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Highlights
The immune status of the ovarian cancer
(OC) tumor microenvironment (TME) can
be systematically classified based on
CD8+ T cell densities and spatial distribu-
tion within tumor and stromal regions.

OC immunophenotype classification
captures distinct immune cell networks
which regulate T cell infiltration and anti-
tumor immunity both at diagnosis and
upon treatment or disease evolution.
Ovarian cancer (OC) represents ecosystems of highly diverse tumor microenvi-
ronments (TMEs). The presence of tumor-infiltrating lymphocytes (TILs) is linked
to enhanced immune responses and long-term survival. In this reviewwe present
emerging evidence suggesting that cellular crosstalk tightly regulates the distri-
bution of TILs within the TME, underscoring the need to better understand key
cellular networks that promote or impede T cell infiltration in OC.We also capture
the emergent methodologies and computational techniques that enable the dis-
section of cell–cell crosstalk. Finally, we present innovative ex vivo TME models
that can be leveraged to map and perturb cellular communications to enhance T
cell infiltration and immune reactivity.
Cellular networks can be employed as
tissue biomarkers to improve patient se-
lection for therapy and reveal new target-
able pathways which can disrupt the
strong immunosuppression and exclu-
sion prevalent in OC.

Integration of advanced computational
and imaging approaches can unravel
the spatiotemporal TME heterogeneity
of OC.

Modeling and perturbation of cellular
crosstalk via ex vivo 3D tumor model sys-
tems can further dissect key cellular
crosstalk acrossOC immunephenotypes
and identify new therapeutic targets.
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The concept of CD8+ T cell-based tissue immune phenotype and its association
with prognosis in ovarian cancer
Over the past few years, immunotherapy has transformed the treatment landscape for numerous
solid tumors including a subset of gynecological cancers [1,2]. However, immune checkpoint
blockade (ICB; see Glossary) has so far shown limited efficacy in high-grade serous ovarian can-
cer (HGSOC) (the most common histological subtype of epithelial ovarian cancer) [3,4], despite
the immunogenic nature of this cancer type where half of patients showcase CD8+ T cells within
tumor beds at diagnosis [5–7]. Several factors, including low tumor mutational burden (TMB), in-
creased aneuploidy, elevated copy-number alterations, and significant intratumoral heterogeneity
(ITH) [8] could contribute to the lack of response to ICB [3,9]. Notably, most trials testing ICB in
patients with OC performed thus far have involved unselected patient populations without upfront
implementation of biomarkers.

Although CD8+ T cells have been the subject of extensive investigation, accumulating research
has drawn attention to the involvement of various other immune cell populations in shaping the
TME and regulating antitumor immune responses in OC [3,10–12]. Given the emergence of im-
munotherapies and evidence of a central role of the immune system in sculpting and controlling
tumor growth, elucidating the immune contexture of cancers has become an area of intense in-
terest [13].

The Ovarian Tumor Tissue Analysis (OTTA) Consortium showed that HGSOC is the most T cell-
infiltrated histotype, and CD8+ intraepithelial tumor-infiltrating lymphocytes (ieTILs) are a favorable
prognostic factor regardless of the extent of surgical cytoreduction, chemotherapy treatments, or
an underlying germline BRCA1 mutation [14]. Shedding light on some potentially predictive and
prognostic biomarkers, it was recently shown that long-term HGSOC survivors tend to have sev-
eral co-occurring alterations in genes associated with DNA repair andmore frequent somatic var-
iants than short-term or moderate-term survivors, resulting in an increased predicted neoantigen
load and enhanced immune responses [15].
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Glossary
Adoptive cell transfer (ACT):
a treatment in which T cells are collected
from a patient, modified or expanded
in vitro, and then reinfused to the patient
to attack tumor cells. ACT has shown
beneficial outcomes in melanoma
patients.
Chemokines: small proteins that
attract immune cells expressing specific
binding receptors. Chemokines are
distinguished by cysteine residues: in
CCL chemokines the two cysteines are
adjacent, whereas in CXCL chemokines
they are separated by one amino acid.
Extracellular matrix (ECM): the
complex network of extracellular
macromolecules, such as collagen,
enzymes, and glycoproteins, that
surround cells and provide structural
and biochemical support.
Ferroptosis: cell death initiated through
iron-dependent lipid peroxidation.
Homologous repair deficiency
(HRD): a phenotype present in half of
ovarian cancer (OC) cases, which is
defined as an inability to repair double-
strand breaks in DNA via the
homologous recombination (HR)
pathway, thus inducing immunogenicity.
Immune checkpoint blockade (ICB):
monoclonal antibodies that are used to
treat cancer by disrupting the interaction of
checkpoint proteins with their ligands (i.e.,
PD-1, PD-L1, CTLA-4).
Immune phenotype: a classification
system focusing on the localization,
distribution, and abundance of CD8+ T
cells within the TME that categorizes
tumors as inflamed, excluded, or
deserts by histopathological
assessment.
T cell exhaustion: describes T cells that
exhibit reduced effector function
(i.e., granzyme B, perforin, IFN-γ, TNF-α),
decreased proliferative capacity, and
increased expression of co-inhibitory
receptors (i.e., PD-1, CTLA-4, TIM-3,
LAG-3)
Tertiary lymphoid structure (TLSs):
organized lymphoid aggregates that
form in non-lymphoid organs during
chronic inflammation and are associated
with a local adaptive immune response.
Based on CD8+ T cell infiltration patterns, OCs have been classified into so-called 'T cell inflamed'
(also termed 'hot') tumors, in which T cells infiltrate both tumor deposits (islets) as well as the
tumor-associated stroma, 'excluded' tumors, in which T cells sequester in the stroma but are absent
from tumor islets, and 'non-inflamed' tumors (also called 'immune-desert' or 'cold' tumors)
[3,11,16,17] (Figure 1, Key figure). Although this three-tier immune classification is generally accepted,
it overlooks the commonly observed intratumoral heterogeneity of OC TME [11,18,19] and still lacks
standardization. To bridge this gap, attempts have been made to employ integrated digital pathology
approaches to standardize TIL measurements in OC tissues [16,20]. A machine learning-based clas-
sifier was able to capture the heterogeneity of CD8+ T cell densities and their spatial distribution in
whole tumor tissue slides imaged by multiplex immunofluorescence (mIF) [20]. This tumor immune
classifier captures the continuumof CD8+ T cell infiltration and defines four distinct OC immune phe-
notypes: homogenously or heterogeneously inflamed, excluded or desert OC tissues. These four im-
mune phenotypes were associated with different clinical outcome and homologous repair
deficiency (HRD) status. Importantly, they were characterized by differential TIL states and TME net-
works [20], suggesting that tumor immunophenotype classification can capture underlying distinct
immune cell networks [11].

