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Abstract: The muscle molecular adaptations to different exercise intensities in combination with
hypoxia are not well understood. This study investigated the effect of low- and supramaximal-
intensity hypoxic training on muscle metabolic gene expression in mice. C57BL/6 mice were divided
into two groups: sedentary and training. Training consisted of 4 weeks at low or supramaximal
intensity, either in normoxia or hypoxia (FiO2 = 0.13). The expression levels of genes involved in the
hypoxia signaling pathway (Hif1a and Vegfa), the metabolism of glucose (Gys1, Glut4, Hk2, Pfk, and
Pkm1), lactate (Ldha, Mct1, Mct4, Pdh, and Pdk4) and lipid (Cd36, Fabp3, Ucp2, Hsl, and Mcad), and
mitochondrial energy metabolism and biogenesis (mtNd1, mtNd6, CytC, CytB, Pgc1a, Pgc1β, Nrf1,
Tfam, and Cs) were determined in the gastrocnemius muscle. No physical performance improvement
was observed between groups. In normoxia, supramaximal intensity training caused upregulation of
major genes involved in the transport of glucose and lactate, fatty acid oxidation, and mitochondrial
biogenesis, while low intensity training had a minor effect. The exposure to hypoxia changed the
expression of some genes in the sedentary mice but had a moderate effect in trained mice compared
to respective normoxic mice. In hypoxic groups, low-intensity training increased the mRNA levels of
Mcad and Cs, while supramaximal intensity training decreased the mRNA levels of Mct1 and Mct4.
The results indicate that hypoxic training, regardless of exercise intensity, has a moderate effect on
muscle metabolic gene expression in healthy mice.

Keywords: exercise intensity; normobaric hypoxia; gene expression; metabolic pathways; mice;
skeletal muscle

1. Introduction

Exercise training is an effective means for the achievement of health-promoting ef-
fects, including changes in skeletal muscle metabolism. Growing evidence suggests that
both low and high exercise intensities lead to improvements in skeletal muscle metabolic
adaptations [1–5]. Similarly to moderate-intensity continuous training, both high-intensity
interval training (HIIT) and supramaximal interval training (SIT, or sprint) may induce
increased aerobic capacity (VO2max) and muscle mitochondrial content [6]. The intensity of
SIT (“all-out” efforts) is not only time-efficient to improve muscle glycolytic capacity, but it
may also induce a shift of skeletal muscle fibers towards a more oxidative phenotype [7].
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Growing evidence shows that combining high-intensity exercise and hypoxic stimuli
may lead to an additional benefit to physical performance when compared to a similar
exercise in normoxia [8]. Moreover, by using moderate hypoxia itself, one may trigger the
up-regulation of a number of genes involved in energy metabolism [5].

Despite the hypoxia-inducible factor (HIF) being considered the primary mediator of
cellular hypoxia, previous analyses performed on skeletal muscle tissue indicate that HIF-
1 protein expression is only slightly affected by passive exposure to moderate hypoxia [9].
Furthermore, the assertion that chronic hypoxia itself would promote angiogenesis or
upregulation of oxidative enzymes is disputed [9]. Moreover, recent evidence shows that
hypoxia can regulate genes involved in glucose metabolism at rest and those involved in
myoblast differentiation, fusion, and muscle contraction after exercise [10]. The influence
of exercise intensity in hypoxia may provide a potential benefit of combining high-intensity
and severe hypoxia to improve O2 transport and skeletal muscle metabolism [11]. Indeed,
combining supramaximal intensity and hypoxia (i.e., repeated sprint training in hypoxia,
RSH) led to larger improvements in both anaerobic and aerobic performance when com-
pared to the same exercise in normoxia [12,13]. Overall, RSH may improve performance
through a decrease in O2 availability, leading to an increase in HIFs and target genes at the
cellular level of skeletal muscles. Among these adaptations, RSH upregulated some genes
involved in glucose metabolism and mitochondrial biogenesis, depending on the training
protocol [12,14,15]. Previous studies have also examined the effects of hypoxic exercise
training on muscle mitochondrial turnover and metabolism in mice [16,17]. However,
there are few studies comparing the effects of different exercise intensities, superimposed
with hypoxia, on molecular responses in skeletal muscle. The goal of this study was to
investigate the effects of low and supramaximal exercise intensities in hypoxia and nor-
moxia on the expression of genes related to skeletal muscle energy metabolic pathways in
C57BL/6 mice.

