Post-print (final draft post-refereeing)

Final version published in:

Forensic Science International: Genetics

Vol. 28, Pages 155–177, 2017

http://dx.doi.org/10.1016/j.fsigen.2017.02.008

TITLE:

Helping to distinguish primary from secondary transfer events for trace DNA

AUTHOR:

Duncan Taylor\(^1,2\), Alex Biedermann\(^3\), Lydie Samie\(^3\), Ka-Man Pun\(^3\), Tacha Hicks\(^4\), Christophe Champod\(^3\)

1. Forensic Science South Australia, 21 Divett Place, Adelaide, SA 5000, Australia
2. School of Biological Sciences, Flinders University, GPO Box 2100 Adelaide SA, Australia 5001
3. Faculty of Law, Criminal Justice and Public Administration, School of Criminal Justice, University of Lausanne, Lausanne-Dorigny, Switzerland
4. Faculty of Law, Criminal Justice and Public Administration, School of Criminal Justice and Fondation pour la formation continue UNIL-EPFL, University of Lausanne, Lausanne-Dorigny, Switzerland

CORRESPONDING AUTHOR:

Duncan A. Taylor, PhD
Forensic Science South Australia
21 Divett Place
Adelaide SA
Australia 5000
Phone: +61-8 8226 7700
Fax: +61-8 8226 7777
Email: Duncan.Taylor@sa.gov.au

KEY WORDS:

Primary transfer; secondary transfer; Bayesian networks; likelihood ratio; data; activity level propositions.
ABSTRACT:
DNA is routinely recovered in criminal investigations. The sensitivity of laboratory equipment and DNA profiling kits means that it is possible to generate DNA profiles from very small amounts of cellular material. As a consequence, it has been shown that DNA we detect may not have arisen from a direct contact with an item, but rather through one or more intermediaries. Naturally the questions arising in court, particularly when considering trace DNA, are of how DNA may have come to be on an item. While scientists cannot directly answer this question, forensic biological results can help in discriminating between alleged activities. Much experimental research has been published showing the transfer and persistence of DNA under varying conditions, but as of yet the results of these studies have not been combined to deal with broad questions about transfer mechanisms. In this work we use published data and Bayesian networks to develop a statistical logical framework by which questions of transfer mechanism can be approached probabilistically. We also identify a number of areas where further work could be carried out in order to improve our knowledge base when helping to address questions about transfer mechanisms. Finally, we apply the constructed Bayesian network to ground truth known data to determine if, with current knowledge, there is any power in DNA quantities to distinguish primary and secondary transfer events.

INTRODUCTION:
DNA profiling evidence is commonplace in the courtroom for a variety of criminal offences. Powerful tools [1-7] exist that can help evaluate questions of whether or not the DNA of a person of interest (POI), or a combination of DNA from multiple POIs, is present in a particular DNA extract. Increasing so, with the advent of ever more sensitive DNA profiling systems and laboratory hardware, the value of such queries about DNA is being questioned. In fact, what is being questioned is not the reliability of the DNA profiling results, nor the evaluation of the DNA profile, but rather the significance of those findings in relation to how they support different activity-level propositions suggested by, for example, the competing assertions of the prosecution and defence. Such propositions are described as being activity level within the concept of the hierarchy of propositions [8]. One common question is whether the DNA that has been detected from an examined item was deposited by being directly handled (known as a primary transfer event) or whether there was an intermediary object that acted as a vector to transfer the DNA from the POI ultimately to the item in
question (known as a secondary transfer event). Naturally, scenarios that explain the presence of DNA on an object need not be limited to primary and secondary transfers, and there has been literature that documents instances of tertiary and even quaternary transfer events [9]. The mode of transfer by which DNA came to be on an item has profound implications on the way the DNA profiling results are considered in light of questioned activities. In order to assess the biological results given the alleged activities one needs to understand the factors that affect DNA transfer and persistence on differing target surfaces. Also required is knowledge of case specific details such as the amount of genetic material the POI is likely to shed, and the alleged activities (e.g., timing, type of contact with the objects).

To help address questions of transfer and persistence there have been numerous publications that consider transfer rates under varying conditions [9-14]. Often these studies replicate conditions of a specific case, or are very specific to the hardware and wetware used. This means that it can be difficult to apply their findings in a probabilistic manner to situations that are somewhat removed from those used in the study. We believe this may stem from the fact that researchers design studies and describe results without having a logical framework of interpretation in which to place them. Additionally, it is difficult to separate the factors of transfer to an object, persistence on the object and recovery in the laboratory and so they are often considered jointly, which again complicates the ability to apply the results more broadly to other cases.

Another complicating factor in the evaluation of transfer events is that there is a high degree of variability that exists in seemingly multiple factors, not the least of which is whether the individual is prone to shedding or retaining their DNA [15]. All of these difficulties were presented in a review of DNA transfer by Meakin et al. [11], who concluded that, by just the properties of the DNA profile obtained, no definitive conclusions could be made by an analyst as to whether it had resulted from primary or secondary transfer, the order in which individuals had touched an item or whether the DNA detected had been deposited by regular use or a one-off contact (amongst other similar findings). This finding has then been interpreted by many analysts as saying that there is no evaluative information within the DNA trace, implying that, given the findings at hand, any explanation is possible. In response to this interpretation of the Meakin et al. findings, Casey et al. [16] called for the evaluation of DNA profiling results, in light of questions of activity, to be strived for regardless of the difficulties involved (see also a response to this response from the original authors in [17]).
This is a sentiment to which we agree and it has been influential in our decision to write this paper.

With increasing regularity Bayesian networks (BN) are being used to bring together various kind of datasets using Bayesian probability theory in order to help address questions at the source [18, 19] or activity level [20-23]. The graphical ability for BN to represent complex underlying calculations makes them ideal for addressing the issue of this paper i.e., the combination of biological results with the framework of circumstances that surrounds an activity in order to help address questions regarding the mechanism by which some DNA came to be on an item. We attempt to construct a BN in a manner that makes it adaptable to a wide range of situations. We do so by breaking apart considerations of transfer, persistence and recovery of DNA. In this research paper we have adopted a model that details many variables that are at play. We acknowledge that different models are possible, including ones with a less detailed account of the variables.

In the data collection section we review the findings of relevant literature to determine, firstly, which factors have been found to have an effect on trace DNA transfer and persistence and secondly what those effects are. In the Bayesian Network section we propose a structure for a BN that captures understanding and domain knowledge derived from published data, and then inform conditional probability tables with data wherever possible. In the application to different case examples section, we demonstrate how the BN developed and parameterised in the previous sections can be applied to several examples that the authors have encountered during testimony. Finally, in the Application to Controlled Case section, we study the performance of our BN on real results generated from known deposition events.

Preliminary considerations

A great advantage of Bayesian networks is that they help advance thinking. A crucial step will be the definition of the variables: in forensic science this typically involves formulating the propositions and the results to be assessed. This may seem obvious, but it is not [24]. This is because results need to be communicated, therefore summarized to some extent. But, on the other hand, they have to be considered in sufficient detail, so that differences may be observed depending on the proposition. We know, for example, that one can observe transfer of DNA in different scenarios and that the quantity of DNA (or the relative quantity of each contributors in presence of mixtures) varies. This is also true of other types of trace material, such as glass or fibres that have been used for many decades to help discriminate between...
activity level propositions [25]. One key element that has been highlighted for such traces is
that it is not transfer per se that is of interest to forensic scientists, but how different the
results are given the alleged activities. If we take an example in glass, it is not the transfer of
glass that is key, but the recovery of only one\(^1\) large group of fragments on a given garment
(i.e., what is called the extrinsic characteristics). Indeed, the probability of recovering any
glass in general may be very similar given the two activities, but the recovery of a large group
will not. With the increase of sensitivity, absence and presence of DNA is not sufficient to
discriminate between primary and secondary transfer. DNA results need therefore to be
described more precisely in terms of quantity and/or quality, to show which extrinsic
characteristics help discriminate alleged activities. This approach has been used, for example,
in the Weller case [26], where scientists have considered the probability of their results (in
terms of quantity of DNA and positioning) given the propositions describing competing
activities.