In this review we propose that these networks can (i) be employed as tissue biomarkers to im-
prove patient selection and therapy in OC, and (ii) reveal new targetable pathways which can dis-
rupt the strong immunosuppression that is prevalent in OCs.

Cellular networks orchestrating immune response in OC
Categorizing tumors by looking at the spatial distribution of CD8+ T cells in the TME has permitted
the investigation of infiltration, immune-exclusion, and desertification mechanisms [11,16]
(Figure 1). It also provided a unifying framework to understand in-depth the underlying and dis-
tinct immune cell networks [11]. In the following we present cell–cell crosstalk that governs im-
mune response and T cell infiltration in epithelial OC, with a focus on HGSOC.

Cell–cell networks in the inflamed TME of OC
Tumors with increased DNA damage (i.e., cells with HRD) can be constitutively inflamed.
Accumulation of damaged DNA in the cytoplasm and subsequent cell-autonomous activation
of the nucleic acid-sensing and type I interferon (IFN) pathways through cyclic GMP-AMP
synthase–stimulator of interferon genes (cGAS-STING) [21,22] leads to upregulation of the
JAK/STAT and tumor necrosis factor (TNF) pathway downstream genes and the secretion
of chemokines, such as CCL5 and CXCL16, that attract T cells in tumor islets [11,23]. Pa-
trolling tissue-resident T cells that recognize tumor antigens produce IFN-γ and polarize adja-
cent myeloid dendritic cells (DCs) and macrophages to secrete CXCL9/10 chemokines and
attract CCR5+, CXCR3+, and CXCR6+CD8+ T cells to inflamed tissues [10]. Tumor-specific
CD8+ TILs may simultaneously engage tumor cell targets and co-stimulatory myeloid anti-
gen-presenting cells (APCs). Tumor-specific expression of CCL5 in conjunction with CXCL9
promotes lymphocyte infiltration [23], and silencing of CCL5 expression leads to an attenu-
ated immune response [22].

CXCR6 together with CD103 and CD69 expression on CD8+ T cells indicate the differentiation of cir-
culating T cells into tissue-resident T cells [24]. Following homing to the tumor, the persistence and
sustained antitumor effector function of T cells is dependent on the balance between co-stimulatory
and co-inhibitory interactions. In OC, the presence of mature DCs has been associated with improved
prognosis [25]. Resident myeloid APCs support antitumor CD8+ TILs by preventing terminal T cell
exhaustion and maintaining stem-like T cells niches through direct CD80/CD86–CD28 co-
stimulation [12] and paracrine support by interleukin (IL)-12 and IL-15 cytokines. Pre-existing myeloid
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Key figure

A systematic multi-omic workflow to decipher cellular crosstalk in ovarian cancer (OC)
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Figure 1. (A) Resected tumors undergo histopathological evaluation and subsequent multiplex immunofluorescence (mIF) imaging analysis to define CD8+ T cell-based
immune categorization; tumors are classified into 'hot'/inflamed, excluded, or 'cold'/desert tumors. Next, single-cell analysis is used to infer the main immune cell subtypes
and cellular networks. (B) Computational analysis through inferred ligand–receptor pairs and intracellular regulatory networks reveal key cellular interactions among the
different immunophenotypes. (C) (Top) Main ligand–receptor interactions across tumor immune phenotypes. (Bottom) Schematic cartoon representation of the major
cellular components and crosstalk involved in each immune phenotype. (Inflamed) Characterized by high immune reactivity and cellular crosstalk including chemokine–
chemokine receptor interactions, antigen recognition, co-stimulation, and co-inhibition. This phenotype exhibits a high presence of intraepithelial CD8+ T cells, mature
myeloid cells such as dendritic cells and B cells, and tertiary lymphoid structures (TLSs). (Excluded) Dominated by prostaglandin E2 (PGE2), FAS ligand (FAS-L),
vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β signaling, this immune phenotype excludes antigen-experienced T cells from the
tumor beds. (Desert) Characterized by lack of antigen presentation and immune interactions. Cancer-associated fibroblasts (CAFs) and reactive stroma increase the
stiffness of the extracellular matrix (ECM) to recruit or retain immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated
macrophages (TAMs), resulting in immune evasion and tumor progression. Abbreviations: APM, antigen-processing machinery; 4-1BB (CD137), tumor necrosis factor
receptor superfamily member 9; CCR, C-C chemokine receptor; CXCL, C-X-C motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; DCs, dendritic cells;
EM, effector memory cell; EMT, epithelial-to-mesenchymal transition; GzmB, granzyme B; HEV, high endothelial venule; OXPHOS, oxidative phosphorylation; TCR, T
cell receptor; Tex, exhausted T cell; Th1, type 1 T helper cell; Treg, regulatory T cell; UMAP, uniform manifold approximation and projection. Figure generated with
BioRender.
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APC and APC:TIL niches are crucial for effective PD-1 blockade [12,26] and also for the response to
adoptive T cell therapy [27].

Besides the aforementioned TILmyeloid crosstalk, several studies have shed light on the crucial role of
B cell responses in antitumor T cell immunity and inflammation [28]. InflamedOCs are enriched in pro-
liferating plasmablasts with overexpression of PRDM1, SDC1, and CD38 [10], whereas the detection
of plasma cells in tertiary lymphoid structures (TLSs) indicates increased cytolytic features of TILs
[29]. Interestingly, TILs were associated with improved survival only when co-present with CD138+

intratumoral plasma cells that displayed a dominant IgA switch redirectingmyeloid cells and sensitizing
OC cells to T cell-mediated cytolysis [30]. Patient-derived OC cells are also frequently coated with
IgGs, and tumor-reactive autoantibodies can occur naturally or evolve through an antigen-driven selec-
tion process via somatic hypermutation [31]. In addition, tumor-infiltrating B cells might provide co-
stimulatory signals to tumor-resident CXCL13-secreting TILs. The CXCL13-CXCR5 axis is essential
for the early phase of TLS formation in OCs [32]. Intriguingly, OC TLS were associated with increased
intratumoral density of more terminally differentiated TIM3+PD1+CD8+ T cells [29], in contrast to lung
cancer where TLSs are enriched in stem-like TCF1+PD1+CD8+ T cells. More research will be neces-
sary to unveil the cell–cell crosstalk andmolecular networkswhich regulate TLSneogenesis and estab-
lishment inOCs. Syngeneic preclinical models that can give rise to TLSswill prove crucial to dissect the
cell–cell crosstalk occurring between TLS and the OC TME (see Outstanding questions). In summary,
the simultaneous presence of CD8+ TILs, mature myeloid cells, B cells, and TLSs are linked to a favor-
able clinical OC prognosis [33].

