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Abstract: Acyclic phase-type (PH) distributions have been a popular tool in survival analysis, thanks to their
natural interpretation in terms of aging toward its inevitable absorption. In this article, we consider an extension
to the bivariate setting for the modeling of joint lifetimes. In contrast to previous models in the literature that
were based on a separate estimation of the marginal behavior and the dependence structure through a copula,
we propose a new time-inhomogeneous version of a multivariate PH (mIPH) class that leads to a model for joint
lifetimes without that separation. We study properties of mIPH class members and provide an adapted estima-
tion procedure that allows for right-censoring and covariate information. We show that initial distribution
vectors in our construction can be tailored to reflect the dependence of the random variables and use multi-
nomial regression to determine the influence of covariates on starting probabilities. Moreover, we highlight the
flexibility and parsimony, in terms of needed phases, introduced by the time inhomogeneity. Numerical illus-
trations are given for the data set of joint lifetimes of Frees et al., where 10 phases turn out to be sufficient for a
reasonable fitting performance. As a by-product, the proposed approach enables a natural causal interpretation
of the association in the aging mechanism of joint lifetimes that goes beyond a statistical fit.
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1 Introduction

When studying insurance products on multiple lives, it is natural to assume that individuals who are
exposed to very similar life conditions may have somewhat correlated lifetimes. This is especially true
for married couples, since, once married, the spouses typically share to a large extent a similar lifestyle.
Indeed, the simplistic assumption of independence of lifetimes of partners has been shown to be inap-
propriate in various papers. For example, Frees et al. [15] used a bivariate Frank copula model to assess the
effect of dependency between husband and wife on insurance annuities, illustrating their approach on a by
now classical data set of a large insurer. The same data were used in Carriere [10], where multiple bivariate
copula models were studied. The Linear-Mixing Frailty copula was found to be the best-suited model to
describe the data. Shemyakin and Youn [22] introduced a general conditional Bayesian copula for the joint
last survivor analysis. They allow entry ages of spouses to have a selection effect on his/her mortality, as
well as on the other spouse’s mortality. For that same data set, Luciano et al. [19] captured the dependence
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between survival times of spouses by an Archimedean copula, whose marginals were estimated according
to a stochastic intensity approach. In a similar spirit, Dufresne et al. [13] allow for the Archimedean copula
parameter to depend on the age difference of partners at issue of the policy, to describe the dependence of
the remaining lifetime of a couple. In the the study by Gobbi et al. [16], extended Marshall-Olkin models
were employed for that same data set, where the continuous copula approach is extended by allowing for
fatal events that affect both marginal lives.

In this article, we propose an alternative to copula-based methods for the modeling of joint remaining
lifetimes in a couple based on multivariate phase-type distributions. Phase-type (PH) distributions are
interesting candidates since they broaden favorable properties of exponential random variables to sce-
narios where the latter alone would not be appropriate. In particular, the denseness of PH distributions
among all distributions on the positive half-line in the sense of weak convergence, which extends to the
multivariate setup, is a major advantage when one wants to approximate a distribution. For more details on
PH distributions, we refer readers to Bladt and Nielsen [8]. As opposed to copula-based methods, a PH
distribution can give rise to a natural interpretation when used to approximate lifetime distributions. One
can view the path of a Markov jump process as the life of an individual, which goes through several different
states (for instance, biological markers) before reaching the inevitable absorption (death) state. Along this
interpretation, acyclic PH distributions have been the first choice for modeling the aging process of a
human life, since they only allow forward transitions or direct exits to the absorption state. This character-
istic makes them an appropriate tool for describing lifetimes ended by natural aging or accidents. In the
study by Lin and Liu [18], a PH distribution with the Coxian structure was used to explain the physical aging
process of marginal lifetimes. This approach was extended in the study by Asmussen et al. [5] to generalized
Coxian distributions for the purpose of pricing equity-linked products. The first contribution to lift the PH
approach to bivariate lifetime models was Ji et al. [17], where a Markovian multistate model and a semi-
Markov model are used to describe the dependence between the lifetimes of husbands and wives. Spreeuw
and Owadally [23] also use a Markovian multistate model, with more attention given on how to tie the
bereavement effect to forces of mortality. Moutanabbir and Abdelrahman [20] then used a bivariate Sar-
manov distribution with PH marginals to model joint lifetimes. Both articles focused on the pricing of
multiple-life insurance contracts.

Recently, Albrecher et al. [2] introduced time-inhomogeneous PH (IPH) distributions for the purpose of
lifetime modeling, which leads to a considerable reduction of necessary phases for a satisfactory fit of given
data, since the introduced inhomogeneity can more efficiently accommodate nonexponential shapes than
an augmentation of the phase dimension. In particular, [2] applied regression on the intensity functions of
the IPH distributions to associate lifetimes of different cohorts and populations.

In this article, we propose a different route for using available information in the data set, namely, to
incorporate multinomial logistic regressions in the estimation procedure of multivariate PH distributions. In
particular, the regression is applied to the initial distribution vectors of each IPH component, which adapts
an approach presented in Bladt and Yslas [9] to the multivariate case. The resulting dependence structure
allows for explicit formulas alongside an intuitive “aging” interpretation and, beyond the theoretical
contribution, for a satisfactory fit to the bivariate spouses’ lifetime data.

