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Many empirical studies confirm that policyholder’s subjective mortality beliefs deviate from the
information given by publicly available mortality tables. In this study, we look at the effect of subjective
mortality beliefs on the perceived attractiveness of retirement products, focusing on two extreme
products, conventional annuities (where the insurance company takes the longevity risk) and tontines
(where a pool of policyholders shares the longevity risk). If risk loadings and charges are neglected, a
standard expected utility framework, without subjective mortality beliefs, leads to the conclusion that
annuities are always preferred to tontines (Yaari (1965), Milevsky and Salisbury (2015)). In the same
setting, we show that this result is easily reversed if an individual perceives her peer’s life expectancies
to be lower than the ones used by the insurance company. We prove that, assuming such subjective
beliefs, there exists a critical tontine pool size from which the tontine is always preferred over the
annuity. This suggests that tontines might be perceived as much more attractive than suggested by
standard expected utility theory without subjective mortality beliefs.

© 2020 Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

It is well-documented in the literature that individuals tend
o have subjective beliefs about their own and others’ life ex-
ectancy. In several empirical studies, people were asked to pro-
ide an estimate of their life expectancy or survival probability
owards a certain age. These numbers were compared to some
eference data as, for example, the estimates of the government’s
ctuary department. Typically, in such studies, people at younger
ges tend to be pessimistic about their future lifetime, that is
he life expectancy they report is lower than the government
orecast. In contrast, at older ages, various studies document both
nder- and over-estimations of the life expectancy and survival
robabilities. Secondly, people seem to have different subjective
eliefs about the life expectancy or survival probability relative
o their peers. This has already been noted in the famous book
y Adam Smith back in 1776 (cf. Smith (1776)) where he stresses
he ‘‘confidence which every man naturally has in his own good
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fortune’’, see also the extensive literature review provided in
Section 2 of this article.

How subjective age perception influences one’s economic and
financial decision is an interesting and ongoing research topic.
For instance, Ye and Post (2020) study how the age people feel
influences their work engagement and saving profiles. In this
article, we analyze the research question of how and to what
extent subjective beliefs affect the optimal design and perceived
attractiveness of retirement products. This is particularly interest-
ing in view of the many novel and innovative retirement products
that recently emerged from the life and pension insurance indus-
try. We exemplarily look at two such products that can be seen
as extreme in the sense that one of them (the annuity) leaves
mortality risk with the insurance company, while the other one
(the tontine) shares mortality risk within a pool of policyholders.
The tontine used to be a popular source of retirement income
from the 17th to the 19th century (see for example Milevsky
(2014, 2015), Milevsky and Salisbury (2015), Milevsky and Sal-
isbury (2016), Weinert and Gründl (2017), Chen et al. (2019)
and Li and Rothschild (2019)). For a more practically oriented
view on tontines, see e.g. Sabin (2010), Forman and Sabin (2015,
2016) and Fullmer and Sabin (2018).1 Priced actuarially fair, life

1 In recent years, many products with a tontine-like structure have appeared.
hey are often called pooled annuity funds or group self-annuitization, and much
ffort has been made in recent years to explore the potential and optimal design
f these products in today’s world. We refer interested readers, for example,
o Piggott et al. (2005), Valdez et al. (2006), Stamos (2008), Qiao and Sherris
2013), Donnelly et al. (2013, 2014) and Donnelly (2015) and Bernhardt and
onnelly (2019).
D license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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nnuities give retirees greater lifetime utility than tontines (see
lso Milevsky and Salisbury (2015)). If realistic safety loadings
r risk margins are taken into consideration, tontines can be
referred to annuities (cf. Milevsky and Salisbury (2015) and Chen
t al. (2019)). In the present article, we analyze how subjective
ortality beliefs affect the optimal design of these products.
urther, we look at the perceived relative attractiveness between
nnuities and tontines. In particular, we aim to find out whether,
nder these subjective beliefs, tontines may generate a higher
ifetime utility level than annuities.

We use a general, hazard-rate-type mortality model distin-
uishing between uncertainty in the mortality rate (systematic
ortality risk) modeled, for example, by a stochastic intensity
r Lee–Carter-type model, and diversifiable risks related to the
ool size (unsystematic mortality risk). To incorporate subjective
ortality beliefs, we fix the insurer’s mortality model as reference
nd allow individuals to under- and overestimate the insurer’s
urvival curve. We further allow a single individual to believe
hat she lives relatively longer or shorter than her peers. To be
recise, we assume that there are three different mortality rates
or any x-year old policyholder: For any time t ≥ 0, we consider
he (possibly stochastic) mortality rate µx+t used by the insurer
nd two subjective mortality rates (µ̃x+t , µ̂x+t ), representing the

policyholder’s subjective mortality beliefs. Here, we distinguish
between the mortality rates the individual assumes for herself
(denoted by µ̃x+t ) and the ones assumed by the individual for
other policyholders (denoted by µ̂x+t ). In the present article, we
analyze the impact of subjective mortality beliefs in an expected
utility framework. The policyholder we consider is not fully ratio-
nal, but is a ‘‘naive’’ one who maximizes expected utility under
biased beliefs (see Hey and Lotito (2009) for different types for
utility maximizers).

Following Milevsky and Salisbury (2015) and Chen et al. (2019)
we derive the optimal payout functions of an annuity and a
tontine under subjective mortality beliefs and look at the effect of
subjective mortality beliefs. First, a tontine’s perceived attractive-
ness decreases in the conditional survival curve t P̂x := e−

∫ t
0 µ̂x+sds

ssumed for the other policyholders in the pool. As, in an annuity,
ortality risks are not shared within a pool but taken by the

nsurance company, this subjective belief does not affect the
ayoff or perceived attractiveness of an annuity. If the subjective
eliefs lead to an underestimation of t P̂x relative to the insurer’s

conditional survival curve (that is if t P̂x < tPx = e−
∫ t
0 µx+sds), we

find that (under a certain condition) there is a critical tontine
pool size N0 such that a tontine with initial pool size n > N0 is
preferred over an annuity, even if safety loadings (that are usually
higher for annuities than for tontines) are ignored. Our numerical
analysis confirms that this critical pool size can be as low as
N0 = 2. This is remarkable, since the attractiveness of tontines
is strongly increasing in its pool size. This result also reverses
results in similar settings without subjective mortality beliefs
(Yaari (1965), Milevsky and Salisbury (2015)). Surprisingly, in
this analysis, we also find that whether the policyholder believes
that she lives longer or shorter than her peers does not seem
to have a substantial impact on the choice between a tontine
and an annuity, particularly if the pool size of the tontine is
large. However, if both products are considered separately, the
difference between one’s own and the insurer’s mortality beliefs
determines the attractiveness of annuities while the difference
between one’s own and the peer’s mortality beliefs determines
the attractiveness of tontines.

It is already well-acknowledged in the literature that annuities
seem overpriced for an individual who is pessimistic about her
life expectancy (see, for example, Wu et al. (2015)). Our model is
consistent with this observation as a pessimistic individual who
underestimates her own survival curve relative to the one used
 u
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by the insurer perceives the product as too expensive. An analysis
in an expected utility framework supports this effect and shows
that a lower expected utility level results if the policyholder
perceives the premiums charged for annuities as ‘‘too high’’.
Conversely, the policyholder’s utility increases if she perceives
the premium charged as ‘‘too low’’. We confirm a similar, quite
obvious, effect also for tontines: The product is perceived as too
expensive/cheap if one believes that one lives shorter/longer than
the other members in the pool.

The results of this paper have an interesting implication with
respect to the annuity puzzle which is a term used to describe the
discrepancy between the theoretical demand for annuities (see,
for instance, Yaari (1965) and Peijnenburg et al. (2016)) and the
fact that only few households voluntarily purchase an annuity
(see, for example, Hu and Scott (2007), Inkmann et al. (2010)
and Lockwood (2012)).2 Our article differs from the majority of
the literature on the annuity puzzle by the inclusion of tontines
and the effects of subjective mortality beliefs on the relative at-
tractiveness of annuities and tontines. This allows for interesting
conclusions: For example, if a policyholder perceives her own life
expectancy to be higher than the one of her peers but, at the
same time, is pessimistic about general life expectancy, she might
perceive an annuity as overpriced but, at the same time, a tontine
as underpriced. As people seem to have different mortality beliefs,
offering additional innovative retirement products like tontines
might encourage more people to invest into retirement products.

The remainder of this article is organized as follows: In
Section 2, we provide a literature review regarding subjective
mortality beliefs. In Section 3, we describe the general model
setup used throughout this article. After that, we derive the opti-
mal payout function of the annuity and tontine for a risk-averse
policyholder under subjective mortality beliefs in Section 4. We
also derive closed-form expressions for the individual’s expected
discounted lifetime utility from each product, which will enable
us to compare the attractiveness of the different products. In
Section 5, we analyze the effects of subjective mortality beliefs on
the optimal retirement decision. Section 6 examines the robust-
ness of the results achieved in Section 5 by explicitly considering
safety loadings. Section 7 concludes the article. Most proofs are
collected in the Appendix.

2. Subjective mortality beliefs

The phenomenon that people tend to have their own, subjec-
tive beliefs regarding their own and others’ life expectancy is not
new in the literature. Such a phenomenon is of major relevance
in life insurance. For example, Bauer et al. (2014) analyze the
effects of differing perceptions of mortality on the life settlement
market. Individuals might systematically over- or underestimate
their own and others’ life expectancy, affecting their willingness
to buy retirement products like annuities and tontines. Important
empirical findings regarding subjective mortality beliefs include,
but are not limited to, the following:

• Bucher-Koenen et al. (2013) find that, in Germany, ‘‘men as
well as women are pessimistic about their life expectancy.
Women (men) underestimate their life span by about 7
(6.5) years compared to the official records by the German
statistical office’’. The sample consists of an equal share of
males and females aged 26–60.

