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S U M M A R Y 

Implementations of Markov chain Monte Carlo (MCMC) methods need to confront two fun- 
damental challenges: accurate representation of prior information and ef ficient e v aluation of 
likelihood functions. The definition and sampling of the prior distribution can often be facili- 
tated by standard dimensionality-reduction techniques such as Principal Component Analysis 
(PCA). Additionally, PCA-based decompositions can enable the implementation of accurate 
surrogate models, for instance, based on polynomial chaos expansion (PCE). Ho wever , intri- 
cate geological priors with sharp contrasts may demand advanced dimensionality-reduction 

techniques, such as deep generative models (DGMs). Although suitable for prior sampling, 
these DGMs pose challenges for surrogate modelling. In this contribution, we present a MCMC 

strategy that combines the high reconstruction performance of a DGM in the form of a vari- 
ational autoencoder with the accuracy of PCA–PCE surrogate modelling. Additionally, we 
introduce a physics-informed PCA decomposition to improve accuracy and reduce the com- 
putational burden associated with surrogate modelling. Our methodology is exemplified in the 
context of Bayesian ground-penetrating radar traveltime tomography using channelized sub- 
surface structures, providing accurate reconstructions and significant speed-ups, particularly 

when the computation of the full-physics forward model is costly. 

Key words: Ground penetrating radar; Machine Learning; Numerical modelling; Probability 

distributions; Tomography. 
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 I N T RO D U C T I O N  

ayesian inversion methods can account for data and modelling
ncertainties as well as prior knowledge, thus, representing an at-
ractive approach for tomography and its uncertainty quantification.
e vertheless, the dif ficulties in specifying appropriate prior distri-
utions and the high computational burden associated with repeated
orward model evaluations often hinder proper implementations of
ayesian tomography (Chipman et al. 2001 ). In geophysical set-

ings, prior distributions have traditionally been specified by as-
uming the subsurface to be represented by a Gaussian random
eld. More advanced options are made possible by relying on the

nformation content of training images (TI), that is, large gridded
-D or 3-D unconditional representations of the expected target
patial field that can be either continuous or categorical (Mariethoz
 Caers 2014 ; Laloy et al. 2017 , 2018 ). Bayesian inversion needs

ot only a parametrization of the prior that accurately represents
he prior information, but also one that is easy to manipulate and
ne with a an underlying distribution for which small perturbations
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ead to comparati vel y small changes in the data response. In many
ractical implementations, it is advantageous to rely on another
arametrization than the one used for physics-based modelling and
isualization, that is, typically a pixel-based parametrization (Asher
t al. 2015 ; Alizadeh et al. 2020 ). Physical media are typically as-
ociated with points in R 

N , where N is the number of elements in
he corresponding pixel-based representation. While allowing easy
mplementation of forward modelling schemes [e.g. Finite Differ-
nce (FD) based on partial differential equations], pixel-based N -
imensional parametrizations are often not suitable to ef fecti vel y
arametrize the prior distribution, as N can be very large. When
rior knowledge suggests constrained spatial patterns, such as co-
ariance or connected spatial structures, the prior -compatib le mod-
ls populate manifolds embedded in R 

N . If this manifold can be
ocally assimilated to a subset of R 

M , with M � N , the actual
rior distribution reduces to a function of M variables only, which
f fecti vel y implies an M -dimensional forward/inverse problems. 

Various approaches can be used to achieve manifold identifica-
ion through dimensionality reduction. Among these techniques,
oyal Astronomical Society. This is an Open Access 
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principal component analysis (PCA) and related methods are the 
most common linear dimensionality reduction methods (Boutsidis 
et al. 2008 ; Jolliffe & Cadima 2016 ). Based on a set of prior model 
realizations and the eigen values/eigen vectors of the corresponding 
co variance matrix, PCA pro vides optimal M -dimensional represen- 
tations in terms of uncorrelated variables that retain as much of the 
sample variance as possible. PCA has found widespread applica- 
tion in geophysics, using both deterministic and stochastic inver- 
sion algorithms, with recent advancements offering the potential 
to reconstruct even discontinuous structures (Reynolds et al. 1996 ; 
Giannakis et al. 2021 ; Thibaut et al. 2021 ; Meles et al. 2022 ). In 
the context of complex geological media with discrete interfaces 
(Strebelle 2002 ; Zahner et al. 2016 ; Laloy et al. 2018 ) investigated 
in this study, PCA-based methods are inef fecti ve in encoding the 
prior knowledge. Promising alternatives are offered by deep gen- 
erative models (DGM) that learn the underlying input distribution 
and generate synthetic samples that closely resemble the statistics 
in a provided data set based on TIs. For instance, Variational Au- 
toencoders (VAEs) encode data patterns into a compact latent space 
for both data reconstruction and generation; Generative Adversarial 
Networks (GANs) use adversarial training to create synthetic out- 
put that closely resembles real reference data; Diffusion Models are 
parametrized Markov chains, trained using variational inference, to 
generate samples that converge to match the underlying data distri- 
bution (Kingma & Welling 2013 ; Jetchev et al. 2016 ; Goodfellow 

et al. 2020 ; Ho et al. 2020 ). In the context of Bayesian inversion, 
DGMs possess a crucial property: they generate realizations that ex- 
hibit patterns consistent with the TI when sampling an uncorrelated 
standard normal or uniform distributed latent space (Laloy et al. 
2017 ). The incorporation of such a low-dimensional parametriza- 
tion representing the prior distribution simplifies the sampling pro- 
cess, thus making DGMs well-suited for MCMC schemes. 

Using an ef fecti ve parametrization for the prior (e.g. via PCA or 
DGMs) does not alleviate the computational cost associated with 
repeated forward modelling, which can often limit practical appli- 
cation of MCMC schemes. Ho wever , it opens up the possibility 
of using surrogate modelling. Various classes of surrogate models, 
such as those based on Gaussian process models or Kriging (Sacks 
et al. 1989 ; Rasmussen 2003 ) and polynomial chaos expansions 
(PCEs; Xiu & Karniadakis 2002 ; Blatman & Sudret 2011 ), can be 
used to ef fecti vel y solve low-dimensional Bayesian inverse prob- 
lems (Marzouk et al. 2007 ; Marzouk & Xiu 2009 ; Higdon et al. 
2015 ; Nagel 2019 ; Wagner et al. 2020 , 2021a ). 

Recently, Meles et al. ( 2022 ) presented a Bayesian framework 
that uses a shared PCA-based parametrization for characterizing 
prior information and modelling travel times through PCE. In this 
paper , we sho w that the direct application of that methodology pro- 
duces suboptimal results when the input is parametrized in terms of 
latent variables associated with a DGM. Indeed, a prerequisite in this 
framework is that the parametrization chosen to describe and ex- 
plore the prior allows for accurate surrogate modelling of the physi- 
cal data used in the in version. Ho wever , the relationship between the 
parametrization provided by DGMs and the corresponding physical 
output is typically highly non-linear, and training a surrogate cap- 
turing such complex relationship can be extremely challenging or 
infeasible. 

We present a strategy that allows the use of a DGM parametriza- 
tion to define the prior distribution and explore the posterior distri- 
bution while still enabling accurate surrogate modelling. We achieve 
this goal by using surrogate modelling with either global or local 
PCA decompositions of the input generated by the underlying DGM 

during the MCMC process. Through the decoupling of the MCMC 
parametrizations and the parametrizations, we preserve the advan- 
tageous prior representation capabilities of DGMs while simulta- 
neousl y achie ving precise PCA-based surro gate modelling, thereb y 
significantly speeding up forward calculations. 

