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Résumé

La majorité des processus physiques sur Terre sont couplés. Un processus physique peut en induire un
autre, ce qui est le cas d'une onde se propageant dans une roche poreuse saturée de fluide, ce qui induit un
écoulement de fluide. Dans un milieu biphasique, I'interaction entre les phases solides et fluides conduit a des
effets physiques qui ne sont pas observés dans un milieu monophasique. Ainsi, une description satisfaisante de
systéemes phy-siques complexes nécessite un traitement particulier.

L'application des théories décrivant les processus physiques couplés dans les roches poreuses fracturées est
d’une grande importance dans les scénarios impliquant la séquestration géologique du CO», I'élimination des
déchets nucléaires, I'exploration et la production d’énergie géothermique et les hydrocarbures. Le développe-
ment de méthodes géophysiques non invasives de détection et de surveillance de ces formations géologiques est
cru-cial. La recherche scientifique vise a faire progresser la description quantitative et qualitative des processus
phy-siques couplés dans les roches poreuses. Conformément a ces objectifs, les contributions présentées ici
sont ré-parties dans quatre disciplines différentes : la micromécanique, la géophysique, la mécanique com-
putationnelle et la poroélasticité computationnelle, et la théorie des instabilités non linéaires. Différentes
méthodes analytiques et numériques sont utilisées pour résoudre la physique aux micro- et macro-échelles.
Cela comprend I'étude des processus linéaires quasi-statiques et dynamiques. Ce travail de recherche contient
également des résultats basés sur la théorie des processus physiques non linéaires.

A I'échelle microscopique (ou a I'échelle des pores), une roche est constituée de grains, de pores et de
fractures individuels. De petites déformations causées par une onde sismique se propageant a travers la roche
induisent des gradients de pression dans les fractures conformes. En conséquence, un écoulement de fluide
(appelé “écou-lement de jet”) a lieu jusqu’a ce que la pression interstitielle s’équilibre. En raison de la viscosité
du fluide et du frottement visqueux associé, un tel écoulement de fluide provoque une forte dissipation d’énergie.
Des simula-tions numériques tridimensionnelles de I’écoulement de jet a I'aide d’'une approche par éléments
finis sont effec-tuées et les résultats sont comparés a un modele analytique publié. A partir de cette comparaison,
de nombreuses limitations de la solution analytique publiée sont quantifiées et décrites. Par la suite, un nouveau
modele analy-tique pour la dispersion sismique et I'atténuation associées a I'écoulement de jet est présenté
pour une géométrie de pores qui a été classiquement utilisée pour expliquer ce mécanisme d’expulsion de
I'eau. Ensuite, ce modele analytique est étendu pour traiter des géométries plus complexes de I'espace poreux,
beaucoup plus représenta-tives de celle d'une roche. Les parametres clés de I'’espace poreux qui contrdlent
la fréquence caractéristique (a laquelle se produit le maximum d’atténuation) sont redéfinis. De plus, des
expressions analytiques pour calculer les propriétés de rigidité effective d'un modele de roche, dontI'espace
poreux est décrit par une fracture reliée a un pore ou a plusieurs pores, sont fournies.

A I'échelle macroscopique, une roche poreuse peut étre décrite par un ensemble de propriétés macro-
scopiques, par exemple, les modules élastiques effectifs, la perméabilité, etc. Les équations de Biot décrivent
un systeme couplé hydro-mécaniquement et établissent la théorie largement reconnue de la poroélasticité.
Le milieu bipha-sique est représenté par une matrice poreuse solide élastique saturée d'un fluide visqueux
compressible. La ré-ponse dynamique d’'un tel milieu biphasique et isotrope se traduit par deux ondes longitu-
dinales et une onde de cisaillement, comme prédit par Yakov Frenkel. La modélisation numérique efficace et
précise des équations de la poroélasticité de Biot nécessite la connaissance des conditions exactes de stabilité.
Cette recherche présente les résultats de I’analyse de stabilité de von Neumann des équations de Biot discréti-
sées et de 'équation d’onde amortie linéaire discrétisée. Les conditions exactes de stabilité pour un certain
nombre de schémas implicites et explicites sont dérivées. De plus, un solveur numérique d’'unités de traitement
multi-graphiques (GPU) est déve-loppé pour résoudre les équations élastodynamiques anisotropes de Biot
afin de simuler, en quelques secondes, des champs d’ondes pour des domaines spatiaux impliquant plus de
4,5 milliards de mailles. Une analyse dimen-sionnelle compléte est présentée, réduisant ainsi le nombre de
parametres matériels nécessaires pour les expé-riences numériques de dix a quatre. Une analyse de dispersion
en fonction de parametres adimensionnels est ef-fectuée, conduisant a des relations de dispersion simples
et transparentes. La haute efficacité de notre implémen-tation numérique la rend facilement accessible pour
étudier des scénarios tridimensionnels et a haute résolution d’applications pratiques.
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Dans le cadre de la théorie des instabilités non linéaires, une nouvelle théorie de la nucléation sismique est
pré-sentée. La rhéologie visco-plastique ou élasto-plastique la plus simple permet de modéliser la nucléation
sismique spontanée. En augmentant lentement la contrainte dans le milieu, elle atteint la limite plastique,
produisant ainsi la localisation de la déformation et entrainant le développement lent de bandes de cisaillement
fractales. Au fil du temps, ces derniéres se développent spontanément et des chutes de contrainte se produisent
dans le milieu. Une chute de contrainte correspond a un nouveau modele particulier de localisation de défor-
mation, qui agit alors comme source sismique et déclenche la propagation des ondes sismiques. Cette nouvelle
approche de mo-délisation est basée sur des lois de conservation sans aucune relation constitutive dérivée
expérimentalement.

Mots clefs : Roches poreuses, atténuation, squirt flow, poroélasticité, GPU, propagation des ondes, localisa-
tion des déformations.
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Abstract

The majority of the physical processes on the Earth are coupled. A physical process might induce a different
one, which is the case of a wave propagating in a fluid-saturated porous rock and inducing fluid flow. In
a two-phase medium, the interaction between solid and fluid phases leads to physical effects, that are not
observed in a single-phase medium. Thus, a successful description of complex physical systems requires special
treatment.

The applications of theories describing coupled physical processes in cracked porous rocks are of great
importance in scenarios involving CO, geological sequestration, nuclear waste disposal, the exploration and
production of geothermal energy, and hydrocarbons. Developing non-invasive geophysical detection and mon-
itoring methods for these geological formations is crucial. Scientific research aims to advance the quantitative
and qualitative description of coupled physical processes in porous rocks. In line with these objectives, the
contributions presented here are distributed across four different disciplines: micromechanics, geophysics,
computational mechanics and computational poroelasticity, and the theory of non-linear instabilities. Different
analytical and numerical methods are used to resolve the physics at the micro- and macro-scales. It includes
the study of linear quasi-static and dynamic processes. This research work also contains some results based on
the theory of non-linear physical processes.

At the micro-scale (or pore-scale), a rock consists of individual grains, pores, and cracks. Small deformations
caused by a passing seismic wave propagating through the rock induce pressure gradients in compliant cracks.
As a result, fluid flow (so-called squirt flow) takes place until the pore pressure equilibrates. Due to the
fluid viscosity and the associated viscous friction, such fluid flow causes strong energy dissipation. Three-
dimensional numerical simulations of squirt flow using a finite-element approach are performed and the results
are compared against a published analytical model. From this comparison, many limitations of the published
analytical solution are quantified and described. Subsequently, a new analytical model for squirt flow associated
seismic dispersion and attenuation is presented for a pore geometry that has been classically used to explain
squirt flow. Then, this analytical model is extended to deal with more complex geometries of the pore space,
which are much more closely representative of that of a rock. The key parameters of the pore space which
control the characteristic frequency (at which the maximum of attenuation occurs) are re-defined. Additionally,
closed-form analytical expressions to calculate the effective stiffness properties of a rock model whose pore
space is described by a crack connected to a pore or multiple pores are provided.

At the macro-scale, a porous rock can be described by a set of macroscopic properties, e.g., effective elastic
moduli, permeability, etc. Biot’s equations describe a hydro-mechanically coupled system and establish the
widely recognized theory of poroelasticity. The two-phase medium is represented by an elastic solid porous
matrix saturated with a compressible viscous fluid. The dynamic response of such an isotropic two-phase
medium results in two longitudinal waves and one shear wave, as predicted by Yakov Frenkel. The efficient
and accurate numerical modeling of Biot’s equations of poroelasticity requires the knowledge of the exact
stability conditions. This research presents the results of the von Neumann stability analysis of the discretized
Biot’s equations and the discretized linear damped wave equation. The exact stability conditions for several
implicit and explicit schemes are derived. Additionally, a multi-graphical processing units (GPU) numerical
solver is developed to resolve the anisotropic elastodynamic Biot’s equations to simulate, in a few seconds, wave
fields for spatial domains involving more than 4.5 billion grid cells. A comprehensive dimensional analysis is
presented reducing the number of material parameters needed for the numerical experiments from ten to four.
A dispersion analysis as a function of dimensionless parameters is performed leading to simple and transparent
dispersion relations. The high efficiency of our numerical implementation makes it readily accessible to
investigate three-dimensional and high-resolution scenarios of practical applications.

As a part of the theory of non-linear instabilities, a new theory for earthquake nucleation is presented. The
simplest visco-plastic or elasto-plastic rheology allows us to model spontaneous earthquake nucleation. By
slowly increasing the stress in the medium, it reaches the yield surface, strain localization occurs resulting in the
slow development of fractal shear bands. As time evolves, shear bands grow spontaneously, and stress drops
take place in the medium. A stress drop corresponds to a particular new strain localization pattern which acts as



seismic source and triggers seismic wave propagation. This new modeling approach is based on conservation
laws without any experimentally derived constitutive relations.

Key words: Porous rocks, attenuation, squirt flow, poroelasticity, GPU, wave propagation, strain localization.
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Chapter 1

Introduction

We know the age of the universe (Ade et al., 2016) and it is widely accepted that the universe is expanding.
Several accurate experimental studies, modeling studies and theories exist to support the two statements above.
The Solar System is represented by the Sun and planets and other objects that orbit it. The third planet away
from the Sun is the Earth and, as far as we know, the Earth is the only one that supports life. The evolution of
successful biological populations based on organic compounds has resulted in a huge variety of organisms on
the Earth. Particularly, some organisms reached certain level of evolution, the humans (or Homo sapiens), that
resulted in the development of advanced culture, language, science and other complex social mechanisms. By
“We" in the first sentence of this paragraph I meant humans. One amazing role of humanity is the scientific
research and, thrilled to be part of this, my present thesis is devoted to the scientific development of new
knowledge.

1.1 Coupling physical phenomena

The majority of the physical processes on the Earth are coupled. For example, seismic wave propagation in fluid
saturated porous rocks cause wave-induced fluid flow. Therefore, a successful description of complex physical
systems requires a special treatment. The purpose of this scientific research is to advance the quantitative
and qualitative description of coupled physical processes in porous rocks. The contributions presented here
are distributed across four different disciplines: micromechanics (Eshelby, 1957; Nemat-Nasser and Hori,
2013; Kachanov and Sevostianov, 2018), geophysics (Mavko and Nur, 1975; O’Connell and Budiansky, 1978),
computational mechanics and computational poroelasticity (Charney et al., 1950; Harlow and Welch, 1965;
Virieux, 1986; Frenkel, 1944; Biot, 1962a) and the theory of non-linear instabilities (e.g., bifurcation theory)
which are useful to describe spontaneous earthquake nucleation (Poincaré, 1885; Rudnicki and Rice, 1975;
Poliakov et al., 1994; Sulem and Vardoulakis, 1995; Holzapfel, 2000; Yabuno, 2021). 1 used different analytical and
numerical methods in my research. I start my scientific journey from linear quasi-static and dynamic processes.
Such linear approximations are, in principle, able to capture the key features of the studied phenomena. Then,
I move on to non-linear physical processes and bifurcation theory. This is the most complex and advanced
concept to describe coupled physical processes. Furthermore, this theory may have certain predictive power,
which makes it highly attractive.

I divide my research into four branches (i-iv). The first two branches are denoted to study the coupled physical
processes at the pore scale, the scale of individual grains and pores. It includes the (i) static and (ii) quasi-static
response of a porous rock. The second two branches are denoted to study the coupled physical processes at the
macro scale, by using derived equations for homogenized physical fields. It includes the modeling of (iii) wave
propagation in fluid saturated porous rocks and the modeling of (iv) a non-linear quasi-static response resulting
in strain localization. The strain localization is represented by fractal shear bands. A conceptual representation
of the micro- and macro-scales is shown in Figure 1.1. Below, I provide a more detailed description of the four
branches of my research.

Three main concepts were largely taken into account in my work: coupling, averaging and resolving:

Coupling stands for the coupled physical processes in complex systems. A porous rock saturated with a fluid is
an example of such a system. A physical process taking place in the system might induce a different physical



process as it is the case of wave propagating in a fluid saturated rock and inducing pressure diffusion in the
fluid.

Averaging denotes the two different features:

» Averaging of material parameters, averaged over a particular scale of interest.
¢ Averaging of physical fields to define a set of equations, which describe the physics at a particular scale of
interest.

Resolving stands for tackling high spatial and temporal resolution in numerical solutions. We aim to be able
to quantify all the important characteristics of the relevant fields during the modeling. If the goal is to obtain
averaged quantities, then we calculate volume averages of those fields over the highly resolved spatial domains.

The micro-scale The macro-scale

Figure 1.1: (a) Conceptual representation of rock structure at the micro- and macro-scales.

1.2 Coupled physics at the micro-scale (or pore scale)

At the micro-scale (or pore scale), a rock consists of individual grains, pores and cracks. The rock is heteroge-
neous at multiple scales (and at the micro-scale as well), thus any deformation applied to the rock will cause
heterogeneous stress and strain distribution within its volume. If the rock is fluid saturated, an appropriate
coupling between solid and fluid phases is needed.

Let us consider a particular setup of a fluid saturated cracked porous rock. Cracks are much more compliant
than isometric pores. Small deformations caused by a passing seismic wave propagating through the rock
induce pressure gradients in compliant cracks. As a result, fluid flow (so called squirt flow) takes place until
the pore pressure equilibrates. Due to the fluid viscosity and associated viscous friction, such fluid flow causes
strong energy dissipation (Mavko and Nur, 1975; O’Connell and Budiansky, 1978; Mavko and Jizba, 1991;
Dvorkin et al., 1995; Pride et al., 2004; Gurevich et al., 2010; Miiller et al., 2010). This phenomenon results in
significant dispersion and attenuation of seismic waves. Figure 1.2 shows a slice of a three-dimensional X-ray
image of a rock (a) and the conceptual model of a rock (b) where an isometric pore (torus) is connected to a
crack (flat cylinder). Here this conceptual model is used to study the squirt flow numerically and analytically.

I study static and quasi-static processes the rock model. To accurately describe the elastic and visco-elastic
properties of the model (Figure 1.2b), one needs (a) the static elastic moduli of the interconnected pore and
crack and (b) and accurate description of the visco-elastic rock stiffness due to the fluid flow in the crack. The
static elastic moduli can be calculated by applying a displacement boundary condition of the form u to a
certain wall of the three-dimensional model (u is the displacement). Similarly, the visco-elastic moduli can
be calculated by applying the displacement boundary condition of the form u = 1078 x e®?, where i is the
imaginary unit, w is the angular frequency and ¢ is time.



One measure of seismic P-wave attenuation is defined as the so-called inverse quality factor 1/Q(w) = Im (M (w))/Re (M (w))
(O’Connell and Budiansky, 1978), where w = 27 f is the angular frequency (f is the frequency) and M = K+4/3G
is the complex-valued P-wave modulus, K and G are the bulk and shear moduli, respectively.

We recall a brief overview of the physics based on previous analytical studies (Mavko and Jizba, 1991) with some
additional information obtained from numerical simulations (Quintal et al., 2019; Alkhimenkov et al., 2020a,b;
Lissa et al., 2020). In the physics of squirt flow, the cause of energy dissipation is fluid pressure diffusion at the
pore scale. An idealized rock model can be parameterized by three components: solid elastic matrix, isometric
pores and thin compliant cracks. Pores and cracks are interconnected and saturated with a fluid. A passing
seismic wave deforms the compliant cracks more than the stiff pores, which causes fluid pressure gradients in
the cracks. This results in fluid pressure diffusion, sometimes referred to as local fluid flow or squirt flow, which
strongly depends on the frequency of the propagating wave.

At low-frequencies, the fluid pressure becomes uniform throughout the pore space because there is enough time
for it to equilibrate (Figure 1.3). This is called relaxed state. The effective elastic properties can be calculated
by using Gassmann’s equations (Gassmann, 1951) given that the elastic moduli of the dry frame are known.
At low-frequencies, 1/Q is proportional to = w' according to numerical simulations for simple geometries
(Alkhimenkov et al., 2020a). At intermediate frequencies, the fluid pressure gradients are at their maximum,
which corresponds to the attenuation peak. The frequency at which the attenuation is at its maximum is called
the characteristic frequency w.. At high frequencies, there is no time for fluid to flow or fluid pressure to diffuse
between cracks and pores; cracks behave as hydraulically isolated from pores. This is called unrelaxed state. The
slope of the high-frequency asymptote of the attenuation curve depends on the pore geometry (Alkhimenkov
etal., 2020a,b). If the pore space is represented by a penny shaped crack connected to a toroidal pore, then 1/Q
at high-frequencies is proportional to = w~!/2.

U
.
N
.L '\ h
== ———————————
b
\'\
z
Y.1.x
(a) (b)
Slice of the Berea sandstone sample. Conceptual model

Figure 1.2: (a) A conceptual model of a rock and (b) a slice of a sandstone.
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Figure 1.3: Numerical and analytical results for the Big pore model with a crack aspect ratio @ = 0.005: (a) Real
part of the [CJ;] . component and (b) dimensionless attenuation for the [Cj;] ., component. On the right,
snapshots of the fluid pressure Py at three different frequencies : LF - low frequency limit (relaxed state), Fc -
intermediate frequency (close to the characteristic frequency) and HF - high frequency limit (unrelaxed state).
The spatial dimension of the snapshots are not-to-scale and their colors representing the fluid pressure Py
correspond to a downward displacement (compression) of u = 1078 x /“’m applied to the top boundary of the
model.

1.3 Coupled physics at the macro-scale

At the macro-scale, a porous rock can be described by a set of macroscopic properties, e.g., effective (averaged)
elastic moduli, permeability etc. Such properties can be measured and/or calculated numerically and analyti-
cally for a particular representative elementary volume (REV). Furthermore, a special set of equations should be
used to model the coupled physics at the governing scale of interest.

Let us consider a porous rock saturated with a fluid. A set of equations describing such a hydro-mechanically
(HM) coupled system is governed by Biot’s equations (Biot, 1956b,a, 1962a,b), which establish the widely
recognized theory of poroelasticity. The two-phase medium is represented by an elastic solid matrix (skeleton)
saturated with a compressible viscous fluid. The dynamic response of such an isotropic two phase medium
results in two longitudinal waves (Figure 1.4) and one shear wave, as predicted by Frenkel (Frenkel, 1944). The
wave of the first kind is a true longitudinal P wave (primary wave or fast P-wave) where the solid matrix motion
and the fluid particle velocity are in-phase. The wave of the second kind (slow P-wave) is a highly attenuated
wave where the solid matrix motion and the fluid particle velocity are out-of-phase. Depending on the medium’s
properties, the slow wave may propagate as a longitudinal wave (Figure 1.5b), or it may diffuse and attenuate



quickly (Figure 1.5a). The fluid diffusion process exhibit a much larger characteristic time scale then the wave
propagation process, therefore, a special numerical scheme is needed to resolve both processes simultaneously.
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Figure 1.4: Snapshots of different fields from a numerical simulation of propagating waves in two-dimensional
isotropic poroelastic media. Panel (a) shows the total pressure field where the fast P-wave and the slow P-wave
are indicated. Panel (b) shows the velocity field in the x-direction, where the fast P-wave, shear wave and slow
P-wave are visible.
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Figure 1.5: Snapshots of the velocity field in x-direction from a numerical simulation of propagating waves in
three-dimensional anisotropic poroelastic media. Panels (a-b) show the velocity field. The slow P-wave behaves
as a diffusion mode (a) and as a true propagating wave (b).



Non-linear instabilities and spontaneous earthquake nucleation

Earthquakes are seismic events that are caused in the Earth’s subsurface either by natural processes (e.g. tectonic
activity) or by anthropogenic activities (e.g. fluid injection). A lot of research has been done on the mechanism
of seismic triggering events, but the physics behind earthquake nucleation is still poorly understood. The
limitations in knowledge are associated with (i) oversimplified physics in analytical models and numerical
simulations, which only describe a subset of features of the seismic cycle, (ii) usually one- or two-dimensional
modeling studies bounded by the lack of computing power, (iii) lack of fully coupled physical models resolving
thermo-hydro-mechanical interactions. All these limitations result in little predictive power of the current
models.

We propose a new mechanism of earthquake nucleation (Figure 1.6), considering an elasto-plastic rheology;,
where the plasticity is implemented using a pressure-dependent Coulomb yield theory. So far in 2D, we apply a
pure shear boundary condition and slowly increase shear stress in the simulation. At some point, the stress
reaches the Coulomb yield surface and then local strain localizations start to develop (Minakov and Yarushina,
2021) resulting in fractal shear bands (Figure 1.6b). The evolution of the strain localizations is spontaneous and
cannot be rigorously predicted. Per one load increment, only local new strain localisation appears which results
in stress drop (Figure 1.6c). This new strain localisation can be visible in the anti-symmetric displacement
field (Figure 1.6a), which corresponds to the initial condition for the earthquake nucleation. This triggering
mechanism is similar to a particular double-couple (DC) moment tensor source, typically observed in real
earthquakes. Real earthquakes may also include more complicated processes with non-DC components which
can be analysed with seismic full moment tensors (e.g., Alvizuri et al. (2018)). Our new numerical algorithm
simulates the quasi-static loading and wave propagation mechanics simultaneously and can be further extended
to capture a more complex rheology. Furthermore, follow up studies will be performed in 3D.
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Figure 1.6: Conceptual model of spontaneous earthquake nucleation. Panel (a) illustrates the displacement field
corresponding to a stress drop; this displacement field represents the focal mechanism. Panel (b) illustrates the
fractal strain localization pattern of the displacement field developed during the cumulative evolution of the
strain field. Panel (c) shows the stress evolution in the model with time. The inset in panel (a) represents the
moment tensor source. All quantities are dimensionless.



1.4 Objectives, outline and contributions

1.4.1 Objectives

Development of methods

The global objective of this thesis is to study and resolve a range of coupled physics using analytical and
numerical techniques.

For this, I develop the following algorithms:

¢ The development and validation of a finite-element numerical solver to calculate the effective visco-elastic
properties of a hydro-mechanically coupled system at the pore scale.

The development and validation of an analytical model for seismic dispersion and attenuation due to
fluid flow at the pore scale (squirt flow) for various geometries.

The development and validation of high-performance algorithms based on graphical processing units for
wave propagation in poroelastic media.

The development of high-performance algorithms based on graphical processing units for non-linear
elasto-plastic, visco-plastic, visco-elasto-plastic and poro-elasto-plastic rheologies.

The development of a high-performance algorithm based on graphical processing units to simultaneously
simulate quasi-static and dynamic responses to model spontaneous earthquake nucleation.

1.4.2 OQutline

The thesis is structured as follows:
Micro-scale

¢ In Chapter 2, we present a three-dimensional numerical study of fluid flow at the pore scale (squirt flow)
resulting in seismic dispersion and attenuation. We compare our inherently accurate three-dimensional
numerical solution against a published analytical model for a simple pore geometry and a range of
scenarios. As a result, we observe significant discrepancies which reveal and delineate the limitations of
the analytical model.

¢ Chapter 3 presents a three-dimensional numerical study of fluid flow at the pore scale (squirt flow)
for a different pore geometry (two intersecting cracks) with a particular focus on azimuth-, angle- and
frequency-dependent behavior of seismic waves. Among our conclusions, we show that even in such a
simple pore geometry, the velocity anisotropy and other seismic characteristics are complex. Therefore,
seismic data cannot provide us exclusive characterization of the pore space without additional prior
information.

¢ In Chapter 4, we present a new analytical model for fluid flow at the pore scale (squirt flow). This model
is validated against a three-dimensional numerical solution for a simple pore geometry that has been
classically used to explain squirt flow. Our analytical model provides very accurate predictions for the
attenuation and dispersion of the moduli across the whole frequency range.

¢ In Chapter 5, we extend the developed analytical model for a more complex geometry of the pore space.
This model is validated against a three-dimensional numerical solution for different pore geometries and
provide accurate results for attenuation and dispersion.



Macro-scale

¢ In Chapter 6, we developed a multi- graphical processing units (GPU) numerical application to resolve
the anisotropic elastodynamic Biot’s equations that relies on a conservative numerical scheme to sim-
ulate, in a few seconds, wave fields for spatial domains involving more than 1.5 billion grid cells. We
present a comprehensive dimensional analysis reducing the number of material parameters needed for
the numerical experiments from ten to four. Finally, we present several numerical modeling experiments,
including a three-dimensional simulation of fluid injection into a poroelastic medium.

¢ In Chapter 7, we perform the von Neumann stability analysis of the discretized Biot’s equations. We use
an explicit scheme for the wave propagation and different implicit and explicit schemes for Darcy’s flux.
We derive the exact stability conditions for all the considered schemes. The obtained stability conditions
for the discretized Biot’s equations were verified numerically in one-, two- and three-dimensions.

¢ In Chapter 8, we present a physically based model of a spontaneous earthquake nucleation. This in-
cludes modeling of the visco-elasto-plastic behavior of rocks and more complex rheologies. We propose
an implementation which simultaneously simulates both, the quasi-static loading and dynamic wave
propagation.

In Appendix A, I include the article by Lissa et al. (2020). This scientific article describes the squirt flow in cracks
with rough surfaces.

In Appendix B, I include the article by Wyser et al. (2020a). We present an efficient MATLAB-based implementa-
tion of the material point method (MPM) and its most recent variants.

In Appendix C, I include the article by Wyser et al. (2021a). We propose an explicit GPU-based solver (including
a multi-GPU implementation) within the material point method (MPM) framework on a single graphics pro-
cessing unit (GPU) to resolve elastoplastic problems under two- and three-dimensional configurations (i.e.,
granular collapses and slumping mechanics).

1.4.3 Contributions

I have contributed as a leading author in the project presented in Chapters 2-8, and as a co-author in the
projects presented in Appendices A-C. I have written the main chapters and created all the figures included in
these chapters based on selected results obtained from my research. All the co-authors contributed with ideas,
corrections, suggestions and improvements to the readability and clarity of the results. My contributions in
each chapter are given below.

¢ In Chapter 2, I used the finite element solver presented by Beatriz Quintal (Quintal et al., 2019). I have
extended the solver to deal with anisotropic materials (vertical transverse isotropy and orthorhombic
symmetries) and [ have implemented the boundary conditions for the direct relaxation tests to compute
all components of the stiffness matrix. I have implemented in Matlab the existing analytical model by
Collet and Gurevich (2016).

¢ In Chapter 3, I have presented two scalar parameters which can be used to measure the anisotropy
strength of a model with any elastic symmetry in bulk and shear. I have written Matlab codes for the
calculation of the anisotropy measures in bulk and shear.

¢ In Chapters 4 and 5, I have developed the new analytical models for seismic dispersion and attenuation
due to squirt flow for various geometries. I have written symbolic Maple and Matlab codes.

 In Chapter 6, [ have developed a multi- graphical processing units (GPU) numerical solver to resolve the
anisotropic elastodynamic Biot’s equations that relies on a conservative numerical scheme to simulate,
in a few seconds, wave fields for spatial domains involving more than 1.5 billion grid cells. I have used
previous open access results by Ludovic Rédss during the development phase. I have written symbolic



Maple, Matlab and GPU-based (CUDA C) solvers.

In Chapter 7, I have performed the von Neumann stability analysis of the discretized Biot’s equations. I
have written symbolic Maple, Matlab and GPU-based (CUDA C) solvers. Together with Lyudmila Khaki-
mova and Yury Podladchikov, I have performed the von Neumann stability analysis of the discretized
damped wave equation.

In Chapter 8, together with Yury Podladchikov, I have performed a physically based model of a sponta-
neous earthquake nucleation in visco-plastic medium. Then, I have performed a physically based model
of a spontaneous earthquake nucleation in elasto-plastic medium. Together with Ivan Utkin, I have
extended the rheology to visco-elasto-plastic. I have written the solver which simultaneously simulates
both, the quasi-static loading and dynamic wave propagation. This solver is used to simulate spontaneous
earthquake nucleation.

In Appendix A, I have contributed with ideas, corrections, suggestions and improvements to the readabil-
ity and clarity of the results. I provided Matlab scripts to calculate the effective elastic properties of fluid
saturated porous media using Gassmann’s equations.

In Appendix B and C, I helped Emmanuel Wyser to write the original manuscript and to develop the
Matlab and GPU-based solvers.
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Abstract

Seismic waves may exhibit significant dispersion and attenuation in reservoir rocks due to pore-scale fluid flow.
Fluid flow at the microscopic scale is referred to as squirt flow and occurs in very compliant pores, such as
grain contacts or microcracks, that are connected to other stiffer pores. We perform 3D numerical simulations
of squirt flow using a finite element approach. Our 3D numerical models consist of a pore space embedded
into a solid grain material. The pore space is represented by a flat cylinder (a compliant crack) whose edge is
connected with a torus (a stiff pore). Grains are described as a linear isotropic elastic material while the fluid
phase is described by the quasistatic linearized compressible Navier-Stokes momentum equation. We obtain
the frequency-dependent effective stiffness of a porous medium and calculate dispersion and attenuation due
to fluid flow from a compliant crack to a stiff pore. We compare our numerical results against a published
analytical solution for squirt flow and analyze the effects of its assumptions. Previous interpretation of the
squirt flow phenomenon based mainly on analytical solutions is verified and some new physical effects are
identified. The numerical and analytical solutions agree only for the simplest model in which the edge of the
crack is subjected to zero fluid pressure boundary condition while the stiff pore is absent. For the more realistic
model that includes the stiff pore, significant discrepancies are observed. We identify two important aspects that
need improvement in the analytical solution: the calculation of the frame stiffness moduli and the frequency
dependence of attenuation and dispersion at intermediate frequencies.

2.1 Introduction

Seismic methods are widely used for detection and characterization of fluid-saturated porous rocks (Yan et al.,
2019). Many studies show that a passing wave loses energy propagating through fluid-saturated rocks (Mavko
and Jizba, 1991; Dvorkin et al., 1995; Pride et al., 2004; Miiller et al., 2008; Gurevich et al., 2010; Miiller et al., 2010;
Pimienta et al., 2015a,b). There are several phenomena responsible for energy loss associated with the pore fluid
(Miiller et al., 2010): e.g. wave-induced fluid flow in partially saturated rocks and in fractures at the mesoscopic
scale, and squirt flow in cracks or in grain-to-grain contacts at the pore scale. Rocks are heterogeneous at all
scales and can be described with respect to a particular scale: the wavelength scale, the mesoscopic scale and
the pore scale. The wavelength scale obviously refers to the wavelength of a propagating wave; the mesoscopic
scale is mush larger than the size of individual grains and pores but smaller than the wavelength; the pore scale
is of the size of individual grains, pores and micro-cracks. Here, we identify fractures as discontinuities at the
mesoscopic scale and cracks as discontinuities at the pore scale.

At the wavelength scale, so-called global flow occurs due to fluid pressure gradients between peaks and troughs
of a passing wave (Biot, 1956b, 1962b). At the mesoscopic scale, fluid pressure gradients occur at scales much
larger than the pore-scale but smaller than the wavelength of a propagating wave: for example, flow may
occur between fractures and the porous background of the rock (Brajanovski et al., 2005; Masson et al., 2006;
Masson and Pride, 2007; Rubino et al., 2014; Grab et al., 2017). This wave-induced fluid flow in fractures at the
mesoscopic scale can be described using the theory of Biot (1956b, 1962b) assuming heterogeneous material
properties (i.e., soft, highly permeable fractures and stiff, low-permeability rock matrix). Analytical solutions for
mesoscopic heterogeneities of specific geometries were developed, for example, by White et al. (1975), White
(1975), Pride and Berryman (2003a,b) and Pride et al. (2004).

Fluid flow in cracks at the pore scale (squirt flow) occurs between cracks and pores of different stiffness, sizes and
orientations. Such flow is believed to be significant at ultrasonic and sonic frequencies (Mavko and Nur, 1975)
and also at seismic frequencies (Mavko et al., 2009; Miiller et al., 2010). Several experimental studies confirmed
the importance of squirt flow at different frequency ranges (Mayr and Burkhardt, 2006; Mikhaltsevitch et al.,
2015; Subramaniyan et al., 2015; Pimienta et al., 2015a,b; Chapman et al., 2019). An overview of early theoretical
studies on squirt flow is given by Jones (1986).

Simple analytical solutions for squirt flow exist and are based on interconnected pores with different aspect
ratios (O'Connell and Budiansky, 1977; Palmer and Traviolia, 1980), on the connection of a compliant crack and
a stiff pore (Murphy et al., 1986; Mukerji and Mavko, 1994; Dvorkin et al., 1995; Pride et al., 2004; Gurevich et al.,
2010) or on the connection of small aspect ratio cracks and spheroidal pores (Xu, 1998; Chapman et al., 2002;
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Chapman, 2003; Jakobsen and Chapman, 2009). In real rocks, examples of compliant pores are microcracks
and grain contacts. The low- and high-frequency limits of the stiffness moduli in such media when saturated
with a liquid are reasonably well understood (Gassmann, 1951; Mavko and Jizba, 1991; Mavko et al., 2009;
Gurevich et al., 2009a). On the other hand, the frequency-dependent behavior of velocity and attenuation at
intermediate frequencies is not fully understood. Numerically, squirt flow can be studied by simulating the
coupled fluid-solid deformation at the pore scale which is a difficult exercise from a computational point of
view. A few numerical approaches appeared in the literature (Zhang and Toksdz, 2012; Quintal et al., 2016, 2019;
Das et al., 2019). The very recent study by Das et al. (2019) simulates the coupled fluid-solid deformation at the
pore scale, including inertial and non-linear terms in the Navier-Stokes equation.

The wavelength of a passing wave is much larger than the size of individual cracks and pores, therefore, wave
propagation is controlled by effective rock properties. Squirt flow is frequency dependent, thus effective
frequency-dependent stiffness moduli represent volume averaged rock properties. This is called upscaling
(going from the microscale to larger scales through averaging). We calculate the effective stiffness tensor over a
representative elementary volume and analyze the corresponding stiffness moduli dispersion and attenuation.
Our numerical simulation is based on the approach proposed by Quintal et al. (2016, 2019). This numerical
approach describes the rock matrix properties using Hooke’s law and the fluid flow using the quasi-static
linearised compressible Navier-Stokes momentum equation, and then, through volume averaging, calculates
the effective viscoelastic stiffness tensor. We compare our numerical results with those of an analytical solution
for squirt flow in anisotropic media (Collet and Gurevich, 2016). We choose this particular analytical solution
because it uses very specific material properties (e.g., pore-space geonetry, elastic properties of the background
medium, crack compliances, porosity, fluid viscosity) without adjusted abstract parameters, so that the direct
comparison with the numerical results is possible. The aim of this work is to (1) numerically evaluate the energy
loss caused by squirt flow at the pore scale for a specific 3D pore geometry (a torus connected to a crack), (2)
compare the numerical results against a published analytical solution to examine the assumptions made during
the derivation of this analytical solution. Our conclusions can be also applied to the analytical solution for
squirt flow in isotropic media proposed by Gurevich et al. (2010).

The paper is organized as follows. First, we briefly describe the physics behind the squirt flow mechanism. We
then describe the theory and methodology of the numerical solution. After, we briefly explain the analytical
solution by Collet and Gurevich (2016). Next, we show the numerical results and the comparison with the
analytical solution. Finally, we discuss the results and draw some conclusions.

2.2 Abrief overview of the physics

Squirt flow causes seismic wave dispersion and attenuation due to the energy dissipation caused by fluid
pressure diffusion at the pore scale. Assume that the pore space consists of big isometric pores and cracks
with low aspect ratios, pores and cracks are fully saturated with a liquid. Cracks are much more compliant
than isometric pores, therefore, a passing wave induces pressure gradients in compliant cracks. These pressure
gradients force fluid to move between compliant cracks and stiff isometric pores until the pore pressure
equilibrates. Due to the fluid’s viscosity and associated viscous friction, this mechanism causes strong energy
dissipation. Some useful definitions: "rock matrix" or "porous background" refer to grains and pores, "frame"
refers to grains, pores and cracks, "modified frame" refers to grains, pores and cracks saturated with a liquid
while pores are dry.
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2.2.1 Low frequencies

In the low frequency regime, the fluid pressure has enough time to equilibrate during a half-cycle of the wave
and become uniform throughout the pore space, therefore, Gassmann’s equations are valid (Gassmann, 1951).
This is called relaxed state. Only a few parameters are needed to calculate the effective properties of the rock
in the low frequency limit: the bulk modulus of the grains, the bulk modulus of the drained frame, the bulk
modulus of the fluid and total porosity. Then, isotropic or anisotropic Gassmann’s equations can be used to
calculate the effective elastic moduli of the saturated medium. Typically, the relative volume of cracks is very
small (i.e., two orders of magnitude smaller compared to the volume of the stiff pores), therefore, in Gassmann’s
equations only the porosity of the stiff pores can be used instead of the total porosity (Mavko and Jizba, 1991;
Gurevich et al., 2010).

2.2.2 High frequencies

In the high frequency regime, the fluid pressure does not equilibrate between cracks and stiff pores during a
half-wave cycle. Furthermore, for cracks with very low aspect ratios saturated with a liquid, the normal crack
compliance is equal to zero (but not the tangential compliance). Therefore, cracks become stiffer with respect
to normal deformation. In other words, cracks behave as hydraulically isolated and are stiffened by the liquid.
This is called unrelaxed state. The fluid in the cracks is assumed to be part of the frame material (Mavko and
Jizba, 1991).

Isotropic or anisotropic Gassmann’s equations can be used to calculate the effective elastic moduli of the
saturated medium, but the frame moduli are stiffer compared to those at the low frequency because the normal
crack compliance is negligible. Gassmann’s equations are still valid because the pore pressure is uniform in all
stiff pores. Thus, the effective elastic moduli are different in the high frequency regime from those in the low
frequency regime.

2.2.3 Intermediate frequencies

At intermediate frequencies a quantitative description of the physics becomes more complicated. Roughly,
during the transition from a relaxed state to an unrelaxed state, the pressurized fluid stiffens the cracks as
frequency increases. Therefore, this frequency-dependent stiffening phenomenon also stiffens the effective
stiffness moduli. This non-linear stiffening effect is difficult to model analytically. The present numerical study
sheds some light on this problem and provides a quantitative description on the frequency-dependent behavior
of the moduli dispersion and attenuation.

Mathematical formulation

We consider that at the pore scale, a rock is composed by a solid phase (grains) and a fluid-saturated pore space.

Grains are described as a linear isotropic elastic material for which the conservation of momentum is
V.-0=0, (2.1)

where o is the stress tensor, V - denotes the divergence operator acting on a tensor field o. The stress-strain
relation is written as

o=C:e, 2.2)
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where € is the strain tensor, C is the 4-th rank stiffness tensor and : denotes the double dot product. For an
isotropic material, the components of the stiffness tensor can be fully described by the bulk K and shear p
moduli.

The fluid phase is described by the quasi-static linearised compressible Navier-Stokes momentum equation
(Landau and Lifshitz, 1959a):

1
—Vp+nViv+ FV (V¥ =0, (2.3)

where v is the particle velocity, p is the pressure and 7 is the shear viscosity and V denotes the nabla operator
acting on vector v and scalar p fields. Equation 4.54 is valid for the laminar flow of a Newtonian fluid (i.e., low
Reynolds numbers R, R, < 1).

2.3 Numerical methodology

For the numerical simulation we solve the conservation of momentum equation 4.52 in the frequency domain
for both solid and fluid phases and the generalized stress-strain relation resulting from combining equations
4.53 and 4.54 (Quintal et al., 2016, 2019). Thus, the stress-strain relation in the temporal-frequency domain is
(in index form):

2
oij :/leﬁl-j+2pe,-j+ia)(2ne,-j—gneﬁij), (2.4)

where ¢;; are the components of the strain tensor,

6_._1(au,~+6u,-) (2.5)
Mo ax]' ox; )’ ’

e is the trace of the strain tensor, A and p are the Lame parameters, u; denotes the displacement in the i-th
direction, §;; is the Kronekecker delta and w is the angular frequency.

Equations 4.52 and 2.4 are implemented into a finite-element solver. In the domain of the model representing
a solid material, equation 2.4 reduces to Hooke’s law (equation 4.53) by setting the shear viscosity 7 to zero.
Similarly, in the domain of the model representing a compressible viscous fluid, the shear modulus p is set to zero
and hence equations 2.4 and 4.52 reduce to the linearised compressible Navier-Stokes equation (equation 4.54).
An advantage of the proposed formulation is the natural coupling between the solid and fluid displacements at
the boundaries between subdomains (Quintal et al., 2016). In our simulation the energy dissipation is caused
only by fluid pressure diffusion since inertial effects are neglected.

The whole domain is discretized using an unstructured mesh with tetrahedral elements. A direct PARDISO
solver (Schenk and Gdirtner, 2004) is used for solving a linear system of equations. For all models, the total
number of elements ranges from 4.3 x 10° to 6.3 x 10%. The total number of degrees of freedom is 17 x 10° or
more. The simulation is performed for 13 — 25 different frequencies (depending on the model) from 1 Hz to 10°
Hz. For each frequency, the solver uses approximately 0.9 TB of RAM memory. Under a 100% performance of 32
Intel dual-socket E5-2683 v4 2.1GHz cores, two hours of calculations are needed for each frequency.