Before describing the studies that are available to inform our knowledge on transfer, we
would like to mention two last important points: first, answers to questions regarding activity
level propositions are probabilistic in nature and that no experiments will tell us whether
transfer was primary or secondary. Following this, whether transfer was primary or secondary
is, ultimately, for the Court to consider given all the available information. Notwithstanding,
because of their specialised knowledge, forensic DNA scientists can help the Court by
evaluating their results (e.g., a recovered quantity of DNA leading to a profile of this quality)
given the alleged activities (or given primary versus secondary transfer).

The above idea is often misunderstood [58] and it is worth expanding upon it. Any opinions
provided on the more probable mechanism of transfer, given the DNA amounts, is a comment
on the posterior probability, and as such, requires one or more prior probabilities. This is then
must be the remit of the Court, who has access to non-scientific information that will be used
to develop their prior belief. The BNs developed in this work always possess a parental node
that has states used to signify the positions of prosecution and defence. These states require
prior probabilities and for these we use a uniform distribution (i.e. all states are \(a\) priori
equally probably). This of course will not be the position of the Court of the jury, but allows
them to use the numerical value of the LR obtained from the BN as a ‘belief updater’.

\(^1\) By indicating ‘only one’, we also consider the absence of other glass that can be as important as the presence
of material.
There are other parental nodes that require prior information (such as the DNA on hands or Extraction Efficiencies), however these are the remit of the analyst as they have a scientific basis and could not be expected to be informed by a lay person during a trial.

DATA COLLECTION:

We present here a series of findings from investigations regarding trace DNA transfer, persistence and collection. For each publication we attempt to provide the raw data that we use to inform the BN developed in the next section. Not all data will be able to be used as many of the findings combine aspects of transfer, persistence and recovery in their ultimate results. Factors such as instrumentation used in laboratory for processing DNA also influenced experimental data. We will attempt to tease apart such interwoven aspects wherever possible, but concede that for experimentation that targets trace DNA this can be difficult to achieve.

We make a note here that the order in which we introduce these topics may not at first seem intuitive as it does not follow the order of the elements of the BN, nor the order of laboratory processes. We present the topics in the order in which they are required to model data, i.e. initially extraction/sampling efficiency are presented as they are required in the model for DNA on hands, all of which are then required for modelling transfer of DNA from hands to objects, and so on.

Presence of DNA already on object:

Lehmann et al. [27] found that, generally\(^2\), the presence of trace DNA on an object did not affect the deposition of further trace DNA and so there was no need to account for that in our BN. It was found, however, that the presence of other body fluids could affect the deposition, recovery and detection of trace DNA. However, we restrict our attention to situations where trace DNA only is assumed.

Extraction efficiency:

\(^2\) If there is DNA from numerous persons, then this will affect our ability to detect the profile of interest, as noted by Lehmann et al. ‘The presence of several different sources of background DNA created mixed profiles and had major negative influences on the detection of the target source of DNA’.
Extraction efficiency is defined as the amount of DNA on a sampling device that is released into a DNA extract and made available for PCR. This is known as ‘absolute extraction efficiency’. We use the information presented by Butts [28] who tested two extraction procedures (a salting out method and the Qiagen EZ1 Advanced XL extraction robot) on DNA, epithelial cells and blood. They found that the DNA loss was “independent of extraction method or source of DNA” and so we show the distribution of combined extraction efficiencies (from the summary graph given in [28]) from their work below in Figure 1. We have modelled the observed extraction efficiencies using a $\text{Beta}(5,17)$ distribution. As seen in Figure 1, this fits the observed data reasonably well.

![Figure 1: Distribution of extraction efficiencies determined by Butts [28] (grey) and fitted Beta distribution (dashed black line)](image)

Differing extraction methodologies (not examined in [28]) may have varying efficiencies and we recognise that the findings we provide may need to be recreated for other extraction methodologies if the analyst wished the BN to reflect the properties of their laboratory processes.

Further improvements to the extraction efficiency node would include:

- Trialling extraction efficiencies at low DNA levels. The study of Butts [28] trialled DNA amounts from 24ng to 4800ng
• Trialling of different extraction techniques not tried in the Butts [28] study. Note that some information to this effect can be found in [29] and [30]

DNA sampling/collection efficiency:
We investigate two broad categories of sampling device, tapelifts and swabs. We recognise that both categories could be refined into a number of sub-categories that take into account the type of swab or the type of tape used. It is possible that the variation in sample to sample efficiency (or analyst to analyst differences) may overwhelm the difference in distributions of sampling efficiency from such fine-scale considerations. However, anyone using the BN given in Figure 8 could carry out sampling efficiency validation work to produce findings that are specifically suited to their laboratories process and performance. For the sampling efficiency we used the results of Verdon et al. [31]. We define the sampling efficiency as the amount of DNA present on an item that is recovered by the sampling device as detailed further below. Note that the sampling device then goes on to a DNA extraction (typically) and there is a secondary process we consider, the extraction efficiency, which we defined in the previous section. Within the Verdon study tapelifts (using Scotch® Magic™ and Scenesafe FAST™) and swabs (FABswab, Puratin, USA) were used to collect DNA from swatches of cotton, flannelette, Poly/cotton blend and polyester strapping that had contact DNA transferred through vigorous rubbing. The swatches were sampled (either using swabs or tapelifts) and some DNA extracted. The swatch (post collection) was then extracted directly (i.e. not tape-lifted or swabbed further, but instead placed directly into an extraction reaction) and again DNA extracted. The sampling efficiency could then be calculated as the amount of DNA obtained from the DNA extraction of the device to the total DNA extracted from the device plus the swatch. By representing the results as a ratio the effects of the initial amount of DNA deposited and the extraction efficiency are removed from consideration.

Verdon et al. [31] trialled swabs and tapelifts on both smooth (polyester strapping) and standard woven material (cotton, flannelette and Poly/cotton blend). In our BN we assume that swabs have been used on smooth surfaces and tapelifts on rougher, fabric, surfaces and so do not consider the cross-over of collection in our use of the Verdon et al. [31] findings.

Verdon et al. [31] also found a significant difference between the two tapes trialled, and we choose to use the results from the Scotch® Magic™ tape as a more commonly used forensic tape. The findings of the tapelifting of fabrics (combining the findings of cotton, flannelette and Poly/cotton blend) in the Verdon et al. [31] study Figure 2, and fitting a Beta distribution
by least squares yields an efficiency of $Beta(1.9, 16.6)$. For swabbing we use the results of Verdon *et al.* [31] Figure 2 for the swabbing of strapping for which we use a $Beta(25, 20)$ distribution. These two efficiencies are shown in Figure 2 and in a similar manner as for the extraction efficiency modelling will be incorporated into the BN.

![Sampling efficiency graph](image)

Figure 2: Sampling efficiency of tapelifting and swabbing from results of Verdon *et al.* [31] for tapelifting (black) and swabbing (grey). The histogram shows observed tape lift efficiencies. For swabbing there was only one average value given.

Persistence:
There is little data available on the persistence of trace DNA. There are a number of factors that are likely to affect persistence, such as the surface type, the length of time and the conditions the item is exposed to during the time. The best example of a trace DNA persistence study for contact DNA is the work by Raymond *et al.* [32]. In [32] known amounts of cellular (using buffy coat) and free DNA (using positive control DNA 9947A) was deposited on:
- An outdoor window frame
- A vinyl bag kept outdoors
- Glass slides kept in controlled laboratory conditions

The outdoor samples were in partly shaded areas over average temperature and humidity conditions of 24.1°C, 63% humidity (day) and 18°C, 71% humidity (night).

While the collection and extraction methodology will mean that absolute DNA amounts cannot be used, they are expected to remain an approximately constant factor throughout the
experiment of Raymond et al. [32]. This allows relative amounts of recovery to be used for persistence. We recreate the results of Raymond et al. [32] Figure 1. However, we combine the results of the outdoor bag and outdoor window frame experiments (by averaging) as well as averaging the trends across cellular and neat DNA. The reason behind this is two-fold:

1) The data from Raymond et al. [32] do not show a noticeable difference between these experiments
2) Trace DNA deposited onto an item is likely to consist of both cellular and free DNA [33]

For the same reason we average the cellular and neat DNA findings for the laboratory experiment. Finally, we display the results as a ratio relative to the maximum DNA amount observed (because clearly there must have been at least this amount of DNA available at time zero). All of this is shown in Figure 3.