2  M E T H O D O L O G Y  

2.1 Bayesian inversion 

Forward models are mathematical tools that quantitatively evaluate 
the outcome of physical experiments. We refer to the relationship 
between input parameters and output values as the ’forward prob- 
lem’: 

F( u ) = y + ε. (1) 

Here, F , u , y and ε stand for the physical law or forward operator, 
the input parameters, typically representing local media properties, 
the n -dimensional output of a physical experiment and a noise term, 
respecti vel y. Gi ven the manuscript’s significant emphasis on mod- 
elling, we deviate from the standard formalism, and position the 
forward operator on the left-hand side and related subsequent equa- 
tions, while placing the observed data and the noise term on the 
right-hand side. The goal of the ‘inverse problem’ is to infer prop- 
erties of u conditioned by the data y while taking into account any 
available prior information about u . For a constant model dimen- 
sion, a general solution to this problem can be expressed in terms 
of the unnormalized posterior distribution: 

P ( u | y ) ∝ P ( y | u ) P ( u ) = L ( u ) P ( u ) . (2) 

Here, P ( u | y ) is the posterior distribution of the input parameter 
u given the data y , P ( y | u ) (also indicated as L ( u ) and known as 
’the likelihood’) is the probability of observing the data y given the 
input parameter u , while P ( u ) is the prior distribution in the input 
parameter domain. In case of Gaussian noise, the likelihood takes 
the following form: 

L ( u ) = 

(
1 

2 π

)n/ 2 

| C d | −1 / 2 exp 

[
−1 

2 
( F ( u ) − y ) T C d 

−1 ( F ( u ) − y ) 

]

where the covariance matrix C d accounts for data uncertainty. Note 
that throughout this paper, we adhere to the common formalism 

used in Geophysics, utilizing the same symbol to denote both indi- 
vidual instances of a random variable and the random variable itself 
(Tarantola 2005 ; Aster et al. 2018 ). To draw samples from the un- 
normalized posterior in eq. ( 2 ), common practice is to use a Markov 
chain Monte Carlo (MCMC) methods to draw samples propor- 
tionally from P ( u | y ) (Hastings 1970 ). Ho wever , computing L ( u ) 
requires the solution of a forward prob lem, w hich can be demand- 
ing in Bayesian inversions as this e v aluation needs to be repeated 
many times. In the following sections we discuss how this problem 

can be approached by using a low-dimensional latent representation 
and surrogate modelling to evaluate P ( u ) and approximate L ( u ) , 
respecti vel y. 

2.2 Bayesian inversion in latent spaces 

Parametrizations are well suited for surrogate modelling when they 
encode the prior distribution and ef fecti vel y simplify the input–
output relationship within the problem under investigation. Meles 
et al. ( 2022 ) used variables defined in terms of Principal Com- 
ponents to (i) represent the prior distribution related to a random 
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aussian field on a low-dimensional manifold and (ii) learn an ac-
urate surrogate to compute the forw ard problem. Howe ver, it is not
enerally granted that a parametrization can achieve both (i) and
ii). For representing the prior distribution, we can utilize manifold
dentification using DGMs. This involves utilizing a DGM to char-
cterize a latent space using a set of coordinates (here indicated
s z ) with a statistical distribution defined prior to the training.
he DGM allows mapping between this latent space to the physi-
al space through a decoder/generator, denoted here as G DGM 

. For a
iven random realization z , the decoder operation G DGM 

( z ) produces
n output u in the physical space that adheres to the characteristics
f the prior distribution. The use of this new set of coordinates z
asts the inverse problem on the latent manifold as: 

P ( z | y ) ∝ P ( y | z ) P ( z ) . (4) 

hile formally identical to eq. ( 2 ), eq. ( 4 ) involves significant ad-
 antages. Not onl y is z typicall y low-dimensional (consisting typi-
ally of a few tens of variables instead of many thousands of vari-
bles) but we can also design the corresponding statistical prior
istribution P ( z ) as desired. Here, we impose during training that

P ( z ) is a multi v ariate standard Gaussian distribution. 

.3 Decoupling of inversion and forward modelling 
omains in MCMC inversions 

e now rewrite the forward problem in eq. ( 1 ) using the new coor-
inates: 

 DGM 

( z ) = y + ε, (5) 

here M DGM 

= F ◦ G DGM 

, ◦ stands for function composition, and
e assume no error induced by the DGM dimensionality reduc-

ion, which in turns implies that the corresponding likelihood is the
ame as that in eq. ( 3 ). The complexity and non-linearity of G DGM 

mply that the forward operator M DGM 

exhibit considerable irreg-
larity, making it difficult to learn a surrogate model due to typical
ssues of neural networks, such as those associated with limited
ata availability and overfitting (Bejani & Ghatee 2021 ). Conse-
uently, we investigate alternative approaches that avoids using the
atent parametrization for surrogate modelling while retaining it
or the prior representation. Building upon Meles et al. ( 2022 ),
e explore surrogate modelling based on PCA-inputs spanning the
lobal spatial extent of the input. Without any loss of generality,
e consider a complete set of Global Principal Components (in the

ollowing, GPCs) for realizations of the DGM (implemented via
 GPC ( x full 

GPC ) = G DGM 

( z ) = u ) and rewrite eq. ( 1 ) as: 

 GPC 

(
x full 

GPC 

) = y + ε, (6) 

here G GPC , and M GPC are the physical distribution and the model
ssociated with the GPCs and therefore M GPC = F ◦ G GPC . We
ill show in that the linear relationship G GPC ( x full 

GPC ) = u helps in
mplementing a surrogate of M GPC , provided that the input and the
odel can be faithfully represented as operating on an ef fecti ve
 -dimensional truncated subset x GPC of the new coordinates x full 

GPC ,
hat is: 

G GPC ( x GPC ) ≈ u ⇒ M GPC ( x GPC ) = y + ̂  ε, (7) 

here ̂  ε is a term including both observational noise and modelling
rrors related to the projection on the subset represented by x GPC .
ue to the error introduced by the truncation, the likelihood associ-

ted with the GPC parametrization deviates from the one of eq. ( 3 )
o wever , when a substantial number of GPCs are utilized, the extent

f such difference tends to be minimal. i  
The formulation given above relies on the weak hypothesis that
lobal proximity in the input domain leads to proximity in the
utput domain u (i.e. the observed quantity under investigation).
ritically, when the output functionally depends mainly on a subset
 of the entire domain of u , proximity in the output domain can be
ttained by approximating the input within this Local region. Based
n this strong physically-informed assumption, we can achieve this
oal by means of a Local PCA decomposition restricted to L : 

G LPC ( x LPC ) �L ≈ u �L ⇒ M LPC ( x LPC ) = y + ̂  ε, (8) 

here LPC refers to Local Principal Components (in the following
PCs) and �L restricts the validity of these relationships to the
ubset L . Ho wever , because the area spanned by LPCs is smaller
han that of GPCs, we expect to need fewer LPC s than GPC s to
chieve a satisfactory approximation in the output domain. Note
hat this change of coordinates is not invertible even if a complete
et of LPCs is used. Note that also for the LPC parametrization, the
orresponding likelihood differs from that in eq. ( 3 ), but that using
 proper number of components can render this misfit negligible. 

