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In the vicinity of orographic barriers, interactions between mountains and prevailing winds
can enhance rainfall and generate strong spatial gradients of precipitation. Orographic
rainfall is still poorly quantified despite being an important driver of headwater catchment
hydrology, in particular when considered at high space-time resolution. In this paper, we
propose a complete framework for the observation and quantification of orographic rainfall
gradients at the local scale. This framework, based on the stochastic interpolation of drop-
counting rain gauge observations, provides reconstructions of local rain fields at high
space-time resolution. It allows us to capture the life-cycle of individual rain cells, which
typically occurs at a spatial scale of approximately 1–5 km and a temporal scale of
approximately 5–15min over our study area. In addition, the resulting rain estimates
can be used to investigate how rainfall gradients develop during rain storms, and to provide
better input data to drive hydrological models. The proposed framework is presented in the
form of a proof-of-concept case study aimed at exploring orographic rain gradients in
M�anoa Valley, on the leeward side of the Island of Oʻahu, Hawaiʻi, USA. Results show that
our network of eight rain gauges captured rainfall variations over the 6 × 5 km2 study area,
and that stochastic interpolation successfully leverages these in-situ data to produce
rainfall maps at 200 m × 1min resolution. Benchmarking against Kriging shows better
performance of stochastic interpolation in reproducing key statistics of high-resolution rain
fields, in particular rain intermittency and low intensities. This leads to an overall
enhancement of rain prediction at ungauged locations.
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INTRODUCTION

Unlike lowland watersheds, headwater mountain catchments do
not substantially aggregate the rain signal in space and time,
which makes their hydrological response sensitive to rainfall
variability (Anagnostou et al., 2010; Nikolopoulos et al., 2011;
Paschalis et al., 2014). This is because on the one hand, their small
geographical area is more sensitive to spatially varying rain
intensity (Sivapalan and Blöschl, 1998), and on the other, their
upstream location enhances their response to rainfall variability
due to the lack of hydrologically diverse sub-catchments
(Mandapaka et al., 2009). This sensitivity is further
strengthened by the inherent variability of mountain rains
caused by orographic effects (Roe, 2005; Houze, 2012), which
tend to intensify rainfall along windward slopes as compared to
leeward locations.

An important challenge in mountain hydrometeorology is to
capture the fluctuations of rain intensity at a sufficient space-time
resolution that impacts runoff generation processes. Automatic
rain gauges are key instruments for this purpose, in particular
because they can provide accurate rain observations at high
temporal resolution (Ciach, 2003; Lanza and Vuerich, 2009).
However, rain gauges can only represent very small areas (Ciach
and Krajewski, 2006; Tokay and Öztürk, 2012), and observations
need to be interpolated to derive rain maps. In data-rich and
smooth-topography areas, rain gauge interpolation is often aided
by data assimilation in numerical weather models (Zupanski and
Mesinger, 1995; Lopez, 2013) or by merging with radar imagery
(Sideris et al., 2014; Ochoa-Rodriguez et al., 2019). However, the
limitations of radar and weather models often hinder the usage of
such methods in mountainous regions. Radar observations are
known to be less accurate over mountains, in particular due to
beam blocking and associated shadow effects (Germann et al.,
2006; Berne and Krajewski, 2013). Furthermore, numerical
models used for data assimilation do not yet capture all the
interactions between topography and local rains (Chow et al.,
2019). This is because the topographic features responsible for
rain enhancement at the local scale are not fully resolved in most
numerical models (Montesarchio et al., 2014; Zhang et al., 2016),
and because the physical mechanisms responsible for orographic
rain enhancement are still only partly understood (Bauer et al.,
2015; Bony et al., 2015).

Mountain hydrometeorology, therefore, strongly relies on
rain estimates directly derived from rain gauge observations. To
obtain gridded rain field reconstructions from sparse rain gauge
observations, geostatistical interpolation approaches based on
Kriging have long been used to map rainfall at the yearly to
monthly time scale (Creutin and Obled, 1982; Goovaerts, 2000;
Giambelluca et al., 2013). One major advantage of these
approaches is their ability to estimate rainfall at ungauged
locations while accounting for the uncertainty introduced by
the interpolation process (Lebel et al., 1987). At sub-monthly
resolution, however, the spatial patterns embedded into rain
fields become increasingly complex (Benoit and Mariethoz,
2017), and stochastic interpolation is often preferred to
Kriging to represent the spatial uncertainty of interpolated
rain fields (Grimes and Pardo-Igúzquiza, 2010; Chappell

et al., 2012; Schleiss et al., 2014; Haese et al., 2017).
Stochastic interpolation consists of simulating an ensemble of
equally probable synthetic rain fields that are consistent with
both rain gauge observations and the statistical signature of rain
fields (Benoit et al., 2018). Resorting to simulations (i.e.
stochastic interpolation) instead of estimation (i.e. Kriging)
to interpolate rain gauge observations has the advantage of
accounting for possibly non-linear and intensity-dependent
interpolation errors (Lantuéjoul, 2002; Chilès and Delfiner,
2012).