Direct relaxation tests are performed for numerically computing the five independent components of the
effective stiffness tensor. Only five components are needed because the symmetry of the proposed geometry is
transversely isotropic with the vertical axis of symmetry (VTI) (the model’s geometry is explained below). For
simplicity purposes, we use Voigt notation for the stress, strain, stiffness and compliance tensors. For the normal
compression test in the vertical z direction (C33 component) the boundary conditions are: at the top boundary

15



a vertical displacement is assigned of the form u3 = 1078 x exp(iw1), at the bottom the vertical displacement is
set to zero, at the side boundaries the normal displacement is set to zero. For the xy shear test (Cgg component),
the top boundary is assigned a displacement in x-direction of the form u; = 107 x exp(iw?), at the bottom
all displacements are set to zero, at the side boundaries displacements in y- and z- directions are set to zero.
Equivalent sets of boundary conditions are applied to obtain the relationships between the other stress and
strain components and, hence, the C;1, C44 components. For the C13(w) component, a mixed direct test is used,
the corresponding boundary conditions are given in Appendix 3.7. The initial conditions for displacements are
set to zero. The resulting stress and strains are averaged over the entire spatial domain for each frequency. Then,
the complex valued C; j(w) component is calculated for each frequency. For example,

(o3(w))

C = )
B = @y

(2.6)

where (-) represents the volume averaging over the sample volume. Equation 4.56 is valid because all our models
exhibit VTI symmetry. We calculate C;; (w), Co2(w), C44 (@), Cgg(w), Ci2(w) = C11(w) —2Cgs(w) components in
the same way. The inverse quality factor is calculated as (O’Connell and Budiansky, 1978)

1 Im{G(w)}

= . 2.7
Qij(w) Re{C;jw)}

2.4 Analytical solution of Collet and Gurevich (2016)

In this study, we compare the results of our numerical simulation against an anisotropic version of the squirt
flow analytical solution of Gurevich et al. (2010) proposed by Collet and Gurevich (2016). These squirt flow
solutions combine the pore pressure relaxation model of Murphy et al. (1986) with the discontinuity tensor
formulation of Sayers and Kachanov (1995). Collet and Gurevich (2016) consider a double-porosity medium
with aligned identical cracks embedded in a hypothetical background rock matrix made up of grains and stiff
pores only (see also Pervukhina et al. (2010)). This anisotropic squirt flow solution, contrary to our numerical
method, assumes (A) an isotropic rock matrix embedding the cracks (we extend that assumption to a rock with
a transversely isotropic background) and (B) a smaller crack aspect ratio, in the range of 1073 — 107> (we show
that the crack aspect ratio can be larger).

In the Collet and Gurevich (2016) model, low- and high-frequency limits are expected to be consistent with
Gassmann’s and Mavko-Jizba (Mavko and Jizba, 1991) equations, respectively, and the frequency dependence is
controlled by a frequency dependent effective fluid bulk modulus K; (w) of the fluid filling the crack (Gurevich
etal., 2010). The crack is fully described in terms of normal and tangential compliances, Z,, and Z;, respectively
(Kachanov, 1993; Schoenberg and Sayers, 1995; Sayers and Kachanov, 1995). They consider the so-called modified
frame in which only the cracks are filled with fluid, whereas the stiffer pores are empty (Mavko and Jizba, 1991).
In the low-frequency limit, the relaxed moduli of the modified frame are equal to the rock dry moduli (which
means that Z,,' I = ); while in the high-frequency limit, the fluid in the cracks stiffens the frame and the
unrelaxed moduli of the modified frame are equal to the dry moduli of the rock without a compliant porosity
(which means that Z,T f- 0, i.e., without a crack) (Mavko and Jizba, 1991; Berryman, 2007; Gurevich et al.,
2009a).

In the analytical solution of Collet and Gurevich (2016), the frequency dependent compliance tensor of the
modified frame is written as (for a horizontal transversely isotropic (HTI) medium) (Kachanov, 1993; Schoenberg
and Sayers, 1995; Sayers and Kachanov, 1995):

b
Spin (@) = Sy, + ASh (), 2.8)
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where S, is the compliance tensor of the rock matrix, and ASM¥ () is the additional compliance due to the
crack (Schoenberg and Helbig, 1997):

ZME@w)y 0 0 0 0 0

0 0 0 0 0 0

Me, .| 0 0 0 0 0 0
ASmn@)= | g 0O 0 0 0 0 2.9)

0 0 0 0 Zs 0

0 0 0 0 0 Zs

The frequency-dependent normal fracture compliance is
V4

ZME () = ~ : (2.10)

1+ $e(LIKE @)=Bmy)

where ¢ is the compliant porosity (crack porosity), Z, is the normal compliance of the crack and S, is
the compressibility of the modified frame (the arithmetic average). Equation 4.60 differs slightly from the
corresponding equation in Collet and Gurevich (2016) which erroneously contained the compressibility of the
grain material S¢ instead of 8, r. However, our calculation shows that the corresponding error has a very small
effect on the effective properties: adding or subtracting 30% from S, in equation 4.60 leads to less than 5%
effect on the effective properties.

Gurevich et al. (2010) showed that the stiffness of the crack can be described using a frequency-dependent fluid
bulk modulus K; (w):

2J1(ka)

B kaJo(kr) Kp @10

Kf*(w)z [1

where J; is Bessel function of the first kind ({ = 0 or ¢ = 1 correspond to the zero- or first-order Bessel function),
Ky is the fluid bulk modulus, a is the radius of the crack, k is the wavenumber of the pressure wave:

. 1/2
ka=2 (—M) , 2.12)
a Kf

a is the aspect ratio of the crack (thickness h divided by diameter: i/(2a)) and 7 is the viscosity of the fluid.
Equations 4.61-4.62 were obtained by imposing a zero fluid pressure boundary condition (Py = 0) at the edge of
the cylindrical crack (Gurevich et al., 2010).

The frequency-dependent stiffness tensor of the fluid saturated medium is given by the anisotropic Gassmann’s
equation (Gassmann, 1951):

Coit(w) = Co¥ (@) + amanM 2.13)
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amzl—(z c,,f‘f,f)ﬁg/g (2.14)

form=1,2,3 and a4 = a5 = ag = 0, and where

-1
M= (<Pﬁf+ (l—w)ﬁg—K*ﬁé) : (2.15)
1 3 3
K'=3 Y ¥ e, (2.16)
m=1n=1

¢ is the total porosity of the medium without the compliant porosity (which is neglected because the compliant
porosity is two or more orders of magnitude lower than the stiff pore’s porosity), K* is the generalized bulk
modulus of the modified frame, ris the compressibility of the fluid, a, is the Biot-Willis coefficient, S is the
compressibility of the grain material. The effective transversely isotropic stiffness matrix can be written for
horizontal (HTI) and vertical (VTI) symmetry axis (see Appendix 2.9). The resulting VT1I stiffness matrix is used
to compare the analytical solution with results from numerical simulations.

2.5 Results

We model coupled solid-fluid deformation at the pore scale. In this study, we consider three 3D numerical
models consisting of a pore space embedded in an elastic solid grain material. The pore spaces are:

i) a flat cylinder (crack), whose edge (or tip of the crack) is subjected to zero fluid pressure boundary con-
dition (P = 0 model, Figure 2.1a, 2.1b),

ii) a flat cylinder whose edge is connected to a big torus (big pore model, Figure 2.1c, 2.1d),

iii) a flat cylinder whose edge is connected to a small torus (small pore model, Figure 2.1e, 2.1f).

Topologically a flat cylinder whose edge is connected to a big/small torus represents one domain. Geometrical
properties are shown in Table 5.1. The model geometry i) with zero fluid pressure boundary condition is chosen
because it represents the analytical solution of Collet and Gurevich (2016). Originally, the model geometry in
ii) and iii) was proposed by Murphy et al. (1986). Then, this was modified by Gurevich et al. (2010), Collet and
Gurevich (2016) to the pore geometry in i), where the shape of the stiff pores is irrelevant (which means that
a torus is a possible choice). Each of these three 3D numerical models highlights different physical aspects
of the squirt flow mechanism. The employed fluid properties are those of glycerol and the grain material has
properties of quartz (Table 5.2). As shown in Table 5.1, the crack diameter is 20 cm and the crack thickness is 0.05
cm, therefore, the crack aspect ratio is 0.5/200 = 0.0025. The model geometry is scalable, i.e, if all geometrical
parameters are divided or multiplied by any number, the numerical results will be the same. The results are
controlled by the dimensionless aspect ratio.

The mesh is coarse in the solid domain, finer in the torus and the finest in the flat cylinder representing the crack.
Due to the model’s symmetry and RAM memory limitations, the simulations are performed on a quarter of the
model (Figure 2.1b, 2.1d and 2.1f), a cuboid (grain material) whose size is (0.2 x 0.2 x 0.2)m3. In all simulations,
the grain is described as a linear elastic solid material (equations 4.52 and 4.53) and the fluid is described as a
compressible Newtonian fluid (equation 4.54).
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Figure 2.1: Py = 0 model: (A) Sketch illustrating a flat cylinder representing a crack with fluid pressure equal to
zero at the edge. The blue region represents the pore space saturated with a fluid, the transparent gray area
corresponds to the solid grain material. (B) Sketch showing a quarter of the model. Big pore model: (C) Sketch
illustrating a flat cylinder representing a crack whose edge is connected to a torus representing a stiff pore.
The blue region represents the pore space saturated with a fluid, the transparent gray area corresponds to the
solid grain material. (D) Sketch showing a quarter of the model. Small pore model: (E) Sketch illustrating a
flat cylinder representing a crack whose edge is connected to a small torus representing a stiff pore. The blue
region represents the pore space saturated with a fluid, the transparent gray area corresponds to the solid grain
material. (F) Sketch showing a quarter of the model.



Table 2.1: The material properties used for all numerical simulations.

Material parameter | Solid Fluid
Bulk modulus K 36 GPa | 4.3 GPa
Shear modulus p 44 GPa | 0 GPa
Shear viscosity n 0PaS | 1.414Pa-S

Table 2.2: Geometrical properties for Py = 0 model, Big pore model and Small pore model. Major radius — the
distance from the center of the tube to the center of the torus. Minor radius — the radius of the tube.

’ Geometrical parameter \ P¢ =0model \ Big pore model \ Small pore model ‘

Crack radius 0.1 m 0.1 m 0.1 m
Crack thickness 0.0005 m 0.0005 m 0.0005 m
Crack aspect ratio 0.0025 0.0025 0.0025
Major radius of torus — 0.124 m 0.1067 m
Minor radius of torus — 0.024 m 0.0067 m
Total porosity ~4.9-1074 0.045 0.0034
Crack porosity ~4.9-1074 ~4.9-107* ~4.9-1074

2.5.1 Pr=0 model

a) Numerical solution

We consider a 3D numerical model of a flat cylinder embedded in the grain material (Figure 2.1a, 2.1b). Besides
the boundary conditions applied to the external walls of the cubic model, the tip of the crack is subjected to a
zero fluid pressure boundary condition (Py = 0). This specific boundary condition corresponds to that of the
analytical solution proposed by Collet and Gurevich (2016). By applying this Py = 0 boundary condition, we
simulate the conditions where the crack is filled with the liquid, whereas a virtual stiff pore acts as a sink for
the fluid flow from the crack but, at the same time, has the grain material properties. The total porosity of the
model is equal to the crack porosity. The proposed geometry belongs to the vertical transverse isotropic (VIT)
symmetry class. Figure 2.2 shows the whole model domain discretization using an unstructured mesh with
tetrahedral elements. The colors represent the element’s size. The mesh is coarse in the grain (the elements
sizes are 0.038 — 0.008 m) and the finest in the cylinder (the elements sizes are 0.00025 — 0.00015 m). Because
the fluid flow and, thus, the dissipation take place inside the crack, a fine, regular mesh is compulsory there,
while in the grain material, the mesh can be much coarser. The corresponding numerical results are shown in
Figure 2.3.

b) Analytical solution

To obtain the results from the anisotropic squirt flow model of Collet and Gurevich (2016), a crack embedded into
an isotropic background (grain material) can be described in terms of the normal and tangential compliances of
the crack Z,, and Z;, respectively. These parameters are calculated numerically using the following approach: the
dry crack is embedded into the isotropic solid grain material and the effective compliance tensor is calculated

numerically (SY”  compliance tensor). Then, we calculate the difference between the SV’! and the grain

material S}g/rTaIm compliance tensors. In the resulting compliance matrix, only the S(3,3), S(4,4) and S(5,5)

components are non-negligible. Thus, Z;, = S(3,3) and Z; = S(4,4) = S(5,5). Using equations 4.58-6.100, the
effective stiffness tensor is calculated, which then is transformed from HTI to VT symmetry.
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Figure 2.2: The element’s size distribution for the P =0 model (Figure 2.2): (left) Full model and (right) Zoomed
in part of the model showing elements in the crack (element size 0.00025 —0.00015 m) and in the surrounding
grain material (element size 0.038 — 0.008 m). The element’s size is the smallest inside the crack and growing
toward the walls of the model domain.

c) Comparison

Only the results for C33 component are shown in Figure 2.3 because the other components are constant with
frequency, except C;3, which varies slightly. The analytical and numerical results are in a very good agreement
including the low- and high-frequency limits, the frequency dependence of the dispersion and attenuation
curves at intermediate frequencies and the left and right asymptotes of the attenuation curve (Figure 2.3). This
comparison shows that our numerical result is correct and can be used to simulate more complicated models.
Furthermore, such a good agreement indicates that our numerical solution fulfills the conditions (A)-(B) of the
analytical solution.

Figure 2.4 shows snapshots of the fluid pressure P in the crack at three different frequencies. In the relaxed
state, there is enough time for pressure equilibration between the crack and zero fluid pressure at the crack tip
(because of the P =0 boundary condition) (Figure 2.4, LF). Therefore, the fluid in the crack does not impose
any stiffening to the crack. The stiffness of the crack is the same as if it was dry (thus, the Py = 0 model is not
consistent with Gassmann equations in the low frequency limit). At intermediate frequencies, there is a large
pressure gradient in the crack, which corresponds to the maximum attenuation (Figure 2.4, Fc). In the unrelaxed
state, there is no equilibration between the fluid pressure inside the crack and zero fluid pressure at the tip of
the crack (Figure 2.4, HF). Therefore, the crack behaves as hydraulically isolated and the fluid highly stiffens the
crack, so that the normal compliance of the crack approaches zero (tangential compliance is not zero).

2.5.2 Bigporemodel

a) Numerical solution

We consider a 3D numerical model of a flat cylinder whose edge is connected with a big torus (Figure 2.1b, 2.1c¢).
The flat cylinder representing a crack has the same radius and thickness as in the Py = 0 model. The torus
represents a much stiffer pore. The torus and the crack are embedded into a cuboid of grain material and are
fully saturated with a liquid. The proposed geometry belongs to the vertical transverse isotropic (VIT) symmetry
class. Numerical results for the C,;,,, components using five direct tests are shown in Figure 2.5. From this figure,
only the C33 component seems to be frequency-dependent but the C;3 component is also slightly frequency
dependent.
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Figure 2.3: Numerical and analytical results for the model with fluid pressure equal to zero at the edge (Py = 0)
(Figure 2.1b): (up) Real part of the C33 component and (down) dimensionless attenuation for the C33 component.
Each red circle corresponds to a numerical calculation.
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Figure 2.4: Snapshots of the fluid pressure Py in the fracture at three different frequencies for the Py = 0 model:
Lf - low frequency (relaxed state), Fc - intermediate frequency (close to the characteristic frequency) and HF -
high frequency (unrelaxed state).
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b) Extended analytical solution

For the comparison between the analytical solution and the numerical results, all stiffness properties of the dry
medium are calculated numerically (or are the same as in the numerical simulation) and used as input to the
analytical solution. To obtain the corresponding results from the analytical solution, normal Z, and tangential
Z; compliances of the crack are needed. To obtain Z, and Z; we numerically calculate several (homogenized)
elastic stiffness tensors of a dry medium (Figure 2.6): a torus embedded into the solid grain material (CY TI
stiffness tensor); a crack embedded into a medium described by the C}' 7 stiffness tensor (C; 77 stiffness tensor);
a torus connected with a crack embedded into an isotropic solid grain material (Ce“/ TT gtiffness tensor). Then,
all V™! stiffness tensors are inverted to the corresponding compliance tensors SV 7/, For obtaining Z, and Z;
there are at least two possible workflows.

Workflow A: We calculate Z, and Z; using the difference between the S} 7/ compliance tensor and the Sy 7/
compliance tensor (Figure 2.6). In this case, we first homogenize the torus (and obtain CY Ty and, then embed
the crack into this homogenized material CY TI Thus, Z, and Z, do not account for the fact that the crack is
connected with the stiffer pore which implies a different geometry from the one shown in Figure 2.1c and 2.1d
for calculating the stiffness tensor of the dry material. This approach is used by Collet and Gurevich (2016).

Workflow B: We calculate the normal and tangential compliances using the difference between the Sy 7’/
compliance tensor and the Sg TT compliance tensor (Figure 2.6). In this case, we also first homogenize the
torus but, then embed the crack connected to the torus into the solid grain material. Thus, the C3V TT gtiffness
tensor corresponds to the dry stiffness tensor of the model, so the difference S} 7/ — SY77 gives the correct
compliances Z, and Z; for the dry model (using the the homogenized material CY Ty, These compliances
Z, and Z; approximately correspond to the crack embedded into the CY TI' material and have a total effective
radius equal to the radius of the crack itself plus the additional minor diameter of the torus. This approach is
similar to the one used in Gurevich et al. (2009a).

The generalization of Collet and Gurevich (2016) to an anisotropic porous background is straightforward because
the principal symmetry axis of the torus (stiff pore), embedded into the grain material is, the same as, that of the
crack and the torus embedded into the grain material, and the corresponding frame stiffnesses are described by
the same equations 4.58-4.59. Thus, we are able to fulfill the condition (A) for anisotropy of the rock matrix.
Moreover, according to Collet and Gurevich (2016), the assumption Z,,' F=0inthe high frequency limit holds
only for cracks with aspect ratio lower than 0.001. However, we have already seen in our numerical results in
Figure 2.3 (for an aspect ratio of 0.0025) that this assumption also holds for cracks with larger aspect ratios (up
to 0.005). Therefore, we conclude that our extended numerical simulation fulfills the conditions (A)-(B) of the
analytical solution of Collet and Gurevich (2016).

Using equations 4.58-6.100 the complex-valued stiffness tensor is calculated for Workflows A and B. The
difference between these two solutions is due to the different Z,, and Z; parameters which are used in equations
4.58-6.100.

c) Comparison

Figure 2.7 shows results for the C33 complex-valued component of the stiffness tensor obtained from the numer-
ical simulation and from the analytical solution with two different sets of normal and tangential compliances
derived from Workflows A and B (Figure 2.6). The dispersion curves show that in the high-frequency limit the
two analytical solutions and the numerical result are in reasonably good agreement. In the low-frequency
regime, the dispersion curve predicted by the analytical result with Workflow A is much stiffer compared to the
numerical result. This is because the calculation of Z,, and Z; involved the strong assumptions described above.
The attenuation curve from Workflow A shows, only by chance, a good match with the numerical result except
for the asymptotic behavior in the high-frequency regime. In the low-frequency regime, the analytical result
with Workflow B is close to the numerical dispersion curve: a difference around 2 GPa because parameters
Z, and Z; cannot fully describe the elastic behavior of a crack. In this case, the C;3 component is affected
and causes this difference in the anisotropic Gassmann’s equations. The attenuation curve predicted by the
analytical solution with Workflow B is different from the numerical result: the characteristic frequency is shifted
to the left and the maximum attenuation is approximately twice that of the numerical results.
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Figure 2.5: Numerical results for the real part of C,;,,, components for the big pore model (Figure 2.1c, 2.1d)
using five direct tests.

Figure 2.8 shows snapshots of the fluid pressure Py in the fracture and the stiff pore at three different frequen-
cies. In the relaxed state, the fluid pressure is equilibrated throughout the pore domain (Figure 2.8, LF). At
intermediate frequencies, there is a large pressure gradient in the crack, which corresponds to the maximum
attenuation (Figure 2.8, Fc). In the unrelaxed state, there is no pressure equilibration between the fluid pressure
inside the crack and the fluid pressure inside the torus (Figure 2.8, HF). In the relaxed state (Figure 2.8, LF), the
pore pressure inside the stiff pore is slightly increased compared to the unrelaxed state (Figure 2.8, HF). That is
due to a finite volume of the stiff pore. Though the crack porosity is several orders of magnitude lower than the
stiff pore porosity, such a little volume of fluid still slightly increases the pore pressure inside the stiff pore in the
relaxed state.

Little numerical artifacts (red points) can be seen in the torus in the low and intermediate frequencies (Figure 2.8,
LF and Fc); this is due to the fact that the mesh is not very fine inside the torus. Due to RAM memory limitations,
it is difficult to significantly increase the resolution inside the torus but the simulation has been run for
several different mesh distributions and element sizes converging to the same output results. The limits of the
dispersion curve were also verified: the low-frequency limit was verified by running dry elastic simulations
and adding fluid using the Gassmann’s equations; the high-frequency limit was verified by running elastic
simulations and thus representing fluid as an elastic material. The Kramers-Kronig relation was also used to
verify the consistency of the numerical results: the attenuation curve was reproduced from the dispersion
curve using the Kramers-Kronig relation. Thus, we conclude that these artifacts are local and do not affect our
results and our results are accurate. There are also some little boundary effects resulting in minor artifacts in
the crack (artifacts appear near the walls of the cube) which have negligible effects on our numerical results.
The snapshots of fluid pressure are from a diagonal slice in the x y-plane in order to avoid boundary effects.

2.5.3 Small pore model

a) Numerical solution

We consider the same model as in the previous section (big pore model) but now the volume of the torus is
smaller (Figure 2.1e, 2.1f). The flat cylinder (representing a crack) has the same radius and thickness as in
the Py = 0 and big pore models. The torus and the crack are embedded into a cuboid of grain material. The
proposed geometry belongs to the vertical transverse isotropic (VTI) symmetry class. Our numerical results for
the C33 component are shown in Figure 2.9.
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Figure 2.6: Sketch illustrating the calculation of normal and tangential compliances of the crack for Workflows
A and B. SY?! denotes the compliance tensor, which is the inverse of the corresponding stiffness tensor.
ie, ST = (CYTh=1 for r = 1,2,3. The resulting Z, and Z; are used to calculate the analytical solution for
corresponding models (Figure 2.1).
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Figure 2.7: Numerical and analytical results for the big pore model (Figure 2.1(c-d)): (a) Real part of the Cs3
component, (b) dimensionless attenuation for the Cs3 component. Each red circle corresponds to one test. The
maximum of the attenuation curve (Analytical solution with Workflow A, blue curve) is exactly the same as in
the numerical result by a chance because the comparison between the analytical solution and numerical result
for the modified frame exhibit discrepancy; it is explained in the text.
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Figure 2.8: Snapshots of the fluid pressure P in the fracture at three different frequencies for the big pore model:
Lf - low frequency (relaxed state), Fc - intermediate frequency (close to the characteristic frequency) and HF -
high frequency (unrelaxed state).

b) Extended analytical solution

To obtain the results from the analytical solution, Z, and Z; are calculated using the same extended analytical
solution as in the big pore model. Then, using equations 4.58-6.100 the complex-valued stiffness tensor is
calculated for the output of the Workflows A and B (Figure 2.6).

c) Comparison

Figure 2.9 shows the results for the Cs33 complex-valued component of the stiffness tensor obtained from the
numerical simulations and from the analytical solution with two different sets of normal and tangential compli-
ances derived from the Workflows A and B. The dispersion and attenuation are small in this model, therefore, the
two analytical solutions show an apparent better agreement than for the big pore model (Figure 2.7). However,
the relative difference between the analytical and numerical results is comparable to those for the big pore
model. Here, both analytical solutions predict much higher attenuation compared to the numerical result.

Figure 2.10 shows snapshots of the fluid pressure Py in the fracture and in the stiff pore at three different
frequencies. The only geometrical difference between this small pore model and big pore model is that the
torus is smaller. The volume of the small torus is only approximately six times bigger than the crack volume,
therefore, the fluid pressure gradient equilibrates faster and a larger value of the fluid pressure is observed in
the relaxed state than that in the big pore model (Figure 2.8, LF). The characteristic frequency is higher and the
overall dissipation is lower. The numerical artifacts observed in these snapshots have negligible effect on our
numerical solution as explained above.

2.5.4 Modified frame

As mentioned before, the modified frame is a virtual rock, in which only the crack is filled with fluid, whereas
the stiffer pore is empty (Mavko and Jizba, 1991). In the low-frequency limit, the relaxed moduli of the modified
frame are equal to the rock dry moduli. In the high-frequency limit, the fluid-saturated crack stiffens the frame
and the unrelaxed moduli of the modified frame are equal to the dry moduli of the rock without a compliant
porosity (i.e., without a crack).

Considering the big pore model (Figure 2.1c, 2.1d), the torus is dry whereas the crack is filled with a compressible
Newtonian fluid (glycerol). This configuration corresponds to the modified frame. Because the torus is dry, this
configuration implies Py = 0 boundary condition at the edge of the crack. The main difference between this
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Figure 2.9: Numerical and analytical results for the small pore model (Figure 2.1(e-f)): (a) Real part of the Cs3
component and (b) dimensionless attenuation for the Cs3 component.
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Figure 2.10: Snapshots of the fluid pressure P in the fracture at three different frequencies for the small pore
model: Lf - low frequency (relaxed state), Fc - intermediate frequency (close to the characteristic frequency) and
HF - high frequency (unrelaxed state).
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Figure 2.11: Numerical and analytical results for the modified frame big pore model: (up) Real part of the Cs3
component and (down) dimensionless attenuation for the C33 component. Each rhombus corresponds to a
numerical calculation. Crack aspect ratio is 0.0025.

modified frame model and the Py = 0 model (Figure 2.1a, 2.1b) is the actual presence of the torus which affects
the effective properties of the model.

To compare the numerical results with the analytical solution, Z,, and Z; are calculated for Workflows A and B.
Then, using equations 4.58-4.63 the complex-valued stiffness tensor CMF'(w) is calculated. In these analytical
solutions we do not use Gassmann equation to saturate the medium because the stiff pore is dry (equation 4.63
becomes C$% (w) = CMF(w)). Figure 2.11 shows results for the C33 complex-valued component of the stiffness
tensor obtained from the numerical result and from the analytical solution with two different sets of normal and
tangential compliances derived from Workflows A and B. The dispersion curves show that in the high frequency
limit the two analytical and the numerical solutions are in a very good agreement and the analytical solution
with Workflow B also shows a good fit in the low frequency regime. However, the frequency dependences
of the dispersion and attenuation curves obtained via the numerical simulation have a completely different
shape compared to both analytical solutions. More specifically, the maximum amplitude of the attenuation
peak and the right slope of the attenuation curve are different compared to both analytical solutions. The
previous very good fit of the attenuation magnitude between the analytical solution with Workflow A and the
numerical result for the saturated case (Figure 2.7) is coincidental. This becomes apparent by the mismatch of
the attenuation curves for the corresponding modified frame between the analytical solution with Workflow A
and the numerical solution shown in Figure 2.11. In Figure 2.7, this discrepancy was coincidentally corrected by
applying the anisotropic Gassmann equation to the analytical model with Workflow A.
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Figure 2.12: Numerical results and the modified frame big pore, the modified frame small pore models and
corresponding saturated models: (up) Real part of the C33 component and (down) dimensionless attenuation
for the C33 component. Each red circle or thombus correspond to a numerical calculation.

Comparison to full saturation

Figure 2.12 shows numerical results for four models: the modified frame model for the big pore model, the
corresponding fully saturated big pore model, the modified frame model for the small pore model, the corre-
sponding fully saturated small pore model. Basically, the difference between the dashed and solid curves is due
to the presence of the fluid in a big or small torus. The right slope of the attenuation curves of the modified
frame models is approximately the same independently of the size of the torus. The same behavior follows for
the saturated cases: the right slope of the attenuation curves of saturated models is approximately the same
independently of the size of the torus.

2.5.5 Numerical results for different crack aspect ratios

We consider the fully-saturated big pore model and change the aspect ratio of the crack. In other words, we keep
the same length of the crack but increase its aperture. Figure 2.13 shows results for the C33 complex-valued
component of the stiffness tensor obtained from the numerical simulation with aspect ratios of 0.0025, 0.005
and 0.01. For comparison, we also show results for the C33 complex-valued component of the Py = 0 model.
According to Figure 2.13, the frequency dependence of the dispersion and attenuation curves for those three
aspect ratios is the same. The shift in the characteristic frequency is controlled by the aspect ratio of the crack.
The attenuation magnitude is the same at those three characteristic frequencies.
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Figure 2.13: Numerical results for the big pore model (Figure 2.1(c-d)) and the Pr=0 model (with fluid pressure
equal to zero at the edge of the cylinder) (Figure 2.1(a-b)), cracks with different aspect ratios of 0.0025; 0.005;
0.01: (up) Real part of the C33 component and (down) dimensionless attenuation for the C33 component.
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2.6 Discussion

There are two main sources of strong discrepancies between the numerical results and the analytical solution.
First, the calculation of the frame stiffness moduli in the analytical solution considers the pores and cracks
as being disconnected. Second, the frequency dependence of attenuation and dispersion at intermediate
frequencies in the analytical solution is based on several strong assumptions and shows significant discrepancies
compared to the numerical results. The first one could be improved in the current analytical squirt flow solutions
by using a more complete approach for calculating the frame moduli. The second one is more difficult and
unclear how to implement via an analytical solution. Another observation from this study is the frequency
dependence of the C13 component of the frame moduli, which is difficult to take into account in the analytical
solution but, in general, the effect is of minor importance.

We showed that the analytical solution of Collet and Gurevich (2016) is accurate only for the Py = 0 model
where the stiff porosity is zero, but it does not approximate accurately the results for models with non-zero stiff
porosity. Despite all of the discrepancies between the analytical solution and numerical results, this analytical
solution is probably the best for such an analysis because it uses specific material and geometrical properties
without any fitting parameters.

Design and calculation of the modified frame and dry frame moduli

One of the most important outcomes of this numerical study is the adequate calculation of the double porosity
frame moduli. By double porosity we mean that the pore space consists of two types of pores: the stiff isometric
pore and the compliant crack. Furthermore, the pore and the crack are connected. The analytical solution by
Collet and Gurevich (2016) is based on the two-step homogenization approach: they consider a rock matrix
(grains and a pore) and then embed a crack into that rock matrix using the normal and tangential compliances
of the crack. This corresponds to our Workflow A (Figure 2.6). Roughly, this workflow gives the frame moduli
accounting for the crack and the stiff pore as being not connected (i.e., as if the crack and the pore are embedded
simultaneously into the grain material but disconnected and far from each other, so the elastic interactions
are very small, see Figure 2.14). Hence, this workflow significantly overestimates the stiffness of the frame
material and significantly underestimates dispersion and the overall attenuation (Figure 2.7). In this case,
there is a controversial issue: Gurevich et al. (2010) and Collet and Gurevich (2016) study the effect of fluid flow
between the crack and the stiff pore and, at the same time, they use the frame moduli of disconnected cracks
and pores. Workflow B shows a better prediction of the low- and high-frequency limits of the dispersion curve
and the overall attenuation but significantly overestimates the maximum attenuation (due to amplification of
the imaginary part of ZM¥ () if we connect the crack and the stiff pore). Quantitatively, Z,, in Workflow B is two
times larger than Z,, in Workflow A, which is only due to the connectivity effect of the crack and the pore. Thus,
any change in the geometry of the pore space will immediately affect the stiffness of the rock and the fluid-flow
properties, thus these properties are strongly coupled.

The two-step homogenization approach for calculating the effective elastic properties of cracked-porous rocks
can be used considering a mesoscopic scenario. In this scenario, the cracks are at least two orders of magnitude
larger than the pores, therefore, the two-step homogenization approach might work quite well (i.e., the torus
connected to the crack makes no sense at a mesoscopic scale since cracks or fractures are much larger than
the pores). Such double porosity media with mesoscopic cracks were studied by Galvin and Gurevich (2009),
Gurevich et al. (2009b) and Guo et al. (2017a,b).

Collet and Gurevich (2016) assumed that the crack can be accurately described by the two parameters: normal
and tangential compliances Z,, and Z; (however, we show that the C;3 component is also different). This
approach is known as the linear-slip theory (Schoenberg and Sayers, 1995). There are several solutions which
link the crack compliances Z,, and Z; with crack geometry and the stiffness of the background medium (Walsh,
1965; Kachanov, 1993). Some insights into these theories are given by Bakulin et al. (2000a,b). Note, that
the linear-slip theory leads to the so-called non-interactive approximation (Sevostianov and Kachanov, 1999;
Kachanov and Sevostianov, 2018), which assumes that different cracks (or cracks and surrounding pores) do
not interact with each other; for higher porosity — more complicated effective methods should be used as it is
shown in the numerical study by Saenger et al. (2004).
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Figure 2.14: Sketch illustrating that the two-step homogenization approach produces the CZV TT stiffness tensor
which is approximately equal to the case if we embed the crack and the stiff pore (disconnected) into the grain
material.
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The effect of connectivity of the pore space is usually not taken into account properly in analytical solutions
due to theoretical difficulties (as far as we know there is no general analytical solution of this problem) and
due to the fact that the information about the connectivity of the pore space in real rocks is usually unknown.
However, there are several solutions to this problem, for example, by introducing an additional "pore space
connectivity" parameter. This parameter can be inverted by linking the effective properties predicted by the
analytical solution to a given real data set (Bayuk et al., 2007; Alkhimenkov and Bayuk, 2017).

Frequency-dependent fluid bulk modulus

Gurevich et al. (2010) showed that the stiffness of the crack in relaxed and unrelaxed states can be described by
the frequency dependent fluid bulk modulus Kf* (w). Our numerical results confirmed that this is true if the
crack having Pr = 0 boundary condition at the edge is embedded into the grain material whereas the torus
is replaced by the grain material. This occurs because the Gurevich et al. (2010) solution for the frequency-
dependent fluid bulk modulus simply applies boundary conditions to the walls of the crack and does not take
into account the stiffness of the pore space surrounding the crack. Our numerical simulation of the modified
frame clearly shows that, once we include a small volume (0.3%) of the dry stiff pore connected to the crack, the
frequency-dependence of the effective properties changes completely (Figure 2.11). However, it is very difficult
to fully solve that coupled elasticity-fluid flow problem analytically.

The slopes of the high frequency asymptote of the attenuation curve in the numerical and analytical solutions
are different (w~! for the analytical solution versus w~'/? for the numerical solution). In both numerical models,
the big pore and the small pore models, the frequency range over which attenuation is significant broadens
compared to the analytical solution due to the different asymptotic behavior of the attenuation curve in the
high frequency regime. It is interesting that the w~'/? power law also describes the high frequency asymptote of
the attenuation curves due to flow between stiff pores and mesoscopic cracks (that is, cracks much larger than
pores but still smaller than the wavelength) (Galvin and Gurevich, 2009; Guo et al., 2017a).
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C13 component of the frame moduli

Our numerical simulations show that the C;3 component of the modified frame (the big pore model) is frequency
dependent. Furthermore, the crack connected to the torus can not be accurately described by only two
parameters in the compliance domain: Z, and Z;. Equation 2.17 shows the difference in the compliance
domain AS,,;, = SYTI - SXTI, which is used to calculate Z;, and Z; in Workflow B (Figure 2.6). It can be seen
that AS33 =4.251-10712 and ASy4 = ASs5 = 7.680- 10712 are the actual Z, and Z; parameters in the Workflow
B. But ASj3 = 0.486- 102 is still significant. Hence, if we ignore the non-negligible off-diagonal elements, the
corresponding C;3 in the stiffness domain diverges from the correct numerical C;3 by approximately 4.5 GPa.
This affects the analytical model in two ways. First, the difference between the low and high frequency limits of
the Cy3 component of the modified frame is approximately 4.5 GPa in the big pore model, so the modified frame
C13 component gradually increases with frequency during the transition from the low to the high frequency.
Second, in the generalized Gassmann’s equation (equation 6.100), the calculation of K* involves the C;3
component four times (because C;3 = Co3 = C31 = C32), which leads to more than 15 GPa overestimation of the
correct K* (thus, K* is also frequency dependent). Therefore, if we neglect the frequency dependence of the
C13 component, the generalized bulk modulus of the frame will become significantly different from the actual
value. It is clearly visible in Figure 2.7 where the low-frequency limit of the analytical solution with Workflow B
does not match the numerical result because this analytical solution is saturated using Gassmann’s equations.
On the other hand, the low-frequency limit of the modified frame for the analytical solution with Workflow B is
in excellent agreement with the numerical result because the stiff pore is dry and the C;3 component effects
vanish (Figure 2.11). For the big pore model,

0.034 —-0.037 0.486 0 0 0
—-0.037 0.034 0.486 0 0 0
big pore _ oVTI _QVTI _1n-12 0.486 0.486 4.251 0 0 0
AS,n = Sl Ss =10 0 0 0 7 680 0 0 (2.17)
0 0 0 0 7.680 0
0 0 0 0 0 0.018
For the small pore model,
0.004 —0.0001 0.009 0 0 0
—0.0001 0.004 0.009 0 0 0
small pore _ oVTI _ VTI _ ~12 . 0.009 0.009 2.244 0 0 0
ASn =S5 53 =10 0 0 0 3.109 0 0 (2.18)
0 0 0 0 3.109 0
0 0 0 0 0 0.010

For the small pore model, the C13 component is almost the same as for the Py = 0 model and does not
change significantly over the frequency range. Equation 3.7 shows the difference in the compliance domain
ASpy = Sy T —8YT!, which is used to calculate Z, and Z; in Workflow B (see Figure 2.6). It can be seen
that AS33 = 2.244-107'2 and ASy4 = ASs5 = 3.109- 102 are the actual Z, and Z, parameters in Workflow B.
AS13 =0.009-107!2 is negligible.

In summary, the crack compliance in the Py = 0 model and in the small pore model can be accurately described
by only the two parameters: Z,, and Z;. But, in the big pore model, the crack compliance can not be described
by only Z,, and Z;, the C13 component is also important.
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Fluid pressure field as a function of frequency

One of the key parameters in the squirt flow mechanism is the ratio between the non-compliant and compliant
pore volumes. In the big pore model, the ratio of non-compliant (torus) to compliant (crack) porosity is
0.045/(4.9-10™%) = 92. Therefore, only a little increase in the fluid pressure is expected in the big torus at low
frequencies. In the big torus, the fluid pressure is = 1-10° Pa in the low-frequency limit (10° Hz); the fluid
pressure is ~ 0.435 - 10° Pa in the high frequency limit (10° Hz). Thus, the increase in fluid pressure is of about
2.3 times. The applied boundary conditions are for displacement (10~% m) and the fluid pressure values are
given for the P-wave modulus test in z-direction (i.e. for C33 component).

In the small pore model, the ratio of non-compliant to compliant porosity is 0.0034/(4.9-10~%) = 7. Thus, a
significantly increase in fluid pressure in the torus is expected in the low frequency regime, compared to the
high frequency limit, because the difference between non-compliant and compliant porosity is small (less than
one order of magnitude). In the small torus, the fluid pressure is ~ 3.3 -10° Pa in the low-frequency limit (10°
Hz); the fluid pressure is ~ 0.58 - 10° Pa in the high-frequency limit (10 Hz). Thus, the increase in the fluid
pressure is of about 5.7 times.

2.7 Conclusions

We have calculated numerically the frequency dependence of the effective stiffness properties of a fluid-
saturated porous medium caused by squirt flow. Our 3D numerical models consist of a pore space embedded
into a solid grain material. The pore space is represented by a flat cylinder, representing a crack, whose edge is
connected with a torus, representing a stiff isometric pore. Grains were described as a linear isotropic elastic
material while the fluid phase filling the pore space was described by the quasistatic linearized compressible
Navier-Stokes momentum equation.

We compared the numerical results to a published analytical solution for squirt flow. The numerical and
analytical solutions agree only for the simplest model: the edge of the crack is subjected to zero fluid pressure
boundary condition while the stiff pore is absent. For this model, low- and high-frequency limits of the
dispersion and attenuation curves, intermediate-frequency behavior and all asymptotes are in a very good
agreement between the numerical and analytical solutions. However, the considered model is not realistic.

For the model with a stiff pore modeled as a torus, there are significant differences between numerical and
analytical solutions: (1) the maximum attenuation predicted by the analytical model is significantly under- or
over- estimated, depending on the frame moduli calculation in the analytical model; (2) the transition from the
low to high frequencies is much sharper compared to the numerical results; (3) the slopes of the high-frequency
asymptote of the attenuation curve in the numerical and analytical solutions are different (w~! for the analytical
solution versus w~'/2 for the numerical solution). The maximum magnitude of attenuation predicted by the
analytical solution is under- or over- estimated significantly (depending on how the frame moduli are calculated
in the analytical model) compared to the numerical results.

Our analysis suggests that there are two main sources of discrepancies between the numerical results and
the analytical solution. First, the calculation of the frame stiffness moduli in the analytical solution does not
take into account the fact that pores and cracks are connected, as it assumes a porous background and in
the next step embeds cracks into this homogenized medium. The numerical results show that this two-step
homogenization approach corresponds to the double-porosity media where crack and pores are disconnected,
which contradicts the concept of fluid flow in the analytical solution. Second, the frequency dependence of the
attenuation and dispersion at intermediate frequencies in the analytical solution is based on several strong
assumptions: the analytical model assumes that the frequency dependence is controlled only by the fluid flow
in the crack while the numerical results show that the frequency dependence is affected also by surrounding
stiff pores connected to the crack. Further research should involve the modification of the analytical solution to
include more adequate frame moduli calculation of the double-porosity model, more adequate modeling of the
flow between compliant and stiff pores, and a more realistic geometry of the pore space.
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2.8 Appendix A: Boundary conditions

Let us consider a cuboid with volume V = (0, Lx) x (0, Ly) x (0, Lz) and T its boundary I' = [*¥ y T**L 4 T¥%0
[YZLyr*y0yr*yL where, for example, ['*?0 represents a xz plane with zero coordinate and, e.g., r*zL represents
a xz plane with Ly coordinate. There are six planes in total. Because we are dealing with a VTI medium,
only five independent components of the stiffness tensor are needed. Three kinds of tests were applied: a
normal compression relaxation test, a simple shear test and one mixed test for the Cy3 component. The general
approach is the following: we apply displacement boundary conditions for a certain frequency. Then, we
calculate the volume average stress and strain fields over the whole model domain using the following equations
for a given frequency w:

1
€ij)= vaGij(X)dV, (2.19)

where V is a model domain and

1
(gij)= vaaij (x)dV. (2.20)
Volume averaged stress (o; ;) and strain (¢;;) fields are related via the Hooke’s law

i) =Cijriern), (2.21)

which is the Cjjx; = Cpn component of the stiffness matrix. Thus, we need several tests to obtain a relation
between different (o; ;) and (ex;).