![Figure 3: Data from Raymond et al. grouped into two categories, outdoors (grey) and indoors (black) with the trends modelled with an exponential curve (dashed lines)](image)

Using the information from Figure 3 we then implement an exponential decay curve in the BN for the DNA reduction in samples that are kept in ‘poor’ or ‘favourable’ conditions over a number of days, ‘t’.

\[
\text{Decay} = DNA \times e^{-\alpha t}
\]

where \(\alpha = 0.022\) \(\text{favourable}\) and \(\alpha = 0.052\) \(\text{poor}\)
Further improvements to the persistence node would include:

- Taking into account the nature of the surface type the DNA has been placed on when considering persistence
- Further investigation into different environmental conditions (e.g. rain, washed, full sun, etc.) on DNA persistence
- More data to confirm the DNA persistence rates found in Raymond et al. [32].
- Data on DNA persistence of DNA on objects after extended handling by other individuals (of which some work has been done in [34]), or from physical movements after initial deposition.

DNA on hands (sheddier status):

Initially the BN will need to contain information regarding the amount of DNA available for transfer to an object, which is present on an individual’s hand. This node encompasses the idea of good and poor shedding of DNA. The idea that individuals may deposit variable amounts of DNA is described in [35] and there has been some debate as to whether the level of shedding that has been attributed to ‘good shedders’ or ‘bad shedders’ is a transient property depending on day to day variation, the closeness to last cleaning [36] or that there are simply too many factors to consistently label someone as a ‘good’ or ‘bad’ shedder [33].

A recent work [37] suggests that the DNA available for deposition through contact is a mixture of skin cells, free DNA in sweat and sebum and a combination of other bodily fluids present on the individual’s hands. Van Den Berge et al. [38] show that sebum and sweat contribute to an increase of the quantity of DNA on hands with a lower effect of the sweat compared to sebum. In their work Lacerenza et al. [37] swabbed 120 individuals’ hands and submitted those swabs for DNA extraction and profiling and RNA extraction for use in body fluid identification. Investigation by Lacerenza et al. [37] of a number of factors found that the only significant factor was gender, where males had typically more DNA on their hands than females. The authors attributed this to a difference in general levels of hygiene between the genders. A work by Bontadelli [39] swabbed the hands of 50 individuals and found no difference between males and females.

By analysis of all these findings it seems likely that in reality there are not two distinct groups of individuals, some of which are prone to shedding and others that are not, but rather a
distribution of shedding propensity, on which people will exist at different points. Certainly there are individuals who consistently shed (or perhaps better put transfer) more DNA than others. Like many acts of grouping data in a binary fashion, the designation of ‘good’ and ‘bad’ shedder groups has, over time, lead to the belief in two distinct groups of people, when in reality it is simply that the binary classification is an oversimplification of an underlying continuous distribution. The DNA on hands node represents our uncertainty in the amount of DNA on individual’s hands, and within this uncertainty exists the propensity of that individual to shed DNA. The node represents a distribution of DNA amounts for a ‘random’ individual meaning that if the case circumstances indicates some reason that the POI did not behave in a manner similar to a random individual (e.g. had a skin condition, which made them more prone to shedding DNA, such as the well-known case of R v David Butler in Liverpool 2012) then some modification of the distribution would need to be made for them. This could be accounted for in the BN by the use of a parent node to the DNA on hands node (e.g. a ‘skin condition’ node that would specify one of two possible distributions in the ‘DNA on hands’ node when instantiated).

The results of Bontadelli [39] and Lacerenza et al. [37] have both a sampling efficiency effect and a DNA extraction effect present in the data and the actual amount of DNA available on hands is likely to be higher than the quantification results they obtained. To account for these effects we carry out the following process using the Bontadelli [39] data using the software R [40] as follows:

a) Randomly draw a DNA amount from a normal distribution that describes the distribution of log(ng of DNA) found by Bontadelli [39]

b) Randomly draw an extraction efficiency from the Beta distribution described in the ‘Extraction Efficiency’ section and use this to adjust the DNA amount in a) to a DNA amount that was present on the swab head

c) Randomly draw a sampling efficiency from the Beta distribution described for swabbing in the ‘Sampling Efficiency’ section and use this to adjust the DNA amount on the swab head in b) to a DNA amount that was present on the hand of the individual

Carrying out such a simulation for 100,000 iterations produces the distribution shown in Figure 4, labelled ‘Bontadelli (E)’, which we model as normal distributions for use in the BN. Also shown in Figure 4 are the observed (O) distributions of DNA from the Bontadelli [39] and Lacerenza et al. [37] studies. All show a similar distribution.
Figure 4: Observed (O) DNA amounts on hands from Bontadelli [39] and Lacerenza et al. [37] studies and adjusted values obtained by simulation (O) for DNA on hands, based on Bontadelli [39] data.

The log(ng of DNA) for DNA on hands from the ‘Bontadelli (E)’ distribution is modelled by $N(0.66,0.49)$.

Further work in this area could include:
- Shedder consistency studies, i.e. whether an individual sheds DNA consistently in the upper or lower quantiles of the population shedding distribution. Studies could extend to a standard method for determining the approximate shedding propensity of an individual for use in primary vs secondary transfer considerations. Some work in this area has been done in [41].

Transfer from hand to object (Primary transfer):
There is much literature that presents findings of transfer from hand to object as the results of obtaining full, partial or no DNA profile [10, 42, 43]. While this information is indeed useful, for the current study (and in particular the primary transfer events depicted by the ‘DNA transferred to object’ nodes) what is required is absolute DNA amounts. For this, we use the data obtained from Daly et al. [44]. In their work they asked 300 random volunteers to grasp an 8mL glass vial, a 7×7cm cotton cloth or an 8.5×1.7×3cm piece of wood for 60 seconds. They then tape-lifted with Minitape (WA Products Ltd., UK) and extracted using Qiagen® QIAamp DNA mini kit.

The proportion of hand surface area that contacted the items is not known and so we assume this proportion to be one. We make this assumption so that the transfer data can be directly compared to the amount of DNA on direct hand swabs (which swab 100% of the hand). We also combine the results from the wood and cotton samples and combine them under the surface type category ‘rough’ and then use the glass results in the surface type category of ‘smooth’. We fit gamma distributions to the observed data from Daly et al. [44] using least squares. These were Γ(0.64,3.87) and Γ(0.33,1.75) for rough and smooth surfaces respectively (graphs not shown). We then adjust the gamma distributions of DNA amounts observed to model the amounts that were present on the item taking into account sampling and extraction efficiency, in the same manner as we did in the ‘DNA on hands’ section of this paper, to obtain a distribution of DNA amounts transferred by the 300 volunteers to either smooth or rough surfaces as seen below in Figure 5.

Figure 5: Simulated values for DNA amounts transferred to rough (left) or smooth (right) surfaces, based on the results of Daly et al. [44].
Having produced the two distributions, we are interested in the distribution that describes the
decrease from the total amount of DNA present on an individual’s hand (seen in the
‘Bontadelli (E)’ category in Figure 4) to the amount of DNA transferred (Figure 5).

In the Daly et al. [44] study there is no account of the type of contact that has been made with
the object e.g. a glancing touch, pressure for a short period of time, friction, etc. However
studies such as that conducted by Goray et al. [45] show that the type of contact is an
important factor. In their study Goray et al. [45] trialled three different contact types:
Passive – described as a placing two substrates together for 60s
Pressure – described as the same as passive, but applying 1kg of weight
Friction – described as the same as pressure but moving the weight around for the 60s

We believe that the category of friction from the Goray et al. [45] study is best aligned with
the experimental setup of Daly et al. [44]. The results given in the Goray et al. [45] study are
given as mean percentage of DNA transfer. We take the results from Table 3 of that study
and scale all findings between smooth (plastic) and rough (cotton) so that the friction
category has a value of 1. We show the results of this data manipulation in Figure 6.

