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A probabilistic approach to evaluate salivary microbiome in forensic science

Abstract

Salivary microbiota profiles may represent a valid contribution to forensic investigation when standard DNA genotyp-
ing methods fail. Starting from questioned and control materials in the form of saliva, the evidence can be expressed
by means of a distance between those materials taking into account specific aspects of the microbiota composition.
The value of the evidence for forensic discrimination purposes is quantified by means of a Bayes’ factor, that allows
one to overcome the major limitations and pitfalls of intuition connected to the use of cut-off values as a mean of
decision.

Key words: Bayes’ factor; Cut-off; Discrimination; Monozygotic twins; Salivary microbiome; Similarity score;
Evaluation of evidence

1. Introduction

The suitability of salivary microbiota composition to support discrimination between closely related individuals
has been investigated in [16]. Microbiota profiles have shown high individuality and stability over time and may
represent a valid and precious contribution for forensic investigations when standard genotyping DNA methods fail
(e.g. due to degraded material or to close relatedness among individuals, such as homozygous twins). Previous studies
have used microbiomes to differentiate an individual from a limited group of people (see, e.g. [6]).

Beta-diversity (8-diversity) indices (such as the Jaccard distance) are commonly used in microbiota studies to
highlight taxonomical differences between pairs of samples [10]. They have been implemented to overcome the
dimensionality problem that renders the quantification of the ressemblance between microbiota profiles problematic.
Their adequacy and feasibility for discrimination between hypotheses of forensic interest have been discussed in [16].

The assessment of the value of a score quantifying the similarity between measurements originating from ques-
tioned material and from control material for discrimination purposes is an open problem, as reiterated by [6]. The
use of a cut-off value against which such score is compared in order to support or even suggest a conclusion regarding
their origin (e.g. whether compared saliva traces originate from the same individual or from closely related individu-
als) is often suggested. Routine examples come mainly from the toxicology domain where a scientist is often asked
to classify a controlled substance in a blood or hair item into a predefined category (e.g. doping athletes, abusive
drinkers, and so on). However, as it will be discussed in Section 5, such an approach presents severe limitations
and leaves the problem of forensic interpretation open. Most importantly, it renders a binary response, no matter the
effective similarity (as measured by a beta-diversity indece) between the compared material. In the current paper, a
probabilistic approach to evidence evaluation is proposed. The most efficient way to provide a quantitative measure of
the support of the evidence (i.e., a S-diversity distance) to competing hypotheses about the origin of a given salivary
material is given by the Bayes’ factor that expresses, in probabilistic form, the ratio between the probability to observe
the evidence given each of the hypotheses of interest.

The paper is structured as follows. The scenario of interest and the proposed probabilistic approach are introduced
in Section 2. Available data and the chosen statistical models are described in Section 3, while the results of statistical
analyses are presented and discussed in Section 4. Section 5, finally, concludes the paper.

2. A probabilistic approach

Consider a case where a saliva trace is collected from a receptor (e.g. a given object on a crime scene). The salivary
microbiome of the trace, as well as that of a saliva sample taken from a known source (say, Mr. X) for comparative
purposes, is thus analyzed with the aim of discriminating between the following two competing hypotheses:

H,,: the saliva trace originates from Mr. X;
Preprint submitted to Elsevier September 14, 2021
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H: the saliva trace originates from the twin brother of Mr. X,

where the lower-case letter p stands for prosecution and the lower-case letter d stands for defence. Note that the
defence proposition could also be specified as: H,;: ‘the saliva trace originates from an individual unrelated to Mr.
X’,or Hy: ‘the saliva trace originates from the twin brother of Mr. X or from an individual unrelated to Mr. X’. Here,
one is faced with what is known as ‘multiple hypotheses’ scenario.

The scientific outcome, denoted here by the letter E, E = {y, x}, is given by the measurements y (i.e. the salivary
microbiome) on the questioned material (i.e. the saliva trace recovered at the crime scene) and the measurements x
(i.e. the salivary microbiome) on the control material of known source (i.e. a sample taken from Mr. X).

