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Abstract

The inherent complexity characterizing production and/or service net-
works strongly favors decentralized and self-organizing mechanisms to
regulate the flows of matter and information in circulation. This ba-
sic observation motivates us to study the flow dynamics in queueing
networks roamed by autonomous agents which, at a given time and at
a given vertex location, select their routing according to (individual)
historical data (such as waiting times) collected during their past pro-
gression in the network. For several simple network configurations and
despite the intrinsically non-Markovian character of the dynamics, we
are able to discuss analytically the emerging collective dynamics that
such a circulation of autonomous agents generates. Feedback loops in
the network topology coupled with the presence of delays in the rout-
ing selection mechanisms produce a wealth of dynamical phenomena
like self-sustained generically stable oscillations, spatio-temporal pat-
terns, stabilization by noise phenomena and oscillator synchronization
that are explicitly discussed in this paper.
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1 Introduction

The optimal control of the flow dynamics of matter, information and
money feeding complex network structures is a classical topic in op-
erational research. This general problem arises naturally in several
strategic areas such as production/supply chains, passengers and cargo
transport and computerized communication systems. The flow dy-
namics depend jointly on the routing rules defining the ways the flows
are dispatched at the network vertices and on the server dynamics
which process the various items in circulation. Due to stochastic cus-
tomer demands, to fluctuations in the raw material supply chains, to
failures arising in the production devices, to uncertainties in opera-
tor availability and to ubiquitous financial volatility steadily affect-
ing optimization objectives, the flow dynamics are always affected by
random fluctuations. The need to model, to study and to quantify
the characteristics of such complex stochastic dynamics has strongly
stimulated development of queueing networks (QNs) theory. Nowa-
days, the QNs theory offers a wealth of reliable mathematical tools
for calculating most relevant performance measures of such dynam-
ics. The basic hypothesis behind any QN modeling is the possibility
to describe the underlying dynamics by general Markovian processes.
When this is realized, very general results (pioneered by the widely
known Jackson factorization theorem) are available to characterize
stationary flow regimes, [5, 28, 33], and, hence, stationary performance
measures. Imposing such a Markovian character obviously limits not
only the dynamics of the servers but also lays down strong restric-
tions on the allowable routing rules followed by the circulating items.
In the present paper, we will study networks for which the Marko-
vian character of the dynamics has to be abandoned. More precisely,
the non-Markovian features will originate from the routing decisions
which will be based on the items’ individual experiences collected dur-
ing their journey through the QNs (i.e. we will speak of history-based
(HB) routing laws). The presence of memory mechanisms in routing
decision rules explicitly precludes the Markovian character of the un-
derlying dynamics and this opens wide the door for the emergence of
entirely new dynamical features. More particularly, the very existence
of stationary regimes can no longer be taken for granted when HB rules
are implemented. As we will see, the joint presence of feedback loop
topology in the QNs (i.e. possibilities of flow re-injections) and HB
routing decisions is responsible for the emergence of spatio-temporal
patterns in the flow dynamics.

In general, numerous HB routing rules are possible. In this paper
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we will focus on situations where the time spent in specific sections of
the QNs will be the criterion used to select a specific route on which to
engage at a bifurcating node of the network. Implicitly, such waiting
time criteria require a real-time capability for each circulating agent1

to monitor, to memorize and then to process data to ultimately form
a routing decision. As a direct consequence, one realizes that we ac-
tually deal with QNs roamed by autonomous, decision making (i.e.
intelligent) agents, with stigmergic2 mutual interactions.

Networks in which HB routing decisions are present can be easily
identified in various important contexts such as transportation (pedes-
trian, car, train and air traffic issues), production and supply chains,
leisure and hospitality (theme parks, ski resorts, hotels and food indus-
try management) and health care management. Despite this wealth
of applicability, the literature devoted to formal models studying the
flow dynamics involving HB routing rules remains so far rather scarce.
Obviously, this is partly due to the technical difficulties inherent in
the non-Markovian and nonlinear features of the underlying dynam-
ics. Nevertheless, several recent illustrations where directly related
(yet mostly experimental) situations can be pointed out.

a) Leisure and Hospitality. In [4], the influence of waiting
time on the satisfaction and loyalty of customers using recurrent
services is exhibited and explicitly studied. More particularly,
following a survey conducted in the medical care industry (which
is in many aspects in close connection with the hospitality busi-
ness sector), contribution [4] aims to investigate how customers
use their waiting time satisfaction in order to determine whether
to remain loyal (i.e. they will come back for future services) or
alternatively to change their service provider. As discussed in
[21], the waiting time also influences significantly the satisfac-
tion and return decision of customers visiting fast-food facilities.
General models of recurrent services where customer short-term
satisfaction is driven solely by the perceived waiting time while
queueing are presented in [12, 31, 32]. In complete analogy with
the present modeling framework, customers base their service
quality measure on the waiting time and will adapt their visit
frequency to that particular measure. The models introduced in
[12, 31, 32] find natural applications in sports clubs, supermar-