Normal compression relaxation test

Normal compression relaxation test is needed to calculate M = A + 2 component of the stiffness tensor.
For the C33 component ({(o3) = C33 - {€3)):

YL is set to ug, = AU; Uyy, uyy are free

[0 s set to uy, = 0; tyy, uyy are free

%20 and 4L are set to Uyy = 0; Uzz, Uxy are free

Y20 and T'Y4L are set to uyy = 0; U5z, uyy are free,

where Au = 1078, The same relaxation tests are used to calculate C;; and C,, components.
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Simple shear relaxation test

Simple shear relaxation test is needed to calculate shear modulus ¢ component of the stiffness tensor.
For the Cs5 (xz) component ((g5) = Css - {€5)):

[*YL s set to uyy = Al Uzz, uyy are free

[0 s set to 1z, = 0; tyy =0, Uy, =0

I'*%0 and I'**L are set to uyy = 0; U7z = 0, Uy, is free
Y20 and I'Y4L are set to Uyy = 0; Uz = 0,uyy is free

The same type of relaxation tests are used to calculate C44 and Cgs components.

C13 mixed test

The mixed test for C13 component can be easily derived from the anisotropic stress-strain relation (Hooke’s law)
(similar to the 2D approach by Carcione et al. (2011)).

YL is set to uy, = Au; gy, uyy are free

*2L is set to Uyy = AU; Uzz, Uy are free

0 is set to Uz, = 0; Usy, uyy are free

%20 js set to Uyy = 0; Uy, Uz, are free

[*20 and I'*YL are set to Uyy = 0; Uzz, Uyy are free
Y% and TV4L are set to uyy = 0; Uz, uyy are free

Then, using the following equations

Cus = (02)-C33—{03)" sz’ (2.22)
(03) —(02)

or

Ciz= o Coo, (2.23)

the C;3 component is calculated (Cs3 and Cy, = Cy; are taken from the direct tests). Equations 2.22 and 3.11 are
found from the Hooke’s Law considering non-zero strains in y- and z directions and, then, solving a system of
two equations analytically.

Direct test approach

The direct test approach for calculating effective stiffness moduli can be used when the model’s symmetry
is known, which is the case in our modeling. According to the stress-strain relation (equation 2.21), C,,
components are calculated via

_ (Om)

en)

(2.24)

mn

We are dealing with a VIT medium, only five independent components of the stiffness tensor are needed. Thus,
we need two normal compression relaxation tests for C;; and Cs3 components (because Cy; = Cy»), two simple
shear relaxation tests for Cs5 and Cgg components (because Cy4 = Cs5) and one mixed direct test for the Ci3
component
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2.9 Appendix B: Rotation of a fourth-rank tensor: HTI versus VTI

The stiffness matrix of a transversely isotropic medium with a vertical symmetry axis (VTI) is (in Voigt notation)
(Tsvankin, 2012)

VTICYITI VTI CVTI T/%IC&TI Cl‘éij 0 0 0
CH ;/%? 66 ClvlTI ClVgTI 0 0 0
CVTT _ Ci3 Cis Css 0 0 0 (2.25)
mn 0 0 o ¢t oo o |’
0 0 0 o cp't o
0 0 0 0 0 Cg'!

where the superscript (V7! means that the component belongs to VTI media. In this study, all numerical
simulations are performed in VTI media. The analytical solution of Collet and Gurevich (2016) is developed for
horizontal transverse isotropy media (HTI). The stiffness matrix of HTI media with the symmetry axis along x
direction is:

HTI HTI HTI
CII}ITI Cl]%TI HT?13 HTI 0 0 0
C%-?I)TI HTIC33 HTI C33 ;I?’IC44 0 0 0
chri |G Gy —2Cy Css 0 0 0 (2.26)
mn 0 0 0 cHTI 0 o |’ .
0 0 0 o clr o
0 0 0 0 0o clin

where the superscript ()77 means that the component belongs to HTI media. Generally speaking, the 4-th rank
stiffness tensor in Euclidean space can be rotated using Euler angles. Fortunately, both VIT and HTI symmetry
classes belong to a transversely isotropic (TI) medium, which has a single axis of rotational symmetry (Fedorov,
1968). Therefore, the transformation from HTI media to VTI, and vice versa, doesn’t require any sophisticated
operations. Thus, the transformation from the VTI stiffness matrix to the HTI stiffness matrix, and vice versa,
can be done by interchanging the indices 1 and 3 and slightly modifying the structure of the stiffness matrix.
The recipe is the followong: 1) using the analytical solution of Collet and Gurevich (2016), calculate the resulting
stiffness matrix which is of a HTI symmetry (equation 2.26) and 2) construct the VTI stiffness matrix using the
components of the HTI stiffness matrix from step 1) by the following rule:

cHT CHIT_ocHTT  cHTT ¢ 0 0
HTI HTI HTI HTI
ciacl ol G 0 0o
CcVTI _ 13 13 11 (2.27)
mn 0 0 o CcHrt o 0 '
0 0 0 o Cci oo
0 0 0 0 o cH!

The resulting stiffness matrix (equation 2.27) corresponds to VII media but all components are those from the
HTI stiffness matrix (equation 2.26).
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Abstract

Understanding the properties of cracked rocks is of great importance in scenarios involving CO, geological
sequestration, nuclear waste disposal, geothermal energy, and hydrocarbon exploration and production. Devel-
oping noninvasive detecting and monitoring methods for such geological formations is crucial. Many studies
show that seismic waves exhibit strong dispersion and attenuation across a broad frequency range due to fluid
flow at the pore scale known as squirt flow. Nevertheless, how and to what extent squirt flow affects seismic
waves is still a matter of investigation. To fully understand its angle- and frequency-dependent behavior for
specific geometries, appropriate numerical simulations are needed. We perform a three-dimensional numerical
study of the fluid-solid deformation at the pore scale based on coupled Lamé-Navier and Navier-Stokes linear
quasistatic equations. We show that seismic wave velocities exhibit strong azimuth-, angle- and frequency-
dependent behavior due to squirt flow between interconnected cracks. Furthermore, the overall anisotropy of a
medium mainly increases due to squirt flow, but in some specific planes the anisotropy can locally decrease.
We analyze the Thomsen-type anisotropic parameters and adopt another scalar parameter which can be used
to measure the anisotropy strength of a model with any elastic symmetry. This work significantly clarifies the
impact of squirt flow on seismic wave anisotropy in three dimensions and can potentially be used to improve
the geophysical monitoring and surveying of fluid-filled cracked porous zones in the subsurface.

3.1 Introduction

Wave propagation is controlled by the effective rock properties. Wave velocity and attenuation can be estimated
from seismic data in scenarios such as seismic exploration, seismology, borehole measurements and tomog-
raphy. Rock physics could then be used to estimate different rock properties, such as mineral composition,
elastic moduli, the presence of a fluid, and pore space connectivity (and hence permeability) from seismic
measurements. Thus, investigation of how cracks and fluids affect seismic properties has many practical appli-
cations. In activities including nuclear waste disposal, CO; geological sequestration, hydrocarbon exploration
and production, geothermal energy production, and seismotectonics, a quantification of the fluid content,
porosity and permeability of rocks are of great interest. All these activities can benefit from rock physics studies,
and that is why cracked rocks have been under intensive studies during the last decades.

Cracks and grain-scale discontinuities are the key rock parameters which control effective elastic and hydraulic
properties of such rocks. Many studies show that seismic waves exhibit significant dispersion and attenuation in
cracked porous rocks due to pore-scale fluid flow (O’Connell and Budiansky, 1977; Dvorkin et al., 1995; Gurevich
et al.,, 2010; Miiller et al., 2010). Furthermore, cracks cause significant seismic wave anisotropy (Schoenberg and
Sayers, 1995; Sayers and Kachanov, 1995; Sayers, 2002; Chapman, 2003; Maultzsch et al., 2003; Tsvankin and
Grechka, 2011).

Fluid flow due to a passing wave may happen at different scales: at the wavelength scale, at the mesoscopic scale
and at the pore scale (Miiller et al., 2010). Biot’s theory (Biot, 1962b) describes the so-called global flow at the
wavelength scale, but its overall effect on a passing wave at seismic frequencies is usually much smaller than that
of fluid flow at the mesoscopic and pore scales (Pride et al., 2004). The mesoscopic scale is that much larger than
the pore-scale but smaller than the wavelength. At this scale, studies are performed in the framework of Biot
theory, assuming heterogeneous rock properties. One can define fractures as discontinuities at the mesoscopic
scale and cracks as discontinuities at the pore scale. There are several analytical and numerical studies on the
effect of wave-induced fluid flow between mesoscopic fractures and a porous rock background and between
interconnected fractures using Biot’s equations (Brajanovski et al., 2005; Rubino et al., 2013; Quintal et al., 2014;
Masson and Pride, 2014; Grab et al., 2017; Hunziker et al., 2018; Caspari et al., 2019) as well as on the comparison
between the numerical and analytical results (Guo et al., 2017b, 2018a). Experimental studies of synthetic rock
samples showed the impact of fluid-saturated fractures on seismic velocities (Amalokwu et al., 2016; Tillotson
etal, 2012,2014). The resulting frequency-dependent anisotropy was analyzed by Carcione et al. (2013), Rubino
et al. (2017) and Barbosa et al. (2017). The last two also considered fracture-to-fracture flow, in addition to
fracture-to-background flow.
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At the pore scale, a passing wave induces fluid pressure gradients which occur between interconnected cracks,
as well as between cracks and stiffer pores. Such pressure gradients force fluid to move between different
cracks and pores until the pore pressure equilibrates throughout the connected pore space. This phenomenon,
known as squirt flow (Mavko and Nur, 1975), causes strong energy dissipation due to the viscosity of the fluid
and the associated viscous friction. Several experimental studies confirmed the importance of squirt flow at
different frequency ranges (Mayr and Burkhardt, 2006; Best et al., 2007; Adelinet et al., 2010; Mikhaltsevitch
et al,, 2015; Pimienta et al., 2015b; Subramaniyan et al., 2015; Chapman et al., 2019). There are several analytical
solutions for squirt flow (O’Connell and Budiansky, 1977; Dvorkin et al., 1995; Chapman et al., 2002; Guéguen
and Sarout, 2009, 2011; Gurevich et al., 2010), which are based on simplified pore geometries and many physical
assumptions.

Dispersion and attenuation caused by squirt flow can be simulated numerically by solving the coupled fluid-
solid deformation at the pore scale using Lamé-Navier and Navier-Stokes equations with appropriate boundary
conditions and then calculating effective frequency-dependent viscoelastic properties. During the last decades,
many studies used numerical methods to solve mechanical problems (Andrdi et al., 2013a,b; Saxena and Mavko,
2016). Recently, some numerical studies appeared in the geophysical literature aiming to solve the coupled
fluid-solid deformation and hence studying dispersion and attenuation caused by squirt flow (Zhang et al.,
2010; Zhang and Toksoz, 2012; Quintal et al., 2016, 2019; Das et al., 2019; Alkhimenkov et al., 2020a). Das et al.
(2019) numerically simulated a fully coupled fluid-solid interaction at the pore scale for digital rock samples.
They modeled the pore fluids as Newtonian fluids using the Navier—-Stokes equation with appropriate coupling
between both the solid and liquid phases, accounting for inertial effects. Quintal et al. (2016, 2019) simplified the
Navier-Stokes equations by neglecting the inertial term and hence used the linearized quasistatic Navier-Stokes
equation.

We numerically simulate squirt flow in three dimensions and calculate frequency-dependent effective stiffness
moduli using the finite-element method to solve the quasistatic Lamé-Navier equations coupled to the lin-
earized quasistatic Navier-Stokes equations (Quintal et al., 2016, 2019; Alkhimenkov et al., 2020a). We apply
an oscillatory deformation to certain boundaries of the numerical model, and, assuming that the wavelength
is much larger than the size of individual cracks, we calculate the volume-average stress and strain fields and
the resulting effective stiffness moduli. Then, we calculate the associated azimuth-, angle- and frequency-
dependent seismic velocities by solving the Christoffel equation. The main goal of this study is to analyze
seismic anisotropy due to squirt flow in three dimensions since the previous numerical studies of seismic
anisotropy were performed only in two dimensions and in the framework of Biot’s theory (Rubino et al., 2017;
Barbosa et al., 2017).

This paper is organized as follows. First, we briefly describe the numerical methodology. Then, we describe the
numerical model and show the numerical results — frequency-dependent effective stiffness moduli. After, by
solving the Christoffel equation, we evaluate the angle-, azimuth- and frequency dependent velocities of the
model. Lastly, we quantify the anisotropy strength of the models analyzing the conventional Thomsen-type
anisotropy parameters and also by adopting another scalar parameter.

3.2 Numerical methodology

We consider that at the pore scale, a rock is composed of a solid material (grains) and a fluid-saturated pore
space (cracks). The numerical methodology is described by Quintal et al. (2016, 2019) and Alkhimenkov et al.
(2020a), and here we briefly outline the main equations. The solid phase is described as a linear isotropic elastic
material for which the conservation of momentum is (e.g., Landau and Lifshitz, 1959b and Nemat-Nasser and
Hori, 2013)

V-o=0, 3.1
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where “V-” denotes the divergence operator acting on the stress tensor ¢. The infinitesimal stress—strain relation
for an elastic material can be written as

2 1 - ST
g=(K--ptr|= (Ve + (Ve )|l
3 2
3.2)
1 . T
+2u E((V®u)+(v@>u) )|

where I, is the second-order identity tensor, tr is the trace operator, “®” defines the tensor product, the
superscript “T” corresponds to the transpose operator, i is the displacement vector, and K and p are respectively
the bulk and shear moduli.

The fluid phase is described by the quasistatic linearized compressible Navier-Stokes momentum equation
(Landau and Lifshitz, 1959a):

1
—Vp+nVii+ 3V (V- 7) =0, (3.3)

where 7 is the particle velocity, p is the fluid pressure and 7 is the shear viscosity. Equation (4.54) is valid for the
laminar flow of a Newtonian fluid. In the finite-element numerical solver, Egs. (4.53)—(4.54) are combined in the
space—frequency domain

2
oij=Aedij+2peij+iw (277€ij - §Ue5ij) » (3-4)

where ¢;j represents the components of the strain tensor €;; = 0.5 (ui, jtu j,i), e is the trace of the strain tensor,
A and p are the Lame parameters, u; is the displacement in the ith direction, §;; is the Kronecker delta, i is the
imaginary unit, and w is the angular frequency. In the domain representing a solid material, Eq. (4.55) reduces
to Eq. (4.53) by setting the shear viscosity 1 to zero. In the domain representing compressible viscous fluid,
Eq. (4.54) is recovered by setting the shear modulus p to zero. The solid and fluid displacements are described
by the same variable, and thus they are naturally coupled at the boundaries between subdomains (Quintal et al.,
2016, 2019). In the simulations, the energy dissipation is caused only by fluid pressure diffusion, since inertial
terms are neglected.

The COMSOL Multiphysics partial differential equation module is used for implementing Eqs. (4.52) and (4.55)
(displacement-stress formulation) in a weak form. Our numerical results can be fully reproduced by using any
open-access software which includes mesh generation and finite-element implementation with a corresponding
solver for a linear system of equations. The whole spatial domain is discretized using an unstructured mesh with
tetrahedral elements. A direct PARDISO solver (Schenk and Gdrtner, 2004) is used for solving the linear system
of equations. Direct relaxation tests are performed to compute all components of the stiffness matrix (in Voigt
notation) ¢;;. The basic idea of the direct relaxation tests is that a displacement boundary condition of the form
u=10"%x exp(iwt) is applied to a certain external wall of the model and in a certain direction, while at other
walls of the model the displacements are set to zero or let free to change. In the direct tests that we perform,
only one component of the stiffness matrix c¢;; can be directly calculated after one numerical simulation. A
detailed description of the boundary conditions is given in Alkhimenkov et al. (2020a). The initial conditions for
displacements are set to zero. The resulting stress and strains are averaged over the spatial domain for each
frequency. Then, the complex-valued c;; (w) components (diagonal) are calculated for each frequency (in Voigt
notation, no index summation):

(0;(w))
(ei ()’

cii(w) = (3.5)
where (-) represents the volume averaging over the sample volume. For calculating the P-wave modulus
(ii =11,22,33), a harmonic displacement on the i direction is applied perpendicularly to a wall of the model. At
the other walls of the model, the normal component of the displacement is set to zero. For calculating shear
components of the stiffness matrix (ii = 44,55,66), the boundary conditions applied are those of a simple
shear test. For the c)2(w), c13(w) and cy3(w) components (off-diagonal), mixed direct tests are needed, and the
corresponding boundary conditions are given in Appendix 3.7. The corresponding inverse quality factor is
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Figure 3.1: Sketch illustrating two flat cylinders representing two cracks. The blue region represents the pore
space saturated with a fluid and the transparent gray area corresponds to the solid grain material. In the first
model, the two cracks are disconnected as illustrated by the upper right sketch. In the second model, the two
cracks are connected as illustrated by the lower right sketch.

(O’Connell and Budiansky, 1978)

1 Im(cj(w)
Qij(w) Re(cijw)

(3.6)

Note that usually the inverse quality factor is used as a measure of attenuation (O’Connell and Budiansky, 1978).
In this study, we show the inverse quality factor for each component of the stiffness tensor, even though the ratio
Im (c,- j (w)) /Re (c,- j (w)) does not represent attenuation of any corresponding wave mode for some components.

3.3 Numerical model

Two 3D numerical models are constructed, which consist of a pore space embedded into an elastic solid grain
material (Fig. 3.1). The solid grain material is represented by a cuboid whose size is (0.24 x 0.24 x 0.24) m3. The
pore space consists of two perpendicular cracks represented by thin cylinders of 0.002 m thickness, 0.1 m radius
(i.e., the aspect ratio is thickness divided by diameter — 0.01) and fully saturated with a liquid. In the first model,
the two cracks are disconnected, while, in the second model, the two cracks are connected (cross sections in
Fig. 3.1). The employed liquid properties are those of glycerol, and the grain material has properties of quartz
(Table 5.2).

A fine, regular mesh is used inside the crack to accurately account for dissipation, while in the grain material
the mesh is coarser (Fig. 3.2). The total number of elements is 3.3 x 108, The simulation is performed for 12
different frequencies from 10! to 108° Hz for each of the nine components of the stiffness matrix (c11, 22, €33,
12, C13, C23, Caa, Cs5, Cep). For each frequency, the solver uses approximately 0.95 TB (terabytes) of RAM memory
and takes approximately 2.5 h on 32 Intel dual-socket E5-2683 v4 2.1 GHz (1024 GB RAM) cores.

One crack embedded into an isotropic background induces a transverse isotropy (five independent components
of the stiffness tensor, e.g., Mavko et al., 2009). If the crack is parallel to the x—y plane, then the symmetry is
vertical and the medium exhibits vertical transverse isotropy — VII symmetry. If the crack is parallel to the
x—z plane, then the symmetry is horizontal and the medium exhibits horizontal transverse isotropy — HTI
symmetry. If two cracks, perpendicular to each other, are embedded into an isotropic material and the crack
compliances are different, then the medium exhibits orthorhombic symmetry (nine independent components
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Table 3.1: Material properties of the numerical model.

Material property Quartz  Glycerol Air

Bulk modulus K  36GPa 4.3GPa 1.01 x 10~*GPa
Shear modulus y  44GPa - -

Shear viscosityn - 1.414Pas™!  1.695x107°Pas™!

of the stiffness tensor). If the crack compliances are the same, then the medium symmetry is tetragonal (six
independent components of the stiffness tensor); some authors attribute this geometry to a special case of
orthorhombic symmetry (e.g., Bakulin et al., 2000b), while tetragonal and orthorhombic symmetry classes are
different. On the other hand, one can argue that an orthorhombic medium (created by two perpendicular sets
of cracks) degenerates into a tetragonal medium if the crack compliances are the same.

The symmetry of the saturated numerical model with connected cracks is tetragonal (Fig. 3.1), because the
crack compliances are the same. Thus, there are only six independent components of the stiffness tensor. We
will see that the symmetry of the saturated numerical model with disconnected cracks is orthorhombic, because
one crack is stiffer than the other one due to its separation into two parts. However, the difference between c;,
and cz3 stiffness components is less then 0.3 %, thus the divergence from the tetragonal symmetry is negligible,
and therefore this model is considered tetragonal as well.

3.4 Results

3.4.1 Dry stiffness moduli

Let us first consider the geometry shown in Fig. 3.1 with a pore space filled with air (i.e., dry). We perform nine
relaxation tests to calculate the full stiffness tensor for each of the two models with connected and disconnected
cracks. The resulting effective stiffness moduli for the model with connected cracks are (in Voigt notation)

93.53 4.65 4.65 0 0 0
465 6391 546 0 0 0
465 546 6391 0 0 0
Con _
i = | o 0 0 3162 0 o | GP- 3.7
0 0 0 0 3516 0
0 0 0 0 0 3516

For the model with disconnected cracks, the effective stiffness moduli are (in Voigt notation)

93.55 4.92 460 0 0 0
492 6921 440 0 0 0

| 460 440 6406 0 0 0

Dis __

% =1 o 0 0 3195 0 o |(GP- (3.8)
0 0 0 0 3516 0
0 0 0 0 0 36.96

The effective stiffness moduli of the two models are different. Zero values are written if the value is below
0.0002 GPa (i.e., up to numerical precision). The cL.CjF’n stiffness matrix precisely belongs to the tetragonal
B.is stiffness matrix has all diagonal components different from each other; thus,

it represents the orthorhombic symmetry class. The largest difference between cl.cjo ?jis
component; i.e., Acyy = c?zis - czcz‘m = 5.3 GPa. That is a significant difference and it is only due to the vertical
crack separation. There are two different features which must be clearly separated. (1) The effect of crack
intersection without changing the crack geometry on the effective elastic properties. In this case, the crack

intersection is achieved by changing the spatial position of the cracks. Grechka and Kachanov (2006) studied

symmetry class, while the ¢

 and c;’S is in the ¢
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Figure 3.2: Sketch illustrating the element’s size distribution for the model with connected cracks. The element’s
size in the crack is 5x 107> — 1 x 1073 m, and in the surrounding grain material it is 2.4 x 1073 — 1.6 x 1072 m. The
element’s size distribution for the model with disconnected cracks is the same.

numerically the effect of crack intersection without changing the crack geometry. They concluded that crack
intersection has a very little impact on the effective elastic moduli. (2) The effect of the crack partition into
two “halves” on the effective elastic properties. In this case, the partitioned crack has a long, thin contact
area across the whole diameter (Fig. 3.1). It is well known that the contact areas inside a crack significantly
reduce crack compliance (Trofimov et al., 2017; Kachanov and Sevostianov, 2018; Markov et al., 2019; Lissa et al.,
2019). Comparing Egs. (3.7) and (3.8), we also observe that the thin contact area significantly reduces the crack
compliance: the effective dry moduli of the model with disconnected cracks are much higher compared to the
model with connected cracks. An intuitive explanation is the following: if crack surfaces have not been changed
by changing the spatial position of the cracks in the volume, the effect of crack intersection is negligible (Grechka
and Kachanov, 2006); if the crack surfaces have been changed — as we did in the present study by partitioning
the vertical crack into two pieces (and introducing a thin additional contact area) — the effective elastic moduli
would become much stiffer compared to the model where the crack surfaces have not been changed.

3.4.2 Fluid pressure fields

Here and later on we deal only with a liquid-saturated pore space. The liquid has properties of glycerol
(Table 5.2). A direct P-wave modulus test is performed to calculate dispersion and attenuation for the c33
component. (A harmonic displacement is applied to the top wall of the model in the z direction, while the
normal component of the displacement is set to zero on all the other walls.) Figure 3.3 shows snapshots of
the fluid pressure Py in the cracks at three different frequencies, in the vertical middle slice of the model (the
y—z plane, red frame in Fig. 3.1a). For the model with connected cracks, at low frequencies, there is enough
time for pressure equilibration between the cracks; thus, the pore pressure is uniform throughout the pore
space (Fig. 3.3, LF (connected)). This is called the relaxed state. At intermediate frequencies, there is a large
pressure gradient in the cracks, which corresponds to the maximum attenuation due to squirt flow between
cracks (Fig. 3.3, Fc (connected)). At high frequencies, there is no time for fluid to move; hence, there is no fluid
pressure equilibration between the vertical and horizontal cracks (Fig. 3.3, HF (connected)). This is called the
unrelaxed state. Therefore, at high frequencies, the connected cracks behave as hydraulically isolated and the
fluid highly stiffens the crack.

In the model with disconnected cracks, the fluid pressure in the cracks is the same in all three regimes, which
corresponds to the unrelaxed state in the model with connected cracks. The unrelaxed state can be interpreted
as the elastic limit because there is no fluid flow between the cracks, and the effective properties of the two
models (connected and disconnected cracks) are the same, as will be shown in the next subsection.
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Figure 3.3: Snapshots of the fluid pressure P in the cracks at three different frequencies: LF - the low-frequency
limit (corresponds to 10! Hz, relaxed state), Fc — intermediate frequency snapshot (corresponds to 10* Hz, close
to the characteristic frequency) and HF - the high-frequency limit (corresponds to 10%° Hz, unrelaxed state).

3.4.3 Dispersion and attenuation

Elastic moduli

Figure 3.4 shows the numerical results for the complex-valued frequency-dependent components of the stiffness
matrix ¢; j (w) (in Voigt notation) for the models with connected and disconnected cracks filled with glycerol. In
the model with connected cracks, the real part of the ¢; ; component and the corresponding inverse quality factor
(Eq. 4.57) curves show strong frequency-dependent behavior of the cz2, ¢33 and c¢z3 components (Fig. 3.4a and
¢). The inverse quality factor and dispersion of the c»» and ¢33 components coincide because the geometrical
properties of the two cracks are the same (Fig. 3.4a) and the model is symmetric. The ¢;; component is
nondispersive and exhibits zero attenuation. The dispersion of the cy4, ¢55 and cgg components is negligible and
these components also exhibit negligible attenuation (Fig. 3.4b). The c;2 and c;3 components are nondispersive,
the cp3 component exhibits strong negative dispersion and a negative inverse quality factor peak is shifted
towards high frequencies compared to that of the ¢, and c33 components. A similar phenomenon has been
reported by Guo et al. (2017b) in the context of two-dimensional simulations. The ¢,3 component does not
correspond to a wave mode alone; it is always used together with ¢y and/or c33 components. Therefore, no
wave will gain energy. This negative inverse quality factor sign for the c,3 component was also verified using
Kramers—Kronig relations. In other words, different components of the stiffness tensor might have positive or
negative values of the ratio Im(c,3)/Re(c3) but, when we calculate the velocity and the inverse quality factor
of a wave, the cumulative effect of all ¢;; components must be physical and no negative attenuation will be
observed.

Note that the width of the inverse quality factor peak (at half amplitude) for the components ¢y, and c33 has a
1.5 order of magnitude (Fig. 3.4a and 3.4c). It means that attenuation and dispersion due to squirt flow play a
significant role over a broad frequency range even for cracks with a single aspect ratio.

In the model with disconnected cracks, all components of the stiffness tensor ¢;;(w) (Fig. 3.4a and 3.4c) are
constant across the whole frequency range and exhibit zero inverse quality factor. Furthermore, all components
are approximately equal to the high-frequency values of the model with connected cracks. This is expected in
the unrelaxed state because the connected cracks behave as hydraulically isolated with respect to fluid flow. A
very small discrepancy between the two models at high frequencies is associated with the vertical crack partition
(two thin regions of pore space replaced with stiffer grain material).
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Figure 3.4: Numerical results for the connected (C) and disconnected (D) crack models: real part of the
¢;j components versus frequency (a-c), dimensionless inverse quality factor of the ¢;; components versus
frequency (d—f). Each symbol corresponds to the test result of one numerical simulation and lines correspond
to linear interpolation between discrete numerical results.

P- and S-wave velocities

Figure 3.5 shows the P-wave (primary wave) phase velocity as a function of the phase angle of the numerical
model with connected and disconnected cracks (Fig. 3.1), where the zero phase angle corresponds to the vertical
wave propagation (along z axis). The P- and S-wave phase velocities are calculated by solving the Christoffel
equation, which represents an eigenvalue problem relating the stiffness components c; j, the phase velocities of
plane waves that propagate in the medium and the polarization of the waves (Fedorov, 1968; Tsvankin, 2012).
Considering the plane Y-Z, the P-wave velocity is the same for phase angles of 0 and 90°; it changes with
frequency only for phase angles between 0 and 90° and is maximal in the high-frequency limit at phase angle
of 8 =90(+90)° (Fig. 3.5a). Furthermore, in the high-frequency limit the P-wave phase velocity coincides for
the models with connected and disconnected cracks. As frequency decreases, the P-wave velocity decreases,
and at 10* Hz the P-wave velocity is almost angle independent (yellow curve, Fig. 3.5a). It is interesting that this
“local” isotropy corresponds to the maximum attenuation of the ¢;» and ¢33 components (Fig. 3.4). As frequency
further decreases, the P-wave velocity decreases and stays nearly unchanged for the frequencies below 103 Hz.
In the X-Z plane, the P-wave phase velocity is the same for the models with connected and disconnected cracks
in the high-frequency limit (Fig. 3.5b). For the model with connected cracks, as frequency decreases, the P-wave
velocity decreases, reaching its minimum at low frequencies (101-10%° Hz).

Figures 3.6-3.7 show the quasi-shear (SV) and the pure shear (SH) phase velocities as functions of the phase angle
of the numerical models with connected and disconnected cracks (Fig. 3.1). The SV wave velocity is strongly
frequency dependent in both the X—Z and Y-Z planes. The SH wave exhibits some frequency-dependent
behavior in the X-Z plane and is angle and frequency independent in the Y-Z plane. It is interesting that
the SV waves in two different planes have different velocities at 0 and 90° phase angles, which is due to their
different wave polarization. The SV wave in the Y-Z plane has the same polarization as the SH wave in the X-Z
plane; their velocities are equivalent at the 0 and 90° phase angles. The same conclusion is valid for the SV wave
in the X-Z plane and the SH wave in the Y-Z plane. A slight discrepancy (around 0.5 %) between the SV wave
velocities for the disconnected crack model (Fig. 3.6, dashed red line) and the high-frequency velocity for the
connected crack model (Fig. 3.6, green line) at phase angles of 0, 90 and 180° is due to the crack separation.

Due to the symmetry of the model, the behaviors of the P-, SV-, SH-wave phase velocities in the X-Z and
X-Y planes are identical; thus, the results in the X-Y plane are not shown here.
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3.4.4 Quantitative analysis of the frequency-dependent anisotropy

First, we quantify the Thomsen-type anisotropic parameters (Thomsen, 1986) for orthorhombic media (Tsvankin,
1997; Bakulin et al., 2000a). Then, we quantify the universal elastic anisotropy index (Ranganathan and Ostoja-
Starzewski, 2008) and the two parameters which define the anisotropy strength in bulk and shear modes. All
these anisotropy measures highlight different frequency-dependent features of the models. Our results shown
in Fig. 3.4 (frequency-dependent elastic moduli) are used as input to quantify these anisotropy measures.

Thomsen-type parameters

Thomsen-type anisotropic parameters (¢, 0, y) describe the P-wave anisotropy - €, the shape of the P-wave phase
velocity at different phase angles — § and the S-wave anisotropy - y: each set of three parameters corresponds to
one plane. Thus, for our model symmetry, there are two different planes — Y-Z and X-Z (because the X-Z
plane is equivalent to the X-Y plane). In this study, we refer to Thomsen parameters |e|,|5],|y| € [0,0.1] as
to weak elastic anisotropy (|- | corresponds to the absolute value), le|,|6],]y| € [0.1,0.15] as moderate elastic
anisotropy and |e|, |6, |y| € [0.15, +o0] as strong elastic anisotropy. The choice of these intervals is based on the
divergence between the exact and approximate (by using Thomsen parameters) equations for the P-wave phase
velocities in cracked media.

Figure 3.8 shows the Thomsen-type anisotropy parameters in the Y-Z and X-Z planes (formulas are given
in Appendix 3.8). In the high-frequency limit, all anisotropy parameters are the same for both models with
connected and disconnected cracks. Furthermore, for the model with disconnected cracks, all anisotropy
parameters are frequency independent, because the stiffness tensor is frequency independent. For the model
with connected cracks, several anisotropy parameters are frequency dependent due to squirt flow.

Inthe Y-Z plane, parameters * Z and y* Z are zero for both models. The parameter § ¥ # is frequency dependent

and controls the shape of the P-wave phase velocity between 0 and 90°. In the high-frequency limit, ¥ # exhibits
the maximum negative value which corresponds to strong elastic anisotropy. As frequency decreases, 5* Z also
decreases reaching a zero value around 10* Hz, and then 6 increases reaching its positive maximum at low
frequencies, which corresponds to weak elastic anisotropy; the positive maximum is approximately one-third of
the absolute value of its negative maximum. It is interesting that §¥ # changes sign from negative to positive,
which is indeed observed in the P-wave velocity behavior (Fig. 3.5a) as P-wave velocity changes polarity with
frequency. This was also observed by Barbosa et al. (2017) in the framework of Biot’s theory. This polarity change
has a fully mechanical nature. In the high-frequency limit, cracks behave as hydraulically isolated and fluid
highly stiffens the normal compliance of the cracks (not tangential). As frequency decreases, fluid started to flow
from more compliant to stiffer cracks as a response to the applied displacement boundary condition. §7? =0
corresponds to zero anisotropy; the numerator of § YZ is [co3(0) + Caa (@)]% = [c33 (@) — Caa (w)]? (seE Appendix 3.8).
Therefore, for zero anisotropy, c,3(w) + c44(w) must be equal to c33(w) — ca4(w). The function c44 (w) is constant
across the whole frequency range, cz3(w) is strictly decreasing with frequency and c33(w) is strictly increasing
with frequency (Fig. 3.4). At a certain frequency (here it is at ~ 10 Hz), the c33 and cp3 components are in such a
combination that co3 (10%) + ¢44(10%) = ¢33(10%) — c44(10%), s0 6¥Z4 = 0, and the P-wave velocity in the Y-Z plane
behaves as in a fully isotropic media.

In the X-Z plane, eX# and 6%# are frequency dependent in the model with connected cracks. eX# exhibits
moderate elastic anisotropy at low frequencies, while %% exhibits moderate elastic anisotropy at high frequen-
cies. Other parameters are frequency independent and exhibit certain nonzero values from weak to moderate
elastic anisotropy.
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Figure 3.5: P-wave phase velocity versus phase angle in the Y-Z plane (a) and the X-Z plane (b). Curves
10'-10%° denote the frequency of the P wave for the model with connected cracks. (D) denotes the P wave for

the model with disconnected cracks.
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Figure 3.8: Thomsen-type anisotropic parameters in the Y-Z (a) and X-Z (b) planes.

The universal elastic anisotropy index

The universal elastic anisotropy index AY (Ranganathan and Ostoja-Starzewski, 2008) is widely used to measure
the anisotropy strength in crystallography, engineering and materials science. This parameter is designed
to evaluate the anisotropy strength of crystals having any elastic symmetry class (Ranganathan and Ostoja-
Starzewski, 2008). Since AV is a scalar, it gives a simple and fast identification of the overall anisotropy strength
of amodel. AY = 0 corresponds to zero anisotropy of a model, while the discrepancy of AV from zero defines the
anisotropy strength and accounts for both the shear and the bulk contributions simultaneously. In analogy to
the universal elastic anisotropy index, two other parameters are adopted which define the anisotropy strength
in bulk AP"¥ and in shear A"@", As far as we are concerned, these parameters have not been widely used in
earth sciences: only a few studies were found. Almquist and Mainprice (2017) applied the universal elastic
anisotropy index and two similar parameters for bulk and shear to study seismic properties and anisotropy of
the continental crust. Kube and De Jong (2016), Duffy (2018) and Vieira et al. (2019) applied AY to quantify the
elastic anisotropy of polycrystals. A brief review of these anisotropic measures and all necessary equations for
their calculation are provided in Appendix 3.9.

Figure 3.9 shows the universal elastic anisotropy index AY and the anisotropy measures in bulk A*"%(w) and
shear AS"@ For the model with disconnected cracks, AV is constant and frequency independent (Fig. 3.9, black
line). Because AY has a certain small value (about 0.058), the model with disconnected cracks exhibits a certain
small anisotropy. For the model with connected cracks, AV in the high-frequency limit is almost the same as
for the model with disconnected cracks (Fig. 3.9, red line). (The nature of the discrepancy is related to the
region containing the crack intersection.) For the model with connected cracks, the overall anisotropy slightly
decreases towards lower frequencies until 103 Hz, reaching its minimum of 0.048 (Fig. 3.9, red line). This local
minimum indeed corresponds to the c,3 attenuation peak (Fig. 3.4c). Then, still towards lower frequencies,
AY (w) increases reaching its maximum of 0.083 at frequencies below 108 Hz (Fig. 3.9, red line). Thus, the overall
anisotropy of the model mainly increases due to squirt flow between the cracks, so the crack connectivity
increases the overall anisotropy of the model towards low frequencies.

The anisotropy measure in bulk AP"X is constant and frequency independent for the models with connected
and disconnected cracks (Fig. 3.9b). It means that fluid flow does not affect bulk properties of the model or the
anisotropy strength in bulk. On the other hand, the anisotropy measure in shear A**" () basically reproduces
the behavior of the universal elastic anisotropy index measure AV Therefore, one can conclude that the fluid
flow changes anisotropy in shear mode but not in bulk mode.
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Figure 3.9: The universal elastic anisotropy index measure AV versus frequency (a) and the anisotropy measures
in bulk and shear (AP and Ashear) (b). These plots show that the overall anisotropy of the model increases in
the low frequencies due to fluid flow.

3.5 Discussion

3.5.1 Elastic anisotropy

Thomsen-type anisotropic parameters provide a very detailed description of the velocity anisotropy in different
planes. Most importantly, only a limited number of the stiffness tensor coefficients are needed to calculate €, &
and y in each plane. Thus, Thomsen parameters can be used to quantify the medium anisotropy using seismic
data. On the other hand, when all components of the stiffness tensor are known and the model’s symmetry is
low, it is difficult to analyze the overall anisotropy due to a large number of Thomsen parameters. For example,
if the model exhibits orthorhombic symmetry, one should analyze nine Thomsen anisotropic parameters (three
in each plane). Due to a large number of Thomsen parameters in this study; it is difficult to evaluate whether
the overall medium’s anisotropy is increasing or decreasing with frequency and how far the current model
is from the closest isotropy. Thus, in addition to (or instead of) the Thomsen-type anisotropic parameters,
the universal elastic anisotropy index can be used. The universal elastic anisotropy index AV and the related
measures in bulk, AP"%, and shear, A*"@", provide the overall description of the anisotropy strength regardless
of the model’s complexity. The calculation of these parameters is as simple as the calculation of the Thomsen
parameters. An obvious disadvantage of the universal elastic anisotropy index (and related measures) is that it
requires knowledge of the full stiffness tensor. Thus, this anisotropic measure can be useful to evaluate results
of numerical simulations of laboratory experiments and for measuring the anisotropy of single crystals.

The analysis of two sets of anisotropic measures shows that (i) the overall anisotropy of the model with connected
cracks (Fig. 3.1) mainly increases due to squirt flow towards low frequencies with a slight local decrease at
intermediate frequencies (Fig. 3.9a); (ii) in the Y-Z plane, the magnitude of the “delta” anisotropy parameter
decreases, reaches zero, and then increases again (reaching approximately one-third of its high-frequency value)
towards low frequencies (Fig. 3.8a, blue curve); and (iii) in the X-Z plane, the “delta” anisotropy parameter
decreases towards low frequencies (Fig. 3.8b, blue curve), while the “epsilon” anisotropy parameter increases
(Fig. 3.8b, green curve).
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3.5.2 Comparison with previous works

In this study, we numerically solve a coupled fluid-solid deformation problem at the pore scale. If we consider
the mesoscopic scale scenario and use Biot’s (1941) equations, the fluid flow effects on the effective moduli are
equivalent to that of the coupled elastic Stokes equations (as in the present study), as it was shown by Quintal
et al. (2016). The frequency-dependent anisotropy due to fluid flow at the mesoscopic scale for orthogonal
fracture sets with different degrees of connectivity was numerically studied by Rubino et al. (2017), but their
study was limited to two dimensions. The main conclusion of Rubino et al. (2017) is that the anisotropy decreases
with fracture connectivity in the seismic frequency band due to fluid flow between connected fractures. The
Y-Z plane in the present 3D numerical model is reasonably equivalent to the 2D numerical model of Rubino
et al. (2017) as well as the physical mechanism under consideration. The results of Rubino et al. (2017) are
reflected in Fig. 3.5 of this study. However, a more in-depth analysis shows that the anisotropy in the Y-Z plane
decreases, reaches zero and then increases again towards low frequencies due to squirt flow (Fig. 3.5a, green,
yellow and blue curves, respectively). Moreover, our present study shows that the overall anisotropy of the
model with cracks of finite length actually increases due to fluid flow between interconnected cracks (Figs. 3.8,
3.9). This conclusion is not universal and is valid only for a specific set of model parameters.

Barbosa et al. (2017) performed a more detailed study of seismic anisotropy for a similar fracture geometry in
two dimensions, as in the study of Rubino et al. (2017), specifying that the decrease in anisotropy is described by
the anisotropy parameter 6 while ¢ is zero. Furthermore, they observed a polarity change of the P-wave phase
velocity behavior with frequency. In the present study, the “delta” anisotropy parameter in the Y-Z plane is
more pronounced in the low-frequency limit (Fig. 3.5a, blue curve) compared to the work of Barbosa et al. (2017)
due to different material properties and the three-dimensional nature of the present model configuration.

In summary, fluid flow effects on seismic anisotropy are nonlinear with a possible increase or decrease in the
elastic anisotropy at different frequencies. These two extreme cases, the maximum negative and the maximum
positive § parameter (and hence P-wave velocity) in the Y-Z plane, correspond to the relaxed and unrelaxed
states. In other words, seismic anisotropy may behave completely different in different scenarios; therefore,
more studies should be performed, especially with the sensitivity analysis of model parameters.