In this paper, we apply stochastic interpolation to a dense
network of drop-counting rain gauges (0.27 gauge/km2) in
order to map rainfall at high resolution (200 m in space and
1-min in time) over a tropical mountain headwater catchment.
The proposed framework is illustrated for upper M�anoa valley,
in O‘ahu, Hawai‘i, USA. In this area, the steepness of the slopes,
the urbanization, and the tropical nature of the local rains can
generate large accumulations responsible for rain-related
hazards such as flash floods (Sahoo et al., 2006) and
landslides (Deb and El-Kadi, 2009). We adapted a high-
resolution stochastic rainfall model to make it compatible
with the strong gradients of rainfall observed in the area. The
proposed approach allows us to map rainfall at an
unprecedented resolution for the area, and also to assess
several key features of the local rain fields. For instance, we
illustrate the ability of our approach to map rain accumulation,
rain intermittency (i.e. the number of dry records within a rain
storm), and mean as well as peak rain intensity at the rainstorm
scale (defined hereafter as a period during which at least 50% of
the operating rain gauges measure some rain, and that is
preceded and followed by at least 3 h of dry weather).

The remainder of this paper is structured as follows: Section
Material and Methods introduces the target area, describes the
drop-counting rain gauges used to monitor rainfall, and details
the stochastic interpolation method adopted to generate rain
maps. Section Results illustrates the ability of our approach to
effectively generate 200 m × 1 min resolution rain maps. Finally,
Section Discussion and Conclusion discusses the advantages and
limitations of the proposed framework and draws conclusions
regarding high-resolution rainfall mapping over tropical
mountain headwater catchments.

MATERIAL AND METHODS

Study Site and Rain Monitoring Network
The study area is a 6 × 5 km2 domain centered on the upper
M�anoa Valley (Figure 1). The catchment of interest
encompasses two main landscape units: an ensemble of steep
and well-vegetated slopes at the top and at the lateral margins of
the catchment, with altitudes ranging from 100 m to 950 m
above sea level (a.s.l.), and a flat and highly urbanized central
valley, whose altitudes range between 50 m and 150 m a.s.l. The
steep slopes are drained by several small streams, which
converge at the flat center of the valley to form the M�anoa
stream. The upper part of the catchment experiences a steep
rainfall gradient (Giambelluca et al., 2013) (Figure 1A), which is
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caused by interactions between easterly to northeasterly trade
winds and the main crest of the Koʻolau Mountains (Timm et al.,
2015; Frazier et al., 2018). This regional pattern of orographic
rain enhancement (i.e. high elevation locations are wetter than
the neighboring flatlands (Figure 1A)) is modulated by some
local effects (Mink, 1960), which leads to a local maximum of
rain accumulation at the west side of the upper watershed, more
precisely at Lyon Arboretum (3,800 mm/year). In contrast, the
southern end of the valley encompasses the driest point of the
study area (1,500 mm/year), located only 3 km seaward from
Lyon arboretum.

To monitor rainfall at high resolution within the study area,
we set up a temporary network of eight rain gauges from 27
August to September 12, 2019 (Figure 2). Rain gauges were
installed at locations experiencing different rain behaviors, under
the constraints of site accessibility. Near-impossible site
accessibility led to poor observability of the steep slopes of the
Ko‘olau Mountains. Three gauges (Lyon 1–3) were placed
throughout Lyon Arboretum close one to each other
(separation distance < 500 m) in order to inform rainfall
variability at very short spatial lags. One gauge (Ridge) was

located close to the main ridge of the Ko‘olau Mountains, and
four gauges (Valley 1–4) were placed along the flat bottom of the
valley further downwind of and drier than the area near the
main ridge.

Drop-counting rain gauges from Dryptich called Pluvimates
(http://www.driptych.com) were used to measure rainfall. Each
gauge collects water in a 110 mm diameter funnel that generates
0.125 ml drops at its outlet. When a drop reaches its final size, it
falls in a 400 mm tube and generates an acoustic signal when
hitting the sound-sensitive top of the drop logger. This principle
allows measurement rainfall with a 0.01 mm resolution, which
leads to a rain intensity resolution of 0.6 mm/h when recording
data at a 1 min interval as in the present study. Pluvimates have
been tested in both field and laboratory conditions (Benoit et al.,
2018), and their measurement uncertainty has been estimated
under 5% for intensities lower than 20 mm/h and under 10% for
intensities ranging 20–80 mm/h.

On the field, the rain gauges were installed in open areas at a
height of 1–1.5 m above the ground (Figure 2), attached either on
fence posts implanted 50 cm to 1 m in the ground or on stable
structures (roofs and fences).

FIGURE 1 | Study area. (A) Mean annual rainfall in Oʻahu, adapted from http://rainfall.geography.hawaii.edu/interactivemap.html (Giambelluca et al., 2013). (B)
Main morphological features of M�anoa Valley (Map data © 2020: Google Earth, Maxar Technologies, Landsat, Copernicus). The area considered for rainfall mapping is
denoted by the dashed red box. (C) Picture of M�anoa Valley illustrating the study area and the local variability of rainfall. The location of the picture taken is denoted by the
yellow symbol in (B).
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Stochastic Interpolation of Rain Gauge
Observations
We adopt a meta-Gaussian stochastic rainfall model to perform the
interpolation of rain gauge observations because this framework
properly models local rain fields, and importantly preserves rainfall
space-time dependencies during the interpolation process
(Paschalis et al., 2013; Allard and Bourotte, 2015; Baxevani and
Lennartsson, 2015; Bárdossy and Pegram, 2016). In a nutshell,
meta-Gaussian models are based on two components: 1) a latent
(i.e. not directly observed)multivariate Gaussian field Y that models
the dependency structure of rain fields through its covariance
function ρ, and 2) a transform function φ that models the
marginal distribution of observed rain intensities R. In the
present case study we adopt the parametrization of (Benoit
et al., 2018) (Eq. 2) for the latent field Y, which has shown good
performance in interpolating Pluvimate data at high resolution. For
the transform function φ, however, we adopt here a Gamma
distribution. This distribution has the advantage of having easy
to interpret parameters, while adequately modeling pointwise rain
intensity distribution (Wilks and Wilby, 1999):