![Figure 6: Effect of pressure type on amount of DNA transferred. We break the data into two
groups; DNA transferred onto smooth objects (left) and DNA transferred onto rough object
(right).]
We model the proportion of DNA deposited by a simplified comparison of distributions. Using software R we go through the following steps:

a) Generate an array of 100,000 variables drawn from the extrapolated DNA amount on the presence on hands (seen in the ‘Bontadelli (E)’ category in Figure 4).

b) Generate two arrays of 100,000 variable drawn at random from the distribution of values seen for deposition onto smooth and rough surfaces as shown in Figure 5.

c) Order the arrays generated in a) and b) and generate two arrays of the proportion of DNA transferred from hands to object by dividing the values in the DNA of rough or smooth object array by the corresponding entries in the DNA on hands array. The result is two arrays of values between 0 and 1 which represent the proportion of DNA transferred from hands to smooth and rough objects.

d) Each of the values seen in Figure 6, has a level of data variability in the Goray et al. [45] study given as a standard deviation. We use these standard deviations (scaled down to align with the values seen in Figure 6) and draw values from the distributions of the reduction factor for passive, pressure and smooth from both rough and smooth surfaces. These values are then multiplied by the reduction values from c) to produce distributions for the reduction in DNA from hand to rough or smooth object for either a passive, pressured or frictional contact type.

e) The resulting distributions for transfer type are seen in Figure 7. Beta distributions were fit using MLE to these distributions to represent the proportion of DNA transferred. For the distribution to cloth with a pressure or friction contact we fit a mixed beta distribution, which is given in Table 2.

With these distributions available, we have all the information required for the ‘DNA transferred to object’ node of the BN.

3 Due to the stochastic nature of the data and simulation there were a number of values within the ‘proportion of DNA transferred’ arrays that had values greater than 1. This is equivalent to greater than 100% of DNA from hands being transferred to an item and hence is nonsensical. In these instances the data was truncated at 1 to obtain the sensible values seen in Figure 7.
Figure 7: Proportion of DNA transferred from hands to smooth (plastic) or rough (cotton) objects when contact is passive, pressure or friction.

The age of the donor may also have an influence. The study of Poetsch [46] shows that there could be a correlation between the quantity of transfer DNA, the quality of the profiles coming from fingerprints and the age of the donor. On 209 child and adults, a full DNA profiles is obtained in 75% of cases with children under 11 (47 children), 9% with teenager between 12 and 20 (32 teenagers), 25% with adults between 21 and 60 (81 adults) and 8% with persons older than 60 (49 seniors). The factor is not taken into account in the BN if the relevant population is an individual between 21 and 60.
Further work that could be investigated in this area includes:

- A study of how the amount of time an object is held affects the amount of DNA transferred.
- To date we have found such information in [47] for hand to hand transfers mostly by length of handshake. Van Oorschot et al. [48] studied this question using polypropylene tubes held for varying lengths of time (5 s, 30 s, 3 min, 10 min) and found that the length of the contact did not influence the amount of DNA transferred. In contrast Saravo et al [49] showed that the quality of the profile is influenced by the length of contact (using steel cable).
- A study of the absolute amount of DNA transferred from hands to objects for different contact types e.g. light touch, pressure, friction (i.e. so that data from multiple studies does not need to be combined and extrapolated as we have done here).

Secondary transfer from object to object:
For this final section we again turn to the work of Daly et al. [45]. Again we use the results of Table 3 where dried contact DNA is transferred from object to object with varying primary and secondary substrates and different contact types. Table 3 from the Goray et al. [45] study gives percentage transfer, mean and standard deviations for all considered transfer scenarios. We apply these transfer distributions with the obvious restrictions that the transfer percentage is bound by 0 and 100%.

Further work that could be done in this area:
- Consideration of the amount of DNA transferred to object from a habitual use e.g. items in the home. Some work has been done in this area, such as [50].
- Transfer DNA amount for varying length of time of contact between primary and secondary substrates and for different types of activities.

BAYESIAN NETWORK:
From the literature we have found the following factors to be important to:

The amount of DNA available for deposition
- Propensity of an individual to shed DNA [37]. We consider this node as describing the amount of DNA on an individual’s hands available for transfer. It therefore
encompasses the idea of shedding ability of the individual, and we could consider aspects such as cleanliness, sweating, skin disease at this point.

- Amount of individual’s hand that was in contact with object (no reference, this is based on common sense).

The transfer of contact DNA:
- Surface of object being touched [44, 45].
- Surface of object that DNA is currently on [45].
- Vigour and length of contact [45].

The persistence of DNA on an object:
- Time between deposition and sampling (or further deposition) [32].
- Condition the item is kept in between deposition and sampling (or further deposition) [32].
- The type of surface of the object.

The recovery of DNA:
- Sampling device used [31].

Note that we do not consider specific laboratory aspects such as the profiling system used, the number of PCR cycles or models or settings of laboratory hardware. We have made a deliberate choice to model DNA amount, which precedes these laboratory considerations and simplifies the BN. If a laboratory wished they could add nodes onto the BN that translate DNA amount to peak height.

By combination of these factors we formulate the BN shown in Figures 8 to 11. This BN is constructed as an object-oriented BN (OOBN) with the same sub-networks that are used at multiple points. This model has the advantage that it can be easily expanded to consider a range of transfer scenarios (something we demonstrate in this paper). Overall in Figure 8 we model from top to down the amount of transferred DNA from contact to recovery. In each column, we distinguish the quantity of DNA from the person of interest (POI), the quantity of DNA from the alternative offender (AO), if any, and the quantity of DNA present as background. The proposition nodes at the centre allow activating or not the various transfer
options to be considered as a function of the choice of the prosecution or defence allegations. Typically, under the prosecution view, it will be alleged that the POI invoked a primary transfer with the item under examination. Under the defence account, the POI may invoke a secondary transfer with the item alone (Hd1) or, that an alternative offender had a primary transfer (Hd2). On each column (POI or AO), the DNA can take the routes denoted as primary transfer or secondary transfer. The background DNA (on the right side) is not conditioned on the chosen propositions as it pertains to the item regardless of their states.

Part of the BN deals with the issue as to whether or not the obtained DNA profiles will match with either POI or AO. Before dealing with the results, we deal with the recovery of the DNA from the item. This structure represents the obtained results (at the bottom) in the form of the quantities of DNA arising from transfers of various types (primary or secondary) from POI, or not.

The use of object-oriented structures is shown by the use of the white blocks called TP (transfer and persistence), R (recovery) and M (matching DNA profiles).

The block TP is shown in Figure 9. It takes a given amount of DNA as input (DNA IN) and progresses it through a transfer and persistency model to a resulting amount of DNA (DNA OUT). Within the block is highlighted the various factors that impact the transfer and persistency.

The block R (for recovery) shown in Figure 10 uses a DNA quantity as input and passes it through the steps of sampling (depending on the technique used) and extraction, leading to the final amount of resulting DNA.

The block M in Figure 11 is assigning the DNA as matching POI (or AO) versus different profiles (called DNA DIFF) as a function of the match probabilities (themselves depending on the quantity of DNA as input).

When considering DNA in term of a primary transfer, it will go through one TP block. When considering DNA in terms of a secondary transfer, two TP blocks are applied. The first deals with the transfer on the intermediate object and the second deals with the transfer from the
intermediate to the item under examination. This flexible construction also allows us to
model more complex scenarios (e.g. tertiary transfer), if necessary.
Figure 8: Bayesian network used to evaluate the findings with given activity level propositions involving primary vs secondary transfer event.
Figure 9: Bayesian network in block TP

Block TP

- Proportion of hand/surface contacted
- DNA available to transfer (log10ng)
- DNA in
- Quantity of DNA available for the transfer, conditioned by the proportion of surface available

- Transfer proportion
- DNA deposited on target surface (log10ng)
- DNA persisting on target surface (ng)
- Days between both transfers or transfer and recovery
- Alpha2
- Environmental condition of target surface kept in

- Quantity of DNA following the transfer. It will depend on the vigour of the contact, and the nature of the surfaces involved.

- Quantity of DNA following persistency. It will depend on the timing and the environmental conditions.
A combination of conditional probability tables and expressions have been used in the BN shown in Figures 8 to 11. Tables 1-4 (in appendix 1) summarise the node definitions, the node states and the manner in which probabilities are provided or generated. Some nodes repeat for each transfer step. The general terminology is given in Tables 1 to Table 4.

APPLICATION TO DIFFERENT CASE EXAMPLES:
Having constructed and examined the BN that can help address secondary vs primary transfer we now apply these data to real casework examples. We provide three examples that have been encountered during testimony, giving a brief description of the alleged offence and the competing propositions. Details have been altered slightly from the real case so that we can demonstrate a range of situations.