Generally speaking, a surrogate model is a function that seeks to
mulate the behaviour of an e xpensiv e forward model at negligible
omputational cost per run. Clearly, the function a forward solver
as to model depends on the set of coordinates used to represent the
nput. For simplicity, we discuss here a surrogate for M GPC ( x GPC ) ,
amely ˜ M GPC satisfying: 

˜ 
 GPC ( x GPC ) ≈ M GPC ( x GPC ) . (9) 

nce av ailable, surro gate models can be used for likelihood e v al-
ation in MCMC inversions, with a modified covariance operator

C D = C d + C Tapp comprising the covariance matrices C d and C Tapp 

ccounting for data uncertainty and modelling error, respecti vel y. In
uch cases, the likelihood not only shows a mild dependence on the
arametrization but also on the surrogate model. This relationship
s expressed as follows: 

L ( ˜ M ( x GPC )) = 

(
1 

2 π

)n/ 2 

| C D | −1 / 2 exp 

[
−1 

2 
( ˜ M GPC ( x GPC ) − y ) T 

C D 
−1 ( ˜ M GPC ( x GPC ) − y ) 

]
. (10) 

here | C D | is the determinant of the covariance matrix C D (Hansen
t al. 2014 ). Similar formulas for the likelihood can be derived
or any other parametrization of the input space, such as those
ssociated with DGMs of LPCs. The substantial differences in like-
ihoods associated with the DGM, GPC and LPC parametrizations
an potentiall y gi ve rise to significantl y dif ferent estimations of the
osterior distribution. 

Surrogate models all adhere to a fundamental principle: the more
omplex the input–output relationship, the higher the computational
emands needed to build the surrogate model (e.g. in terms of train-
ng set). Fur ther more, the efficiency of constr ucting a surrogate is
ignificantl y af fected b y the number of input parameters, and it can
ecome unfeasib le w hen the input dimensionality e xceeds sev eral
ens of parameters, thus surrogate modelling often relies on some
ind of dimensionality reduction. The dimensionality reduction step
oes not necessarily need to be invertible since what holds signifi-
ance is the supervised performance, specifically the minimization
f modelling error (Lataniotis et al. 2020 ). Surrogate models ex-
ibit their peak potential when dealing with low-dimensional input
paces, provided that such simplicity does not entail a complex
nput–output relationship. 

Based on these general considerations, we can qualitati vel y antic-
pate different surrogate performances when operating on different
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latent variables (i.e. ˜ M DGM 

( z ) ), GPCs (i.e. ˜ M GPC ( x GPC ) ) and LPCs 
(i.e. ˜ M LPC ( x LPC ) ). We can expect that using the latent variables 
of a DGM involves a lower dimensionality, albeit at the cost of a 
complex input–output relationship. On the other hand, using GPCs 
likely results in a considerably simpler input–output relationship 
but necessitates a larger number of variables, as the entire input 
domain needs to be approximated. In cases where the underly- 
ing forward model permits, the LPCs projection is likely to offer 
similarl y straightforw ard input–output characteristics as the GPCs 
approach but with fewer parameters, thus facilitating the training of 
a surrogate. 

To ef fecti vel y combine MCMC methods with surro gate mod- 
elling, it is essential to ensure a high level of accuracy in the 
output domain. To achieve this goal, we propose decoupling the 
parametrizations used for inversion and surrogate modelling. The 
latent representation provided by the DGM is used to evaluate P ( z ) 
and explore the posterior. Once a prior has been defined and a sur- 
rogate modelling strategy devised, a Metropolis–Hastings MCMC 

algorithm can be used to sample the posterior distribution P ( z | y ) 
(Hastings 1970 ). A sample of the posterior in the physical space, 
P ( G DGM 

( z ) | y ) , is then also available via mere application of the 
G DGM 

to draws from P ( z | y ) . For each step in the MCMC process, 
we consider three strategies with surrogates operating on latent vari- 
ables, on GPCs and or LPCs associated with the field G DGM 

( z ) . We 
depict these three strategies for a travel time tomography problem 

in Fig. 1 . 

3  A P P L I C AT I O N  T O  G P R  C RO S S H O L E  

T R AV E L  T I M E  T O M O G R A P H Y  

In the previous section, we briefly covered the basic principles of 
Bayesian methods and emphasized the significance of dimension- 
ality reduction and surrogate modelling for their implementation. 
Now, we integrate these concepts to tackle GPR crosshole travel- 
time tomography with MCMC. GPR wave-propagation is governed 
by the distribution of dielectric permittivity ( ε) and electric conduc- 
tivity ( σ ) in the subsurface. The wave propagation velocity mainly 
depends on permittivity, which is in turn related to porosity and 
water content through petrophysical relationships (Gloaguen et al. 
2005 ). GPR data can be collected in a variety of configurations, 
with crosshole designs being particularly well suited for groundwa- 
ter investigations (LaBrecque et al. 2002 ; Annan 2005 ). 

3.1 Experimental setup 

We target lossless media represented by binary images with two 
facies of homogeneous GPR velocity (6 × 10 7 and 8 × 10 7 m s −1 ) 
resembling river channels (Strebelle 2002 ; Zahner et al. 2016 ; Laloy 
et al. 2018 ). For the representation of the prior and posterior explo- 
ration, we consider coordinates induced by a VAE (in the following 
the subscript VAE refers to this specific DGM parametrization) as 
recent research suggests that their lower degree of non-linearity 
in the corresponding networks compared with GANs makes them 

more amenable for modelling and inversion (Lopez-Alvis et al. 
2021 ; Levy et al. 2023 ). The details of the VAE utilized in this 
study can be found in Laloy et al. ( 2017 ) and Lopez-Alvis et al. 
( 2021 ) with the dimension of the latent space being 20. As for the 
output, we consider arri v al-times associated with the crosshole con- 
figuration displayed in Figs 2 (a)–(e) with 12 e venl y spaced sources 
and receivers located in two vertically oriented boreholes. The dis- 
tance between the boreholes is 4.6 m, while the spacing between 
sources/receivers is 0.9 m, leading to 144 traveltimes. We use both 
an eikonal and a 2-D finite difference time domain (FDTD) solver 
to simulate noise-free propagation of GPR waves (Irving & Knight 
2006 ; Hansen et al. 2013 ). For the FDTD code each source is 
characterized by a 100 MHz Blackman–Harris function, while per- 
fectly matched layers surrounding the propagation domain are used 
to prevent spurious reflections from contaminating the data, while 
appropriate space-time grids are used to avoid instability and dis- 
persion artefacts. T ra veltimes are picked automatically based on a 
threshold associated with the relative maximum amplitude of each 
source–receiver pair. 

3.2 PCE modelling within MCMC 

For surrogate-based modelling, we rely on PCE modelling due to 
its efficienc y, fle xibility and ease of deployment (Xiu & Karni- 
adakis 2002 ; Blatman & Sudret 2011 ; M étivier et al. 2020 ; L üthen 
et al. 2021 ). We here summarize the most rele v ant aspects of PCE 

modelling with a surrogate M GPC ( x GPC ) , but similar considerations 
apply to M DGM 

, F or M LPC , albeit with relevant caveats or advan- 
tages that will be discussed below. PCE approximate functions in 
terms of linear combinations of or thonor mal multi v ariate pol yno- 
mials � α: 

˜ M GPC ( x GPC ) = 

∑ 

α∈ A 
a α� α( x GPC ) , (11) 

where M is the dimension of x GPC and A is a subset of N 

M imple- 
menting a truncation scheme to be set based on accuracy require- 
ments and available computational resources (Xiu & Karniadakis 
2002 ). The training of the coefficients a α is computationally un- 
feasib le w hen the input domain is high-dimensional (the case for a 
surrogate ˜ F ( u ) of F( u ) ). Moreover, when the imposed truncation 
pattern cannot fully account for the degree of non-linearity of the 
underlying model [the case for a surrogate ˜ M VAE ( z ) of M VAE ( z ) ], 
the still unbiased PCE predictions are ine vitabl y af fected e ven if the 
input domain is low-dimensional. On the other hand, using tailored 
PCA decomposition as required by ˜ M LPC ( x LPC ) of M LPC ( x LPC ) 
could decrease the computational burden and increase accuracy. In 
an y case, the surro gate forw ard modelling predictor can be e v alu- 
ated at a negligible cost by direct computation of eq. ( 11 ) and its 
accuracy estimated using a validation set or cross-validation tech- 
niques (Blatman & Sudret 2011 ; Marelli et al. 2021 ). 