R(s, t) � φ(Y(s, t)) � 0 if Y(s, t)≤ a0 and
R(s, t) � φ(Y(s, t))

�
(Y(s, t) − a0)k−1 exp( − Y(s, t) − a0

θ
)

Γ(k)θk
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ if Y(s, t)> a0

(1)

ρ(h, u) � 1

(u/d)2δ + 1
exp⎛⎜⎝−(‖h + V .u‖/c)2c

((u/d)2δ + 1)βc ⎞⎟⎠ (2)

where s is a target location, t is a time stamp, h is a separation
distance between two locations and u is an elapsed time between
two time stamps. In Eq. 1, which defines the marginal distribution
of rain intensity, a0 is a threshold at which the latent field Y is
truncated, and it determines the amount of dry values in the
simulated rain fields. The two other parameters of the transform
function, k and θ, define the distribution of rain intensities, with
mean, variance and skewness of kθ, kθ2, and 2/


k

√
respectively.

Finally, Γ is the gamma function.
In Eq. 2, which defines the space-time dependency structure of

rain fields, the vectorV models a constant and linear advection of
the rain storm. The regularity parameters c (for space) and δ (for
time) control the smoothness of rain fields, the scale parameters c
(for space) and d (for time) control the decorrelation distances of
the rain patterns, and the separability parameter β controls space-
time interactions.

In its original version, the stochastic rainfall model used for
interpolation requires the stationarity of rain statistics, which
means that the statistics used to characterize rainfall in the model
are constant in space and time over the whole modeling domain.
In the present case, this hypothesis has to be relaxed to account
for the strong gradient of rain accumulation. To this end, we
adopt a spatially variable transform function φ whose parameters

a � (a0, k, θ) are interpolated at ungauged locations si from the
parameters estimated at gauged locations sj (Berrocal et al., 2008;
Kleiber et al., 2012; Bennett et al., 2018) (see Appendix for
details). To allow interpolation of each parameter
independently, special attention has been paid to the selection
of a transform function whose parameters are only weakly
dependent. In practice, the parameters of the transform
function are interpolated independently using an inverse
squared-distance interpolation:

φ � φai
with ai � ∑nobs

j�1
aj

| |si − sj| |2 (3)

Adopting such a spatially variable transform function allows
for a spatially variable marginal distribution of rain intensities.
On the contrary, the latent field Y is still stationary, which
means that the underlying space-time dependencies are
assumed constant. This modified model is able to account
for both the behavior of local rains (intermittency,
advection-diffusion) and the strong gradient of rain
accumulation induced by orographic effects. It can then be
used to perform stochastic interpolation. This is done by
generating an ensemble of realizations conditioned to rain
gauge data through stochastic simulations performed by
Choleski factorization of the covariance matrix of the latent
field Y (Lantuéjoul, 2002). After simulation, the median of the
ensemble is used as the estimator of rain intensity, and the half
range between quantiles 10% and 90% is used as the estimator
of interpolation uncertainty.

Evaluation Procedure
The suitability of the proposed stochastic model to predict rainfall
at ungauged locations is tested through cross-validation using a
leave-one-gauge-out procedure. To this end, data from one rain
gauge are removed from the dataset, and the rainfall model is
calibrated using the remaining data following the procedure
detailed in Appendix. Next, the calibrated model is used to
estimate rain intensity by stochastic simulations (50
realizations are drawn) at the location of the gauge that has
been excluded from the calibration dataset. The same procedure
is applied to each gauge sequentially, and rain intensity
predictions are finally compared with observations to evaluate
the performance of the rainfall interpolation. Model calibration
and rainfall interpolation are performed on an event basis in
order to account for possible differences in rain statistics between
rain storms, and also to investigate whether different storms can
lead to different model performances. Cross-validation is
performed for all significant rain events of the period of
interest (i.e. all events with areal rain accumulation > 5 mm).

For benchmarking, the proposed stochastic interpolation
method is compared to Kriging, which has been widely used
for interpolation of point rain observations, but at lower
temporal resolution (usually monthly to daily) (Lebel et al.,
1987; Goovaerts, 2000; Grimes and Pardo-Igúzquiza, 2010;
Frazier et al., 2016). Here we apply simple Kriging to all time
steps with at least one gauge recording rainfall. When all
gauges of the training dataset record no-rain, the intensity at
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the location to predict is directly set to zero. An exponential
variogram model is adopted, and variogram parameters (i.e.
range and sill) are inferred using a maximum likelihood
procedure (Chilès and Delfiner, 2012). Here Kriging is
applied in space only, and temporal correlation is therefore
overlooked. Variogram parameters are inferred from pooled
data corresponding to all time steps with at least one gauge
recording rainfall, and one single set of parameters is
calibrated for each rain event.