2. Materials and Methods
2.1. Animal and Experimental Protocol

An internal animal experimentation committee as well as the Veterinary Office of
the Canton de Vaud approved all animal experiments (authorization VD3224). The Swiss
animal experimentation laws and guidelines were followed throughout the described ex-
periments. Thirty-six 8-week-old male C57BL/6J healthy mice (Charles River Laboratories,
L’Arbresle, France) were randomly divided into six groups (n = 6/group): sedentary (SED),
low-intensity training (LIT), and supramaximal intensity training (SIT). Each group was
exposed to either normoxia (fraction of inspired O2 of room air, FiO2 = 0.21) or hypoxia
(FiO2 = 0.13) according to a previously published protocol by our group [18]. Mice were
housed in a ventilated, temperature- and humidity-controlled environment under a 12-h
light/dark cycle. All groups had ad libitum access to a standard diet and water. The two
intensities of exercise were determined based on the maximal aerobic speed (MAS). MAS
was established using an incremental test-to-exhaustion (in normoxia), as previously de-
scribed [18,19]. Mice assigned to LIT (2 subgroups) ran continuously for 40 min at 40% of
their MAS (Figure 1). The SIT mice (2 subgroups) ran 4 sets of 5 × 10 s sprints at 150%
of MAS, with 20 s of passive recovery between each sprint (Figure 1). The interset rest
was 5 min of passive recovery (Figure 1). The training intervention lasted 4 weeks, with
3 sessions/week for all groups. The mice ran on a rodent treadmill (Panlab LE-8710, Bioseb,
Vitrolles, France). To match the total workload of the LIT mice, the SIT group underwent
a cool-down period after each training session. The treadmill was placed in a chamber
under normoxic or hypoxic conditions. All mice in the hypoxic groups were exposed to
the same dose of moderate normobaric hypoxia (FiO2 of 0.13 for 50 min). The incremen-
tal test was repeated at the end of the study to determine maximal running distance, as
previously described [20]. The body weight of the mice was measured weekly during the
experimental period.
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Figure 1. Schematic illustration of the two training protocols. LIT-trained mice ran 40 min at 40% of
maximal aerobic speed (MAS) (A). HIIT-trained mice ran 4 sets composed of 10 s sprints at 150% of
MAS interspersed by 20 s rest, and a 5 min pause between the sets (B). Each training session was
preceded by a 10 min warm-up and ended with a cool-down period.

2.2. Quantitative Real-Time Polymerase Chain Reaction

Twenty-four hours after the final incremental test, the mice were euthanized by cervical
dislocation after anesthesia via isoflurane inhalation. Gastrocnemius muscle samples were
collected, snap-frozen in liquid nitrogen, and stored at −80 ◦C. About 30 mg of muscle
tissue (including both white and red portions) were placed in lysis buffer, disrupted, and
then homogenized utilizing a Tissue Lyser LT (Qiagen, Basel, Switzerland). According to
the manufacturer’s protocols, total RNA was isolated using an RNeasy Fibrous Tissue Mini
Kit (Qiagen, Basel, Switzerland) and reverse transcribed into cDNA using a PrimeScript
RT Reagent Kit with a gDNA eraser (TaKaRa Bio Inc., Shiga, Japan). The real-time PCR
started at 50 ◦C for 1 min, then 95 ◦C for 1 min, and was followed by 40 thermal cycles
at 95 ◦C for 1 s, 60 ◦C for 1 min, 95 ◦C for 15 s, 60◦ for 1 min, and 95 ◦C for 15 s. A
qRT-PCR test was performed in triplicate for each sample using a ViiA7 Real-Time PCR
detection system (Applied Biosystems, Waltham, MA, USA). All primer sequences are
listed in Supplementary Table S1. For each sample, the cycle threshold (Ct) of each target
gene was normalized to the Ct of the housekeeping gene 18s to determine ∆Ct. The 18s
gene was selected as the housekeeping gene because it showed invariant expression across
our experimental conditions. To relatively quantify gene expression, the 2-∆∆CT method
was used.