We here test the three strategies discussed in Section 2.3 us- 
ing PCE for surrogate modelling in conjunction with the VAE 

parametrization for prior-sampling. For each strategy we build a 
corresponding PCE to model traveltime arri v als using the Matlab 
Package UQlab (Marelli & Sudret 2014 ; Marelli et al. 2021 ). To 
offer a fair comparison, we use the same training and validation 
data sets for all proposed schemes. 

3.2.1 VAE-PCE strategy 

In the first strategy, referred to as VAE-PCE, the input for the PCE 

modelling are 20-D z vectors mapping the latent space into the 
physical one, that is: G VAE ( z ) = u (Lopez-Alvis et al. 2021 ). This 
choice amounts to applying the strategy by Meles et al. ( 2022 ), as 
the same parametrization is used for both prior characterization and 
surrogate modelling. 
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Figure 1. Graphical schematic of the three strategies discussed in this manuscript. The prior input distribution is al wa ys parametrized by the latent space 
of the DGM, with P ( z ) = N (0 , I dim ( z ) ) , while the input to the reference/surrogate model depends on the chosen strategy. When the DGM parametrization 
is chosen, draws of the latent variables are considered (left column). With the PCA strategies, Globally or Locally defined G/LPCs are used for the Global 
and Local approach, respecti vel y (central and right column). The Global approach uses a set x GPC of PCs defined across the entire domain, illustrated by the 
corresponding velocity field that extends throughout the entire medium. Conversely, the Local approach utilizes a set x LPC of PCs that cover only specific 
portions of the domain chosen based on physical considerations. This is exemplified by the corresponding velocity field, which is confined to a limited portion 
of the medium. In this illustration, as we consider travel time modelling, the Local domain is defined in terms of fat-ray sensitivity kernels (for more details, 
please refer to Section 3.2 ). 
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.2.2 Global-PCA-PCE strategy 

he second strategy, in the following Global-PCA-PCE, uses in-
uts of the PCE modelling defined in terms of projections on
rior-informed PCA components spanning the entire domain. More
pecifically, in the Global-PCA-PCE approach we randomly cre-
te a total of 1000 slowness realizations G VAE ( z ) from the prior
nd compute the corresponding principal components (see Fig. 3 ).
he input for PCE in the Global-PCA-PCE approach are then the
rojections of G VAE ( z ) on a to-be-chosen number of such GPCs.
ollowing Meles et al. ( 2022 ), all PCA processes are defined in
erms of slowness. 

The ef fecti ve dimensionality of the input with respect to M GPC ,
hat is, the number of GPCs representing the input, is not a-priori
efined. Following a similar approach to Meles et al. ( 2022 ), the
f fecti ve dimensionality is here assessed by comparison with the
eference solution in the output domain with respect to the noise
evel. In Figs 4 (a) and (e), two velocity distributions are shown next
o the approximate representations (Figs 4 b–d and f–h) obtained by
rojecting them on 30, 60 and 90 GPCs, respecti vel y. As expected,
he reconstruction quality improves as more principal components

re included. 
To quantify the faithfulness of the various reduced parametriza-
ions in terms of the output, we consider 100 realizations of the
enerative model, and compute the resulting histograms of the trav-
ltime residuals using the reference forward solver. The root-mean-
quare error (in the following, rmse) of the misfit between the data
ssociated with the original distribution and its projections on 30, 60
nd 90 principal components, shown in Figs 4 (i)–(k), are 1.60, 0.85
nd 0.55 ns, respecti vel y, that are to be compared to the expected
evel of GPR data noise of 1 ns for 100 MHz data (Arcone et al.
998 ). The number of principal components (i.e. 90 PCs) required
o approximate the forward solver below the expected noise level
s larger than for the example considered by Meles et al. ( 2022 )
i.e. 50 PCs). Building a PCE on such a large basis is challenging
n terms of computational requirements and efficiency, and could
ead to poor accuracy if a small training set is used. To address
his, one approach is to either reduce the number of components,
hich introduces larger modelling errors, or explore alternative
arametrizations that offer improved computational efficiency and
ccuracy. In this study, the Global-PCA-PCE approach utilizes 60
PCs, while an alternative strategy is considered below that is based
n physical considerations. 
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Figure 2. (a)–(e) Representativ e v elocity fields generated by the decoder of the used VAE; crosses and circles stand for sources and recei vers, respecti vel y. 
(f)–(h) Corresponding exemplary traveltime gathers. 

Figure 3. (a)–(j) The first five GPCs in the input domain corresponding to entire slowness fields. Crosses and circles stand for sources and recei vers, respecti vel y. 
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3.2.3 Local-PCA-PCE strategy 

As mentioned in Section 2.3 , an improved parametrization for surro- 
gate modelling can sometimes be found by considering the forward 
problem’s specific characteristics. The GPCs in the Global-PCA- 
PCE approach refer to the input field in its entirety. Ho wever , the 
actual first-arri v al time for a gi ven source–recei ver combination de- 
pends only on a subdomain of the entire slowness distribution. This 
leads us to suggest a Local approach, in the following referred to 
as Local-PCA-PCE. Instead of using principal components describ- 
ing the entire slowness field, we aim to use output-specific LPCs 
that characterize only the sub-domains impacting the physics of 
the problem (Jensen et al. 2000 ; Husen & Kissling 2001 ). We then 
expect that fewer LPCs are needed than GPCs to achieve the de- 
sired input–output accuracy. In practice, our construction of LPCs 
involves utilizing fat-ray sensitivity kernels, which capture the sensi- 
tivity of arrival-times to small perturbations in the subsurface model, 
thus providing valuable insights into the regions [corresponding to 
the L subset in eq. ( 8 )] that have the most significant impact on the 
observed data (Husen & Kissling 2001 ). For a given source–receiver 
pair, the corresponding sensitivity kernel depends on the slowness 
field itself and its patterns can v ary significantl y (see Figs 5 a–j). 
The sought Local decomposition needs to properly represent any 
possible slowness field within the prior, thus it reasonable to define 
it based on a representative sample of input realizations. To reduce 
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Figure 4. (a) and (e) Random velocity distributions and the corresponding representations using the first (b) and (f) 30, (c) and (g) 60, and (d) and (h) 90 GPCs 
defined with the Global approach; (i–k) corresponding histograms of traveltime residuals based on simulations on the true field and par tial reconstr uctions for 
100 velocity distributions. Crosses and circles stand for sources and receivers, respecti vel y. 
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he overall PCE computational cost it is also convenient to limit
he number of used output-driven decompositions. To achieve these
oals, we assume that the prior model is stationary with respect
o translation. Instead of focusing on each specific source–receiver
air (a total of 144), we can then consider each source–receiver
ngle (a total of 23). We then use a total of 1000 slowness real-
zations G VAE ( z ) from the prior and build the corresponding fat-ray
ensitivity kernels using the reference eikonal solver for each of the
3 possible angles (Hansen et al. 2013 ). For any given angle, we
onsider a cumulative kernel consisting of the sum of the absolute
alues of each ker nel (g reen areas in Figs 5 k–t). Such a cumulative
ernel cover an area larger than each individual kernel but is still
onsiderably smaller than the entire slowness field. For any possible
dditional input model, the corresponding sensitivity kernel is then
ery likely to be geometrically included in the area covered by the
umulative kernel (see Figs 5 k–t). Based on this insight, we define
rincipal components spanning only the area covered by such cu-
ulative kernels or relevant parts thereof (e.g. a threshold can be

aken into consideration to reduce the size of these subdomains).
or the practical definition of the components, the cumulative ker-
els are either set to 0 or 1 depending on whether the correspond-
ng value is below or larger than the threshold, respecti vel y. We
hen multiply point by point the slowness distributions with the cu-

ulative kernels, and consider the principal components of such
roducts. 

