DEMs, in

particular, serve to highlight the errors in the target DEMs. Green boxes highlight the

magnified areas in the residual DEMs (Figs. A.8–A.10).

Table A.6 lists statistics related to the conditioning quality of simulated realizations

to the coarse-resolution target residual DEMs. Statistics are computed based upon the

upscaled simulated realizations and the coarse-resolution target residual DEMs. As the

upscaling function is not explicitly defined, the conditioning MEs and SDEs associated with

each realization are computed by accumulating at each iteration the mismatch between the

centroids of the target data events and their corresponding source data events in the training

data. Results demonstrate that the downscaling outputs honor the target residual DEMs.

The average MEs are close to zero, and the mean SDEs do not exceed 1 m. Errors tend to be

larger for G = 4 because of the propagation effects across iterations. Slight underprediction

and deterioration in the reproduction of the coarse-resolution residual data are observed.

Summary statistics of the medium- and fine-resolution reference and simulated residual

DEMs are listed in Table A.7. Most of the reference statistics of the Alaska Range and the

Appalachians examples are relatively well reproduced. The standard deviations of the sim-

ulated realizations associated with the two data sets are underestimated by approximately

5%. The reference residual minima and maxima are reasonably well reproduced, except the

maxima from the Alaska Range example DEM. Measurement errors in the Central Low-

lands example target DEM have severely compromised the sub-pixel statistics of simulated

realizations, notably their statistical dispersion (Table A.7).
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Table A.6: Conditioning to coarse-resolution residual data.

Example G ME1(cm) SDE2(cm) m3 r4

Alaska Range 2 0.12± 0.23 11.58± 11.64 1.00± 0.00 1.00± 0.00
4 −0.35± 1.69 86.50± 66.11 1.05± 0.00 0.93± 0.01

Appalachians 2 −0.23± 0.30 20.09± 13.39 1.01± 0.00 1.00± 0.00
4 −0.42± 0.59 34.48± 30.57 1.04± 0.00 0.78± 0.04

Central Lowlands 2 0.38± 0.11 24.36± 6.87 1.00± 0.00 1.00± 0.00
4 1.01± 0.19 64.49± 12.30 1.01± 0.00 0.95± 0.01

1 mean error; 2 standard deviation of error; 3 RMA regression slope;
4 Pearson’s linear correlation coefficient; Values represent average statistics plus or
minus one standard deviation over 20 realizations

Figures A.11–A.13 illustrate the structural validation of the downscaled DEMs. Re-

sults are displayed for the two magnification factors. Spatial statistics refer exclusively to

the residual DEMs. Green curves denote the reference data, whereas simulated realizations

are indicated in black. The envelopes represent the range covered by 20 simulated real-

izations. Figures A.11 and A.12 show that the structural statistics of the Alaska Range

and Appalachians examples’ simulations, in particular, are fairly well reproduced for both

magnification factors. However, systematic underestimation of the contributions of the

reference empirical variograms, and issues in the reproduction of high-amplitude spikes in

the reference Euler characteristic curves are observed. Simulated realizations of the Cen-

tral Lowlands example were unable to reproduce most of the reference spatial statistics

(Fig. A.13), which indicates that the errors in the target DEM have severely compromised

the structural quality of the downscaling outputs.
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Figure A.8: The Alaska Range example downscaled DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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Figure A.9: The Appalachians example downscaled DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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Figure A.10: The Central Lowlands example downscaled DEMs. Top left : coarse-resolution
DEM. Top center : coarse-resolution residual DEM. Top right : coarse-resolution zoom.
Middle left : medium-resolution DEM. Middle center : medium-resolution residual DEM.
Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM. Bottom center :
fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green boxes highlight
the magnified area. Colorbars’ unit is m.
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A.3.2 Colorado Plateau and San Gabriel Mountains examples

Simulated realizations of the downscaling and data integration process for the Colorado

Plateau and San Gabriel Mountains examples are shown in Figures A.14–A.19. Green

boxes indicate the magnified areas in the residual DEMs. Figures A.16 and A.19 display

the medium- and fine-resolution zooms for both reference and simulated DEMs, as well as

for the co-registered fine-resolution target MSI (Red and NIR bands).

Table A.8 lists statistics describing the conditioning quality of simulated realizations to

the coarse-resolution target residual DEMs. ME and SDE of each realization are calculated

implicitly by accumulating the mismatch between the centroids of the target data events

and their corresponding source data events in the training data at each iteration. Statis-

tics demonstrate that simulated realizations adequately honor the target residual DEMs.

Results are largely in agreement with the coarse-scale conditioning statistics presented in

Chapter 5.

Table A.8: Conditioning to coarse-resolution residual data.