2.3. Statistical Analysis

A two-way ANOVA was performed to analyze the main effect of O2 level (normoxia
vs. hypoxia) and intervention (SED vs. LIT vs. SIT), as well as the interaction between these
2 factors on gene expression. Data normality was verified by using the Shapiro–Wilk test.
The Bonferroni test was applied for multiple comparisons among the experimental groups
after a significant interaction. Statistical analysis was performed using GraphPad Prism 9
(version 9.4.1) (GraphPad Software, Inc, San Diego, CA, USA). All data are presented as
the mean ± standard deviation (SD). Results were considered statistically significant at
p < 0.05.
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3. Results
3.1. Effect on Performance and Body Weight

No significant differences in physical performance were observed between groups
(Figure 2). The maximum running distance at the end of the study was 508 ± 66 m in SED
in normoxia vs. 431 ± 116 m in SED in hypoxia vs. 481 ± 151 m in LIT in normoxia vs.
451 ± 101 in LIT in hypoxia vs. 540 ±169 m in SIT in normoxia vs. 396 ± 111 m in SIT in
hypoxia (Figure 2). Over the experimental protocol, body weight was significantly reduced
in LIT and SIT compared to SED in normoxic conditions, while no significant differences
were found between the hypoxic groups (Supplementary Figure S1).

Metabolites 2023, 13, x FOR PEER REVIEW 4 of 16 
 

 

presented as the mean ± standard deviation (SD). Results were considered statistically 

significant at p < 0.05. 

3. Results 

3.1. Effect on Performance and Body Weight 

No significant differences in physical performance were observed between groups 

(Figure 2). The maximum running distance at the end of the study was 508 ± 66 m in SED 

in normoxia vs. 431 ± 116 m in SED in hypoxia vs. 481 ± 151 m in LIT in normoxia vs. 451 

± 101 in LIT in hypoxia vs. 540 ±169 m in SIT in normoxia vs. 396 ± 111 m in SIT in hypoxia 

(Figure 2). Over the experimental protocol, body weight was significantly reduced in LIT 

and SIT compared to SED in normoxic conditions, while no significant differences were 

found between the hypoxic groups (Supplementary Figure S1). 

 

Figure 2. Treadmill physical performance of normoxic and hypoxic SED, LIT, and SIT mice. Tread-

mill test was performed by increasing speed by 2 cm/s every 3 min until exhaustion. 

3.2. Hypoxia Signaling Pathway 

As shown in Figure 3A, there was a statistically significant main effect of O2 level on 

Hif1a expression, with mRNA levels being increased in hypoxic SED and LIT groups, 

when compared to their respective normoxic groups. Expression of the Hif1a target gene 

vascular endothelial growth factor A (Vegfa) was higher in hypoxic SED than in normoxic 

SED (Figure 3B). Vegfa mRNA expression was lower in SIT compared to SED in hypoxic 

conditions (Figure 3B). 

Figure 2. Treadmill physical performance of normoxic and hypoxic SED, LIT, and SIT mice. Treadmill
test was performed by increasing speed by 2 cm/s every 3 min until exhaustion.

3.2. Hypoxia Signaling Pathway

As shown in Figure 3A, there was a statistically significant main effect of O2 level
on Hif1a expression, with mRNA levels being increased in hypoxic SED and LIT groups,
when compared to their respective normoxic groups. Expression of the Hif1a target gene
vascular endothelial growth factor A (Vegfa) was higher in hypoxic SED than in normoxic
SED (Figure 3B). Vegfa mRNA expression was lower in SIT compared to SED in hypoxic
conditions (Figure 3B).