In addition to the ability of predicting rainfall at ungauged
locations, we also assess the ability of partial networks to capture
and reproduce key rain statistics. This evaluation is performed for
the main recorded rain event, which occurred on August 31st -
September 1st 2019, lasted 11 h and totaled 25 mm of rain. The
target statistics are areal rain accumulation, intermittency, mean
intensity and peak intensity. In the absence of ground truth for

areal rain statistics, the results derived from the full network are
regarded as the reference.

RESULTS

Lessons Learned From Network Operation
Pluvimates allowed a fast field deployment because of the absence
of external power supply that reduces equipment weight, and
because of low requirements in terms of device setup that offers
flexibility in gauge placement. Overall, two days where sufficient
to establish the whole network, including one day dedicated to the
installation of the remote gauge Ridge.

Using fence posts allowed flexibility in site selection. However,
some gauges (Lyon 1, Lyon 2, Valley 2, Valley 3) were not
sufficiently anchored and were therefore affected by vibrations

FIGURE 2 |Rain gauges in M�anoa Valley. Themap in the central panel (Map data © 2020: Google Earth, Maxar Technologies, Landsat, Copernicus) displays gauge
locations as well as the local mean annual rainfall climatology in mm/year (Giambelluca et al., 2013). Outer panels show the set-up of each rain gauge. The color of picture
borders links the pictures with the gauge location in the central panel.
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during strong wind periods. This made the sensors hit the sides
of the tubes, generating false rain detections. The data
contaminated by such artifacts were manually cleaned before
further processing by removing all records that did not
correspond to rainy periods in the non-contaminated time
series. For rainy periods, all events with any suspicion of
wind-triggered false positives were excluded in order to avoid
errors. This generated a data-gap for gauge Valley 2 from
September 4 until the end of the experiment.

Except from wind-triggered false positives, no gauge
malfunction was noted during the experiment. In particular,
no gauge maintenance was required for the 17-days operation
period, and no gauge clogging was observed.

Observed Rain Intensity Time Series
Figure 3 displays time series of rainfall accumulation observed by
the eight rain gauges within upper M�anoa Valley. The data-gap
for gauge Ridge from August 27 to August 31 is due to the late set-
up of this gauge due to difficult accessibility, and the data for
gauge Valley 2 from September 4 to September 12 was removed
due to the strong contamination by wind effects. Except for these
two gauges, the time series are complete and provide 17 days of
1 min-resolution rainfall observations, during which 11 rain
events occurred.

Results in Figure 3 show that even during the relatively
short 17-days observation period, the area of interest

experienced a strong rainfall gradient. The overall pattern
of rainfall accumulation observed in this study is in good
agreement with the rainfall climatology (Giambelluca et al.,
2013), in particular: 1) the highest rain accumulations are
observed at Lyon Arboretum (more than 120 mm in 17 days),
2) the gauge Ridge located on the mountain ridge records more
rain (80 mm) than the gauges Valley 1–4 in the flat and
urbanized area (between 65 and 18 mm), and 3) the
southern gauge Valley 4 is the driest point of the study area
(18 mm). In addition to this broad picture, our dense
monitoring network enables the refinement of the rain
gradient pattern for the period of interest. Results show that
the gauges Valley 3 and 4 located on the leeward slopes of a
small mountain ridge are drier than their less sheltered
counterparts (respectively gauges Valley 1 and Valley 2),
possibly because of a local rain shadow effect. Moreover,
the observed rain gradient (Valley 4 measures 85% less
rainfall than Lyon 1) is stronger than the climatological
gradient estimated for the period August–September (65%).
However, the limited duration of the observations does not
allow attribution of the observed differences to persistent
patterns, or alternatively to natural variations of the rain
gradient over the area.

In addition to the high spatial density that captured the spatial
pattern of rainfall accumulation, the high temporal resolution of
the dataset informs the dynamics of this pattern. Focusing on

FIGURE 3 | Time series of rainfall accumulation observed by the eight Pluvimates rain gauges and associated weather conditions observed at Lyon arboretum. First
row: rainfall accumulation. The color code for gauge identification is the same as in Figure 2. Second row: Temperature at 2 m. Third row: Relative humidity. Fourth and
fifth rows: Wind speed and direction (S � southerly, E � easterly, N � northerly). The blue shaded areas identify the rain events; the darker areas identify significant rain
events, i.e. events with mean areal rain accumulation exceeding 5 mm.
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inter-event variability in Figure 3, one can notice that the above-
mentioned accumulation pattern varies between storms. It is, for
instance, noteworthy that during rain event 1, gauge Lyon 1
receives 38% more rainfall than the neighboring gauges Lyon 2
and 3 (despite a separation distance < 500 m) while over the 17-
days study period the three gauges measured similar
accumulations. Similarly, the gauge Valley 1 is the wettest
location for event six while it ranks fifth for the whole period.
These two observations highlight that even if the overall
orographic effects on rainfall gradient are visible for all events,
the detailed spatial patterns varied significantly between storms.