A probabilistic method for the evaluation of the strength of the evidence when it is the result of a comparative
analysis between control and recovered materials was proposed by Lindley [13] and is given by the so-called Bayes’
factor (BF):

f(y,$|Hp)
f(yam|Hd)

The use of the Bayes’ factor (often referred in forensic science applications as the likelihood ratio) as a metric to
assess the probative value of forensic traces (e.g. fingerprints, glass fragments, biological stains) is largely supported
in different forensic disciplines [18]. A detailed presentation can be found in Aitken et al. [1].

A number of issues arise when one is faced with how such a Bayes’ factor can be computed in practice. Some of
these issues are related to the specification of a probabilistic model f(-) in cases where measurements are obtained
using high-dimensional techniques, e.g. for fingermarks (using complex sets of variables) or for biological traces
that may be described by several chemical components. In such situations where the risk is to make unfounded
assumptions about the underlying mechanism that is at the origin of the evidence FE, a score-based approach where
the evidence is the result of a comparative analysis between questioned and control material may represent a viable or
even the sole alternative. This is what happens in the current case where analytical results are over 7000-dimensional
[2].

Let d(z,y) denotes the similarity score quantifying the distance between the compared material. A score-based
Bayes factor (sBF') can be obtained as:

BF = 1

_ 90(z,y) | Hy)
B = 6wy | Ha)

The score-based Bayes factor (sBF) in (2) replies to the following questions: how much more likely is the score
between the salivary microbiomes coming from the recovered trace and from the person of interest (say, Mr. X)
to arise under the hypothesis that the two salivary samples originate from the same individual (I, holds) or from
alternative individuals - a twin brother or/and an unrelated person - (H 4 holds).

The choice of a score-based approach leaves other questions that need to be tackled: (i) the choice of the metric
d(+), and (4¢) the choice of the probability distribution g(-) under the competing propositions H;, ¢ = {p,d}. These
aspects will be discussed in Section 3. A comment on the use of score-based BFs in forensic science applications is
given in Neumann and Ausdemore [14].

: @)

3. Material and models

3.1. Data

A longitudinal study on 30 pairs of homozygous twins (29 couples and 1 triplet) has shown the potential of
salivary microbiota-based profiles for discrimination between closely related individuals [16]. Four salivary samples
have been collected from each participant: the first sample was taken during the first inclusion visit, and the rest in
correspondence of the follow-up visits that have been planned 1, 12 and 13 months after inclusion. DNA was then
extracted from the native saliva samples with a targeted time to extraction less than 8 days. The intra-individual
variability over time was computed comparing all four samples of each individual to each others. Similarly, the intra-
pair variability was obtained comparing samples from one individual to the samples from their twin brother. Finally,
all samples have been compared to samples from the other pairs (inter-individual variability).
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In Scherz et al. [16] three similarity scores (i.e. Jaccard, Bray-Curtis and Jensen-Shannon distances) have been
compared to analyze the [-diversity within different samples from the same individual (Intra-individual), within
different samples from related individuals (Intra-pair) and between unrelated individuals (Inter-individual). The
Jaccard distance has shown a better discrimination once dealing with native samples, and it is retained in this study.
In Figure 1 there are shown the Jaccard distances calculated for samples originating from the same individual (Intra-
individual), from couples of siblings (Intra-pair, or Twins) and from couples of unrelated persons (Inter-individual,
or Unrelated).

Figure 1: Jaccard distances for salivary microbiota compositions of pairs of samples from individual persons (Intra-individual, I), pairs of related
persons (Twins, T") and pairs of unrelated persons (Unrelated, U).