3.3. Glucose Metabolism

The expression levels of glycogen synthase 1 (Gys1), solute carrier family 2 member
4 (Glut4); hexokinase 2 (Hk2); phosphofructokinase (Pfk); and pyruvate kinase muscle 1
(Pkm1) are shown in Figure 4. Gys1 expression was higher in hypoxic SED and LIT but not
in SIT, compared to their respective normoxic groups (Figure 4A). The expression of Glut4
was higher in SIT compared to LIT and SED in normoxia, while no significant differences
were found between hypoxic groups (Figure 4B). Glut4 expression was lower in SIT under
hypoxic compared to normoxic conditions (Figure 4B). Hypoxia upregulated Hk2 and Pfk
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expression in SED but not in LIT and SIT groups (Figure 4C,D). Pkm1 expression was not
different between groups (Figure 4E).
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Figure 3. The qRT-PCR analysis of Hif1a (A) and one of its target genes, Vegfa (B). Gene expression
levels are normalized to the housekeeping gene (18s) and relative to SED in normoxia. Asterisks
represent significance as determined by a two-way ANOVA (* p < 0.05; ** p < 0.01). Gene abbreviations
are: Hif1a (hypoxia-inducible factor-1α); Vegfa (vascular endothelial growth factor A).
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Figure 4. The qRT-PCR analysis of the indicated genes involved in glycogen synthesis (A), glucose
transport (B), and glycolysis (C–E). Gene expression levels are normalized to the housekeeping gene
(18s), and relative to SED in normoxia. Asterisks represent significance as determined by a two-way
ANOVA (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). Gene abbreviations are: Gys1 (glycogen
synthase 1); Glut4 (solute carrier family 2 member 4); Hk2 (hexokinase 2); Pfk (phosphofructokinase);
Pkm1 (pyruvate kinase muscle 1).
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3.4. Lactate Metabolism

Figure 5 displays changes in mRNA expression levels of monocarboxylate transporter
1 (Mct1), monocarboxylate transporter 4 (Mct4), lactate dehydrogenase A (Ldha), pyruvate
dehydrogenase (Pdh), and pyruvate dehydrogenase kinase 4 (Pdk4). Mct1 mRNA expression
was upregulated in SIT compared to SED and LIT, while in hypoxic groups, its expression
was upregulated both in SIT and LIT as compared to SED (Figure 5A). Regarding Mct4, its
expression was also higher in SIT than in SED and LIT in normoxic groups, while a higher
expression could be detected only in SIT compared to SED in hypoxic groups (Figure 5B).
Hypoxia significantly increased Ldha expression in SED but not in LIT or SIT (Figure 5C).
In normoxic groups (Figure 5D), either exercise intervention had a significant effect on
Pdh expression, with increasing mRNA levels in exercised groups compared to SED. No
significant difference was found in Pdk4 expression between groups (Figure 5E).
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Figure 5. The qRT-PCR analysis of the indicated genes related to lactate transport (A,B) and produc-
tion (C–E). Gene expression levels are normalized to the housekeeping gene (18s) and relative to
SED in normoxia. Asterisks represent significance as determined by a two-way ANOVA (** p < 0.01;
*** p < 0.001; **** p < 0.0001). Gene abbreviations are: Mct1 (monocarboxylate transporter 1); Mct4
(monocarboxylate transporter 4); Ldha (lactate dehydrogenase A); Pdh (pyruvate dehydrogenase);
Pdk4 (pyruvate dehydrogenase kinase 4).