2 There is already vast literature exploring the main drivers for this puzzle.
or reviews of this stream of literature, we refer the interested reader, for
xample, to Milevsky (2013) and Benartzi et al. (2011). Further studies related
o our article in the context of behavioral insurance are, for example, Salisbury
nd Nenkov (2016), Chen et al. (2016, 2018), Poppe-Yanez (2017), Caliendo et al.
2017) and O’Dea et al. (2019). Note that there is more than one puzzle in life
nsurance, see for example Gottlieb (2012). However, the puzzle dealing with
nderannuitization is probably the most famous one.
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• According to O’Brien et al. (2005), individuals in Great Britain
underestimate their life expectancies ‘‘by 4.62 years (males),
5.95 years (females) compared to the estimates of the Gov-
ernment Actuary’s Department’’. Additionally, ‘‘people are
optimistic: they think they will live longer, on average, than
people of their own age and sex: by 1.19 years (males),
0.76 years (females)’’. The sample covers ages from 16 to
99. While the underestimation is larger for young than old
people, there is still an underestimation of 2.83 years for
males and 4.62 years for females at ages 60–69 which is the
range of typical retirement ages.

• In Greenwald and Associates (2012) the following results
about American citizens are established: ‘‘When asked to
estimate how long the average person their age and sex can
expect to live, more than six in ten retirees (62 percent)
and half of pre-retirees (57 percent) provide a response that
is below the average. Only about one-quarter overestimate
average life expectancy (19 percent of retirees and 28 per-
cent of pre-retirees)’’.3 Additionally, a similar observation
as in O’Brien et al. (2005) is made: ‘‘Despite the tendency
to underestimate population life expectancy, half of retirees
(50 percent) and pre-retirees (53 percent) appear to be-
lieve that the response they provide for their personal life
expectancy is within one year of average life expectancy.
Three in ten think their estimate of personal life expectancy
exceeds average life expectancy (31 percent of retirees and
32 percent of pre-retirees)’’.

• Wu et al. (2015) find that ‘‘respondents are pessimistic
about overall life expectancy but optimistic about survival at
advanced ages, and older respondents are more optimistic
than younger’’. To be precise, ‘‘younger cohorts underes-
timate survival (the 50–54 age group underestimates life
expectancy by more than eight years) while older cohorts
tend to overestimate, especially males (Ludwig and Zimper
(2013)). (Males in the 70–74 age group overestimate life ex-
pectancy by only one year, and females underestimate it by
one year.)’’ These observations are based on the Retirement
Plans and Retirement Incomes: Pilot Survey, conducted in
May 2011 for Australian citizens.

• Elder (2013) analyzes the Health and Retirement study
(HRS) which is a longitudinal survey of American citizens.
The most important finding for our article is that both men
and women with ages between 50 and 65 underestimate
the probability of survival to age 75, but overestimate the
probability of survival to age 85. A similar observation is
made in Hurd and McGarry (2002) who analyze the HRS as
well.

here seems to be a clear tendency for younger people to under-
stimate their life expectancy, while both under- and overestima-
ions can be observed at older ages. Additional literature on this
ubject can, for example, be found in Wu et al. (2015). Further-
ore, Payne et al. (2013) emphasize that individuals’ responses

o questions assessing their subjective mortality and longevity
eliefs drastically depend on the framing of the question. There-
ore, we consider a general model for subjective mortality beliefs
hich allows for both under- and overestimations of the life
xpectancy.

3 ‘‘Respondents were classified as retirees if they described their employment
tatus as retiree, had retired from a previous career, or were not currently
mployed and were either age 65 or older or had a retired spouse. All other
espondents were classified as pre-retirees’’.
 a
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3. Model setup

In this section, we describe the basic model setup used
throughout the remainder of our article. In particular, we explain
how the mortality and the subjective mortality beliefs are mod-
eled and how the two retirement products under consideration,
the annuity and the tontine, are designed. We ignore financial
market risk to solely focus on the mortality risk.

3.1. Modeling mortality risk

There are two different kinds of mortality risk: Unsystematic,
or idiosyncratic, mortality risk stems from the lifetimes of peo-
ple being unknown but still following a certain mortality law.
Systematic, or aggregate mortality risk stems from the fact that
we cannot certainly determine the actual (‘‘true’’) mortality law.
In the context of retirement products, this risk is also called
longevity risk. Further explanations regarding these two different
aspects of mortality risk can also be found, for instance, in Piggott
et al. (2005). Let us consider an x-year-old policyholder whose
remaining future lifetime is denoted ζ . This remaining lifetime
is affected by systematic mortality risk that is modeled by a
(stochastic) mortality rate. To determine the contract’s premium
(see Section 3.2), the insurer uses the mortality rate {µx+t}t≥0.

As pointed out above, individuals tend to have their own, sub-
jective estimates of others’ and their own life expectancy. These
subjective mortality beliefs will be incorporated by assuming that
the individual considered and the insurance company use differ-
ent mortality rates. While we denote by µx+t the mortality rate
used by the insurer, we also take the viewpoint of a policyholder
with subjective mortality beliefs with perceived mortality rates
{µ̃x+t}t≥0 and {µ̂x+t}t≥0 the policyholder assumes for herself and
her peers, respectively. As mentioned in the introduction, we do
not assume any ‘‘fixed’’ relation between these mortality rates,
as both an under- or overestimation of the actual life expectancy
can be observed among retirees. From the policyholder’s per-
spective, these subjective mortality rates are applied to evaluate
the attractiveness of the retirement products. As already pointed
out in the introduction, the considered policyholder is not fully
rational. It indicates that the considered policyholder can perceive
the mortality rates for herself and her peers rather differently
from the ones used by the insurer for pricing.

In Examples 3.1–3.3, we present a shocked Gompertz model,
a Lee–Carter model, and an Ornstein–Uhlenbeck-type model as
simple examples modeling a stochastic mortality rate {µx+t}t≥0.
It is, of course, possible to use more sophisticated extensions of
these models. Given the canonical filtration Et := σ ({µx+s}{0≤s≤t}),
that is the filtration containing information about the mortality
rates µx+t , we define the survival curve used by the insurer:

tpx = E
[
1{ζ>t}

]
= E

[
E
[
1{ζ>t}

⏐⏐ Et]] = E
[
e−

∫ t
0 µx+sds

]
. (1)

We define the conditional subjective probabilities t P̃x := e−
∫ t
0 µ̃x+sd

and t P̂x := e−
∫ t
0 µ̂x+sds and the corresponding canonical filtra-

tion Ẽt := σ ({µ̃x+s}0≤s≤t , {µ̂x+s}0≤s≤t ). The policyholder with
subjective beliefs obtains the following (perceived) survival prob-
abilities:

t p̃x = E
[
e−

∫ t
0 µ̃x+sds

]
, and t p̂x = E

[
e−

∫ t
0 µ̂x+sds

]
. (2)

To account for unsystematic mortality risk, we consider a policy-
holder pool of initially n members from the same cohort of age
x. Given the conditional survival probabilities tPx := e−

∫ t
0 µx+sds

(respectively t P̃x, t P̂x), the pool member’s remaining lifetimes are

ssumed to be independent. Thus, from the insurer’s perspective
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nd from today’s view, the number of pool members surviving
ime t follows a binomial distribution, that is,

(t) | {tPx} ∼ Bin
(
n, tPx

)
. (3)

A policyholder with subjective mortality beliefs assumes that the
other pool members are t P̂x-conditionally binomially distributed,
that is N(t) − 1 | {t P̂x} ∼ Bin

(
n − 1, t P̂x

)
.

Example 3.1 (Shocked Gompertz Model). For details on the (deter-
ministic) Gompertz model, see Gompertz (1825), Gumbel (1958)
and Milevsky and Salisbury (2015). We apply a random shock ϵ

to the Gompertz mortality rates assuming that ϵ is a continuous
random variable with density fϵ(·), support on (−∞, 1) and mo-
ment generating function mϵ(s) := E[esϵ]. Mortality rates are then
iven by a shocked Gompertz model

x+t = (1 − ϵ)
1
b
e

x+t−m
b , (4)

where b is the dispersion coefficient and m is the modal age at
death. Such a shocked mortality model is inspired by Solvency II
regulation in Europe where stress scenarios are obtained by a de-
terministic shock of annual death rates (see, for example, Lin and
Cox (2005) and Chen et al. (2019) for a more detailed motivation).
We get

tpx = E
[
e−

∫ t
0 µx+sds

]
= E

[
E
[
e−

∫ t
0 µx+sds

⏐⏐ ϵ]]
= E

[
e−(1−ϵ)e

x−m
b (e

t
b −1)

]
= e−e

x−m
b (e

t
b −1)

· mϵ

(
e

x−m
b (e

t
b − 1)

)
.

(5)

or ϵ ≡ 0, we obtain the (deterministic) Gompertz model as
pecial case.

xample 3.2 (Lee–Carter Model). On an annual grid, for t =

, 1, . . ., the Lee–Carter model (see Lee and Carter (1992)) is given
y the mortality rate

x+t = exp(αx+t + βx+t · κt ) , (6)

where αx+t is the average mortality level for age x, κt is the
mortality improvement factor, and βx+t is the relevance of mor-
tality improvement for age x. Typically, the time-dependent κ ′

ts
are projected as κt+1 = κt + θ + ξt , where θ ∈ R and ξt are
identically distributed, independent normally distributed random
variables with zero mean, that is ξt ∼ N (0, σ 2

κ ). For general t ≥ 0,
we simply set µx+t = µx+⌊t⌋, where ⌊x⌋ := max{k ∈ Z | k ≤ x}.
For t = 0, 1, . . ., we obtain:

tpx := E

[
exp

(
−

t∑
s=0

µx+s(s)
)]

= E

[
exp

(
−

t∑
s=0

exp
(
αx+s + βx+s · κs

))]
. (7)

Example 3.3 (Ornstein–Uhlenbeck Model). The stochastic mortality
rate is described by an Ornstein–Uhlenbeck (OU) process with a
positive drift and no mean reversion:

dµx+t = θµx+tdt + σdWt ,

where θ > 0, σ > 0, and W is a standard Brownian motion
under the real world measure P. The OU process for the mortality
rate is a natural stochastic generalization of the Gompertz law for
the force of mortality and was introduced by Luciano and Vigna
(2008), where its properties and the conditions for its biologi-
cal reasonableness have been discussed. Standard properties of
58
affine processes allow us to write the survival probability of a
policyholder in closed-form (see Luciano and Vigna (2008)):

tpx = E
[
e−

∫ t
0 µx+s ds

]
= exp

(
α(t) + β(t)µx

)
,

where

α(t) =
σ 2

2θ2 t −
σ 2

θ3 e
θ t

+
σ 2

4θ3 e
2θ t

+
3σ 2

4θ3 , β(t) =
1
θ
(1 − eθ t ) .