The remainder of this article is structured as follows. Section 2 introduces the class of multivariate PH
distributions that we will use to describe joint lifetimes of couples; we also provide some additional proper-
ties. In Section 3, an estimation method for this multivariate PH distribution is introduced, which allows for
right censoring and covariate information. Section 4 then applies and illustrates the procedure on the
classical spouses’ lifetime data set from [15] and interprets the results. Section 5 concludes this article.

2 Multivariate phase-type distributions

We first recall the mPH class, which was introduced in the study by Bladt [7].

2  Hansjörg Albrecher et al.



2.1 mPH distributions

Let Jt
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The crucial property of this class of PH distributions is now its dependence structure. Concretely, the
assumption is that all jump processes start in the same state at time t 0= , but proceed independently
thereafter until absorption. That is, dependence is introduced solely through the shared initial state, which
leads to a particularly tractable yet flexible model class. More formally,

J J J J i l d, , , 1, , .i l
t

i
t J t

l
t l i0 0 0 0,0

1{ } { } { }( ) ( ) ( ) ( )
( )= ⊥⊥ ∀ ∈ …≥ ≥ ≠ (2.1)

We will use J J i
0 0

( )
≔ to simplify notation. Let J j πj0�( )= = , j p1, ,= … and π π π, , p1( )= … denote the

distribution vector of the shared initial state. The random variables

X t J p i dinf 0 : 1 , 1, , ,i t
i{ }( )

= > = + = … (2.2)
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variate phase-type distribution (mPH) if each marginal variable Xi, i d1, 2, ,= … is given by (2.2) and
pairwise dependence is defined by (2.1). We use the notation
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Furthermore, the survival function is
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For more details, compare with [7].
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2.2 mIPH distributions

The particular focus in this article will now be on an inhomogeneous extension of the mPH distribution
(briefly mentioned in [7, Section 6.1]). When considering time-inhomogeneous Markov pure jump processes
on the common state-space E, it follows from Albrecher and Bladt [1] that the transition matrices are
modified to
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The random variables Y t J p i dinf 0 : 1 , 1, , ,i t
i{ }( )

= > = + = … then follow univariate inhomogeneous
phase-type (IPH) distributions, and readers can compare with [1] for more details.

Here, we focus on the particularly tractable caseT Tt λ ti i( ) ( )= . A random vectorY Y Y, , d1= ( … ) is said to
have an inhomogeneous multivariate PH (mIPH) distribution if all marginals follow IPH distributions, and
the dependence structure is defined by (2.1). We write
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respectively. Note that one can view each IPH random variable as a transformation of a PH random variable
(and correspondingly the absorption time of a time-transformed formerly time-homogeneous Markov jump
process), with π TX ~ PH ,( ) and π Tg X λ~ IPH , ,( ) ( ).

The construction of πmIPH , ,( )� � allows different sub-intensity matrices and inhomogeneity func-
tions for each marginal, as long as they share the same state-space. This leads to a considerable model
flexibility. In particular, when compared to the homogeneous case, time-inhomogeneity allows for sub-
stantially smaller state-spaces for appropriate fits of data with potentially nonexponential tails (compare
with [1]), and the mIPH class inherits this feature.

When we condition a mIPH distribution on one or more marginals, we obtain another mIPH distribution
with a new initial distribution vector and smaller dimension: Let πY ~ mIPH , ,( )� � and condition on the
value of Yl, l d≤ . The conditional density is
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That is,

α TY Y y λ~ mIPH , , ,l l l l∣ ( )= ⧹ ⧹� � (2.3)

with initial distribution vector

α
e T t
π T t

π
g y λ y
g y λ y

exp
exp

.j
j l l l l l l

l l l l l l j p

1

1
1, ,

T
⎧

⎨
⎩

( ( )) ( )

( ( )) ( )

⎫

⎬
⎭

= ×

−

−

= …

The same reasoning can be applied to obtain
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Remark 2.1. One might be tempted to argue that Assumption (2.1) necessarily leads to positive dependence
of the resulting random variables (in our case lifetimes). However, sharing the initial state is not sufficient to
obtain positive dependence, as the different intensity matrices may introduce counter-effects. For instance,
after starting in the same state, we could have a very small expected holding time and direct absorption for
one marginal, while the second has to pass through the entire state space before absorption happens,
leading to a very large survival time. This behavior could be very well reversed when starting in another
(but common) state. Consequently, certain combinations of individual intensity matrices may give rise to
negative dependence as well.

3 Parameter estimation for right-censored data and covariate
information

In the following, we first introduce the components needed to estimate the parameters of mIPH distribu-
tions, when right-censored data is present. Second, we present how to estimate initial distribution vectors
considering covariate information. Finally, we propose an adapted expectation maximization (EM) algo-
rithm, which we name ERMI algorithm.