3.5. Mitochondrial Biogenesis and Krebs Cycle

As shown in Figure 6A,B, both exercise intervention and O2 level had an effect on
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1a) expression
but not on peroxisome proliferator-activated receptor gamma coactivator 1-beta (Pgc1b)
expression. Nuclear respiratory factor 1 (Nrf1) mRNA expression was higher in SIT than in
SED and LIT only in normoxic groups (Figure 6C). Hypoxia induced higher mitochondrial
transcription factor A (Tfam) expression in SED but not in LIT or SIT (Figure 6D). As
shown in Figure 6E, citrate synthase (Cs) expression was higher in hypoxic groups than in
normoxic groups in SED and LIT, but not in SIT. Between normoxic groups, Cs expression
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was higher in LIT and SIT than in SED, while this difference was only observed in LIT in
the hypoxic groups (Figure 6E).
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Figure 6. The qRT-PCR analysis of the indicated genes responsible for mitochondrial biogenesis
(A–D) and Krebs cycle (E). Gene expression levels are normalized to the housekeeping gene (18s) and
relative to SED in normoxia. Asterisks represent significance as determined by a two-way ANOVA
(* p < 0.05; ** p < 0.01; *** p < 0.001). Gene abbreviations are: Pgc1a (peroxisome proliferator-activated
receptor gamma coactivator 1-alpha); Pgc1b (peroxisome proliferator-activated receptor gamma
coactivator 1-beta); Nrf1 (nuclear respiratory factor 1); Tfam (mitochondrial transcription factor A); Cs
(citrate synthase).

3.6. Mitochondrial Respiratory Chain Complex

No significant differences were found in the mRNA expression of mitochondrial NADH
dehydrogenase 1 (mtNd1) (Figure 7A), mitochondrial cytochrome C (Cytc) (Figure 7C), and
mitochondrial cytochrome B (Cytb) (Figure 7D) between groups. Mitochondrial NADH
dehydrogenase 6 (mtNd6) expression was higher in SED exposed to hypoxia than normoxia
(Figure 7B).

3.7. Fatty Acid β-Oxidation

We measured the mRNA expression of five genes implicated in fatty acid uptake,
transport, and fatty acid β-oxidation (fatty acid translocase cluster of differentiation, Cd36;
fatty acid binding protein 3, Fabp3; uncoupling protein 2, Ucp2; hormone-sensitive lipase,
Hsl; medium-chain acyl-CoA dehydrogenase, Mcad) (Figure 8). There was a significant
main effect of O2 level on Cd36 and Ucp2 expression, with mRNA levels increasing in
hypoxic SED and LIT compared to their respective normoxic groups (Figure 8A,C). Fabp3
and Hsl expression were higher in hypoxic than normoxic groups, only in SED (Figure 8B,D).
As shown in Figure 8E, Mcad expression was higher in SIT compared to SED in normoxic
groups. In hypoxic groups, its expression was higher in LIT than in SED and SIT (Figure 8E).
Moreover, Mcad expression was lower in hypoxic SIT than in normoxic SIT (Figure 8E).
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Figure 7. The qRT-PCR analysis of the indicated genes encoding mitochondrial respiratory chain
complex (A–D). Gene expression levels are normalized to the housekeeping gene (18s) and rela-
tive to SED in normoxia. Asterisks represent significance as determined by a two-way ANOVA
(** p < 0.01). Gene abbreviations are: mtNd1 (mitochondrial NADH dehydrogenase 1); mtNd6 (mi-
tochondrial NADH dehydrogenase 6); Cytc (mitochondrial cytochrome C); Cytb (mitochondrial
cytochrome B).



Metabolites 2023, 13, 1103 9 of 15
Metabolites 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 8. Gene expression analysis of the indicated gene involved in fatty acid uptake (A), transport 

(B), and fatty acid β-oxidation (C–E). Gene expression levels are normalized to the housekeeping 

gene (18s) and relative to SED in normoxia. Asterisks represent significance as determined by a two-

way ANOVA (* p < 0.05; ** p < 0.01). Gene abbreviations are: Cd36 (fatty acid translocase cluster of 

differentiation); Fabp3 (fatty acid binding protein 3); Ucp2 (uncoupling protein 2); Hsl (hormone-

sensitive lipase); Mcad (medium-chain acyl-CoA dehydrogenase). 

4. Discussion 

The effects of two different types of exercise training (i.e., at low and high intensities) 

in hypoxia or normoxia on the endurance performance of C57BL/6 mice and the expres-

sion of genes involved in energy metabolic pathways in the gastrocnemius muscle are 

summarized in four points, as follows: 

(1) None of the 4-week training protocols, either in normoxia or hypoxia, led to an in-

crease in exercise performance, suggesting an insufficient training load. 

(2) Supramaximal exercise training in normoxia caused upregulation of some genes in-

volved in glucose and lactate transport as well as some genes responsible for mito-

chondrial biogenesis and fatty acid oxidation. 