Case example 1:
A bus driver (the POI) is charged with indecent assault where Prosecution alleges that he touched the breasts of the victim over the top of her T-shirt. The victim’s T-shirt was seized and sampled the following day and a tapelift from the outer front of the victim’s shirt revealed the sole presence (0.15 ng) of the POI’s DNA. The POI claims that he put the seatbelt on the victim and his DNA transferred from his hands, to the seatbelt and then secondarily to the victim’s T-shirt. The propositions are therefore:

- **Hp:** The POI touched the breasts of the victim on the outside of her T-shirt
- **Hd1:** The POI put the seatbelt on the victim and did not touch her breasts

Given the alternative proposition in this scenario, there is no indication of an alternative offender (AO), hence only Hd1 will be considered. The node “choice of Hd” has been set accordingly.

Any state within any node of the BN can be set as being true (with all other states within that node therefore being false). Information provided to a BN in this manner is called ‘instantiation’ (i.e. the user is instantiating the states of nodes) and once done the laws of probability can be used to propagate the information throughout the BN and update the posterior probabilities for states in non-instantiated nodes. Our instantiations (and rationale) of the nodes is given in Table 5.

<table>
<thead>
<tr>
<th>Node</th>
<th>Instantiated</th>
<th>Reason/Explanation</th>
</tr>
</thead>
</table>

4 The findings were initially expressed as a likelihood ratio considering the probability of obtaining the DNA profiling results if the POI was the source of DNA rather than if an unknown male was the source of DNA. The LR in this instance was strongly in support of the first proposition over the second and it was conceded by both parties that the POI’s DNA was present on the shirt of the victim. In subsequent scenarios when we talk about an individual’s DNA being found on an item a similar course of events has taken place to come to that statement. We are not simply assigning identity as the sub-source level LR reaches some threshold.
<table>
<thead>
<tr>
<th>state</th>
<th>Proportion of hand/surface contacted</th>
<th>0.9 – 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TP1: It is assumed that most of the hand of the POI would have contacted the shirt in the described assault.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP2: Under secondary transfer the same value will assuming that most of the hand of the POI would have contacted the seatbelt when he it on the victim.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP3: Typically only inner surface of the seatbelt would be contacting the shirt, which is 0.5, however there may be slight opportunity for the outer surface to contact the shirt so we choose 0.6 – 0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nature of target surface</td>
<td>rough</td>
</tr>
<tr>
<td></td>
<td>The surface of the victim’s woven shirt is rough</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vigour of contact with target surface</td>
<td>friction</td>
</tr>
<tr>
<td></td>
<td>TP1: The alleged assault describes a rubbing motion over the top of the victim’s shirt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP2 and TP3: There is typically gripping and pulling motion when putting on a seatbelt, which can be assimilated to friction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nature of shedding surface</td>
<td>hand</td>
</tr>
<tr>
<td></td>
<td>TP1 and TP2: The hand is the primary source of DNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP3: The surface of the seatbelt is rough</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Days between both transfers or transfer and recovery</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TP1 and TP3: 1 day, the item was examined the following day.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP2: The seatbelt was immediately in contact with the victim’s shirt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental conditions</td>
<td>favourable</td>
</tr>
<tr>
<td></td>
<td>TP1 and TP3: Kept indoors in a paper bag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP2: Inside bus (note that as the time node associated with this condition node is set to 0, either condition would give the same result when instantiated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proportion of area sampled</td>
<td>0.9 – 1</td>
</tr>
<tr>
<td></td>
<td>The entire front of the shirt was sampled</td>
<td></td>
</tr>
</tbody>
</table>
A tapelift was used to sample the shirt.

<table>
<thead>
<tr>
<th>Sampling device</th>
<th>tapelift</th>
<th>A tapelift was used to sample the shirt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results DNA POI</td>
<td>0.1-0.2</td>
<td>The DNA amount obtained from laboratory analysis</td>
</tr>
<tr>
<td>Results DNA not POI</td>
<td>0-0.01</td>
<td>The DNA amount obtained from laboratory analysis</td>
</tr>
</tbody>
</table>

Table 5: Choice for node instantiations as seen in Figure 9

The result was 0.15ng of the DNA for the POI without any other DNA contribution (hence DNA not POI is set to 0). It gives a LR of 4. The LR for different observed quantities of the POIs DNA in scenario 1 shown in Figure 12.

Figure 12: Ratio of probability for primary vs secondary transfer obtained for the instantiated network considering different levels of detected POI DNA.

What is interesting is that as the observed amount of the POI’s DNA is above 0.01ng, the support for a primary transfer over a secondary transfer is now above 1 and increases, until it reaches approximately 10 when DNA amounts are 0.6-0.7 ng. As DNA amount increases
beyond 0.7 the level of support for a primary transfer decreases compared to a secondary transfer. This initially appeared counterintuitive, but an examination of the ‘DNA on hands’ node reveals that such a finding means that the individual is a very good DNA shedder. This then obscures the difference between a primary and secondary transfer event. If the amount of DNA on an individual’s hands is instantiated as low, then the effect is increasing support for primary over secondary transfer as the amount of POI’s DNA detected increases.

The other point to notice is that in this case example, the maximum value the LR reaches is approximately 10. This demonstrates – in this case example – the support we can assign to propositions of transfer type with our current knowledge. It should also be noted that increasing our knowledge may not necessarily yield higher levels of support. If the variability of transfer events is high (even after taking into account additional factors) then further knowledge and experimentation will only serve to reinforce that fact.

Also, there are other factors that could be taken into account with further modelling and information. For example, it may be that the suspect is the regular driver of the bus and it could therefore be expected that a level of his DNA is present on the seatbelt prior to the time of the alleged crime. This too could be modelled through a node that considers the amount of DNA present on an item through habitual use. Or a more direct study could test seatbelts in buses and compare them to the reference DNA of the regular driver, although this would be a more difficult task for many laboratories to perform.

Case example 2:
A POI was accused of stabbing the victim with a plastic handled knife. A swab of the handle of the knife produced a single sourced DNA profile that was conceded as originating from the POI. Prosecution claim that that it was the POI who used the knife to stab the victim. The POI claims that he was at a party shortly before the incident, where he shook hands with a male friend. His DNA could have been on the knife handle because he transferred his DNA to the hands of his friend, who then used the knife to stab the victim. In doing so the POI’s friend transferred the POI’s DNA onto the knife handle. The propositions are therefore:
Hp The POI stabbed the victim with the knife
Hd2 The POI shook hands with a friend who stabbed the victim with the knife
In this case, the alternative proposition assumes an alternative offender (AO), hence Hd2 will be considered. The node “choice of Hd” has been set accordingly.

The same structure of the BN as shown in Figure 8 can be used, but instantiated differently. We do not provide the same explanation regarding node instantiations as we did for scenario 1 in Table 5. The choices themselves are not as important in these demonstrations as the construction and function of the BN itself. One can imagine what assumptions may be made regarding surface types and types of contact in regular casework, and if this information is unknown then it is always possible to either leave the node(s) uninstantiated or to trial the effect of instantiating with different values. In this way the scientist can determine how important that piece of information is to the robustness of the LR provided. In this scenario we have a hand to hand transfer and have not obtained data for such situations. We consider that a surface type ‘hand’ is the same that a surface type ‘rough’. However, DNA transfer and persistence on hands may not act the same as the data for ‘rough’ or ‘smooth’ surface types and ideally further considerations for the surface type ‘hands’ should be considered within the BN. We note that the DNA persistence on hands may be different due to bacterial degradation or normal wear and tear on hands from everyday activities.

What is interesting is that as the observed amount of the POI’s DNA increases above 0.02ng, the support for a primary transfer over a secondary transfer is now above 1 and increases, until it reaches approximately 14 when DNA amounts are 0.8-0.9 ng. As DNA amount increases beyond 0.9 the level of support for a primary transfer decreases compared to a secondary transfer. Above 7ng, the findings start to support a secondary transfer over a primary transfer can be observed. (see Figure 13). This is a combination of the BN moving to a position where the POI is considered a high shedder and the AO a low shedder and the level of background DNA being higher with a coincidental matching alleles. Instantiating these factors so that they cannot be the case i.e. restricting the shedder status of the POI to an average value, removing the consideration of background DNA and specifying that the AO DNA profile is not matching with the POI sees the LR with propositions as stated above steadily increase with increasing POI DNA amounts.
Figure 13: Ratio of probability for primary vs secondary transfer obtained for the instantiated network, but considering different levels of detected POI DNA, but always keeping the detected levels of the unknown individual’s DNA as 0 – 0.01ng.