1From now on, we will speak of agents, items and customers interchangeably.
2stigmergic qualifies indirect communication in a self-organizing system where individ-

ual parts (here the circulating items) interact with one another by modifying their local
environment (here the environment is basically the queue length).
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kets and internet access management. The theme park industry
is another sector to which the models presented in this paper
are closely related, [15, 16, 17]. Roughly speaking, customers
will decide to line up again for a new run at the same attrac-
tion after an exciting roller-coaster ride providing their waiting
time remains acceptable for them. Ski traffic management of-
fers another world-wide illustration where customer satisfaction
and hence future (HB) routing decisions are directly related to
suffered waiting time, [26]. Indeed, the waiting time spent at a
ski lift clearly affects the customers’ future decision on change
of slope or not. Note that, throughout the present paper, only
the last recorded waiting time will be used as a routing decision
criterion. Relaxing this assumption by, for instance, allowing the
customers to use the information collected during their succes-
sive visits to a server is also relevant. A first study including this
feature is proposed in [9].

b) Supply Chains and Production Management. The need,
in supply chain management, for coordination strategies leading
to adaptive, flexible and collective behaviors motivated a recent
contribution proposed by A. Surana et al. [29], in which the
authors show how a coherent global behavior can be generated
by using only elementary components with local interactions.
This paper explains how basic concepts and operational tools of
Complex Adaptive Systems (CAS) fit naturally and efficiently for
characterizing the supply chains dynamics. In this context, con-
tributions [19, 29] expose the dynamics of simple QNs for which
feedback loops and delays coexist and yield temporal oscillations
of queue contents. Originally introduced in the framework of
telephone switching systems [7], these particular QNs have been
further applied in the context of supply chains in [19, 29]. Note,
however, that, contrary to the waiting time criterion to be stud-
ied in the present paper and which mostly characterizes leisure
and hospitality systems, the HB features in [7, 19, 29] are due to
HB changes of the agents’ priority status in re-entrant queueing
systems. The relevance and legitimacy of CAS in logistics, as
well as their practical implications, have been recently strongly
emphasized in [14, 35]. The actual impact of decentralized man-
agement and of the resulting self-organization on process and
product quality is adressed in [24].

In close connection to actual production issues, let us also men-
tion the recent contributions devoted to Real-Time Queueing
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Systems (RTQS), [3, 6, 22]. Unlike standard queueing theory,
RTQS focus on the ability of a queue discipline to meet pro-
duction task timing requirements, for instance the distribution
of lateness. In the RTQS described in [22], each incoming task
in a queueing system is endowed with a due date before which
it has to be completed. To reduce the potential lateness, a dy-
namic scheduling policy in which waiting tasks are placed by
decreasing leadtime (i.e. the more urgent being the closest to
the server) is implemented. This dynamical scheduling rule can
be viewed as a special illustration of HB routing. Indeed, this
Earliest-Deadline-First priority rule implies that each incoming
task triggers a rearrangement (i.e. a real-time routing) depen-
dent on the waiting history of all tasks present in the queue.

Finally, contributions [18, 34] discuss network configurations where
the joint effect of non-linearities and delays affects the underlying dy-
namics, thus showing similar features with our present study. Both
in [18, 34], the dynamics exhibit, not surprisingly, an oscillatory be-
havior. However, while the delay is, in our work, self-induced by the
agents themselves, the delay is produced by an external source in
[18, 34].

Our paper is organized as follows. In section 2, we introduce the
constitutive elements, namely a feedback loop and HB routing mech-
anism, to show how stable temporal oscillations can already be gen-
erated in such a simple QN. In sections 3 and 4, we analyze more
complex networks involving two servers with feedback loop topology.
The open network considered in section 3 studies the traffic load par-
tition between two parallel servers. The closed network of section 4
idealizes the quality of service competition which arises between two
service providers.

2 Single Feedback Loop - Siphon Dy-

namics

The simplest possible network composed of a single queue with the
presence of a feedback routing node is sketched in Fig. 1. An in-
coming flow of customers, described by a renewal process with mean
inter-arrival time 1

λ
and probability distribution A(x) with density

dA(x), is served by a processing unit whose service times are i.i.d.
random variables with mean 1

µ
, probability distribution B(x) and den-

sity dB(x). Accordingly, the parameters λ and µ are respectively the
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Figure 1: A single stage queueing system with feedback loop.

incoming and service rates of the renewal processes. We assume that
the distributions A(x) and B(x) have finite moments. Here, we sup-
pose that the traffic intensity ρ = λ

µ
< 1 ⇔ λ < µ, which ensures the

stability of the queueing system in absence of feedback loop. Assume
also that the waiting room capacity is unlimited and that the service
discipline is first-in-first-out (FIFO). After being served, the routing
of each customer at the QN decision node n will be either:

i) to leave the system definitively

ii) to follow the feedback loop and line up again to be served
once more.