3.1 EM algorithm for right-censored data

Taking inspiration from Asmussen et al. [6] and Olsson [21], we now derive conditional expectations needed
in the EM algorithm for mPH distributions, where absorption times are allowed to be right censored. Since
the eventually targeted mIPH distributions are transformed mPH distributions, after transformation of the
data, the E-Step and M-Step of the algorithm are the same as for the time-homogeneous case.
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m( ) is a random censoring point

for the m-th observation. The realization of random right-censoring indicators can be found in
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Bk is the number of times marginal jump processes start in State k, Nks
i( ) is the number of transitions from

State k to s for jump process i, and Nk
i( ) is the number of absorptions from State k for jump process i. Finally,

Zk
i( ) is the time spent in state k before absorption of jump process i. These statistics are not observable, but

are sufficient to describe the dynamics of the underlying Markov process. Moreover, they are essential to
construct an effective EM-like algorithm. Then, the completely observed likelihood can be expressed using
the sufficient statistics defined earlier, as

π x π t e t e, ; ,c
k

p

k
B

i

d

k

p

s k
ks

i N t Z

k

p

k
i N t Z

1 1 1 1

k ks
i

ks
i

k
i k

i
k

i
k

i
⎜ ⎟ ⎜ ⎟( )
⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

∏ ∏∏∏ ∏=

= = = ≠

−

=

−� � (3.1)

which is seen to conveniently fall into the exponential family of distributions and thus has explicit max-
imum likelihood estimators. The multiplications on the right-hand side of (3.1) can be interpreted as
follows: The first product gives the probability of starting in each transient state. The second consists of
the likelihood of transitions between transient states, associated with respective sojourn times, such that
the absorbing state is not considered in the multiplication. Finally, the last product gives the likelihood of
transitions from transient states to the absorbing state, along with time spent in respective states before
absorption.

With these assumptions, the derivation of Bk, Zk
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analogous to the fully uncensored case (see [7]). The only difference from the fully observed case is that
marginals may have right-censored absorption times. To see how this affects the expectation step of the EM
algorithm, we give a detailed derivation of X xBk�( ∣ )= .
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where we see a mix of marginal densities and survival functions appearing in both the numerator and
denominator.

Note that we introduce the notation J i m
0

,( ) since it is possible to observe m different mIPH distributions

which only differ in terms of initial distribution vectors, as explained in Section 3.2. With this in mind, J m
0
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indicates the starting state of the Markov jump process of them-th observation, which is coupled with initial
distribution vector π m( ).

This expectation can also be expressed, using the Δ notation, as follows:
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3.2 Initial distribution vectors

Adapting an idea developed in [9], we apply the regression component to the initial distribution, i.e., we
estimate a “personalized” initial distribution vector as a function of covariates, which increases the
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flexibility of the model. To that end, we use multinomial logistic regressions, where we consider the initial
probabilities as response variables that depend on covariate information found in A m gT �( ) ∈ , with g being
the number of explanatory variables, m n1, ,= … , and regression coefficients in γ p g�∈

× . Concretely, the
initial distribution probabilities are then given as follows:
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γ

γ
exp

exp
,k
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m

k

j
p m
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with γk
g�∈ for k p1, ,= … .

In every iteration of the expectation-maximization (EM) algorithm to be described later, we use the
conditional expectation of the number of times that the underlying process starts in a specific state as
weights for the regression coefficients in γ. Let us consider the information carried by X xBk�( ∣ )= sepa-
rately. For a row of observations m, let Bk

m( ) be the number of times that the marginal jump process Jt
m

t 0{ }( )
≥

starts in state k . The conditional expectation is given by
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for k p1, ,= … . We then solve the optimization problem

γ X x A γB πˆ argmax log ;
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in every iteration. The initial distribution hence depends on covariate information. Recall that all marginal
processes Jt

i
t 0{ }( )
≥ are assumed to start in the same state (drawn from the initial distribution with prob-

abilities (3.2)), but afterward, transit independently to other states according to their specific sub-intensity
matrices (and the latter do not depend on covariate information).

3.3 ERMI algorithm

Consider now a multivariate sample of right-censored absorption times y y y, ,m
d

m
1
( ) ( )

( )= … , which we

assume to originate from πY ~ mIPH , ,m m( )( ) ( ) � � . The associated inhomogeneity functions depend on
parameters βi, i d1, ,= … , and the right-censoring indicators are collected in Δ. The resulting EM algorithm
with covariate information is depicted in Algorithm 1. As in the study by Albrecher et al. [4], we first take

care of time-inhomogeneity. By using the relation g y λ u β u i d; d , 1, , ,i i
m y

i i
1

0
i

m

( ) ( )( )
( )

∫= = …
− we obtain a

time-homogeneous random sample x x, ,m
d

m
1( )( ) ( )

… , for which we know how to evaluate conditional expec-
tations of sufficient statistics (E step). By using these expectations (as given above), we estimate the
marginal sub-intensity matrices (M step), while the initial distribution vectors are predicted by multinomial
logistic regressions (R step). Once we have estimated both, we need to find optimal inhomogeneity para-
meters βi, i d1, ,= … , that maximize the joint likelihood of the time-inhomogeneous sample (I step). Con-
cretely, we solve

β e T t e T eπ x λ y β xˆ argmax log ˆ exp ˆ ˆ , exp ˆ ,
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where x g yi
m

i i
m1( )( ) ( )

=
− . We repeat the procedure until a stopping rule is satisfied, and finally obtain the

estimated distribution mIPH π̂, ˆ , ˆ( )� � . Here, π̂ is a matrix, where each row is a distribution vector π̂ m( ),
which is shared by marginals with the same covariates.