In the shocked Gompertz model (Example 3.1) perceived prob-
bilities can, for example, be obtained changing the modal age at
eath m (see Section 3.3). In the Lee–Carter model (Example 3.2),
t makes sense to adapt the average mortality level αx and for the
U model (Example 3.3), the drift θ of the mortality rate.

.2. Retirement products

As motivated in the introduction, we consider the annuity
nd the tontine as two representative retirement products. Fol-
owing Yaari (1965), we assume a continuous-time stream of
ncome for the retirement products. In an annuity contract, any
olicyholder continuously receives an annuity payment c(t) until
eath. The payment stream of the annuity can be written as

A(t) := 1{ζ>t} c(t) . (8)

he premium charged by the insurer (using the survival curve tpx)
an be obtained as

A
0 = E

[∫
∞

0
e−rtbA(t)dt

]
=

∫
∞

0
e−rtE

[
1{ζ>t}

]
c(t) dt

=

∫
∞

0
e−rtE [tPx] c(t) dt =

∫
∞

0
e−rt

tpx c(t) dt , (9)

here r is the risk-free interest rate, often also called the force
f interest.4

While in an annuity, the longevity risk is borne by the insur-
nce company, in a tontine contract it is shared among a pool of
≥ 1 homogeneous policyholders.5 Denoting by N(t) the number
f pool members at time t , each policyholder receives n/N(t)
ultiplied by a payment stream d(t) specified at the beginning of

he contract. Following Milevsky and Salisbury (2015), this yields
he following continuous payment stream for each t > 0:

T (t) :=

{
1{ζ>t}

nd(t)
N(t) , if N(t) > 0 ,

0, else
. (10)

ote that, in contrast to the annuity payment (8), the tontine
ayment depends substantially on the number of surviving pol-
cyholders N(t). In the special case where the pool consists of
nly one member, that is, n = 1, and c(t) = d(t), the tontine
ayoff (10) and the annuity payoff (8) coincide. The premium of

4 In finance, when we value financial products with risky payoffs under the
eal world measure, we shall apply a risk-adjusted discounting factor, where the
isk premium for the financial product shall be taken into account. This implies
hat the discounting factor shall be a risk-adjusted interest rate which varies
mong the products in which different ‘‘amounts’’ of risks are involved. If we
pply this conventional approach used in finance to our context to determine
he price for the tontines and the annuities, correctly speaking, we shall apply
wo different risk-adjusted discounting rates for these two products, as tontines
nd annuities contain different amounts of longevity risks. In the present paper,
e do not apply this conventional approach in finance, but follow an actuarial
pproach to determine the premium of these retirement products.
5 In a tontine, the insurer carries the longevity risk of the last living person

n the pool, only. This risk is negligible expect for very small pool sizes.
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his contract can then be obtained as

T
0 = E

[∫
∞

0
e−rtbT (t)dt

]
=

∫
∞

0
e−rt E

[
tPx E

[
nd(t)
N(t)

⏐⏐⏐⏐ ζ > t, Et

]]
dt

=

∫
∞

0
e−rt E

[
n−1∑
k=0

n
k + 1

(
n − 1

k

)
(tPx)k+1

· (1 − tPx)n−1−k

]
d(t) dt

=

∫
∞

0
e−rt E

[
n∑

k=1

(
n
k

)
(tPx)k (1 − tPx)n−k

]
d(t) dt

=

∫
∞

0
e−rt E

[
1 − (1 − tPx)n

]
d(t) dt . (11)

s already pointed out in Chen et al. (2019), the premium for
ontines (11) differs from the formula in Milevsky and Salisbury
2015), where it is assumed that the payoff to the pool d(t) will
always be provided by the insurer even if there are no policyhold-
ers left. The premium in (11) converges to the one in Milevsky
and Salisbury (2015) if the pool size n tends to infinity.

3.3. Subjective perception of the premium

The insurer charges a premium based on its own survival
probabilities (see (9) and (11)). Let us now examine how this
premium is perceived from the policyholder’s point of view. As
the policyholder has different mortality beliefs than the insurer,
she might perceive a product as over- or underpriced. We denote
the expected value operator under the subjective beliefs of a
policyholder by Ẽ[ · ]. The subjective premium of the annuity,
using the policyholder’s subjective survival curve, is given by

PA
0 = Ẽ

[∫
∞

0
e−rtbA(t)dt

]
=

∫
∞

0
e−rt

t p̃x c(t) dt , (12)

where t p̃x is defined in (2). The policyholder perceives the pre-
mium charged by the insurer for the annuity as ‘‘too high’’ if the
charged premium is higher than her perceived premium, that is,
PA
0 > P̃A

0 (which is the case if tpx > t p̃x). Conversely, the premium
charged by the insurer is perceived as ‘‘too low’’ if PA

0 < P̃A
0 (which

is the case if tpx < t p̃x).
For the tontine, a single individual uses the mortality rate

µx+t for herself and µ̂x+t for the other policyholders in the pool.
Using the policyholder’s subjective mortality rates for herself and
others, the subjective premium of the tontine is given by

PT
0 = Ẽ

[∫
∞

0
e−rtbT (t)dt

]
=

∫
∞

0
e−rt E

[
t P̃x Ẽ

[
nd(t)
N(t)

⏐⏐⏐⏐ ζ > t, Ẽt

]]
dt

=

∫
∞

0
e−rt E

[
t P̃x

n−1∑
k=0

n
k + 1

(
n − 1

k

) (
t P̂x
)k

·
(
1 − t P̂x

)n−1−k

]
d(t) dt

=

∫
∞

0
e−rt E

[
e−

∫ t
0 µ̃x+sds

e−
∫ t
0 µ̂x+sds

(
1 −

(
1 − e−

∫ t
0 µ̂x+sds

)n)]
d(t) dt .

(13)
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Table 1
Base case parameters.
Initial wealth Pool size Risk-free rate
v = 1 n = 100 r = 0.02

Initial age Gompertz parameters Longevity shock
x = 65 m = 88.721, b = 10 ϵ ∼ N(−∞,1](−0.0035, 0.08142)

For a sufficiently large pool size, the term
(
1 − e−

∫ t
0 µ̂x+sds

)n
is close to zero. The difference between the premium PT

0 and
the perceived premium P̃T

0 is thus mainly driven by the term

E
[

t P̃x
t P̂x

]
= E

[
e−

∫ t
0 µ̃x+sds

e−
∫ t
0 µ̂x+sds

]
, that is how the policyholder sees her

own survival prospects relative to the other pool members.
To illustrate the patterns described above, we now consider a

numerical example, working with the shocked Gompertz model
(Example 3.1). Unless stated otherwise, we always use the param-
eters summarized in Table 1. The mortality rates µx+t , µ̃x+t and

x+t are assumed to follow the shocked Gompertz law as intro-
uced in Example 3.1. To demonstrate the effects of subjective
ortality beliefs, we vary the modal age at death to obtain the
ubjective mortality rates

x+t = (1 − ϵ)
1
b
e

x+t−m̃
b , µ̂x+t = (1 − ϵ)

1
b
e

x+t−m̂
b

for subjective modal ages at death m̃, m̂ > 0. The random shock
ϵ is the same shock, and we use for the insurer’s mortality rates

µx+t = (1 − ϵ)
1
b
e

x+t−m
b .

Recall that the resulting survival curves tpx, t p̃x and t p̂x are given
y (1) and (2), respectively. Varying the modal age at death allows
s to easily control the subjective mortality beliefs: The relations

≥ m̃ and m ≥ m̂ are equivalent to the situation where
he policyholder expects to have higher mortality rates than the
nsurer uses for pricing (that is µ̃x+t ≥ µx+t and µ̂x+t ≥ µx+t
nd thus also t p̃x ≤ tpx and t p̂x ≤ tpx). The reason for this is that
he mortality rate is decreasing in the modal age at death for all
hoices of x, b and t .
Note that we allow for the modal age at death to vary between

he insurer’s and the policyholder’s perceived mortality rates,
hile we use, for simplicity, the same dispersion coefficient for all
hree curves. That is, we have tacitly assumed that the modal age
t death does not depend on the dispersion coefficient.6 For the
ompertz parameters, we follow Milevsky and Salisbury (2015),
or the parameters of the shock we follow Chen et al. (2019). We
ssume that the insurer uses the modal age m = 88.721, which
esults in an expected remaining lifetime of E[ζ ] =

∫
∞

0 tpxdt ≈

0.707 from the insurer’s point of view (for an x = 65-year
ld). For our numerical illustrations, we mostly rely on subjective
odal ages m̃, m̂ ∈ {80.5, 83, 88.721, 92, 95}. These parame-

ers are in line with most of the empirical studies in Section 2.
e shortly discuss these parameter choices, comparing the life

xpectancy of our parameter choice and some of the empirical
tudies cited in Section 2.

6 Note that this is only one possible example of subjective mortality beliefs. In
rinciple, it is possible to allow for simultaneous changes in several parameters
f the Gompertz law or to change the underlying mortality law. The former
an be carried out by using the so-called Compensation Law of Mortality (CLaM)
aking into account that the lifetimes of individuals with higher mortality hazard
ates are also more volatile (for further details see, e.g., Gavrilov and Gavrilova
1991, 2001) and Milevsky (2018)). In our Gompertz framework, this would
mply that low modal ages should be paired with high dispersion coefficients, as
xplicitly stated in Milevsky (2018). Choosing, for example, (m, b) = (88.721, 10)
nd (m̂, b̂) = (80.5, 11), we still obtain t p̂x < tpx on the set x+ t < 150. That is,
he parameters could be chosen in such a way that all our qualitative results
n the numerical part still remain valid. Hence, we have decided to choose a
ather simple way to incorporate the subjective mortality beliefs by changing
he modal age at death.
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Fig. 1. Subjective survival curves t p̃x for a 65-year old individual for all the
different subjective modal ages m̃ ∈ {80.5, 83, 88.721, 92, 95}, where the
dispersion coefficient is equal to β = 10.