Several well-known contributions [2, 25, 30] consider the situation aris-
ing when the decision between the choices i) and ii) is taken ran-
domly. When this is the case, by imposing a stationary flow balance
(i.e. incoming equals outgoing flow), the system is driven into a self-
consistent stationary regime. As we will now see, such purely sta-
tionary flows strongly differ from the queue dynamics observed when
“intelligent” agents, able to base their routing on historical data - (here
the time spent while queueing and being served), circulate in the net-
work. Specifically, following [8], assume now that each customer is
able to record the total waiting time W he spent to receive service
(i.e. W is the sum of queueing and processing times; in queueing the-
ory, W is commonly known as the sojourn time). Assume further that
W controls the routing decision between the alternatives i) and ii),
namely the following HB routing rule R is implemented:

R =

{

follow alternative i) if W > P,

follow alternative ii) if W ≤ P,
(1)

where P is called here the patience parameter of the agents in circula-
tion. When alternative ii) is chosen, we will speak of loyal customers,
as the agents are pleased with the server and then return to it for
another service. Note that the flow of customers taking the feedback
loop is added to the flow of fresh customers entering the system (with
rate λ). We assume that, when joining the queue, a loyal customer
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behaves as a fresh customer (i.e. only the last recorded sojourn time
will be determining for its routing at node n). Note that the routing
is now clearly HB - it is determined by the sojourn time that each
customer spent to be served. Later in this paper, we focus on ho-
mogenous agents for which P is a common value. The underlying
idea behind this type of model is to study how, by modifying the
quality of service - (here the sojourn time), it is possible to enhance
the circulation of loyal customers (i.e. those taking the feedback loop).

As discussed in [8], let us now show that when the circulating items
apply the HB routing rule R stated in Eq. (1) and when P is large
enough, quasi-deterministic cyclo-stationary regimes emerge, i.e. sta-
ble temporal oscillations of the queue level Q(t) are observed and this
is independent of the detailed nature of the probability laws A(x) and
B(x). Indeed, despite the presence of the fluctuations, this robust
and quasi-deterministic behavior is directly reminiscent from the law
of large numbers. The importance of the relative fluctuations around
the associated average sojourn time 〈W 〉 (which is the sum of in-
dividual processing times) decreases for large queue content Q(t) (a
quantitative characterization is given in [8]). Accordingly, for large
P , the dynamics can be discussed via a deterministic approach (in-
volving a constant service time 1

µ
), [8, 13]. Hence, for a given queue

length Nc and a given corresponding patience parameter P = Nc

µ
, an

incoming tagged customer (called C from now on) lining behind Nc

other customers, will, when reaching node n, choose the alternative i)
(i.e. leave the system). Indeed, for such a deterministic regime, the
measured total waiting time W = Nc

µ
+ 1

µ
> P . However, before C

makes its way through the queue and reaches the node n, the queue
content Q(t) still increases at the (deterministic) rate λ (as nobody
leaves the system during this time interval), implying a delay mecha-
nism in the draining of the queue content. As soon as C reaches n, and
thus leaves the system, a second dynamical phase is triggered. During
this second phase, the customers arriving immediately after C do also
experience a waiting time exceeding P and hence will also leave the
system. As λ < µ, the queue population Q(t) decreases during this
second dynamical phase and the depletion lasts until a satisfied cus-
tomer (and hence his immediate successors) reach the node n. When
this happens, the first dynamical phase starts again and Q(t) fills up
at rate λ. The alternation between these two dynamical phases pro-
duces a cyclo-stationary behavior whose very existence is entirely due
to the elementary “intelligence” attached to the circulating agents -
elementary “intelligence” being here due to the capability to monitor
and to memorize the time while queueing and to take an individ-
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ual routing decision accordingly. It is enlightening to visualize the
queue dynamics by using the hydrodynamic analogy sketched in Fig.
2. Indeed, one can convince oneself that the time-dependent queue

Figure 2: Hydrodynamic analogy. A. The agent entering at t0 is the first one of a whole
cluster U of unsatisfied customers and triggers the alternation of Q(t) from the increasing
to the decreasing state at t0 + P . The last agent belonging to the cluster of unsatisfied
customers U is the one entering just before t1 and triggers the switch of Q(t) from the
decreasing to the increasing state at t1 +P. This simple delay dynamic repeats and creates
stable oscillations. B. The “Tantalus glass” siphon model. The queue length corresponds
to the water level Q(t). The inflow and outflow rates are λ respectively µ. The siphon
leaves a water residue of height Pλ due to the constant inflow during P . The effective
siphon length is Pµ.

content level is fully analogous to the liquid oscillations arising in a
self-siphoning “Tantalus glass” (sketched in the right of Fig. 2). In
addition, for large P , the purely deterministic context ensuing from
the law of large numbers enables an elementary derivation of both the
amplitude ∆ and the period Π of the queue population. Following [8]
for further analytical details, we obtain (see also Figs. 2.A and 2.B):

∆ = P µ, (2)

Π = P

[

2 +
λ

µ − λ
+

µ − λ

λ

]

(3)

and provided P >> max
(

1
λ
, 1

µ

)

both Eqs.(2) and (3) are in perfect

agreement with simulation experiments (see Fig. 3), as discussed in
[8, 13], and this for any possible choice of the probability distributions
A(x) and B(x). As shown in Fig. 3, the influence of the law of
large numbers explicitly grows as P increases and causes the curves to
become smoother and (quasi-)deterministically periodic with growing
P .
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a) b)

c) d)

Figure 3: Queue Length oscillations obtained by simulationFigure 3: Queue Length oscillations obtained by simulation

Figure 3: Queue Length oscillations obtained by simulation Figure 3: Queue Length oscillations obtained by simulationFigure 3: Queue Length oscillations obtained by simulationFigure 3: Queue Length oscillations obtained by simulation

Figure 3: Queue Length oscillations obtained by simulation for exponentially distributed
inter-arrival and service times with λ = 0.1, µ = 1 and a) P = 50, b) P = 100, c) P = 200,
d) P = 350. These simulated behaviors (and more precisely the influence of the law of
large numbers, which is increasing with P ) remain qualitatively the same for any other
possible inter-arrival and service times probability distributions.