We could also create a similar BN for situations like case example 2, but where there are two POIs, one of which stabbed the victim, both of their DNA is detected on the item, and both having submitted reference DNA samples. This could be achieved by the addition of a secondary transfer route on for the AO (who would be considered the second POI) into the BN in Figure 8 with the ‘Choice of Hd’ node specifying either a primary transfer for POI1 and a secondary transfer for POI2 or vice versa. We do not provide a Figure showing such a BN.

Scenario 3:

An unregistered firearm was found on a couch in the house owned by the POI. Police seized the firearm and a swab of the firearm stock revealed a mixed DNA profile originating from two individuals of which the POI was conceded as being the minor source. The prosecution claim that the POI handled the firearm. The defence claim that the POI had not known about the firearm and someone must have put it on his bed and then moved it to the couch very recently. The POI also claims that he saw something sitting on his bed earlier that day and
thinks it may have been the firearm, but he didn’t investigate or touch it. The POI therefore states that the presence of his DNA on the firearm is due to it transferring from the POI to the couch, or bed, and then to the firearm. The propositions are therefore:

- **Hp** The POI recently handled the firearm
- **Hd2** The POI has never handled the firearm, but someone must have moved it

Here we have the deficiency of knowledge regarding the amount of DNA on a regularly used couch and bed. There is also the possibility of an accumulative effect, i.e. if someone rubs their hands on the same item multiple times on different occasions, does the DNA keep accumulating or does it reach a saturation point? At present this information is not known and so we make a number of assumptions that we explain below. These are further areas of research that would be beneficial for the forensic community to carry out.

Again we do not specify the reasoning behind each instantiation in the BN. The intention here is to demonstrate the adaptability and power of the BN to handle a variety of situations.

The extended BN for scenario 3 can be seen in Figure 14. We can see now that this is similar to the initial BN as seen in Figure 8, however we have the two routes for secondary transfer from the POI, one in relation to the bed, the other in relation to the couch. They meet in a node that adds the DNA amounts from secondary transfer together. In doing this we assume that if DNA has been transferred from both secondary pathways then the effect is pure accumulation and none of loss of DNA. This is another area which requires some research to be conducted.
Figure 14: Bayesian network used to evaluate the findings with given activity level propositions involving primary vs secondary transfer event.
For the background node we require the amounts of DNA found on firearm from individuals other than the primary user(s). The reason for this is that the primary user(s) will have transferred their DNA via a primary contact and we are interested in background levels (deposited through some unknown mechanism, and not by a known contact). This information is not readily provided by any literature sources we could find. The study of McKenna [51] found that a DNA profile was not observed in 26% of firearms swabs. A study by FSSA [52] examined DNA amounts from 300 firearm swabs obtained in casework. While ideally for our purpose this data would be compared to the owner or regular user of the firearm so they could be screened out of the DNA obtained, we use the distribution of DNA amounts observed from [52]. We then extrapolate back to DNA amounts found on the firearms in the same manner as previously described to obtain the distribution of DNA originally on the firearm, which we show in Figure 15. We apply the distribution values seen in Figure 15 directly into the Background DNA node.

![DNA on firearm (ng/cm²)](image)

Figure 15: DNA amount (grey) obtained from swabs of firearms and fitted distribution (black)

In this case example we assume that under the prosecution proposition that the contact by the POI to the firearm is a brief one-off contact (perhaps as an allegation of a recent purchase). If we were to assume an extended habitual use then different data would be required.
Using the BN seen in Figure 14 yields $LR = 8$ when the amount of the POI’s DNA detected is above approximately 1-1.5ng. The POI’s DNA has come to be on the item either from a direct contact with his hands or from a secondary transfer from the POI’s bed or couch transferred onto the firearm when it was placed there. The amount of DNA expected from such a transfer is less that what is possible from primary transfer. Figure 17 shows the LR over a range of DNA amount for POI and either relatively high or low DNA amounts from the non-POI.

Figure 17: LR over range of detected DNA for POI and relatively high and low DNA amounts for non-POI.
Again, as the DNA amount for the POI increases from zero to 0.5ng the support for primary
over secondary transfer increases, then as DNA increase further the support for primary
transfer decreases until approximately 4ng, when the findings start to support secondary over
primary transfer. At higher DNA levels the support for secondary over primary transfer is a
product of the fact that the modelling of background DNA, coupled with the accumulation
from multiple sources (couch and bed) means that higher amounts of DNA are more
indicative of secondary transfer in this scenario.

This example shows the importance of a good set of data for modelling background DNA and
levels of DNA expected on items from habitual use. The number of samples and methods in
which they have been collected for our example, suggest that further work would need to be
required in order to address the findings in consideration of the propositions in scenario 3.
The closeness of the primary transfer probability to the background DNA probability in
Figure 15 suggests that much of the data captured in the FSSA study are likely to be resulting
from primary contacts.

As a point of interest, if the scenario were changed to one which stated that the unknown
male rubbed the gun on the bed in a deliberate attempt to transfer DNA, then the support for
secondary transfer over a primary transfer persists for quite high levels of observed POI
DNA. Note that in the evaluation of all the evidence the court is likely to have quite different
prior beliefs on whether someone else brought a firearm into the house, compared to that
person then wishing to deliberately ‘frame’ the suspect. This shift in prior beliefs may well
outweigh the differences obtained from the activity level considerations of the DNA findings,
but of course it is not up to the scientist to base their decisions on such considerations.

APPLICATION TO CONTROLLED CASES

We have explained the construction of an OOBN that can consider competing transfer
mechanisms and demonstrated its use in several scenarios. We wish now to test the ability of
the BN to distinguish known primary and secondary transfer events as described in scenario 2
of the stabbing case. We have used the work of Samie et al. [43], which importantly, was not
used in any of the modeling to assign conditional probabilities in the BN. This allows the
results of Samie et al. [43] - where the authors study primary DNA transfer to knife handles
during the action of stabbing- to act as a test set. For the purpose of this research, a series of secondary transfer experiments was this time performed. 12 experiments were carried out. In order to mimic stabbing under the second scenario (secondary transfer), the same four individuals (two males and two females) and same type of knives were used. The persons’ hands were washed at 8 am. Around 11 am or 3 pm, one volunteer (POI, acting as the innocent suspect) was asked to shake hands with the volunteer who would act as the stabber (alternative offender, AO). The person then carried out normal activities in their office environment (i.e., having lunch or coffee with their colleagues, speaking with them etc.). Thirty minutes later, the AO was asked to ‘stab’ a cardboard box with a knife. Right afterwards, traces were collected using the double swab method. The following day, the experiment was repeated with another volunteer acting as the innocent POI (Figure 18). Each volunteer took the role of POI associated with each of the three stabbers. In order to limit background DNA (i.e., DNA present for unknown reasons), the knife was cleaned between each experiment (by using bleach, ethanol and leaving the items under UV light for 30 min). To monitor background, a negative control was taken from the knife after cleaning and before the experiment. Results were all negative (no DNA profile). To collect, extract and amplify the DNA, we have used the same method as described in Samie et al. [41]. However, here, DNA was quantified using the Investigator® Quantiplex (Qiagen) kit following standard protocols and the amplicons were analysed using a 3500 Genetic Analyser ABI (Applied Biosystem) and GeneMapper®IDX Software.

Then, the DNA profiles were interpreted using STRmix™ v2.3.05 [1, 53, 54, 55]. This forensic software has been developed to resolve mixed DNA profiles based on a continuous approach. The programme uses peak height information and statistically accounts for the possibility of degraded DNA and stochastic variation such as stutter, allelic drop-in and drop-out. It provides information regarding the mixture proportion and the weight that is given to the possible genotypes of the contributors. The weight is used to express how well a proposed genotype explains the profile. These information, combined with the total of DNA quantity obtained, allowed to inform the node “Results DNA POI” and “Results DNA non POI”. The number of contributors was determined based on the number of the peaks detected at each locus, peak height balance information and how the experiments were planned (i.e., we expected the DNA of two persons in different proportions).
Figure 18: Figure showing the experimental design adopted for experiments on primary and secondary transfer.
Figure 19: Tippett curve showing the ability of the developed BN to distinguish primary and secondary transfer events.