(3) The exposure to hypoxia induced a higher expression of genes involved in glucose 

metabolism and mitochondrial biogenesis, mainly in the sedentary mice. 

(4) Exercise training performed in hypoxia had a moderate effect on these transcrip-

tional adaptations. 

In the present study, no differences in maximal running distance were reported be-

tween groups. Studies conducted on mice often display heterogeneous results when look-

ing into the impact of exercise training on performance. These discrepancies are due to 

specificities of exercise protocol, exercise performance test type, outcome variables, and 

mouse genetic background [21–23]. The result of the present performance test is in line 

with previous studies that did not report performance improvement in C57BL/6 mice after 

4 weeks of exercise training in normoxia [22,24]. 

Figure 8. Gene expression analysis of the indicated gene involved in fatty acid uptake (A),
transport (B), and fatty acid β-oxidation (C–E). Gene expression levels are normalized to the house-
keeping gene (18s) and relative to SED in normoxia. Asterisks represent significance as determined
by a two-way ANOVA (* p < 0.05; ** p < 0.01). Gene abbreviations are: Cd36 (fatty acid translocase
cluster of differentiation); Fabp3 (fatty acid binding protein 3); Ucp2 (uncoupling protein 2); Hsl
(hormone-sensitive lipase); Mcad (medium-chain acyl-CoA dehydrogenase).

4. Discussion

The effects of two different types of exercise training (i.e., at low and high intensities) in
hypoxia or normoxia on the endurance performance of C57BL/6 mice and the expression of
genes involved in energy metabolic pathways in the gastrocnemius muscle are summarized
in four points, as follows:

(1) None of the 4-week training protocols, either in normoxia or hypoxia, led to an
increase in exercise performance, suggesting an insufficient training load.

(2) Supramaximal exercise training in normoxia caused upregulation of some genes
involved in glucose and lactate transport as well as some genes responsible for
mitochondrial biogenesis and fatty acid oxidation.

(3) The exposure to hypoxia induced a higher expression of genes involved in glucose
metabolism and mitochondrial biogenesis, mainly in the sedentary mice.

(4) Exercise training performed in hypoxia had a moderate effect on these transcrip-
tional adaptations.

In the present study, no differences in maximal running distance were reported be-
tween groups. Studies conducted on mice often display heterogeneous results when
looking into the impact of exercise training on performance. These discrepancies are due to
specificities of exercise protocol, exercise performance test type, outcome variables, and
mouse genetic background [21–23]. The result of the present performance test is in line
with previous studies that did not report performance improvement in C57BL/6 mice after
4 weeks of exercise training in normoxia [22,24].

GLUT4 is a critically important protein that provides glucose transport in skeletal
muscle cells and carries out muscle glucose uptake during contraction/exercise [25]. It
was previously shown that GLUT4 mRNA expression was significantly increased by
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both moderate- and high-intensity exercise in the gastrocnemius muscle of rodents [26].
Interestingly, we reported upregulation of the GLUT4 mRNA level with SIT. This suggests
that SIT can also be an efficient stimulus for the transcriptional regulation of the GLUT4 gene
in skeletal muscle.

Previous studies reported changes in the mRNA and protein levels of GLUT4 in skele-
tal muscle in response to hypobaric hypoxia [9,27], as well as in athletes who performed
bouts of repeated sprint exercise in hypoxic conditions [14]. Our findings contradict these
later results and suggest that hypoxia superimposed on supramaximal training may blunt
GLUT4 gene expression.

Hypoxia led to a significant increase in GYS1 gene expression, both in sedentary
and low-intensity exercise training groups. These data are consistent with the results of
previous studies that established that GYS1 is a hypoxia-regulated HIF target gene [28].
Low-intensity training itself (treadmill walking and/or jogging) did not alter the total
activity of glycogen synthase in human vastus lateralis muscle [29]. Twelve weeks of
endurance exercise training (75–90% of maximal heart rate) increased the expression of
GYS1 in all skeletal muscle fiber types, which probably contributed to the increased post-
training glycogen content in humans [30].