3 Parallel Feedback Loops

Let us now increase the complexity of the QN and pay attention to the
configuration D, formed by a dipole of feedback queues, as sketched
in Fig. 4. Two feedback queueing systems of the type introduced in
section 2 are placed in parallel. The total incoming external customers
feeding this system is a renewal process with rate Λ. At a first decision
node (DN) ne (where e stands for entry), the agents face two routing
possibilities: to either join server Su, or to join Sd. In front of Su

and Sd, the agents wait in queues whose respective contents will be
denoted by Qu(t) and Qd(t) (from Fig. 4, the indices u and d stand for
up and down respectively). We will write by µu and µd the respective
service rates of Su and Sd. The capacities of both queues Qu(t) and
Qd(t) are assumed to be unlimited and the service policy is FIFO.
The presence of the feedback loops introduces two DN’s nu and nd.
As in section 2, at nu and nd the decision to enter into the feedback
loop depends on the sojourn time W individually measured by each
customer. In the following, we will separately consider three typical
scenarios depending on the agents’ ability to gather information.
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Figure 4: A bifurcation of queueing systems with feedback loop.

3.1 Fixed entrance dispatching rule

Let us start with blind agents only being able to record the total wait-
ing time spent to receive service (i.e. queueing + processing times) but
unable to observe the contents Qu(t) and Qd(t). Hence, in this case,
the routing decision at node ne does not depend on agents’ “intelli-
gence” and an incoming customer selects between Su and Sd by using
either a deterministic or a random rule, independent to the content of
Qu and Qd. Typical dispatching rules can be:

i) Deterministic polling . In this case, the time horizon is di-
vided into deterministic intervals Tu and Td during which Su and
Sd respectively are alternatively fed with the total incoming traf-
fic Λ. The conditions ρu = Tu

Tu+Td

· Λ
µu

< 1 and ρd = Td

Tu+Td

· Λ
µd

< 1
ensure the stability of the system. In view of section 2, it is not
surprising that stable oscillations of the queue contents will, here
again, be observed. However, instead of being smooth, the alter-
native feeding of the servers creates indentations in the time evo-
lutions of Qu and Qd. The frequency of the alternations, given
by Tu and Td, determines the indentation structure. Qualita-
tively, increasing the frequency of the alternations does decrease
the roughness of the curve. For large P , the amplitudes and
frequencies of the two decoupled oscillations can be determined
using Eqs.(2) and (3) with the parameters µu, λu = TuΛ

Tu+Td

on

one hand and µd, λd = TdΛ
Tu+Td

on the other hand. This is in
perfect agreement with the simulation experiments given in Fig.
5.
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Qu(t) Qd(t)

Figure 5: Deterministic polling entrance rule: queue length indented oscillations obtained
by simulation for exponentially distributed inter-arrival and service times with Λ = 0.2,
µu = 1.25, µd = 1, Tu = 200, Td = 300 and P = 350.

ii) Random dispatching rule . Here, we typically consider
a Bernoulli sampling of the incoming flow, where the Bernoulli
random variable is determined by a parameter r, (0 ≤ r ≤ 1).
A partial traffic with rate rΛ enters into server Su while a traf-
fic with rate (1 − r)Λ enters into Sd. The Bernoulli sampling
implies that both systems Su and Sd evolve independently and
individually follow the dynamics exposed in section 2. For large
P , two decoupled, quasi-deterministic cyclo-stationary oscilla-
tions whose amplitudes and frequencies were determined by us-
ing Eqs.(2) and (3) with parameters µu, rΛ and µd, (1 − r)Λ
respectively.

3.2 Entrance dispatching based on partial ob-

servation of the queue contents - Noise induced

stabilization

Besides chronometers to record W , each customer is now endowed
with a “visual system” enabling him to observe, in real-time, the in-
stantaneous queue content Qu(t). Assume however that Qd(t) always
remains hidden to the incoming agents, although they do know the
average service rate µd. At time t, an incoming agent at node ne

first observes the queue content Qu(t) and, based on his observation,
decides either to enter Su or to join Sd. Once entered into a queue,
neither reneging nor jockeying (i.e. jumping between Su and Sd) is
allowed. Note that except for the presence of feedback loops, this
network configuration is fully similar to the two gas stations network
studied in [10]. Recall that in this contribution, two gas stations are
located one after the other on a main road. A driver who needs to
refuel is only able to observe the queue length Qu(t) at the first station
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(which would be here Su). Then, he compares Qu(t) to the conditional
expected queue content at the second station (here Sd) and decides
either to enter into the first station or to postpone his refueling and
enter into the second one.

Returning to our present model, we assume from now on that an
incoming agent decides:

a) either to enter Su whenever Qu(t) strictly stays below a thresh-
old value N∗ (i.e. when Qu(t) < N∗)

b) or to enter into Sd otherwise.