3.5.3 A qualitative comparison against analytical models

Numerical simulations are useful but analytical models are especially attractive since they help us to better
understand the physics and do not require sophisticated numerical simulations. The limitations of the analytical
solutions are restricted to simple pore space geometry, and some assumptions related to physics are needed to
derive the closed form analytical formulas. Such a comparison of the numerical results against an analytical
solution has been performed by Alkhimenkov et al. (2020a) for a different pore space geometry. Unfortunately,
there is no analytical solution for the present study considering a periodic distribution of intersecting cracks in
three dimensions. But the qualitative comparison of the low- and high-frequency limits (which correspond
to relaxed and unrelaxed states) is possible (Mavko and Jizba, 1991). Several analytical studies show that the
anisotropy (described by Thompson’s parameters) is, in general, more pronounced at high frequencies than at
low frequencies (Guéguen and Sarout, 2009, 2011). In the relaxed state, one can calculate the effective dry elastic
moduli and use Gassmann’s equations to obtain the effective moduli of the saturated medium. In the unrelaxed
state, one can calculate the effective elastic moduli by restricting fluid flow (by using zero displacement
boundary conditions in the crack intersections). The low- and high-frequency limits for elastic moduli have
been calculated using these semi-analytical approaches, and numerical results have been reproduced.
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3.6 Conclusions

We have numerically calculated the frequency-dependent elastic moduli of a fluid-saturated porous medium
caused by squirt flow. The considered 3D numerical models consist of two perpendicular connected or discon-
nected cracks embedded in a solid grain material. Cracks are represented by very flat cylinders filled with a fluid.
Grains are described as a linear isotropic elastic material, while the fluid phase is described by the quasistatic
linearized compressible Navier-Stokes momentum equation.

We showed that seismic velocities are azimuth, angle and frequency dependent due to squirt flow between
connected cracks. The resulting elastic frequency-dependent anisotropy was analyzed by using the Thomsen-
type anisotropic parameters and the universal elastic anisotropy index. The latter is a scalar parameter which
can be used to analyze the overall anisotropy of the model and its divergence from the closest isotropy. We
showed that the seismic anisotropy may locally decrease as well as increase due to squirt flow in one specific
plane. However, the overall anisotropy of the model mainly increases due to squirt flow between the cracks
towards low frequencies. In the model with disconnected cracks, no fluid flow occurs, and thus the effective
properties of the model correspond to the elastic limit. The elastic limit is equivalent to the high-frequency
limit for the model with connected cracks. Seismic velocities are only azimuth and angle dependent as for
a fully elastic material, and they are independent of frequency. In summary, squirt flow does affect effective
mechanical properties of cracked rocks and thus seismic velocity anisotropy. Given that seismic anisotropy
variations with frequency are very sensitive to the pore space geometry and material properties, it is difficult to
make a general prediction. According to our study, the effective frequency-dependent response of a cracked
medium is different in different planes. The local response (in a certain plane) is controlled by crack orientation,
which is the key parameter. The magnitude of the frequency-dependent response (i.e., the dispersion and
attenuation) is controlled by crack compliances, crack porosity and their fluid content. (Dry or liquid-saturation
conditions will cause completely different behavior.) Most importantly, crack porosity is a very important
parameter in fluid-saturated rocks (contrary to dry rocks) since it defines the volume of fluid which may flow
due to wave propagation, causing wave attenuation and dispersion.
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3.7 Appendix A: Boundary conditions for c;; off-diagonal components

Let us consider a cuboid, volume V = (0, Lx) x (0, Ly) x (0, Lz) and T its boundary, I' = [*30 yT**L y V0 TVl U
*¥0 yr*yL where '*%0 represents an x—z with zero coordinate, XL represents an x—z with Ly coordinate, etc.
There are six planes in total.

The mixed test for the ¢;3 component can be derived from the anisotropic stress—strain relation (Hooke’s law)
(similarly to the ¢;3 component in a VTI medium; Alkhimenkov et al., 2020a); *vL is set to U;, = Au; uyy and
uyy are free;

Y%L is set to uy, = Au; and u,, and uyy are free,

where Au = 1075, In the other four planes, the normal component of the displacement is set to zero and other
components are free. The the stress—strain relation for the (o) stress component is

(01) = c11€€1) + c12(€2) + C13(€3). (3.9)
Using the abovementioned boundary conditions and setting (€2) = 0, Eq. (3.9) becomes
(o1) = c11{€1) + c13€3). (3.10)

Equation (3.10) can be solved for the c13 component; the solution is

(o71)
CI3=€_1_011- (3.11)

Equation (3.11) is used to calculate the ¢;3 component (c;; is taken from the direct tests).

The mixed test for the cp3 (in this numerical model, the cy3 is dispersive) component again can be derived
from the anisotropic stress—strain relation (Hooke’s law) (similarly to the previous test). I*¥L is set to u,, = Au;
Uyx, Uyy are free;

*2L is set to uyy = Au; and u, and uy, are free.

In the other four planes, the normal component of the displacement is set to zero, other components are free.
Then, using the following equation
(02)
C23 = —— —C22, 3.12)

(€2)

the cy3 component is calculated (c», is taken from the direct test). Equations (3.11)-(3.12) are found from
Hooke’s law considering nonzero strains in the x and z (in y and z) directions and then solving a system of two
equations analytically.

3.8 Appendix B: Thomsen-type anisotropic parameters

Thomsen-type anisotropic parameters (Thomsen, 1986) are widely used in the applied geophysics community.
Thomsen weak anisotropy parameters were originally developed for vertical transverse isotropic media (Thom-
sen, 1986). A natural extension of these parameters to orthorhombic media was suggested by Tsvankin (1997)
and Bakulin et al. (2000a). These parameters correspond to the anisotropy of the compression and shear waves
in orthorhombic media in different Cartesian propagation planes. In the Y-Z plane, Thomsen-type anisotropic
parameters are

e 2 () = €22(w) — €33(W)
2¢33(w)

_ Co6(w) — C55(w)
C 2cs5)

, Y(YZ) (w)
(3.13)
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and

502 () = [28(@) + Caa(@))” ~ (53 (@) ~ caa(@))” 3.19)
2¢33(w) [e33(w) — Ca4(w)]

In the X-Z plane, Thomsen-type anisotropic parameters are

cX2) (@) = 11 (w) — c33(w)
2c33(w)

_ Ces(w) — c4q(w)
 2cu()

, Y (w)
(3.15)

and

XD ) = 113(@) + 55 (@)]? — [c33(w) — C55()]? . .16
2c33(w) [e33(W) — c55(w)]

3.9 Appendix C: The universal elastic anisotropy index parameter

Assuming that one deals with an anisotropic frequency-dependent effective fourth-rank stiffness tensor C (might
be frequency dependent C = C(w)), a compliance tensor is defined as S(w) = C(w)~!. Then, for each frequency,
the effective single orientation fourth-rank stiffness and compliance tensors are uniformly distributed and
the isotropic stiffness and compliance tensors are calculated. Averaging the single orientation stiffness tensor
belongs to the Voigt assumption, which is the theoretical maximum value of the isotropic elastic moduli. On the
other hand, averaging the single orientation compliance tensor belongs to the Reuss assumption which is the
theoretical minimum value of the isotropic elastic moduli. The resulting isotropic tensors can be expressed in
terms of the spherical and deviatoric parts corresponding to bulk K and shear moduli p:

CVw) =3K"1+24'D (3.17)
and
SR () = —J+ D (3.18)
~ 3KRT2uRT '

where the superscripts “V” and “R” correspond to Voigt and Reuss estimates, respectively. J and D are the
spherical (volumetric) and deviatoric parts of the symmetric unit fourth-order tensor.

The double contraction of the scalar product (quadruple contraction) of Egs. (3.17) and (3.18) gives

KV _p(w)

cv . SR =—+5———.
©)8") = T+ R

(3.19)

If the effective stiffness tensor is isotropic, then CV(w) = (S} (cu))_1 and KV/K® = uV/uR = 1. Therefore, when the
effective stiffness tensor is isotropic, the value of Eq. 3.19 equals to 6 and this value increases when the effective
stiffness tensor becomes anisotropic. Thus, the universal elastic anisotropy index measure AV is defined as
(Ranganathan and Ostoja-Starzewski, 2008):

KV _pYw)

AV (w) =
@)= T " Fw)

-6=0, (3.20)

In geophysics, the separation of the elastic anisotropy measure in bulk and shear modes is necessary because
rocks might exhibit different frequency dependencies due to bulk and shear deformations. Therefore, in analogy
to the universal elastic anisotropy index measure AY, the anisotropy measures in bulk AP"X() and shear
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Ashear () can be defined as

KY(w)
APy = = 1 3.21
@)= 5w (3.21)
and
GV ()
Ashear )y = -1 3.22
@ = Cr (3.22)

These two parameters, AP"(w) and A%P®?" (), obey the same interpretation as the universal elastic anisotropy
index measure: APWk = g (4shear = () corresponds to zero bulk (shear) anisotropy of the model, while the
discrepancy of APUK (Ashear) from zero anisotropy defines the anisotropy strength in bulk (shear). The Voigt and
Reuss estimates (K", K&, 4V and p?) can be calculated via simple algebraic formulas for different symmetry
classes which can be found elsewhere, e.g., in Ravindran et al. (1998) for orthorhombic symmetry, in Feng et al.
(2012) for tetragonal symmetry and in Duffy (2018) for cubic symmetry. Thus, for orthorhombic symmetry
(lowest possible symmetry created by two perpendicular sets of cracks embedded into an isotropic material),
the Voigt and Reuss bulk moduli are (written for the components of stiffness (compliance) matrices c;;(s;}), in
Voigt notation)

1
KY = g len + e+ o) +2(crz+ 13 + €23)] (3.23)
and

KR = [(s11+ S22 + 533) + 2 (s12 + S13 + $23)] ' (3.24)

Similarly, the Voigt and Reuss shear moduli are (in Voigt notation)

1
I T [(c11 + €22 + €33 — C12 — €13 — €23) (3.25)

+3 (€44 + C55 + Cep) |
and

,UR =15[4(s11 + S22 + $33 — S12 — S13 — 523)
o (3.26)
+3(S44 + 855+ Se6) |-

Equations (3.23)—(3.26) are valid for orthorhombic symmetry and for higher symmetries: tetragonal, transverse
isotropy and cubic. Thus, for evaluating the universal elastic anisotropy index AV and the anisotropy measures
in bulk AP"¥(¢) and shear A%"*¥ (), one can use Egs. (3.23)—(3.26) to calculate the Voigt and Reuss estimates
(K, KR, ,uV and pR) and then calculate AY using Eq. (3.20) and Abuk )y and Ashear () using Egs. (3.21) and
(3.22), respectively.
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Abstract

Seismic wave propagation in porous rocks that are saturated with a liquid exhibits significant dispersion
and attenuation due to fluid flow at the pore scale, so-called squirt flow. This phenomenon takes place in
compliant flat pores such as microcracks and grain contacts that are connected to stiffer isometric pores.
Accurate quantitative description is crucial for inverting rock and fluid properties from seismic attributes such
as attenuation. Up to now, many analytical models for squirt flow were proposed based on simplified geometries
of the pore space. These models were either not compared with a numerical solution or showed poor accuracy.
We present a new analytical model for squirt flow which is validated against a three-dimensional numerical
solution for a simple pore geometry that has been classically used to explain squirt flow; that is why we refer to
it as classical geometry. The pore space is represented by a flat cylindrical (penny-shaped) pore whose curved
edge is fully connected to a toroidal (stiff) pore. Compared with correct numerical solutions, our analytical
model provides very accurate predictions for the attenuation and dispersion across the whole frequency range.
This includes correct low- and high-frequency limits of the stiffness modulus, the characteristic frequency, and
the shape of the dispersion and attenuation curves. In a companion paper (Part 2), we extend our analytical
model to more complex pore geometries. We provide as supplementary material Matlab and symbolic Maple
routines to reproduce our main results.

4.1 Introduction

Wave propagation in fluid-saturated porous rocks exhibits energy loss, or attenuation, and velocity dispersion.
Most of the attenuation and dispersion of seismic waves in such rocks are usually due to fluid flow taking place
at various scales. At the pore scale, this energy loss is referred to as squirt flow (Mavko and Nur, 1975; Mavko
and Jizba, 1991; Dvorkin et al., 1995; Pride et al., 2004; Gurevich et al., 2010; Miiller et al., 2010; Pimienta et al.,
2015a,b). Squirt flow occurs between interconnected pores due to different shapes or different orientations
(Mavko et al., 2009; Miiller et al., 2010). Many analytical models describing squirt flow have been suggested.
These models explore squirt flow between interconnected compliant cracks (O’Connell and Budiansky, 1977;
Palmer and Traviolia, 1980), between compliant cracks and stiff pores (Murphy et al., 1986; Mukerji and Mavko,
1994; Dvorkin et al., 1995; Pride et al., 2004; Gurevich et al., 2010; Collet and Gurevich, 2016) and between cracks
and spheroidal pores (Xu, 1998; Chapman et al., 2002; Chapman, 2003; Jakobsen and Chapman, 2009). In real
rocks, examples of compliant pores, which here are simply referred to as cracks, are microcracks and grain
contacts. An overview of early theoretical studies on squirt flow is given by Jones (1986). Several experimental
studies confirmed the importance of squirt flow at different frequency ranges, including sesimic frequencies
(Mayr and Burkhardt, 2006; Adelinet et al., 2010; Mikhaltsevitch et al., 2015; Subramaniyan et al., 2015; Pimienta
etal, 2015a,b; Chapman et al., 2019; Borgomano et al., 2019).

Numerically, squirt flow can be modeled by solving a set of equations describing coupled fluid-solid deformation
(Zhanget al., 2010; Zhang and Tokséz, 2012; Quintal et al., 2016, 2019; Das et al., 2019; Alkhimenkov et al., 2020a,b;
Lissa et al., 2020, 2021). Quintal et al. (2016, 2019) proposed a simplified numerical solution based on the
linearized quasistatic Navier-Stokes equation. Alkhimenkov et al. (2020a) benchmarked this numerical solution
using a published analytical model (Collet and Gurevich, 2016) under a specific scenario, while identifying
and quantifying the causes of inaccuracies due to the assumptions used in the analytical model for scenarios
corresponding to the described pore geometry. Guided by the numerical simulations presented in Alkhimenkov
et al. (2020a), we develop an analytical model for squirt flow which allows us to accurately calculate the
corresponding seismic dispersion and attenuation. This model does not have any fitting parameters and is in a
very good agreement with three-dimensional numerical solutions across a wide frequency band. This article
(Part 1) is focused on describing the analytical model for the classical geometry used in many previous studies:
a penny shaped crack surrounded by a toroidal pore (Murphy et al., 1986; Gurevich et al., 2010; Collet and
Gurevich, 2016). In a companion article (Part 2), we propose an analytical model for more complex geometries
and investigate in further details the characteristic frequency of attenuation due to squirt flow. We provide
Matlab and symbolic Maple routines to allow the reader to reproduce our main results and/or to obtain results
for other material properties and pore sizes. The routines archive (v1.0) is available from a permanent DOI
repository (Zenodo) at http://doi.org/link_removed (last access: 11 November 2021).
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Figure 4.1: Workflow to (i) benchmark published analytical models and (ii) ensure the quality of future models.

4.1.1 Importance of validating analytical models against numerical simulations

Rock physics relies on models that quantitatively describe certain physical concepts with predictive power. For
squirt flow, all the models presented in the literature quantitatively describe the dispersion and attenuation
based on many assumptions. Only recently, computational advances made it possible to directly compare
analytical models against three-dimensional numerical solutions. As a result, it has been shown that certain
analytical models are not accurate because some of their assumptions are not fulfilled even for idealized
geometries (Alkhimenkov et al., 2020a).

We propose a simple and logical workflow which will make it possible to (i) benchmark published analytical
models and (ii) ensure the quality of future models (Figure 4.1). There are five key steps. For a given physical
concept, an analytical model for a simple geometry is considered (step 1). The solution can also be calculated
numerically for the same simple geometry (step 2). The results predicted by the analytical model are bench-
marked through the comparison with the numerical solution (step 3). If the analytical model can adequately
describe the physics for a simple geometry, it then could be extrapolated for real rocks (step 4). This can
be done by finding key parameters of the analytical models. If the analytical model for a simple geometry
cannot describe the key features of the exact numerical solution for the same simple geometry, then this model
shouldn’t be applied to real rocks.

Up to now, “validation" of analytical models involved only steps 1 and 4. However, step 4 does not appropriately
validate the analytical model because of obvious differences in corresponding geometries. Furthermore, other
physical mechanisms, which were not accounted for in the analytical model, could have an important effect
on the laboratory results. Indeed, “validation" against laboratory results usually require a number of fitting
parameters. Therefore, validating analytical models against inherently accurate three-dimensional numerical
simulations based on exact same model geometry and same physical mechanisms is of primary importance.
Using a numerical solution helps to better understand the involved physical mechanism by evaluating the effect
of key parameters as well as to improve the analytical model by testing assumptions.
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Figure 4.2: Raw synchrotron radiation X-ray tomographic microscopy image of dry Berea sandstone. One slice
of the total data cube with 10243 voxels [from Madonna et al. (2013)].

4.1.2 Seismic attenuation and dispersion due to squirt flow

One measure of seismic P-wave attenuation is the so-called inverse quality factor 1/Q(w) = Im (M (w))/Re (M (w))
(O’Connell and Budiansky, 1978), where w = 27 f is the angular frequency (f is the frequency) and M = K +4/3G
is the complex-valued P-wave modulus, K and G are the bulk and shear moduli, respectively. Throughout the
article, by attenuation we imply the inverse quality factor.

We recall a brief overview of the physics based on previous analytical studies (Mavko and Jizba, 1991) with some
additional information obtained from numerical simulations (Quintal et al., 2019; Alkhimenkov et al., 2020a,b;
Lissa et al., 2020). In the physics of squirt flow, the cause of energy dissipation is fluid pressure diffusion at the
pore scale. An idealized rock model can be parameterized by three components: solid elastic matrix, isometric
pores and thin compliant cracks (Figure 4.2). Pores and cracks are interconnected and saturated with a fluid.
A passing seismic wave deforms the compliant cracks more than the stiff pores, which causes fluid pressure
gradients in the cracks. This results in fluid pressure diffusion, sometimes referred to as local fluid flow or squirt
flow, which strongly depends on the frequency of the propagating wave.

At low-frequencies, the fluid pressure becomes uniform throughout the pore space because there is enough
time for it to equilibrate. This is called relaxed state. The effective elastic properties can be calculated by
using Gassmann’s equations (Gassmann, 1951) given that the elastic moduli of the dry frame are known.
At low-frequencies, 1/Q is proportional to = w! according to numerical simulations for simple geometries
(Alkhimenkov et al., 2020a). At intermediate frequencies, the fluid pressure gradients are at their maximum,
which corresponds to the attenuation peak. The frequency at which the attenuation is at its maximum is called
the characteristic frequency w,. At high frequencies, there is no time for fluid to flow or fluid pressure to diffuse
between cracks and pores; cracks behave as hydraulically isolated from pores. This is called unrelaxed state. The
slope of the high-frequency asymptote of the attenuation curve depends on the pore geometry (Alkhimenkov
etal., 2020a,b). If the pore space is represented by a penny shaped crack connected to a toroidal pore, then 1/Q
at high-frequencies is proportional to =~ w~!/2. An evaluation of the high-frequency asymptote of 1/Q for more
complex geometries is presented in the Part 2 of the present study.
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Figure 4.3: The development of the present analytical model.

4.2 The analytical model

An analytical model for seismic attenuation and dispersion caused by squirt flow should, at least, accurately
determine three key features: the low- and high-frequency limits for the elastic moduli and the characteristic
frequency. To calculate the low-frequency limit, one needs the correct dry moduli of the rock and then use
Gassmann’s equations to obtain the moduli in the case of saturation with a fluid. To calculate the high-frequency
limit, one needs the dry moduli of the rock where the crack normal compliance is zero and again use Gassmann’s
equations to obtain the moduli of the saturated rock. The characteristic frequency is directly related to the
aspect ratio of compliant cracks and can be reasonably estimated. If these three parameters are determined,
the dispersion and attenuation curves can be plotted using, for example, a standard linear solid (SLS) rheology.
The disadvantage of the SLS model is that the resulting 1/Q is a symmetric curve if plotted in a bi-logarithmic
scale, which is usually not the case for attenuation caused by squirt flow (Alkhimenkov et al., 2020a,b; Lissa et al.,
2020).

The analytical model that we present here features the key components of previous analytical models for squirt
flow (e.g., Dvorkin and Nur (1993); Mukerji and Mavko (1994); Dvorkin et al. (1995); Gurevich et al. (2010);
Glubokovskikh et al. (2016); Collet and Gurevich (2016)) but with several key modifications which make it
accurate. The main building block of our analytical model is the so-called modified frame, which was originally
introduced by Mavko and Jizba (1991). The modified frame represents a rock configuration where cracks
are saturated with a fluid, whereas the isometric pores are dry. The development of our analytical model
is shown in Figure 5.4. First, we calculate the moduli of the dry rock for two configurations: the dry rock
containing the torus connected to the crack and the dry rock containing the torus connected to the crack with
zero normal compliance (step 1, Figure 5.4). Then, we calculate the relaxation of the crack stiffness due to fluid
pressure diffusion and obtain accurate values of the frequency-dependent moduli of the modified frame (step
2, Figure 5.4). Finally, we use Gassmann’s equations to obtain the frequency-dependent moduli of the fully
saturated medium (step 3, Figure 5.4).
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Figure 4.4: (a) Sketch illustrating the Big pore model: a flat cylinder representing a crack whose edge is connected
to a torus representing a stiff isometric pore. (b) A vertical slice across half of the model. r is the minor radius of
the torus (dpp = 21 is the minor diameter of the torus), dasj = r + b is the major radius of the torus.

4.2.1 General expressions

Let us consider the classical model for squirt flow presented in Figure 4.4, assuming a representative volume
element (RVE) (for clarity, later in this article we will show slices of half of the models as in Figure 4.4b). The
stiff isometric pore is represented by a torus and the penny-shaped crack is represented by a flat cylinder. The
embedding medium consists of an elastic grain material described by a compliance tensor Slgj - The m-th
inclusion (interconnected isometric pore and crack) is represented by a compliance contribution tensor H with
components H Z?k ;- The relation for the overall strain €;; can be written as

.. — g8 .. —q8 m
€ij= Sijklgkl+A€lJ = Sijklo-kl"-;HijklO—kl’ (4.1)

where o represents remotely applied stresses, A¢;; represents the extra strain due to the presence of the
inclusion described by the H-tensor. The components of the effective compliance tensor of a three-dimensional
medium with inclusion(s) are

* _ g8 m
Sijkl = Sijkl+;Hijkl' (4.2)

The expression 4.2 is exact and valid for a finite and infinitely extended RVE (Nemat-Nasser and Hori, 2013).
The main assumption is that the grain material and inclusions are elastic and homogeneous. The compliance
tensors can be complex functions of frequency (Hashin, 1970). In three-dimensions, the H-tensors can be
calculated exactly for ellipsoids by using the Eshelby result; in two-dimensions, exact results are known for
several geometries (Kachanov and Sevostianov, 2018). In our particular case, in equations 4.1 and 4.2 m =1
since we have only one inclusion. For our pore space geometry (Figure 4.4), no closed form expression of this
H-tensor exist, thus, we derive an approximation.
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Figure 4.5: Cartoon illustrating the different model configurations used to obtain the corresponding compliance
matrices.

4.2.2 General expressions for our geometry

The key components of our model are illustrated in Figure 4.5. The effective compliance tensor with components
S ;‘j 1 for the dry model represented in Figure 4.5¢ can be written similarly to expression 4.2 (in Voigt notation),

[S;knn]dry = S?Tll’l + [Hmn]dry' (43)

The effective frequency-dependent compliance tensor with components S l’.‘j 1 (@) for the fluid-saturated model
is (Figure 4.5€)

[S;knn (w)]sat = S(Ignn + [Hmn(@)]sat - (4.4)
The corresponding effective stiffness matrix for the saturated model is
* * -1
[Crin @) ] g = [Span (@)] - 4.5)

The compliance matrix of an elastic grain material S5,), is frequency independent. We also introduce the compli-

ance contribution matrix of the dry torus [Hff;n 4 and the compliance contribution matrix [Hy,, (@)]MF of an
ry

inclusion represented by a dry torus connected to a crack saturated with a fluid (this compliance contribution
can be used to obtain the moduli of the modified frame). By using expressions 4.3-4.5, several configurations of
the model (illustrated in Figure 4.5) can be evaluated. For example, the effective compliance tensor for the dry
model containing only the torus (Figure 4.5b) [S,,]” is

* tp _ o8 tp
[Smn] =Smnt [Hmn]dry' (4.6)
The effective compliance matrix for the modified frame model (Figure 4.5d) is
[Spun @] = 85+ [Hyn (@M @.7)

Finally, the effective compliance matrix for the fluid-saturated model [S;,,, (w)]sat can be calculated by applying
anisotropic Gassmann’s equations to expression 4.7 for each frequency. The result will be equivalent to that
obtained via expression 4.4.
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Some remarks

To calculate the resulting effective moduli, one needs to find the frequency-dependent compliance contribution
matrix [Hy,, (w)]sa of a saturated pore space represented by a torus connected to a flat cylinder (see expression
4.4). Equivalently, instead of finding [ H,y,, (w)]s,¢ directly, we can find [S”;nn(w)]MF and then obtain [Hy,, (0)]gat-
Let’s assume that a torus and a flat cylinder are disconnected and far from each other. We can represent the
H-tensor in the form

—[pgtp
[Hmn]dry = [Hmn dry + [H%n]dry, (4.8)
where [H,t}:n d and [HS,] dry Tepresent the compliance contribution matrices of the dry torus and the dry
ry

crack, respectively. The compliance contribution matrix for the modified frame (dry torus and saturated crack
with a frequency-dependent fluid bulk modulus) is

[Hon (@) = [H}2,

ayt [Hypn (@) ]y (4.9)

where the compliance contribution matrix of the torus [H,t};n g is frequency-independent but the compliance
ry

contribution matrix of the crack [Hg;, (w)],,, is frequency-dependent. However, the expressions 4.8 and 4.9
are accurate only when the torus and the crack are not connected and far from each other, so that there is no
elastic interactions. Since we are working with a model where the torus and the crack are interconnected, the
expressions 4.8 and 4.9 are not valid as illustrated by Alkhimenkov et al. (2020a). The compliance contribution
matrix [Hy,, (@)IMF should be calculated differently, such as in the procedure that we describe below.

4.2.3 Calculation of the model compliance

The overall dispersion and attenuation magnitudes of the modified frame (and hence, of the fully saturated
model) are controlled by the elastic bounds: the low-frequency limit — the dry moduli of the model containing
the interconnected torus and crack (Figure 4.5¢), and the high-frequency limit — the dry moduli of the model
containing the torus while the crack normal compliance is zero (Figure 4.5b). The corresponding values of
the dispersion are illustrated in Figure 4.6. These low- and high-frequency values can be taken from different
sources:

i) These values can be estimated from the laboratory measurements by measuring the low- and high-pressure
rock moduli, this procedure is described in many studies, e.g., (Gurevich et al., 2010). We do not examine nor
use this approach here.

ii) The second option is to calculate the low- and high-frequency moduli of a dry model numerically.
iii) The third option is to calculate the low- and high-frequency moduli of a dry model analytically.

If the analytical methods are properly used, then the resulting moduli are equivalent to that ones obtained
numerically. In this study, we adopt the dry moduli calculated numerically and we provide the workflow to
calculate the dry moduli analytically; the numerical and analytical approaches provide us identical results.

One of the most important outcomes of this study is the adequate calculation of the effective elastic moduli of
the interconnected pore space using an analytical approach. The pore space consists of two interconnected
cavities: the stiff isometric pore (torus) and the compliant crack (flat cylinder). The correct values for the
elastic moduli are obtained numerically for several configurations and shown in Figure 4.6. Details on the
numerical solutions and applied boundary conditions are given in Appendix 4.6. These correct values are used
to benchmark the model compliance obtained analytically. The analytical expressions are provided below.
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Figure 4.6: Sketch illustrating the configurations of our model that corresponds to the high- and low-frequency
limits obtained from the numerical calculations for the [C?:kl‘}]sat component (properties in Tables 5.1 and 5.2).

Analytical expressions

To derive the compliance contribution matrix of the interconnected torus and crack [H,,,,] ary» We employ the
conventional approach used in micromechanics to construct the property contribution matrix of complex
geometries (e.g., intersecting cracks, inclusions of “irregular" shapes), see chapters 4.3 and 4.4 in Kachanov
and Sevostianov (2018). Several different techniques exist, which can be used separately or in combinations.
Here, we adopt the following method: by using the results of three-dimensional numerical simulations for
the interconnected torus and crack, we find the structure of the compliance contribution matrix, its principal
directions and the key geometrical characteristics of inclusions which control the compliance contribution
matrix. Then, we construct the compliance contribution matrix of the interconnected torus and crack [H,,,), ] dry
by using the known property contribution tensors for simple geometries (in our case, the crack, the torus and

spheroid). It turns out, that all components of the [H,,, | 4, are controlled by the torus except for [Hy] ..,
[Hyslgry and [Hgs] - This is simple to understand because the compliance contribution matrix of the crack
is described by the two components only (Schoenberg and Douma, 1988; Schoenberg and Helbig, 1997); thus,
the only non-zero components are | HS} | dry’ [H dry = [HSE] dry- However, the crack is connected to the torus,
therefore, the theory for cracks embedded into a homogenous material by Schoenberg and Douma (1988);
Schoenberg and Helbig (1997) cannot be used here to calculate [ Hgj | dry? [HS:] dry? [HEE] dry" Instead, from

the numerical experiments we find that the [H33] dry’ [H44] dry and [H55] dry COMponents of the compliance

contribution matrix of the interconnected torus and crack are the same as for a spheroid [ HES | dry- From now

on, we refer to this spheroid as the extended crack. The shape of the extended crack is such that it works as an
P, E E E
envelope for the torus as shown in Figure 4.7. Thus, we employ [Hs"| .\, [Hyi"]4ry [H55'] 4y components to

the contribution matrix of the interconnected torus and crack [H,,,, ] dry- This approach provide us with a very
good approximation of the compliance contribution matrix for this particular geometry — the interconnected
torus and crack. A detailed workflow is given below (see also Figure 4.7).
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i) The compliance contribution matrix of the dry torus [H,t};n

should be calculated as
dry

(Ml [HEl,  |HE],, o ° °
8]y [B], (Rl o 0 0
tp _ [Htp]dry tg]dry [H;g]dfy 0 0 0 (4.10)
mn gy 0 0 [ HEJdry 0 0 .
0 0 0 0 [Hég]dry 0
0 0 0 0 0 [Htp] )

ii) The compliance contribution matrix of the extended dry crack is calculated [ H5 | dry* . The diameter of the
extended crack is equal to the diameter of the crack (2b) plus an extension correspondlng to twice the minor
diameter of the torus (4r), as shown in Figure 4.7. In other words, the projection of the pore space containing the
crack and torus and the projection of the extended crack model onto the xy—plane are the same. The thickness
of the extended crack is such as the extended crack is a spheroidal envelope for the torus as shown in Figure 4.7.
For our particular geometry, the thickness of the extended crack is approximately twice the minor diameter of
the torus, dys, = 2r (see Figure 4.7 and Figure 4.4 for geometrical parameters).

iii) The compliance contribution matrix of the interconnected torus and crack [H

mn| dry is thus constructed by
and [ HES dry’

using the obtained components of [H,tfl’n dry

[ ] [H?;]dry [H?;]dry 0 0 0
[ t] [H{Z)]dry [Hp]dry 0 0 0
p P Ecr
[Hon) ary = E5; ]dry [Hs(z)]dry O]dry [HESr]dry 2 2 (4.11)
0 0 0 0 [H55") ary 0
0 0 0 0 0 [Hgg]dw

The components [Hig] o and [ 23](1 , and corresponding symmetric components, could also be replaced
ry ry

by [HET ary and [HE] ary (Which may improve the accuracy) but this effect is of minor importance, thus, we

do not explore it in more details. The components [ tp] [Hﬁ] and [Htp] representing the torus

dry
are replaced by the components representing the extended crack [HEcr Jary [HE“] ary and [FES] ary- The
compliance contribution matrices of a torus and extended crack (spheroid) can be calculated analytically as

described in chapters 4.3 and 4.2 of Kachanov and Sevostianov (2018) (and references therein).

The compliance contribution matrix of the modified frame is

P [Htp] dry [H{g] dry [H{g] dry 0 0 0
), [, [ o0
tp tp aw Ecr dry
[Hmn(w)]MF: [H ]dry [H?’z]dry [H @ )] 0 0 0 . (4.12)
0 0 [H35 ) ary 0 0
0 0 0 0 (55" ) ary 0
0 0 0 0 0 [Htp]dry_

The only difference between the matrices in equation 4.11 and equation 4.12 is the component [ng (w)]MF
Since the fluid flow takes place in the crack only when the displacement boundary condition in the vertical (z)
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direction is applied, the component [H3E3Cr ()] MF s the only frequency-dependent component. This statement

is also supported by the numerical simulations by Alkhimenkov et al. (2020a). The component [Hfg‘fr (a))]MF

might also exhibit some dispersion but the magnitude is negligibly small (Alkhimenkov et al., 2020a). The limits
of [HggCr (w)]MF are

. Ecr MF _ tp
wlerm [H33 ((J))] - [H33] dry’ (4.13)
and
. MF
Tim [T )" = [HE . an

To separate the contribution of the torus, which is a constant value across a full frequency band, from the
contribution of the extended crack compliance, which is frequency dependent, we introduce

0 0 0 0 0 0]
0 0 0 0 0 0
’ MF
0 0 [Hyw] 0 0
[H' (w)]Mpz[H (w)]MF—[Htp - ) MF (4.15)
mn mn mn dry 0 0 0 [H44]dry 0 ol- .
;, 1MF
0 0 [Hss]dry
0 o 0 0 0 0]

Expression 4.15 has the same structure as the compliance contribution matrix of a crack written in terms of

, MF
normal and tangential compliances Z, and Z;. The limits of [Hss(“))] are

lim_| i )]MF—o (4.16)
Jim [ He)] ™ =0, '
and
. ' MF t
Jim [H33(w)] = [Hggcr]dry_ [H?’g]dry =Zy, (4.17)

where for simplicity we introduce the apparent normal crack compliance Z,,. The apparent tangential crack
, 1MF , 1MF
compliance is Z; = [H 4 4] i = [H55]d . Even though the structure of the matrices is the same, the absolute
ry ry
values of the components in equation 4.15 are calculated differently from the formulas for Z,, and Z; suggested
for cracks embedded into a homogenous material by Schoenberg and Douma (1988); Schoenberg and Helbig

(1997). The effective compliance matrix for the modified frame can be calculated using the equation 4.7 as

[Spn @)V = 8%, + | HE,

’ MF
't [Hmn(a))] . (4.18)

Finally, the effective compliance moduli of a fully saturated model [S,,, ()] can be obtained by saturating the

modified frame [S;},,, (w)]MF with a fluid using Gassmann’s equations. The expression 4.18 is the main result of
this study and is valid for any geometry of the pore space if the appropriate compliance contribution matrices
are used.
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[H fll,’l'l } dry

Use this model
Extended crack | " to calculate

[ :%CY] (h‘y
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Figure 4.7: Sketch illustrating the workflow for calculating analytically different components of the compliance
matrix for the model with interconnected isometric pore and crack.

4.2.4 Calculation of the frequency-dependent crack stiffness

MF
To derive the frequency-dependent component of the contribution matrix [Hé3 (w)] (i.e. the normal crack

compliance), we note that the thin crack is adequately described by two parameters (as in equation 4.15), then
we use anisotropic Gassmann’s equations to calculate the moduli considering the crack saturated. The derivation
is simple, requires only algebraic manipulations which are cumbersome, thus we refer to the supplementary
material for the full derivation (Maple script). The resulting expression is

(Kg = K} (@) e Zn
B (Kg =K} (@) e + K} (@ KgZp'

[Hé3(“’)]MF (4.19)

where ¢, is the compliant porosity (crack porosity), Z, is the normal compliance of the crack (see expression
4.17) and Kj is the bulk modulus of the solid grains. If a crack cannot be described by two parameters (for

MF
example, the [Hi3] dry component is also affected), then one can use our Maple script (supplementary material)

with already derived equations for the general (anisotropic) form of the solid background and the property
contribution matrix of the inclusion, e.g., crack. The expression for the frequency-dependent bulk modulus of
the fluid Kf* (w) will be given below.

Extension for cracks with finite thickness

If the crack thickness is not so small, so that the aspect ratio is larger than 0.0025 then the limit given in 4.16 is
fth .
not equal to zero. A small non-zero value of Z;, ™ will be present,

MF
. ' _ fth
Jim [Hy @] = 2™ (4.20)
and the normal crack compliance becomes

zl=z,- 7™ (4.21)
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In this case, the only modification that is needed is a slight change in expression 4.19 by including the additional
compliance Z,{ th

. /
, 1MF (Kg—K; () e Z
ENe B Rt it -+ 2], (4.22)
(Kg ~ K* @) g + K ) Kg Z}

4.2.5 Relaxation of the crack stiffness

In the analytical model, the relaxation of the crack stiffness due to fluid pressure diffusion controls the frequency-
dependence of the effective elastic moduli of the medium. The relaxation of the crack stiffness can be modeled
via the the relaxation of the fluid bulk modulus K (w) in the crack. In several previous studies, the task is reduced
to solving the problem for a crack only by applying boundary conditions directly to the crack walls and to the tip
of the crack (e.g., Murphy et al. (1986)). Then, the derived expression for K; (w) is treated as the crack stiffness.
Unfortunately, applying boundary conditions to the crack walls and to the crack tip produces a different result
compared to applying the boundary conditions directly to the walls of the model. For illustration, we show the
models considering zero fluid pressure at the crack tip and the Big pore model, with the corresponding results
of numerical simulations (Figure 4.8).

In the rock physics literature, the relaxation of fluid pressure was derived by solving an equation for fluid
pressure distribution p in the the flat cylinder (crack) under sinusoidal loading Ahe’®? applied to the walls of
the crack, Ah is the displacement of the crack walls (e.g., Murphy et al. (1986); Dvorkin and Nur (1993)). Then,
by integrating the fluid pressure p over the thickness and area of the crack, the frequency-dependent fluid bulk
modulus Kf* (w) was determined. In the mechanics literature, similar problems were solved in time domain
for different visco-elastic materials (e.g., Chalhoub and Kelly (1990); Tsai and Lee (1998)). All the solutions are
very similar for the same geometries and applied boundary conditions with slight differences depending on the
approximations done during the derivation.

We use symbolic environment Maple to derive a general structure of the solutions for the frequency-dependent
fluid bulk modulus Kf* (w). We start with the known approach by applying the boundary conditions to the walls
of the crack (Murphy et al., 1986; Tsai and Lee, 1998). But afterwards we modify the resulting solution by taking
into account the heterogeneous stress field induced by the torus. In Cartesian coordinates, the expression for
fluid pressure under the compression strain €, applied to the walls of the crack is

Fp Pp o, 2

ot oy T PE T e 429
where k is a parameter a function of the applied strain and rheology of the crack (e.g., Tsai and Lee (1998)). In
polar coordinates, the expression for fluid pressure becomes

#p 10p ., 2
—+-——-k“p=—-k°K 4.24
or2 ror p rée (4.24)

The stiffness of the crack H can be expressed via the surface integral over the crack area S for the averaged
vertical stress 7,

e[ as
S

If the crack rheology represents a pure fluid, then H = K. Similar equations were considered in the previous
studies by Murphy et al. (1986); Chalhoub and Kelly (1990).

[(Sec), G2z =

fazzdh] /h. (4.25)
h
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Figure 4.8: Sketch illustrating the simplifications made in analytical models via applied boundary conditions (a
vertical slice of the two models shown in Figure 4.4). Panels a) and c) — boundary conditions applied to the
walls of the model. Panels b) and d) — boundary conditions applied to the walls of the crack. Panel e) shows the
numerical result; note, that the high-frequency slope of the attenuation curve is substantially different if the
crack is connected to an actual pore.
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Zero fluid pressure at the crack tip

In the modified frame configuration, the crack is connected to the dry isometric pore, which corresponds to
zero fluid pressure boundary condition at the edge of the crack. This configuration was studied by Chalhoub
and Kelly (1990); Tsai and Lee (1998). The solution for Kf* (w) treating the crack as a flat cylinder is

2 2
(Kf - giwn)
kiJotk) .
—— —iw
J1(ky)

where 1) is a fluid dynamic viscosity, Jo and J; are the are the Bessel functions of the first kind of order 0 and 1,
respectively, and k) is defined as

(4.26)

4
K;(w)sz+§iwn— 1
(Kf+ giwn)

- 1 4
k= E\/?)iwn/(Kf + giwn), (4.27)

where a = h/(2b) is the crack aspect ratio. A different expression for K}f (w) was provided by Chalhoub and Kelly
(1990)

2 J1 (k)

- - , (4.28)
k2 Jo (k)

@w:mb—

where k; is

| -
ko = P /—3iwn/ K. (4.29)

It was pointed out by Tsai and Lee (1998) that the solution 4.28 is similar to 4.26 for Poisson ratio = 0.5 but
different if Poisson ratio < 0.5 (the solution 4.26 matches numerical solutions for Poisson ratio < 0.5). Thus, for
fluids (Poisson ratio = 0.5) either solution 4.26 or 4.28 can be used (Figure 4.9). The expression 4.28 was used by
Gurevich et al. (2010); Collet and Gurevich (2016) for the relaxation of the fluid bulk modulus of the modified
frame.