• m̃ ∈ {80.5, 83} (m̂ ∈ {80.5, 83}): The first value results
in an underestimation of the life expectancy of 6.183 years
compared to the insurer, which is consistent with the find-
ings in Bucher-Koenen et al. (2013) and close to the findings
in O’Brien et al. (2005) for females. This is the strongest
underestimation we assume. The second value results in
an underestimation of the life expectancy of 4.405 years
compared to the insurer which is consistent with the overall
findings in O’Brien et al. (2005) for males and their findings
for females aged 60–69.

• m̃ = 88.721 (m̂ = 88.721): In this case, there is no under- or
overestimation, i.e. the policyholder’s beliefs coincide with
those of the insurer.

• m̃ ∈ {92, 95} (m̂ ∈ {92, 95}): These values result in an over-
estimation of the life expectancy of 2.705 and 5.276 years
compared to the insurer. The values we use can, on some
level, be connected to the findings in Ye and Post (2020) who
report that people tend to feel younger than their chrono-
logical age, that is their mean and median subjective age
is around 10 years below the chronological age for almost
all age groups. This finding suggests that most individuals
considered in Ye and Post (2020) might also overestimate
their life expectancy compared to the insurer. As the insurer
relies on the chronological age for pricing, it is thus possible
that the insurer assigns a lower life expectancy to a policy-
holder than the policyholder does, due to the difference in
the subjective and the chronological age.

In Fig. 1, we provide the survival curves t p̃x for the different sub-
jective modal ages m̃. We observe that the survival curves with
higher subjective modal ages dominate the curves with lower
modal ages for all times t . An individual assuming the modal age
80.5 believes that there is basically no chance of reaching age
100, whereas an individual assuming the modal age 95 assumes
that there is a 20% chance of reaching age 100. This explains the
corresponding under- and over-estimation of the life expectancy
in the texts above.

In Table 2, we consider a constant annuity and provide the
premium charged by the insurer and the subjective premium
as expected by the policyholders. The constant annuity payoff
c(t) = c is chosen such that PA

0 = 1 with the premium PA
0 given

in (9). Note that the parameter m̂ does not affect the premium of
the annuity in any way and can therefore be omitted in Table 2.
We observe that the subjective premium of the annuity increases
in the modal age at death m̃ assumed by the policyholder. That is,
an annuity seems more and more overpriced the stronger an in-
dividual underestimates her survival probabilities. Conversely, an
 w

60
Table 2
Subjective premium P̃A

0 (see (12)) of a constant annuity, given the premium
PA
0 = 1. The parameters are as in Table 1, in particular, the insurance company’s

modal age at death is m = 88.721.
Subjective modal age Annuity premium P̃A

0

m̃ = 80.5 0.7428
m̃ = 83 0.8197
m̃ = 88.721 1
m̃ = 92 1.1038
m̃ = 95 1.1979

Table 3
Subjective premium P̃T

0 (see (13)) of the natural tontine, given the premium
PT
0 = 1. The parameters are as in Table 1, in particular, the insurance company’s

modal age at death is m = 88.721.
Subjective modal age Tontine premium P̃T

0

n = 10 n = 100 n = 1000

m̃ = m̂ = 80.5 0.9472 0.9873 0.9966
m̃ = m̂ = 83 0.9704 0.9944 0.9988
m̃ = m̂ = 88.721 1 1 1
m̃ = m̂ = 92 1.0068 1.0005 1.0000
m̃ = m̂ = 95 1.0097 1.0006 1.0000

annuity appears underpriced to a policyholder who overestimates
her survival probabilities.

Next, we turn to a tontine. Table 3 provides the premium
charged by the insurer and the subjective premium as expected
by the policyholders for a so-called natural tontine as introduced
in Milevsky and Salisbury (2015). The payoff of the natural ton-
tine is, in our model setup, given by d(t) = tpx · d0, where d0
s a constant. Note that the tontine payoff to a single individual
n the pool remains constant over time if deaths in the pool
ccur exactly as expected.7 The constant d0 is chosen such that
T
0 = 1 with the premium PT

0 given in (11). We first proceed
similar to Table 2 and change the subjective mortality rates,
keeping the insurer’s rate constant. If we assume that the two
subjective mortality rates are equal, that is m̃ = m̂, we observe
from Table 3, that the perceived premium is for pool sizes of
n = 100 and n = 1 000 hardly different from 1. This result is
bvious if we again compare the tontine premium (11) to the
erceived tontine premium (13): In the shocked Gompertz model,˜ = m̂ implies that the two mortality rates µ̃x+t and µ̂x+t are
qual for all t > 0. Further, for a sufficiently large pool size, the
erms

(
1−e−

∫ t
0 µx+sds

)n and
(
1−e−

∫ t
0 µ̂x+sds

)n are close to zero and
isappear. This leaves us to conclude that for sufficiently large
ool sizes, the perceived premium P̃T

0 is close to the insurer’s
remium PT

0 = 1 if m̃ = m̂. That is why, as a next step, in
able 4, we only vary m̂ while keeping the relation between m̃
nd m constant at m̃ = m − 4 = 84.721. As expected, we now
bserve significant changes of the subjective premium P̃T

0 if m̃
iffers from m̂. If the policyholder thinks to live longer than the
ther pool members (m̂ < m̃, see the first two lines of Table 4),
he perceived premium is higher than the premium PT

0 = 1.
or the policyholder’s perceived tontine premium, it seems to be
elevant how the policyholder sees her own survival prospects
elative to the other pool members. In contrast, the perceived
remium of an annuity is driven by the relation between one’s
wn perceived survival curve (in the shocked Gompertz model
iven by the parameter m̃) and the insurer’s survival curve (that
s the parameter m). The first two lines in Table 4 correspond to a
olicyholder optimistic about her own life expectancy compared
o her peers but pessimistic compared to the insurer (i.e. m̂ <

7 Due to its nice structure, Milevsky and Salisbury (2015) recommend this
ontine design for an implementation of tontines in today’s world which is also
hy we have decided to choose this design for our numerical demonstration.
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able 4
ubjective premium P̃T

0 (see (13)) of the natural tontine, given the premium
T
0 = 1. The parameters are as in Table 1, in particular, the insurance company’s
odal age at death is m = 88.721 which is equal to m̃ = m − 4 = 84.721.
Subjective modal age Tontine premium P̃T

0

n = 10 n = 100 n = 1000

m̂ = 81 1.1412 1.2515 1.2993
m̂ = 83 1.0466 1.0896 1.1006
m̂ = 84.721 0.9824 0.9972 0.9995
m̂ = 86 0.9432 0.9471 0.9475
m̂ = 88 0.8940 0.8897 0.8893

˜ < m), a perception that is in line with most empirical studies,
ee Section 2. From Table 2, we observe that this policyholder
elieves an annuity to be overpriced (̃PA

0 < PA
0 ). At the same

ime, from Table 4, this policyholder believes that a tontine is
nderpriced (̃PT

0 > PT
0 ).

To conclude, the perceived attractiveness of an annuity is fully
etermined by how the policyholder sees her survival prospects
elative to the survival prospects used by the insurance company
m vs. m̃ and thus tpx vs. t p̃x). In contrast, the perceived attractive-
ess of a tontine is mainly determined by how the policyholder
ees her survival prospects relative to the other pool members (m̃
s. m̂ and thus t p̃x vs. t p̂x).
As it is usual in this stream of literature (for example Yaari

1965), Yagi and Nishigaki (1993), Mitchell (2002), Davidoff et al.
2005), Milevsky and Salisbury (2015), Peijnenburg et al. (2016)
nd Chen et al. (2019)), the attractiveness of a retirement product
s frequently examined in an expected utility framework. To
onfirm our results in such a framework, we, in the following
ections, consider an expected utility framework to figure out
ow subjective mortality beliefs affect the relative attractiveness
f annuities and tontines and whether a tontine is preferable
ver an annuity under certain subjective mortality beliefs. We
nalyze whether the arguments about the premium perception in
his section still hold true if the policyholder’s expected lifetime
tility is used for the product comparison. We start by deriving
ptimal payoff functions of annuities and tontines in Section 4
nd then compare the resulting attractiveness of both products
n Section 5.

. Optimal payoff and expected utility

In this section, we derive the optimal payoff and the corre-
ponding expected lifetime utility of the annuity and the tontine
nder subjective mortality beliefs. Our results can be seen as a
eneralization of the theorems given in Milevsky and Salisbury
2015) and Chen et al. (2019). We assume that the considered
olicyholder is endowed with an initial wealth v, which can be
sed to invest in one of the retirement products, and introduce
he policyholder’s expected discounted lifetime utility as(

{α(t)}t≥0
)

:= Ẽ
[∫

∞

0
e−ρt

· u (α(t)) · 1{ζ>t}dt
]

, (14)

here {α(t)}t≥0 denotes the insurance product’s payoff, u(x) =

x1−γ

1−γ
is a CRRA utility function with a risk aversion parameter

> 0, γ ̸= 1 and ρ is the subjective discount factor of the
policyholder. Note that the expected discounted lifetime utility
is taken under the policyholder’s subjective expectation Ẽ[ · ]. In
the following two subsections, we first consider an annuity with
payoff α(t) = b (t), then a tontine with payoff α(t) = b (t).
A T

61
4.1. Annuity

We assume that the individual aims to maximize her expected
discounted lifetime utility under the constraint that her initial
wealth equals the premium charged by the insurer. The expected
discounted lifetime utility of an annuity is given by

U
(
{bA(t)}t≥0

)
=

∫
∞

0
e−ρt

t p̃x u
(
c(t)

)
dt.