At the DN’s nu and nd, the routing rules depend, as in section 2,
on a patience parameter P which is again assumed to be common
to all agents. Assume that the patience P and the threshold control
parameter N∗ are adjusted as:

P ≥
N∗ + 1 + δ

µu

, δ ∈ N
+, (4)

where δ denotes a tolerance level above the expected sojourn time. We
can interpret (further details are given below) the routing decision at
nu to be a formal illustration of the H. Maister’s first principle of the
psychology of waiting lines [23], namely: “Satisfaction equals percep-
tion minus expectation”. Indeed, at the DN ne, the level N∗ defines,
via P as given by Eq.(4), an expected admissible sojourn time. Later,
when reaching nu, each agent compares his measured sojourn time
(playing the role of the perceived sojourn time) with P (playing the
role of the expected sojourn time) and then takes his routing decision.

Consider first the deterministic dynamics where Su operates with a
fixed service time 1

µu
. When, at a given time t, Qu(t) = N∗ agents are

waiting in front of Su, they will remain loyal to Su forever (i.e. these
agents will loop forever and ever). Indeed, their measured sojourn
time W never exceeds P and, the dynamics being deterministic, no
perturbation will alter this dynamically “frozen” situation. As a re-
sult, once Qu(t) ≡ N∗, the server Su remains definitively unavailable
for any external incomer and the global incoming traffic with rate Λ
is entirely dispatched to Sd. Whenever Λ

µd
> 1, the queueing system

will thus be unstable (i.e. limt→∞ Qd(t) = ∞). Assume now that
random fluctuations affect the service times of Su. While Eq.(4) is
still satisfied on average, service time noise triggers, at node nu, a
random flow of unsatisfied customers, who will definitively leave the
system. Hence, with the presence of noise (in the service time), the
availability (for external traffic) of Su effectively increases - remember
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that this availability is null in absence of noise. Consequently, part
of the global incoming traffic is now processed by Su. For a selected
range of control parameters, we may simultaneously have:

ρu =
αΛ

µu

< 1 and ρd =
(1 − α) Λ

µd

< 1, 0 ≤ α ≤ 1, (5)

where αΛ and (1 − α)Λ stand for the stationary average rates of the
partial traffic flows feeding Su and Sd, (α ≡ 0 corresponds to the
purely deterministic case considered before). Whenever Eq.(5) holds,
both queueing branches are dynamically stable. The previous quali-
tative reasoning suggests that it exists a critical variance σ2

u,c of the
service times of Su (and hence a critical value αc) such that:

a) for σ2
u ≥ σ2

u,c, the queueing system is stable.

b) for σ2
u < σ2

u,c, the queueing system is unstable.

Hence, we can speak here of a noise-induced stabilization of the dy-
namics, which is studied below in more details both experimentally
and analytically.

3.2.1 Experimental observations.

The above dynamical behavior can be explicitly observed in simulation
experiments where the incoming flow of customers is an exponential
process with parameter Λ and the Su service times are drawn from a
probability density dBu(x) being:

i) uniform with support
[

1
µu

− ξ, 1
µu

+ ξ
]

with ξ ≥ 0 (thus σ2
u =

ξ2

3 ). The following numerical values were used: Λ = 1.11, 1
µu

=
1
µd

= 1, N∗ = 28 and P = 30 (i.e. δ = 1 in Eq.(4)). We observe

that for ξ ≥ 0.118 ⇒ σ2
u,c ≥ 0.0046, the queueing system remains

stable, while it becomes unstable (i.e. limt→∞ Qd(t) = ∞) for
smaller values of ξ.

ii) a Normal law N ( 1
µu

, σ2
u). For the same numerical values as

above, we observe that for σ2
u ≥ σ2

u,c = 0.0046, the queueing
system remains stable, while it becomes unstable for σ2

u < σ2
u,c.

3.2.2 Analytical approach.

To analytically discuss the stability issue, let us consider the situa-
tion where the service times of Su are independent Bernoulli random

variables with values
{

1
µu

, 1
µ+

}

and corresponding probabilities (1−q)

and q respectively, 0 ≤ q << 1. We assume that µ+ < µu and inter-
pret 1

µ+ (with 1
µ+ > 1

µu
) as the effective service time occurring when a
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failure alters the ordinary behavior of the server Su. Remember that
the agents follow the FIFO rule and are homogenous in their patience
parameter P , chosen here to fulfill:

P <
N∗

µu

+
1

µ+
and P >

N∗ + 1

µu

, (6)

where the second expression is actually Eq. (4) with δ = 1. When,
at a given time t, Qu(t) ≡ N∗ − 1, an incoming tagged customer C at
DN ne will decide to enter Su. Later on, when C reaches nu, he will,
according to Eq.(6), choose:

a) either to follow the feedback loop, whenever no failure oc-
curred during the service of the N∗ customers who were directly
in front of him (including the customer who was served when C
joined Qu(t)) and during his own service

b) or to leave the system, whenever one or more failures occurred
during the service of the N∗ customers who were directly in front
of him and during his own service.