To complement rainfall measurements, local weather
observations carried out next to the Lyon 3 gauge allow us
to gain insights about the climate conditions responsible for
rainfall. At the regional scale, the whole period of interest was
characterized by light trade wind conditions (i.e. light
easterlies), which are known to generate afternoon, night,
and early morning clouds and showers over O‘ahu Island
(Timm and Diaz, 2009; Hartley and Chen, 2010; Zhang
et al., 2016). A similar timing of rain occurrence was

observed over M�anoa Valley during our experiment, with
significant rain events (i.e. more than 5 mm
rain accumulation) occurring at 2:00–11:00 HST (event 1),
20:00–7:00 HST (event 3), 20:00–23:00 HST (event 5) and
14:00–20:00 HST (event 6). In more details, the two main
rainstorms (event 1 and 3) occurred when local winds were
weak (wind speed < 1 m/s) and more easterly. This probably
corresponds to periods when trade winds were the main driver
of local wind conditions, while the rest of the time local winds
were northerly and southerly, probably driven by sea breezes
and downslope winds. Temperature was close to its minimum
(i.e. 25 °C) and relative humidity close to its maximum (i.e.
above 90%) when rain occurred, but these two parameters are
not reliable predictors since the values observed during rain are
mostly explained by the diurnal cycle, and because many nights
with similar temperature and humidity conditions remained
dry. The weaker but still significant rain events 5 and 6 occurred
in rather similar although less well-defined weather conditions.
Finally, one should notice that some isolated showers have been
observed at almost any time of the day and under all weather

FIGURE 4 | Cross-validation results. (A) Density plot evaluating the performance of rain intensity estimation. Left panel: rain estimation derived from stochastic
interpolation (the median of 50 realizations is used as an estimator of rain intensity). Right panel: rain estimation derived from simple Kriging. (B) Scatterplots of simulated
vs. observed rain statistics. The statistics of interest are, from left to right: rain accumulation, rain intermittency, mean rain intensity (evaluated over wet intervals) and peak
rain intensity. Different colors refer to different rain gauges (the color code is the same as in Figure 2). Different symbols refer to different rain events. Filled symbols
refer to the results of stochastic interpolation, and open symbols refer to Kriging.
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conditions, but such events always remained very limited with
less than 5 mm of rain accumulation.

Ability of Stochastic Interpolation to Predict
Rainfall at Ungauged Locations
Figure 4A shows the evaluation of the overall ability of stochastic
interpolation and Kriging to estimate rain intensity for the four
significant rain events of the period of interest (for a detailed
timeline of the events, see Figure 3). For stochastic interpolation,
the selected estimator of rain intensity is the median of the
ensemble of 50 realizations. For Kriging, it is simply the
Kriging estimate. The results, aggregated over the four rain
events of interest, show that the proposed stochastic
interpolation method slightly outperforms Kriging (RMSE �
3.22 mm/h (σRMSE � 0.04 mm/h) and R2 � 0.56 (σR2 � 0.007)
for stochastic interpolation, while RMSE � 3.31 mm/h (σRMSE �
0.04 mm/h) and R2 � 0.53 (σR2 � 0.009) for Kriging). A close
inspection of the bottom left part of the two panels of Figure 4A
reveals that this small improvement in performance is achieved
by a better simulation of low intensities when using stochastic
interpolation. In particular, stochastic interpolation properly
simulates space-time intermittency (Figure 4B) while Kriging
generates a drizzle effect (i.e. simulates light rain instead of no-
rain).

Figure 4B evaluates the ability of both interpolation
methods to estimate four summary statistics that
characterize the rain intensity distribution at the scale of a
rain event: rain accumulation, rain intermittency, mean rain
intensity (calculated using only rainy data points, i.e. dry
records are excluded), and peak rain intensity. In the case of
Kriging, since only one rain estimate is available, the four
summary statistics are directly derived from the estimated
rain intensity time series. For stochastic simulation, in
contrast, 50 realizations are available. The summary
statistics are therefore first derived for each realization
separately, and then the median of the 50 realizations is
used as an estimator for the statistic at hand. Results in
Figure 4B show that the two methods perform equally well
in estimating rain accumulation, and the good alignment of the
data-points on the 1:1 line proves that both interpolation
methods are unbiased, i.e. they accurately predict rain
accumulation at the event scale. For the simulation of rain
intermittency and mean intensity, however, stochastic
interpolation clearly outperforms Kriging. Indeed, stochastic
interpolation correctly reproduces these two statistics, while
Kriging underestimates them. This can be explained by the fact
that Kriging is an estimation method, which tends to smooth-
out the interpolated rain fields. On the contrary, stochastic
interpolation is based on a simulation approach, which has
been designed to accurately reproduce the fine scale structures
embedded into rain fields. Finally, the two methods perform
equally in simulating peak rain intensity, with an
underestimation of heavy rains, and a strong dispersion of
the data-points around the 1:1 line. This denotes the difficulty
of properly capturing peak intensity during very variable rain
showers, which are typical of the area of interest.

When looking at interpolation performance on an event basis,
Figure 4B shows that the proposed stochastic interpolation
approach performs equally well for the four rain events of
interest. This shows that the proposed event-by-event
processing approach is feasible even for relatively short
(minimum event duration � 2 h30) or small (minimum rain
accumulation � 6.4 mm) rain events. This is made possible by the
high sampling rate of the rain gauges adopted in this experiment
(1 min), which allows for at least 150 records by rain gauge even
for a short (2h30) rain event. The ability to process rain events
independently allows us to capture the inter-event variability of
rainfall statistics, and therefore to properly model rainfall
heteroscedasticity.