To be more precise, we solve the following optimization problem
to determine the optimal annuity payment c(t):

max
c(t)

U
(
{bA(t)}t≥0

)
= max

c(t)

∫
∞

0
e−ρt

t p̃x u
(
c(t)

)
dt

subject to v = PA
0 :=

∫
∞

0
e−rt

tpx c(t) dt ,

(15)

here PA
0 is the premium charged by the insurer, and v is the

nitial wealth of the individual, available to buy the annuity
roduct. Strictly speaking, we shall put PA

0 ≤ v in the constraint.
s typically in this kind of optimization problems, the budget con-
traint is binding in the optimal solution, we start immediately
ith an ‘‘equality’’ in the constraint.
The solution of optimization problem (15) is given in

heorem 4.1.

heorem 4.1 (Optimal Annuity Payoff). For an annuity contract, the
olution to problem (15) is given by the optimal payout function

∗(t) =
e

(r−ρ)t
γ

λ
1/γ
A

(
t p̃x
tpx

)1/γ

, (16)

here λA is the optimal Lagrangian multiplier given by

A =

(
1
v

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt
tpx

(
t p̃x
tpx

)1/γ

dt

)γ

.

The optimal level of expected utility is then given by

UA :=
λA

1 − γ
v . (17)

roof. See Appendix A.1. □

Note that if there are no subjective mortality beliefs and if
= ρ, the optimal annuity payment reduces to the constant

−
1
γ

A which is in line with Yaari (1965). In all the other cases,
he optimal annuity payoff is not constant and may increase
r decrease over time. This implies that constant annuities are
ub-optimal for individuals whose subjective discount rate differs
rom the risk-free interest rate, consistent with, for example, Yagi
nd Nishigaki (1993). Before we analyze the effects of subjective
ortality beliefs on the optimal payoff c∗(t) and the optimal level
f expected utility UA in Section 5, we derive the optimal tontine
ayoff in the following subsection.

.2. Tontine

In this section, we determine the optimal withdrawal payment
(t) for the tontine. The expected discounted lifetime utility of a
ontine is given by(

{bT (t)}t≥0
)

=

∫
∞

0
e−ρt u

(
d(t)

)
Ẽ

[
1{ζ>t}

(
n

N(t)

)1−γ
]
dt,

where, from a perceived policyholder’s perspective N(t) − 1 |

{ P̂ } ∼ Bin
(
n − 1, P̂

)
, see also Section 3.1. Based on this, we
t x t x
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n,γ
(
t P̂x, t P̃x

)
:= Ẽ

[
1{ζ>t}

(
n

N(t)

)1−γ
]

= E

[
t P̃x Ẽ

[(
n

N(t)

)1−γ ⏐⏐⏐⏐ ζ > t, Ẽt

]]

= E

[
t P̃x

n−1∑
k=0

(
n

k + 1

)1−γ (n − 1
k

)(
t P̂x
)k

·

(
1 − t P̂x

)n−1−k
]

= E

[
e−

∫ t
0 µ̃x+sds

n∑
k=1

(
k
n

)γ (n
k

)(
e−

∫ t
0 µ̂x+sds

)k−1

·

(
1 − e−

∫ t
0 µ̂x+sds

)n−k
]

=

n∑
k=1

(
n
k

)(
k
n

)γ

E

[
e−

∫ t
0

(
µ̃x+s+(k−1)µ̂x+s

)
ds

·

(
1 − e−

∫ t
0 µ̂x+sds

)n−k
]

. (18)

hat is, we solve the following optimization problem:

max
d(t)

U
(
{bT (t)}t≥0

)
= max

d(t)

∫
∞

0
e−ρt u

(
d(t)

)
κn,γ

(
t P̂x, t P̃x

)
dt

subject to v = PT
0 :=

∫
∞

0
e−rt

· E
[(

1 −

(
1 − e−

∫ t
0 µx+sds

)n)]
d(t) dt .

(19)

he solution to problem (19) is given in Theorem 4.2.

heorem 4.2 (Optimal Tontine Payoff). For a tontine, the solution
o problem (19) is given by the optimal payout function

∗(t) =
e

(r−ρ)t
γ
(
κn,γ

(
t P̂x, t P̃x

))1/γ
λ
1/γ
T E

[(
1 −

(
1 − e−

∫ t
0 µx+sds

)n)]1/γ , (20)

here λT is the optimal Lagrangian multiplier given by

λT =

⎛⎜⎝1
v

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt
(
κn,γ

(
t P̂x, t P̃x

))1/γ
E
[(

1 −

(
1 − e−

∫ t
0 µx+sds

)n)]1/γ−1 dt

⎞⎟⎠
γ

.

he expected discounted lifetime utility is then given by

T :=
λT

1 − γ
v . (21)

roof. See Appendix A.2. □

Although the optimal payout structure d∗(t) is much more
omplex than the optimal annuity payment c∗(t) from (16), the
ptimal expected utility in (21) differs from (17) only through
he Lagrangian multiplier. In the following section, we will have
closer look at the effect of the subjective mortality beliefs on

he optimal payoff and expected utility of both annuities and
ontines.

. Effects of subjective mortality beliefs

In this section, we analyze the effect of the subjective mor-
ality beliefs on the optimal retirement decision. As explained in
62
Section 3.1, we denote by µx+t the mortality rate used by the
insurer and by (µ̃x+t , µ̂x+t ) the policyholder’s subjective mortality
rates used for herself and the remaining policyholders in the pool,
respectively.

5.1. Subjective mortality beliefs concerning oneself

We start by analyzing the effects of the individual’s subjective
mortality beliefs about herself on the optimal payoff and the
optimal level of expected utility of the two products. In Fig. 2,
we illustrate the effects of the subjective mortality rate µ̃x+t on
c∗(t) and d∗(t). In the following analysis, we always consider a
policyholder with a risk aversion of γ = 3 and a subjective
discount factor of ρ = r = 0.02. We basically make the same
observation in the two panels in Fig. 2: If the individual believes
that she lives shorter than the insurer has estimated, that is,
m̃ < m (here m̃ = 80.5 < m and m̃ = 83 < m, respectively), the
individual will buy a product which provides a higher payment
at the early retirement ages and a lower payment at the more
advanced retirement ages (compared to the case with m = m̃).
For the annuity, this leads to decreasing payoffs. For the tontine, a
more steeply declining payoff results (compared to the case with
m = m̃). In the reverse case, that is, for a policyholder believing
to live longer than the insurer has estimated (here m̃ = 92 > m
and m̃ = 95 > m, respectively), the individual buys a product
which provides a lower payment at the early retirement ages
and a higher payment at the more advanced retirement ages.
For the annuity, increasing payoffs result. For the tontine, less
steeply declining payoffs (compared to the case with m = m̃),
which slightly increase at very old ages, are obtained. Thus, living
shorter in expectation has the same effect as being less patient
about the future: Individuals tend to consume more at earlier
retirement ages. Older ages are given less importance than earlier
ages and therefore, lower payments result at older ages. If, on the
other hand, the individual expects to live longer than the insurer
assumes, the opposite is true.

We want to verify whether the perceived overpricing (under-
pricing) of annuities leads to a lower (higher) utility level for
the policyholders. For this purpose, we introduce problem (22). A
policyholder who assumes her own subjective survival curve to
be t p̃x wants to choose the optimal retirement product following
the optimization problem:

max
c(t)

U
(
{bA(t)}t≥0

)
= max

c(t)

∫
∞

0
e−ρt

t p̃x u
(
c(t)

)
dt

subject to v = P̃A
0 :=

∫
∞

0
e−rt

t p̃x c(t) dt .

(22)

ote that, in contrast to the optimization problem (15), the con-
traint in the optimization problem (22) is given in terms of
he policyholder’s subjective premium P̃A

0 instead of the insurer’s
remium PA

0 .
For a more thorough analysis of the retirement products, we

ntroduce certainty equivalents CE defined as the level of constant
etirement benefits that yield the same expected utility as the
nnuity and tontine, respectively. In other words, we determine
E > 0 such that(
{CE}t≥0

)
= U

(
{α(t)}t≥0

)
, (23)

r equivalently,

E =

(
(1 − γ )

(∫
∞

0
e−ρt

t p̃x dt
)−1

· U
(
{α(t)}t≥0

)) 1
1−γ

,

where U
(
{α(t)}t≥0

)
is the expected discounted lifetime utility of

the individual as defined in (14).
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Fig. 2. Optimal payoff of the annuity and the tontine for different choices of the modal age at death m̃, where the parameters are chosen as in Table 1 with γ = 3
and ρ = r .
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Table 5
Certainty equivalents (CE) of the annuity for problems (15) and (22), where
the payoff is the (subjective) utility maximizing payoff (16). The parameters are
as in Table 1 with risk aversion γ = 3, subjective discount factor ρ = r and
m = 88.721.
Subjective modal age CE with premium PA

0 CE with premium P̃A
0

Problem (15) Problem (22)

m̃ = 80.5 0.0629 0.0822
m̃ = 83 0.0619 0.0745
m̃ = 88.721 0.0611 0.0611
m̃ = 92 0.0613 0.0553
m̃ = 95 0.0618 0.0510

Comparing the results of optimization problems (15) and (22),
e can see whether ‘‘perceived’’ overpricing (underpricing) leads
o a lower (higher) certainty equivalent CE for the policyholder.
able 5 presents the results for an annuity. The column ‘‘CE
ith premium PA

0 ’’ gives the certainty equivalent obtained via
ptimization problem (15). The third column ‘‘CE with premium
A
0 ’’ gives the CE obtained via optimization problem (22). If the
hird column gives a higher value, problem (22) leads to a higher
E to the policyholder than problem (15) does. The reason for
his is that the policyholder perceives the premium charged by
he insurer in problem (15) as too expensive. We observe that
his is the case if the policyholder underestimates her survival
urve (m̃ < m), in line with the results in Table 2. The reverse
esults hold for a policyholder that is optimistic with respect to
er survival curve (m̃ > m). These results confirm the intuition
bout the premium perception analyzed in Section 3.3.