Figure 19 shows the results of considering each of the transfer events as primary. Given the limited dataset available, there appears that there is some ability for the system to distinguish primary from secondary transfer events, even without the knowledge of the shedder status of those involved.

CONCLUSION:

We show here the construction of BNs built up from building blocks that address different features of contact DNA transfer, persistence and recovery. By splitting the transfer, persistence and recovery into separate nodes we make the BN high configurable to a number of situations, which we demonstrate through three quite different scenarios. The scenarios also highlight the importance of having the applicable data to inform conditional probabilities that underlie each node.

In theory the complexity of the scenarios that BN can consider are endless but in reality there will be a diminishing return as more complexity is added. There are likely to be key information that has the greatest effect on the posterior probabilities of the propositional node and these can be explored with sensitivity analyses (something which we have not
demonstrated in this paper, but intend to pursue to determine which factors the LR is most sensitive to, and also to help direct further research areas [56]).

There are a number of ways in which BN such as those we have developed here could be used other than to evaluate findings given competing transfer mechanisms. If the mechanism is known, then the BN could be used to investigate whether an individual is a high or low shedder. Alternatively, the BN could be used in a case assessment and interpretation framework (see [57] for an explanation of case assessment and interpretation), where items are triaged depending on the level of power that will exist to support one proposition over the other when transfer mechanism is disputed.

We show, in the ‘application to controlled cases’ section that the BN appears to have some ability to distinguish primary and secondary transfer under the conditions tested. This is despite not having information regarding the shedder status of the individual, which has been classically thought to be a limiting factor in the ability to evaluate evidence given competing transfer scenarios. Additional ground truth tests would be beneficial and would likely highlight situations where additional complexity, or additional modelling is required to inform the BN. In appendix 2 we suggest a number of studies we have already identified that would provide beneficial data to inform us on the important factors in transfer and persistence of trace DNA. As further information regarding the factors affecting DNA findings is obtained it is the authors’ hope that they can be incorporated into evaluations in a logical and helpful manner.

The work here also brings up an interesting point regarding the modelling of ‘background DNA’. This was particularly important in the assignment of probabilities in scenario 3. All DNA must have come to be on an item through some mechanism. Background DNA is defined as DNA that is expected to be present on an item, but is not related to the activity in question. Typically we consider that background DNA has not come from one of the POIs, but (as with any DNA source) may adventitiously possess the same alleles. When background DNA is modelled it is common practise to consider background DNA on an item as that which has not come from the primary handler. However, in a BN that it used to model multi-step transfer mechanisms the more correct modelling of background DNA would be DNA that has come from one more transfer step than the most complex mechanism being modelled i.e. if one scenario being modelled is a tertiary transfer then background DNA would be DNA
that has come from a quaternary transfer event. All other sources of DNA that have come
from primary, secondary or tertiary transfers should be modelled in full. This is not an easy
task to achieve, firstly due to the complexity of the BN that would arise, but secondly in the
modelling of background DNA amounts at differing levels of transfer complexity.

There is always a difficulty when modelling data from the literature to find experimental
designs that match the case scenario exactly. Indeed, some case scenarios simply cannot be
exactly replicated in experimental work due to ethical or legal reasons. A common question
arising from this is therefore, whether BN such as those constructed here can be applied to
casework at all (see [58] for a discussion of this point and others in the same vein). Such a
line of argument fails to recognise how information and casework circumstances are
evaluated by the court. If the primary dispute when considering DNA evidence is one of a
transfer mechanism, then the presence or absence of DNA is not in dispute. We then must
ask, who is best placed to answer questions of transfer mechanism, which will inevitably
require knowledge of transfer, persistence and recovery of DNA and the levels of background
DNA in the environment. We suggest that it would be unrealistic to expect the average juror,
judge or lawyer to possess such knowledge and that the highly specialised considerations are
best explored by the scientist. Having made this decision, the question needs to be asked, how
will the scientist take into account such a wide range of considerations and where will they
draw their knowledge from. We would argue that the most logical and transparent manner in
which this can be done is by setting out all the factors requiring consideration within a BN
and populating probabilities using the most applicable data available. This will inform the
scientist, which in turn can educate the court in the most robust manner possible. Having said
all of this, we do not advocate the use of data which are clearly not suitable for assigning
probabilities; but more often the case when some specific piece of information is not known,
a reasonably close substitute can be used. As long as the conditions to which the data pertain
(i.e. experimental settings) are judged appropriately close to be considered as an acceptable
substitute for the case at hand then the resulting BN still represents the best evaluation of
findings available. When this practice is adopted the use of the substitute data should be
clearly pointed out in the report. One example of how this can be applied in the BN shown in
our work is for the proportion of the hand that has contacted an item. Clearly, this
information will not be available to the analyst. However, depending on the item an educated
value can be used, e.g. if a swab of the trigger of a firearm was taken then only the upper part
of one finger is likely to have contacted the item and this can be portrayed in the values
instantiated in the “Proportion of Hand contacted” node. If there is a high degree of
uncertainty regarding the proportion of area contacted, then a distribution of prior
probabilities across the states in the node can be applied to reflect this.

No-one is served by the scientist simply refusing to provide an opinion due to an absence of
some small area of data that perfectly aligns with case circumstances. When the absence of
knowledge is great (such as in scenario 3) then this will become apparent to the scientist and
under these circumstances it is appropriate for them to state that the results cannot be
evaluated robustly given the two competing propositions (see [56] for a discussion on this).

ACKNOWLEDGEMENTS:

Points of view in this document are those of the authors and do not necessarily represent the
official position or policies of their organisations.

Alex Biedermann gratefully acknowledges the support of the Swiss National
Science Foundation through grant No. BSSG10_155809.
REFERENCES:

[40] Plummer M. Bayesian graphical models using MCMC. RJAGS. 2012.

Appendix 1: Tables that describe elements of the BN in Figure 8 to 11

<table>
<thead>
<tr>
<th>Node</th>
<th>Categories</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp and Hd</td>
<td>Hp: Primary transfer</td>
<td>uniform prior</td>
</tr>
<tr>
<td></td>
<td>Hd: Secondary transfer without AO</td>
<td>uniform prior or adapted as a function of the alleged activities put forward by the defence.</td>
</tr>
<tr>
<td>Choice of Hd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA on POI hand log10(ng)</td>
<td>interval node;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>From -inf to -1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>From -1.5 to 3 in steps of 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 to 4 in steps of 0.5</td>
<td></td>
</tr>
<tr>
<td>DNA on AO hand log10(ng)</td>
<td>interval node;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>From -inf to -1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>From -1.5 to 3 in steps of 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 to 4 in steps of 0.5</td>
<td></td>
</tr>
<tr>
<td>DNA POI Primary transfer (ng)</td>
<td>interval node;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 in steps of 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 to 1 in steps of 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 5 in steps of 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 to 10 in steps of 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 to 25 in steps of 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 to 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 to inf</td>
<td></td>
</tr>
<tr>
<td>DNA POI Secondary transfer (ng)</td>
<td>interval node;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 in steps of 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 to 1 in steps of 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 5 in steps of 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 to 10 in steps of 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 to 25 in steps of 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 to 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 to inf</td>
<td></td>
</tr>
<tr>
<td>DNA AO Primary transfer (ng)</td>
<td>interval node;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 in steps of 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 to 1 in steps of 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 5 in steps of 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 to 10 in steps of 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 to 25 in steps of 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 to 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 to inf</td>
<td></td>
</tr>
<tr>
<td>DNA Background (ng)</td>
<td>interval node;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 in steps of 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 to 1 in steps of 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 5 in steps of 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 to 10 in steps of 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 to 25 in steps of 5</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Note the probabilities provided in this node will need to be tailored to the item and circumstances of the case. A uniform distribution is not a realistic description of background DNA on most items.</td>
<td></td>
</tr>
</tbody>
</table>
| DNA POI 1 (ng) | 25 to 1000
1000 to inf | DNA POI primary transfer + DNA POI secondary transfer |
|---------------|-------------------|---|
| DNA POI 2 (ng) | interval node;
0 to 0.1 in steps of 0.01
0.1 to 1 in steps of 0.1
1 to 5 in steps of 0.5
5 to 10 in steps of 1
10 to 25 in steps of 5
25 to 1000
1000 to inf | AO matching POI + Background matching POI |
| DNA AO (ng) | interval node;
0 to 0.1 in steps of 0.01
0.1 to 1 in steps of 0.1
1 to 5 in steps of 0.5
5 to 10 in steps of 1
10 to 25 in steps of 5
25 to 1000
1000 to inf | AO DIFF POI + Background matching AO |
| DNA DIFF (ng) | interval node;
0 to 0.1 in steps of 0.01
0.1 to 1 in steps of 0.1
1 to 5 in steps of 0.5
5 to 10 in steps of 1
10 to 25 in steps of 5
25 to 1000
1000 to inf | Background DIFF AO |
| DNA POI persisting (ng) | interval node;
0 to 0.1 in steps of 0.01
0.1 to 1 in steps of 0.1
1 to 5 in steps of 0.5
5 to 10 in steps of 1
10 to 25 in steps of 5
25 to 1000
1000 to inf | DNA POI 1+ DNA POI 2 |
| DNA not POI Persisting (ng) | interval node;
0 to 0.1 in steps of 0.01
0.1 to 1 in steps of 0.1
1 to 5 in steps of 0.5
5 to 10 in steps of 1 | DNA AO + DNA DIFF |
Tables I: Expressions and probabilities for nodes that underlie the main BN in Figure 8