Lastly, when looking at rain prediction performance at
particular locations, Figure 4B shows that rainfall tends to be
overestimated by both methods at the driest location (Valley 4, in
black in Figure 4). This is a common drawback of geostatistical
interpolation methods, which tend to damp extreme values. The
same effect is not visible in the present setting for the wettest
gauges (Lyon 1–3, in red in Figure 4) because these gauges are
clustered, which ensures two conditioning data-points in the
vicinity of the tested gauge during cross-validation, and
therefore cancels the above-mentioned dampening effect. On
another note, one can notice that the amplitude of prediction
biases in rain accumulation increases when the rain intensity
observed at one location strongly differs from the intensity at
neighboring locations (e.g. gauge Lyon 1 during event 1). This can
be explained by the fact that the parameters of the transform
function are interpolated in space, which smooths out extreme
values.

To investigate the sensitivity of the proposed framework to the
density and spatial arrangement of the rain gauge network,
Figure 5 assesses the ability of partial networks to capture and
reproduce the above summary statistics - i.e. rain accumulation,
intermittency, mean intensity and peak intensity. Results show
that when comparing estimated statistics for N1 with those of N2-
N5, rain estimation significantly degrades when the cluster of
gauges at Lyon arboretum is reduced to a single gauge. Although
counterintuitive, this result is inline with geostatistical
considerations (Lantuéjoul, 2002; Chilès and Delfiner, 2012).
Indeed, the cluster of gauges in N1 allows the stochastic
rainfall model to better capture rainfall variability at short
distance (few hundred meters), which improves rain
simulation and in particular leads to more reliable uncertainty
estimates. In that respect, it is worth noticing that the uncertainty
on the estimated rain statistics is larger for N1 than for N2-N5,
despite more conditioning data-points. When the gauge cluster is
removed, the rainfall model cannot capture short distance rainfall
variability, and therefore assumes that rain fields are smoother
than they actually are. Focusing next on the effect of reducing
gauge coverage (N2–N6), one can notice a smooth evolution in
the estimated rain statistics from N2 to N5 and then a strong
degradation for N6. The smooth transition N2–N5 can be
explained by differences in gauge coverage, and hence
differences in the sampling of the rain gradient, but it has
almost no impact on model parameters (not shown here). The
apparent performance improvement from N2 to N5 is here
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purely accidental, and due to the fact that for the event at hand,
the behavior of the remaining gauges is close to the behavior of
rainfall at the catchment scale. Lastly, the poor performance of N6
can be explained by both a poor estimation of stochastic model
parameters (not shown here) and an insufficient sampling of the
rain gradient (Lyon arboretum, i.e. the wettest location, is not
monitored). Overall, the above analysis of the sensitivity of rain
interpolation to network design shows that two elements are key
to obtain reliable rain maps: first, enough observation locations
must be included in the network (and be spread in space) to
sample the rain gradient; and second, some gauges must be set-up
in a cluster in order to properly capture rainfall variability at short
distances.

Space-Time Rain Maps
The above cross-validation showed that the proposed model
properly predicts rainfall at ungauged locations, and can,
therefore, be used to derive rainfall maps from the stochastic
interpolation of rain gauge observations. Such high-resolution
rainfall maps allow the investigation of rainfall variability at the
sub-event scale. Figure 6 illustrates it on an 8-min fragment of
space-time rainfall maps for event 3. In this figure, the
interpolation results have been aggregated to a 2-min
resolution for visualization purposes. The original results are
available in Supplementary Material at a 200 m × 1 min space-
time resolution as rainfall intensity animations for the entirety of
events 1, 3, 5 and 6. For the short period of interest displayed here,
we focus on the transit of a rain cell over the northern half of the
study area (Figure 6A). Results in Figure 6 show that our
interpolation approach generates realistic patterns of: rain cell
growth and decay, advection-diffusion of the rain field, and rain
intermittency and associated dry/wet transitions.

To obtain Figure 6, both rain estimation (Figure 6A) and the
associated uncertainty (Figure 6B) have been derived from an
ensemble of 50 realizations - of which 3 are displayed in
Figure 6C. These realizations have been generated by
stochastic simulation conditioned to rain gauge observations,
and therefore represent 50 possible rain fields reflecting
various rainfall scenarios conditional to available data. Each
realization honors both rain observations at gauge locations,
and rainfall variability specified by the stochastic rainfall
model. When scrutinizing uncertainty maps in Figure 6B, it is
visible that the uncertainty depends not only on the distance to
the closest rain gauge and to the geometry of the gauge network,
but also on the actual rain intensity. The uncertainty estimated by
the model may seem large as compared to rain intensity, but it
simply reflects the fact that the very strong space-time variability
of local rain fields makes rain mapping a challenging task in the
present setting. Rainfall being variable even at distances as short
as a few hundred meters (cf. the 38% rain accumulation difference
between gauges Lyon 1 and Lyon 2–3 during event 1), the number
of rain gauges is not sufficient to constrain rainfall simulations
despite the unprecedented gauge density of the present network.
Hence the choice of a stochastic approach to model and
interpolate rainfall, which, despite the inability to produce
precise interpolations, is at least able to provide realistic
uncertainty bounds. In addition, resorting on simulations
allows proper simulation of key rain statistics (cf. Section
Ability of Stochastic Interpolation to Predict Rainfall at
Ungauged Locations and Figure 7 below), which would not be
possible with geostatistical estimation methods (like Kriging) or
deterministic interpolation because those approaches tend to
smooth out rain estimates (Lantuéjoul, 2002; Chilès and
Delfiner, 2012).