A Bayesian analysis of variance has been conducted in order to study the effect of several variables in explaining
the [S-diversity. This allows to overcome limitations of standard analysis of variance in presence of non-Normal
dependent data. For each variable (effect) there are reported the posterior means and the 95% credible intervals. An
effect is considered significant whenever the associated 95% credible interval does not contain zero. Moreover, it is
also reported the effect size, measuring the amount of variability explained by a given variable.

Consider first the intra-individual S-diversity. The following variables have been considered: the time interval
between visits (less (equal to)/more than 1 month, variable Group 1), the age of participants (younger (equal to)/older
than 30, variable Age) and the difference in time of collection (less (equal to)/more than 4 hours between the hour of
the day of saliva collection of compared samples, variable 4h). The results of the (Bayesian) analysis of variance are
displayed in Table 1. The intra-individual salivary microbiome composition diverged over time between collection of
saliva traces (variable Group 1) with an effect size equal to 0.35 (roughly). The time interval between visits turned
out to be the variable with the most significant effect, followed by the age (older individuals tend to have less changes
in their microbiome). No significant effect has been observed with reference to the time interval (variable 4h). No
interactions amongst variables have been observed (results are not reported). The intra-individual Jaccard distances
are represented in Figure 2 (left) with a distinction based on time interval between visits, and in Figure 3 with a
distinction based on age of individuals (left) and daily time interval between visits (right).

Secondly, in order to account for the intra-pair S-diversity, the Jaccard distances are calculated between measure-
ments from salivary samples originating from homozygous twins. In this case it has also been considered whether
twins had been sharing the same house (variable Home). Variables Group 1 and Age have been defined earlier. The
results of the Bayesian analysis of variance are displayed in Table 2. Note that in this case the time interval between

3



Source Table of coefficients Table of effect sizes
Mean 95% credible interval | Effect size 95% credible interval

Group 1 | -0.0559  (-0.0669,-0.0433) 0.3497 (0.331,0.359)
Age 0.0221  (0.0110,0.0335) 0.0801 (0.046,0.109)
4h 0.0009  (-0.0218,0.0007) 0.0000 (-0.027,0.001)

Table 1: Intra-individual Jaccard distance: Bayesian analysis of variance. Table of coefficients (columns 2-3); Table of effect sizes (columns 4-5).

Vore 1M — } """""""""""""""""""""""" | ° Viore 1M — } —————————————————————————————————————— |
Less 1M — } ffffffffffffffffffffff { oo o Less 1M — u} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, {

T T T T T T T T T T T
0.3 0.4 0.5 0.6 0.7 0.55 0.60 0.65 0.70 0.75 0.80

Figure 2: Jaccard distances for salivary microbiome compositions of pairs of samples from the same individual (left) and from couples of twins
(right). A distinction is based on time interval between visits (not greater or greater than one month).

visits (variable Group 1) is not significant and will not be taken into account in what follows (see also Figure 2 (right)).
The intra-pair salivary microbiome composition diverged for twins sharing and not sharing the same house (variable
Home) with an effect size equal to 0.05. The intra-pair Jaccard distances are represented in Figure 4 with a distinction
based on the age of participants (left) and on the fact that twins share/do not share the same home (right).

Source Table of coefficients Table of effect sizes

Mean 95% credible interval | Effect size 95% credible interval
Group 1 | -0.0034 (-0.0115,0.0041) 0.0000 (-0.026,0.004)
Age -0.0069 (-0.0161,0.0032) 0.0142 (-0.017,0.052)
Home 0.0142 (0.039,0.0252) 0.0515 (0.005,0.111)

Table 2: Intra-pair Jaccard distance: Bayesian analysis of variance. Table of coefficients (columns 2-3); Table of effect sizes (columns 4-5).

Table 3, finally, contains the results of comparisons between intra-individual distances and intra-pair distances
(variable Group 2), and between intra-individual distances and inter-individual distances (variable Group 3). Intra-
individual distances are significantly smaller than intra-pair distances with an effect size equal to 0.72; intra-individual
distances are significantly smaller than inter-individual distances with an effect size equal to 0.34.