Hence, in absence of failures and when Qu(t) ≡ N∗, the agents will
remain in the feedback loop forever and, at DN’s ne and nu, neither
an externally new incomer nor a leaving customer will be observed.
However, as soon as failures occur in Su, Eq.(6) implies that one or
more customers will definitively leave the system after the decision at
nu. Hence, this implies that the global incoming traffic will now be
shared between Su and Sd. Assume that:

µd < Λ ⇐⇒ ρd =
Λ

µd

> 1. (7)

Thus, Sd cannot sustain alone the full traffic load without being in an
unstable regime (ρd > 1 ⇒ limt→∞ Qd(t) = ∞). Remember that αΛ
and (1−α)Λ denote the rates of the average partial traffics processed
by Su and Sd respectively. It exists a critical incoming flow, defined
by (1−αc)Λ, above which the queue Qd(t) becomes unstable. For the
associated traffic intensities, this implies that:

ρu =
αΛ

µu

< 1 and ρd =
(1 − α)Λ

µd

< 1, ∀α > αc, (8)

ρd,c =
(1 − αc)Λ

µd

= 1, (9)

where ρd,c is the critical traffic load driving the queue Qd(t) to its
marginal stability regime.

To proceed further with analytical considerations, let us now focus
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on rare events regimes (RER), for which more than a single failure
during N∗ + 1 consecutive ordinary services is a highly improbable
event. As N∗ is the threshold value governing the decision at node
ne and P fulfills Eq.(6), the RER is expected when N∗ + 1 << 1

q
.

Under the RER, each failure triggers the drainage of the queue Qu(t).
Indeed, due to the FIFO scheduling rule, when a failure occurs at time
t, the last agent in Qu(t) will experience a sojourn time larger than P

when arriving at nu. So will also do the N∗ − 1 agents directly lining
behind him (i.e. these are the loyal customers traveling in the loop
and feeding Qu(t′) for t′ > t). As it has been discussed in section 2,
this produces a siphon avalanche, here of size N∗. In the RER, the
succession of these siphon events will be approximately uncorrelated.
Hence, in the stationary regime, we can simply estimate the outgoing
flow rate λu at DN nu as being given by:

λu = Prob {a single failure occurs}N∗µu = qN∗µu. (10)

When Eq.(10) holds, the partial traffic on Sd is given by:

ρd =
λd

µd

=
Λ − λu

µd

=
Λ − qN∗µu

µd

. (11)

The marginal stability of queue Qd(t) is attained at the critical traffic
ρd = ρd,c = 1, which implies:

q ≥ qc :=
Λ − µd

N∗µu

. (12)

In terms of αc, we can write:

αc = 1 −
µd

Λ
. (13)

Finally, we can also express the stability condition given by Eq.(12) in
terms of the critical variance σ2

u,c of the underlying Bernoulli random
variable. We obtain:

σ2
u ≥ σ2

u,c = qc(1 − qc)

(

1

µ+
−

1

µu

)2

. (14)

The numerical experiments reported in Tab. 1 are in perfect agree-
ment with Eqs.(12) to (14).

While the concept of stabilization by noise is currently discussed in
the context of stochastic differential equations [1, 11, 27], the present
class of models exemplifies clearly that such a random stabilization
can be encountered in multi-agent systems where a non-linearity (in
our case, the feedback loop) is present.
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Global incoming Simulated stability Simulated stability

traffic Λ condition on q condition on σ2
u

1.05 0.0017 0.00075
1.1 0.0034 0.0015

Table 1: Stability conditions obtained when using a discrete events simulator with the
following parameters: N∗ = 28, 1

µd

= 1

µu
= 1, 1

µ+
= 3 and P = 30. No discrepancy

between simulated and theoretical results have been observed up to the shown precision.

3.3 Flow dispatching based on fully observ-

able queues - Synchronization of oscillations

Here, we assume that both queues Qu(t) and Qd(t) can be observed
simultaneously by the incoming agents. Thus, compared with sec-
tion 3.2, the information gathering process has been further increased.
Based on the queue contents, several dispatching policies at the DN
ne can be constructed. Among the simplest and most natural rules,
let us here focus on the policy sending a new externally incoming
customer to the shortest observed queue. This Shortest-Queue-First
(SQF) rule implies the natural emergence, for large common patience
parameter P , of synchronized stable temporal oscillations of the queue
contents Qu(t) and Qd(t). This happens for any initial conditions of
the queue populations. As before, when P is large and common to
all agents, a purely deterministic approach is perfectly suitable. We
assume that Λ

µu+µd

< 1 to ensure the stability of the system. Let us

consider, without loss of generality, that 1
µu

≥ 1
µd

. The two following
cases may arise:

1) Non-generic case : two identical servers (i.e. 1
µu

= 1
µd

).
The total incoming traffic is evenly divided between the two
servers, both receiving a partial traffic with rate Λ

2 . The am-
plitude and period of the common synchronized stable temporal
oscillations of the queue contents Qu(t) and Qd(t) are given by
Eqs.(2) and (3) with parameters Λ

2 and µ.