FIGURE 5 | Impact of network configuration on estimated rain statistics, evaluated for rain event 3. (A) Network configurations tested in the sensitivity analysis. (B)
Areal rain statistics estimated from the six network configurations presented in (A). The target statistics are (from left to right): mean area rain accumulation, rain
intermittency, mean rain intensity and peak intensity.
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In addition to the median used for rainfall estimation
(Figure 6A), other summary statistics can be derived from the
ensemble of rain field simulations. This is illustrated in Figure 7,
where we evaluate rain accumulation, rain intermittency, mean
rainfall intensity and peak intensity for the four main rainstorms
of our dataset. It is interesting to notice that two distinct classes of
rain behavior emerge from Figure 7. On the one hand, the two
most significant rain events (event 1 and 3) are characterized by a
long duration (9 h and 11 h respectively), a relatively low
intermittency, and low (event 1) to moderate (event 3) mean
and peak intensities. In terms of spatial patterns of rain statistics,
a dual behavior emerges: the four northern gauges (Ridge and
Lyon 1–3) record almost continuous andmoderate rainfalls, while
the four southern gauges (Valley 1–4) record very intermittent
and low intensity rains. On the other hand, the two moderate rain
events 5 and 6 are characterized by a shorter duration (3 h and 6 h
respectively), a very strong intermittency, and relatively high
mean and peak intensities. They therefore correspond to
intense but isolated and short duration rain showers. In terms

of spatial patterns, for the second class of rain events, the north/
south pattern is replaced by a valley/ridge pattern. Indeed, for
events 5 and 6, the wettest areas are found in low elevations
(around gauges Lyon 1–3 and Valley 1), while the surrounding
slopes (around gauges Ridge and Valley 2–4) experience lower
intensities and are generally drier. The above differences in terms
of rainfall behavior and spatial patterns could be explained by
differences of rain formation, which allows us to refine the
interpretation about rain generation processes initiated in
Section Observed Rain Intensity Time Series. Based on
estimated maps of rain statistics (Figure 7), one can
hypothesize that rain events 1 and 3 correspond to orographic
rains triggered by the uplift of moist air masses when crossing the
main crest of O‘ahu under the influence of trade winds (Hartley
and Chen, 2010), while events 5 and 6 rather correspond to
orographically-enhanced convective rain showers (Nguyen et al.,
2010; Nugent et al., 2014). This interpretation is supported by the
timing of rain occurrence (events 1 and 3 are mostly night rains
while events 5 and 6 occur in late afternoon), but a longer dataset

FIGURE 6 | Example of high-resolution rain maps for a small subset of rain event 3, September 1st, 2019 - 0h00 - 0h06. (A) Estimated rainfall intensity (i.e. median of
50 realizations). (B) Uncertainty of the estimation (i.e. half Q90-Q10 range of 50 realizations). (C) Examples of three simulated rain fields selected amongst the 50
realizations used to derive (A) and (B). In (A) and (B), black crosses denote active rain gauges. For visualization purposes results presented here are aggregated to a 2-
min resolution; rain movies at full resolution (1 min) are available in supplementary material.
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complemented by more meteorological covariates is needed to
derive more robust findings.

DISCUSSION AND CONCLUSION

Discussion
Combining time series of drop-counting rain gauge observations with
stochastic interpolation allowed us to estimate space-time rain fields,
and therefore to display movies of rain intensity and rain
accumulation at a 200m × 1min resolution. Such rainfall
reconstructions can be used to visually investigate the local
behavior of rainfall, and, in mountain regions, to grasp how
orographic rain gradients develop during the course of rainstorms.
In case more quantitative analyses are intended, maps of summary
statistics can be derived from the ensemble of realizations at the event
scale, as illustrated in Figure 7. When defining rain events, and
therefore event scale summary statistics, one should however keep in
mind that rain storms are delineated directly from observations, and
their definition is therefore dependent of the observation network.

It is worth noting that the proposed rain mapping framework
is informed by rain gauge observations only, and therefore do not

resort to topo-climatic covariates (e.g. altitude, local topography,
moisture convergence, weather conditions) to guide the
interpolation. This is in contrast to interpolation schemes
applied at a coarser resolution (Goovaerts, 2000; Lloyd, 2005;
Kyriakidis et al., 2001), which take advantage of the relationships
between rainfall and covariates to inform rainfall far from the
data-points. In the present case, however, the local scale
interactions between rain generation processes and topo-
climatic conditions are regarded as not understood enough to
be reliably embedded into the interpolation. Hence, rainfall is
interpolated based on rain gauge information only, and
interpolation results are compared with covariates in a second
step, thus enabling an independent identification of the possible
drivers of orographic rain enhancement.

The rain gauge data interpolation approach used here is also
subject to some limitations. From a modeling perspective, because a
priori assumptions about rainfall generationmechanisms are kept to
a minimum, a high density of observations is necessary. While a
sufficient temporal coverage is ensured by the high frequency of the
data (1-min resolution), the spatial density of the gauge network can
be a limiting factor. Hence, gauge separation distances should be
kept substantially smaller than the size of rain cells, in particular in

FIGURE 7 | Summary statistics of the spatial behavior of the four significant rainstorms recorded during the experiment. From top to bottom: event 1, 3, 5 and 6.
From left to right: rain accumulation, intermittency, mean intensity and peak intensity. In all plots, black crosses denote active rain gauges.
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tropical environments where the heterogeneous nature of
precipitations increases the need for spatial information (Guillot
and Lebel, 1999; Krajewski et al., 2003). In the present case, the
spatial correlation within rain fields drops under 50% at around
2 km (Appendix, Figure 8), which requires a gauge density on the
order of 0.25 gauge/km2 to ensure a sufficient correlation between
target locations and stations with conditioning data. This density is
not quite reached in this study (0.27 gauge/km2), which may be
responsible for the generation of some artifacts in rain
reconstructions. In practice, only small artifacts (isolated values
close to gauge locations) are visible in the maps of summary
statistics (Figure 7), particularly around gauge Valley 1 during
Event 3.