3.2. Models
Denote by {z;;,! = 1,2,¢ = 1,...,my, j = 1,...,n;} the intra-individual distances, where | = 1(2) for
comparisons at a time interval not greater (greater) than 1 month, m,, = 61 is the number of participants and ny () =
4
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Figure 3: Jaccard distances for salivary microbiome compositions of pairs of samples from the same individual. Left: variable Age (individuals
younger (Young) or older (Mature) than 30); right: variable 4h (daily time interval (in hours) between compared samples less (equal to)/more than
4 hours) (right).
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Figure 4: Jaccard distances for salivary microbiome compositions of pairs of samples from couples of twins. Left: variable Age (individuals
younger (Young) or older (Mature) than 30); right: variable Home (individual sharing (Yes) or not sharing (No) the same home).
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Source Table of coefficients Table of effect sizes

Mean 95% credible interval | Effect size 95% credible interval
Group 2 | -0.1204 (-0.1265,-0.1146) 0.7266 (0.725,0.727)
Group 3 | -0.1554 (-0.1570,-0.1536) 0.3454 (0.345,0.345)

Table 3: Comparison between Intra-individual, Intra-pair and Inter-individual Jaccard distance: Bayesian analysis of variance. Table of coefficients
(columns 2-3); Table of effect sizes (columns 4-5).

2(4) is the available number of intra-volunteer comparisons. Denote by {t;;, ¢ = 1,...,m,, j = 1,...,n;} the intra-
pair distances, where m; = 30 are the number of couples/triplets and n; = 16 is the minimum number of intra-pair
comparisons (n, is augmented to 48 in correspondence of the triplet). Finally, denote by {u;;, i = 1,...,my, j =
1,...,n,} the inter-individual distances, where n,, is the available number of inter-individual comparisons.

A probability distribution must be fitted for the numerator and for the denominator of the (score-based) Bayes
factorin (2). The (score-based) Bayes’ factor must in fact be calculated as the ratio of two probability density functions
g(+) evaluated at the evidence score §(x,y) (e.g. the Jaccard distance between salivary microbiota composition of the
compared samples) if proposition H,, (H4) holds. The two density functions can be assessed using many sample
scores produced under the competing propositions and the Bayes factor can be obtained as

SsBF = ?(5($,y) | ‘/E?Hp)

90z, y) |y, Ha)

This would amount to generate many scores for comparisons between: (i) the measurements x on the control
material (whose source is known) and measurements on other salivary samples originating from the same source
(numerator); (i¢) the measurements y on the recovered material and measurements on other salivary samples taken
randomly from the available database (denominator), where proposition H is formulated as ‘The saliva trace origi-
nates from an individual unrelated to Mr. X’. Ideally, one should dispose of many samples from the same individual
in order to be able to assess a probability distribution at the numerator that is specific for a person of interest. In
the current study, however, a total number of 6 intra-volunteer comparisons are available for each participant. These
reduce to 2 if the retained time interval between the deposit of the compared material does not exceed one month
(i.e., the comparison between material collected at the beginning of the study and at the first follow-up visits planned
after one month, and that between material collected at the 12!" month after inclusion and at the end of the study).
In the same way, the assessment of the probability distribution at the denominator may be problematic whenever the
alternative proposition H; is formulated as ‘The saliva trace originates from the twin brother of Mr. X’. In this latter
case, in fact, the measurements y on the recovered material should be compared on other salivary materials originating
from the twin brother of Mr. X, and the available samples may be limited.

A feasible alternative is to perform a so-called common-source approach and compare the following pair of propo-
sitions:

3

H,,: the saliva traces originate from the same individual;
H: the saliva traces originate from an individual and their twin brother.

The Bayes factor is therefore calculated as

p _ 90y | Hy)

9(6(z,y) | Ha)

This amounts to adopt a so-called non-anchored approach at the numerator and at the denominator.