.2. Subjective mortality beliefs concerning others

In the previous subsection, we have analyzed how the poli-
yholder’s perceived mortality rates (µ̃x+t , µ̂x+t ) affect the per-
eived attractiveness of annuity and tontine. Note, however, that
he mortality rate the policyholder assumes for everyone else
x+t does not affect the payoffs or the expected utility of the
nnuity in any way. Therefore, if we want to compare the relative
ttractiveness of both products under subjective mortality beliefs,
e need to analyze the influence of µ̂x+t on the expected utility
f the tontine. In this sense, this subsection serves to analyze the
elative attractiveness of the annuity and the tontine, focusing on
he effect of subjective mortality beliefs.

roposition 5.1. The optimal level of expected utility of the tontine
decreases in the perceived conditional survival curve for the
T
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policyholder’s peers t P̂x := e−
∫ t
0 µ̂x+sds for all γ > 0, γ ̸= 1.

s a consequence, the certainty equivalent of the tontine is also
ecreasing in t P̂x.

roof. See Appendix A.3. □

The expected utility decreases in the perceived conditional
urvival curve for the other policyholders in the tontine pool, that
s, the more the individual under consideration underestimates
P̂x, the higher the perceived expected utility of the tontine.
his is logical as the tontine pool payoff d(t) is shared among
he survivors of the pool. Believing that other pool members
ave a lower survival probability, the surviving individual re-
eives (at least on average) a higher payout. This raises the
‘perceived’’ expected utility. In the shocked Gompertz model
Example 3.1), increases in the conditional survival rates are
chieved by increasing the perceived modal age at death m̂.
This leads us to our main result, the comparison between the

ertainty equivalents (CE) of annuity and tontine under subjective
ortality beliefs, see Theorem 5.2.

heorem 5.2 (Certainty Equivalent Comparison Under Subjective
eliefs).

(a) If beliefs do not differ between policyholder and insurance
company, that is if µx+t = µ̃x+t = µ̂x+t , we find that the CE of
a tontine never (that is for any portfolio size n ∈ N) exceeds
the CE of an annuity.

(b) Consider the case with systematic mortality risk. If

tpx >

(
E

[
e−

∫ t
0 µ̃x+s ds

t p̃x

(
e−

∫ t
0 µ̂x+s ds

)γ−1
]) 1

γ−1

, (24)

there exists a pool size N0 ∈ N such that the subjective CE of
a tontine is (for any portfolio size n ≥ N0) higher than the
subjective CE of an annuity.

(c) Consider the case without systematic mortality risk (deter-
ministic mortality rates µ, µ̃ and µ̂). In this case, assumption
(24) simplifies to tpx > t p̂x.

Remark 5.3 (Theorem 5.2). Part (a) of Theorem 5.2 is not an un-
known result and is presented by Milevsky and Salisbury (2015)
in a scholar setting. In contrast to Milevsky and Salisbury (2015),
we also include systematic mortality risks to our setting. Further,
we have a slightly different definition of the tontine premium.
Parts (b) and (c) of Theorem 5.2 are, to the best of our knowledge,
new results that are not available in the literature.
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P
roof.

(a) Consider the following optimization problem (with no sub-
jective mortality beliefs):

max
α∈[0,1]

E
[∫

∞

0
e−ρt1{ζ>t}u

(
αc∗(t) + (1 − α)

n
N(t)

d∗(t)
)

dt
]

,

(25)

where c∗(t) is the optimal annuity payoff (16) and d∗(t) is
the optimal tontine payoff (20) with no subjective mortality
beliefs, i.e. µx+t = µ̃x+t = µ̂x+t . In particular, (25) states
that the policyholder optimally splits the initial budget v =

αPA
0 + (1 − α)PT

0 between annuities and tontines. The pre-
miums PA

0 and PT
0 are as defined in Problems (15) and (19),

respectively. The objective function to Problem (25) can be
written as

F(α) =

∫
∞

0
e−ρtE

[
1{ζ>t}u

(
αc∗(t) + (1 − α)

nd∗(t)
N(t)

)]
dt

=

∫
∞

0
e−ρtE

[
e−

∫ t
0 µx+sdsE

[
u
(

αc∗(t) + (1 − α)

·
n

N(t)
d∗(t)

) ⏐⏐⏐⏐⏐ζ > t, Et

]]
dt

=

∫
∞

0
e−ρtE

[
e−

∫ t
0 µx+sds

n−1∑
k=0

u
(

αc∗(t)

+(1 − α)
n

k + 1
d∗(t)

)
·

(
n − 1

k

)(
e−

∫ t
0 µx+sds

)k
·

(
1 − e−

∫ t
0 µx+sds

)n−1−k
]

dt

=

∫
∞

0
e−ρt

n−1∑
k=0

u
(

αc∗(t) + (1 − α)
n

k + 1
d∗(t)

)
·

(
n − 1

k

)
E
[(

e−
∫ t
0 µx+sds

)k+1

·

(
1 − e−

∫ t
0 µx+sds

)n−1−k
]

dt .

We determine the first-order derivative to find a solution
to this optimization problem. The first-order condition with
respect to α is given by

∂F(α)
∂α

=

∫
∞

0
e−ρt

n−1∑
k=0

u′

(
αc∗(t) + (1 − α)

n
k + 1

d∗(t)
)

·

(
c∗(t) −

n
k + 1

d∗(t)
)

·

(
n − 1

k

)
E
[(

e−
∫ t
0 µx+sds

)k+1

·

(
1 − e−

∫ t
0 µx+sds

)n−1−k
]
dt !

= 0 . (26)

Using (16) and some effort, we can verify that α∗
= 1 fulfills

the first-order condition (26). We still need to verify that
α∗

= 1 is a maximum and that it is the only maximum of
the objective function. We can do this by taking a look at
64
the second-order derivative:

∂2F(α)
∂α2 =

∫
∞

0
e−ρt

n−1∑
k=0

u′′

(
αc∗(t) + (1 − α)

n
k + 1

d∗(t)
)

·

(
c∗(t) −

n
k + 1

d∗(t)
)2

·

(
n − 1

k

)
E
[(

e−
∫ t
0 µx+sds

)k+1

·

(
1 − e−

∫ t
0 µx+sds

)n−1−k
]
dt < 0 ,

since u′′
(
αc∗(t) + (1 − α) n

k+1d
∗(t)

)
< 0 for all α ∈ [0, 1]. If

the second-order derivative is strictly negative, this implies
that the first-order derivative is strictly decreasing in α.
Hence, ∂F(α)/∂α can only be equal to zero for exactly one
value of α, which we have already found above (α∗

= 1).
From this, we also see that the first-order derivative has
to be greater than zero for all α < 1. Consequently, the
expected utility in Problem (25) is increasing in α until
it reaches its maximum at α = 1. Particularly, a 100%
investment of initial wealth in the optimal annuity delivers
a higher expected lifetime utility than a 100% investment in
the optimal tontine.

(b) For the limiting (n → ∞) tontine, we follow the proof of
Theorem 4.2. Note first that by the conditional law of large
numbers (see, for example, Majerek et al. (2005) and Han-
bali et al. (2019)), we obtain, given the filtration of sys-
tematic mortality risk factors Ẽt , that the share of survivors
under subjective beliefs equals:

lim
n−→∞

(
N(t)
n

⏐⏐⏐ Ẽt

)
= lim

n−→∞

e−
∫ t
0 µ̃x+s ds + (n − 1) · e−

∫ t
0 µ̂x+s ds

n

⏐⏐⏐
Ẽt

−→ e−
∫ t
0 µ̂x+s ds.

We obtain, applying the dominated convergence theorem:

κ∞,γ

(
t P̂x, t P̃x

)
:= lim

n→∞
κn,γ

(
t P̂x, t P̃x

)
= lim

n→∞
Ẽ

[
1{ζ>t}

(
n

N(t)

)1−γ
]

= lim
n→∞

E

[
e−

∫ t
0 µ̃x+s ds

· Ẽ

[(
n

N(t)

)1−γ
⏐⏐⏐⏐⏐ Ẽt , ζ > t

]]

= E

[
e−

∫ t
0 µ̃x+s ds

(
1

e−
∫ t
0 µ̂x+s ds

)1−γ
]

= E
[
e−

∫ t
0

(
µ̃x+s−(1−γ )µ̂x+s

)
ds
]

.

For the annuity, we obtain the Lagrangian multiplier (see
Theorem 4.1):

λA =

(
1
PA
0

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt
tpx

(
t p̃x
tpx

)1/γ

dt

)γ

.

In the limit n → ∞, we obtain the Lagrangian multiplier for
the limiting tontine (see Theorem 4.2):

λT ,n→∞ =

(
1
PT
0

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt
·
(
κ∞,γ

(
t P̂x, t P̃x

)) 1
γ dt

)γ

.
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Following Theorems 4.1 and 4.2, we know that the certainty
equivalents of annuity and tontine can be written as func-
tions of the Lagrangian multipliers λA and λT , that is for
i ∈ {T , A}:

CEi =

(
P i
0 · λi ·

(∫ ∞

0
e−ρt

· t p̃x dt
)−1) 1

1−γ
. (27)

Comparing the certainty equivalents of annuity and limiting

tontine is thus equivalent to comparing λ
1

1−γ

A and λ
1

1−γ

T ,n→∞
.

Using assumption (24), we obtain:

(tpx)γ ·
t p̃x
tpx

= t p̃x · (tpx)γ−1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< t p̃x ·

E

⎡⎣e−
∫ t
0 µ̃x+s ds

(
1

e−
∫ t
0 µ̂x+s ds

)1−γ
⎤⎦

t p̃x
, if γ ∈ (0, 1)

> t p̃x ·

E

⎡⎣e−
∫ t
0 µ̃x+s ds

(
1

e−
∫ t
0 µ̂x+s ds

)1−γ
⎤⎦

t p̃x
, if γ > 1

= E
[
e−

∫ t
0

(
µ̃x+s−(1−γ )µ̂x+s

)
ds
]

= κ∞,γ

(
t P̂x, t P̃x

)
.