In contrast to copula-based methods, this approach does not separate the estimation of marginals and
multivariate parameters. This may be considered preferable as the implied multivariate distribution has a
natural and causal interpretation and is intimately connected to the marginal behavior of the risks, whereas
choosing a concrete copula family on given (and possibly already fitted)marginal risks is often a somewhat
more arbitrary choice for the modeling of multivariate phenomena.

Algorithm 1. Adapted expectation maximization (ERMI) algorithm for mIPH distributions

Input: Observed absorption times y n d�∈
+

× , right-censoring indicators Δ n d�∈
× and arbitrary initial

parameters for π, ,( )� � .

(1) For each marginal, transform the data in x g y β;i
m

i i
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− , i d1, 2, ,= … and m n1, 2, ,= …

(2) E-step: Calculate
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(3) R-step: Perform a multinomial regression with weights given by Y yBk
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= and predict π̂k
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(6) Assign π π̂= , T T̂i i= and β β̂i i= then repeat from Step 1 until a stopping rule is satisfied.

Output: Fitted representations π̂, ˆ , ˆ( )� � , for m n1, ,= … .

4 Modeling joint excess lifetimes of couples

In this section, we present an application of Algorithm 1 to the well-known data set of joint lives used in
[15]. In addition to survival times, this data set provides information on individuals’ ages at issue of an
insurance policy. This leads to left-truncated data in this particular case, and one might indeed consider the
different entry ages with a left-truncated likelihood in the estimation process, which is, however, quite
inefficient. Instead, we propose here to use entry age as a covariate information and use multinomial
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logistic regression to deal with the different ages at issue. Entry ages were also considered as relevant
factors for the dependence modeling in [22]. Initial distribution vectors obtained via regression will then
incorporate the fact that an old couple is expected to survive less long than a young one and that the
bereavement effect may be different for different age dynamics in a couple. In PH terms, when using an
acyclical distribution, the older the couple, the larger the starting probabilities should be for states closer to
the absorbing state, so that fewer states will be visited until absorption. Passing through fewer states
translates into less time spent in the state-space before exiting, which results in smaller remaining lifetimes.

4.1 Description of the data set

The data set at hand provides information about 14947 insurance products on joint lives, which were
observed from December 29, 1988, until December 31, 1993. We consider January 1, 1994, as the right
censoring limit. For the purpose of this article, we only consider birthdays, sexes (and potential death
dates) of policyholders, given that we are only interested in mortality, i.e., we do not make use of the
monetary details of each contract.

After removing same-sex couples and multiple entries (due to several contracts of the same couple), we
compute the remaining lifetime that any person lived from the start of the observation period until the right-
censoring date 01.01.1994, given that they are at least 40 years old at the issue of the policy. Note that the
terms “remaining” and “excess” are used interchangeably in the following. Doing so leads to 8,834 different
joint excess survival times, with 155 cases where both individuals died, 1,057 where only one individual
died, and 7,622 where neither died. Consequently, less than 2% of joint remaining survival times are fully
observed. Concerning the 1057 cases where only one person in the couple died, in 820 of them this was the
man, and in the complementary 237 cases the woman died. Hereafter, we refer to the start of the observation
period as the “issue of the policy,” although the actual issue date may be later than 29.12.1988.

To prepare the data for the multinomial regression, we construct the covariate matrix A 1 age agey y1 2(=

interact), A n 4�∈
× . The column vector agey1 is the collection of all ages of men, at issue of a policy, while

agey2 contains all ages of women. We also consider an interaction term in interact, which gathers element-
wise multiplication of ages in a couple. Finally, to perform multinomial regressions via neural networks (R
package nnet), we divide the data by 100, such that an absorption time of 0.01 given by estimated distribu-
tions actually corresponds to 1 year.

4.2 Fitting the mIPH distribution: marginal behavior

We assume that the remaining lifetimes in a couple, after issue of an insurance policy, follow mIPH
distributions. We use information previously discussed as covariates to link starting probabilities to ages
of individuals in couples, to reflect different aging dynamics in our model.

Let Y g X β X βlog 1i
m

i i
m

i i
m

i( ) ( )( ) ( ) ( )
= = + / be the IPH-distributed marginal remaining lifetimes, with

π TX β Y βexp 1 ~ PH ,i
m

i i
m

i
m

i( ( ) ) ( )( ) ( ) ( )
= − / and β 0i > , where i 1= corresponds to men and i 2= to women.

Then, the distribution with covariate information we work with is given by marginal Matrix-Gompertz
distributions, and we consider general Coxian sub-intensity matrices Ti of dimension p 10= (compared
with [2]). The order p was found by fitting models with various respective choices, until a satisfactory
approximation of marginals was reached. Finding the optimal dimension p is still an open problem, and the
literature on solving the identifiability issue of PH distributions is quite narrow (see, for instance, [3,14]).