The first five LPCs are shown for given source–receiver pairs
Figs 6 a–e and f–j). Note that the pattern variability is confined
ithin the cumulative kernels, while in the complementary areas the
alues are 0. Note also that compared to the five principal compo-
ents in Fig. 3 , higher resolution details can be identified. Given the
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Figure 5. (a)–(j) For the velocity fields in Fig. 2 , the sensitivity-based kernels for two arbitrarily selected source–receiver pairs are shown superimposed on the 
corresponding velocity distributions. (k)–(t) The same sensitivity kernels as in (a)–(j), but superimposed on the cumulative kernels (green shaded areas) used 
to define the support of the sensitivity-based LPCs used in the Local-PCA-PCE approach. 
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same number of principal components, we can then expect the input 
to be better presented in the physicall y rele v ant subdomain when 
the Local-PCA-PCE rather then the Global-PCA-PCE approach is 
followed. For all source–receiver pairs corresponding to the same 
altitude angle, the same kernels and principal components are used, 
provided they are shifted to cover the appropriate geometry. 

In Figs 7 (a)–(g) the two slowness distributions from Fig. 4 are 
shown next to the representations obtained by projecting them on 

art/ggae026_f5.eps


Bayesian tomography via PCE and DGMs 39 

Figure 6. The first five LPCs in the input domain corresponding to the cumulative kernels associated with the source–receiver pairs considered in Figs 5 (k)–(t). 

Figure 7. (a) and (g) Velocity fields with (b)–(f) and (h)–(l) the corresponding representations used for surrogate modelling based on the first 30 LPCs used in 
the Local-PCA-PCE approach. Different kernels are used for each source–receiver angle. 
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30 LPCs. In the areas complementary to the sensitivity kernels, the 
speed is set to 0.07 m ns −1 . Input reconstructions are remarkably 
improved with respect to when using the same number of GPCs 
[compare Figs 7 (a)–(g) and (h)–(l) to Figs 4 (b) and (f)] of the entire 
slowness field. More importantly, the modelling errors provided by 
using just 30 sensitivity-based LPCs is lower than what was previ- 
ousl y provided b y 90 standard components (i.e. rms ≈0.45 ns). By 
incorporating these tailored LPCs, we can attain enhanced output 
fidelity when utilizing truncated representations of the input. This 
enhanced fidelity proves particularl y adv antageous for the imple- 
mentation of PCE, allowing for more precise and efficient mod- 
elling. Consequently, this approach holds substantial promise in 
achieving superior accuracy and computational efficiency in PCE- 
based analyses. 

In summary, we have introduced three different parametrizations 
to be used as input for PCE. We consider coordinates inherited by 
the VAE, and principal components derived by considering either 
entire slowness fields or sensitivity-based subdomains. We refer to 
these three parametrizations in what follows as VAE-PCE, Global- 
PCA-PCE and Local-PCA-PCE, respecti vel y. 

3.3 PCE performance 

We here analyse the PCE performance of the different input 
parametrizations for surrogate modelling introduced in Section 3.2 . 
In agreement with Meles et al. ( 2022 ), we consider for each surro- 
gate a total of 900 training sets consisting of noise-free travel times 
calculated by the eikonal solver and a polynomial degree p of five. 

3.3.1 VAE-PCE performance 

When the VAE parametrization is used as input, the PCE perfor- 
mance is rather poor, with a rmse of 2.01 ns, which is well beyond 
the expected noise level in the data and is consequently considered 
unsatisfactory (Fig. 8 a). The poor performance is due to the highly 
non-linear map M VAE . In such a scenario, PCE does not provide ac- 
curate results even if the physical input of the validation set is exactly 
defined by G VAE ( z ) = u . In this scheme, note that the e v aluation of 
G VAE ( z ) is not required to compute the corresponding PCE. Given 
the low accuracy of the PCE performance for this parametrization, 
we can expect the corresponding likelihood to differ significantly 
from that involving exact modelling. 

3.3.2 Global-PCA-PCE performance 

Despite the comparati vel y poor reconstruction of the input (e.g. 
G G / LPC ( x ) ≈ u ) provided by the PCA approaches, the corresponding 
parametrizations perform well when used as input to build PCE sur- 
rogates, with the Global-PCA-PCE approach being outperformed 
by the Local-PCA-PCE scheme in terms of accuracy [rmse of 1.31 
and 0.68 ns, respecti vel y, see Figs 8 (b) and (c) for the corresponding 
histograms]. In both of these cases, the PCE operates on more vari- 
ables (i.e. 60 and 30 for the Global-PCA-PCE and Local-PCA-PCE 

parametrizations, respecti vel y, versus 20 for the VAE-PCE scheme). 
Moreover, the input for the Global-PCA-PCE and Local-PCA-PCE 

schemes are projections of images, which require the e v aluation 
of G VAE ( z ) , on G/LPCs. As such, e v aluation of the corresponding 
PCEs is computationally more e xpensiv e for the PCA-based ap- 
proaches than for the VAE-PCE case. Given the good accuracy of 
the PCE performance for this parametrization, we can expect the 
corresponding likelihood to mildl y dif fer from that involving no 
truncation in the GPC projection and exact modelling. 

3.3.3 Local-PCA-PCE performance 

In the Local-PCA-PCE approach, for each of the 23 angles consid- 
ered, training involves randomly chosen source–receiver pair data 
associated with identical angles, while the final rmse is computed on 
the standard 144 traveltime gathers. For a more comprehensive eval- 
uation of the Local-PCA-PCE scheme, we incorporate the results of 
FDTD data processing. In this analysis, training and validation rely 
on the FDTD data, while the PCE implementation remains consis- 
tent with that of the eikonal data. Results are similar and well below 

the noise, with an rmse of 0.65 ns (the corresponding histogram is 
displayed in Fig. 8 d). All PCE results are unbiased and the model er- 
rors have Gaussian-like distributions. Given the excellent accuracy 
of the PCE performance for this parametrization, we can expect the 
corresponding likelihood to only slightly differ from that involving 
no truncation in the LPC projection and exact modelling. 

Depending on the input parametrization, PCEs approximate 
eikonal and FDTD solvers to different degrees. Fig. 9 represent the 
corresponding covariance matrices accounting for the modelling 
error of each surrogate model. 