Cell–cell networks in the excluded and desert TME of OC
In contrast to inflamed immune phenotypes, excluded and desert OCs exhibit low infiltration of
CD8+ T cells within the intraepithelial tumor compartment and therefore low immune reactivity.
In excluded tumors, TILs are restrained in the stromal area, possibly owing to a mechanophysical
barrier which involves the tumor endothelial vasculature, the fibrotic matrix deposited by cancer-
associated fibroblasts (CAFs), and also M2-like macrophages characterized by TREM2/CD169/
CXCR4/CX3CR1 expression [11].

Upon recruitment, T cell homing to the tumor relies on the presence of a permissive endothelium.
Secretion of proinflammatory cytokines promotes endothelial activation, leading to the creation of
patches of activated endothelial cells expressing cell-adhesion molecules (selectins, ICAM-1,
VCAM-1, etc.) that are required for endothelial–T cell adhesion and T cell extravasation. In excluded
tumors, T cell recruitment can be hindered due to downregulation and/or declustering of adhesion
molecules, or via secretion of endothelin β or vascular endothelial growth factor A (VEGF-A) and pros-
taglandin E2 (PGE2) that cooperatively induce FAS ligand (FASL) expression on endothelial cells, me-
diating selective apoptosis of effector T cells while leaving regulatory T cells (Tregs) unaffected [34].
The PGE2-EP2/EP4 axis, reinforced by genotoxic therapy [20], suppresses T cell-mediated antican-
cer immunity by inducing ferroptosis in antigen-experienced exhausted TILs [35] and preventing
their effector differentiation [36] in the TME. In addition, the VEGF/VEGFR axis adversely impacts on
APCs and effector T cells and enhances infiltration of Tregs and myeloid-derived suppressor cells
(MDSCs) [37]. It is tempting to speculate that the stroma of excluded tumors selectively kills tumor-
reactive but exhausted TILs through mechanisms such as FAS/FASL and PGE2-EP2/EP4, and al-
lows the retention and expansion of more naïve/central memory TIL compartment.

Considering the major role of the extracellular matrix (ECM) in immune responses, efforts have
been made to deconstruct and subsequently reconstruct the stroma features of omental metas-
tatic deposits, a frequent niche of OC tumor invasion. A multilevel analysis of OC metastases re-
vealed matrix index (matrisome) changes that were shared across solid tumors and could predict
Trends in Cancer, December 2024, Vol. 10, No. 12 1119
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the survival of patients with OC. It also uncovered a significant relationship between tissue stiff-
ness conferred by upregulation of collagen-remodeling genes (COL11A1, COMP, VCAN, FN1,
COL1A1, andCTSB) and disease progression [38] that is probably driven by transforming growth
factor β (TGF-β) signaling [39].

CAFs are central for ECM remodeling. They can form a physical barrier to CD8+ T cell infiltration by
modulating the ECM of the TME via the production of cytokines (i.e., IL-6, TNF), growth factors (i.
e., TGF-β, VEGF), chemokines (i.e., IL-1, IL-6, CXCL1, 2, 5, and 12, and CCL2 and 3), and
matrix-remodeling enzymes [matrix metalloproteinases (MMPs)] [40–42]. Recently, two fibroblast
subsets have been identified, one marking normal stroma and the other marking desmoplasia (i.
e., a neoplasia-associated alteration in fibroblasts and ECM with distinct tissue morphology).
Desmoplastic fibroblasts not only overexpress collagen fibril organization and ECM genes but
also upregulate CXCL12 (the cognate ligand of CXCR4) and are associated with niches enriched
in naïve T/natural killer (NK) cells [43]. It is still not clear whether ECM and CAFs actively exclude
tumor-reactive TILs from entering the tumor beds or simply retain them in more naïve states.

Likely due to dysfunctional myelopoiesis mechanisms, OCs actively recruit immature myeloid
cells and alternatively activated (M2-polarized) macrophages. APCs isolated from patients with
OC appear to have functional deficiencies [35], with low CD80 and CD86 expression and dimin-
ished production of IL-12. They upregulate immune checkpoint ligands, suppressive cytokines,
TGF-β, VEGF-A, and enzymes such as arginase and indoleamine 2,3-dioxygenase 1 (IDO1)
that deplete key amino acids from the TME [44]. These immunosuppressive myeloid cells accu-
mulate intracellular reactive oxygen species that provoke endoplasmic reticulum stress and in-
creased lipid peroxidation [45], and promote upregulation of PGE2 [46].

While TIL-excluded tumors are dominated by TREM2-overexpressing CD169+ macrophages
characterized by tumor-associated macrophage (TAM)-like signatures, immune-desert tumors
are infiltrated by TREM1+FCN1+ monocytes and MARCO+ macrophages with MDSC-like signa-
tures [11], indicating that specialized immune networks underlie distinct OC phenotypes. Recent
findings highlight increased cell–cell crosstalk betweenmacrophages andDCs in excluded and de-
sert OC [20]. These networks establish complex cell interactions that secure immune tolerance. Fi-
nally, little is known about the involvement of CD4+ T cells or of the role of other innate cells such as
innate lymphoid cells, neutrophils, and mast cells for the tumor desertification process [3].

In summary, excluded tumors are characterized by low infiltration of activated CD8+ T cells into
the intraepithelial compartment and an increased presence of naïve-like TILs in the tumor-
associated stroma. Potential mechanisms for this immune phenotype include a complex network
involving the tumor endothelial vasculature and the fibrotic matrix deposited by CAFs and immu-
nosuppressive myeloid cells that restrain TILs in the stroma. Desert OCs are characterized by the
total absence of TILs, probably because of the low expression of antigens and immune-activating
signals as well as high immune suppression.