Example Data G ME1(cm) SDE2(cm) m3 r4

Colorado DEM 2 0.09± 0.26 12.77± 11.77 1.00± 0.00 1.00± 0.00
Plateau 4 0.92± 0.73 62.22± 41.21 1.02± 0.01 0.76± 0.06

DEM/MSI 2 −0.73± 0.00 46.92± 0.00 1.00± 0.00 1.00± 0.00
4 −3.85± 0.15 246.66± 9.86 0.96± 0.00 0.88± 0.02

San Gabriel DEM 2 −0.13± 0.44 21.15± 19.91 1.00± 0.00 1.00± 0.00
Mountains 4 2.80± 2.70 188.70± 162.21 1.03± 0.00 0.88± 0.02

DEM/MSI 2 0.04± 0.00 2.27± 0.00 1.00± 0.00 1.00± 0.00
4 −0.21± 0.31 19.60± 12.90 0.98± 0.00 0.93± 0.00

1 mean error; 2 standard deviation of error;
3 RMA regression slope; 4 Pearson’s linear correlation coefficient; Values represent average
statistics plus or minus one standard deviation over 20 realizations

Summary statistics for the medium- and fine-resolution simulated DEMs are listed in

Table A.9. Numerical experiments show that simulated realizations appropriately reproduce

the medium- and fine-resolution empirical PDFs. The mean residual elevation of simulated

realizations is close to the Colorado Plateau example’s reference statistics, but it is system-

atically underestimated in the San Gabriel Mountains example by both conditioning data

configurations. In addition, small underestimation of the reference standard deviation by

simulated realizations is observed. The statistical accuracy of the simulated realizations is
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comparatively worse due to the presence of errors in the coarse-resolution target DEMs.

Figures A.20 and A.21 show the structural validation of the downscaled DEMs for the

Colorado Plateau and San Gabriel Mountains examples. Green curves denote the reference

data. Simulated realizations with and without MSI data are indicated by the black and blue

curves, respectively. The envelopes represent the range covered by 20 realizations. Results

reveal similar patterns observed in the numerical experiments based on artificial target

DEMs. Empirical variograms of realizations conditioned to secondary information display

lower long-range variability than for those not conditioned to the MSI. The integration of

finer-resolution MSI appears to enhance the reproduction of reference Euler characteristic

and probability of connection curves for both examples.

Medium- and fine-resolution post-processing maps for the Colorado Plateau and the

San Gabriel Mountains examples are shown in Figures A.22 and A.23, respectively. Results

suggest that the integration of MSI into the downscaling enables to limit the uncertainty of

sub-pixel predictions. The observed spatial patterns in the SD-type maps are similar to the

ones presented in Chapter 5. The reduced variability of the predictions is summarized by

the statistics listed in Table A.10. Changes in the variability of the SD-type maps display

similar behavior to the numerical experiments based on artificial coarse-resolution target

DEMs.
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Figure A.14: The Colorado Plateau example downscaled DEMs (without MSI data). Top
left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-resolution
residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM.
Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green
boxes highlight the magnified area. Colorbars’ unit is m.
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Figure A.15: The Colorado Plateau example downscaled DEMs (with MSI data). Top left :
coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-resolution
residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM.
Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green
boxes highlight the magnified area. Colorbars’ unit is m.



APPENDIX A. ADDITIONAL NUMERICAL EXPERIMENTS 204

F
ig

u
re

A
.1

6:
M

ed
iu

m
-

an
d

fi
n

e-
re

so
lu

ti
on

m
ag

n
ifi

ed
ar

ea
s

of
th

e
C

ol
or

ad
o

P
la

te
au

ex
am

p
le

.
C

ol
or

b
a
r

u
n

it
is

m
.



APPENDIX A. ADDITIONAL NUMERICAL EXPERIMENTS 205

Figure A.17: The San Gabriel Mountains example downscaled DEMs (without MSI data).
Top left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right :
coarse-resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-
resolution residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-
resolution DEM. Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution
zoom. Green boxes highlight the magnified area. Colorbars’ unit is m.
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Figure A.18: The San Gabriel Mountains example downscaled DEMs (with MSI data). Top
left : coarse-resolution DEM. Top center : coarse-resolution residual DEM. Top right : coarse-
resolution zoom. Middle left : medium-resolution DEM. Middle center : medium-resolution
residual DEM. Middle right : medium-resolution zoom. Bottom left : fine-resolution DEM.
Bottom center : fine-resolution residual DEM. Bottom right : fine-resolution zoom. Green
boxes highlight the magnified area. Colorbars’ unit is m.
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Table A.10: SD-type statistics.

Example Data G Mean SD Change (%)

(m) (m) Mean SD

Colorado DEM 2 0.88 0.85 – –
Plateau 4 1.12 0.99 – –

DEM/MSI 2 0.86 0.80 −2.89 −5.35
4 1.00 0.90 −10.63 −9.10

San Gabriel DEM 2 1.66 0.70 – –
Mountains 4 1.87 0.62 – –

DEM/MSI 2 1.27 0.80 −23.52 +15.02
4 1.62 0.65 −13.24 +5.18
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A.3.3 Conclusions

Results demonstrate that the presence of errors in the target DEMs can have a significant

impact on the statistical and structural accuracy of the downscaling process. Measurement

errors in the Central Lowlands example target DEM, in particular, heavily deteriorated the

quality of the simulated realizations. Therefore, appropriate identification and subsequent

treatment of these errors prior to downscaling is critical.
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