Our study indicates a significant increase in the level of HK2 gene expression in
moderate hypoxic conditions. HK2 is an HIF-1 target gene and, during the early stages
of exercise, a key determinant of muscle glucose uptake [31]. It is widely considered that
hypoxia induces HK2 gene expression in different tissues [32]. Previous studies revealed
that the level of HK2 mRNA in human muscle after up to 8 h of exposure to a high-altitude
(hypobaric) hypoxia was not changed [9], while an increase in protein expression was
observed in a hypobaric chamber simulating an ascent to the summit of Mount Everest [33]
and after endurance training at high altitude [34]. Overall, it appears that there is a large
body of evidence indicating that hypoxia induces the overexpression of HK2. The effects of
hypoxia on PFK gene expression are debated, with previous studies reporting either no
change [9,35] or blunted expression [12] with exposure to hypoxia. In contrast, we observed
a significant increase in the level of PFK gene expression under moderate hypoxia and
normobaric conditions. The reasons for such a discrepancy remain unclear.

It is well known that lactate production and transport are closely related to exercise
intensity. Our findings suggest that only supramaximal exercise training led to activation of
lactate metabolism genes. Indeed, our results show that SIT caused a significant increase in
MCT1 and MCT4 gene expression, confirming that genes responsible for lactate transport
were activated with such a training modality. Our results are consistent with a large body
of research demonstrating increased MCT1 and MCT4 expression with supramaximal
exercise training [36,37]. This is explained by considering that SIT is performed mainly by
fast-twitch fibers. MCT1 is predominantly expressed in slow-twitch muscle fibers, where it
facilitates the uptake of lactate into working skeletal muscles, while MCT4 is expressed in
fast-twitch fibers, where it mediates lactate efflux [38]. The additional influence of hypoxia
remains unclear; for example, MCT1 and MCT4 protein content did not significantly differ
before and after 3 weeks of intermittent hypoxic training in trained athletes (2 sets of
3 repetitions each, 2 min in duration, and at an intensity of 100% peak power output) [39].
Hence, the addition of the hypoxic stimulus after a 3-week training period was ineffective
on MCT expression [39]. Overall, our data suggest that supramaximal intensity training
triggers greater activation of MCT1 and MCT4 genes than exposure to hypoxia itself.

Mitochondrial biogenesis is an important adaptation of skeletal muscle to exercise
training. Most of the research concerns low-intensity exercise training that exhibits en-
hanced expression of PGC-1s [40,41]. Several studies claim that HIIT activates mitochon-
drial biogenesis-related signaling pathways linked to PGC-1α, which is a key regulator of
mitochondrial biogenesis and can activate TFAM and NRFs [42,43]. HIIT appears to be a
potent training stimulus, as effective as 40–60 min of continuous moderate-intensity train-
ing per session for increasing mitochondrial content [44–46] through several modifications
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in signaling cascades, including the protein phosphorylation of ACC and p38MAPK and
the mRNA expression of PGC-1α [47,48].

In our study, TFAM was upregulated by hypoxia only in the SED group but not
in the exercising groups, and no differences were reported in the expression of PGC-1α
and PGC-1β. The PGC-1α mRNA level was increased after 6 weeks of HIIT in human
muscle [49], but not after 9 days of endurance training [50]. Overall, these data suggest
that mitochondrial biogenesis requires a longer training period than the 4 weeks of the
present study.

One interesting result of our study is the significant activation of the NRF1 gene
only in the normoxic SIT group. It is well known that NRF1 is a pivotal coordinator of
the mitochondrial biogenesis pathway and has been reported to be associated with the
physiological functions of skeletal muscle [38]. NRF1 up-regulates the expression of TFAM,
which is subsequently transported into the mitochondria, as well as nuclear genes encoding
mitochondrial proteins [51]. There are certain contradictions in the understanding of
the functioning of this transcription factor. A number of scientists believe that PGC-1α
coactivates NRF1 targets [52], while others believe that it can be activated independently of
PGC-1α [53]. Our data are in line with previous observations that, in rat skeletal muscles,
NRF1-dependent mitochondrial biogenesis happens prior to up-regulation of PGC-1α
levels in response to exercise [54].