2) Generic case : two servers with service rate ratio 1
µu

> 1
µd

.
Even though the servers do not work at the same speed, the
queue contents Qu(t) and Qd(t) are equal at any time, provided
Λ
µd

> 1 (i.e. provided Sd is not able to handle alone the total in-
coming flow). The greater speed of Sd implies that the customers
joining this server will remain satisfied for a longer queue length
than with Su. As a consequence of the SQF rule, there will be
more unsatisfied customers with server Su and this server will
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thus process a greater part of the global incoming traffic than Sd

(i.e. Su will absorb more fresh customers, but these customers
will stay less time in the system than those joining Sd). As shown
in Fig. 6, two distinct dynamics may emerge depending on the
arrival and service rates.

a) b)

Figure 3: Queue Length oscillations obtained by simulationFigure 3: Queue Length oscillations obtained by simulation

A

B

C

A

B

= 2500 and the inter-arrival and service processes are expon

B

Figure 6: The SQF policy implies that 0 ≤ |Qu(t)−Qd(t)| ≤ 1, ∀t. Here, we only show the
state of Qu(t) in the above figures. Fig. 6.a): Queue content Qu(t) when P = 2500 and
the inter-arrival and service processes are exponential with parameters Λ = 1.25, 1

µu

= 1.6

and 1

µd

= 1.2. The amplitude and period of the common synchronized stable temporal

oscillations are given by ∆ = Pµd

2
and Π = P

(

µd

µd+µu−Λ
+ µd

Λ−µu

)

respectively. The two

different slopes are given by A = Λ−µu−µd

2
and B = Λ−µu

2
. Fig. 6.b): Queue content

Qu(t) when P = 2500 and the inter-arrival and service processes are exponential with
parameters Λ = 0.9, 1

µu

= 1.6 and 1

µd

= 1.2. The dynamics differs from the case a) by

the presence of a time interval with slope C = Λ

2
. During this interval, customers in Su

and Sd are all satisfied. On the other hand, during the time intervals with slope A and B,
the customers in Su are unsatisfied (the customers in Sd being unsatisfied only during the
interval with slope A). For instance, in the configuration a), all the customers joining Su

are unsatisfied, because Qu(t) always remains above the critical threshold. The complexity
of the dynamics in the case b) requires more involved computations, which precludes to
give simple and compact expressions for the amplitude and the period of the synchronized
oscillations. However, due to the deterministic nature of the dynamics (when P is large),
an analytical characterization is still feasible.

4 Competing Services in Closed Mar-

ket Contexts

Consider the closed network sketched in Figure 7, formed by two feed-
back queue models as discussed in section 2. The servers Sk (k = 1, 2)
composing the network have an average service time 1

µk

, where µk

(k = 1, 2) stand for the service rates. Without loss of generality, we
assume that µ1 ≤ µ2. The total number N ∈ N

+ of agents circulating
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Figure 7: Closed network of two servers with feedback loop.

in the network is fixed and we allow the capacities Ck (k = 1, 2) of both
queues to be large enough to accommodate the entire population (i.e.
one assumes that Ck > N for k = 1, 2). Directly inspired from section
2, each circulating customer is equipped with a clock and monitors its
total waiting time spent to receive service (i.e. its sojourn time) - the
clock is reset to t = 0 each time a customer enters into a queue, the
clock time value Tk is obtained when reaching a node nk (k = 1, 2).
The measured value Tk of each customer is then compared with a fixed
and common to all customers patience parameter P . Thanks to the
time monitoring, the following history-based routing rule R can be
implemented:

R =







Go to the feedback loop and hence go to server Sk if Tk ≤ P,

Avoid the feedback loop and hence go to server S⌈k+1⌉ if Tk > P,

(15)
with the notation:

S⌈k+1⌉ =

{

S1 if k = 2,
S2 if k = 1.

Writing N1(t) and N2(t) = N − N1(t) for the number of customers
(including the one being served) waiting in Q1 and Q2 respectively
and using, as in section 2, a fluid queueing picture to describe the
population dynamics, we can write:
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N1(t) = N1(0) +

∫ t

0
[µ2I(W2(s) ≥ P )I(N1(s) < N) − µ1I(W1(s) ≥ P )I(N1(s) > 0)] ds,

(16)
where Wk(s) is the sojourn time of customers lining in queue Qk. The
function I {E} is the indicator of the event E (i.e. I {E} ≡ 1 when the
event {E} is realized and 0 otherwise). We will assume, from now on,
that P ∈ [Pmin, Pmax] with Pmin being large enough to safely allow,
as in section 2, a deterministic analysis (thanks to the law of large
numbers). In addition we impose that:

µ1 Pmax < N ⇒ N1(0) ≤ N ≤ µ1 Pmax, (17)

which, in view of the rule R stated in Eq.(15), rules out the trivial
situations occurring when all the customers are systematically satisfied
and therefore stay loyal to their initial server.

The total number of customers being fixed, the dynamical state of
the system is entirely determined by the single variable N1(t). While,
for the deterministic evolution, a complete analytical characterization
of the dynamics is possible [20], we present here only the most rel-
evant qualitative features exhibited by this dynamical system. Four
separated regimes, summarized in Fig. 8, can be characterized by the
initial queue content N1(0):

• N -regime: N1(0) ≥ µ1P and N1(0) > (N − µ2P ).

Starting at time t = 0 with N1(0) ≥ µ1P customers lining in
Q1, we conclude that after time t = P , customers reaching the
node n1 will be unsatisfied and therefore leave to populate Q2.
To study the role played by the second condition: N1(0) > (N −
µ2P ) ⇔ (N − N1(0)) = N2 < µ2P , two sub-cases have to
examined:

1) Generic case : µ1 < µ2.

a) When µ2 P > N , the server S2 alone is able to ac-
commodate, with satisfaction, all customers. Consider
the situation where N1(0) customers initially populate
Q1. As N1(0) ≥ µ1P , the first µ1 P customers reaching
the node n1 will be satisfied and therefore return to line
again in Q1. The remaining N1(0) − µ1 P customers,
being unsatisfied, go to line in Q2. At their second visit
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to S1, the µ1 P customers initially satisfied will, when
reaching n1 for the second time, be unsatisfied. Indeed,
they did effectively wait P + N1(0)

µ1
in Q1 to receive their

second service. This mechanism implies that ultimately
all customers leave the first node and populate Q2 and
stay there forever. This behavior can be used to mimic
how a performant service can ultimately monopolize an
entire market sector.

b) In the case where µ2 P ≤ N , the server S2 alone is not
able to accommodate, with satisfaction, all customers.
Hence, temporal oscillations of the queue contents will
be sustained.