<table>
<thead>
<tr>
<th>Node</th>
<th>Categories</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA IN</td>
<td>interval node; from -inf to -1.5 then from -1.5 to 3 in steps of 0.1 then from 3 to 4 in steps of 0.5</td>
<td>Input node</td>
</tr>
<tr>
<td>Proportion of hand/surface contacted</td>
<td>interval node; from 0 to 1 in steps of 0.1</td>
<td>uniform prior</td>
</tr>
<tr>
<td>DNA available to transfer log10(ng)</td>
<td>interval node; From -inf to -1.5 From -1.5 to 3 in steps of 0.1 From 3 to 4 in steps of 0.5</td>
<td>DNA IN + log(_{10}) (Proportion)</td>
</tr>
<tr>
<td>Vigour of contact with target surface</td>
<td>Passive Pressure Friction</td>
<td>Uniform Prior</td>
</tr>
<tr>
<td>Nature of shedding surface</td>
<td>Hand Smooth Rough</td>
<td>Uniform Prior</td>
</tr>
<tr>
<td>Nature of Hand</td>
<td>Hand</td>
<td>Uniform Prior</td>
</tr>
</tbody>
</table>
Tables 2: Expressions and probabilities for nodes that underlie the main BN in Figure 9

<table>
<thead>
<tr>
<th>Node</th>
<th>Categories</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>target surface</td>
<td>Smooth</td>
<td>Rough</td>
</tr>
</tbody>
</table>
| Transfer proportion | interval node; from 0 to 1 in steps of 0.05 | B(0.89, 2.25) if Surface= Rough/Hand & Vigour= Passive
B(0.49, 24.11) if Surface= Smooth & Vigour= Passive
0.33B(0.77, 1.45) + 0.67B(1, 1) if Surface= Rough/Hand & Vigour= Pressure
B(0.47, 30.85) if Surface= Smooth & Vigour= Pressure
0.2B(0.7, 1.64) + 0.8B(1, 1) if Surface= Rough/Hand & Vigour= Pressure
B(0.45, 1.13) if Surface= Smooth & Vigour= Friction |
| DNA deposited on target surface log10(ng) | interval node; From -inf to -1.5
From -1.5 to 3 in steps of 0.1
3 to 4 in steps of 0.5 | DNA available to transfer + log10(Transfer proportion) |
| Days between both transfers or transfer and recovery | interval node; 0, 0.5 then 1 to 31 in steps of 1 | Uniform Prior |
| Environmental condition of target surface kept in | Favourable
Poor | Uniform Prior |
| alpha 2 | -0.052
-0.022 | 1 if Environmental is poor, 0 otherwise
1 if Environmental is favourable, 0 otherwise |
| DNA persisting on target surface (ng) | interval node;
0 to 0.1 in steps of 0.01
0.1 to 1 in steps of 0.1
1 to 5 in steps of 0.5
5 to 10 in steps of 1
10 to 25 in steps of 5
25 to 1000
1000 to inf | $10^{DNA deposited} \cdot e^{alpha2 \cdot Days}$ |
| DNA OUT | interval node;
0 to 0.1 in steps of 0.01
0.1 to 1 in steps of 0.1
1 to 5 in steps of 0.5
5 to 10 in steps of 1
10 to 25 in steps of 5
25 to 1000
1000 to inf | log10(DNA persisting) |
Tables 3: Expressions and probabilities for nodes that underlie the main BN in Figure 10

<table>
<thead>
<tr>
<th>Node</th>
<th>Categories</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA (ng)</td>
<td>interval node; 0 to 0.1 in steps of 0.01, 0.1 to 1 in steps of 0.1, 1 to 5 in steps of 0.5, 5 to 10 in steps of 1, 10 to 25 in steps of 5, 25 to 1000, 1000 to inf</td>
<td>Input node</td>
</tr>
<tr>
<td>Match Probabilities</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>DNA Matching (ng)</td>
<td>interval node;</td>
<td>DNA (ng) if Match Probabilities true, 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 in steps of 0.01</td>
<td>DNA (ng) if Match Probabilities false, 0 otherwise</td>
</tr>
<tr>
<td></td>
<td>0.1 to 1 in steps of 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 5 in steps of 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 to 10 in steps of 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 to 25 in steps of 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 to 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000 to inf</td>
<td></td>
</tr>
</tbody>
</table>

Tables 4: Expressions and probabilities for nodes that underlie the main BN in Figure 11
Appendix 2: Further studies which would assist in answering questions of transfer mechanism

It is important that the studies reflect as much casework circumstances as possible: studies that try and maximise transfer cannot be used for casework purposes. Data collection and data treatment should also reflect casework procedures. Here, we have used data where quantity of DNA was available. What would be ideal is to report the quantity of DNA relative to each contributor. This can be estimated by combining the quantity and the relative contribution of the persons to the mixture (such as in [41]). Through this work we have identified a number of studies which would assist in evaluation of evidence in light of propositions that suggest differing DNA transfer mechanisms. We collectively provide the list below:

1. Trialling extraction efficiencies at low DNA levels. The study of Butts [28] trialled DNA amounts from 24ng to 4800ng.
2. Trialling of different extraction techniques not tried in the Butts [28] study. Note that some information to this effect can be found in [29].
3. Taking into account the nature of the surface type the DNA has been placed on when considering DNA persistence.
4. Investigation into different environmental conditions (e.g. rain, washed, full sun, etc) on DNA persistence.
5. More data to confirm the DNA persistence rates found in Raymond et al. [32].
6. Data on DNA persistence of DNA on objects after extended handling by other individuals (of which some work has been done in [34]), or from physical movements after initial deposition.
7. Data on DNA persistence in standard exhibit packaging
8. Shedder consistency studies, i.e. whether an individual sheds DNA consistently in the upper or lower quantiles of the population shedding distribution and whether this is noticeable through events such as washing or sweating. Studies could extend to a standard method for determining the approximate shedding propensity of an individual for use in primary vs secondary transfer considerations.
9. A study of how the amount of time an object is held affects the amount of DNA transferred. To date we have found such information in [47] for hand to hand transfers only by length of handshake.
10. A study of the absolute amount of DNA transferred from hands to objects for different contact types e.g. light touch, pressure, friction (i.e. so that data from multiple studies does not need to be combined and extrapolated as we have done here).

11. Consideration of the amount of DNA transferred to object from a habitual use e.g. items in the home. Some work has been done in this area, such as [50].

12. Transfer DNA amount for varying length of time of contact between primary and secondary substrates and for different contact types.

13. A study into the level of transfer from hand-to-hand for various contact types (e.g. handshake, high-five, clasping, struggling) for different times of contact and the persistence of DNA on hands through various timeframes and activities.

14. The levels of background DNA (i.e., not from known users) on various items.

15. The levels of primary user’s DNA on regular use items such as furniture or objects around the home or office.

16. A study into the accumulation of contact DNA on items resulting from multiple contacts from the same person.

17. All studies used in the construction of the BN in this paper concentrate on DNA amount. The rate of degradation across the profile may also have some power to distinguish factors involved in transfer, persistence and recovery (particularly persistence). There are a number of experiments, that would be worthy of study in this area. For those experiments that have already been carried out (many of which we reference) the data already exists, it just requires analysis of a different measured variable.