We now discuss the computational burden of each strategy when 
running on a workstation equipped with 16GB DDR4 of RAM and 
powered by a 3.5 GHz Quad-Core processor running Matlab and 
Python on Linux. We emphasize that our goal with the present 
manuscript is to propose novel methods to conjugate VAE and PCE 

rather than offer optimized implementations. 
There are up to three rele v ant computational steps in the execu- 

tion of a forward run for the VAE-PCE, Global-PCA-PCE, Local- 
PCA-PCE, eikonal and FDTD simulations, namely the evaluation 
of the physical input, G VAE ( z ) , its decomposition on either GPCs or 
LPCs and the actual e v aluation of the forward or surrogate model. 
Not all methods require each of these steps. The VAE-PCE model, 
for example, is not a function of G VAE ( z ) but depends on z only. 
Evaluation of the VAE-PCE model is extremely fast both when 
involving one or 35 (as in the MCMC inversion discussed below 

that is based on 35 chains) simultaneous model runs, taking on 
average ≈0.06 s and ≈0.08 s , respecti vel y. Ev aluation of the Python- 
based decoder G VAE ( z ) required for all forward models except the 
VAE-PCE, is the bottleneck of the Matlab algorithms used herein, 
requiring ≈1.35 s and ≈1.43 s , respecti vel y, when operating on one 
or 35 input when considering the eikonal solv er. Nev ertheless, this 
cost could be reduced by either implementing the decoder and the 
PCE within the same Python environment or by optimizing the calls 
to the Matlab/Python scripts in our code for greater efficiency. When 
in its nati ve environment, e v aluation of G VAE ( z ) is actually very fast, 
taking only ≈0.005 s and ≈0.08 s when operating on one or 35 in- 
puts, respecti vel y. Still, note that this cost is overall negligible even 
in our non-optimized setting when considering e xpensiv e physics- 
based forward solvers such as FDTD. Only the Global-PCA-PCE 

and Local-PCA-PCE strategies require PCA decompositions. The 
Global-PCA-PCE approach is faster, requiring only up to ≈0.002 s 
and ≈0.05 s when applied to one and 35 input elements, respec- 
ti vel y, while the Local-PCA-PCE method is slo wer , taking up to 
≈0.06 s and ≈0.23 s in the same situation. For the Global-PCA- 
PCE method the cost of a single forward run is ≈0.52 s , which 
is significantly more than for VAE-PCE. The difference between 
these two PCE strategies can be attributed to the significantly larger 
number of input parameters of the Global-PCA-PCE with respect 



Bayesian tomography via PCE and DGMs 41 

Figure 8. (a)–c) Histograms of the model error with respect to the PCE prediction when using the VAE (20 input parameters), Global (60 input parameters) 
and Local (30 input parameters per angle) parametrizations of the input in the PCE-based surrogate modelling, respectively, using the eikonal solver to compute 
the training set. (d) Histogram of the model error using Local parameters and FDTD reference data. 

Figure 9. Model error covariance matrices associated with PCE-based surrogate modelling based on: (a) VAE-PCE, (b) Global-PCA-PCE and (c) Local-PCA- 
PCE schemes trained with 900 eikonal data sets. (d) Model error covariance matrix for the Local-PCA-PCE scheme trained with FDTD data. 
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o the VAE-PCE scheme (i.e. 60 versus 20). Note that the PCE
odel e v aluations are vectorized and, therefore, the cost is almost

he same when applied to 35 input ( ≈0.57 s ). Moreover, the com-
utational cost of the Global-PCA-PCE method could be reduced
 y appl ying a PCA decomposition of the output, akin to what is
roposed in Meles et al. ( 2022 ). Despite involving fewer variables
han the Global-PCA-PCE approach, the Local-PCA-PCE method
s slightly more computationally demanding with a cost of ≈0.64 s
nd ≈0.65 s , respecti vel y, when operating on one or 35 input, re-
pecti vel y. The increase in cost compared to the Global-PCA-PCE
ethod depends on the fact that for each source–receiver angle ( θ ),

he Local-PCA-PCE utilizes its own polynomial basis, denoted as
 

θ in the following. 
In comparison with the PCE methods, the cost of the reference

ikonal solver is basically a linear function of the number of input
istributions it operates on. A single run requires ≈0.05 s , while for
5 velocity distributions the cost increases up to ≈1.67 s . As such,
ts cost is either significantly smaller or slightly larger than what
s required by the Global/Local-PCA-PCE approaches. Finally, the
ost required by the reference FDTD code is ≈120 s and ≈4200 s if
perating on either one or 35 velocity distributions, which is orders
f magnitude longer than for the eikonal or PCE models. These
esults are summarized in Table 1 , where we estimate the perfor-
ance of an ideally-optimized Local-PCA-PCE method benefiting

rom (a) e v aluating G VAE ( z ) in its nati ve environment and (b) using
 single family of polynomials � 

θ for all angles. In numerical re-
ults not presented herein, we find that choosing any one of the � 

θ

amilies for all models provides nearly identical fidelity to what is
chie ved b y using specificall y tailored pol ynomials for each angle
t the considerably smaller cost of ≈0.06 s and 0.16 s when applied
o either one or 35 input, respecti vel y. While such a result cannot
e generalized, it is al wa ys possible to test the corresponding PCEs
ccuracy with a representative e v aluation set. The option of relying
n a single family of polynomials for the Local-PCA-PCE method
s certainly to be taken into account when optimising the approach.

.4 Inversion results 

e now explore the performance of the different input parametriza-
ions used for PCE-based surrogate modelling, namely VAE-PCE,
lobal-PCA-PCE and Local-PCA-PCE, when performing proba-
ilistic MCMC inversion. The inversions were carried out using the
QLAB Matlab-based framework (Marelli & Sudret 2014 ; Wag-
er et al. 2021b ). As reference model, consider the field shown
n F ig. 10 , w hich is used to generate a total of 144 traveltimes
sing the reference eikonal and FDTD solvers. Note that this
eld is not used to train the PCEs. Uncorrelated Gaussian noise
haracterized by σ 2 = 1 ns 2 was added to the data used for
nversion. 

We use a Metropolis–Hastings algorithm, and run 35 non-
nteracting Markov chains in parallel for 4 × 10 5 iterations per
hain. During bur n-in deter mined according to the Geweke method,
he scaling factor of the proposal distribution is tuned such that an
cceptance rate of about 30 per cent is achieved for each experi-
ent (Geweke 1992 ; Brunetti et al. 2019 ). Finally, outlier chains
ith respect to the interquartile range statistics discussed in Vrugt

t al. ( 2009 ) are considered aberrant trajectories and are ignored in
he analysis of the results. 

We first present the results for training data generated by an
ikonal solver. We compare VAE-PCE, Global-PCA-PCE and
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Table 1. Summary of the computational cost of the various steps for a single realization/batch of 35 input of the proposed algorithms. 
In addition to the strategies used in the MCMC examples discussed in the manuscript and summarized in the first four columns 
(i.e. the VAE-PCE, Global- and Local-PCA-PCE and eikonal schemes), we also consider the cost of the FDTD approach using the 
reference code (fifth column) and an optimized Local-PCA-PCE approach ideally benefiting from executing the VAE decoder in the 
same environment as the PCE model and based on a single polynomial family for all angles (sixth column). 