Non-zero fluid pressure at the crack tip

In this configuration, the crack is connected to the saturated isometric pore meaning that the fluid pressure in
such a pore will increase due to the fluid flow from the crack (see Murphy et al. (1986) for the precise boundary
conditions). In this case, during the relaxation of the fluid bulk modulus, the fluid “feels" the finite volume of
the isometric pore. The solution of 4.25 for this boundary condition is (Murphy et al., 1986)

2 Vpor ]1(’;72)
2Ver (ko) + ks Vpor Jo(k2)

K} (@) =Kp|1- (4.30)

Vpor is the volume of the stiff pore and V,, = nhb? is the volume of the compliant crack. The geometrical
parameters h, b and r are given in Table 5.1. For a torus, V), is calculated as Vj, = 272 (b + r)r?. Under the
assumption of V,,, — 0o, the expression 4.30 reduces to expression 4.28 (it can be seen from expression 4.30 by

removing terms with 1/V),;). The low-frequency limit of Kf* calculated using equation 4.30 is

(4.31)

Note, that the shape of the curves in expressions 4.26, 4.28 and 4.30 is the same (Figure 4.9a), which means
that for the Big pore model solutions 4.26, 4.28 and 4.30 are equivalent. In other words, the volume of the Big
pore is so large compare to the volume of the crack, that zero fluid pressure boundary condition provides us a
good approximation. The low-frequency limit K]’ﬁ # 0 (but close to 0) in equation 4.30 compared to expressions

for zero fluid pressure boundary condition at the edge of the crack (expressions 4.26, 4.28 where Kf* =0). The
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high-frequency limit of the K7 is

f
lim K* = (1+2(M)L)K (4.32)
w—oo S sin(ka+7n/4) ) ka) .

This high-frequency limit (Eq. 4.32) also applies to expression 4.28 for Kf* ().

Modification of the relaxation of the fluid bulk modulus for the classical geometry

Alkhimenkov et al. (2020a) showed that the [C3*3 (a))] <at COmMponent obtained via the analytical model by using
K]’Z (w) (Eq. 4.28) is in agreement with the numerical simulation for zero fluid pressure at the crack tip and no
stiff pore (Figure 4.8). It means that if the background material is homogeneous, the relaxation of the fluid bulk
modulus is not affected (or the effect is negligible) by the surrounding homogeneous grains. In other words,
applying boundary conditions to the walls of the crack or to the walls of the model produces similar results
in this special case of no stiff pore (Figure 4.8ab). But this configuration is not realistic. For a more realistic
scenario, when a stiff pore is present (Figure 4.8c), the [Céks (cu)]sat component obtained via the analytical model
by using Kf* (w) obtained analytically for the configuration shown in Figure 4.8a diverges from the numerical
result (Alkhimenkov et al., 2020a). This disagreement is due to the presence of the isometric pore connected
to the crack, which changes the stress field in the model. Because of the modified stress field, the fluid flow is
also affected and the boundary conditions applied to the wall of the crack are no longer accurate (Figure 4.8cd).
According to numerical solutions for the models where a torus is connected to a crack, the high-frequency
slopes of the dispersion and attenuation curves are substantially different from those obtained via solution
for the crack only having a zero fluid pressure boundary condition at the tip (Eq. 4.28) (Figure 4.8e). A similar
observation has been pointed out by Solazzi et al. (2021) for partially saturated cracks.

By analyzing the numerical results, we find that the 1/Q at high-frequencies is proportional to = w~!/? for the
classical geometry (the crack connected to the toroidal pore). However, the solutions for Kf* (w) (expressions 4.26,
4.28 and 4.30) and the resulting 1/Q exhibit different behavior at high-frequencies compare to the numerical
solutions. Therefore, we derive an approximation to the relaxation of the fluid bulk modulus Kf* (w) for the
classical geometry by simply using the solution 4.30 with a modified high-frequency asymptote. For that, we use
a special form of a branching function. The concept of a branching function is simple and allows us to find an
accurate approximation for a given cumbersome exact solution (Pride et al., 1993; Johnson, 2001). A branching
function is designed such that it satisfies the Kramers—-Kronig relations, thus can be used to approximate seismic
attenuation and dispersion curves. To construct the branching function, one needs to know the low- and
high-frequency limits along with the low- and high-frequency asymptotes of the exact solution. We use the
following branching function,

Kf (@) =Ky = (K= y- KD IA = ¢+ 1+ i0T/(?), (4.33)

where y = 0 for the solution considering zero fluid pressure at the crack tip or y = 1 for the solution considering
non-zero fluid pressure boundary condition at the crack tip. In equation 4.33, Ky corresponds to the high
frequency limit of the exact solution (which is exactly the fluid bulk modulus), K ;F (ify=1Dor0@Gfy=0)
correspond to the low frequency limit of the exact solution 4.30 or 4.26, respectively. The two parameters ¢ and
7 control the shape of the branching function. The recipe to construct the branching function is the following:

i) We extract several parameters of the solution 4.30 for K]’i (w): the low- and high-frequency limits of Kf* (w), the

low-frequency asymptote of 1/ QK; =Im (Kf* (w)) /Re (K]’i (w)) and the characteristic frequency £ of 1/ QK;

Cc
(at the maximum of 1/ QK; ). This gives us four parameters.

ii) We construct the branching function 4.33 with y = 1 to approximate the solution 4.30 using the known
parameters obtained in i) but with the modified high-frequency asymptote being proportional to ~ w~'/2. There
are only four parameters in the branching function 4.33. The last relation to close the system of equations
is that the intersection of low- and high-frequency asymptotes of the branching function coincides with the
characteristic frequency "% obtained in i). The resulting modified solution is shown in Figure 4.9 (black
squares).
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iii) The final modified solution for Kf* (w) is obtained from the step ii) by setting y = 0 in the expression 4.33.
This step is needed to obtain the solution for the zero fluid pressure boundary condition at the crack tip since
our analytical model is based on the modified frame (Figure 5.4).

The calculations in steps i), ii) and iii) are simple, require only algebraic manipulations but they are cumbersome,
thus we refer to the supplementary material for the full derivation (Maple script). The resulting expressions for
the branching function are given below.

By setting y = 0 in expression 4.33 (corresponding to zero fluid pressure at the crack tip), the frequency-
dependent bulk modulus of the fluid K]’ﬁ (w) becomes

K} (@) = Kp=Kp /(1= + 0/ 1+ iwT1¢?), (4.34)

where the parameter 7 is calculated as

31 ¢

_3n < 4.35
’ 4 Ky a? ( )

and the parameter ( is calculated as

ik KPP

= —a6
27 173 (fccmck)s

(4.36)

with ££74¢k given by

/K 'KLF
crack _ i I az

¢ V3 n

The parameter £ %K determines the characteristic frequency of Kf* (w). The apparent fluid bulk modulus at

(4.37)

low frequencies KF is

f
VerK
K]%F __ ey ’ (4.38)
Ver + Vpor
The low-frequency asymptote of the Kf* calculated using equation 4.33 is
(Kp— K7
lim K = (4.39)
w—0 f K;Fc
The high-frequency asymptote of the Kf* calculated using equation 4.33 is
i Kt Kivz (4.40)
im Ky = ——— —. .
w—00 2Ky VI w?

It is possible that for some specific parameters that expressions 4.34-4.38 lose their accuracy. In this case, one
can modify the expressions 4.34-4.38 using the Maple symbolic environment to improve the accuracy. We do
not explore in detail the accuracy of the boundary conditions for the crack tip proposed by Murphy et al. (1986)
(the solution 4.30), different boundary conditions may slightly modify the expression 4.30 and the derived
modification of this solution 4.34-4.38.

Note that the branching function of the form 4.33 was used to approximate cumbersome exact solutions in
different contexts by many authors (Pride et al., 1993; Johnson, 2001). Note that 4.33 is designed to approximate
solutions in the stiffness. A similar branching functions exists to approximate solutions in the compliance,
which is more suitable for some applications (Gurevich et al., 2009b).

73



—.—K', branch. f., Eq.33, y=1
K’, Eq.30 (Murphy et al.)
4F -0 Kf, Eq.26 (Tsai and Lee)
| o Kf, Eq.28 (Chalhoub and Kelly)

—.—K', branch. f., Eq.33, y=1
Kf, Eq.30 (Murphy et al.)

o Kf, Eq.26 (Tsai and Lee)
_Kf, Eq.28 (Chalhoub and Kelly)
10" vfc max of Eq.30 (Murphy et al.)
-~ Low-,high-f. asymptotes

(¢}
= 100¢

10-1 L

10-2 L J
10° 102 10* 108 108
Frequency (Hz)

Figure 4.9: The real part of the frequency-dependent fluid bulk modulus K7 and the dimensionless attenuation
calculated using different expressions for the Big pore model with @ = 0.005.

Big pore model

Figure 4.9 shows the real part of the frequency-dependent fluid bulk modulus K and the dimensionless
attenuation calculated using different expressions for the Big pore model with a = 0.005. Since the volume of
the big pore is large, the expressions for Kf* 4.26 and 4.28 reduce to expression 4.30. Note, that 1/Q of K]’ﬁ of
Eq. 4.26 and 4.28 is the same as for 4.30 for frequencies larger than the characteristic frequency but tend to
infinity for frequencies lower than the characteristic frequency because K7 — 0 as w — 0. K}“ calculated via
the branching function 4.33 (y = 1) is identical to 4.30 except for the high frequency asymptote. Note, that
asymptotes of the branching function intersect at the characteristic frequency of K; calculated via equation
4.30.

Figure 4.10 is similar to Figure 4.9 but K]’ﬁ calculated via the equation 4.34 is shown together with the numerical
solution. The numerical solution was obtained from the simulations for the modified frame of the Big pore
model (@ = 0.005), and then inverting for Kj}" via the analytical formulas 4.18 and 4.19. Kf* calculated via

equation 4.34 is in agreement with the numerical solution (note, that there are no fitting parameters in equation
4.34).
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Figure 4.10: The real part of the frequency-dependent fluid bulk modulus K}* and the dimensionless attenuation
calculated using different expressions for the Big pore model with a = 0.005.
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Figure 4.11: The real part of the frequency-dependent fluid bulk modulus K; and the dimensionless attenuation
calculated using different expressions for the Small pore model with a = 0.0025.

Small pore model

Figure 4.11 shows the real part of the frequency-dependent fluid bulk modulus K]’f and the dimensionless
attenuation calculated using different formulas for the Small pore model with @ = 0.0025. The branching
function with y = 0 (equation 4.33 or, equivalent, equation 4.34) corresponds to the configuration with zero fluid
pressure at crack tip (which is used in the present analytical model for the modified frame). At low frequencies,
K ; calculated via the branching function 4.33 (y = 0) and the solution 4.30 are not equal to zero because the

volume of the Small pore is only slightly larger than the volume of the crack. 1/Q calculated via the the branching
with y =0 (equation 4.33 or equation 4.34) is in agreement with the numerical solution.

4.2.6 Summary

Our analytical model requires (i) the calculation of the effective compliance matrix of the modified frame

, 1MF
(expression 4.18), (ii) the calculation of the frequency dependent component [Hgg] (expression 4.19), which

represents the frequency-dependent crack stiffness, (iii) the calculation of the effective stiffness moduli of a fully
saturated model by applying Gassmann’s equations (Gassmann, 1951). If the low- and high-frequency limits

, 1MF
of the dry model are known, then the step (i) can be skipped; the frequency dependent component [H33]
(expression 4.19) provides the transition from low- to high-frequencies (step (ii)).
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(i) The modified frame

Our analytical model requires the calculation of effective compliance matrix of the modified frame (expression
4.18),

’ MF
[Spn (@) =88, + + [Hm,,(w)] : (4.41)

tp
Hyyn dr

where S%,, is the compliance matrix of the solid grain material, [H;};n d is the compliance contribution
ry

matrix of the isometric pore (torus) and [H'm n(w)] - is the additional compliance contribution matrix of the
crack connected to the torus. The compliance contribution matrices of a torus [H;,‘;n] dy and extended crack
(ellipsoid) [ HE] 7} dry €N be calculated analytically using expressions from e.g., Kachanov and Sevostianov (2018).
Then, followmg the workflow presented in Figure 4.7, the [Hmn(w)] can be calculated as [Hmn(a))]

(Hon(@)MF — [H}%,

4 (see formula 4.15 for details), where [H,;,, (@)]MF is constructed by expression 4.12
ry

using the already obtained [H;En

dry and [HE%] dry*

(ii) The frequency-dependent crack stiffness

, 1MF
The [H33] component is calculated by

(Kg = K7 (@) e Z

’ MF
[H33(w)] T (Kg- K} (@) e+ K} (@) Kg 2y (142)

where ¢, is the compliant porosity (crack porosity), Z, is the apparent normal compliance of the crack (see
expression 4.17) and Ky is the bulk modulus of the solid grains. The expression for the frequency-dependent
bulk modulus of the fluid K; (w) can be calculated by using equation 4.34. For cracks of finite thickness, equation
4.22 should be used instead of equation 4.42.

(iii) The moduli of a fully saturated model

Finally, the effective stiffness moduli of a fully saturated model [C}, ,, ()], can be obtained by using anisotropic

sat
Gassmann'’s equations (Gassmann, 1951) at each frequency to [S,’;n(w)]MF

1
[Coin@ ] = ([Sn@]™) " + @mand, (4.43)

IKgl3, (4.44)

3
amzl_(zcxg
n=1

form=1,2,3 and a4 = a5 = ag = 0, and where

M= (¢>/Kf +(1— )/ Ky — K*/Kg)_l, (4.45)

1 3 3
K* = 5 Z Z (w)’ (4.46)

where ¢ is the total porosity of the medium without the compliant porosity (which is neglected because the
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compliant porosity is usually two or more orders of magnitude lower than the stiff pore’s porosity), K* is the
generalized bulk modulus of the modified frame and «,, is the Biot-Willis coefficient.

4.3 Validation against three-dimensional numerical solutions

For the validation, we consider several 3-D models consisting of a pore space embedded in an elastic solid grain
material. The numerical methodology is described in Appendix A and was introduced by Quintal et al. (2016,
2019); the boundary conditions for the direct relaxation tests to compute all components of the stiffness matrix
are described in Alkhimenkov et al. (2020a,b). The models considered are the following:

i) The saturated Big pore model with crack aspect ratio @ = 0.0025. This is the model that was shown in
Figure 4.4.

ii) The saturated Big pore model with finite thickness crack (aspect ratio @ = 0.005).

iii) The modified frame of the Big pore model with finite thickness crack (aspect ratio @ = 0.005).

iv) The modified frame of the Small pore model with crack aspect ratio a = 0.0025. Here the isometric pore
represented by the torus is small.

The geometrical properties of the models with crack aspect ratio @ = 0.0025 are shown in Table 5.1 and the
material parameters are shown in Table 5.2. The model geometry is scalable; i.e., if all geometric parameters of
the models are divided or multiplied by any number, the results will be the same.

Table 4.1: Geometrical properties for the Big pore model and the Small pore model. Major radius — the distance
from the center of the tube to the center of the torus. Minor radius — the radius of the tube (our isometric pore).

’ Geometrical parameter \ Big pore model \ Small pore model ‘
Flat cylinder (crack) radius, b 0.1m 0.1m
Flat cylinder (crack) thickness, i | 0.0005 m 0.0005 m
Crack aspect ratio, @ = h/(2b) 0.0025 0.0025
Major radius of torus, b+ r 0.124m 0.1067 m
Minor radius of torus, r 0.024 m 0.0067 m
Total porosity 0.045 0.0034
Crack porosity ~4.9-1074 ~4.9-107*

Table 4.2: Material properties used in all models.

Material parameter | Solid Fluid

Bulk modulus K 36 GPa | 4.3 GPa
Shear modulus u 44 GPa | 0 GPa
Shear viscosity n 0 Pa-s 1.414 Pa-s
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Figure 4.12: Numerical and analytical results for the Big pore model (Figure 4.4) with a crack aspect ratio a =
0.0025: (a) Real part of the [Cj;] . component and (b) dimensionless attenuation for the [C;,] . component.
On the right, snapshots of the fluid pressure Py at three different frequencies : LF - low frequency limit
(relaxed state), Fc - intermediate frequency (close to the characteristic frequency) and HF - high frequency limit
(unrelaxed state). The spatial dimension of the snapshots are not-to-scale and their colors representing the
fluid pressure Py correspond to a downward displacement (compression) of 10~8m applied to the top boundary
of the model. The inset represents the cross section of half of the model.

4.3.1 Bigpore model

Figure 4.12 shows results for the [Cj,] . complex-valued component of the stiffness matrix obtained using
the present analytical model, the model of Collet and Gurevich (2016) with two different sets of normal and
tangential compliances (see Appendix 4.7 and Alkhimenkov et al. (2020a) for more details) and the numerical
solution for the model shown in Figure 4.4. The model A of Collet and Gurevich (2016) doesn't take into account
the connectivity of the crack and pore gives stiffer moduli of the rock at low frequencies compared to the correct
moduli. The model B of Collet and Gurevich (2016) takes into account the connectivity of the crack and pore
using the modification introduced by Alkhimenkov et al. (2020a) and gives correct moduli of the rock at low
frequencies. The aspect ratio is @ = 0.0025 which corresponds to the limit where the crack aperture is small
enough so that at high-frequencies the fluid stiffens the crack to the point that Z,, = 0. Our analytical model is in
good agreement with the numerical solution. For the big pore model, f"*°* (equation 4.37) is almost identical
to the characteristic frequency f; of the fully saturated model.
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Figure 4.13: Numerical and analytical results for the Big pore model with the crack aspect ratio a = 0.005
(i.e., finite thickness crack): (a) Real part of the [C},] .. component and (b) dimensionless attenuation for the
[C?’:3 ] sat COmponent. Here the crack aperture is two times larger than in the model with aspect ratio of a = 0.0025
(Figure 4.12). The inset represents the cross section of half of the model.

4.3.2 Bigpore model with the finite thickness crack

Figure 4.13 shows results for the [C3, ], complex-valued component of the stiffness matrix obtained from the
our analytical model, the models A and B of Collet and Gurevich (2016) and from the numerical simulation.
The aspect ratio here is a = 0.005. The high frequency limit of the [Cj;] sat Slightly lower due to the increased
crack aperture and, thus, compliance. Our present analytical model takes into account the non-zero value of Z,,

corresponding to larger aspect ratios showing a good agreement with numerical solutions.

4.3.3 Modified frame of the Big pore model with finite thickness crack

We also validate the extension of the analytical model to finite thickness crack against a modified frame
configuration. Figure 4.14 shows results for the [C;S]MF complex-valued component of the stiffness matrix
obtained from the present analytical model, the models A and B of Collet and Gurevich (2016) and from the
numerical simulation. In this case, dispersion and attenuation is much stronger than in Figure 4.13 because
the fluid in the crack can freely flow into the empty pore without experiencing any difficulties due to the
finite volume of the torus that would otherwise result in an increase in fluid pressure at low frequencies. Our
analytical model is in good agreement with numerical solutions confirming that it can adequately describe the
frequency-dependence of the modified frame.
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Figure 4.14: Numerical and analytical results for the modified frame of the Big pore model with the crack aspect
ratio @ = 0.005 (i.e., finite thickness crack): (a) Real part of the [C§‘3]MF component and (b) dimensionless
]MF

attenuation for the [CS*3 component. The inset represents the cross section of half of the model.

4.3.4 Modified frame of the Small pore model

We also apply our analytical model to a different pore space configuration — Small pore model (Table 5.1). In
this configuration, the volume of the torus is small, thus dispersion and attenuation are also small. But the
modified frame of the Small pore model shows significant dispersion and attenuation (Figure 4.15). We consider
an aspect ratio ¢ = 0.0025. The result from pur analytical model is in a good agreement with the numerical
solutions.

4.4 Discussion

4.4.1 The key features making our model accurate

There are two key features which make the present analytical model very accurate. The first one is the correct
calculation of the model compliances. We provide the workflow to obtain the effective compliance matrix which
takes into account the connectivity of the stiff pore and the compliant crack; it provides the correct values of
the low and high frequency limits of the stiffness moduli. The second feature is the accurate description of the
relaxation of the compliant crack due to fluid pressure diffusion; it gives the correct shape of the dispersion and
attenuation curves across the whole frequency range.

The usual treatment of the pore and crack as being disconnected when calculating the model compliance
provides inaccurate predictions of the overall attenuation and dispersion. The error of the low frequency limit
of the dispersion curve can be as large as 100% of the crack compliance, as it can be seen in Figure 4.12 (blue
curve, analytical model A of Collet and Gurevich (2016)). However, once the workflow for calculating the model
compliance takes into account the connectivity of the pore and crack, the low and high frequency limits of the
dispersion curve become accurate (green curve, modification of analytical model of Collet and Gurevich (2016)).
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Figure 4.15: Numerical and analytical results for the modified frame of the Small pore model with the crack
aspect ratio @ = 0.0025: (a) Real part of the [Cs*g]lvlF component and (b) dimensionless attenuation for the

[C§‘3]MF component. The inset represents the cross section of half of the model.
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The modification of the analytical model of Collet and Gurevich (2016) (model B) was provided by Alkhimenkov
et al. (2020a) (Appendix 4.7). Our analytical model is based on the property contribution tensors which provides
a general approach for calculating the moduli and can be extended for more complex geometries of the pore
space (equation 4.41). The presented workflow (Figure 4.7) to construct the property contribution tensor of the
interconnected pore and crack provides the correct values of the low and high frequency limits of the dispersion
curve (Figures 4.12-4.15).

Small deformations caused by the wave propagation compress the compliant crack and cause fluid pressure dif-
fusion or squirt flow. The fluid pressure distribution in the crack is significantly affected by the inhomogeneous
stress field introduced by the isometric pore (especially at frequencies higher than the characteristic frequency).
The stiffening effect of the fluid in the crack is substantially different for homogeneous and heterogeneous
stress field distributions surrounding the crack (see Figure 4.8). Thus, we had to modify the expression for the
relaxation of the crack stiffness for this specific geometry of the pore space represented by the interconnected
torus and crack. This modification depends on the shape of the pore space and is explored in more details
in Part 2 of this study. The popular idea of considering certain viscoelastic moduli describing the stiffening
effect of fluid is, in general, imprecise. The stiffness of the fluid can be replaced by viscoelastic moduli only for
particular pore space geometries, as we show in the present and follow up studies.

4.4.2 The effect of the finite volume of the stiff pore

The volume of the isometric (stiff) pore V), has a key influence on the magnitude of the dispersion and
attention. If this volume is significantly larger than the volume of a compliant crack V;, (i.e. by two orders of
magnitude or more), then the fluid in the crack does not “feel" that the volume of the isometric pore is finite. In
other words, in the low-frequency limit the normal crack compliance of the saturated model is the same as if it
was dry. This can be seen in Figure 4.10, where in the low frequency limit Kf* approaches zero.

On the other hand, if the volume of an isometric pore is similar to the volume of a compliant crack (or just an
order of magnitude larger), then the fluid in the crack does “feel” that the volume of the isometric pore is finite
and the resulting dispersion and attenuation are reduced. At low-frequencies fluid flow from the crack into the
isometric pore significantly increases fluid pressure in the stiff pore. As a result, in the low-frequency limit the
normal crack compliance has a finite non-zero value. This can be seen in Figure 4.11 (Small pore model) where
in the low frequency limit K; approaches = 0.6 GPa. The resulting attenuation and dispersion are very small
(Alkhimenkov et al., 2020a).

The expression 4.31 gives an estimate of Kf* (w) for the case where the fluid flow in the crack “feels" the finite
volume of the isometric pore, the low frequency limit of K; (w) is

VerK
KEF = ro (4.47)
Ver + Vpor
The resulting value of K ;F can be used in expression 4.19 to calculate the normal fracture compliance
(Kg— Kt ¢ Z,,
LF _ f (4.48)

n

(Kg - KJEF) G+ K]%F Ko Zn'

The value ZLF gives the quantitative answer to the question: “how strong will be the stiffening effect of the crack
at low frequencies?"
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Figure 4.16: A slice of the three-dimensional models illustrating the effect of elastic interactions on the [C3,] dry
component. (a) The isometric pore is connected to the crack representing a unified interconnected pore space,
(b) the isometric pore and crack are disconnected but close and (c) disconnected and far from each other.

4.4.3 The importance of pore connectivity and elastic interactions

Elastic interaction is a very popular topic in mechanics as well as in rock physics. When the concentration of
cracks or pores is small, the elastic interactions are also small and can be ignored. In this case, for calculating the
effective elastic moduli one can use methods which do not take into account elastic interactions (so-called non-
interactive approximation of effective medium theory); these methods usually provide exact results for simple
pore geometries. When the concentration of cracks or pores is increased, the elastic interactions take place
and affect the effective elastic properties. Exact results are possible only for a limited number of configurations,
usually for two-body problems. For many-body problems many approximations exist. The effect of pore
connectivity, however, is a distinct subject with a distinct contribution.

Figure 4.16 shows a slice equivalent to that in Figure 4.4 with the three pore configurations: the torus and
the crack are connected, the torus and the crack are disconnected but close to each other, and the torus and
the crack are disconnected and a bit further from each other. On top of each subplot, the effective stiffness
component [C;,] dry calculated numerically (with properties given in Tables 5.1 and 5.2) is shown. Roughly,

the pore is reducing the [CJ, ], component of the solid grain material by 10.6 GPa (from 94.6 GPa to 84 GPa)

dry
(Figure 4.6). Then, embedding the crack connected to the pore is further reducing the [C;;] dry COMponent
by 22.5 GPa (from 84 GPa to 61.5 GPa). Conversely, if the crack is not connected to the pore, the reduction
of the [C};] dry COmponent is only 11 GPa (from 84 GPa to 73 GPa), thus the “connectivity" costs 11.5 GPa.
The “connectivity" cost to the stiffness of the model (11.5 GPa) is five times bigger than the effect of elastic
interactions (2 GPa) shown in Figure 4.16. This example shows that the first order effect to the effective elastic
properties is due to the connectivity of the pores and cracks. The effect of elastic interactions on the effective
elastic properties is of secondary importance and can be considered only when interconnectivity is taken into
account. Roughly, interconnectivity significantly increases the “apparent” crack density in such a way that the
surface of the crack together with its invisible continuation into the isometric pore control the effective elastic
properties. Such “apparent” crack density can be two or even more times bigger than the crack density of the
cracks only. Unfortunately, elastic interactions are very popular in research articles but interconnectivity is
usually ignored.
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Figure 4.17: Sketch illustrating the pore space (dry) of the Big pore model with two different crack apertures — h
(left) and 504 (right).

4.4.4 The correctness of expression 4.19 for the normal crack compliance

The expression 4.19 is equivalent to the expression derived before (e.g., Gurevich (2003)):

Zn
Z )
1+ ¢c(1/Kf"—1/Kg)

Zzat - (4-49)

where Z,Slat is the normal crack compliance of the saturated crack, K  can be replaced by Kf* (w) (e.g., Collet and
Gurevich (2016)). The expression 4.19 (or 4.49) is exact for the following configuration: a thin crack embedded
into a solid grain material; the crack compliance is described by the only two parameters Z, and Z;. Then, we
apply anisotropic Gassmann’s equation to calculate the moduli considering the crack saturated. The result of
Gassmann’s equations is the only modification of Z,, which becomes Z3.

In the present framework, we use Gassmann’s equations in two ways. First, we use them to saturate the crack
while the stiff pore remains dry. This violates the assumptions for the applicability of Gassmann’s equations
(because the model is three-phase: grains, dry stiff pore and crack saturated with a fluid). Second, we apply
Gassmann’s equations to the modified frame to calculate the moduli of the fully saturated model. Since
the modified frame is heterogeneous, this also violates the assumptions for the applicability of Gassmann’s
equations. However, numerical solutions show that the present analytical model is very accurate for the
modified frame as well as for the fully saturated pore space. One explanation for such accuracy is that the pore
space is correctly partitioned into the stiff pore and compliant crack. The stiff pore acts as a “storage" volume for
the fluid and doesn’t contribute directly to the overall attenuation; the fluid pressure is approximately uniform
at each frequency. The fluid flow in the compliant crack is responsible for the overall attenuation of the model.

In the low-frequency limit, the expression 4.19 gives the normal crack compliance Z, of the dry crack. In this
case, we apply anisotropic Gassmann’s equations to saturate the model where the pore and the crack are present;
this procedure is correct without regard to the pore space structure. If in the anisotropic Gassmann’s equations
we use the whole porosity (stiff pore and crack porosities), then the result is exact in the low-frequency limit.

4.4.5 The choice of the model

Figure 4.17 shows the Big torus model with the crack aperture / on the left and the crack aperture 50/ on the
right. Surprisingly, the [C5; ] dry COMponent of the effective elastic moduli of the dry model is the same for both
models. This means that the torus surrounding cracks controls the stiffness because it is connected to the whole
circumference of the crack. The components of the stiffness matrix [ H33] dry? [Hysl dry and [Hss) dry AT€ controlled
by the torus only. This geometry cannot represent the rock pore space adequately since cracks do control the
stiffness in real rocks. That’s why in Part 2 we explore more complex pore space geometries where isometric stiff
pores are rather spherical and the crack circumference is only partially connected to stiff pores.
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Figure 4.18: Numerical and analytical results for the big pore model with the crack aspect ratio a = 0.025: (a)

Real part of the [Cj,| .. component and (b) dimensionless attenuation for the [Cj,] .. component.

4.4.6 Astandard linear solid as an analytical model

The standard linear solid (SLS) rheology for the [Cg’:3 (w)] component can be written as

sat

LF HF

* [C;S]sat +i [C§3]sat (w/wc)
[Ca3(@)] g = T i@l , (4.50)
LF HF

where [Cj; ], and [C; ], are the effective moduli of the saturated model at low- and high-frequency limits,
respectively and w. is the characteristic frequency (Mavko et al., 2020). Thus, only three input parameters are
needed to calculate dispersion and attenuation. Figure 4.18 shows results for the [C§‘3 ()] sat COMplex-valued
component of the stiffness matrix obtained with the present analytical model, with the SLS model, with the
modified model of Collet and Gurevich (2016) (model B, with correct limits), with the approximation of the
modified model of Collet and Gurevich (2016) (model B) and with the numerical solution. Note, that model
of Collet and Gurevich (2016) is the same as the model of Gurevich et al. (2010) but for anisotropic media (all
cracks with the same orientation). Gurevich et al. (2010) proposed an approximation for the relaxation of the
fluid bulk modulus K; (w) (Eq. 4.28),

Kf () = —(k2)*K; /8 (4.51)

If this approximation 4.51 is used for Kf* (w) in the modified model of Collet and Gurevich (2016) (model B),
then it becomes identical to the SLS result across all frequencies (Figure 4.18). In other words, SLS is almost
identical to the model of Collet and Gurevich (2016), thus a single expression 4.50 can be used to obtain the
same dispersion and attenuation curves. A similar observation is given in Carcione and Gurevich (2011) for an
isotropic squirt flow model of Gurevich et al. (2010).
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4.5 Conclusions

We have developed an analytical model for seismic attenuation and dispersion in a fluid-saturated porous
medium caused by squirt flow. We used the classical pore space geometry used in many previous studies, a
penny-shaped crack surrounded by a toroidal stiff pore. Our model can be applied to very thin cracks as well
as to cracks with finite thicknesses. We compared our analytical model with three-dimensional numerical
solutions. The analytical and numerical results are in a very good agreement for all considered relative sizes of
pores and cracks. Our analytical model features several key differences compared with previously published
analytical models making it much more accurate. First, we provide an approach to calculate the elastic moduli
of interconnected pore and crack. We showed that ignoring the inter-connectivity of cracks and pores in the
calculation of the model compliance leads to inaccurate predictions of low- and high- frequency limits of the
moduli dispersion. Second, we derived a good approximation for the relaxation of the crack stiffness due to fluid
pressure diffusion, which makes our model accurate for the whole frequency band. Furthermore, we showed
that the crack stiffness is significantly affected by the surrounding heterogenities. Thus, precise expressions for
the crack stiffness are possible only for specific pore geometries.
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4.6 Appendix A: Numerical methodology

The numerical methodology we use for validation of the analytical models is described by Quintal et al. (2019)
and Alkhimenkov et al. (2020a,b), here we briefly outline the main equations. We consider that a model is
composed by a solid material (grains) and a pore space saturated with a fluid. The solid phase is described as a
linear isotropic elastic material for which the conservation of momentum is (e.g., Landau and Lifshitz (1959b)
and Nemat-Nasser and Hori (2013)).

V-0=0, (4.52)

where “V - " stands for the divergence operator acting on the stress tensor @. The infinitesimal stress-strain
relation for an isotropic elastic material can be written as

2 1 T 1 T
o=K-zpu|; (Vew+(Veuw )| +2u 5 (Vew+(Veuw')|, (4.53)
where I, is the second order identity tensor, tr is the trace operator, “®" denotes the tensor product, the
superscript “* " corresponds to the transpose operator, u is the displacement vector, K and p are the bulk and
shear moduli, respectively. The fluid phase is described by the quasi-static linearised compressible Navier-

Stokes momentum equation (Landau and Lifshitz, 1959a):
2 1
~Vp+nVivE onV (V-v) =0, (4.54)
where v is the particle velocity, p is the fluid pressure and 7 is the shear viscosity. Equation (4.54) is valid

for the laminar flow of a Newtonian fluid. In the numerical solver, equations (4.53)-(4.54) are written in the
space-frequency domain as

oijzﬂteéij+2ueij+iw

2
2176‘,']' - gneéij), (4.55)

where ¢;; are the components of the strain tensor €;; = 0.5 (ui, jtu j,l-), e is the trace of the strain tensor, A
and u are the Lame parameters, u; is the displacement in the i-th direction, §;; is the Kronekecker delta,
i is the imaginary unit and w is the angular frequency. Equations (4.52) and (4.55) are implemented into a
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Figure 4.19: The element’s size distribution for the Big pore model. The element’s size in the crack is ~ 6 x 10™*
m, and in the surrounding grain material it is 7.2 x 1073 —4 x 102 m. The element’s size distribution for the other
models is similar. The total number of elements is 1.5 x 10° — 5 x 10° depending on the model configuration,
e.g., Big/Small pore or full/half/quarter of a model was used.

finite-element solver. In the domain representing a solid material, the equation (4.55) reduces to equation (4.53)
by setting the shear viscosity 1 to zero. In the domain representing compressible viscous fluid, equation (4.54) is
recovered by setting the shear modulus u to zero. The solid and fluid displacements are described by the same
variable and, thus, naturally coupled at the boundaries between subdomains (Quintal et al., 2016, 2019). The
numerical model is discretized using an unstructured mesh with tetrahedral elements (Figure 4.19). A direct
PARDISO solver (Schenk and Gdrtner, 2004) is used for solving the linear system of equations.

Direct relaxation tests are performed to compute all components of the stiffness matrix C;; (Voigt notation)
by applying a displacement boundary condition of the form u = 1078 x exp(iw?) to a certain external wall of
the model and in a certain direction, while at other walls of the model, the displacements are set to zero or
let free to change. In the direct tests that we perform, only one component of the stiffness matrix c;; can be
directly calculated after one numrical simulation. A detailed description of the boundary conditions is given
in Alkhimenkov et al. (2020a,b). The resulting stress and strains are averaged over the spatial domain for each
frequency. Then, the complex valued C;; (w) components (diagonal) are calculated for each frequency (in Voigt
notation, no index summation):

(oi(w))
(€i(w))’

Cii(w) = (4.56)

where (-) regresents the volume averaging over the sample volume. For calculating the P-wave modulus
(ii =11,22,33), a harmonic displacement on the i direction is applied perpendicularlly to a wall of the model.

At the other walls of the model, the normal component of the displacement is set to zero. For calculating shear
components of the stiffness matrix (ii = 44,55,66), the boundary conditions applied are those of a simple
shear test. For the Cj2(w), C13(w) and Cy3(w) components (off-diagonal), mixed direct tests are performed. The
corresponding inverse quality factor is (O’Connell and Budiansky, 1978)

1 Im(Cy)
Qij) Re(Cij()’

(4.57)

which is used as a measure of attenuation (O’Connell and Budiansky, 1978). In the simulations, the energy
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dissipation is caused by fluid pressure diffusion. The viscous shear relaxation in the fluid (O’Connell and
Budiansky, 1977) is negligible in our study.

4.7 Appendix B: Analytical model of Collet and Gurevich (2016)

We compare the results of our numerical simulation against an anisotropic version of the squirt flow analytical
solution of Gurevich et al. (2010) proposed by Collet and Gurevich (2016). Here we use the formulation presented
by Alkhimenkov et al. (2020a). Collet and Gurevich (2016) consider a double-porosity medium with aligned
identical cracks embedded in a hypothetical background rock matrix made up of grains and stiff pores only. The
crack is fully described in terms of normal and tangential compliances Z,, and Z;, respectively (Kachanov, 1993;
Schoenberg and Sayers, 1995; Sayers and Kachanov, 1995). They consider the so-called modified frame in which
only the cracks are filled with fluid, whereas the stiffer pores are empty (Mavko and Jizba, 1991). In the low
frequency limit, the relaxed moduli of the modified frame are equal to the rock dry moduli (which means that
z,l;“ = Z,,); while in the high frequency limit, the fluid in the cracks stiffens the frame and the unrelaxed moduli
of the modified frame are equal to the dry moduli of the rock without a compliant porosity (which means that
ZMF = 0) (Mavko and Jizba, 1991).

In the analytical solution of Collet and Gurevich (2016), the frequency dependent compliance tensor of the
modified frame is written as (for a vertical transversely isotropic (VTI) medium)

b
SME () = S, + ASME (), (4.58)

where S, is the compliance tensor of the rock matrix, and ASMF () is the additional compliance due to the
crack (Schoenberg and Helbig, 1997):

0 0 0 0 0 0
0 0 0 0 0 0
ME, ._ |0 0 ZMF (w) 0 0 0
ASn () = 0 0 0 Z 0 ol (4.59)
0 0 0 0 Zt 0
0 0 0 0 0 0
The frequency-dependent normal fracture compliance is
Z,
Z]ly[F () = n , (4.60)

Zn
1+ GeTR; @ -1/Kg)

where ¢, is the compliant porosity (crack porosity), Z, is the normal compliance of the crack. Gurevich et al.
(2010) proposed that the stiffness of the crack can be described using a frequency-dependent fluid bulk modulus
K7 (w):

f

2J1(ka)

Kplwr= [1 ™ Talokr)

Ky, (4.61)

where J¢ is Bessel function of the first kind ({ = 0 or ¢ = 1 correspond to the zero or first order Bessel function),
Ky is the fluid bulk modulus, a is the radius of the crack, k is the wavenumber of the pressure wave:

. 1/2
ka=2 (—M) , (4.62)
a Kf

a is the aspect ratio of the crack (crack thickness divided by diameter) and 7 is the viscosity of the fluid.
Equations (4.61)-(4.62) were obtained by imposing a zero fluid pressure boundary condition (P = 0) at the edge
of the cylindrical crack (Gurevich et al., 2010). The frequency-dependent stiffness tensor of the fluid saturated
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medium is given by the anisotropic Gassmann’s equation (Gassmann, 1951):

C3t (@) = Coryy (@) + @man M, (4.63)
3
A =1~ (Z C%E) Bg/3, (4.64)
n=1
form=1,2,3 and a4 = a5 = ag = 0, and where
* n2 -1
M= (¢>ﬁf+ 1-P)fg-K ﬁg) : (4.65)
1 3 3
K== Y M w), (4.66)
9 m=1n=1

¢ is the total porosity of the medium without the compliant porosity, K* is the generalized bulk modulus of the
modified frame, ¢ is the compressibility of the fluid, a, is the Biot-Willis coefficient, B is the compressibility
of the grain material.

For the comparison between the analytical solution and the numerical results, all stiffness properties of the
dry medium are calculated numerically (or are the same as in the numerical simulation) and used as input
to the analytical solution. In order to obtain the normal Z, and tangential Z; compliances of the crack we
numerically calculate several (homogenized) elastic stiffness tensors of a dry medium (Figure 4.20): a torus
embedded into the solid grain material (CIV TT gtiffness tensor); a crack embedded into a medium described by
the C}'T7 stiffness tensor (Cy 7/ stiffness tensor); a torus connected with a crack embedded into the solid grain
material (Cy 7/ stiffness tensor). Then, all C¥*/ stiffness tensors are inverted to the corresponding compliance
tensors SV, For obtaining Z, and Z; there are two options:

Workflow A) Z, and Z; are calculated using the difference between the S} 7/ compliance tensor and the Sy 7/
compliance tensor (Figure 4.20). In this case, we first homogenize the torus (and obtain CY Ty and then, embed
the crack into this homogenized material CY TT Thus, Z,, and Z; do not take into account the fact that the crack
is connected with the stiffer pore. This approach is used by Collet and Gurevich (2016).

Workflow B) Z, and Z; are calculated using the difference between the S} 7/ compliance tensor and the Sy */
compliance tensor (Figure 4.20). In this case, we also first homogenize the torus but then, embed the crack
connected to the torus into the solid grain material. Thus, the C3V T'I stiffness tensor corresponds to the dry
stiffness tensor of the model, so the difference S 77 — SY 77 gives the correct compliances Z, and Z; for the dry
model (using the the homogenized material C' 7).
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Figure 4.20: Sketch illustrating the calculation of normal and tangential compliances of the crack for workflows
A and B. SV denotes the compliance tensor, which is the inverse of the corresponding stiffness tensor,

ie, YTl = (CVTI )~L, for r = 1,2,3. The resulting Z, and Z; are used to calculate the analytical solution for
corresponding models.

=7, and Z;
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Chapter 5

An accurate analytical model for squirt flow in anisotropic porous rocks —
Part 2: Complex geometry

Yury Alkhimenkov and Beatriz Quintal

Under review ! in Geophysics.

1 Alkhimenkov, Y. and Quintal B. An accurate analytical model for squirt flow in anisotropic porous rocks — Part 2: Complex geometry.
Geophysics (under review).
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Abstract

Seismic wave propagation exhibits strong attenuation and velocity dispersion in cracked porous rocks saturated
with a fluid. The main cause of such a energy dissipation is the fluid flow at the pore space, so called squirt flow.
Squirt flow takes place between interconnected pores and cracks. The corresponding theory can be used to
characterize cracked porous rocks in subsurface with non-invasive seismic methods. We extend the analytical
model for a classical pore geometry presented in our article Part 1 to more complex geometries of the pore
space, where the crack edge is partially connected to multiple pores. This pore geometry is much more closely
representative of that of a rock than the classical geometry where the crack edge is fully connected to a toroidal
pore. We propose an approach to calculate the model compliance taking into account the interconnectivity of
the crack and pores. We show that the crack aspect ratio does not control the characteristic frequency of squirt
flow. We redefine a squirt flow length parameter which takes into account the geometrical configuration of the
multiple connections between a crack and the surrounding pores. This configuration will control the geometric
flow pattern and thus the diffusion length scale or, in other words, the characteristic frequency. We validate the
analytical model against inherently accurate three-dimensional numerical solutions based on the exact same
model geometries. The analytical and numerical results are in good agreement for a range of different pore
geometries.