According to the dependence structure defined in (2.1), after both underlying processes Jt t
1

0{ }( )
≥ and

Jt t
2

0{ }( )
≥ start in the same state they evolve independently until absorption. With a general Coxian sub-

intensity matrix, each marginal jump process is only allowed to transit to the next state or directly to the
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absorption state. This stochastic structure has a nice interpretation in terms of aging. Indeed, we can think
of forward transitions as natural aging steps, given that each time the process jumps to a certain state, the
time of absorption obtains closer. Moreover, premature exits can be interpreted as deaths due to causes not
related to aging. Indeed, given that exit rates are positive in each state, the absorption of a process may be
caused by a transition to State p 1+ from a state smaller than p. Finally, granting the underlying processes
to start in different states allows heterogeneity of health statuses for individuals of the same age (this
philosophy was already underlying the construction in [18], but with the present inhomogeneity, much
fewer states are needed to describe the data satisfactorily).

Algorithm 1 is now applied for 1,000 iterations. In principle, this estimation procedure provides
n 8,834= different initial distribution vectors, one for each couple depending on the ages at issue. Figure 1
depicts the age combinations in the data, with a majority of couples having a small age difference at policy
issue. For illustration purposes, we depict below the estimated initial distributions for four different age
combinations (age man, age woman): (63, 63), (68, 63), (63, 68) and (73, 63), which were chosen arbitrarily,

but to represent different aging dynamics at issue of the policy. LetY πY Y, ~ mIPH ˆ , ˆ , ˆc c c c
1 2( ) ( )= � � denote

the bivariate distribution of excess lifetimes for these four couples, where c 1, 2, 3, 4= , T Tˆ ˆ , ˆ1 2{ }=� and

λ β λ βˆ , ˆ , , ˆ1 1 2 2{ ( ) ( )}= ⋅ ⋅� . The common estimated sex-specific sub-intensity matrices are as follows:

T̂

0.049 1.7 10 0 0 0 0 0 0 0 0
0 3.662 2.877 0 0 0 0 0 0 0
0 0 1.8 10 1.8 10 0 0 0 0 0 0
0 0 0 1.9 10 1.9 10 0 0 0 0 0
0 0 0 0 0.611 0.611 0 0 0 0
0 0 0 0 0 0.002 0.002 0 0 0
0 0 0 0 0 0 9.778 5.73 0 0
0 0 0 0 0 0 0 0.36 0.225 0
0 0 0 0 0 0 0 0 1.852 1.099
0 0 0 0 0 0 0 0 0 0.023

1

7

7 7

4 4

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

=

− /

−

− / /

− / /

−

−

−

−

−

−

(4.1)
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Figure 1: Ages at issue of policies, for all couples. x and y correspond to agey1 and agey1, respectively.
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T̂

0.196 0.196 0 0 0 0 0 0 0 0
0 0.291 0.291 0 0 0 0 0 0 0
0 0 0.763 0.763 0 0 0 0 0 0
0 0 0 2.8 10 2.8 10 0 0 0 0 0
0 0 0 0 0.001 0.001 0 0 0 0
0 0 0 0 0 0.003 0.003 0 0 0
0 0 0 0 0 0 3.182 1.165 0 0
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(4.2)

for women. The optimal inhomogeneity parameters are β̂ 43.1011 = and β̂ 47.4742 = , and Table 1 presents
the estimated coefficients of the last multinomial regression performed in Algorithm 1. Except for States 8
and 9, all coefficients in γ̂ are significant. Note that having nonsignificant coefficients for States 8 and 9 does
not necessarily indicate that the state space is too large. One has to separate the PH interpretation of the
state space from the regression framework. Table 1 is claiming that the covariates used in the regression are
not significant in explaining starting probabilities of States 8 and 9. Nevertheless, both states have their role
in the description of random variables we are interested in.

Initial distribution vector estimates for these four couples are as follows:

π
π
π
π

ˆ 0.0526 0.0734 0.0448 0.0886 0.4065 0.0330 0.0326 0.0569 0.1077 0.1039 ,
ˆ 0.0356 0.0313 0.0297 0.0398 0.2805 0.0476 0.0396 0.0384 0.2472 0.2102 ,
ˆ 0.0285 0.0242 0.0114 0.1625 0.4399 0.0419 0.0304 0.1282 0.0819 0.0510 ,
ˆ 0.0172 0.0095 0.0140 0.0127 0.1378 0.0489 0.0343 0.0184 0.4041 0.3030 .

1

2

3

4

= ( )

= ( )

= ( )

= ( )

At first glance, it might seem odd that survival times of spouses with large age difference start in the same
state of the distribution, but personalized starting probabilities and sex-specific transition intensities
account for this. For example, consider Couple 4. If both excess survival times start in State 1, we see
that the man’s underlying jump process is much more likely to reach the absorbing state directly from State
1, while the woman’s will at least advance to State 7 before absorption becomes possible. Thus, marginal

Table 1: Coefficients of multinomial regression with associated standard errors in brackets

p Intercept agey1 agey2 ⋅age agey y1 2

2 ∗∗∗−20.963 ∗∗∗43.733 ∗∗∗43.021 ∗∗∗−84.049
(7.157) (11.238) (12.400) (19.311)