VAE-PCE Global-PCA-PCE Local-PCA-PCE Eikonal FDTD Optimized Local-PCA-PCE 

G VAE ( z ) 0 ≈1.35/1.43 s ≈1.35/1.43 s ≈1.35/1.43 s ≈1.35/1.43 s ≈0.005/0.08 s 
PCA 0 ≈0.002/0.05 s ≈0.06/0.23 s 0 0 ≈0.06/0.23 s 
Forward ≈0.06/0.08 s ≈0.52/0.57 s ≈0.64/0.65 s ≈0.05/1.67 s ≈120/4200 s ≈0.06/0.16 s 

Figure 10. The reference velocity distribution used in the numerical inver- 
sion experiments. 
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Local-PCA-PCE inversion results to those achieved by using the 
eikonal solver, which represent the reference solution since the 
full physics solver is used in the entire MCMC process. This test 
provides an ideal benchmark as we compare the proposed PCE 

strategies with results derived from exact modelling. Note that such 
a comparison is not feasible for the FDTD scenario due to the 
computational burden associated with the corresponding MCMC 

process. Inversion results in terms of mean and standard deviations 
incorporating the model error [i.e. using the PCE-derived C Tapp in 
eq. ( 10 )] are shown in Figs 11 (a)–(e). The mean of the posterior 
obtained using the VAE-PCE poorly resembles the reference ve- 
locity field, with rele v ant topolo gical dif ferences between the two 
(compare Fig. 10 to Fig. 11 a). Note that the data misfit is partic- 
ularly large (i.e. 3.49 ns). This poor performance is also obtained 
when considering other test models (see the Appendix). The mean 
of the posterior provided by the Global-PCA-PCE approach shares 
many features with the reference distrib ution, b ut differences are 
apparent in the lower and upper channelized structures. The simi- 
larity between the posterior mean and the true distribution increases 
significantly when the Local-PCA-PCE is used (compare Fig. 10 to 
Fig. 11 c). These results also show close proximity with the poste- 
rior mean solution obtained by the eikonal solver (see Fig. 11 d), 
that is, without any surrogate modelling. Also, when the FDTD 

Local-PCA-PCE is used, that is when training and inversion is per- 
formed based on FDTD data, an almost identical solution to what is 
achieved using the Local-PCA-PCE is obtained (see Fig. 11 e). For 
this alternative data set, the use of the FDTD solver in the inver- 
sion algorithm would be extremely expensive and is not considered 
feasible to run for comparison purposes. The quality of the solu- 
tion of fered b y the surro gate on FDTD data can be heuristically 
appreciated by noting its similarity to results obtained by the Local- 
PCA-PCE based on eikonal data, which in turn produces results 
close to those of the eikonal solver on eikonal data. Although not 
strictly consequential, it is to be expected that the results offered by 
the surrogate-based on FD data would also be similar to those that 
would have been obtained if using the FDTD solver on FDTD data. 

High standard deviations of the posterior distribution are dis- 
tributed in wide domains of the image when VAE-PCE is used (see 
Fig. 11 f). In contrast, when Global-PCA-PCE (Fig. 11 g), Local- 
PCA-PCE (Fig. 11 h) and eikonal (Fig. 11 i) solvers are used, high 
standard deviation values are found mainly along channel bound- 
aries in agreement with other studies (Zahner et al. 2016 ). Con- 
vergence is assessed using the potential-scale reduction factor ˆ R 

that compares the variance of the individual Markov chains with the 
variance of all the Markov chains merged together (Gelman & Rubin 
1992 ) calculated from the second half of the chains. Convergence 
is usually assumed if R < 1.2 for all parameters. In our experi- 
ments, full convergence for all of the 20 parameters is achieved 
when the VAE-PCE, the Global-PCA-PCE and the Local-PCA- 
PCE approaches are used. Six parameters do not converge when 
the eikonal solver is used, but the values of R are nevertheless 
close to 1.2 (see Fig. 12 ). Further quantitative assessments can be 
achie ved b y comparing the reference input and the correspond- 
ing inversion solutions in terms of input domain rmse, structural 
similarity (in the following, SSIM) and rmse in the output do- 
main (Gneiting & Raftery 2007 ; Levy et al. 2022 ). Among these 
metrics, SSIM specificall y e v aluates the structural similarity be- 
tween images, emphasizing their underlying patterns and details. 
It assigns a value between −1 and 1, with −1 indicating a no- 
table dissimilarity and 1 denoting perfect similarity. Again, we 
see that the VAE-PCE performs poorly, with a low SSIM value. 
Better results are provided by the Global-PCA-PCE strategy. The 
Local-PCA-PCE scheme results are the closest to the reference 
solutions achieved using the eikonal solver. It is found that the 
FDTD Local-PCA-PCE performs similarly to the Local-PCA-PCE 

strategy. The results for all considered metrics are summarized in 
Table 2 . 

We also consider histograms of SSIM values in the correspond- 
ing posterior distributions (Fig. 13 ). The VAE-PCE posterior has 
low similarity with the reference model, with the maximum SSIM 

value being below 0.5. Closer proximity is found among samples 
obtained using the Global-PCA-PCE approach, a trend that is fur- 
ther improved when considering the Local-PCA-PCE scheme that 
shows some overlap with the results of the reference eikonal in- 
version. Note again that the statistics of the FDTD Local-PCA- 
PCE algorithm is again similar to the Local-PCA-PCE scheme. 
These findings can be further appreciated by considering ran- 
dom posterior realizations for each of the inversion strategies 
(see Fig. 14 ). 
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Figure 11. Posterior mean and standard deviation respectively for the (a, f) VAE-PCE inversion scheme, (b, g) Global-PCA-PCE, (c, h) Local-PCA-PCE, (d, 
i) eikonal and (e, j) FDTD Local-PCA-PCE inversion strategies. 

Figure 12. Gelman–Rubin statistics for the various inversion strategies using 35 chains after 4 × 10 5 iterations per chain. 
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 D I S C U S S I O N  

eep generative models offer a flexible framework for encoding
omplex spatial priors, enabling the description of intricate input
istributions. Ho wever , proper parametrization of prior distributions
lone does not ensure efficient estimation of posterior distributions
hen using MCMC methods. In many practical situations, the use
f surrogate models becomes beneficial or even essential for evalu-
ting the likelihood functions ef fecti vel y. Surro gate modelling with
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Table 2. Assessment of the inversion results in the input and output domains for the various surrogate 
modelling strategies. 

Model Rmse mean velocity SSIM mean velocity Rmse mean output 

VAE-PCE 8.01 × 10 6 m s −1 0.30 3.49 ns 
Global-PCA-PCE 5.38 × 10 6 m s −1 0.54 1.49 ns 
Local-PCA-PCE 2.67 × 10 6 m s −1 0.73 1.15 ns 
Eikonal 1.57 × 10 6 m s −1 0.87 1.01 ns 
FD Local-PCA-PCE 3.06 × 10 6 m s −1 0.71 1.15 ns 

Figure 13. Histograms of SSIM values across the posterior distributions for the various inversion strategies. 
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PCE has become widespread in many disciplines. The massive de- 
crease of the computational costs associated with PCE is achieved 
by approximating demanding computational forward models with 
simple and easy-to-e v aluate functions. A key requirement is that 
the number of input variables describing the computational model 
is relati vel y small (i.e. up to a few tens) and that the target model 
can be approximated by truncated series of low-degree multi v ariate 
polynomials. The number of coefficients defining the PCE model 
grows pol ynomiall y in both the size of the input and the max- 
imum degree of the expansion. When the reference full-physics 
model response is highly non-linear in its input parameters, the 
problem is typically non-tractable (Torre et al. 2019 ). Since the high- 
fidelity mapping of complex prior distributions provided by DGMs 
is based on highly non-linear relationships between latent variables 
and physical domains, replicating the performance of such net- 
works and/or composite functions thereof (e.g. M VAE = F ◦ G VAE 

in eq. 5 ) using PCE is problematic. To circumvent this challenge, 
w e ha v e e xplored two PCA-based decompositions that facilitated 
the straightforward implementation of PCE. One decomposition 
was designed to encompass the entire input domain, while the other 
specifically focused on subdomains of particular physical relevance. 
Although this latter concept is investigated here in the context of 
traveltime tomography, the integration of problem-related PCs op- 
erating synergistically with DGM-defined latent parametrizations 
has the potential for broader applications. 