The complex cellular crosstalk involved in each OC immune phenotype, and their specific role are
only partially understood. Addressing these gaps will be crucial for developing effective therapeutic
strategies and maximizing the clinical outcome of patients with OC (see Outstanding questions).

Spatial and temporal heterogeneity of cell–cell crosstalk in OC
ITH and TME variations across primary and metastatic intraperitoneal anatomic sites are highly
prevalent in OCs [8,17,19,47], which could affect the frequency and composition of cellular
crosstalk. For example, in contrast to homologous recombination repair-proficient (HRP) tumors,
1120 Trends in Cancer, December 2024, Vol. 10, No. 12
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the anatomic sites of primary adnexal HRD tumors are found to be enriched in T cell–myeloid cell
networks. These sites exhibit the highest levels of antigen-experienced/exhausted TILs and acti-
vated myeloid cell states overexpressing the interferon (IFN)-inducible chemokines CXCL9/
CXCL10 [23]. By contrast, distant intraperitoneal metastatic sites are impoverished in exhausted
T cells andCXCL10+macrophages and aremore infiltrated by naïve-like or central memory T cells
[15,47], demonstrating that both genetics and anatomy sculpt immune cell partners in OC.

Themechanisms accounting for such variations of tumor T cell–myeloid cell crosstalk include loss
of human leukocyte antigen (HLA) expression through deletion of chromosome 6p harboring HLA
class I and II genes [47] and epigenetic silencing of the DNA-sensing/IFN pathway and/or loss of
tumor-intrinsic chemokines [22]. Thus, the anatomic site itself could impose distinct selective
pressures that potentially drive and/or select for specific phenotypic states of malignant cells. In-
terestingly, distal intraperitoneal anatomic sites of HRP tumors display TGF-β upregulation, a
known driver of immune suppression and T cell exclusion [47].

The omentum represents the most common peritoneal metastatic site for OC, probably owing to the
unique proangiogenic vasculature present at this site and/or a potent immunosuppressive effect [48].
Cancer cells invading omental anatomic sites can reprogram stromal cells, such as mesothelial cells,
adipocytes, CAFs, endothelial cells, and resident immune cells found in so-calledmilky spots, to sup-
port cancer cell survival and metastasis. While milky spots of the omentum can function as unique
secondary lymphoid organs that promote immunity to peritoneal antigens [49], it appears that
these sites are unable to promote adaptive immune responses during OC metastasis. One potential
mechanism that correlated with suppression of T cell function and poor prognosis in patients with OC
is the VEGF-driven accumulation of CD33+ MDSCs in the omentum [48].

In addition, omental TME reprogramming was previously characterized by upregulation of
collagen-remodeling genes (COL11A1, COMP, VCAN, FN1, COL1A1, and CTSB) that predicted
poor survival in patients with OC [38]. Emerging cellular interactions that facilitate tumor invasion
were identified between platelets and mesothelial cells. Platelets activate the mesothelium by
stimulating ECM and epithelial-to-mesenchymal transition (EMT) processes in mesothelial cells
and promote tumor invasion. This could explain why platelets are associated with a poor-progno-
sis tissue composition in culture models [50].

Standard-of-care therapy (i.e., chemotherapy, PARP inhibitors, etc.), along with tumor evolution, can
profoundly remodel the OC TMEs coexisting within a patient [51]. The spatiotemporal evolution of
the TME has been described in the context of neoadjuvant chemotherapy [18]. Ligand–receptor anal-
ysis identified the TIGIT-NECTIN2 T cell–myeloid cell interaction as a potential target to prevent CD8+ T
cell exhaustion in response to chemotherapy in OC. More recently, the immunobiology and evolution
of OCwere dissected by studying paired primary and recurrent tumor samples through digital pathol-
ogy analysis [20]. TILs and myeloid cell networks were again identified as being central to the
immunobiology of OC andwere associated with tumor evolution following chemotherapy. Specifically,
inflamed tumors exhibited high T cell–DC interactions, whereas recurrent cold tumors were character-
ized by the accumulation of immunosuppressive myeloid interactions, particularly involving TREM2/
APOEhigh TAMs, further supporting the notion that OC progression is regulated by phenotypic
changes in DCs and macrophages induced at least in part by tumor cell-derived PGE2, TGF-β1,
and ATX/LPA2 [52].

Finally, and despite intrapatient variability, immune escape appears to be a common theme in
end-stage disease [53]. A broad reduction in several immune cell subsets was observed in
end-stage OC, resulting in a dramatic prevalence of immunologically cold tumors. CCL5
Trends in Cancer, December 2024, Vol. 10, No. 12 1121
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hypermethylation and HLA loss of heterozygosity were the most major contributors to diminished
TIL recruitment and retention in end-stage OC [53].

It is therefore evident that, to guide new therapeutic opportunities, multisite tumor profiling to-
gether with a deep investigation of immune evolution patterns during treatment and recurrence
would bring insights into how cellular interactions within the OC TME evolve. This can inform clin-
ical decisions for precision OC therapy.

Computational and imaging approaches to predict and map cell–cell interaction
networks in the TME
Tissue staining with hematoxylin and eosin (H&E) and immunohistochemistry (IHC) provide spatial,
morphological, and protein expression data which are to some extent sufficient to establish diagnosis
and prognosis for OC patients. For example, larger microstructures within the TME such as TLSs can
readily be identified by H&E staining. However, multiplexed tissues imaging is necessary to identify
heterogeneous cell states and unravel their spatial arrangements in the broader TME landscape.

Single cell-resolution technologies, such as multiplex tissue imaging, hold this potential (Box 1).
Multiplex imaging platforms share common analytical pipelines and have defined output datasets
which include cell-specific phenotype and position (x and y coordinates) across a tissue. This
Box 1. Spatial distribution and protein expression assessment

Recent advances in multiplex tissue imaging technologies have expanded the range of markers and areas analyzed, including
tissue microarrays (TMAs) and whole-tissue slides. Spectral deconvolution techniques typically accommodate four to eight
markers per cycle of multiplex immunofluorescence (mIF) imaging. mIF can be achieved using conjugated fluorophores [tis-
sue-based cyclic immunofluorescence (t-CyCIF), COMET™, and iterative bleaching extends multiplexity (IBEX) platforms], chro-
mogenic amplification (Opal-immunohistochemistry, IHC) or metal-based antibody detection [multiplexed ion beam imaging
(MIBI) by time of flight (TOF), and imagingmass cytometry (IMC)] that support higher multiplexing through iterative staining cycles.