5.1 Introduction

A passing seismic wave cause small deformations in rocks. Since rocks are heterogeneous at any scale, such
deformations cause heterogeneous strain field distribution in the rock. If rock is fluid saturated, such hetero-
geneous strain field cause fluid flow until the fluid pressure equilibrates (Miiller et al., 2010). The fluid flow
can take place at different scales. At the pore scale, such fluid flow is called squirt flow and is known to cause
strong wave energy dissipation and velocity dispersion. Many analytical models were suggested to quantify
the squirt flow effect on propagating waves, e.g., squirt flow between interconnected pores (O’Connell and
Budiansky, 1977; Palmer and Traviolia, 1980), between interconnected compliant cracks and stiff pores (Murphy
et al., 1986; Mukerji and Mavko, 1994; Dvorkin et al., 1995; Pride et al., 2004; Gurevich et al., 2010) and between
interconnected small aspect ratio cracks and spheroidal pores (Xu, 1998; Chapman et al., 2002; Chapman, 2003;
Jakobsen and Chapman, 2009). In real rocks, examples of compliant pores are microcracks and grain contacts.

Several numerical approaches were proposed to study squirt flow (Zhang et al., 2010; Zhang and Toksoz, 2012;
Quintal et al., 2016, 2019; Das et al., 2019). Recently, a number of three-dimentional numerical studies were
conducted for several pore space geometries (Alkhimenkov et al., 2020a,b; Lissa et al., 2020). Lissa et al. (2021)
studied frequency-dependent attenuation caused by squirt flow in a pore geometry of a real rock derived from
three-dimensional images based on micro-computed X-ray tomography. Alkhimenkov et al. (2020a) compared
accurate numerical solutions against a published analytical model for squirt flow (Collet and Gurevich, 2016)
for the exact same classical pore geometry and showed that significant discrepancies exist. The classical
pore geometry consists of a penny-shaped (circular) crack fully connected to a surrounding toroidal stiff pore.
Recently, Alkhimenkov and Quintal (2021), in Part 1 of this study, proposed a new analytical model which is in a
good agreement with an accurate three-dimensional numerical simulation for the classical pore geometry.

In this contribution, we extend the analytical model presented in Part 1 (Alkhimenkov and Quintal, 2021) to more
complex geometries of the pore space, where the crack is only partially connected to one or more spherical pores.
For that, we propose a new approach to calculate the model compliances for more complex geometries. We
show that the fluid flow directions and the squirt flow characteristic frequency change dramatically compared
to the classical pore geometry. To take this into account, we present another parameter to characterize the
characteristic frequency of the squirt flow. We also derive another solution for the crack stiffness relaxation. We
validate all the results against accurate three-dimensional numerical simulations based on exact same model
geometry. We provide Matlab and (symbolic) Maple routines to allow the reader to reproduce our main results
and/or to obtain results for other material properties and pore sizes.
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Figure 5.1: Sketch illustrating the the model geometry of a crack connected to a fraction of a torus. The
displacement boundary condition u = 1078 x exp(iw?) applied to the top side of the model to calculate the Cs3
component of the effective stiffness matrix (Voigt notation).

5.2 Numerical analysis

For the numerical analysis, we explore several three-dimensional numerical models consisting of a pore space
saturated with a fluid embedded in an elastic solid grain material. The numerical method is described in
Quintal et al. (2016, 2019). The solid grains are described as a linear isotropic elastic material, the fluid phase
is described by the quasi-static linearised compressible Navier-Stokes momentum equation. To obtain all
components of the stiffness matrix C;; (Voigt notation), we perform the direct relaxation tests by applying
a displacement boundary condition of the form u = 1078 x exp(iw) to a certain external wall of the model,
where w = 25 f is the angular frequency, f is frequency, ¢ is time, i is an imaginary unit (Figure 5.1). A detailed
description of the applied boundary conditions are given in Alkhimenkov et al. (2020a,b). The models are given
below:

i) The model with a crack connected to the fractions of the torus (crack aspect ratio @ = 0.02).
ii) The model with a crack partially connected to spherical pores (crack aspect ratio a = 0.01).

The material parameters used in all models are shown in Table 5.2. The elastic solid grain material is represented
by a rectangular cuboid with the dimensions of 0.4 x 0.4 x 0.2m in all simulations. The geometrical properties of
the pore space are given in the corresponding sections. The geometry in all models is scalable; i.e., the numerical
solution remains unchanged, if all the geometrical properties are re-scaled by any fraction. An illustration of the
model with a crack connected to fractions amounting to 4/9 of a torus is given in Figure 5.1. Other models use
the same rectangular cuboid with different pore space geometries.

5.2.1 Fractions of the torus

Alkhimenkov et al. (2020a) performed a three-dimensional numerical study of the stiffness moduli dispersion
due to squirt flow for a classical geometry, a crack (flat cylinder) connected to a pore (torus). The numerical
results of the effective stiffnes modulus [C§‘3 ()] sar (Voigt notation) showed that the slopes of the high-frequency
asymptote of the attenuation curve is proportional to =~ v~ /2 whereas a published analytical model (Collet
and Gurevich, 2016) suggests ~ o~ '. However, the reason of such an asymptote of the attenuation curve
(= w~''2) remained unexplored. To further investigate the shape of the dimensionless attenuation 1/Q for
different geometries, we present the results for a crack connected to fractions of the Big torus model (Figure 5.2).
They include the fluid pressure snapshots at different frequencies (low-frequency — 10 Hz, high-frequency
— 5.6 x 108 Hz, and the characteristic frequency), the [C§‘3 (a))] complex-valued component of the stiffness
matrix and dimensionless attenuation (1/Q).

sat
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The fluid pressure snapshots of a model corresponding to the configuration where a zero fluid pressure boundary
condition is applied to the edge of the crack (representing a pore having an infinite volume while the pore is
absent are shown for comparison (Alkhimenkov et al., 2020a). The geometrical properties of the model with
crack aspect ratio @ = 0.02 are shown in Table 5.1. Figure 5.2 provides us with several insights into the physics of
squirt flow and the shape of the attenuation and dispersion curves, as described below.

At low frequencies, the fluid pressure is low and uniform in all the models representing so-called relaxed
state (Figure 5.2a-f). One can observe, that the fluid pressure at the low frequency is the highest for the 1/9
torus model (Figure 5.2b), the fluid pressure magnitude is reducing as the volume of the pore is increasing
(Figure 5.2c-f) and is the lowest for the Py = 0 model. This trend shows that the volume of the stiff pore has a
significant impact on the overall attenuation magnitude, as it can be seen in Figure 5.2h.

At the characteristic frequency, the fluid pressure is high at the center of the crack but low close to the edge of
the crack. This configuration corresponds to the maximum gradients of the fluid pressure in the crack. Thus,
the crack stiffness is high at the crack center but low at the edge; except for the 1/9 torus model, where the
crack stiffness is high at the crack edge opposite to the pore. The transition from the low frequency limit to the
characteristic frequency is approximately the same in all the models (Figure 5.2a-f), that’s why the behavior of
the attenuation curve 1/Q and its asymptote is the same in all models for frequencies below the characteristic
frequency (Figure 5.2h).

At high frequencies, the fluid pressure snapshots are different in all the models (Figure 5.2a-f) as well as the
shapes of the attenuation curves 1/Q (Figure 5.2h). One can observe a regions of a high fluid pressure close to
partially connected pores (pointed as “anomaly” in Figures 5.2b-f). For the Big torus model, the fluid pressure
anomaly is present along the whole circumference (“red ring" in Figure 5.2f). However, there is no such anomaly
in the Py = 0 model (high freq. in Figure 5.2a), explaining why this model is in agreement with the analytical
model of Collet and Gurevich (2016); Alkhimenkov et al. (2020a). These high pressure anomalies are responsible
for different shapes of the attenuation curves 1/Q at high frequencies in the considered models (Figure 5.2h).

The characteristic frequency shifts to lower values as the fraction of the torus reduces (Figure 5.2h). However,
the characteristic frequency of the 1/9 torus model is about one order of magnutude lower compare to the Big
torus model. Note, that the crack aspect ratio is the same in all simulations which means that the crack aspect
ratio does not control the characteristic frequency of squirt flow as it was believed until now. Instead, a different
parameter control the characteristic frequency of squirt flow, which is explored in the next sections.

Table 5.1: Geometrical properties for the Big pore model. Major radius — the distance from the center of the
tube to the center of the torus. Minor radius — the radius of the tube (our isometric pore). The volume of the
fractions of the torus for models (1/9 torus, 4/9 torus, 6/9 torus, 8/9 torus) correspond to the fractions (1/9, 4/9,
6/9, 8/9) of the Big torus model, respectively.

Geometrical parameter | Big pore model |

Flat cylinder (crack) radius, b 0.1 m
Flat cylinder (crack) thickness, 2 | 0.004 m
Crack aspect ratio, a = h/(2b) 0.02

Major radius of torus, b+ r 0.124 m
Minor radius of torus, r 0.024 m
Total porosity ~0.0478
Crack porosity =~ 0.0039

Table 5.2: Material properties used in all models.

Material parameter Solid Fluid
Solid bulk modulus K | 36 GPa | 4.3 GPa
Solid shear modulus ¢ | 44 GPa | 0 GPa
Fluid shear viscosityn | 0Pa-s 1.414 Pa:s
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Figure 5.2: (a) Pr = 0 model, (b) 1/9 torus model, (c) 4/9 torus model, (d) 6/9 torus model, (e) 8/9 torus
model, (f) the Big torus model. Results of numerical simulations for the real part of the C33 component (g) and
dimensionless attenuation for the C33 component (h). The crack aspect ratio is @ = 0.02.
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5.2.2 Spherical pores

To further understand which parameters control the characteristic frequency f, of squirt flow and to what
extend the pore shape affects the shape of the dispersion and attenuation curves, we present numerical results
for models with a crack partially connected to spherical pores (Figure 5.3). The geometrical properties of this
set of models with crack aspect ratio & = 0.01 is shown in Table 5.3.

At low frequencies, the fluid pressure is low and uniform in all the models (Figure 5.3a-d), similar to the model
with a crack connected to fractions of the torus (Figure 5.2). The fluid pressure magnitude is the lowest in the 4
spheres model (Figure 5.2b) and increases in the 1 and 2 spheres model (Figure 5.2c-d). Obviously, the 4 spheres
model has the largest volume of the stiff pores compare to other models, thus there is enough volume to store
the fluid flowing from the crack resulting in low fluid pressure. The Big torus model with crack aspect ratio
a =0.01 has approximately the same volume of the stiff pores as the 2 spheres model, however, the attenuation
peak (and the cumulative attenuation) of the Big torus model is the greatest among other models. It means that
the volume of the stiff pores and the model compliances are the key parameters determining the attenuation
magnitudes. The difference between the dry moduli of the interconnected crack and pore and the moduli of
the interconnected dry pore and saturated crack (i.e., modified frame) define the attenuation magnitude. This
difference is the largest for the Big torus model, that’s why the attenuation is also the largest. The volume of the
stiff pores is another important parameter, which controls the attenuation magnitude — the volume should be
sufficiently large, two orders of magnitude larger than the crack volume (Alkhimenkov et al., 2020a), to keep the
fluid pressure low in the pore at low frequencies.

At the characteristic frequency, the fluid pressure is high at the center of the crack (Figure 5.3) similar to the
previous model (Figure 5.2). The shape of the central region of the high fluid pressure in the crack is slightly
different in all models. Nevertheless, the shape of the attenuation curve 1/Q at low frequencies is the same in all
models (Figure 5.3f).

At high frequencies, the fluid pressure snapshots (Figure 5.3a-d) and the shape of the attenuation curve 1/Q
(Figure 5.3f) exhibit similar behavior compared to that of the fraction of the torus models (Figure 5.2f). The
shape of the attenuation curve of the Big torus model with a = 0.01 (Figure 5.3a-f) is the same as in the Big torus
model with a = 0.02 (Figure 5.2h); the “ring” anomaly of fluid pressure at high frequencies is also similar. The
anomalies of high fluid pressure at high frequencies due to the connectivity with spheres (Figure 5.3a-d) exhibit
similar behavior as in the fraction of the torus models (Figure 5.2). The high pressure anomalies are also similar
to those presented for the models with a crack connected to fractions of the torus (Figure 5.2).

The characteristic frequency shifts to lower values as the connected portion of the crack circumference reduces.
This portion equals to the whole crack circumference for the Big torus model, reduces for the models with
spherical pores and is the lowest for the 1 sphere model.

Table 5.3: Geometrical properties for the 1, 2, 4 spheres models and the Big torus model with crack aspect ratio
a=0.01.

Geometrical parameter 1 sphere 2 spheres | 4 spheres | Bigtorus
Flat cylinder (crack) radius, b 0.1m 0.1m 0.1m 0.1m
Flat cylinder (crack) thickness, h 0.002 m 0.002 m 0.002 m 0.002 m
Crack aspect ratio, @ = h/(2b) 0.01 0.01 0.01 0.01
Radius of sphere, b/2 0.05m 0.05m 0.05m 0.05m
The volume (crack+pore, interconnected) | = 5.832 x 107% | =0.0011 ~0.00214 | =~0.00145
Total porosity ~0.0182 ~0.0344 | =~0.0669 ~0.0454
Crack porosity =~ 0.002 =~ 0.002 =~ 0.002 =~ 0.002
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Figure 5.3: (a) the Big torus model, (b) 4 spheres model, (c) 2 spheres model, (d) 1 sphere model model. Results
of numerical simulations for the Real part of the C33 component (e) and dimensionless attenuation for the Css
component (f). The crack aspect ratio a = 0.01.
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5.3 Analytical model

The present analytical model extends the analytical model presented in Part 1 (Alkhimenkov and Quintal, 2021)
to the geometries involving partially connected stiff pores. The workflow is similar to Part 1, however, we provide
more general approaches to calculate dry model compliances and the crack stiffness relaxation functions. For
consistency, we present the workflow similar to that one from Part 1(Figure 5.4).

i) First, calculate (or measure) the moduli of the dry rock (step 1 in Figure 5.4). We need the moduli of the dry
model with interconnected pore and crack, as well as, the moduli of the same model but with crack normal
compliance equals to zero (or equals to a small number for the finite thickness crack).

ii) At the second step, calculate the crack stiffness relaxation function due to squirt flow and use that expression
as the frequency-dependent crack stiffness. As a result, we obtain the frequency-dependent moduli of the
modified frame (the stiff pore is still dry).

iii) At the last step, apply anisotropic Gassmann’s equations (Gassmann, 1951) to calculate the moduli of the
fully saturated model.

The methodologies to calculate the model compliances (step 1) and the crack stiffness relaxation function (step
2) are given below.

5.3.1 General expressions

The key result of Part 1 (Alkhimenkov and Quintal, 2021) is the general expression to calculate effective viscoelas-
tic stiffness tensor for any geometry of the pore space using the property contribution tensors. The effective
compliance matrix for the dry model represented in Figure 5.4a can be written as (in Voigt notation)

[Sjnn]dry = S%rm + [Hnm]drw (5.1)

where $8,,, is the compliance matrix of the solid grains, [Hmnldry is the compliance contribution matrix of the
dry pore space (a crack connected to a pore(s)). The effective compliance matrix for the modified frame can be
calculated as

]MF, (5.2)

[Spun @™ = S5+ [Houn] gy + [ Hon @)
where [HY,,] dry is the compliance contribution matrix of the stiff pore(s) and [ H,%n(w)]MF is the additional
compliance contribution matrix due to the presence of a saturated crack connected to a dry pore(s), w is
the angular frequency; [Hé3 (w)] . is frequency-dependent component with the moduli of the crack stiffness
relaxation (given below). Finally, the effective stiffness matrix for the saturated model is calculated as
MF)~

)

1
[Crin(@)] o0 = ([S:‘nn(w)] + [fluid via Gassmann’s equations], (5.3)

where [fluid via Gassmann’s equations| denotes the application of the anisotropic Gassmann’s equations (Gassmann,
1951) to saturate a pore(s) with a fluid at each frequency.
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Figure 5.4: Sketch of the development of the present analytical model.

5.3.2 Step 1: Dry model compliances

Figure 5.5 shows three different geometries of the pore space: a crack connected to a torus (Figure 5.5a), a crack
partially connected to a spherical pore (Figure 5.5b) and a crack with a pore in the center (“Saturn ring”). An
analytical approach to calculate the effective compliance matrices of the mentioned above dry models is briefly
explained below. We exploit the approach used in micromechanics to construct the property contribution
matrix of complex geometries (e.g., intersecting cracks, inclusions of “irregular" shapes, chapters 4.3 and 4.4 in
Kachanov and Sevostianov (2018)). The main idea is that by using three-dimensional numerical simulations
for the complex pore space, we find the structure and the symmetry of the compliance contribution matrix,
its principal directions and the key geometrical characteristics of the complex pore space which control the
compliance of the model.

A crack connected to a torus

The method to calculate the compliance contribution matrices of a dry model with a crack connected to a torus
(the same as in Figures5.2f and 5.5a) is presented in Alkhimenkov and Quintal (2021). The analytical approach
to construct the property contribution matrix for this complex geometry provide us a very good approxiamation
(validated against accurate numerical solutions). The disadvantage of this geometry is that this model is quite
artificial; the components [ Hy,]| dry? (H,,] dry and [Hy] dry AT€ controlled by the torus only, so the crack thickness
doesn't affect the effective properties of the dry model (Alkhimenkov and Quintal, 2021). However, in real rocks
crack density and crack thickness do affect the effective elastic moduli. That’s why this widely used classical
pore geometry for squirt flow should no be longer used.
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A crack with a pore in the center

Another end-member is represented by a crack with a pore in the center (“Saturn ring”) geometry (Figure 5.5c).
The analytical approach to construct the property contribution matrix for this geometry is given in Kachanov
and Sevostianov (2018). In this configuration, the components [Hy] ., [Hy, g,y and [Hgs],,, are controlled
by the crack only (if the crack radius is at least two times bigger than the radius of the sphere). Therefore, the
compliance contribution matrix [Hpmy]4ry (expression 5.1) is calculated using the expressions for a spherical
pore, except for the components [Hys] .o [Hyylgry» [Hssary,- These components are calculated using the
expressions for a crack (Figure 5.5¢).

A crack partially connected to a (few) pore(s)

To date, there is no accurate approach to construct the compliance contribution matrices of a crack partially
connected to a (few) pore(s) using analytical expressions (Figure 5.5b and Figure 5.3b-d). Here, we provide an
approximate solution whose accuracy is lower compared to the two above mentioned geometries. Still, such an
approximate solution should be used for the interconnected pore(s) and crack if no precise numerical solution
is available.

Our approximate solution is simple, the property contribution matrix can be calculated using analytical expres-
sions only. The general idea is the same as for the pore space geometry consisting of a crack connected to a torus
(Alkhimenkov and Quintal, 2021). For the geometry presented in Figure 5.5b, the components | H, | dry’ (H,,] dry
and [H55] dry aT€ controlled simultaneously by the crack and the sphere. The compliance contribution matrix
[Hmnldry (expression 5.1) is calculated using the expressions for a spherical pore, except for the components
[Hss]ary> [Haa) ary [Hss]ary- These components are calculated using the expressions for the extended crack
(Figure 5.5¢). The area of the projection of the crack partially connected to a pore on the XY-axis will define the
area of the circular (penny-shaped) extended crack. The thickness of the extended crack can be the same as the
thickness of the crack itself. However, if the area of the projection of the pore is comparable (or larger) to the
area of the projection of the crack, then the thickness of the extended crack should be increased. For this case,
the precise definition of the crack will be investigated in the future.

One can see that the extended crack radius (Figure 5.5¢) is larger than the radius of the initial crack of the model.
As aresult, the compliance contribution matrix of a crack partially connected to a pore [H,,,,| dry is constructed

by using the obtained components of a pore [ Hy,, | 4, and an extended crack [ Hpf | 41,
[Hgl]dry [HEZ]dry [Hi?)]dry 0 0 0
[H%)l ] dry [H%Z ] dry [HE23 ] dry 0 0 0
[H ] — [H31]dry [Hsz]dry [H?;Bcr]dry 0 0 0 (5.4)
mnldry 0 0 0 [HE] ary 0 0
0 0 0 0 [HE] dry 0
0 0 0 0 0 [HE] ary
The compliance contribution matrix of the modified frame is
P[Hfl]dry [H{)Z]dry [Hf?:]dry 0 0 0
Ecr
(E ()] MF = [HSI]dry [HSZ]dry [Hag" (@)] EO 0 0 . (5.5)
0 0 0 [H44cr] dry 0 0
0 0 0 0 [HE] ary 0
0 0 0 0 0 [HE 14 ry

where a new component [H?])EE;Cr (w)]MF is introduced (analogous to the classical geometry presented in Alkhi-
menkov and Quintal (2021). Fluid flow takes place in the crack in one plane, therefore, the relaxation of the
]MF

crack compliance denoted by only the [Hgngr (w) component. The expression for the [HelfsCr (a))]MF is given

below.
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To separate the compliance contribution of a pore, which is a constant value across all frequencies, from the
contribution of the extended crack compliance, which is frequency dependent, we introduce (Alkhimenkov and
Quintal (2021)):

0 0 o 0 0 0
0 0 0 0 0
, - - 0o 0 [ (w)] 0 0 0
[ Hyn@)] " = [y @)MF = [ HR, 0 o [ 0 ol- 6.6
’ dry MF
0 0 0 [Hés]dry
0 o 0 0 0 0

The structure of the compliance contribution matrix (eq. 5.6) is the same as the compliance contribution matrix
of a crack embedded into a homogeneous elastic material Schoenberg and Douma (1988); Schoenberg and
Helbig (1997) (the crack compliance can be written in terms of normal and tangential compliances). However,
the absolute values of its components are completely different compared to the values obtained for a crack
embedded into a homogeneous elastic material (Alkhimenkov and Quintal, 2021). Note that

MF
Jim [H33(w)] = [Hi5"] ary ~ [H3s] dry = Ap, (5.7)

where for simplicity we introduce the apparent normal crack compliance Z,I?p. The apparent tangential crack

i s AP o MF
compliance is

P t [ 44] dry [ ]dry

If there are several pores (as in Figure 5.3b-c), then the approach is the same. If the the area of the stiff pores
projected into the XY-plane is comparable or bigger than the area of the initial crack, then the thickness of
the extended crack can be increased to make the model softer in [Hy, ], [Hyyl gry» [Hs5] 4y components; the
increase in the extended crack thickness can be significant. Here, the most important parameter is the fraction
of the projected area of the stiff pores to the initial crack. The thickness of the extended crack is a function of
this fraction; if the fraction is more than 1, then the thickness can be significantly increased.

Frequency-dependent crack stiffness

To derivation of the frequency-dependent normal component [Hé3(w) ] M of the modified frame contribution
matrix is provided in Alkhimenkov and Quintal (2021) (Maple scrip is also provided to reproduce and extend
the derivation). In this derivation, the anisotropic Gassmann’s equations are used to calculate the moduli
considering the crack saturated, given that the compliance contribution matrix of the thin crack is described
by two parameters only (see expression 5.7). Here, we only report the resulting expression (Alkhimenkov and
Quintal, 2021),

R (Kg = K3 @) e Z®
|| = : ; vt (5.8)
(Kg = K} (@) e + K} (@) Kg Z,

where ¢, is the compliant porosity (crack porosity), Z,[l\p is the normal apparent compliance of the crack, K}" (w)
is the frequency-dependent fluid bulk modulus and Kj is the bulk modulus of the solid grains. The apparent

/ r 1MF
tangential crack compliance is Z?p = [H A 4] dry = [H55]dry' If the frequency of the applied strain to the walls of

the model is low, then the crack is in a relaxed state and
, MF
[H33(0+)] =7, (5.9)

If the frequency of the applied strain to the walls of the model is high, then the crack is in an unrelaxed state and

[H;3(+oo)]MF =0 (5.10)
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The workflow to calculate analytically the effective elastic
moduli of the interconnected pore space

a) | (Huly, (Huly, . [Hes),,, are controlled by the torus only

y\L- X
Use this geometry Use this geometry [HE™)
to calculate [, ], to calculate 44“ dl""
dry
Extended crack - [H7],,

Torus

b) [H33 4, » [Hial gy, - [Hss],,, are controlled by the area of the projection of
"~ the crack and pore on the XY-axis

Use this geometry Use this geometry [ H%fr}
to calculate [/ | to calculate 33 _dry
mnldry [HEL] N
dry
E
[HE oy

Extended crack

y\L' X
Use this geometry Use this geometry [H%Q}
to calculate | Hlf”“]'h_y to calculate [IfE:‘ r} dry
4 ldry
E
[7557] dry
crack
2 , “‘~~»»<w/
Lo v lox

Figure 5.5: Sketch illustrating the workflow on calculating analytically the stiffness moduli for different configu-
rations of interconnected isometric pores and cracks.
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The full expression to calculate Kf* (w) is given in the next section.

Extension for cracks with finite thickness

Here we repeat the method presented by (Alkhimenkov and Quintal, 2021) to calculate the normal apparent
crack compliance for a finite thickness crack. If the crack thickness is not so small (i.e., the aspect ratio is larger

0.0025) then the expression 5.8 is not equal to zero. A small non-zero value of Z,/: " will be present,

fth

. ! MF _ Ap
Jim |Hy @] = |2 (5.11)
The normal apparent crack compliance becomes
f fth
[Z;‘P] =z [Z;‘p] . (5.12)

The only modification that is needed is a slight change in expression 5.8 by including the additional compliance
Apfth
Zy ,

* Ap f
, 1MF (Kg—Kf (w)) (Pc Zn Ap
[Hss] = P

n
(Kg = K7 (@) e + K} () Ky zhw

fth

(5.13)

5.3.3 Step 2: Relaxation of the crack stiffness

Fluid pressure diffusion behavior in the crack strongly depends on the portion of the crack circumference
connected to the stiff pore as shown in Figures 5.2 and 5.3. Furthermore, high fluid pressure anomalies in
the regions close to the connected stiff pores dramatically change the shape of the attenuation curve 1/Q
(Figures 5.2h and 5.3f). The characteristic frequency is also different for different pore geometries even though
the crack aspect ratio stays the same (Figures 5.2h and 5.3f). All these observations obtained from the three-
dimensional numerical solutions allow us to revise the previous qualitative and quantitative description of the
squirt flow physics. By analyzing the numerical results (Figures 5.2 and 5.3), we find that the characteristic
frequency is different for radial and approximately one-dimensional fluid pressure diffusion. Then, we analyze
analytical solutions for the fluid pressure considering radial and one-dimensional fluid pressure diffusion; we
find out that the solutions for crack stiffness considering one-dimensional fluid pressure diffusion provide
us an excellent approximation for pore space geometries presented in the present study. Below, we provide a
new expression for the crack stiffness relaxation function. Only if the pore space geometry employs radial fluid
pressure diffusion (Big torus and 8/9 torus geometries), expressions for radial fluid pressure diffusion should
be used (they are presented in Appendix 5.7). We also revise the parameters which control the characteristic
frequency of squirt flow.

Fluid pressure diffusion in a layer

For a one-dimensional configuration, we assume that fluid flow takes place in x— direction in an infinite-strip
layer (i.e., infinite length in y— direction); /°¥ and h*7 are the width and thickness of the layer, respectively.
We set the following boundary conditions: the compression sinusoidal strain €, as a function of frequency is
applied to the walls of the layer, zero fluid pressure is applied at the edge of the layer. The solution for the fluid
pressure p in the layer is frequency dependent. The one-dimensional version of equation 23 in Alkhimenkov
and Quintal (2021) for the fluid pressure can be written as

62
6x’:Z _kzpz—szfec' 5.14)
where
2 /.. 4.
k= E\/3lwn/(1(f+§lwn) (5.15)
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One-dimensional fluid pressure diffusion Radial fluid pressure diffusion

1 sphere 4 spheres Big torus 8/9 torus

Figure 5.6: Sketch illustrating the definition of the squirt flow length I, for different geometries.

is a function of the rheology of the layer (e.g., Tsai and Lee (1998)), K ris the fluid bulk modulus. For the
derivation of the solution 5.14 with zero stress at the x = [°9 boundary condition, we used elastic-viscoelastic
correspondence principle (Hashin, 1970). A full derivation is given in a supplementary material (Maple script
and a PDF with derivations). The resulting solution is

2.,
. . 2. Ky - 31T | tanh(ks)
Kf(w)=21wn+(Kf—§la)n) 1- 1 = , (5.16)
K¢+ -iwn ks
3
where 7 is the fluid shear viscosity and
;1. 4.
k3=a\/3zwn/(Kf+§twn). (5.17)

Note, that the solution 5.16 is the same as presented by Tsai and Lee (1998).

The squirt flow aspect ratio, a7

The squirt flow length [°9 is the distance between the two points, p1 and p2; p1 is the most distant point (p1) in
the crack from the pore(s), p2 is the point where crack is connected to a pore (see Figure 5.6). The squirt flow
thickness h*9 is the crack aperture. For realistic cracks, the aperture varies due to asperities, then the minimum
value of the aperture of the crack should be used (Lissa et al., 2020). Finally, the parameter controlling the
characteristic frequency is the squirt flow aspect ratio a*7,

1 h%

sq - Z___
T

(5.18)

Figure 5.6 shows the definition of the squirt flow length parameter I, for different geometries. For 1 sphere and
4 sphere models, the expressions 5.16 and 5.8 for the crack stiffness relaxation should be used. Note, that the
squirt flow length in the 1 sphere model is twice the squirt flow length in the 4 spheres model. For the Big torus
or 8/9 torus models, the expression 5.23 and 5.8 should be used, since the fluid pressure diffusion is mainly
radial. If the crack has finite thickness, then the expression 5.13 should be used instead of the expression 5.8.
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5.3.4 Step 3: Stiffness of the fully saturated model

Once, the effective compliance matrix for the modified frame is calculated using the expression 5.2, we saturate
the modified frame moduli with a fluid at each frequency using anisotropic Gassmann’s equations (Gassmann,
1951) (see expression 5.3):

-1
[Crin@ ] = ([Sn@]™) " + @mand, (5.19)

3
am=1- (Z CVME 1K /3, (5.20)
n=1

form=1,2,3 and a4 = a5 = ag = 0, and where

M= (</>/Kf+ a —<p)/Kg—K*/K§)_1, (5.21)
3 3
K =1 Yy N w), (5.22)
9 m=1n=1

where ¢ is the total porosity of the rock without the compliant porosity (which is neglected because it is usually
two or more orders of magnitude lower than the stiff pore’s porosity), K* is the generalized bulk modulus of the
modified frame and «,, is the Biot-Willis coefficient.

5.4 Validation: comparison against three-dimensional numerical solu-
tions

Figure 5.7 shows results for the [Cj;(w)],, complex-valued component of the stiffness matrix the Big torus
model, 1 sphere and 4 spheres models. Our analytical models are in good agreement with numerical solutions
confirming that they can adequately describe the frequency-dependent stiffness and attenuation associated
with squirt flow.

5.5 Discussion

Figure 5.8 shows results for the [C§3 ()] <at cOmplex-valued component of the stiffness matrix the Big torus
model, the Big torus plus the sphere in the center, and the crack with the sphere in the center. These results
show that even a single crack interconnected to several pores can produce very smooth transition from low- to
high-frequencies. Therefore, the usual belief that many cracks with a certain distribution of crack aspect ratios
are needed to develop such a smooth transition is incorrect.
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=== Analytical model, Big torus, N=0.45
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Figure 5.7: Numerical and analytical results for the Big torus, 4 spheres and 1 sphere models. The crack aspect
ratio a = 0.01: (a) Real part of the [C};(w)],, component and (b) dimensionless attenuation for the [C}, ()]
component. On the right, geometries of the pore-space are shown.
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Figure 5.8: Numerical results for the Big torus model, the Big torus plus the sphere in the center, and the crack
with the sphere in the center. The crack aspect ratio @ = 0.01: (a) Real part of the [C3*3 (w)] sat COMponent and
(b) dimensionless attenuation for the [C3*3 (w)] .., component. On the right, geometries of the pore-space are
shown.
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5.6 Conclusion

We have extended the analytical model for squirt flow associated seismic dispersion and attenuation presented
in Part 1 to more complex geometries of the pore space, where the crack is partially connected to spherical
pores. This geometry is much more closely representative of a rock pore space geometry than the classical
geometry where the crack edge if fully connected to a toroidal pore. Our analytical model is in good agreement
with accurate three-dimensional numerical simulations for a range of different geometries of the pore space. In
our analytical model, we provide a general approach to calculate the elastic moduli of interconnected crack and
pores. Even-though this approach is an approximation, the result is much better compared to the case where
the inter-connectivity of cracks and pores is ignored in the calculation of the model compliances. We provide a
good approximation for the relaxation of the crack stiffness due to fluid pressure diffusion, which makes our
model accurate for the whole frequency band for different geometries. We showed that the crack aspect ratio
does not control the characteristic frequency of squirt flow. Instead, we provide another parameter, squirt flow
aspect ratio a*?, which is a half of the ratio of the squirt flow thickness 77 and the squirt flow length 1°9. If
the crack aperture is constant, then the squirt flow thickness 77 is equal to the crack thickness; if the crack
aperture varies, then the squirt flow thickness h*7 is equal to the minimum aperture. The squirt flow length /59
is the length between the point in the crack at the maximum distance from all pores and the point where the
crack edge is connected to a pore.

5.7 Appendix A: Fluid pressure diffusion in a crack

Fluid pressure diffusion in a penny-shaped crack due to the applied strain to the walls of the crack is radial.
For such a configuration the solutions are given by Murphy et al. (1986) for a boundary condition to the crack
edge taking into account a finite volume of the pore and by Chalhoub and Kelly (1990); Tsai and Lee (1998)
for zero fluid pressure boundary condition to the crack edge. However, if the sinusoidal strain is applied to
the walls of the full model consisting of a crack connected to a torus and embedded into a solid material,
the resulting fluid pressure diffusion in a crack is different due to presence of the torus (high pressure “ring
anomaly" in Figure 5.2f). Alkhimenkov and Quintal (2021) proposed an approximation to the relaxation of the
fluid pressure for the classical geometry by using the solution for a crack (Murphy et al., 1986; Chalhoub and
Kelly, 1990; Tsai and Lee, 1998) with a modified high-frequency asymptote. The present numerical analysis
for a pore represented by fractions of a torus (Figure 5.2b-f) shows that the high high-frequency asymptote is
different for models with different fractions of a torus. In the present study, we extend and improve the solution
of Alkhimenkov and Quintal (2021) to capture the models having a crack connected to fractions of a torus
(Figure 5.2b-f). We approximate the solution for crack stiffness relaxation via the frequency-dependent fluid
bulk modulus Kf* (w) using the following branching function

Kf () =Ky = (Ky—y- K]%F)/ [1-¢+¢0+inT/itHN], (5.23)

where y = 0 for the solution considering zero fluid pressure at the crack tip or y = 1 for the solution considering
non-zero fluid pressure boundary condition at the crack tip. The parameter N denotes the slope of the high-
frequency asymptote 1/Q of the fluid bulk K]’Z (w) relaxation. If N = 0.5, then the expression 5.23 reduces to the
expression 33 from Alkhimenkov and Quintal (2021), which is approximately valid for a toroidal pore. If N # 0.5,
then the high-frequency asymptote of Kf* (w) relaxation is different; N is a function of the crack circumference
connected to a (few) pore(s). A better result for a toroidal pore is achieved by taking N = 0.45, resulting in the
slope of the 1/Q high-frequency asymptote of =~ w =%/, For 8/9 torus model, N = 0.55, resulting in the slope of
the 1/Q high-frequency asymptote of ~ w~*%/1° (Figure 5.9). If N > 0.55, then the resulting slope is >~ o ~45/19,
However, already for 6/9 torus model, the characteristic frequency shifts significantly and the expression 5.16
for a one-dimensional fluid pressure diffusion should be used.

We derived the expressions for { and t analytically using the Maple symbolic environment. The resulting
expressions are simple but cumbersome, they are given in a supplementary material (Matlab and Maple scripts,
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Figure 5.9: Numerical and analytical results for the 8/9 torus model: (a) Real part of the [Cj; ()] ,, component
and (b) dimensionless attenuation for the [C;‘3 (w)] ., component. On the right, geometries of the pore-space
are shown.

sat

a PDF with a derivation). The characteristic frequency of Kf* (w) in the crack is

/K 'KLF
crack _ 4 U f 2 (5.24)

fe =5 7

The apparent fluid bulk modulus at low frequencies K ;F is

VerK
KLF = e (5.25)

P Ver+Vpor|

A more accurate (and more cumbersome) expression for K ]%F is also provided in supplementary material.
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Abstract

Biot’s equations describe the physics of hydro-mechanically coupled systems establishing the widely recognized
theory of poroelasticity. This theory has a broad range of applications in Earth and biological sciences as well
as in engineering. The numerical solution of Biot’s equations is challenging because wave propagation and
fluid pressure diffusion processes occur simultaneously but feature very different characteristic time scales.
Analogous to geophysical data acquisition, high resolution and three dimensional numerical experiments lately
re-defined state of the art. Tackling high spatial and temporal resolution requires a high-performance computing
approach. We developed a multi-GPU numerical application to resolve the anisotropic elastodynamic Biot’s
equations that relies on a conservative numerical scheme to simulate, in a few seconds, wave fields for spatial
domains involving more than 1.5 billion grid cells. We present a comprehensive dimensional analysis reducing
the number of material parameters needed for the numerical experiments from ten to four. Furthermore, the
dimensional analysis emphasizes the key material parameters governing the physics of wave propagation in
poroelastic media. We perform a dispersion analysis as function of dimensionless parameters leading to simple
and transparent dispersion relations. We then benchmark our numerical solution against an analytical plane
wave solution. Finally, we present several numerical modeling experiments, including a three-dimensional
simulation of fluid injection into a poroelastic medium. We provide the Matlab, symbolic Maple and GPU CUDA
C routines to reproduce the main presented results. The high efficiency of our numerical implementation
makes it readily usable to investigate three-dimensional and high-resolution scenarios of practical applications.

6.1 Introduction

Majority of the most powerful supercomputers on the world host hardware accelerators to sustain calcula-
tions at the petascale level and beyond. Graphical processing units (GPUs) are amongst widely employed
hardware accelerators, initiating a revolution in high-performance computing (HPC) in the last decade. The
three-dimensional calculations targeting billions of grid cells — technically impossible resolutions decades
ago — became reality. This major breakthrough in HPC and supercomputing comes however with the cost of
developing and re-engineering scientific codes to efficiently utilise the available computing power. Increasing
the low-level parallelism is the key. In Earth sciences, HPC and GPU-accelerated applications target in particular
forward and inverse seismic modeling and geodynamics - fields where high spatial and temporal resolutions as
well as large spatial domains are required. We here develop a multi-GPU implementation for applications in
seismic modeling in porous media.

Understanding seismic wave propagation in fluid-saturated porous media enables more accurate interpretation
of seismic signals in Earth sciences. The two phase medium is represented by an elastic solid matrix (skeleton)
saturated with a compressible viscous fluid. The dynamic response of such an isotropic two phase medium
results in two longitudinal waves and one shear wave, as predicted by Frenkel (Frenkel, 1944) (see also Pride
and Garambois (2005)). The wave of the first kind (fast wave) is a true longitudinal wave where the solid
matrix motion and the fluid particle velocity are in-phase. The wave of the second kind (slow wave) is a highly
attenuated wave where the solid matrix motion and the fluid particle velocity are out-of-phase. Depending
on the medium’s properties, the slow wave may propagate as a longitudinal wave, or it may diffuse and
attenuate quickly. Maurice Anthony Biot performed systematic studies of solid-fluid deformation in porous
media based on the Hamiltonian principle of least action. He first investigated a static loading known as the
theory of consolidation (Biot, 1941; Biot and Willis, 1957). The mathematical description of the macroscopic
coupled solid-fluid deformation in a porous medium is analogous to the theory of thermoelasticity (Biot, 1941;
Zimmerman, 2000). Biot later developed the theory of poroelasticity or Biot’s theory for wave propagation in
fluid-saturated media (Biot, 1956b,a). Biot summarized these results in Biot (1962a,b) and provided a final set
of unknown fields, parameters, as well as, a guidance to expand poroelasticity to include viscoelasticity and
non-linear effects (Biot, 1965). Fluid flow in porous media in Biot’s theory is assumed to be laminar, described
by Darcy’s law (Biot, 1956b), and is usually referred to as the low frequency Biot’s theory. If the fluid flow is
accelerated, viscous boundary layers form in the pores and a slight modification of Biot’s equations is needed to
account for this high frequency effect (Biot, 1956a). We focus in this study on the low frequency Biot’s theory
(Biot, 1956b). A detailed analysis of the coupled solid-fluid deformation in a porous media can be found in
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various recent studies, e.g. Bourbié et al. (1987); Wang (2000); Cheng (2016). Approximations based on this
theory are widely used in biology and medical imaging, and in Earth sciences (e.g., Carcione (2014)), they are
used in seismic exploration, seismic monitoring of geological CO, sequestration and nuclear waste disposal,
geothermal energy production and hydrogeology.

One of the main application of Biot’s equations in Earth sciences is the estimation of seismic dispersion and
attenuation in porous media due to wave-induced fluid flow. Several wave attenuation mechanisms related
to fluid flow arise from Biot’s theory (Pride et al., 2004; Miiller et al., 2010). The first attenuation mechanism
introduced by Biot is the global fluid flow, which occurs at the wavelength scale of a propagating wave. In
this mechanism, the dissipation is caused by the relative fluid motion between the solid matrix and the fluid
(Biot, 1956b). The second mechanism is the wave-induced fluid flow at the mesoscopic scale. This scale is
defined as much larger than the sizes of individual pores but much smaller than the wavelength of a propagating
wave (White et al., 1975; Pride et al., 2004). In this mechanism, the dissipation is caused due to fluid-pressure
gradients arising between mesoscopic heterogeneities in the medium. For example, fluid-pressure gradients
appear between highly permeable structures such as fractures and the embedding solid matrix of much lower
permeability. Wave-induced fluid flow at microscopic scale also occurs and is referred to as squirt flow, in which
fluid-pressure gradients take place between compliant and stiff pores (Mavko and Nur, 1975; Dvorkin et al.,
1995). Other mechanisms involve different kinds of wave scattering and wave mode conversions at interfaces.
Possible non-linear viscous and plastic effects are small for most of the applications in applied seismic and are
then neglected under the linear approximation assumption.