In the present study, both types of exercise training caused a significant increase in CS
gene expression compared to the sedentary group in normoxia. Hypoxia also triggered
CS mRNA expression, except when combined with SIT. CS activity is a reliable biomarker
of mitochondrial content [55] and correlates with aerobic capacity, indicating a possible
long-term effect of training [56].

Overall, our data support the beneficial effect of hypoxia on CS and TFAM gene
expression, as previously shown; e.g., intermittent normobaric hypoxia exposure increased
expression of TFAM, especially when combined with aerobic exercise [57]. TFAM is one of
the key regulators of mitochondrial DNA replication and gene transcription and enhances
skeletal muscle energy metabolism due to increased mitochondrial oxidative capacity [58].

It was reported that SIT and moderate-intensity exercise may increase mitochondrial
content to a similar extent, while exercise intensity mainly influences metabolic signals for
mitochondrial biogenesis [6]. Here, we showed that exercise intensity, either in normoxia or
hypoxia, had no effect on expression of four genes related to the mitochondrial respiratory
chain complex. This can be explained by the short training intervention and insufficient time
for releasing factors mediating exercise-induced mitochondrial adaptations, which may
be associated with a lack of training-induced changes in gene expression of mitochondrial
biogenesis transcriptional factors such as PGC-1α and PGC1-1β. It is in accordance with
some previous studies demonstrating no significant changes in ND1, ND6, CYTB, and
CYTC mRNA levels with different protocols of exercise training [44,59].

Endurance exercise training improves fatty acid oxidation due to increased expression
of CD36 and CPT I [50]. For example, 4 weeks of exercise training stimulated mRNA
expression of genes involved in fatty acid metabolism, such as CD36, FABP3, HSL, and
UCP2, in mice [59]. It is generally considered that the increase in CD36 gene expression
is a mechanism whereby fatty acid uptake and oxidation are increased in trained skeletal
muscle of humans. Surprisingly, we did not find CD36 up-regulation either at low- or
supramaximal-intensity training. One may speculate that the training load was too small
to induce such changes. Interestingly, we report increased mRNA levels of CD36 and HSL
with hypoxia in the sedentary mice.

HSL is a major determinant of fatty acid mobilization in skeletal muscle fibers and
displays triacylglycerol hydrolysis activity. The expression in skeletal muscle is correlated
with fiber type, being higher in oxidative fibers than in glycolytic fibers [60]. It was
previously established that different types of exercise training (including HIIT) lead to
increased lipolysis due to increased HSL gene expression and protein concentration in
adipocytes and skeletal muscle, both in humans and in animals [61–65]. The same effect
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is exerted on the expression of this gene by hypoxia; e.g., intermittent hypoxia increased
HSL-mediated lipolysis in mice [66,67]. Since HSL is under the hormonal control of
catecholamines and natriuretic peptides, one may hypothesize that the increased HSL gene
expression is due to sympathetic activation in response to hypoxia exposure [68].

The observed higher FABP3 mRNA level in the hypoxic SED group compared to
the normoxic group is in line with a previous observation that FABP3 is activated by
hypoxia in a HIF-1α-dependent manner [69]. FABP3 is mainly expressed in cardiomyocytes
and skeletal muscle cells and facilitates the cytoplasmic transport of fatty acids between
intracellular membranes.

5. Conclusions

In conclusion, none of the 4-week training protocols in either normoxia or hypoxia led
to an increase in exercise performance in C57BL/6 mice. However, supramaximal exercise
training in normoxia caused upregulation of key genes involved in glucose and lactate
transport as well as in mitochondrial biogenesis and fatty acid oxidation. The exposure
to hypoxia induced a higher expression of genes involved in glucose metabolism and
mitochondrial biogenesis, mainly in the sedentary mice, but exercise training performed in
hypoxia had a moderate effect on the transcriptional adaptations. Our study provides new
insights into the molecular adaptations of skeletal muscle to different exercise regimens in
normoxic and hypoxic conditions.
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