Opal-IHC allows the simultaneous measurement of up to eight markers, enabling the identification and quantification of various
cell populations at the protein level in the TME. It utilizes tyramide signal amplification (TSA), where tyramide can be biotinylated or
labeled with a fluorescent dye catalyzed by streptavidin–horseradish peroxidase (HRP). The technology uses multiple lasers and
specific optics for spectral detection. Digital spectral 'unmixing' corrects for fluorescence emission overlaps, ensuring accurate
detection. The Opal workflow uses a stripping protocol to remove primary and secondary HRP-conjugated antibodies, allowing
serial IHC despite the complexity of potential epitope damage and signal loss during sequential staining [77].

t-CyCIF uses iterative staining, imaging, and chemical quenching cycles with fluorophore-conjugated antibodies and en-
ables detailed spatial mapping of protein expression and interactions by detecting >60 different proteins in formalin-fixed,
paraffin-embedded (FFPE) samples. This technology relies on standard reagents and instruments, making it easy to imple-
ment in research laboratories, although it faces signal-to-noise ratio challenges with low protein levels and increased cycle
numbers [78]. Incorporating a fully automatedmicrofluidic device into the staining processminimizes staining volumes and
wash reagents, and preserves tissue and epitope integrity while increasing homogenous staining. With the ability to stain
up to 40 markers within 1 day, incorporating this technology offers a valuable high-throughput approach for TME charac-
terization and advancing cancer research [79].

To further reduce autofluorescence and signal overlap, new methods such as IMC and MIBI have been developed. IMC
and MIBI-TOF are advanced IHC technologies for analyzing cell subtypes, interactions, and protein quantities at the sub-
cellular level. IMC uses heavy metal isotopes and laser ablation to provide spatial information and highlight tumor hetero-
geneity, and can capture >40 protein markers simultaneously on tissue sections with subcellular resolution. Although IMC
eliminates autofluorescence, it lacks signal amplification and has slow image acquisition.

Similarly, MIBI-TOF uses a secondary ionmass spectrometer to image antibodies taggedwith isotopically heavymetal reporters.
Samples are incubatedwith lanthanide-conjugated primary antibodies, then ionizedwith a duoplasmatron primary ion beam (i.e.,
O2
+ and Xe+), resulting in lanthanide adducts of the bound antibodies as secondary ions that can be measured by TOF. MIBI can

analyze up to 100 targets simultaneously in single cells with spatial resolution [80]. Thismethod can also be combinedwith single-
cell metabolic regulome profiling (scMEP) to predict cancer outcomes and therapeutic effects. Although MIBI offers high speci-
ficity and the ability to capture many targets, it is time-consuming and it uses expensive metals [81].
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enables digital reconstruction of the cell architecture of tissues and the interrogation of cellular in-
teractions and cellular neighborhoods within them.

Although the development of novel high-plex mIF technologies has facilitated the discovery of crucial
cellular interactions such as TIL–myeloid cell interactions for antitumor immune responses in OC, it is
important to note that only targets for which suitable antibodies have been developed and validated
can be explored. In addition, prior knowledge is necessary to curate an informative selection of probe
targets for investigation, thereby limiting the likelihood of uncovering entirely novel types of molecular
crosstalk. To further deepen our comprehension of complex cellular interactions, technologies that in-
tegrate spatial information with high-throughput molecular analyses are required. Single-cell RNA se-
quencing (scRNA-seq) has been instrumental in characterizing the cellular composition of the TME in
OC [11,47] (Box 2). While scRNA-seq data do not directly capture cellular interactions, the gene ex-
pression information of every cell enables the inference and quantification of these networks by incor-
porating ligand–receptor pair expression and downstream target activation from curated databases
(Box 2). However, because scRNA-seq requires single-cell dissociation, the dataset involves loss of
spatial distribution and organization. Therefore, tissue validation of inferred interactions by mIF tissue
imaging or spatial transcriptomics (Box 3) is necessary.

Rapid advances in spatial transcriptomics have provided insights into the spatial dimension
governing cellular crosstalk, allowing researchers to dissect the spatial heterogeneity of the OC
TME [43,54–56] (Box 3) and providing an unprecedented opportunity to unravel cellular interac-
tions. Spatial transcriptomics – at a resolution of 20–50 cells – combined with mIF was used to
characterize both intra- and interstromal heterogeneity in treatment-naïve advanced-stage OC
Box 2. Single-cell RNA sequencing (scRNA-seq) for inference of cell–cell crosstalk

scRNA-seq has paved the way for deeper investigations of cell–cell crosstalk. By leveraging curated databases covering
prior knowledge of intercellular interactions and ligand–receptor pairs, various computational tools have emerged which
aim to infer cellular interactions [82]. These tools can be broadly categorized into two main approaches. The first group
relies on intercellular events and primarily uses the gene expression of ligand–receptor pairs and their subunits. Core tools
such as InterCellDB, SingleCellSignalR, and CCInx, as well as multimeric subunit tools which include mediators of interac-
tions, such as CellChat, ICELLNET, and CellPhoneDB, enhance cell–cell crosstalk analysis by considering complex li-
gand–receptor interactions (LRIs) [83]. However, gene coexpression is not always indicative of protein interaction.

To address this, in addition to gene expression of ligands, receptors, and their direct regulatory subunits, the second group
of tools incorporates prior knowledge of intracellular signaling and gene regulatory networks. Tools such as NicheNet [84],
CytoTalk [85], SoptSC [86], scSeqComm [87], and scMLnet [88] allow more comprehensive and biologically relevant pre-
dictions of LRIs [89]. Owing to the lack of a gold standard for evaluating LRIs in scRNA-seq, agglomerative tools such as
LIANA (ligand–receptor analysis framework) integrate multiple methodologies and resources to produce a consensus for
the predicted cell–cell interactions by prioritizing concordant results among the different approaches [82].

A common limitation in the design of cell–cell interaction tools is their restriction to pairwise comparisons [90]. As larger
clinical cancer datasets become available, there is a growing need for tools that can handle multiple comparisons across
conditions, timepoints, or disease stages, while accounting for covariates and batch effects. Tensor-cell2cell and
MultiNicheNet have been developed to address this need [90,91].