The aforementioned analytical approaches for wave-induced fluid flow at global and mesoscopic scales mainly
exist for simple geometries. For more complex geometries, a numerical approach is needed to estimate seismic
dispersion and attenuation. In principle, it can be done numerically in two ways. One approach relies on
direct modeling of wave propagation in porous media and estimation of dispersion and attenuation of a
propagating wavelets (Masson et al., 2006; Caspari et al., 2019). The other approach is based on a quasi-
static numerical modeling and estimation of effective frequency-dependent elastic properties. The modeled
frequency-dependent properties are used to retrieve dispersion and attenuation of seismic waves (Masson and
Pride, 2007; Rubino et al., 2009; Quintal et al., 2011; Hunziker et al., 2018).

During the last three decades a significant number of studies targeted numerical simulations of wave propaga-
tion in poroelastic media. A detailed review of early studies is given in Carcione et al. (2010). Different methods
have been used, based on combined finite-volumes/differences on structured grids (Zhu and McMechan, 1991;
Dai et al., 1995; Carcione and Quiroga-Goode, 1995; Ozdenvar and McMechan, 1997; Zeng et al., 2001; Masson
et al., 2006; Wenzlau and Miiller, 2009; Chiavassa et al., 2010; Chiavassa and Lombard, 2011; Blanc et al., 2013),
pseudo-spectral methods (Ozdenvar and McMechan, 1997), discontinuous Galerkin methods (de la Puente et al.,
2008; Dupuy et al., 2011; Ward et al., 2017; Zhan et al., 2019; Shukla et al., 2019, 2020), spectral element methods
(Morency and Tromp, 2008), finite-volume methods (Lemoine et al., 2013; Lemoine, 2016). Most of these studies
implemented the corresponding equations as a first-order hyperbolic system and used explicit time integration
schemes as it is convenient for the elastic wave propagation, except for (Ozdenvar and McMechan, 1997; Morency
and Tromp, 2008), where a second-order system was considered. Moczo et al. (2019) and Gregor et al. (2021)
investigated the accuracy of the discrete characterization of material heterogeneities and subcell-resolution for
the finite-difference modeling of Biot’s equations.

A major challenge in the numerical modeling of Biot’s equations relies in the treatment of the dissipation term
in the equations of motions. This term is represented by a parabolic operator coupled to viscosity, permeability
and density and affects the numerical stability of the entire system of equations. The diffusion process exhibit a
much larger characteristic time scale then the wave propagation process, which makes Biot’s equations “stiff”,
thus challenging to solve. A straightforward explicit time integration of a “stiff" system is possible but requires
very small time steps and is computationally inefficient. Various studies discuss stability conditions in the scope
of poroelastic wave propagation and report a series of issues (Carcione and Quiroga-Goode, 1995; Masson et al.,
2006; Chiavassa and Lombard, 2011). A more detailed discussion regarding the stability of discrete schemes of
Biot’s equations can be found in Alkhimenikov et al. (2020c).

We here propose a multi-GPU numerical implementation of the anisotropic elastodynamic Biot’s equations
building upon three key ideas: Concise numerical implementation, high numerical resolution and high compu-
tational efficiency. A concise numerical implementation means that we designed a simple and short numerical

113



code ensuring it is suitable for parallel GPU devices. We use a variant of a conservative staggered space-time
grid discretization (Virieux, 1986), which is equivalent to a finite volume approach (Dormy and Tarantola,
1995). High numerical spatial resolution up to 6 billion grid cells permits us to resolve very complex geome-
tries. High computational efficiency allows our numerical model to simulate, in a few seconds only, wave
fields in domains involving over 1.5 billion grid cells. We further explore several aspects of Biot’s equations,
namely, wave propagation in poroelastic isotropic and anisotropic media, fluid diffusion, dimensional and
dispersion analyses and numerical stability. The resulting code is implemented in CUDA C, which is suitable
for programmable Nvidia GPU devices. The choice of a rectangular grid is determined by the usage of GPUs,
so that the numerical implementation is straightforward. We provide the Matlab, symbolic Maple and GPU
CUDA C routines to reproduce the main presented results. These routines are available for download from
Bitbucket at https://bitbucket.org/yalkhimenkov/fastbiot_gpu3d_v1.0 (last access: 8 February 2021). The
routines archive (v1.0) (Alkhimenkov et al., 2021a) is available from a permanent DOI repository (Zenodo) at
http://doi.org/10.5281/zenodo.4519367 (last access: 8 February 2021).

The novelties of the present article are summarized as following:

1. We present a dimensional analysis, reducing the number of needed material parameters from ten to four.
2. We perform a dispersion analysis as a function of dimensionless parameters.

3. We achieve a close-to-ideal parallel efficiency (98% and 96%) on a weak scaling tests up to 128 GPUs and an
effective memory throughput efficiency of 90% for the 3D anisotropic poroelastic wave propagation code.

4. We achieve a very fast execution time (seconds) using high-resolution models involving more than 1.5 billion
grid cells.

6.2 Flastodynamic Biot’s equations in isotropic media

6.2.1 Constitutive equations

Table 6.1: List of Principal Notation

Symbol | Meaning Unit
o’ ol solid and fluid stress Pa
Ps Pf solid and fluid pressure Pa
5,7 solid and fluid stress deviator Pa
v, vl solid and fluid particle velocity m/s
0%, pf solid and fluid density kg/m?3
Kg, Ky elastic solid and fluid bulk modulus Pa
Gg, G elastic solid and drained shear modulus Pa
K4, K, elastic drained and undrained bulk modulus | Pa

n fluid shear viscosity Pa-s
k permeability m?
[0} porosity -

We describe the elastodynamic Biot’s equations for an isotropic medium saturated with a single phase fluid.
We use a classical velocity-stress formulation for the Biot’s equations. The equations describing a two phase
continuum mainly differ from the single phase continuum formulation (see 6.8) by the presence of both solid
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Table 6.2: Shorthand notations

Symbol | Meaning

= (1-¢)ps+ ¢py, total pressure
total stress

total stress deviator

o

= qb(vlf - v}), Darcy’s flux

= (1-¢)p + ¢p, total density
Biot-Willis coefficient
Skempton’s coefficient
Kronecker delta

~

SwRDR VAT

<

and fluid particle velocities and as well as both solid and fluid pressure fields. Furthermore, the scalar parameters
linking stresses and particle velocities in the single phase continuum become a symmetric coefficient matrix
in the two phase continuum. The set of equations describing a two phase continuum (solid and fluid) was
formulated in the theory of poroelasticity (Biot, 1956b, 1962b). The symmetric coefficient matrix is positive
definite, which directly follows from the elastic potential energy. Biot’s equations can be written in a symmetric
form by separating volumetric and deviatoric parts of the stress tensor. Lists of symbols are given in Tables 7.1
and 6.2. The constitutive equations are (Biot, 1962b; Pride et al., 2004; Wang, 2000; Yarushina and Podladchikov,
2015)

by
V]CI}]SC 1 1 - a—p
=—— 4 (6.1)
Vol K, a || 9pf
i <« 3 N\Gr
and
af,-j 1 1
WZZG E(v]l/f-Fvll);)—g(VkU}i)ﬁl] , (6.2)

linking the stress-strain relations for the solid and fluid phases with the conservation of mass (equation (6.1))
and representing the deviatoric stress-strain relation for the solid phase (equation (6.2)). The constitutive
equations (6.1)-(6.2) are written for the total pressure p and fluid pressure py, as it was originally suggested in
Biot (1962b). The porosity ¢ in Darcy’s flux qiD is constant in time but can be different spatially throughout the
model domain.

For an isotropic material saturated with a single fluid, in which the solid frame consists of a single isotropic
mineral, the Biot-Willis coefficient is

a=1-K;/Kg=(1-Ky/Ky)/B, (6.3)
where K, is the undrained bulk modulus

Ky,=Kg+a*M, (6.4)
M is the fluid storage coefficient

M= (¢/Kf+(1—<p)/Kg—Kd/K§,)71 6.5)
or

M =BK,/a, (6.6)
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and the Skempton’s coefficient B reads

5 1/Ks—1/Kg
/K- 1Kg+$p(1/IKp—1/Kg)

(6.7)

6.2.2 Dynamic equations

The conservation of linear momentum (Newton’s second law or dynamic equations) can be written in a
symmetric form (Biot, 1962b; Pride et al., 2004; Wang, 2000; Yarushina and Podladchikov, 2015)

} _ 6111?
Vi(=poij+ti)| | ee -er|| 57
_ ot (6.8)
aqP |’
TgP+Vip -0 pa [\~
ki iPf f a EY;

where pg = p¢T/¢, T is the tortuosity and i, j, k = 1,..,3. The off-diagonal parameter fluid density p £ can
be considered as the added mass coefficient. Equation (6.8) is analogous to that of a single phase media
(equation (6.70)), the only difference being the substitution of the scalar density by a coefficient matrix with
same dimensions.

Equations (6.1)-(6.8) are the elastodynamic Biot’s equations for an isotropic medium saturated with a single
phase fluid. The experiments to obtain poroelastic parameters are given in 6.9. We emphasize that the matrices
of coefficients in equations (6.1) and (6.8) are symmetric. This symmetry combined with the non-dimensional
analysis make it possible to derive the dispersion relations in a simple explicit form using symbolic calculations
(Maple).

6.3 Dimensional analysis of the elastodynamic Biot’s equations

Dimensional analysis of PDEs unveils the impact of various physical parameters on the considered physical
system. The original Biot’s equations (6.1)-(6.8) contain many material parameters making it difficult to
understand how they affect the response of a poroelastic continuum. For enhanced clarity, we present a
dimensional analysis of the elastodynamic Biot’s equations. This analysis reduces the number of material
parameters from ten to four, isolating the governing independent physical quantities.

For conciseness, we present our physical system as a one dimensional example to express the total stress
tensor as a combination of the volumetric and deviatoric stresses (the entire analysis can be applied to three-
dimensional continuum)

05 __op ot

- - 6.9
ot ot ot (6.9

We introduce the compliance sfl [Pa_l] and the total density p, [kg/ m3] to express equations (6.1), (6.2) and
(6.8) in a dimensionless form. Compliance sfl relates to the drained bulk modulus K; and the shear modulus G

st =1/(Kg +4/3G), (6.10)

which has dimensions of [Pa™!]. We first extract s¢, and p, out of the parentheses in equations (6.1), (6.2) and
(6.8) (leaving only dimensionless parameters inside). We reformulate the system using equation (6.9) as

s ot f__| 0x (6.11)
opy dg”
—4 %) \Tar ax

116



and

) _Pr ov’ 06
pi pefl ot |- 9 | 6.12)
P pa || 947 (71 p + ors
o o ot k 0x
where
t=— (1+ 4/3G) (6.13)
a — B Ku ) .
is a dimensionless parameter (the apparent Biot-Willis coefficient).
We then substitute
- 1 = 1 ~
G— —G&, pr— — by, (6.14)
S S
VS ZX S gD Zx gD 6.15
T* q T* q ( )
x— Li%, t—17F, (6.16)

where L} [m] is the characteristic length, 7* [s] is the characteristic time and the superscript ~ refers to the
dimensionless quantities. The resulting system of equations reads

of | __| ox 6.17)
aﬁf 65]D
T4 e\ 57 0%
and
. ) v’ 06
—Prt rea o=
(I)? or |- 0x , (6.18)
05/D ~D 6ﬁf
P Pa J\mr ) BT Gy

where pr: = pf/ 01, Par = Pal P

/ L} 1 L
— d ~x — X
Il— p[sll-[_*zvd-[_*’ (6.19)

1
d (6.20)
Pr 311

Vg=

and

= , 6.21
k t* D 1* ( )
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k
D= X (6.22)

nst)
The four dimensionless parameters a, a4, prr and p,; define the coupling between the solid and fluid phase.
The two key dimensionless parameters I, I» denote the ratio between advection and diffusion time scales
and relate to hyperbolic (advection) and parabolic (diffusion) processes, respectively. The pore fluid pressure
transport time scale

L LY
T,=—— 6.23
d D (6.23)
refers to the characteristic time scale of diffusive processes. The elastic travel time scale
L*
Th=—% (6.24)
Va

refers to the characteristic time scale of advection processes. In order to further reduce the number of parame-
ters, we set I} = 1. From equation (6.19), L} = 7*Vy, therefore, equation (6.21) becomes

L= ¢, 6.25)
kpt
where 7* is a free parameter. We further choose 7* as
-1
«_ (.M )
T =— . (6.26)
(kpt
Equation (6.25) becomes
n n ()"
I =—T*=—(—) =1 (6.27)
2 kpt kpt kpt
Taking into account that I; = 1 and I, = 1, we reformulate equation (6.18) as
) ) v’ il
—Pfr v =
or |_| ox | (6.28)
65/D ~D ops
— —_—— + —_—
Prt  Par o7 q EY:

Equations (6.17) and (6.28) are the dimensionless elastodynamic Biot’s equations for an isotropic medium
saturated with a single fluid featuring only four dimensionless parameters: «, @q, pf; and pq;.

6.3.1 Dispersion analysis of the elastodynamic Biot’s equations

We perform dispersion analysis to understand the behavior of the dimensionless elastodynamic Biot’s equations
(6.17)-(6.18). For simplicity, we only consider longitudinal waves. A single harmonic plane wave solution is

W= Ae iwi=kb), (6.29)

where A is the amplitude, i is the imaginary unit, w = 2n f is the real angular frequency (f is the frequency), k
is the complex wave number and [ is the propagation direction. This solution is substituted into the system
(6.17)-(6.18), which gives

118



iw ina ik 0
—iwa —iwag 0 ik
(6.30)
—ik 0 —iwI)?  —iw)?*py,
0 —ik  iw)?pf iwI)*par—L |
The dispersion relation for longitudinal waves is
k*— ark®+ay =0, (6.31)
where
a=(1+par@a—2pya) (W +iwayh (6.32)
ay = (1)* (03, - par) (@ - @a) 0" = i (0~ @) (I)* Iy (6.33)

Equation (6.31) is bi-quadratic with respect to k, the four roots (+k; and +ky) are the complex functions of the
non-dimensional angular frequency w

a ¥/ a5 —4ag
+

kio=+ — (6.34)

The non-dimensional fast and slow wave phase velocities are
Vi = w/Re(ky), V2 =w/Re(ky) (6.35)
The inverse quality factors are defined as

1 Im() 1 Im(kd)
Qi Re(k®)’ Q2 Re(k?)

. (6.36)

If I, = 0, the fast and slow waves become the real and non-dispersive functions of the angular frequency w.
Since I, = 0 eliminates G in (6.18), the system of equations (6.17)-(6.18) becomes fully hyperbolic without the
diffusive term. I and the Biot-Willis coefficients @ and a, control the imaginary part of the wave numbers +k;
and +ky; they thus control dispersion and attenuation of the coupled system of equations. Setting a, = 0 and
(a? — a,4) = 0 provides an alternative way to achieve real roots in (6.34).

Setting I = 1 and I, = 1 and using the characteristic length (L} = 7* V) and time (7* =1/ (kp,)) scales permits
to further simplify the dispersion relations (6.31)-(6.33) to

K+ (2opra—paraa—1) w® —iwag) kK + (p?c[ - pm) (@ —ag) o' -iw® (a*-a,) =0, (6.37)

which results in a bi-quadratic equation with respect to k. The four roots (+k; and +k;) are the complex func-
tions of the angular frequency w. The dispersion relation (6.37) is the most important result of the dimensional
analysis and relates to the final set of non-dimensional elastodynamic Biot’s equations (equations (6.17) and
(6.28)).

Figure 6.1a shows the non-dimensional phase velocities and inverse quality factors based on the system of
equations (6.17) and (6.28) for a homogeneous medium, which are typical for Biot’s mechanism. The properties
of the medium are given in Table 6.3. The non-dimensional phase velocity V; exhibits some dispersion (less than
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Table 6.3: Poroelastic properties of carbonate.

’ Rock properties \ Carbonate
with independent units
K4 (GPa) 26
nk=nlk (Pa-s/m?) | 0.001/10712=1-10°
0s (kg/m?3) 2700
nondimentional
¢ 0.3
T 1.9
with dependent units

Gy (GPa) 15/13- K4
Ky (GPa) 0.0865- K
pr (kg/m?3) 0.4-ps
K; (GPa) 1.42- Ky

10%) and attenuation. The non-dimensional phase velocity V> behaves as a diffusion mode at low frequencies,
having zero velocity. At higher frequencies, V, behaves as a true propagating wave. The low frequency limit of
Vi corresponds to the non-dimensional undrained phase velocity VILF )

_ 1 |K,+4/3G
VILF _ L u d (6.38)
Va Pt

The high frequency limit of V; corresponds to the non-dimensional undrained phase velocity VIHF which is
larger than VILF . We calculate VIHF from the dispersion relations under the assumption of w — +co. The explicit

formula is given in the following section.

Multiplying non-dimensional phase velocities (V; and V») by the drained velocity V; (equation (6.20)) permits
to recover the dimensional form of the dispersion curves (Figure 6.1b). We retrieve the dimensional angular
frequency w? = w w*, where w is the non-dimensional angular frequency (the y-axis in Figure 6.1a) and w* is
the transformation frequency

*

w =

i (6.39)

1 n
T* kpt

We highlight that the introduced transformation frequency w* is similar to Biot’s characteristic frequency

np

=—. 6.40
kpr ( )

c

We detail a dimensional analysis where the transformation frequency coincides with Biot’s characteristic
frequency in 6.10.

Figure 6.2 illustrates the advantage of the non-dimensional equations over their dimensional analog. The
inverse quality factor 1/Q; for the non-dimensional elastodynamic Biot’s equations (Figure 6.2b) collapsed into
the one curve considering the dimensional equations (Figure 6.2a).

The roots k; and k; of the dispersion relation (6.37) are the functions of the four material parameters and
the non-dimensional angular frequency w, i.e. k1 = f(@, aq, pfr, Par) and k2 = f(a, ag, pfy, par). Let us
analyze the solutions (6.35) and (6.36) as a function of the material parameters and w. The non-dimensional
phase velocities (V} and V5) and the corresponding quality factors (1/Q; and 1/Q,) as a function of the non-
dimensional frequency w and the Biot-Willis coefficient @ are shown in Figure 6.3. According to (6.17), «
controls the coupling between solid and fluid phases, low values of @ (0 —0.3) correspond to weak coupling and
high values of a (0.7 — 1.0) correspond to strong coupling. We vary «a in the range of [0.05,0.95] while the other
parameters remain the same. V; non-linearly depends on a in the whole frequency range, as a increases, V; also
increases (Figure 6.3a). 1/Q; linearly depends on a, as a increases, 1/Q; only slightly decreases (Figure 6.3b). V>
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and 1/Q; are almost independent of a (Figures 6.3c, 6.3d). At low frequencies, V> is almost zero and the quality
factor 1/Q, is very high (Figure 6.3c-d), which corresponds to the diffusive regime of V». At high frequencies, V>
is significant and the quality factor 1/Q- is almost zero, which corresponds to the regime where the slow wave
behaves as a true longitudinal wave. The characteristic frequency where the transition from the diffusive to
propagation regimes occurs is not affected by a.

Figure 6.4 is similar to Figure 6.3 but instead of a, the variations of p s, are shown. We vary p ¢, in the range
of [0.1, ,/p4:] while the other parameters remain the same. The non-dimensional parameter p ft controls the
coupling between solid and fluid phases in the dynamic equations (6.18). V; and 1/Q; non-linearly depend on
ps: (Figures 6.4a and 6.4b), while at low frequencies (w € [1074,1071]), ¥ is independent on p e (Figure 6.4a).
V2 and 1/Q; are almost independent on p 7, in the whole frequency range (Figures 6.4c, 6.4d).

1.2 [ 6000 [ —

> 1 5000 .
-g _ _Vl dim
w08 —Y B 4000 | —V, dim
> ~
T —V, Z Vv, non-dim
° 0.6 3 3000 ° V2 non-dim
1]
c o e
204/ 92000 -
5
£0.2} 1000
2 / J

0 ‘ 0 : ‘ ‘

107 10° 102 102 104 10° 108
w () w3 (Hz)

0.05 0.05 :
I J— Vl dim
1 .
0.04 | 0.04 | —V, dim
.’I\ V1 non-dim
—~0.03+ —~0.03 1y ° V2 non-dim
o o :
~0.02} = 0.02} :
1
0.01} 0.01} |
1
0 0 1
107 10° 102

w ()

(a) (b)

Figure 6.1: Phase velocities and the corresponding inverse quality factors 1/Q obtained via the dispersion
analysis. (a) Dispersion relations for the non-dimensional elastodynamic Biot’s equations, V; is the wave of the
first kind (non-dimensional), V> is the wave of the second kind (non-dimensional). (b) Dispersion relations for
the dimensional elastodynamic Biot’s equations. V; dim and V, dim correspond to dimensional velocities, V;
non-dim and V> non-dim correspond to non-dimensional velocities, which were re-scaled by the dimensional
characteristic velocity V; and the transformation frequency w*. w, is the Biot’s characteristic frequency. The
material parameters are those from Table 6.3.
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Figure 6.2: The inverse quality factors 1/Q of the the wave of the first kind. (a) 1/Q for the non-dimensional
elastodynamic Biot’s equations having different viscosities and permeabilities, all collapsed into one curve. (b)
1/Q for the dimensional elastodynamic Biot’s equations for the same data set of viscosities and permeabilities.
The material parameters are those from Table 6.3, except for viscosities and permeabilities.

Vi) 1/Q1 (-)
1.08
1.08 1.06 0.04
1.06
.02
o 1os
' 1074
1.02
0.8 0.8 10
1/Q2 (-)
3000 102
2000
1000
10 0‘9.88 10°
0 .
10 . 0.2
o) 10 a ()

Figure 6.3: Non-dimensional phase velocities (V; and V5) and the corresponding quality factors (1/Q; and 1/Q»)
as a function of the non-dimensional Biot-Willis coefficient @ and the non-dimensional angular frequency w.
The material parameters are those from Table 6.3.
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Figure 6.4: Non-dimensional phase velocities (V; and V») and the corresponding quality factors (1/Q; and
1/Q>) as a function of the non-dimensional parameter p s, and the non-dimensional angular frequency w. The
material parameters are those from Table 6.3.
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6.4 Numerical implementation of the elastodynamic Biot’s equations

We solve the first order velocity-stress formulation of the elastodynamic Biot’s equations (6.1)-(6.8) on a rect-
angular time-space grid. We base our approach on a conservative staggered space-time grid discretization
(Virieux, 1986); for Darcy’s flux, we use a semi-implicit discretization (Alkhimenkov et al., 2020c). A conservative
staggered space-time grid discretization is equivalent to a finite volume approach (Dormy and Tarantola, 1995)
(see also LeVeque (1992)). This approach follows from the early Marker and Cell (MAC) method which is a
classical method in computational fluid dynamics (Harlow and Welch, 1965; McKee et al., 2008). Field variables
are located either at the cell center or corners and fluxes are computed at the cell boundaries resulting in a
conservative staggered grid formulation. Other similar methods were developed such as the standard staggered
grid scheme (Virieux and Madariaga, 1982; Virieux, 1986; Levander, 1988), the rotated staggered grid scheme
(Saenger et al., 2000) and the Lebedev scheme (Lebedev, 1964; Davydycheva et al., 2003; Lisitsa and Vishnevskiy,
2010). The elastodynamic Biot’s equations using the standard staggered grid scheme were solved by Masson
et al. (2006). Moczo et al. (2007) provides a review on staggered finite-difference methods for wave propagation
in elastic media.

6.4.1 The first order elastodynamic Biot’s equations with a volumetric-deviatoric split

Numerically solving the elastodynamic Biot’s equations (6.1) and (6.8) requires the coefficient matrices in
(6.1) and (6.8) to be inverted. This formulation leads to a system of equations describing poroelastic wave
propagation in three-dimensional media and can be solved explicitly:

55
w 1 B|| Vv
6% -k , (6.41)
el B —]|ViqP
ot a kA
0T 1 1
6_;:]:2G E(Vivj+vjvf)—§(vkl/fc)5ij (6.42)
and
ov; _ _
o | _1|pa pr||Vi(=poij+7i))
-2 . , (6.43)
s pr pof\ T4’ +Vips

where ® = p;p, — p?c. Note that the coefficient matrices in equations (7.94) and (7.95) are symmetric by analogy
equations (6.1) and (6.8). Symmetry combined to non-dimensional analysis is a requirement that allows us to
derive a time stepping condition in the explicit form.

6.4.2 Discretization

The numerical implementation consists of a time evolution operator to perform time steps within a time loop
and space operators to relate fields at old and new times. We rely on a rectangular time-space grid. The time
discretization is ¢/ = At and the spatial grid is x; = iAx, y i = jAy, zx = kAz. The particle velocity vector field
and the Darcy’s flux are defined at half-integer spatial nodes and integer time nodes:

syl syl syl Dyl1 Dy1 Dy1
Wxdivirzje WY jerzpe Wi j ks @) iz, 00 )i jrriz e 2D k12 (6.44)
1+1/2

ijk’
A

The total and fluid pressure scalar fields are defined at integer spatial nodes and half-integer time nodes: (p)

1+1/2

1+1/2 : = = NI+1/2 = yI+1/2
Ppilii The stress deviator tensor fields are defined as Txy)izisz,jriz e Tx2 i, j ez Tva)ijiiso ke1re:
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schematic representation of spatial positions is shown in Figure 6.5. The proposed discrete scheme is second
order accurate in space and time. The material parameters are constant inside the finite volumes and may be
discontinuous between them. The discrete operators for Biot’s equations (7.94)-(7.95) are given in 6.12.

o p,pf,ﬁ'iz'
O Ty»

v vl,qP
» v qP

Figure 6.5: A sketch representing (a) the finite volume, where the solid particle velocities preserve mass balance
and (b) the spatial positions of different fields in the X-Z plane. Darcy’s fluxes obey the same behavior.

6.4.3 Stiffness of Biot’s equations

Wave propagation and fluid pressure diffusion in poroelastic media occur simultaneously but feature very
different time scales. This phenomenon is called stiffness of the Biot’s equations (e.g., Carcione and Quiroga-
Goode (1995)). Stiffness of an equation is a serious issue for numerical solutions because the discrete time step
may drop to values hindering the numerical simulation to complete. A simple solution exist to circumvent
this issue for Biot’s equations (Masson et al., 2006; Alkhimenkov et al., 2020c), briefly reported here. The
one-dimensional discrete version of (7.95) is

Dyl+1 Dyl 14112 _ 5114172 1+1/2 1+1/2
g V12 =19 )i :p_f[aliil -lali" P pslin —lpgli” +”_f(x[q1)]l+1 1-pigP)! )
At ® Ax ® Ax k i+1/2 i+1/2
1+1 ! 114112 _ 514172 1+1/2 1+1/2
(V112 = Wi _Pa 011"~ 101" WP pslia’ —lpgli” +17_f(x[qD]l+1 +1-pigP)! )
At ® Ax ® Ax k i+1/2 i+1/2

(6.45)

The weight parameter y plays the key role in the numerical solution of Biot’s equations. The case y =0
corresponds to a fully explicit scheme; calculating [g”]/*1/? (6.45) only requires [¢”]*~1/2. In this case, the
stable time step becomes very small due to the stiffness of Biot’s equations. The opposite end-member y =1
corresponds to an implicit scheme where the stiffness no longer affects the time step stability; calculating
[qD ] I+1/2 (6.45) requires [qD ] I+1/2 gince Biot’s equations do not contain spatial derivatives of the Darcy’s flux
qP in (6.45), the implicit scheme y = 1 can be achieved in an iterative fashion (i.e., updates in the iteration loop
are explicit). The one dimensional code for y = 1/2 is shown in Figure 6.7. The weight parameter y plays the key
role in the stability and convergence rate of the numerical scheme which is explored in the next section.
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6.4.4 Von Neumann stability analysis

The von Neumann stability method analyzes a time evolution of a discrete numerical solution of a given PDE.
The method provides the stability of linear schemes with constant coefficients. We here summarize the von
Neumann stability analysis’ main results (Alkhimenkov et al., 2020c) for Biot’s poroelastic equations’ discrete
scheme (see also Masson et al. (2006)). For that let us introduce the matrices of coefficients

(11 (12 K,+4/3G aM
Gij= _ (6.46)

(o1 (22 aM M

and

o111 Q12 1|Pa Pf
0ij= =5 : (6.47)
021 Q22 Pf Pt

the parameter O is already defined in (7.95). The determinants of these matrices are

det({;j) = {11822 — {15, det(pif) = 011022 — 0%, (6.48)

and the Hadamard product (element-wise multiplication) of {;; and p;; is

(e (12012
hij=({oQ)ij= . (6.49)

(21021 (22022
The parameter A is defined as
A=hy+hy—2hy2 (6.50)

By using (6.48) and (6.50), the fast wave phase velocity in the high-frequency limit VlH F can be calculated as

-1/2

_ a2 _ . i
e A \/A 4det({;;)det(p;) . 6.51)
1 2det({;j)det(p;;)

The matrices (;; and g;; and 1y = n/k fully describe the dimensional elastodynamic Biot’s equations (7.94)-
(7.95). The main issue with the numerical modeling of the Biot’s equations is the treatment of the parabolic
operator in (7.110) and (6.121). If n = 0, then the system (7.94)-(7.95) corresponds to the two coupled hyper-
bolic equations, having two longitudinal waves. The stability analysis shows that the Courant-Friedrichs-Lewy
(CFL) condition for such system is At < Ax/ VA (Alkhimenkov et al., 2020c), where V!’ is given by expression
(6.51).

If 7 # 0 and y = 0, then the parabolic operator Dy [qj’? ]in (7.110) and (6.121) affects stability and the system
of equations becomes stiff. If 7y reaches a certain value, the stable time step At dramatically decreases as a
function of n (Figure 6.6a). The increase in porosity ¢ also reduces A¢ but this reduction is small compared to
the reduction due to the increase of ;. However, for the y = 1/2 scheme or y = 1 scheme, the parameter 7.
does not affect the the stable time step At (Figure 6.6b). In this case, the parabolic operator Dx [q}j ] is calculated
implicitly, thus, the CFL condition is not affected by ny. The y = 1/2 or y = 1 schemes are stable in one space
dimension under the CFL condition

Ax

At ——
HF’
1%

(6.52)
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where the expression for VlHF is given by equation (6.51), which is the same as for the inviscid case. The y =1/2
scheme is more preferable than the y = 1 scheme, since the y = 1/2 scheme provides a second order accuracy,
which is explored below.

For any considered above schemes, the matrices {;; and p;; must be positive definite as well in order to preserve
hyperbolicity of the system (Alkhimenkov et al., 2020c). The positive definiteness of the matrix in equation
(7.94) and p;; also follows from physics, for example, from the classical irreversible thermodynamics (Jou et al.,
2001; Yarushina and Podladchikov, 2015). Note, that the positive definiteness of the matrix in equation (7.94) is
amore restrictive condition than the positive definiteness of {; ; (8.8) and are the same if the shear modulus G is
Z€ero.
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Figure 6.6: The von Neumann stability analysis for the elastodynamic Biot’s equations (7.94)-(7.95) as a function
of ny = n/k and porosity ¢. Panel (a) corresponds to the y = 0 scheme and panel (b) corresponds to the y =1/2
scheme. The stability of the y = 1 scheme is identical to that one of the y = 1/2 scheme. The material parameters
are those from Table 6.3.

The extension of the CFL condition (6.52) to the two, three and n-dimensions is straightforward

At ————. (6.53)

If Ax; = Ax, then

Ax

At S ———. (6.54)
HF
\/ﬁV1

The conditions (6.52)-(7.72) can be generalized to a fourth-order accurate in space, second-order accurate in
time numerical scheme using the coefficients of the fourth-order approximation to the first derivative (Levander,
1988; Masson et al., 2006).
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6.4.5 Sources, initial and boundary conditions

We initialize the majority of our simulations with a Gaussian perturbation,
2 2 2
Fg= Ay e~ L) =/ 1) = (2 I2) , (6.55)

where x, y and z are the arrays of spatial coordinates, I, [, and [, are the parameters controlling the shape
(width) of the Gaussian and Ag defines its amplitude. We set Iy, [, and [, as a certain fraction of the domain
extend.

Depending on the model configuration, we implemented two types of sources in the right-hand side of the total
pressure (isotropic media) or total stress (anisotropic media) equation (see 6.11 for the full set of equations).
The first type of source is the Morlet wavelet

Fpi(f) =Re [(nﬁ,)‘”2 e@rifelt=10)) o=(=t* 1o | = (r )12 cos (27 f (£ - 1)) e~ =@/ (6.56)
and the second type of source is the Ricker wavelet

Fr(n) = (1 -2 (n(t - ) f,)? & (F- o)) (6.57)

where f; is the the source peak frequency, ¢ is time, #; is the wavelet delay and f}, is the time-decay parameter
of the Morlet wavelet. The Morlet wavelet features a distinct narrow bandwidth in the frequency domain
which significantly reduce the wavelet shape changes during the pulse propagation in a lossy medium. The
disadvantage results in a significant time spread in time domain. We use reflecting boundary conditions in our
simulations.

The one-dimensional time loop implementation of the proposed scheme (6.114)-(6.121) in MATLAB (R2018a)
using the Gaussian initial condition (6.55) is shown in Figure 6.7.

Prf = exp(-(x/lamx).”2); chi = 0.5;
for it = 1l:nt
stress_xx = stress xx + ( zeta 11.*diff(vx,1,1)/dx + zeta 12.*diff(Qx,1,1)/dx)*dt;
Prf = Prf - ( zeta 21.*diff(Vx,1,1)/dx + zeta 22.*diff(Qx,1,1)/dx)*dt;
Qx old = 0x;
0x(2:end-1) = (Qx(2:end-1)/dt - diff(stress xx,1,1)/dx.*varrho 21 - (diff(Prf,1,1)/dx +...
(1-chi) .*Qx(2:end-1) .*etaf k).*varrho 22)./(1/dt + chi.*varrho 22.*etaf k);
Vx(2:end-1) = (Vx(2:end-1)/dt + diff(stress xx,1,1)/dx.*varrho 11 + (diff(Prf,1,1)/dx +...
(chi.*Qx(2:end-1) + (l-chi).*0Ox old(2:end-1)).*etaf k).*varrho 12)*dt;
end

Figure 6.7: The one dimensional code using the proposed scheme with y = 1/2 in MATLAB. The initial condition
of the Gaussian form is set to the fluid pressure. zeta_ij are the matrix coefficients {;; in equation (8.8),
varrho_ij are the matrix coefficients p;; in equation (6.47), etaf _k corresponds to 17/ k, chi corresponds to ¥,
lamx stands for [, stress_xx stands for 6, Prf stands for pr Qx stands for qf, Vx stands for v§.
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6.5 Multi-GPU implementation

Graphical processing units (GPUs) are many-core processors originally designed to refresh screen pixels at
very high frame-rates for computer games. Nowadays, GPUs are widely used in high-resolution numerical
modeling due to their ability to efficiently execute a large number of operations simultaneously. Several studies
focused on the implementation of wave propagation solvers using GPUs (Komatitsch et al., 2010; Michéa and
Komatitsch, 2010; Mehra et al., 2012; Weiss and Shragge, 2013; Rubio et al., 2014). The CUDA extension to the C
language (CUDA, 2020) makes it possible to write C-style codes that are executed in parallel on GPUs. A brief
description of the GPU architecture is given in 6.13.

6.5.1 Computing systems

We calculated our results on various computing systems depending mainly on the targeted numerical resolution.
We performed most of our simulations on an Nvidia DGX-1 - like node hosting 8 Nvidia Tesla V100 Nvlink (32
GB) GPUgs, 2 Intel Xeon Silver 4112 (2.6GHz) CPUs and 768 GB DDR4 RAM. The second computing system
hosts a single Nvidia Tesla V100 PCle (16 GB) GPU, 2 Intel XEON E5-2620V2 4112 (2.1GHz) CPUs and 64 GB
DDR3 RAM. The third computing system is composed of 32 nodes, each featuring 4 Nvidia GeForce GTX Titan X
Maxwell (12 GB) GPUs, 2 Intel XEON E5-2620V3 4112 (2.4GHz) CPUs and 128 GB DDR4 RAM.

6.5.2 Codeimplementation on a single GPU

The CUDA C code structure (Figure 6.8a) is similar to the MATLAB one (Figure 6.7). The time loop calls two
kernels — or GPU functions - to sequentially update all stresses and the fluid pressure and then update the fluid
and solid particle velocities. Darcy’s fluxes g2, qf , P are time-dependent fields present in both equations
(7.110) and (6.121) exhibiting history or time dependence that require them to be stored from previous iteration.
We perform the update relying on a pointer swap at every iteration to prevent race conditions and to avoid
copying the array itself, which would significantly deprecate the performance. To reduce redundant memory
accesses, we locally precompute and store corresponding field variables. In the compute_StressPrF () kernel,
we store the derivatives of the velocities Uf and Darcy fluxes qiD . In the Update_QV () kernel, we store derivatives
of stresses ¢;; and fluid pressure py.

6.5.3 The multi-GPU code implementation

The single GPU code enables thousands of threads to simultaneously compute physics on every grid points of
the computational domain in a shared (GPU) memory approach. To overcome the on-GPU DRAM memory
limitation and leverage the simultaneous utilisation of multiple GPUs we implemented a distributed memory
parallelisation using the message passing interface (MPI) standard. The parallelisation among multiple GPUs
requires the exchange of the internal boundary values of the solid particle velocities v* and the Darcy’s fluxes
qP (represented by black lines in Figure 6.9). Global boundary conditions are applied if the local sub-domains
coincide with the global domain boundaries. We rely on CUDA-aware non-blocking MPI messages for internal
boundary condition updates among neighbouring GPUs. The CUDA-awareness implies that GPU device
pointers can directly be exchanged with MPI bypassing a local CPU copy on both sender and receiver side.

We implemented an overlap among computation and MPI communication to avoid a drop in performance with
an increase in the number of MPI processes (Rdss et al., 2019a). Only minimal changes are required to implement
this computation/communication overlap and fully hide the MPI boundary exchange latency (Figure 6.8b). We
divided the local computational domain on each GPU in two parts, a boundary points region (1 in Figure 6.9)
and an inner points region (2 in Figure 6.9). We then use CUDA Streams to perform an asynchronous kernel call
in an iterative fashion using two distinct execution pipelines (Rdiss et al., 2019a). The first update kernel call
computes the boundary flagged nodes only and executes on the high priority stream. Then, the MPI boundary
updates starts on the same high priority stream (the update_sides3 function). In the meanwhile, the update
kernel call is executed a second time within the istep loop, now flagging and computing the remaining inner
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points. A wise definition of the number of grid points to include (i.e. the boundary width) enables optimal
performance results.

The Nvidia visual profiler (nvvp) is an informative tool to visualize the execution timeline of a GPU process
(Figure 6.10). We compare multi-GPU codes without (Figure 6.10a) and with (Figure 6.10b) computation/com-
munication overlap running on a 8 GPUs (information shown only for two GPUs). The visual timeline depicts
the gP and v* boundary points update on the high priority CUDA stream 21 followed by the MPI message
sending and receiving among GPUs (the time line is shown by red box in Figure 6.10b). During the same time,
the g and v® inner points update happens on the lower priority CUDA stream 22. The update kernel is
executed two times (green boxes in Figure 6.10b). The cumulative time of the sequential executions is identical
to the un-split execution time (Figures 6.10a-b).

El) inite==grid,blocks>>(Prf, sigma xx, sigma yy, sigma zz, vx, Vy, Vz, ...);
cudaDeviceSynchronize();

for (it=0;it<=nt;it++)

{
compute StressPrf<=<grid,blocks>>=(Prf, sigma xx, sigma yy, sigma zz, ...);
cudaDeviceSynchronize();
swap(Qxold,Qx); swap(Qyold,Qy); swap(Qzold,0z):
cudaDeviceSynchronize();
update QV<=<=<grid,block===(Vx, Vy, vz, OQxft, Qyft, Qzft, ...);
cudaDeviceSynchronize();

}

b) init<<<grid,block=>>(Prf, sigma xx, sigma yy, sigma zz, Vx, Vy, Vz, ...);
cudaDeviceSynchronize();

for (it=0;it<nt;it++)

{
compute StressPrf<<<grid, block==>>=(Prf, sigma_xx, sigma_yy, sigma_zz, ...);
cudaDeviceSynchronize();

swap(Qxold,Qx); swap(Qyold,Qy); swap(Qzold,0z);
cudaDeviceSynchronize();

for (istep=0; istep<2; istep++)

{
update QV<<<grid,block,®,streams[istep]>>>(Vvx, Vy, vz, Oxft, Qyft, Qzft, ...);
update_sides3(Qx,nx+1,ny,nz, Qy,nx,ny+l,nz, Qz,nx,ny,nz+l)
update_sides3(Vx,nx+1,ny,nz, Vy,nx,ny+l,nz, Vz,nx,ny,nz+l)

}

cudaDeviceSynchronize();

Figure 6.8: Time loop computations for (a) a single GPU CUDA C code and (b) a multi-GPUs CUDA C code
implementation. compute_StressPrf corresponds to the update of all stresses 7;; and fluid pressure py.
update_QV corresponds to the update of velocities v; and Darcy fluxes qiD . swap(...) stands for a pointer
swap of Darcy’s fluxes between old and new values.
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Figure 6.9: Schematic representation of a domain decomposition on four GPUs. First, the computation of the
boundary points (1) of the local domains using streams is performed, then the computation of the inner points
(2) of the local domains is carried out together with the non-blocking MPI messages to exchange the boundary
values (represented by red boundary lines) among neighboring GPU units.