3 ∗∗∗24.826 ∗∗−24.630 ∗∗∗−39.256 ∗∗38.453
(6.677) (10.476) (11.639) (18.073)

4 ∗∗∗−51.036 ∗∗∗57.442 ∗∗∗90.062 ∗∗∗−104.233
(9.894) (15.348) (15.820) (24.374)

5 ∗∗∗−42.469 ∗∗∗56.804 ∗∗∗70.273 ∗∗∗−89.556
(6.873) (10.638) (11.443) (17.559)

6 *14.850 ∗∗∗−41.377 ∗∗∗−39.438 ∗∗∗89.687
(8.004) (12.150) (12.824) (19.317)

7 ∗∗∗54.157 ∗∗∗−97.618 ∗∗∗−98.445 ∗∗∗173.553
(6.617) (10.263) (11.010) (16.817)

8 −14.363 −5.608 22.990 8.794
(9.419) (14.387) (14.885) (22.584)

9 −11.589 12.732 −4.892 18.559
(7.224) (11.046) (11.889) (18.050)

10 ∗∗∗21.474 ∗∗∗−31.068 ∗∗∗−54.907 ∗∗∗84.080
(6.504) (10.054) (10.892) (16.670)

For a two sided statistical test symbols ∗ ∗ ∗, ∗∗ and ∗ correspond to significance levels of 1, 5, and 10%, respectively.
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intensities mixed with age-dependent initial distribution vectors compensate the initialization in a shared
state. In Figure 2, we depict the resulting marginal densities of the fitted remaining lifetime distributions for
each of the four couples. As expected, the densities for women (solid black lines) allocate more mass to
larger values than the male counterpart, and for older individuals, there is more probability mass for shorter
survival times. Comparing Couples 1 and 4, we see that the density of the 63-year-old man has a major mode
at y 221 = , while for the 73-year-old man, the major mode is at y 171 = . Note that despite the fact that the
women in Couples 1 and 4 are of comparable age, their densities have substantially different modes. This is
due to the fact that the estimation of the marginal distributions is not separated from the estimation of the
joint distributions, and the age of their spouse at the time of policy issue evidently plays an important role
for the distribution of the remaining lifetime, seen at the time of policy issue.

The multimodality we observe in all marginal densities may be due to having different cohorts in the
data. We decided not to manipulate the data set further, to avoid restricting our analysis to specific couples.
Although spouses with small age difference can be thought of as belonging to the same cohort, we would
also need to restrain the ages at issue to instances where enough data points are available for a meaningful
estimation procedure (in particular uncensored data points). Doing so would lead to analyzing only couples
where both spouses are aged around 65 years.

To assess the precision of our estimated marginals π TY β~ IPH ˆ , ˆ , ˆi
c

i i( ), i 1, 2= and c 1, 2, 3, 4= , we use
the conditional Kaplan–Meier (K–M in the following) estimator, also known as Beran estimator. For a
sample X X X, , , n1 2 … and covariate matrix A, the conditional K–M estimator we use is

(a) (b)

(c) (d)

Figure 2: Marginal densities of remaining life times (in years). (a) Couple 1. (b) Couple 2. (c) Couple 3. (d) Couple 4.
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where Xi n: are order statistics of the sample, δi n: is the respective right-censoring indicators, K( )⋅ is a kernel
function, and bn is a band sequence. In our instance, the kernel function is a multivariate Gaussian density
and b 0.001n = . For more details on the conditional K–M estimator, we refer the reader to the study by

(a)

(b)

Figure 3: Conditional K-M estimators vs the fitted distribution. (a) Couple 1. (b) Couple 2.
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Dabrowska [12]. Figures 3 and 4 compare the survival probabilities obtained by the conditional K–M estima-
tors with the one of the fitted distributions. One sees that in all cases the fit is in fact quite satisfactory.

4.3 Joint behavior

Let us now consider the resulting bivariate densities. In Figure 5, we find the bivariate densities for the four
specified couples. The joint density of Couple 1 shows that large differences in their survival times are quite
unlikely (the majority of the joint mass being located close the identity line). Also, the most likely survival

(a)

(b)

Figure 4: Conditional K-M estimators vs the fitted distribution. (a) Couple 3. (b) Couple 4.
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times are close to 23 years. There is also a considerable probability mass above the identity line, where the
woman survives longer than the man. For instance, we have F̄ 12, 30 32%Y1( ) = , while F̄ 30, 12 11.79%Y1( ) = .

For Couple 2, the situation is different (top right panel of Figure 5): with the man being already 68 years,
and the woman being 63 years old, the remaining lifetimes are shorter, with the major mode of the joint
distribution being located near y y, 23, 241 2( ) ( )= , the second largest close to y y, 17, 351 2( ) ( )= , and the next
ones in the neighborhood of y y, 17, 191 2( ) ( )= and y y, 9, 191 2( ) ( )= , respectively. There is now amuch higher
probability for the husband to die sooner.

The joint density for Couple 3 resembles the one of Couple 1, with survival times beyond 40 years being
more unlikely. Despite the man being the same age as the man in Couple 1, there is a larger probability for
the couple to have survival times close to y y, 29, 451 2( ) ( )= than for Couple 1.