Despite the single-cell resolution of scRNA-seq, most tools infer cell–cell interaction between clusters of cells by pseudobulking.
This approach aims tomitigate the sparsity inherent to scRNA-seq, gain statistical power, and highlight biological relevant cell–cell
interactions at the population level while reducing the computational resources. However, a few tools, such as SpotSC, Niches,
Scriabin [92], SPRUCE, and DeepCOLOR, offer the computation of LRIs for individual cells [83].

scRNA-seq loses spatial information, such as the distribution and organization of cells, due to the inherent sample pro-
cessing procedure. This hinders the understanding of the complex biological relationship and interactions between cells
[18,57]. Some tools attempt to overcome this limitation by recreating spatial localization based on assumptions of physical
cell interactions. For example, CSOmap [93] and SPROUT [94] use affinity scores between cells based on their LRIs to
project them in a pseudo-physical space.
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Box 3. Spatial transcriptomics

Spatial transcriptomics enables the investigation of cell–cell crosstalk by preserving spatial context in tissue samples. Two
major approaches to spatial transcriptomics have been commercialized, each with distinct strengths and limitations: im-
aging-based spatial transcriptomics (imST) and sequencing-based spatial transcriptomics (seqST).

ImST technologies visualize gene expression directly in tissue samples by relying on in situ hybridization with fluorescent
probes. Sequential rounds of hybridization and imaging enable construction of the spatial molecular profile of a tissue
[95]. ImST platforms, such as MERSCOPE, 10X Xenium, and CosMx Spatial Molecular Imager, combine single-cell reso-
lution with high RNA capture efficiency [95]. This facilitates detailed spatial mapping of the morphological and cellular het-
erogeneity of the TME and investigation of immune networks at the molecular and tissue levels [43]. Cell segmentation is a
required processing step in imST which delineates cells based on stained morphological features and can be assisted by
additional co-stains [96]. Variation in cell boundary identification will alter gene expression and influence downstream anal-
ysis [97]. Current imST platforms are limited to capturing hundreds to 1000 unique gene transcripts, andmultiplexing sam-
ples is technically challenging and resource-intensive.

By contrast, seqST platforms such as Visium and Visium HD from 10X Genomics return high-throughput whole-transcrip-
tomic data by capturing RNA with barcoded arrays and offer unbiased quantification of RNA transcripts. However, seqST
technologies provide lower spatial resolution compared to imST, resulting in mixed signals coming from the accumulation
of multiple cells. The number of cells captured per single spot can vary greatly depending on the tissue type. Continued
increase in the resolution of seqST will alleviate problems associated with agglomeration of cells but will also introduce
the need for accurate cell delineation.

New and existing tools have established workflows to accommodate spatial transcriptomics and infer cell–cell interactions
with spatially contextualized cells. Tools such as SpaOTsc allow scRNA-seq to be integrated with spatial transcriptomic
data and rely on optimal transport to reconstruct the spatial cellular dynamics of the tissue [98]. Giotto, Squidpy, and
Cell2Cell are tools that facilitate the analysis of spatial transcriptomic data, and provide information on cellular interactions
by identifying spatially resolved cell cluster pairs and their most significant ligand–receptor interactions (LRIs) [83,99].
SpaCET analyzes LRIs within spatial transcriptomic spots to provide evidence of cellular interactions with spatially
colocalized cells [100]. Another approach, used in SpatialDM and SpaTalk, is to detect LRIs based on spatial proximity
and ligand–receptor coexpression [101]. This can highlight the important role of regional cell–cell interactions in the tissue
which can be independent of the cell type or cluster [102]. SpaTalk constrains the possible LRIs spatially to the k-nearest
neighbors and uses that information to build a cell graph network [102].
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samples of patients with either short or extended survival. This study revealed a higher density of
proliferating and metabolically active CAFs in stromal clusters from short-term OC survivors
(STSs) than in stromal clusters from long term-survivors (LTSs). In addition to typical CAFmarkers
such as α-SMA, VIM, and PDGFRβ, CAFs of STSs overexpressed periostin and CD36 in spatially
resolved stromal clusters. Comparative network analysis between STS and LTS samples cap-
tured by spatial transcriptomics uncovered crucial interactions between LRP5+ tumor cells and
APOE+CAFs located at the tumor–stroma interface [57]. This study is in line with previous reports
indicating that an increased matrisome index correlates with poor prognosis [38]. New spatial
transcriptomic research that seeks to resolve spatial cellular crosstalk may reveal previously un-
identified networks that control tumor immune phenotypes in OC [43].

Modeling and perturbation of cell–cell crosstalk in the TME: systems of ex vivo
3D tumor models
The need to understand better how cellular interactions within the TME can influence therapeutic
outcomes calls for the development of ex vivo model systems that faithfully recapitulate the OC
TME and accurately reproduce cellular interactions. Cell culture using 3D models, such as
organoids, has been extensively documented in recent years, marking a significant advance in
oncology research [58] (Box 4). These in vitro models rely on the self-renewal and self-
organization of growing cell aggregates derived from pluripotent stem cells that can differentiate
under specific conditions involving proteins such as growth factors or small molecules that acti-
vate or inhibit particular signaling pathways (Box 4). Organoids can mimic the structural, func-
tional, and biological complexity of an organ [59]. Similarly, patient-derived tumoroids (PDTs),
which can be derived directly from harvested OC tissues and ascites, and cultured on different
1124 Trends in Cancer, December 2024, Vol. 10, No. 12



Box 4. Ex vivo model to dissect crosstalk upon perturbation

Organoids are miniaturized, self-organized 3D in vitromodels of human organs that are derived from healthy tissue-resident
adult stem cells, pluripotent stem cells, and/or differentiated cells. Similarly, tumor-like organoids and patient-derived
tumoroids (PDTs) can be derived from resected tissue from primary or metastatic tumors. In both models, tissue is dissoci-
ated and the cell suspension is embedded in basement membrane extract within a dome or flat matrix such as Matrigel. Al-
ternatively, PDTs can be propagated in plates with microengineered hydrogel-based wells which promote fast and
homogenous aggregation of epithelial cells into 3D structures [103]. All models are then overlain with specialized media con-
taining growth factors necessary for deriving and sustaining tumoroids development such asWNT3A, R-spondin, EGF, FGF,
noggin, Rock inhibitors, p38 inhibitors, 17β estradiol, and hydrocortisone [58]. Growth factors and media components are
tailored based on the origin of the organ from where the tissues are harvested.