Consider the numerator first. Two sources of variation are taken into account: that between measurements (i.e.
scores) within the same individual (known as the within-source variation), and that between individuals (known as
between-source variation). For the within-source variation, denote the mean distance within individual ¢ for measure-
ments related to material collected at a time interval [ by 6;; (where [ = 1(2) denotes that the similarity distance
d(x,y) has been calculated for salivary material x, y collected at a time interval not greater (greater) than one month)
and the variance by 7. The distribution of Z;;; is taken to be Normal, (Zy;; | 6;,07) ~ N(6,07), | = 1,2,

6
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t=1,...,mpand j = 1,...,n;. For the between-source variation, the inspection of Figure 5 (left) suggests that
a lognormal distribution may be assumed for either the salivary comparisons taken at a time interval not greater (top
left) and greater (bottom left) than 1 month. However, a deviation in the tails is observed in both cases Figure 5 (right),
and a kernel density estimate is suggested (Figure 6).

Starting from the available measurements, the probability density function for the between-source variation can
be estimated as:

1 &
FO ]z, Zm,) = — ) KO | zu, 1 ) (%)
mp =1
- Z 1/2 (6, — z1;)?
B thl 2hl27-l2 ’
where z;; = i = 1 21;; are the sample means, h; is the smoothing parameter and the kernel density function K(+)

is a Normal den51ty function centered at Z;; with variance equal to hl2 T
The probability density function of the evidence d(z, y) in the numerator is given by

gl(é(xvy) | Hp) = / g((s(xay) ‘ elvalz)f(al | lea .. '7Zlmpa7-12a hl)del (6)

0,
The integral in (6) has an analytical solution and the probability density in the numerator takes the form

mp

1
gl((s(%y) | 0’?,2[1,.. zlmp77—l 7hl Z p{_2) (6(.’1},?])—2”)2} 7

2r(of + hit?) 2(of + hii
Note that a distinction has been made to take into account the time interval (I = 1, 2) between the deposit of the
compared material. However, it must be acknowledged that this information is often unavailable. In that case, the

probability density function in the numerator can be obtained as a weighted average as follows:

2

g(é(I,y) | HP) = Zwl gl(é(xay) | UZZalea .- '72lmp’7—l2’ hl)7 (®
=1

where the weights w; represent the probabilities that the time interval is not greater (w1) or greater (w2) than 1 month.

As far as the denominator, two sources of variation are taken into account: that between measurements (i.e. scores)
within the same couple (within-pair), and that between different couples (between-pair). For the within-pair variation,
denote the mean distance within couple i by 6; and the variance by oZ. The distribution of T}; is taken to be Normal,
(T;j | 0;,0%) ~ N(0;,02). The between-source distribution is bimodal, as it can be observed from the inspection of
Figure 7. A kernel density estimate is proposed as in (5) and is depicted in Figure 7 (right). The probability density
function of the evidence in the denominator G(d(z,y) | Hy) is obtained analogously as in (7), and will be denoted
G(6(z,y) | o2 b1, b, T he).

The Bayes factor can then be obtained as in (2):

my 1 o 1 532
gl(é({ﬂ,y) | 0'127211, RN Zlmpﬂ—ﬁ» hl) _ Zi:l \/27r(o'lz+hlz‘rl2) exp{ 2(c7+hITY) (5($7y) le) } /mp ©)

A 2 7 n 2 _
g(é(xvy) | Utvtlv' .. 7tTTLt’Tt 7ht) E:itl mexp{—m (6(I,y) - ti)g} /mt
V2 (o +hiT] ] ]

Note that, following the observations made in Section 3, the time interval between visits has not taken into account
for intra-pair comparisons.

Clearly, if the alternative hypothesis supported by the defence states that saliva traces originate from unrelated
individuals, the distances from unrelated individuals, u;;, must be taken into account in order to obtain the prob-
ability distribution at the denominator. Inspection of Figure 8 suggests a deviation from Normality in the right
tail. A kernel density estimate can be fitted as above. The probability density in the denominator, now denoted
§(- | 02,1, ..., Um,, Ty, hy) can be obtained as in (7).