This is equivalent to

λA

{
< λT ,n→∞, if γ ∈ (0, 1)
> λT ,n→∞, if γ > 1

which is again equivalent to λ
1

1−γ

A < λ
1

1−γ

T ,n→∞
. From (27),

we can immediately conclude that the certainty equivalent
of the limiting tontine exceeds the certainty equivalent of the
annuity. Denoting by CET ,n an optimal tontine’s certainty
equivalent with pool size n, we can use basic properties of a
converging series CET ,n −→CET ,n→∞ that there exists a pool
size N0 ∈ N such that the CE of a tontine CET ,n is (for any
portfolio size n ≥ N0) higher than the CE of an annuity (this
basic convergence result can be found in any mathematical
textbook covering the convergence of a sequence of real
numbers, like, for example, Schulz (2011)). □

We now analyze for which individuals a tontine might be
referable to an annuity, where the individuals are distinguished
y their relative risk aversion. For our numerical analysis, we
ocus, again, on the findings of Greenwald and Associates (2012)
nd O’Brien et al. (2005) who state that people tend to underes-
imate their own and others’ life expectancy, that is, they assign
P̃x < tPx and t P̂x < tPx, respectively. We consider the parameter
etup summarized in Table 1 along with the following three cases
f subjective mortality beliefs:

• Case 1: m̃ = 82, m̂ = 80.5: In this case, the policyholder
underestimates others’ life expectancy by 6.183 years and
her own by 5.128 years compared to the insurer. In par-
ticular, the individual believes that she lives in expectation
1.055 years longer than her peers.

• Case 2: m̃ = 80.5, m̂ = 82: In this case, the policyholder
underestimates others’ life expectancy by 5.128 years and
her own by 6.183 years compared to the insurer. In par-
ticular, the individual believes that she lives in expectation
1.055 years less than her peers.

• Case 3: m̃ = m̂ = 88.721: In this case, there are no sub-
jective mortality beliefs, that is, µ̃x+t = µx+t = µ̂x+t . This
corresponds to the setting analyzed in Milevsky and Salis-
bury (2015) and we mainly include this case to emphasize
the importance of our results.

In Fig. 3, the corresponding certainty equivalents are given for
the annuity and the tontine. The risk aversion parameters are
 d
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equidistantly placed in the interval [0.1, 10]. Here, we consider
two different tontines, one with n = 10 policyholders and
another one with n = 100 members. We use very small pool sizes
to emphasize that tontines with a low number of policyholders
can already be preferred to annuities. We make the following
observation from Fig. 3:

• In both panels, we can see that the tontine is preferred
by all individuals whose relative risk aversion falls in the
interval [0.1, 10] in cases 1 and 2, whereas in case 3 all
the policyholders prefer the annuity over the tontine. The
reason behind the tontine’s superiority for the cases with
subjective mortality beliefs is the underestimation of the
survival curve used for the remaining policyholders t P̂x.
As we have already seen in Proposition 5.1, a decrease of
this conditional survival curve leads to a higher certainty
equivalent of the tontine, while the certainty equivalent of
the annuity remains completely unchanged.

• In both Panels (a) and (b), the individual’s survival curve
assumed for herself t P̃x has almost no effect on the tontine’s
superiority over the annuity. This can be seen from the fact
that both in case 1 (t P̃x > t P̂x) and case 2 (t P̃x < t P̂x)
the tontine is preferred to the annuity for all risk aversion
parameters. In case 1, the tontine is preferred stronger over
the annuity than in case 2, which is only due to t P̂x being
smaller in case 1 than in case 2.

• One last effect we can observe here is that the number of
policyholders in a tontine also largely impacts the attrac-
tiveness of tontines. In both figures, the investors prefer the
tontine over the annuity. Comparing Panel (a) with n = 10
investors to Panel (b) with n = 100 investors, we can see
that the certainty equivalent of the tontine is significantly
increased if the pool is larger. We have already argued at the
beginning of this article that the unsystematic risk in a ton-
tine can be diversified by a sufficiently large pool size and
it is well-known already that the attractiveness of a tontine
increases with its pool size (see for example Milevsky and
Salisbury (2015) and Chen et al. (2019)).

We conclude our numerical analysis by providing the critical
alues N0 from Theorem 5.2 for our base case parameter setup.
e consider a policyholder with a risk aversion γ = 3. We can

heck numerically that condition (24) is fulfilled. Table 6 provides
he critical pool sizes N0 under the three cases considered in
ig. 3.
Under case 1, the critical pool size N0 that leads to a larger

ertainty equivalent of the tontine compared to the annuity is
lready equal to 2. Under case 2, the critical pool size equals
. Note that for case 3 no critical pool size N0 exists, due to
heorem 5.2(a).8

. Inclusion of safety loadings

In the previous sections of this article, we have tacitly ex-
luded safety loadings. In this section, we want to set ourselves
n a more realistic framework taking account of safety loadings.
ith the life annuity, there is a guarantee provided for mor-

ality risk. For the tontine, the insurer is left with risks related
o the time of death of the last survivor only. Therefore, it is
easonable to assume that the annuity comes with a higher safety
oading than the tontine. For the following theoretical derivations,
owever, this assumption is not necessary.
The relative attractiveness of tontines compared to annuities

ncreases if safety loadings are included, see, e.g., Milevsky and

8 Figures of the certainty equivalents of the annuity and the tontine
epending on n are available from the authors upon request.
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Fig. 3. Certainty equivalent for different investors with the three cases explained above and the remaining parameters chosen as in Table 1 with ρ = r = 0.02.
P

alisbury (2015) and Chen et al. (2019, 2020). In the following,
e still consider an individual endowed with an initial wealth
. However, now, the expected value premium principle is used
o incorporate safety loadings which fund risk capital charges
nd administration expenses. The total gross premium is given
y (1 + δX )PX

0 , where δX is a proportional loading and PX
0 is

gain equal to the expected present value of future benefits for
oth products X ∈ {A, T }. To optimally determine the annuity
nd tontine payoffs with loadings, we need to adjust the budget
onstraint in (15) and (19) to:

= (1 + δX )PX
0 , with X = A, T . (28)

heorem 6.1 presents the optimal annuity and tontine payoffs
nder loaded premiums.

heorem 6.1. For an annuity contract, we obtain the optimal annu-
ty payoff solving (15) with the budget constraint (28) incorporating
afety loadings. This yields:

∗

s (t) =
c∗(t)
1 + δA

. (29)

he optimal level of expected utility is then given by
s
A := (1 + δA)γ−1UA ,

here c∗(t) and UA are as in Theorem 4.1. Similarly, for a tontine
with loadings, the optimal tontine payoff is obtained from (19) with
budget (28) incorporating safety loadings:

d∗

s (t) =
d∗(t)
1 + δT

, (30)

he optimal level of expected utility is then given by
s
T := (1 + δT )γ−1UT ,

here d∗(t) and UT are as in Theorem 4.2.

roof. Follow the same steps as in Theorems 4.1 and 4.2. See also,
e.g., Milevsky and Salisbury (2015) and Chen et al. (2020). □

Next, we present an alternative version to Theorem 5.2 which
akes account of the safety loadings.

heorem 6.2 (Comparison Under Subjective Beliefs and Safety Load-
ings).

(a) Assume that beliefs do not differ between policyholder and
insurance company, that is µx+t = µ̃x+t = µ̂x+t . If and only if

δA ≤
(1 + δT ) CEA

− 1, (31)

CET
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Table 6
Critical pool size N0 as described in Theorem 5.2. The parameters are as in
Table 1 with risk aversion γ = 3 and subjective discount factor ρ = r .
Case N0

Case 1 2
Case 2 3
Case 3 –

where CEX is the CE with no loading, we find that the CE of a
tontine never (that is for any portfolio size n ∈ N) exceeds the
CE of an annuity.

(b) Consider the case with systematic mortality risk. If

tpx >

(
E

[
e−

∫ t
0 µ̃x+s ds

t p̃x

(
e−

∫ t
0 µ̂x+s ds

)γ−1
]) 1

γ−1

, (32)

and δA ≥ δT , there exists a pool size N s
0 ∈ N such that the

subjective CE of a tontine is (for any portfolio size n ≥ N s
0)

higher than the subjective CE of an annuity.

roof.

(a) For the two products X ∈ {A, T }, we can express the cer-
tainty equivalents with loadings by the certainty equivalents
without loadings, using Theorem 6.1:

CEX,s =

(
(1 − γ )

(∫
∞

0
e−ρt

t p̃x dt
)−1

· U s
X

) 1
1−γ

=
CEX

1 + δX
.

Now it holds that

CEA,s ≥ CET ,s

⇔
CEA

1 + δA
≥

CET

1 + δT

⇔ (1 + δA) ≤
(1 + δT )CEA

CET

⇔ δA ≤
(1 + δT )CEA

CET
− 1 .

(b) In Theorem 5.2(b), we show that there exists a critical pool
size N ∈ N such that CE >CE for n ≥ N . If we consider
0 T ,n A 0
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safety loadings δA ≥ δT , we obviously have that
CET ,n

1 + δT
>

CEA

1 + δA

for n ≥ N0. This suggests that there exists N s
0 ≤ N0 such that

the proposed claim holds.

The upper bound for δA provided in (31) in Theorem 6.2(a) is
nown from Milevsky and Salisbury (2015) as annuity indifference
oading, where the difference from our setting to theirs is that
e consider a proportional loading, a general stochastic mortality
etting and allow for a tontine loading δT to be greater than 0.
ssuming the absence of subjective mortality beliefs, the annuity
oading is equal to this upper bound if and only if the policyholder
s indifferent between an annuity and a tontine, meaning that
oth products deliver the same certainty equivalent. For numer-
cal analyses of this indifference loading, we refer once again
o Milevsky and Salisbury (2015).

Note that Theorem 5.2(c) still holds if safety loadings are
ncluded. With Theorem 6.2, we confirm our previous results if
oadings are included. In Theorem 6.2(b) we obtain a possibly
ven lower critical pool size N s

0 ≤ N0 such that a policyholder
ith subjective beliefs favors a tontine over an annuity. However,
ince Table 6 already shows that without loadings the critical pool
ize can get as small as two, we omit a similar analysis for the
ritical pool size with loadings at this point. Our main focus in
his article is laid on the subjective mortality, and its importance
hould already be clear by now.