The logical answer to this limitation is a denser gauge network in
order to adequately sample the local rain fields. This is an interesting
option to pursue, but it rises logistical questions about the
management of such a dense network of in-situ devices. Although
relatively inexpensive (equipment costs of about $4,000 for the
present study) and easy to set-up and operate, the drop-counting
rain gauges used in this study require at least amonthly inspection for
maintenance and data downloading. Such tasks become
cumbersome as the number of gauges increases, or if gauges have
to be set up at remote locations. For networks encompassing dozens
of devices, a remote and real-time data management system should
be considered. Real-time data retrieval would allow on-the-fly data
quality checks, which not only reduces the delay in identifying and
fixing measurement problems (e.g. wind induced vibration or funnel
clogging) and, therefore, increases the overall data quality, but also
reduces the number of field interventions since only malfunctioning
gauges have to be accessed.

Conclusion
In this study, we explored how a dense network of high-resolution
rain gauges and stochastic interpolation can be combined to estimate
rainfall at the local scale. A 17-days proof-of-concept campaign
involving eight drop-counting rain gauges demonstrated the ability
of the proposed approach to accurately map rain fields over a 5 ×
6 km2 area where orographic effects generate a strong rainfall
gradient. The novelties of the study include the use of drop
counting gauges to monitor tropical rains, and the customization
of high-resolution stochastic interpolation to handle strong rain
gradients. The results of the present case study indicate that in the
tropical environment of M�anoa Valley, dense networks of high

frequency rain gauges are required to capture the space-time
variability of rainfall induced by the life-cycle of individual rain
cells. Once enough conditioning data are available, stochastic
interpolation allows imaging of rain fields at very high resolution
(200m in space, 1-min in time) and quantifies the associated
uncertainty. In particular, stochastic interpolation demonstrates
good ability in capturing space-time intermittency. The proposed
framework paves theway toward high-resolution rainfallmonitoring
over small catchments. A critical application is rain monitoring to
support flood forecasting in urban areas, which are particularly
vulnerable because of the combined sensitivity to rainfall variability
due to the high percentage of impervious land surfaces and
vulnerability to flooding due to their concentrated infrastructures
and people.
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APPENDIX:

Inference of model parameters
The parameters of the transform function (i.e. a0, k, and θ) are
first estimated for each rain gauge separately by fitting quantiles
of the observed rainfall intensity distribution to quantiles of the
theoretical target distribution (Eq. 1). Next, each parameter is
interpolated in space using an inverse squared-distance
interpolation (Eq. 3). Figure 8 displays maps of the three
parameters of the transform function for rain events 1 and 3.
The maps of a0 are related to the proportion of dry time steps
during the rain event at hand (high a0 values correspond to few
dry epochs), maps of k are related to the shape parameter of the
rain intensity distribution, and maps of θ are related to the scale
parameter of the rain intensity distribution. Hence, as mentioned
in Section Stochastic Interpolation of Rain Gauge Observations,
the first three moments of the rain intensity distribution are:
mean � kθ, variance � kθ2, and skewness � 2/


k

√
.

Once the parameters of the transform function have been
inferred at each gauge location, rain observations can be
transformed to their latent counterparts. These latent pseudo-

observations are then used to infer the parameters of the
space-time covariance function ρ of the latent field following the
approach proposed by (Benoit et al., 2018). Figure 8 displays the
space-time covariance functions (expressed in a Lagrangian
reference frame, i.e. in a reference that moves following the rain
storm advection) estimated for the rain events 1, 3, 5 and 6. Results
show that the main events 1 and 3 have a higher correlation in space
and time than the smaller events 5 and 6, which is coherent with the
observed variability of raw measurements and interpolated rain
fields. The effect of this difference of space-time variability is
clearly visible in the rainfall animations in supplementary
material. When interpreting the parameters of the covariance
function ρ, it should be kept in mind that they relate to the
latent field and, therefore, only indirectly characterize the
dependence structure of the actual rain fields. Indeed, the actual
space-time correlations within rain fields are defined by the
truncation and transform of the latent field and, therefore,
cannot be analytically derived from correlation lengths in the
latent space. This is why simulations are required to investigate
the space-time properties of rainfall intensities (Section Ability of
Stochastic Interpolation to Predict Rainfall at Ungauged Locations).

FIGURE 8 |Model parameters inferred for, from top to bottom: Event 1, 3, 5 and 6. From left to right: maps of the parameters of the transform function (a0, k and θ),
and space-time covariance of the latent field. Here the covariance of the latent field is expressed in a Lagrangian reference frame moving with the rain storm (advection
velocity: 5.8 m/s for Event 1, 1.2 m/s for Event 3, 0.3 m/s for Event 5, and 0.3 m/s for Event 6; advection direction: 252° for Event 1, 165° for Event 3, 260° for Event 5, and
160° for Event 6).
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