7
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Figure 5: Intra-individual distances. (a) Scores obtained considering only visits at a time interval not greater than 1 month: overlay between the
histogram of available data and a fitted lognormal distribution (left); quantile-quantile plot of the logarithm of available data; (b) Scores obtained
considering only visits at a time interval greater than 1 month: overlay between the histogram of available data and a fitted lognormal distribution
(left); quantile-quantile plot of the logarithm of available data.
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Figure 6: Intra-individual distances. Scores obtained considering only visits at a time interval not greater than 1 month: overlay between the
histogram of available data and a kernel density estimate (a); Scores obtained considering only visits at a time interval greater than 1 month:
overlay between the histogram of available data and a kernel density estimate (b).
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Figure 7: Scores obtained considering intra-pair comparisons: overlay between the histogram of available data and a fitted Normal distribution (a);
overlay between the histogram of available data and a kernel density estimate (b).
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Figure 8: Scores obtained considering inter-volunteers comparisons: overlay between the histogram of available data and a fitted normal distribution
(left); quantile-quantile plot of available data (right).

There are scenarios where the alternative hypothesis, i.e. the defence hypotheses, may be thought of as a composite
hypothesis. There is more than one possible alternative to the first hypothesis (the salivary microbiota comes from
the same person). Under the defence hypothesis, H;, someone else is the source of the salivary microbiota, the term
‘someone else’ refers to a set of donors as the potential source. It might be a twin brother or an unrelated person.

Scientific literature pointed out that there are situations where there will be three or more propositions. This can
happen with DNA mixtures, for example, where the number of contributors to the mixture is in dispute [5] or in
cases involving the DNA profile of a single stain of body fluids when relatives of the defendant are considered as
potential donors of the recovered stain. Discussion on this aspect dated back to Lempert [12], Evett [8], Balding [2]
and Buckleton and Triggs [4]. This is the situation we are concerned. Consider, for sake of illustration, the following
competing propositions:

H,,: the saliva trace originates from Mr. X;
H: the saliva trace originates from the twin brother of Mr. X or from an unknown individual unrelated to Mr. X.
The Bayes’ factor can then be obtained as presented in Aitken et al. [1]

gl(é(xv y) | 012) 2117 R 72lmp7 T127 h‘l) Ei:{t7u} Di
g(0(z,y) | o2ty .. 7Emw7—t27 hi)pe + §(0(z,y) | 02,01, . .. 7ﬂmp77—37 hU)pu7

(10)

where p; and p,, are the prior probabilities of the hypothesis that the questioned material originates from the twin
brother or from an unrelated, respectively, and p; = {p;, p,}, and ) _,_ (tuy Pi < L.

4. Data analysis

All comparisons, graphical representations and statistical analyses were conduced in RStudio (Version 1.2.5033),
supported by the BANOVA package [7].
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4.1. Summary statistics

The model parameters at the numerator can be estimated from the available data {z;;} by

> 9 3 (11)

=1 j=1
1 m n
~2 =.\2
62 = —— (215 — %) (12)
m(n —1) ;jzl J
1 & 52
A2 5 _5\2 _
™ = m;(% z) et 13)
h = 1.06m/, (14)

where z; = Z?Zl z;; and the the smoothing parameter h is estimated as in Silverman [17].
The model parameters at the denominator can be estimated analogously using either the database {t;;} or {u;;}
of intra-pair and inter-individual distances.

4.2. Results

To study the distribution of Bayes’ factor results under the competing propositions, a leave-one-out method has
been used. A Bayes’ factor has been calculated for measurements originating from each couple in the database, while
the remaining data have been used to fit the probabilistic distribution at the numerator and the denominator.