. Conclusion

In this article, we study the effects of subjective mortality
eliefs on the optimal design of annuities and tontines and their
relative) attractiveness to risk-averse policyholders. We find that
ubjective mortality beliefs have a substantial impact on the
hoice between a tontine and an annuity. In Section 3.3, we have
hown that the relation between the individual’s perceived life
xpectancy and the life expectancy used by the insurer in the
remium calculation determines whether an annuity is perceived
s too expensive or not, consistent with, for example, Wu et al.
2015). Whether a tontine is too expensive or not is determined
y how the individual perceives her own life expectancy relative
o the one of her peers. The obvious reason for this is that tontine
ayments are shared within the survivors: If somebody expects to
ive longer than the other pool members, the share distributed to
his person’s account is perceived to be (on average) higher than
he share of the other pool members. We confirm this result in
n expected utility framework. Further, we find that the relative
ttractiveness of annuities and tontines is determined by how the
ndividual perceives the difference between the life expectancy
f her peers and the life expectancy assumed by the insurance
ompany. Surprisingly, if we assume that this difference is 4–6
ears (a value that is consistent with most empirical studies in
ection 2 for the age group 60–70 years), the certainty equivalent
f tontines is 20% higher than the certainty equivalent of annu-
ties. This completely reverses findings in a standard expected
tility framework without administration and risk charges, where
n annuity is always preferred over a tontine product (see, e.g.,
aari (1965)). Interestingly, one’s own perceived life expectancy
s no longer important in the relative comparison of the two
roducts. Since annuitization rates remain low and are unlikely
o increase in the current low interest environment, this result
s of high relevance for the life insurance market as it shows
hat, under subjective mortality beliefs, a tontine might be an
ttractive alternative to a conventional annuity. An interesting
eneralization of our subjective belief model is the inclusion of
‘money illusion’’, that is, the empirically observed tendency to
67
think in nominal rather than in real monetary terms (see, for
example, Basak and Yan (2010)). Although the real terms matter,
people tend to think in nominal terms. Additionally, it would
be interesting to analyze the effect of an additional drawdown
option. We leave these questions for future research.

Appendix. Proofs

A.1. Proof of Theorem 4.1

We obtain the following Lagrangian function for our optimiza-
tion problem:

L =

∫
∞

0
e−ρt

t p̃x u
(
c(t)

)
dt + λA

(
v −

∫
∞

0
e−rt

tpx c(t) dt
)

.

Rearranging the first order condition delivers

c∗(t) =
e

(r−ρ)t
γ

λ
1/γ
A

(
t p̃x
tpx

)1/γ

.

Now we can use the budget constraint to determine the La-
grangian multiplier λA. We have

v =

∫
∞

0
e−rt

tpx c∗(t) dt

=

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt
tpx

(
t p̃x
tpx

)1/γ 1

λ
1/γ
A

dt .

As a consequence, we obtain

λA =

(
1
v

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt
tpx

(
t p̃x
tpx

)1/γ

dt

)γ

.

The expected discounted lifetime utility is then given by

UA = Ẽ
[∫

∞

0
e−ρt1{t<ζ } u

(
c∗(t)

)
dt
]

=

∫
∞

0
e−ρt

t p̃x u
(
c∗(t)

)
dt

=
1

1 − γ

∫
∞

0
e−ρt

t p̃x
e

1−γ
γ (r−ρ)t

λ
1−γ
γ

A

(
t p̃x
tpx

) 1−γ
γ

dt

=

(
λ

1
γ

A

)γ−1

1 − γ

∫
∞

0
e−

1
γ ρt+ 1−γ

γ rt
tpx

(
t p̃x
tpx

) 1
γ

dt

=

(
λ

1
γ

A

)γ−1

1 − γ
λ

1
γ

A v =
λA

1 − γ
v . □

.2. Proof of Theorem 4.2

We obtain the following Lagrangian function for our optimiza-
tion problem:

L =

∫
∞

0
e−ρt u

(
d(t)

)
Ẽ

[
1{ζ>t}

(
n

N(t)

)1−γ
]
dt

+ λT

(
v −

∫
∞

0
e−rtE

[(
1 −

(
1 − e−

∫ t
0 µx+sds

)n)]
d(t) dt

)
=

∫
∞

0
e−ρt u

(
d(t)

)
κn,γ

(
t P̂x, t P̃x

)
dt

+ λT

(
v −

∫
∞

e−rt E
[(

1 −

(
1 − e−

∫ t
0 µx+sds

)n)]
d(t) dt

)
.

0
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ith κn,γ
(
t P̂x, t P̃x

)
defined as in (18). The first order condition is

equivalent to

d∗(t) =
e

(r−ρ)t
γ
(
κn,γ

(
t P̂x, t P̃x

))1/γ
λ
1/γ
T E

[(
1 −

(
1 − e−

∫ t
0 µx+sds

)n)]1/γ ,

ow we can use the budget constraint to determine the La-
rangian multiplier λT :

v =

∫
∞

0
e−rt E

[(
1 −

(
1 − e−

∫ t
0 µx+sds

)n)]
d∗(t) dt

=

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt

·

(
κn,γ

(
t P̂x, t P̃x

))1/γ
λ
1/γ
T

(
E
[(

1 −

(
1 − e−

∫ t
0 µx+sds

)n)])1/γ−1 dt .

s a consequence, we obtain

T =

⎛⎜⎝1
v

∫
∞

0
e
(

1
γ −1

)
rt− 1

γ ρt

·

(
κn,γ

(
t P̂x, t P̃x

))1/γ(
E
[(

1 −

(
1 − e−

∫ t
0 µx+sds

)n)])1/γ−1 dt

⎞⎟⎠
γ

.

he expected discounted lifetime utility is then given by

T := Ẽ

[∫
∞

0
e−ρt1{t<ζ }

(
n

N(t)

)1−γ

u
(
d∗(t)

)
dt

]

=

∫
∞

0
e−ρt κn,γ

(
t P̂x, t P̃x

)
u
(
d∗(t)

)
dt

=
1

1 − γ

∫
∞

0
e−ρtκn,γ

(
t P̂x, t P̃x

)
·

e
1−γ
γ (r−ρ)t (

κn,γ
(
t P̂x, t P̃x

)) 1−γ
γ

µ
1−γ
γ

T

(
E
[(

1 −

(
1 − e−

∫ t
0 µx+sds

)n)]) 1−γ
γ

dt

=

(
λ

1
γ

T

)γ−1

1 − γ

∫
∞

0
e−

1
γ ρt+ 1−γ

γ rt

·

(
κn,γ

(
t P̂x, t P̃x

)) 1
γ(

E
[(

1 −

(
1 − e−

∫ t
0 µx+sds

)n)]) 1−γ
γ

dt

=

(
λ

1
γ

T

)γ−1

1 − γ
λ

1
γ

T v =
λT

1 − γ
v . □

A.3. Proof of Proposition 5.1

Recall that the policyholder perceives the number of other
members in the pool as N(t) − 1 | {t P̂x} ∼ Bin

(
n − 1, t P̂x

)
, where

P̂x = e−
∫ t
0 µ̂x+s ds. Note that the optimal level of expected utility

f the tontine UT given in (21) depends on N(t) only in terms of

n,γ
(
t P̂x, t P̃x

)
= Ẽ

[
t P̃x Ẽ

[(
n

N(t)

)1−γ ⏐⏐⏐⏐ ζ > t, Ẽt

]]
.

efine p := t P̂x. To figure out how UT changes with the condi-
tional survival curve p, it thus suffices to determine the behavior
of κ

(
P̂ , P̃

)
in terms of p:
n,γ t x t x

68
• It is decreasing in p for γ > 1. This can be seen as follows:
It is shown in Milevsky and Salisbury (2015) that for any
random variable N(p) with N(p)−1 ∼ Bin(n−1, p), it holds
that
d
dp

Ẽ
[
f
(
N(p)

)]
=

1
p
Ẽ
[(
N(p) − 1

)(
f
(
N(p)

)
− f

(
N(p) − 1

))]
.

Therefore, we obtain

d
dp

Ẽ

[(
n

Nϵ(t)

)1−γ ⏐⏐⏐⏐ ζ > t, Ẽt

]
= n1−γ d

dp
Ẽ
[
N(t)γ−1

⏐⏐ ζ > t, Ẽt
]

=
n1−γ

p
Ẽ
[ (

N(t) − 1
)  

≥0

(
N(t)γ−1

−
(
N(t) − 1

)γ−1)  
≥0⏐⏐ ζ > t, Ẽt

]
≥ 0 .

This implies that κn,γ
(
t P̂x, t P̃x

)
is increasing in p. Since γ >

1, the utility decreases as p increases.
• Now let us consider the case γ ∈ (0, 1): We obtain

d
dp

Ẽ

[(
n

N(t)

)1−γ ⏐⏐⏐⏐ ζ > t, Ẽt

]

=
n1−γ

p
Ẽ
[(
N(t) − 1

)(
N(t)γ−1

−
(
N(t) − 1

)γ−1) ⏐⏐ ζ > t, Ẽt
]

=
n1−γ

p
Ẽ
[(
N(t) − 1

)
N(t)γ−1

−
(
N(t) − 1

)γ ⏐⏐ ζ > t, Ẽt
]

=
n1−γ

p
Ẽ
[(
(N(t) − 1

)
N(t)γ−1

−
(
N(t) − 1

)γ )1{N(t)=1}⏐⏐ ζ > t, Ẽt
]

+
n1−γ

p
Ẽ
[ (

N(t) − 1
)(
N(t)γ−1

−
(
N(t) − 1

)γ−1)
· 1{N(t)≥2}

⏐⏐ ζ > t, Ẽt
]

=
n1−γ

p
Ẽ
[ (

N(t) − 1
)  

>0

(
N(t)γ−1

−
(
N(t) − 1

)γ−1)  
≤0

· 1{N(t)≥2}
⏐⏐ ζ > t, Ẽt

]
≤ 0 .

This implies that κn,γ
(
t P̂x, t P̃x

)
is increasing in p. Since 1 −

γ > 0, the utility decreases as p increases.

he certainty equivalent defined in (23) increases in the expected
tility, so it decreases in p = t P̂x = e−

∫ t
0 µ̂x+s ds as well. □
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