Whatever the choice of input coordinates, for example, based on 
PCA or local properties of the input, the determining criterion for 
e v aluating the quality of the corresponding PCE should al wa ys be 
performance on a representative validation set. In case of PCA, the 
lower bound of prediction misfit rmse can be a priori estimated by 
comparing the accuracy of the reference model acting on the full 
and the compressed domains, that is, M G / LPC ( x full ) and M G / LPC ( x ) . 
In our case, such lower bounds for the Global-PCA-PCE approach 
operating with 60 components is 0.85 ns. Using the Local-PCA- 
PCE scheme with 30 components only, the rmse drops to 0.55 ns. 
Ho wever , the accuracy of the corresponding Global/Local-PCA- 
PCE is worse, with rmse of 1.31 and 0.67 ns, respecti vel y, mainl y 
due to the small size of the training set. Note that while the lower 
bound of the PCA decomposition decreases when more PCs are 
taken into account, the corresponding accuracy of PCE is primarily 
limited by the size of the training set. Increasing the number of 
components can actually worsen PCE performance if the training 
set is insufficient to determine the polynomial coefficients, which, 
as mentioned, grow significantly with input size. In our case, using 
90 components would imply an rmse of 1.39 ns, which is worse 
than what was obtained by the 60 components PCE. 

Both the VAE-PCE and Global-PCA-PCE consist of 144 (i.e. the 
total number of source–receiver combinations) different PCE mod- 
els operating, for each traveltime simulation, on an identical input, 
that is, the latent variables of the DGM or the 60 PCs characterizing 
the entire physical domain. On the other hand, the Local-PCA-PCE 

scheme consists of 23 (i.e. the total number of source–receiver al- 
titude angles) different PCE models operating, for each traveltime 
simulation, on 144 different input, that is, the 30 LPCs characteriz- 
ing each local subdomain. Since each of the 23 models operates on 
specific LPCs, the corresponding families of or thonor mal polyno- 
mials � 

θ are different. This is in contrast with the Global-PCA-PCE 

method, for which each model operates via a single family of polyno- 
mials. Thus, the Local-PCA-PCE scheme is computationally more 
demanding than the Global-PCA-PCE (see Table 1 ). Ho wever , the 
use of a single family of polynomials can also be considered for the 
Local-PCA-PCE method, resulting in shorter run time. When con- 
sidering computational performance, an optimal implementation of 
G VAE ( z ) should also be sought. 

In this study, to determine the minimum number of G/LPCs for 
constructing an accurate PCE, we assess the lower bound of output 
prediction misfit rmse as a function of the number of G/LPCs used. 
We project the input onto subsets of G/LPCs, typically ranging in the 
tens. This process generates non-binary images, which are then uti- 
lized to compute the output using the reference forward modelling. 
Alternati vel y, we could consider rebinarizing the reconstructed im- 
ages as done in Thibaut et al. ( 2021 ). This approach would bring the 
projected input back into the prior, but this property is not neces- 
saril y rele v ant for the determination of PCE accuracy. Irrespecti ve 
of the chosen reconstruction algorithm, the Local approach main- 
tains a significant advantage over the Global method. When using 
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Figure 14. Random samples from the posterior obtained by using the (a) VAE-PCE, (b) Global-PCA-PCE, (c) Local-PCA-PCE, (d) eikonal and (e) FD 

Local-PCA-PCE strategies. The results in (c)–(e) are visually similar. 
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n equal number of components, LPCs, in fact, consistently yield
uperior approximations of the rele v ant input compared to GPCs. 

We have seen that once a DGM-based latent parametrization has
een found to reduce the ef fecti ve dimensionality of the input do-
ain and, based on PCA decompositions, high fidelity PCEs have

een trained, MCMC inversion can be ef ficient. Rel ying on PCE
ather than advanced deep learning methods for surrogate mod-
lling can be advantageous in terms of ease of implementation,
s potentially complex training of a neural network is not needed.
an y ef fecti ve sampling methods, such as Adaptive Metropolis,
amiltonian Monte Carlo, or the Affine Invariant Ensemble Algo-

ithm (Duane et al. 1987 ; Haario et al. 2001 ; Goodman & Weare
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2010 ) could be considered in our w orkflo w instead of the current 
use of a standard Metropolis–Hastings sampling algorithm. 

Adaptation of the Global-PCA-PCE strategy presented here 
could easily be used for other imaging problems such as active 
or passive seismic tomography at different scales (Bodin & Sam- 
bridge 2009 ; Galetti et al. 2017 ). On the other hand, implementation 
of the Local-PCA-PCE schemes would depend on the properties of 
the corresponding sensitivity kernels, which would require more 
careful e v aluation and problem-specific design. 

5  C O N C LU S I O N S  

Low-dimensional latent variables associated with deep generative 
models, such as VAE, conform well to complex priors, and pro- 
vide an attractive basis to explore posterior model distributions us- 
ing MCMC strategies. MCMC methods can also benefit greatly 
from surrogate modelling based on PCE, provided the forward 
model can be approximated by low-degree multivariate polyno- 
mials. Ho wever , this type of latent variable models tend to have 
a highly non-linear relation to data, and are, thus, poorly approxi- 
mated by low-degree PCEs. As such, performing PCE-accelerated 
MCMC inversion based on a latent VAE-based parametrization for 
both inversion and as input to surrogate modelling leads to large 
posterior uncertainty due to the need to account for important mod- 
elling errors in the likelihood function. In the context of GPR trav- 
eltime tomography, for instance, PCE-based surrogate modelling 
using VAE latent variables as input results in modelling errors that 
are well beyond the expected noise level in the data. By separating 
the parametrization used for inversion and the one used as input for 
surrogate modelling, we can circumvent this problem and perform 

MCMC in a latent space defined by deep generative models while 
surrogate modelling is approximated by PCEs operating on glob- 
all y or locall y defined principal components. We find that these two 
approaches largely outperform surrogate modelling based on VAE 

input parametrizations. For the channelized structures considered, 
modelling errors are comparable to the typical observational errors 
when PCE are based on globally defined principal components and 
significantly lower when locally defined principal components are 
considered. Generally speaking, using PCE significantly reduces the 
computational burden of MCMC, but it can be successfully used 
to perform non-linear MCMC inversion only if the corresponding 
modelling error is comparati vel y low. In this manuscript we have 
sho wn ho w PCE based on VAE parametrizations performs poorly 
in MCMC inversion, whereas PCE based on globally and locally 
defined principal components produce results comparable or close 
to those obtained using full-physics forward solvers. The methods 
presented herein are extendable to other problems involving wave- 
based physics of similar complexity. 
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P P E N D I X :  OV E RV I E W  O F  T H E  

I M I TAT I O N S  O F  T H E  VA E – P C E  

P P R  O  A C H  

or the configuration considered in this manuscript, PCEs based on
AE parameters provide poor accuracy in predicting traveltimes.
hen calculated on a representative validation set, an aggregate

mse of 2.01 ns is observed for the misfit between reference and
redicted data. For the velocity distribution in Fig. 10 , the traveltime
rediction is particularly poor, with an rmse of 3.1 ns. In Fig. A1 ,
e consider six additional reference velocity fields and the corre-

ponding posterior mean images for MCMC inversion when using
AE–PCE surrogate modelling. In some cases the posterior mean

esembles the reference velocity field well [compare Fig. A1 (a)
o A1 (g), or Fig. A1 (f) to A1 (l)]. Ho wever , large differences can
rise between the reference and the VAE-PCE posterior mean [e.g.
ompare Fig. A1 (b) to A1 (h), or Fig. A1 (e) to A1 (k)]. Even if the
or responding modelling er ror is accounted for in the inversion
mplying that the posterior mean models should be unbiased, we
nd that the modelling error has severe impacts by increasing the
osterior model uncertainty. 
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Figure A1. Reference velocity fields (a)–(f) and (g)–(l) the corresponding posterior mean images for MCMC inversion based on VAE-PCE surrogate modelling. 
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