Finally, the joint density of Couple 4 is close to the one of Couple 2. The spike around y y, 17, 351 2( ) ( )= is
more pronounced than the analog of Couple 2, while the spike close to y y, 23, 241 2( ) ( )= is less important
than its counterpart in Couple 2.

(a) (b)

(c) (d)

Figure 5: Contour plots of the bivariate lifetime densities for the four couples. (a) Couple 1, (b) Couple 2, (c) Couple 3, and
(d) Couple 4.

16  Hansjörg Albrecher et al.



One may be tempted to conclude from these four distributions that for the same age, having a younger
partner leads to longer survival times, which would signal that the bereavement effect is weaker when
spouses have larger differences in age at issue of a policy.

4.4 Dependence measures

Let us now explore some dependence measures for these four exemplary couples. In addition to Kendall’s
tau and Spearman’s rho, we also consider three measures of time-dependent association, which were
analyzed in the study by Luciano et al. [19].

The mIPH distributions we consider all have the same copula as the corresponding mPH distributions
with equal representation, since matrix-Gompertz distributions are monotone increasing transformations of
PH distributions. At the same time, for the mPH class, we have explicit expressions for Kendall’s tau and
Spearman’s rho. The pairwise Kendall’s tau of marginals Xk and Xl is given as follows:

e e T T e t e e T T e tτ π π4 1,X X
i

p

j

p

i j i j k k k i j l l l,
1 1

1 1
k l

T T T T( )[ ] ( )( )[ ] ( )∑∑= ⊗ − ⊕ ⊗ ⊗ − ⊕ ⊗ −

= =

− −

(a) (b)

(c) (d)

Figure 6: ( )y yΨ ,1 1 2 for the four couples. (a) Couple 1, (b) Couple 2, (c) Couple 3, and (d) Couple 4.

Joint lifetime modeling with matrix distributions  17



while Spearman’s rank correlation is given as follows:

π e T T e t π e T t e Tρ π12 1 1 3,X X
S

j

p

j j k k k j l l l,
1

1 1
k l

T T( ( )[ ] ( ))( ( )[ ] ( ))∑= − ⊗ − ⊕ ⊗ − ⊗ − ⊕ ⊗ −

=

− −

and compare with [7]. By calculating these quantities for the four specified couples, we obtain

τ τ τ τ

ρ ρ ρ ρ

0.3104, 0.2562, 0.4367, 0.2139,

0.4526, 0.3938, 0.6144, 0.3381.
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All couples manifest positive concordance, which on top of Figure 5 is additional evidence that the lifetimes
of individuals in a couple are correlated. We find the strongest concordance in couples where women are
older than their husbands. Concretely, Couple 3 has the highest Kendall’s tau and Spearman’s rho values,
followed by Couple 1. Couples 2 and 4 have lower and similar corresponding values.

As a first measure of time-dependent association, we consider in Figure 6

y y S y y S y S yΨ , , .Y Y1 1 2 1 2 1 21 2( ) ( ) ( ( ) ( ))= /

Most of the resulting values are greater than 1, indicating positive dependence. However, for values of y2
close to 30, Couples 1–3 exhibit y yΨ , 11 1 2( ) < . This suggests negative dependence for remaining lifetimes
when women survive at least 30 years and men at least 20 years. One can see that, roughly, after values
y 291 = and y 392 = , the ratios y yΨ ,1 1 2( ) remain constant. This happens since for very large survival times
y y,1 2, marginal survival probabilities change very little, and this change is absorbed by S y y,1 2( ).

Next, we depict in Figure 7 the measures

y Y Y y Y
y Y Y y Y

Ψ 0, ,
Ψ , 0

2
1

2 1 2 2 1

2
2

1 2 1 1 2

� �

� �

( ) ( ∣ ) ( )

( ) ( ∣ ) ( )

= ≥ /

= ≥ /

(a) (b)

(c) (d)

Figure 7: ( )yΨ 0,2
1 and ( )xΨ , 02

2 for the four couples. (a) Couple 1, (b) Couple 2, (c) Couple 3, and (d) Couple 4.
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for all four couples, which give the relative change of conditional expectations of spouses’ excess lifetimes,
given that the partner survives at least y y2 1( ) years. We see that the latter increase throughout with y y2 1( ). In
general, the ratios Ψ ,i

2( )⋅ ⋅ , i 1, 2= , are close in value when y y, 201 2 ≤ , meaning that the survival of a spouse
has a similar effect on the remaining lifetime of the partner for the first 20 years. After that, the relative
lifetime improvement increases much faster for women, i.e., their expected lifetime improvement is then
more sensitive to the survival of the partner than vice versa. Like in Figure 6, both ratios remain constant
after spouses’ survival times of y 291 = for women and y 392 = for men.

The last measure of time-dependent association we consider here is the cross-ratio

(a) (b)

(c) (d)

Figure 8: ( )CR u u, for the four couples. (a) Couple 1, (b) Couple 2, (c) Couple 3, and (d) Couple 4.