Once propagated, PDTs can bemaintained by long-term culture (up to 250 days in culture) [104] or cryopreservation. They
can faithfully recapitulate the morphological heterogeneity and genetic features of tumor tissue samples from patients
[105,106]. Comprising various cell clonotypes from the original tumor, tumoroids can be expanded in vitro and allow
high-throughput drug screening and biomarker identification. In OC, these models have shown great potential in
predicting response and resistance to chemotherapy and PARP inhibitors [64].

Long-term propagated tumoroid cultures are comprised of epithelial cells and are devoid of intrinsic TME components,
such as cancer-associated fibroblasts (CAFs), endothelial cells, pericytes, and immune cells. To mimic the cancer niche
and the interactions between the tumor and its microenvironment, efforts are underway to reconstruct the TME of PDTs
ex vivo. This is performed by mixing PDTs with additional stroma cell types such as fibroblasts, adipocytes. mesothelial
and endothelial cell as well as immune cells. In addition, PDTs can be used as more faithful models to study the efficacy
and infiltration capacity of adoptive cell therapy products ex vivo.

Complementary models that incorporate autologous matrix and in situ immune components can provide deeper insights into
therapy response and resistance mechanisms in OC. These features are offered by PDE, which consists of ex vivo culture of
freshly resected human tumor slice/fragments. PDE cultures preserve the TME and architecture found in patient tissues. They
enable the interrogation of native TME populations and their respective cell–cell crosstalk at baseline or upon perturbation. They
can be rapidly generated immediately after surgery and allow evaluation of early response to therapy [71]. However, PDE viability
rapidly drops over time, despite optimized culture conditions [73]. One potential reason could be the lack of physiological perfu-
sion of oxygen and nutrients. This limitation can be overcomeby implementing perfusion systems andmicrofluidic devices. These
systems can integrate controlled environments with perfusion of soluble growth factors, cytokines, and chemokines, thereby en-
abling cell–cell interactions, motility, and oxygen perfusion, and improving the long-term viability of 3D models.
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scaffolds, can reproduce reliable models of ovarian tumors [60]. PDTs have been shown to main-
tain the original transcriptomic states and genomic mutations (such as BRCA1/2, TP53, KRAS,
and PIK3CA) [61], and thus recapitulate the heterogeneous landscape of OC [62]. They have en-
abled screening studies for PARP inhibitors [63], chemotherapy regimens [61], and epigenetic
and targeted therapies [64], and thus are valuable in predicting treatment efficacy for OC
[58,61,64,65]. For example, comparative RNA-seq between cisplatin-sensitive and -resistant
organoids revealed that fibrillin 1 induces chemoresistance [66]. In addition, upregulation of
ECM substrates such as COL6 and increased stiffness mechanisms can elevate resistance to
platinum-based chemotherapy in OC organoids [67]. While PDTs may accurately represent the
tumor compartment, they lack the stroma and immune compartments of the TME which are es-
sential for tumor cell growth, migration, and invasion in OC (Box 4).

Recent studies have explored the reconstitution of PDTs with various immune components and
investigated cellular interactions in coculture settings [68] (Box 4). Tri- and tetra-cultures in 3D,
where mesothelial cells, fibroblasts, and adipocytes are isolated from the omentum of the patient
and cocultured with tumor cells in an adipocyte-based matrix, showed potential to generate a
long-term viable and relevant multicellular model in a semi-high-throughput manner [50]. Further-
more, a PDT coculture with autologous peripheral blood lymphocytes was created to evaluate
the efficacy of tumor-reactive T cells [69]. By coculturing OC spheroids and TAMs, it was
shown that tumor–TAM interactions promote the progression of OC [70]. In a more holistic ap-
proach, anti-PD1/PD-L1 antibodies in IL-2-enriched tumor organoids of OC can sustain endog-
enous immune cells for 96 h of coculture [65].
Trends in Cancer, December 2024, Vol. 10, No. 12 1125
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Alternatively, patient-derived explants (PDEs) could offer a more faithful representation of the
TME and its immune components. PDEs are small, freshly resected human tumor fragments
or slices cultured under specific conditions [71,72]. They recapitulate the structural integrity
and genetic/phenotypic heterogeneity of the original tumor TME, and enable the study of ITH
and cellular crosstalk within the tumor stromal matrix pre- and/or post-perturbation, including
chemo/immunotherapy, radiotherapy, and targeted therapies [73,74] (Box 4 and Figure 2).
Fluorescence-based and live multiplex imaging of PDEs can also enable visualization of the
abundance of cellular interactions in situ. For example, time-lapse imaging ex vivo, in human
and mouse HGSOC tumor tissue slices, was used to measure the motility of CD8+ T and my-
eloid cells at steady-state and upon perturbation. This study showed that, while ex vivo lipo-
polysaccharide stimulation (which alters macrophage polarization) increased the motility of
myeloid cells and T cells, chemotherapy treatment decreased the movement of both CD8+ T
and myeloid cells in HGSOC tissue slices [72]. Additional perturbations targeting the PD-1/
PD-L1 axis or TIGIT-NECTIN2 ligand–receptor interactions (LRIs) showed the feasibility of
using 3D PDE models ex vivo to reinvigorate pre-existing tumor-reactive TILs in the TME of
OC or melanoma [18,71].

Integrating cutting-edge microfluidic devices with microchip technology introduces a bio-
mechanical dimension while preserving the TME [75]. A recent study reported the feasi-
bility of culturing OC PDEs in agitation-based culture systems for at least 1 month [73].
These OC PDE cultures preserved the histopathological features of the original tumors,
with maintenance of the epithelial and stromal components as well as the immune infil-
trate. As a proof of concept for the applicability of the model for repeated-dose drug as-
says, OC PDE cultures were challenged weekly with standard-of-care chemotherapy. An
additional study employed these systems to investigate cancer progression mechanisms
and immune cell interactions within 3D gel matrices [75]. This approach replicates key
structural and functional characteristics of TME in vivo, including vasculature (angiogene-
sis, extravasation), shear stress, nutrient perfusion, blood flow dynamics, and drug distri-
bution, and require small amounts of tissue [76]. To summarize, ex vivo model systems,
such as PDEs, which can accurately represent the OC TME, can be employed to perturb
cell–cell crosstalk and activate antitumor immune responses with different therapeutic
approaches.