To test the hypothesis I, : ‘the saliva traces originate from the same individual’, the salivary microbiome charac-
terizing saliva traces collected from the same individual have been selected to act as control (z) and recovered (y) data,
respectively. The (Jaccard) distance §(x,y) is therefore calculated between the salivary composition characterizing
the selected samples.

To test the hypothesis Hy : ‘the saliva traces originate from an individual and their twin brother’, the salivary
microbiome characterizing saliva traces collected from one individual and from their twin brother have been selected
to act as control and recovered data, respectively.

Table 4 shows the values of the Bayes’ factor (within intervals) when the evidence comes from the same individual
and the time interval between the collection of compared salivary profiles is not greater than 1 month (column 2) and
greater than 1 month (column 3). The correct classification rate is at roughly 98% when considering samples collected
at a time interval not greater than one month; it is slightly worse (roughly 92%) when considering samples collected at
a greater time interval. This is not surprising as the overlap between the intra-individual and the intra-pair distributions
increases.

Table 5 shows the values of the Bayes’ factor (within intervals) when the evidence comes from monozygous
twins. Results in column 2 have been obtained using, at the numerator, the fitted probability density function for intra-
individuals similarity distances at a time interval between visits not greater than 1 month. Analogously, in column 3
there are reported the results that have been obtained using, at the numerator, the fitted probability density function
for intra-individuals similarity distances at a time interval between visits greater than 1 month. Again, performances
are slightly worse when a bigger time interval between the collection of compared material is retained.

Other variables may have an impact in explaining the diversity between compared material. For example, it
has been observed in Section 3 that the intra-pair diversity decreases for pairs of twins sharing the same house and
(slightly) increases for older pairs of twins (see Table 2 and Figure 4). The model performance increase when the
variable Home (pairs sharing/not sharing the same house (Table 6), or the variable Age of the compared couples
(Table 7) are considered.
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BF Time interval between visits
< 1 month > 1 month

<1073 1 0
1073 — 1072 0 0
1072 - 10! 0 5

1071 —1 1 14
1-10 1 37
10 — 102 4 36
102 — 103 4 33
103 — 10% 4 36
10* — 10° 4 5
10° — 106 11 19
108 — 107 9 14
107 — 108 10 6
10% — 10° 12 4
109 — 1010 9 5
1010 — 1015 39 8
105 — 1020 7 0
> 1020 0 0
Total 116 232
Correct (%) 98 92

Table 4: Assessment of the performance of the probabilistic approach for the evaluation of the similarity of salivary microbiome when the samples
originate from the same source (). The value smaller than 1073 is of the order of 10~5; no extreme values were observed.

BF Time interval between visits
< 1 month > 1 month
<10 0 0
10=6 —10-° 7 0
107° — 1074 12 0
10~* —10-3 130 3
1073 — 1072 212 76
1072 —-10! 85 218
107t —1 12 144
1-10 6 18
10 — 102 0 5
> 102 0 0
Total 464 464
Correct (%) 99 95

Table 5: Assessment of the performance of the probabilistic approach for the evaluation of the similarity of salivary microbiome when the samples
originate from monozygous twins (H y); no extreme values were observed.
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BF Cohabitants Non cohabitans
< 1month > 1month < 1month > 1 month

<1073 0 0 0 0
1073 — 1072 1 0 0 0
1072 — 107t 0 3 0 2

1071 —1 1 11 0 2
1-10 1 19 0 15
10 — 102 3 22 0 15
102 — 10° 2 23 1 11
103 — 10% 1 26 3 5
10% — 10° 3 15 2 6
105 — 108 8 12 1 0
106 — 107 7 15 0 5
107 — 108 8 3 2 2
108 — 10° 9 6 2 1
10° — 1010 10 5 3 0
1010 — 1015 25 8 10 0
1015 — 1020 4 0 6 0
1020 — 1025 1 0 1 0
> 10% 0 0 1 0
Total 84 168 32 64
Correct (%) 98 92 100 94

Table 6: Assessment of the performance of the probabilistic approach for the evaluation of the similarity of salivary microbiome when the samples
originate from the same source (Hp) and the variable Home is taken into account.