(a) (b)

Figure 9:Marginal expected excess survival times as a function of men’s age y1 and women’s y2 at issue. (a)Man and (b)woman.
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originally introduced by Clayton [11], which gives the relative increase of the force of mortality of an
individual immediately after death of the partner. The quantity relevant in our model is u uCR ,( ), and
Figure 8 depicts the resulting figures for our model. In the study by Luciano et al. [19], the resulting curves
were monotone increasing in u, as a result of the imposed copula assumption on the joint lifetimes. In
contrast, in the present setup, these curves are not monotone increasing in u. One may interpret that in the
present approach, the a priori dependence assumptions are less specified, and the data have a stronger
impact on the resulting shape of u uCR ,( ) than in a specified copula model, where the data merely influence
the value of the dependence parameter. One can see from Figure 8 that the cross-ratios exceed 1 for u 29≤ ,
so the survivor’s force of mortality is increased immediately after the death of the spouse, showing a
bereavement effect (or broken-heart syndrome), but not a monotone one (with the magnitude varying
across age combinations of the couple). This bereavement effect somewhat seems to disappear for survival
times beyond 29 years, and for this reason, we do not plot values u 29> , but in that range, survival
probabilities are very low anyway, and there are very few data points in that range to draw strong
conclusions.

Eventually, like in many other situations, it may depend on the number of available data points
whether one prefers to have a flexible dependence structure in the fitting or a prespecified copula family

(a) (b)

Figure 10: Marginal expected excess survival times, conditional on spouse survival during 10 years. (a) Man and (b) woman.

(a) (b)

Figure 11: Marginal expected excess survival times, conditional on spouse survival during 15 years. (a) Man and (b) woman.
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with possibly attractive stylized features, especially for extrapolated conclusions in regions with few data
points. In this discussion, one may still appreciate the immediate causal interpretation of the mIPH model
in terms of a common aging mechanism.

4.5 Life expectancies

Let us finally also use the model fit to obtain some insight into expected remaining lifetimes in the couple.
By using Property (2.4), we are able to derive expected survival times for an individual, conditional on the
survival time of their partner. Moreover, by using optimal regression coefficients found by Algorithm 1
(Table 1), we can study how marginal expectations vary with ages in a couple. By letting the man’s and
woman’s age vary from age 60 to 100, we obtain for each age combination a distinct mIPH distribution for
the random vector Y . Given these distributions, we summarize in Figure 9 how the expected remaining
lifetime at issue changes as a function of the male’s and female’s age at that point in time. For both man and
woman, the marginal expected survival times decrease when both individuals in the couple grow older. For
any specific age, both men and women have larger marginal expectations as their spouses become younger.
That marginal expectation varies more for women, as one can see from the steepness and range of the
women’s curve in Figure 9. Another way to interpret this is that men’s expected survival times are affected
less by the age of their partner, compared to women.

Besides age, conditioning also on the survival time of the spouse affects the initial distribution vector,
leading to different expected values. Figures 10 and 11 present marginal expected survival times, condi-
tional on a spouse survival of at least 10 and 15 years counted from issue of the policy, respectively. The
respective change in the men’s remaining life expectation is notable by mere visual comparison, whereas
for women, it is less pronounced. From Figure 10, we see that the expectation increases for almost all ages,
compared with Figure 9. For men, one notices that the shape of the curve is changed for ages y65 751≤ ≤ .
Moreover, for older ages, y1 and y2, the curve is now slightly steeper than before. In the women’s case,
marginal expectations for a woman aged 60 or 100 with husband aged 60 are now equivalent, and no other
major change, can be easily observed. The marginal expectation for men whose spouses survive at least 15
years is very much different from their unconditional counterparts. Inspecting Figure 11, one can see a
sizable change of the curve. Men with spouses of age y 80, 1002 ( )∈ are now expected to survive much
longer than before, while once again for women, we only have a rather minor twist of the curve. In all
figures, we see that the women’s curves do not show major change. Still, they suggest that women are more
sensitive to both age and survival of their partner.

5 Conclusion

In this article, we introduce the mIPH class, study some of its properties, and develop an estimation
procedure that allows for right-censored observations and covariate information. In particular, we use
this framework to propose a bivariate Matrix-Gompertz distribution for the modeling of excess joint life-
times of couples. By adapting a respective Expectation–Maximization algorithm, we estimate sub-intensity
matrices, inhomogeneity functions, and different initial distribution vectors without separating joint fea-
tures from marginals. Initial probabilities are assumed to be linked to spouses’ ages at the issue of an
insurance policy. Employing multinomial logistic regressions to predict the latter, tailor-made bivariate
distributions are produced that reflect distinct aging dynamics and dependence structures. The resulting
mIPH distributions showcase strong positive concordance for remaining lifetimes of spouses, particularly
when the difference in age at the issue of the policy is small.

The results and illustrations given in this article demonstrate the accuracy and the flexibility of the
mIPH class, which may also be employed in areas beyond the present lifetime setup, including applications
in nonlife insurance. The mIPH class may be considered a valid alternative to copula-based methods,
particularly when one wants to estimate marginal and multivariate properties at the same time, and has
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sufficiently many data points available to keep the pre-imposed dependence assumptions (and structure)
minimal. In addition, modeling with members of the mIPH class allows for an immediate causal interpreta-
tion of the resulting model in terms of common aging through stages.
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