A working model for mapping and perturbing cellular crosstalk in distinct
immune phenotypes of the TME of OC
The findings discussed earlier highlight that understanding and interfering with specific cell–cell
crosstalk within predefined OC immune phenotypes holds the potential to predict responses to
ICB therapy in patients with OC and further personalize (immune)therapy strategies (Figure 2).
In Figure 2 we propose a working model for mapping and perturbing cellular crosstalk in dis-
tinct immune phenotypes of the OC TME for the discovery of tissue biomarkers and new ac-
tionable targets for OC therapy. First, by employing IHC and mIF, resected tumor tissues
(Figure 2Ai) are categorized into CD8+ T cell immune categories (Figure 2Aii). Second, we sug-
gest applying single-cell resolution transcriptomics and proteomics to dissect ligand–receptor
pairs (Figure 2Bi) and cell neighborhoods (Figure 2Bii). Third, the inferred baseline cellular
crosstalk in ex vivo 3D models (Figure 2Ci) can be validated according to the cell networks
that are dominant in each specific immune phenotype and perturbed (Figure 2Cii) using differ-
ent strategies including chemotherapy, targeted therapy, or radiotherapy combined with im-
munotherapy to reprogram the TME and mobilize both innate and adaptive cells. PDE and
PDT models also allow the application and testing of the efficacy of adoptive cell transfer
(ACT) products such as TILs and chimeric antigen receptor (CAR) or T cell receptor (TCR) T
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Figure 2. Modeling and perturbation of cell–cell crosstalk of distinct immune phenotypes by using ex vivo 3D tumor microenvironment (TME) models.
Proposed workflow for mapping and perturbing cellular crosstalk in TME of ovarian cancer (OC) to discover tissue biomarkers and new actionable targets for OC therapy.
(Ai) Resected tumor tissues first undergo histopathological evaluation followed by multiplex immunofluorescence (mIF) for CD8+ T cell immune categorization into 'hot'/
inflamed, excluded, or 'cold'/desert tumors (Aii). (B) Multi-omic approaches enable profiling of ligand–receptor pairs (Bi) and the cell neighborhood (Bii). (C) Baseline
inferred cellular crosstalk can be validated in ex vivo PDT and PDE 3D models (Ci), by ex vivo perturbation (Cii), and by longitudinal imaging by two-photon microscopy
(Ciii) to visualize T cell infiltration in 3D ex vivo models (PDE plus ACT coculture). Panel (Bii) is adapted, with permission, from [27]. Abbreviations: ACT, adoptive cell
transfer; CAR, chimeric antigen receptor; DC, dendritic cell; miF, multiplex immunofluorescence; NK cell, natural killer cell; PDE, patient-derived explant; PDT, patient-
derived tumoroid; TCR, T cell receptor. Figure generated with BioRender.
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cell therapies. Visualization of exogenously added TILs in 3D ex vivomodels can be studied by
two-photon imaging (Figure 2Ciii).

This strategy enables the discovery and mid-throughput testing of perturbations that can convert
T cell excluded phenotypes into an inflamed phenotype or improve tumor reactivity in already
'hot' tumors (Figure 1). For example, in inflamed tissues, disruption of the PD-1/PD-L1 axis can
overcome T cell exhaustion and enhance antitumor activity and upregulate effector functions. In
Trends in Cancer, December 2024, Vol. 10, No. 12 1127
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Outstanding questions
Are the endogenous immunity and tumor
immune phenotypes in OC maintained
during treatment and tumor evolution?

What are the cellular crosstalk and
molecular networks which regulate
TLS neogenesis and establishment in
OC? How does treatment affect TLSs?

What is the role of CD4+ T subsets and
other cell types such as neutrophils, in-
nate lymphoid cells, mast cells, and
platelets in the immunobiology of OC?

How are myelopoiesis and the
recruitment of myeloid progenitors
regulated in OC? What are the factors
that force the polarization of myeloid
cells into immunosuppressive states?

How do the ECM and stroma of ex-
cluded/desert tumors regulate the differ-
entiation and expansion of infiltrating
tumor-reactive TILs? Does the ECM ac-
tively prevent tumor-reactive TILs from in-
filtrating the tumor bed, or does it retain
them in a naïve state?

How could we target the stroma ECM
to make it permissive for TIL infiltration?

Can we expect multiplexed imaging
techniques to be applied to clinical
diagnostics and inform therapeutic
decisions?

How can the generation of PDEs be
standardized and streamlined to be
clinically applicable in OC research?
'excluded' tumors, targeting the PGE2/EP2/EP4 axis and normalizing blood vessels can potentially
promote T cell infiltration in tumor islet. Finally, for 'cold' tumors, one can target ECM stiffness by
inhibiting the TGF-β/TGF-βR axis in conjunction with ACT therapies (i.e., CAR/TCR T cells).

Concluding remarks
As we have comprehensively reported in this review, T cell infiltration and functionality within the TME
are tightly regulated by cell–cell and molecular crosstalk. Immune phenotypic classification of OCs
based on CD8+ T cell distribution provides a strong basis to improve our understanding of themolec-
ular and cellular determinants of T cell infiltration. For example, intratumoral TIL–myeloid interactions
as well as B cell-dominated TLS structures represent hallmarks of an antitumor immune response
in inflamedOC immune phenotypes. By contrast, CD8+ T cell immune networks of excluded and de-
sert immune phenotypes are severely impeded by immunosuppressive myeloid cells together with a
strong stromal barrier enabled by the vasculature and CAFs as well as their respective ECM.

We propose that this framework can reveal key types of cell–cell crosstalk that characterize the
different immune phenotypes of the OC TME and can be employed as tissue biomarkers to select
patients for (immune)therapy (see Outstanding questions). Single-cell resolution technologies
such as multiplex tissue imaging and spatial transcriptomics hold the potential to identify hetero-
geneous TME cell states and unravel their spatial organization. Looking to the future, the integra-
tion of detailed TME studies with ex vivo perturbation 3D models will lead to the discovery of new
and intricate cellular interactionswithin the TME, thereby offering insights into the biological mech-
anisms of immune resistance and pointing towards novel therapeutic strategies for the treatment
of OC (see Outstanding questions).
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