BF Young Mature
< 1month > 1month < 1month > 1 month
<1073 0 0 0 0
1073 — 1072 1 0 0 0
1072 — 107t 0 2 0 1
107t -1 1 9 1 5
1-10 0 28 0 6
10 — 102 3 32 1 6
102 — 103 3 25 0 11
103 — 104 3 11 0 21
10* — 10° 4 8 2 10
105 — 10° 1 9 4 8
108 — 107 6 2 4 15
107 — 108 5 2 6 2
10% — 10° 6 0 3 6
10° — 1010 8 0 7 5
1010 — 1015 19 0 19 7
1015 — 1020 3 0 4 1
1020 — 102 1 0 1 0
> 10% 0 0 0 0
Total 64 128 52 104
Correct (%) 97 91 98 94

Table 7: Assessment of the performance of the probabilistic approach for the evaluation of the similarity of salivary microbiome when the samples
originate from the same source (/) and the variable Age is taken into account.
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5. Conclusion

The discrimination between individuals based on their salivary microbiome profiles has been investigated. In-
dividual profiles have shown high individuality and stability. The fact that self comparisons characterizing the same
individual tend to have a modest distance if compared with intra-pair (or inter-individuals) comparisons does not how-
ever allow one to conclude that a low value of such distance is suggestive to say that the compared material originate
from the same individual. This can be observed in Figure 9, where it is clear that the distribution of the distances
originating from either self-comparisons or intra-pair comparisons overlap. A low value of the similarity score be-
tween compared material does not allow to conclude that the saliva trace originates from the same individual, and vice
versa. This is one of the reasons why the use of cut-offs to reply to the questions of interest is often misleading and
inadequate (see discussion in Biedermann et al. [3] and Aitken et al. [1]).

The introduction of a probabilistic approach, and in particular the assignment of a Bayes’ factor, represents the
correct way to quantify the value of the available evidence. The performance of the proposed model has been assessed
in terms of correct classification rate under competing hypotheses (H,, and H;). The high values of correct classifica-
tion rates clearly support the use of such a probabilistic metrics for the evaluation of this peculiar type of evidence. In
addition to desiderata upon which scientific and legal literature converge (notably the desirable BF’s properties of bal-
ance, transparency, robustness, added value, flexibility and logic [e.g. 9, 11], such performance results clearly indicate
that Bayes’ factor is able to discriminate between hypothesis regarding highly related individuals (i.e. monozygous
twins) based on microbiota salivary data. BF avoids logical problems related to inductive (and decisional) reasoning
that the widespread use of cut-off in some forensic related fields such as toxicology misinterpret. BF is able to assess
the value for every quantified scores so to avoid the so-called fall-off the cliff effect [15] that classify two proxy mea-
surements into two extremely different categories (e.g. same individuals versus a twin). A measurement just below or
just above the cut-off value will be classified into different categories provoking an under- or over-evaluation of the
observed score. It seems important to restate that the BF measures the effect of scientific findings (i.e. the similarity
score) on the probabilities of the two (or more) hypotheses of interest. It measures the amplitude of the change from
the probabilities of the hypotheses before the acquisition of the evidence to that after such acquisition. The BF does
not allow a scientist to quantify probabilities related to the hypotheses and it plays a role in the decisional process
about whether a given individual should be classified into one or the other of the categories, without permitting one to
express a categorical opinion. Scientific observations alone provide an incomplete knowledge basis for decision. The
use of the BF just recalls the forensic users to respect their role in the judicial procedure.

Finally, it is important to note that the models were developed by totally ignoring the potential biological limita-
tions coming from saliva low quantities, degradation or potential mixture situations. Any future research should also
consider these added factors.
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