2) Non-generic case : µ1 = µ2.
In this case, none of the servers is able to accommodate, with
satisfaction, the entire population. Hence, only oscillating
regimes are generated.

• W-regime: N1(0) ≥ µ1P and N1(0) ≤ (N − µ2P ).

Starting with N1(0) ≥ µ1P customers in Q1 implies that at time
t = P , customers leave Q1 to enter into Q2. Again, to study
the role played by the second condition: N1(0) ≤ (N −µ2P ) ⇔
(N − N1(0)) = N2 ≥ µ2P , two sub-cases have to examined:

1) Generic case : µ1 < µ2.
The second condition stated above implies similarly that, at
time t = P , customers leave Q2 to enter into Q1. Hence,
unsatisfied customers are systematically generated.

2) Non-generic case : µ1 = µ2.
Here, one can show that the queue contents remain constant,
as customers travel from Q1 to Q2 in a similar way, exactly
as they would do in a closed tandem fluid queue without
feedback.

• S-regime: N1(0) < µ1 P and N1(0) ≤ (N − µ2 P ).

Starting with N1(0) < µ1P implies that customers initially in
Q1 are satisfied and stay in that queue. The second condition:
N1(0) ≤ (N − µ2P ) ⇔ (N − N1(0)) = N2 ≥ µ2P implies that,
for t = P , customers in Q2 are unsatisfied and therefore leave to
populate Q1. The discussion of this case is very similar to the N -
regime. Here, however, due to the fact that µ1 < µ2, the server
S2 will never be able to attract the entire market and therefore,
only oscillating behaviors of the queue contents are observable.
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• E-regime: N1(0) < µ1P and N1(0) > (N − µ2P ).

Starting with N1(0) < µ1P implies that customers initially in
Q1 are satisfied and stay in Q1. The second condition: N1(0) >

(N − µ2P ) ⇔ (N − N1(0)) = N2 < µ2P implies similarly that
customers are satisfied and therefore stay in Q2. In this regime,
no exchange of customers is observed and the system effectively
behaves as if it were formed by two independent servers.

Figure 8: Summary of the different regimes obtained in function of the initial condition
and the patience parameter.

Refined analytical results and the rigorous proofs of the above results
rely on taking into account the ability for both servers to be able to ac-
commodate, with satisfaction, the entire customers population. This
can be discussed by introducing the parameter ∆ = N − (µ1 + µ2)P .
For ∆ > 0, a systematic flow of unsatisfied customers will always
be generated. Conversely, when ∆ < 0, distinct regimes from those
previously discussed are triggered, depending on the initial conditions
(this explicit ergodicity violation is due to the intrinsic non-Markovian
property of the underlying dynamics). This competing servers dy-
namics illustrates explicitly how rich spatio-temporal structures can
be generated by HB routing in QNs.
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5 Conclusion and Perspectives

The main stream in queueing networks (QNs) is to consider the cir-
culation of classes of items sharing all the same attributes. In this
context, a single item is fully representative of all the members be-
longing to its class. Our present paper definitely differs from such a
classical point of view and considers the flow dynamics in networks
where each circulating item is an autonomous agent able to adapt its
routing according to historical data monitored during its past jour-
ney through the network. Accordingly, a single circulating item is
not a copy of the others and the resulting dynamics is not covered
by the ordinary tools of QNs theory. Global dynamics of interact-
ing autonomous agents explicitly belong to the vast realm of complex
systems, for which collective properties emerge from the individual
“intelligence” endowed to each agent. The underlying history-based
routing decision mechanism, considered in our paper, violates the basic
hypothesis of classical queueing models. Hence, QNs theory involv-
ing autonomous agents can be viewed as a new topic in itself. While
the generic character and the synergetic modeling potential offered
by agent systems dynamics have already been abundantly explored in
basic sciences (physics, chemistry, biology) and in social sciences (eco-
nomics, finance, psychology, car traffic), it presently remains largely
open for investigations in production and service QNs. With the so-
phistication of production and supply chain facilities, decentralized
management methods relying on autonomous entities imposes itself
as a natural way to explore. In this context, the increasing avail-
ability of RFID (Radio Frequency Identification Devices) technology
offers the possibility for a wide implementation of such local intel-
ligence to circulating items in production and service networks. In
particular, flow control of flexible production systems with complex
structures is gradually decentralized to “intelligent” pallets (i.e. car-
rying units). Ideally, such devices should be able, in real-time, to
select autonomously, according to ad-hoc historical production data
and real-time observations, the best possible routing alternatives. Ob-
viously, the ultimate goal of production and services managers will be
to determine the efficient compromise between pure interventionism
(due to centralized controls) and self-organization (due to the swarm
intelligence of the agents).
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