6.5.4 Performance benchmark

We assess the solver’s performance and realize the weak scaling tests in a similar fashion as proposed by Riéiss
etal. (2019b); Duretz et al. (2019a); Rdiss et al. (2020). These studies highlight the memory-bounded nature (in
opposition to compute-bounded) of a waste majority of PDE solver implementations nowadays on many-core
(e.g., GPU) hardware; Memory transfers are limiting the performance of an application, while floating point
(arithmetic) operations are not performance relevant. We therefore focus on the memory access efficiency in
our numerical calculations. The effective memory throughput (MTPgtective) metric (Omlin, 2016; Omlin et al.,
2020) evaluates how efficiently data is transferred between the memory and the computation units, in gigabytes
per second (GB/s):

Ny X Ny X Nz X Mg X AIQ X T
109 x ty,,

MTPettective = ) (6.58)

where ny, ny, n; are the number of grid cells, n; is the number of iterations, njo is the number of read and write
memory accesses (the least value needed to solve the problem for the chosen numerical scheme), n;, is the
floating-point arithmetic precision (either 4 or 8 bytes) and ¢, is the time (in seconds) needed to perform the n,
iterations. The closer the value of MTPerective gets to the memory copy only value, the better the performance is.
We carried out all the performance tests on the anisotropic Biot 3D implementation using the y = 1/2 scheme
and scalar material properties (see 6.11 for the full set of equations). In that case njo = 42. We used a numerical
spatial resolution of 5762 grid cells on a Tesla V100 32GB Nvlink GPU, allocating 29 GB on-chip DRAM memory.
We used a numerical spatial resolution of 511 x 511 x 127 grid cells on the Titan X (Maxwell) 12GB GPU allocating
5 GB on-chip DRAM memory. The maximum global domain spatial resolution on 128 Titan X (Maxwell) 12GB
GPUs involved 4.5 billion grid cells.

Benchmark results for a single GPU implementation

Figure 6.11 depicts the effective memory throughput (MTP) of the Biot 3D numerical application as a function
of the number of threads per blocks in x-, y- and z- direction on a Tesla V100 32GB Nvlink GPU. The MTP,¢
corresponds to the reference MTDB i.e. the best combination of threads per blocks (32,2, 16) for a given resolution
of 5763; the MTP of all simulations (MTPgfective) are normalized by MTP;ef. The maximal performance drop
from the reference MTP is about 17 %. It is interesting, that the (32, 2,8) combination uses only 512 threads out
of the 1024 available but shows almost the same performance as combinations involving 1024 threads. Good
performance with under-utilization of the threads per block resources is known and may result by the increase
in the number of concurrent blocks launched allowing for optimal scheduling.
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Figure 6.10: The Nvidia visual profiler (nvvp) output for various GPU code implementations: (a) single GPU
(without computation/communication overlap), (b) mulit-GPUs (without computation/communication over-
lap) and (c) multi-GPUs (with computation/communication overlap). All implementations share the same
compute_StressPrf kernel. The update_QV kernel is (a) executed once per time step updating both boundary
and inner points, (b) executed once per time step and followed by internal boundary exchange using MP]I, (c)
executed in a serial fashion, first updating the boundary points, then internal boundary exchange occurs using
MPI while the inner points are asynchronously computed in the second call of the update_QV kernel. The
computation/communication overlap referred to as computational split involves 48, 16 and 16 grid cells in in x-,
y- and z- directions, respectively.

Figure 6.12 shows memory access efficiently between the GPU global memory and the computation units as
a function of on-chip RAM memory. Our 3D numerical application achieves on average 90% of the “ideal”
memory copy only efficiency (copying two 3D arrays without performing any calculations, 740 GB/s) on a
single Tesla V100 32 GB NVlink GPU. The average performance is 660 GB/s. A huge drop in the memory access
performance at low on-chip RAM memory utilization reflects computations without enough data to saturate
the memory bandwidth.

We additionally assessed the effective memory throughput of our 3D routine on a Tesla V100-SXM2 16 GB
accessed on the Amazon Elastic Compute Cloud environment (Amazon EC2); our 3D routine perform on
average at 740 GB/s (memory copy at 795 GB/s) validating the benchmark results obtained on our local GPU
cluster. The discrepancy we observe may be caused by different versions of Nvidia drivers and compilers.
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Figure 6.11: The effective memory throughput as a function of the number of threads per blocks (in x-, y- and z-
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Figure 6.12: The memory access efficiently as a function of the allocated on-chip DRAM memory. The blue
curve corresponds to the “ideal” memory copy efficiency (copying two 3D arrays without performing any
calculations), red and yellow curves represent the memory copy efficiency involving all the physics, which is on
average 90% of the “ideal” memory copy efficiency.

Benchmark results for a multi-GPU implementation

We further investigate the influence of the boundary width on the performance (Figure 6.13). The split among
computation domains allowing for overlap of computation and communication affects the performance.
Considering too few or too many boundary points hinders optimal kernel execution as too few resources may
be used in the first or the second sequential call. The code execution on a single Tesla V100 GPU with boundary
width ratios of 0.2-0.8 returns equivalent performance as the execution without the computational split. The
performance of the code on 8 Tesla V100 GPUs including MPI communication shows a 2% performance drop
compared to the single GPU process. We achieved the best performance using approximately a ratio of 0.3
between boundary and inner points. This splitting allows for enough data to keep all threads busy during the
boundary point calculation (the first kernel execution) and provides sufficient time to hide the MPI message
sent during the update of the inner points (the second kernel execution).

We performed a weak scaling test using the 1-8 Tesla V100 32 GB NVlink GPUs and the 1-128 Titan X 12 GB
GPUs (Figure 6.14). The parallel efficiency of 1-8 GPUs is 98% and on average 96% on 16-128 Titan X GPUs
with a standard deviation of 2%. A standard deviation was calculated as a result of ten simulations. We globally
achieved a performance of about 5280 GB/s on 8 Tesla V100 32 GB NVlink GPUs. Such performance implies that
only 95 seconds are needed to perform 1000 (double-precision) explicit time iterations of a model involving 1.5
billion grid cells (11523).
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Figure 6.13: The impact of the boundary width on the memory access efficiency. All the performance results are
normalized by MTP,.; of the non-MPI code implementation.
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Figure 6.14: The MPI weak scaling tests of the anisotropic Biot 3D implementation. We show the parallel
efficiency of the two Nvidia hardware accelerators, the 1-8 Tesla V100 32 GB NVlink GPUs (Volta) and the 1-128
Titan X 12 GB GPUs (Maxwell). All the performance results are normalized by the single-MPI code performance.

6.5.5 Validation of the numerical solver

Comparison against an analytical solution

We perform a direct comparison of our numerical solver against analytically derived non-dimensional phase
velocities and the inverse quality factors of 1D Biot’s equations in homogeneous poroelastic media. Biot’s
mechanism, often called global flow, is the unique cause leading to wave attenuation and velocity dispersion.
We validated our numerical solver in 1D but the plane wave analysis is multidimensional as plane wave
characteristics are identical in 1D, 2D and 3D. In the numerical simulation, we use the proposed scheme
(6.114)-(6.121) with y = 1/2, the Morlet wavelet as a source function (6.56) and quantify velocity and the inverse
of the quality factor of a propagating wavelet in the time domain. We obtain excellent agreement between
numerical and analytical results (Figure 6.15).
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Figure 6.15: A comparison between numerically calculated dimensional phase velocities (up) and 1/Q (down)
against an analytical solution of Biot’s equations. Each red circle corresponds to a numerical simulation. The
phase velocity V; is normalized by the velocity in the high frequency limit VIH F and the dimensional angular
frequency w? is normalized against Biot's frequency w.. The material parameters are those from Table 6.3.

Convergence analysis

We performed a grid convergence analysis to validate the numerical implementation of the solver. We evaluate
the magnitude of the phase velocity truncation errors (ey) as functions of decreasing spatial discretization steps
Ax. We calculate the truncation errors by subtracting numerically calculated fields from analytical fields and
characterize the magnitude of the truncation errors by their L; norms, using the velocity estimation (Rdiss et al.,
2017)

ey =||Va—Will1, (6.59)

where V, corresponds to the analytical velocity obtained via the dispersion analysis and V;, corresponds to the
numerically estimated velocity.

Figure 6.16a shows the truncation error magnitudes of the estimated velocity in a lossless (n/ k = 0) and lossy
(n/k # 0) media using the y = 1/2 scheme (6.114)-(6.121). The source has the form of a Ricker wavelet (7.73)
and the central frequency of the source corresponds to a very low frequency (much lower than the frequency
of 1/Q maximum). Our numerical solutions for velocity exhibits second-order spatial and temporal accuracy.
The truncation error magnitudes decrease by a factor k as the grid spacing is reduced by the same factor. We
obtain similar results for a very high frequency source (much higher central frequency than the frequency of
1/Q maximum).

Figure 6.16b shows the truncation error magnitudes of the estimated velocity in a lossy medium for the scheme
(6.114)-(6.121) with y = 1/2 and y = 1.0. Here, the central frequency of the source corresponds to the frequency
of 1/Q maximum. In this analysis, we use the numerically estimated velocity of a very high resolution simulation.
The y = 1/2 scheme exhibits second-order accuracy in space and in time. In contrast, the y = 1.0 scheme shows
only about 1.8 order accuracy. Only the y = 1/2 scheme exhibits second-order spatial and temporal accuracy
across all frequencies while the y = 1.0 scheme exhibit second-order spatial and temporal accuracy only at
low or high frequencies where attenuation (and dispersion) is very low. For schemes with y other than 1/2 (we
used y = 0.6, 0.7, 0.8, 0.9), tests show that the accuracy is lower than second-order. Therefore, the scheme with
x = 1/2 is used for the numerical solution of Biot’s equations in the rest of the manuscript.
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Figure 6.16: The truncation error magnitudes of the numerically estimated velocities. (a) the low frequency
source and (b) f; of the source is close to the frequency of 1/Q; maximum. The material parameters are those
from Table 6.3.

6.6 Numerical experiments

We here present a series of simulations based on Biot’s equations in two and three dimensions. We discuss
some basic aspects of poroelasticity, namely, wave propagation in homogeneous poro-acoustic and poro-elastic
media, in isotropic and anisotropic poroelastic media and at low- and high- frequency regimes.

6.6.1 Wave propagation in 2D poroelastic media

Poro-acoustic and poro-elastic media

We examine the difference between poro-elastic and poro-acoustic wave propagation at low and high fre-
quencies in two dimensions. The material properties are those of an isotropic sandstone (Table 6.4). For the
poro-acoustic material, we set the shear modulus cs5 to zero. A 2D square domain of 9.35m x 9.35m is used. We
define 32 threads per blocks in x— and z— directions with 128 blocks in x— and z— directions, which result in
4095 x 4095 grid resolution having ~ 16 - 10 grid cells. We apply a Gaussian distribution (6.55) with I, = 0.08,
l, =0.08 and Ap = 1 at the center of the model domain to the solid particle velocity (V) as an initial condition for
the poro-acoustic and low frequency poro-elastic simulations. For the high frequency poro-elastic simulations
we also apply the Gaussian distribution to the fluid pressure py.

Figure 6.17 shows the total pressure (p) and solid particle velocity (V) fields for poro-acoustic and poro-elastic
simulations. In total, 5000 time steps were performed and the total physical simulation time was approximately
t =9-107* seconds. The simulations were performed on a single Tesla V100 PCle GPU. The running time was
approximately 55 seconds for each simulation. For a performance comparison, a few simulations were executed
on a single Tesla V100 Nvlink GPU, and the running time was approximately 51 seconds. Note, that the 2D codes
performance is not optimized as it is done for 3D codes. For optimized 2D codes, the performance might be
much higher. In the poro-acoustic simulations (Figure 6.17a-b), the initial condition corresponds to the low
frequency regime and only the fast (longitudinal) wave V; can be observed. Also note that the 2D poro-acoustic
medium can not unload the initial condition applied to the solid particle velocity field, which is represented by
non-zero amplitudes at the center of the model (Figure 6.17b). In the poro-elastic simulations (Figure 6.17c-d),
the initial condition corresponds to the low frequency regime and only two waves can be observed — the
fast (longitudinal) wave V7 and the shear wave V;. In the poro-elastic simulations (Figure 6.17e-f), the initial
condition of a Gaussian shape with I, =8-107* and [ y =8 10~* corresponds to the high frequency regime. Three
waves can be clearly observed — the fast (longitudinal) wave V, the shear wave V; and the slow (longitudinal)
wave V; (Figure 6.17e-f).
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Table 6.4: Properties of anisotropic poroelastic rocks used for numerical simulations. VTI corresponds to a
vertical transverse isotropic medium.

sandstone (VTI) | glass-epoxy (VTI) | sandstone (isotropic)

Rock properties

K (GPa) 80 40 40

Os (kg/m?3) 2500 1815 2500

c11 (GPa) 71.8 39.4 36

c12 (GPa) 3.2 1.2 12

13 (GPa) 1.2 1.2 12

C33 (GPa) 53.4 13.1 36

Cs5 (GPa) 26.1 3.0 12

¢ Q] 0.2 0.2 0.2

ky (m?) 600-1071° 600-1071° 600-1071°

ks (m?) 100-10715 100-10715 600-1071°

T ) 2 2 2

T3 “) 3.6 3.6 3.6

K¢ (GPa) 2.5 2.5 2.5

pf (kg/m3) 1040 1040 1040

n (kg/m-s) 1073 1073 1073

Anisotropic poroelastic media

In this section, we reproduce similar two dimensional results shown in de la Puente et al. (2008); Lemoine et al.
(2013), so the present simulations can be qualitatively compared to the previous works. The material properties
of anisotropic rocks are similar to those of de la Puente et al. (2008); Lemoine et al. (2013) (Table 6.4). We
apply a Gaussian distribution to 0., and py with I, = 0.08, I, = 0.08 and Ag = 1 to the center of the numerical
model. Other parameters are the same as in the previous 2D simulations. The simulations were performed on
a single Tesla V100 Nvlink GPU. The running time was approximately 51 seconds for both (glass-epoxy and
sandstone-VTI) models, 5000 time steps were performed. The total physical simulation time was ¢ = 6.15-107%
seconds for the anisotropic sandstone and ¢ = 7.061 - 10~% seconds for the glass-epoxy model. The results of
the solid-particle velocity fields Vy and V, are shown in Figures 6.18 and 6.19. In analogy to de la Puente et al.
(2008); Lemoine et al. (2013), we show numerical results for inviscid models (n = 0) and viscid models (1 # 0).
Simulations in inviscid media mimic the high frequency regime, therefore, fast, quasi-shear and slow waves can
be observed (Figure 6.18a-b and Figure 6.19a-b). Simulations in viscid media correspond to the low frequency
regime, therefore, only fast and quasi-shear waves are observed (Figure 6.18c-d and Figure 6.19¢c-d).
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6.6.2 Wave propagation in 3D anisotropic poroelastic media

We simulate a wave propagating in 3D for the anisotropic poro-elastic material whose properties are of the
glass-epoxy (Table 6.4), the properties in the x—direction are duplicated to the y—direction. The simulations
were performed on eight Tesla V100 Nvlink GPUs. A three dimensional cubic domain of 9.35m x 9.35m x 9.35m
is used. The total resolution is 1022 x 1022 x 1022 grid cells in x-, y- and z- dimensions, respectively, which results
in = 1-10 grid cells. We apply a Gaussian distribution to the fluid pressure p ¢ (fluid injection) with I, = 0.18,
1,=0.18,1,=0.18 and Ag = 10'0 at the center of the numerical model. The running time was approximately 73
seconds for all simulations, 1050 time steps were performed. The total physical simulation time was 6.8-10~*
seconds. This model configuration corresponds to the low frequency regime.

Figure 6.20 shows the solid particle velocity field V = Vy + V), + V. The velocity field is projected into several
slices, also the isosurfaces of the wave amplitudes of +3 - 1073 are shown. Figure 6.21a shows the solid particle
velocity field V, for the same model (Figure 6.20) while Figure 6.21b shows V of the 100 times smaller model (the
size is 0.0935%m), which corresponds to the high frequency regime. The initial condition was scaled accordingly,
Iy =0.018, I, = 0.018, I, = 0.018 (A is the same) and the total physical simulation time was also scaled to
6.8- 1075 seconds. The behavior of fast and quasi-shear waves is similar in Figures 6.21a and 6.21b but the slow
P-wave behavior is different. In Figure 6.21a, the slow P-wave degenerated into a diffusion mode representing
viscous fluid flow in porous media while in Figure 6.21b the slow P-wave behaves as a true propagating wave.

6.7 Conclusions

We developed a multi-GPU solver for the anisotropic elastodynamic Biot’s equations in 1D, 2D and 3D using the
CUDA C programming language leveraging the parallel processing power of GPUs. We implement a simple
approach to circumvent the stiffness of Biot’s equations by using an implicit scheme for Darcy’s flux while
keeping explicit updates in the iteration loop. We achieve a close-to-ideal parallel efficiency (98% and 96%)
on weak scaling tests up to 128 GPUs by overlapping MPI communication and computations. We also achieve
an effective memory throughput of 90% of the memory copy throughput. Our multi-GPU implementation
of Biot’s equations permits to tackle high spatial resolution and exhibits fast execution times. We perform
1000 explicit time steps in 95 seconds for a model involving 1.5 billion grid cells (11523) on 8 Tesla V100 32GB
Nvlink GPUs using double-precision arithmetics. We analyze the stability and accuracy of the three different
numerical schemes and suggest the best out of three. We benchmark the numerical solver against an analytical
solution of Biot’s equations and present a comprehensive dimensional analysis of Biot’s equations to reduce the
number of material parameters from ten to four. Our numerical application to resolve Biot’s equations enables
practical applications in geophysics, engineering, biophysics and the further understanding the underlying
hydro-mechanically coupled processes in 3D.
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Figure 6.17: Numerical simulation of a propagating waves. (a), (c), (e) show the total pressure field p, (v), (d),
(f) show the particle-velocity field Vx. Plots (a) and (b) correspond to the poro-acoustic medium, (c) and
(d) correspond to the poro-elastic medium (low frequency regime) and (e), (f) correspond to the poro-elastic
medium (high frequency regime). The total physical simulation time is approximately ¢ =9-10~* seconds. The
material properties are those of an isotropic sandstone (Table 6.4).

140



v (m/5)X 1070 v, (m/S)X 108
3
1
2
/’\
/ \ 0.5
1
£ 0 g W\ lo
~ N INA
- \ /
S\ /4 -0.5
v
) \./
-1
-3
2 1 0 1 2 3 "1 1 ‘O 1 é 3 4
x (m) x (m)
(a) (b)
V, (m/s) 14-9 v, (m/s) 1,-8
3
1
2 A
Z, 0.5
1
E ) 0 E 10
N N
-1
\ / \\\\Z -0.5
- N
-1
-3
2 1 0 1 2 3 4‘) 1 0 1 é 3 4
X (m) X (m)
(c) (d)

Figure 6.18: Snapshots showing particle-velocity fields V, and V; in the epoxy-glass medium (Table 6.4). Panels
(a) and (b) correspond to the inviscid medium (1 = 0), panels (c) and (d) correspond to the viscid medium
(n #0). The total physical simulation time is # = 7.061-10~% seconds.
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Figure 6.19: Snapshots showing particle-velocity fields Vi and V; in the sandstone-VTI medium (Table 6.4).
Panels (a) and (b) correspond to the inviscid medium (7 = 0), panels (c) and (d) correspond to the viscid medium
(n # 0). The total physical simulation time is # = 6.15- 10" seconds.
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Figure 6.20: Snapshots showing the total solid particle velocity field V = Vi + V), + V, in the medium having the
properties of the glass-epoxy (Table 6.4). The velocity field is projected into X — Z and Y — Z slices. Red and
blue isosurfaces denote the wave amplitudes of +0.4. The anisotropic nature of the model is clearly visible due
to the non-symmetric velocity field pattern. The total physical simulation time is 6.8- 10~ seconds.
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Figure 6.21: Snapshots showing the solid particle velocity field V in the medium having the properties of the
glass-epoxy (Table 6.4). Panel (a) shows V, of the same model as in Figure 6.20, red and blue isosurfaces denote
the wave amplitudes of +0.4, the total physical simulation time is 6.8 - 10~* seconds. Panel (b) shows V; of the

100 times smaller model, which corresponds to the high frequency regime, The total physical simulation time is
6.8-107°% seconds. Red and blue isosurfaces denote the wave amplitudes of +3.0.
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6.8 Appendix A: Equations describing a single phase continuum material

6.8.1 Stress-strain relations

For a single phase linear elastic continuum material, the stress-strain relation (Hooke’s Law) is

oc=C:e (6.60)

or using index (Einstein) notation

0ij=Cijki €kl (6.61)

where o is the second rank stress tensor, € is the second rank strain tensor, C is the fourth rank stiffness tensor, :
denotes the double dot product and i, j, k, I = 1,..,3. Bold symbols denote tensors and italic (non-bold) symbols
denote tensor components. For small deformations, the strain tensor is defined as

1
e=-(Vou+ Veuw') (6.62)
or
1
€k1=35 (Viug+Viup), (6.63)

where u is the displacement, ® denotes the tensor product, V denotes the nabla operator and the superscript T
corresponds to the transpose operator. For larger strains, an incremental formulation is preferable. Therefore,
the relation between displacements and the time derivative of strain is

00ij 1

WZC,']'ME(VIV]SC+V]CU;), (6.64)
where the particle velocity is defined as vf =0u;/dt. Note, that in the case of small linear deformations, the
definition (6.60)-(6.63) coincides with the definition (6.64). For large deformations the definition (6.60)-(6.63) is
not longer valid due to the absence of second-order terms of the finite strain tensor while the definition (6.64)
still holds. In this article, we only use the incremental formulation (6.64). In isotropic media, the stress and
strain tensors can be separated into volumetric and deviatoric parts. Equation (6.64) can be rewritten as

601']' 1 1

WzKVkvk(Sij+2G E(le/i+vil/j)—§vkl/k5ij . (6.65)

Equation (6.65) can be simplified, once pressure and deviatoric stresses are introduced,

acr,-]-_ 6_p § ar,-j

ar  artiT 5 (6.66)
where pressure p is
o =-KV,vg (6.67)
ot
and the deviatoric stress tensor 7;; is expressed as
%:m %(vjui+viuj)—%vkvk6ij . (6.68)
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6.8.2 Dynamic equations

The conservation of linear momentum for a single phase material is

al/i
p—=—=Vjoij. (6.69)

Equation (6.69) can also be called equation of motion or elastodynamic force balance law. By separating the
stress tensor into deviatoric and volumetric parts, equation (6.69) can be written as

01),'

Py =Vilpoij+Ti)) (6.70)

In summary, the constitutive equations (6.67)-(6.68) and the conservation of linear momentum (6.70) fully
describe the behavior of a single phase material. Depending on the initial conditions (or the source terms) and
the material parameters, the response of a single phase material may include one fast (longitudinal) wave and
one shear wave.

6.9 Appendix B: Poroelastic parameters

Three experiments permit to determine the poroelastic parameters required for Biot’s equations (Makhnenko
and Podladchikov, 2018). The drained bulk modulus K; can be measured under drained experiments. In such
experiments the pore fluid is allowed to leave the rock during loading and that pore fluid pressure is maintained
at a constant level (py = const, see equation (6.1))

1 o0p
a VklllsC ot

d (6.71)

(pg=const)

The undrained bulk modulus K, can be obtained under undrained experiments. In such experiments the
fluid content inside the rock does not change during loading, meaning that fluid does not flow through the
boundaries of the considered element (V q,? =0, see equation (6.1))

1 0p
“- Vkl/lsC ot

(6.72)

(ViqP=0)

The Biot-Willis parameter « can be obtained under unjacketed experiments, in which an increase in the total
pressure p is equal to the increase in fluid pressure p¢: (dp = dpy, see equation (6.1)). For more information
about how to measure poroelastic constants in rock samples, we refer to Zimmerman (1990).

6.10 Appendix C: An alternative dimensional analysis of Biot’s equations

In (6.12), instead of the base quantity p;, an alternative choice is possible, namely, p,. In this case, equation
(6.12) reads

p:_Pr o’ 06
Pa Pa Pa at - ax , (673)
pa || 042 |1 b, 0P
[} ot k 0x

(6.74)
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In the resulting system, equation (6.17) is still the same, while equation (6.18) becomes

, , 05 a6
ta  —Pral||l =7 -
(I)? ot NS 0% , (6.75)
4§ _p 0P
—Pfa 1 —% I qD"‘a—xf

where prqa = pr/pa, Pta=pt!Pa

L*
L=/ pusflr—f, (6.76)

and

h=——=— , 6.77
2 k T* D t* ( )
k
D= —-. (6.78)
UDH

The alternative four dimensionless parameters @, a4, 0 r, and p¢, now define the coupling between the solid

and fluid phases. If we similarly set I; =1, then L} =7*/ pasf1 and I, becomes

N _«
= T*. (6.79)
kpa

L

Thus, we choose the new 7™ as

-1 -1
S _[ n¢
i _(kpa) _(kpr) ’ (6.80)

we end up with I = 1 and the transformation frequency now is equivalent to the Biot’s characteristic fre-
quency (6.40). Indeed, the dimensional angular frequency w? is calculated as w? = ww*, where w is the
non-dimensional angular frequency and w* is the transformation frequency (analogous to (6.39))

=—, (6.81)

which is exactly the Biot’s characteristic frequency w, (6.40). This is the main advantage of the new dimensional
analysis. The disadvantage is that the drained wave velocity V; formula disappears in (6.76), which makes
the interpretation of I; in terms of usual physical quantities less transparent. By using this new dimensional
analysis, Figures 6.1-6.4 will remain almost the same with the only slight shift of the transition frequency closer
to w = 1. This shift in w is defined by the ratio between p, and (o T/¢).
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6.11 Appendix D: Elastodynamic Biot’s equations for anisotropic media

6.11.1 Arbitrary anisotropic media

Elastodynamic Biot’s equations in arbitrary anisotropic media can be written in the first order form. The
stress-strain relations are

65’1']'

- - o Vkv; + @i MV gy, (6.82)
pr _ s D
—5= ~M (@i Viv$ +Vinapn), (6.83)

where ci”j i 1s the 4-th order undrained stiffness tensor and «a;; is the Biot-Willis parameter represented by a
second order tensor. The conservation of linear momentum reads

6”? - N b

E=911Vi0ij+912(vipf+k—iqi ) (6.84)

9q; - m b

6; =-021Vi0ij 022 (Vz’ Prtg, i )’ (6.85)
where

o111 P12 1(Pa Pf

Oij = = 6 , (6.86)
021 Q22 Pr Pt

O=ppa— pi and k; denotes permeability in i — direction, respectively. In (6.82)-(6.86), d; represents a time
derivative, v; and qlp are vector fields, o;; is a tensor field, p is a scalar field. All the material parameters,

namely, Ciikp ij M, pij, n, k; are constant in time but may vary in space.

6.11.2 Orthorhombic media

An orthorhombic medium is described by nine elastic components of the stiffness tensor. We use the shortened
Voigt notation as a shortcut. The stress-strain relations are

Y D D D

6;” =cf‘laxu;+c{‘26yu;+c{‘36zv§+a1M(0qu +0yqy +0:4, )’ (6.87)
00

vy D D D
b C1p0xVy + Cpp0y V), + x50, V3 + agM(aqu +0yq, +0:q, ), (6.88)
%:cua v3+clho,vs+clko vs+a3M(0 g2 +0,q°+0 qD) (6.89)
ot 13¥xYx 23Yy %y 33Y2%z XY x yYy 24z ) .
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36y,

3 Cay (az vy, +0y vg), (6.90)
3G
Tl (9u03+0,03), (6.9
06y
==l (0,5 +0.v5), (6.92)
opy _ s s s D D D
—L = a1 MO0} - MOy v}, - a MO VS - M (0.2 +0,q7 +0.47), (6.93)

0; represents a spatial derivative in i— direction. The relation between the drained stiffness matrix ¢;; and the
undrained stiffness matrix cl%‘j is

clf‘j:cij+a,~ajM, (6.94)

where «; = (a1, a2,a3,0,0,0) and a; = (a1, a2, @3,0,0, 0)T are the Biot-Willis coefficients,

3
aj=1- (Z cl-j) 1(3Ky), (6.95)
j=1

for i = 1,2,3. For example,

Ci1t+Ci2t+cC
a;=1- M, (6.96)
3Kg

o1+ Co2+
a=1- M’ (6.97)
3Kg

C13 + C23 + C:
az=1- 2T BT (6.98)
3K,

and M is the solid-fluid coupling modulus, defined as

-1
M= (¢/Kf+(1—¢)/Kg—K*/K§,) , (6.99)

1 3 3
:52 Z cij=le1 + o+ 33 +2(c12+ 13 + €23)1 /9 (6.100)

The modulus K* is usually called the generalized bulk modulus, which, in fact, represents the Voigt average of
the bulk modulus for an orthorhombic symmetry system. The conservation of linear momentum reads

D

0
(;7; =021 (_0x6xx —0y0xy— 6z5'xz) — 022 (axpf + klqu) ) (6.101)
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aqP
6_: =021 (=0x0 1y =0y0yy =020 y2) ~ 02 (5ypf + k%%) ’ (6.102)

dq7 _ _ _ n
ar =021 (_axaxz =0y0yz— azgzz) —022(0zpf+ k—séh ) (6.103)

ovs

X

ot

=01 (6x6-xx + ayO'xy + aszxz) +012 (axpf + klqu) , (6.104)

ovs

a_ty =011 (Ox&xy +0y5'yy +azﬁ'yz) + 012

dypy+ kiqy), (6.105)
2

ovs _ , - n
E =011 (axez + 6yUyz + 62022) +012 6zpf + k_ng , (6.106)

where p; is given by (6.86).

6.12 Appendix E: Discretization of Biot’s equations

For a given function gl.”]. K= g(th xi,y i» 2), the following operators for the time evolution are introduced

1+1/2 1-1/2
ag L gk gi,j,k

. 6.107
Dilgl= or At ¢ )
I+1
0g _ 8i+lizjk gz+1/2] k
D? , 6.108
l81=75, = N, (6.108)
Dylgl = x8i 1110k + A= D&l 1sa 10 (6.109)

where y € [0;1] is the weight parameter. The following operators for the spatial derivatives are introduced
1+1/2 1+1/2 1+1/2 1+1/2 1+1/2 1+1/2
0g gl+1]k gl]k Dl[ | = 6g gz]+lk gljk Dl[ ] = ag gl]k+l_gi,j,k

) , , 6.110
ox Ax '8 dy Ay 2875, T Az ( )

Dylg) =

ag _ g1+1/2]k g 1/2,j,k
ox Ax

! ol
0g  8iji+12” 8ijk-1/2
0z Az

! ol
0g  8ij+12k” 8ij-1/2k

= , D%[g] =
3y Ay 28]

D3[g] =

2 —
, Dlgl=

’

(6.111)
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The following averaging operators for the material parameters are introduced

(g1 412,k = (&ijk + &iv1,jk) 12, (6.112)

-1
(g12)is1s2,j41/2k =4(1/ 81k + 1/ Givr,jk + 1/ &ije1,k + 1/ €ix1 a1 k) - (6.113)

For simplicity, equations only in x- direction are shown in the discrete form. A few additional operators are
introduced

V-v' = Di[vy] + D3[vy] + D3], V- g = D3lqy1+D5lq))+ Dilg?). (6.114)

The discretized system of equations is

Dlpl=-K,V-v’-K,BV-q", (6.115)
Dilpsl=-KuBV-v° —K,BlaV-q°, (6.116)
D} [#xx] =2G (DA[v5] - 1/3V-0%), (6.117)

discretization of 7y, and 7. is in analogy to that of 7 .. The stress deviator tensor field is discretized as

D} aylisasz jorszk =Gl (D3(v3] + DIw3]) (6.118)

discretization of 7, and 7 is in analogy to that of 7. The total stress tensor field V- G .y is

[.[—.xy]l.+l/2 . _[fxy]l-+1/2 ) [fxz]l-ﬂlz ) _[fo]l'+1/2 )
V'O-'xxzD)lC[fxx]_D)lc[ﬁ]"' i+1/2,j+1/2,k l+l/2,]—l/2,k+ i+1/2,j,k+1/2 l+1/2,],k—l/2' (6.119)
Ay Az
The Darcy’s flux and the particle velocity vector fields in the discrete form are
- meh -
DigP1=— (—[pth-axx— [p:]1 Dylpsl - [pthLD,([q}J]), (6.120)
Gl (kT
205 1 - 1 e - p
Dilvyl = CR (Pal1V-0xx+ ol Dylpsl+ [pfhmDX[qf] . (6.121)

6.13 Appendix F: The GPU architecture

GPUs feature a hierarchic structure. The basic computational unit is the Thread. Threads are organized in
Blocks of Threads that constitute the Grid. A GPU function (CUDA kernel) executes in as many concurrent
instances as the total amount of Threads, i.e the Threads per Block times the amount of Blocks. We assign
each data unit (grid cell) of our computational domain to a specific Thread; the identical numerical operation
performed on each data unit (grid cell) will thus be executed simultaneously in the entire computational domain
(Figure 6.22).
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CPU GPU

Figure 6.22: Schematic chip representation for both the central processing unit (CPU) and graphical processing
unit (GPU) architectures. The GPU architecture consist of thousands of arithmetic and logical units (ALU). On
the CPU, most of the on-chip space is devoted to controlling units and cache memory, while the number of
ALUEs is significantly reduced.
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Abstract

The efficient and accurate numerical modeling of Biot’s equations of poroelasticity requires the knowledge
of the exact stability conditions for a given set of input parameters. Up to now, a numerical stability analysis
of the discretised Biot’s equations has been performed only for a few numerical schemes. We perform the
von Neumann’s stability analysis of the discretised Biot’s equations. We use an explicit scheme for the wave
propagation and different implicit and explicit schemes for the Darcy’s flux. We derive the exact stability
conditions for all the considered schemes. The obtained stability conditions for the discretised Biot’s equations
were verified numerically in one-, two- and three-dimensions. Additionally, we present the von Neumann’s
stability analysis of the discretised linear damped wave equation. We provide symbolic Maple scripts to obtain
exact stability conditions for any given set of input material and numerical parameters.

7.1 Introduction

Poroelasticity is a well established discipline that describes the interaction between the deformation of an
elastic porous solid and the fluid flow in a porous material. Poroelastic response of an isotropic two phase
medium results in two longitudinal waves (Frenkel, 1944), the P-wave of the first kind (fast) and the P-wave
of the second kind (slow), and in one shear wave. Biot (1941, 1956b,a, 1962a) established poroelasticity as a
discipline, which includes static and dynamic responses of a porous material, the experiments to obtain the
material parameters (Biot and Willis, 1957), the extensions to include viscoelasticity and non-linear behavior of
a porous material (Biot, 1965). The theory of poroelasticity finds applications in many areas, including earth
sciences, biology, medicine and others. In earth sciences, simplified models based on poroelasticity can be
useful to induced seismicity, seismic exploration, hydrogeology, rock physics and others. Therefore, efficient
and accurate numerical solutions of poroelastic equations are of great importance.

The simplest equation which describes the propagation of acoustic waves in a fluid flowing through a porous
medium is called the linear damped wave equation (DWE) and is known far before the Biot’s equations were
introduced (Pascal, 1986). The DWE describes many physical systems. This equation initially was used in
the description of the telegraph, today known as the telegraph equation (Jordan and Puri, 1999). The DWE
also arises in the generalized (or hyperbolic) thermoelasticity (Hetnarski and Ignaczak, 1999). The numerical
solutions of DWE were presented in different branches of mathematics and physics. DWE (as a hyperbolic
conservation law with a stiff source term) was extensively studied by many authors (Jin and Levermore, 1996;
Pareschi and Russo, 2005; Boscarino and Russo, 2013) and references therein. Many finite difference schemes
were introduced, e.g. (Mickens and Jordan, 2004; Mohanty, 2004; Macias-Diaz and Puri, 2010; Ding et al., 2012;
Najafi and Izadi, 2014). The dynamic Biot’s equations of poroelasticity are far more complicated than the DWE,
and researchers used different numerical methods to solve them. A finite-differences/volumes on Cartesian
space-time grids were the first numerical methods used to simulate poroelastic wave propagation (Zhu and
McMechan, 1991; Dai et al., 1995; Carcione and Quiroga-Goode, 1995; Ozdenvar and McMechan, 1997; Zeng
etal, 2001; Masson et al., 2006; Wenzlau and Miiller, 2009; Chiavassa et al., 2010; Chiavassa and Lombard, 2011).
Other numerical solutions include pseudo-spectral methods (Ozdenvar and McMechan, 1997), spectral element
methods (Morency and Tromp, 2008), discontinuous Galerkin methods (de la Puente et al., 2008; Ward et al.,
2017; Zhan et al., 2019; Shukla et al., 2020) and finite volume methods on unstructured grids (Lemoine et al.,
2013; Lemoine, 2016). Many studies have been performed for space-time finite element methods for hyperbolic
(wave) and parabolic problems (Schieweck, 2010; Kdcher and Bause, 2014; Ernesti and Wieners, 2019; Bause et al.,
2020) and the references therein. A splitting scheme has been investigated for the numerical approximation of
simplified Biot’s equations considering mixed hyperbolic-parabolic structure (Bause et al., 2019). Despite the
number of numerical studies, the precise stability conditions were determined only for a few numerical schemes.
The first studies profited from approximate stability conditions or investigated a stable time step numerically.
Carcione and Quiroga-Goode (1995) discussed the stability issues in explicit schemes for Biot’s equation. Masson
et al. (2006) investigated the stability condition of a particular numerical scheme for Biot’s equations. Chiavassa
et al. (2010) reported the exact limits of a stable time step for the explicit schemes. O’Brien (2010) explored
the stability conditions of two numerical schemes for Biot’s equations and found some inconsistencies in the
previous studies. Nevertheless, there are no studies which explore the stability conditions of a range of implicit
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and explicit schemes for Biot’s equations of poroelasticity and provide closed form expressions to evaluate a
stable time step for any given set of material and numerical parameters. An exact stability condition for the
time step is the key parameter which helps to control the accuracy and computational efficiency of numerical
solutions.

In this work, we perform a rigorous von Neumann’s stability analysis of the discretised Biot’s poroelastic
equations. We use an explicit numerical scheme for the wave propagation (Virieux and Madariaga, 1982; Virieux,
1986) and three schemes (explicit, implicit-explicit and implicit) for the Darcy’s flux. Momentum conservation is
exact for the applied staggered scheme for the wave propagation, momentum conservation is also satisfied after
the discretization. We also perform a rigorous von Neumann’s stability analysis of the discretised DWE since they
behave similarly to the original Biot’s poroelastic equations and can help in understanding the stability of the
latter. All our derivations are exact (if not mentioned otherwise) and were verified with the help of the symbolic
math computing environment Maple 2019. Where it was possible, we provide the closed-form expressions for
the stability conditions. Where it was not possible, we refer to the Maple script (supplementary material) where
an exact stability condition can be calculated symbolically for any set of input material parameters. We also
provide simple approximate expressions for the von Neumann’s stability of the discretised Biot’s poroelastic
equations for all considered schemes. Furthermore, we discuss other implicit schemes which may provide
different stability conditions for the DWE and Biot’s equations. We have not used any specialized terminology
from the numerical analysis, thus, this article is suitable for scientists across the disciplines.

The paper is organized as follows. In section 2, we briefly outline the theory of the von Neumann’s stability
analysis. In section 3, we perform the von Neumann’s stability analysis of the discretised DWE. In section 4, we
perform the von Neumann’s stability analysis of the discretised Biot’s equations of poroelasticity for different
discretization schemes. In section 5, we summarize the results and compare them with previous studies.

7.2 Theory

The goal of a numerical solution of a partial differential equation (PDE) is to get the result, which is very close to
the exact solution of the original “continuous" PDE. In order to achieve that, a desired PDE is discretized on a
certain space and time mesh and, then, the discrete version of the PDE is solved on a computer. The validity of
the obtained numerical solution can be evaluated using a very well established theory of numerical methods,
well explained in many text books, for example, in Hirsch (1988).

The basic idea of the numerical analysis is to evaluate several aspects of a discrete PDE (can be also called
as a discretization scheme), namely, consistency, stability, convergence and accuracy. Consistency evaluates
how well the discrete PDE approximates the exact (continuous) PDE. It can be done by analyzing the so-called
truncation error, which roughly corresponds to a Taylor expansion of the discrete PDE and evaluation of the
difference between the exact solution and the discrete solution. Stability evaluates the errors of the discrete
PDE as it evolves in time. It can be done by calculating the evolution of all errors (decomposed into harmonics)
made at one discrete time step. Evolution of all components must be bounded otherwise the errors will be
amplified at each time step. Convergence states that the numerical solution approach the exact solution of
the exact (continuous) PDE as space and time discretization tend to zero. The three definitions mentioned
above are related via the Lax Equivalence Theorem. This theorem states that if the discretization scheme of
awell-posed linear initial value problem is consistent and stable, the scheme is convergent. The accuracy of
a discretization scheme defines how fast the numerical solution tends to the exact solution as space or time
discretization are reduced by an order of magnitude. The accuracy can be, for example, second order in space
and second order in time, meaning that if one refines the spatial and time discretization grids by one order of
magnitude, the numerical solution will become closer to the exact solution by two orders of magnitude.
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7.2.1 Basic theory for von Neumann stability analysis

Let us consider a 1D first order system of partial differential equations
0/ f(x, 1)+ Adx f(x,1) =0, (7.1)

where A is a linear operator. For a numerical solution, a linear difference equation is needed. Let us use a
rectangular time-space grid. The time is discretized as ' = IAt and the spatial grid is discretized as x; = iAx.
The PDE (7.1) can be written in a discrete form as

Dl’f(x) t)+ADxf(-xy t)zoy (72)

where D; and D, are certain discrete time and space operators. The von Neumann'’s stability method analyzes
a time evolution of a discrete numerical solution Wl.l of (7.2) in the space-temporal frequency domain. This
method provides the stability of linear schemes with constant coefficients. A discrete plane wave harmonic is
inserted into the discrete numerical solution, which is represented as

Wll — ;elk-xi — ﬁelkle — Q;’Zell(b, (7'3)

where Q} is the amplitude of the j harmonic of W, I is the imaginary unit, k = k; - is the wave number, i - is

the mesh index and Ax is the mesh spacing, ¢ = iAx is a phase angle. For a single harmonic wave Qj.el i its
time evolution is the same as for the full solution W". The stability criterion establishes a bound on the time
evolution of any harmonic. The amplification factor is

I+1
F(¢p,At,Ax) =

Wi (7.4)

For a single discrete equation, F is a scalar. For a system of discrete equations, F becomes a matrix. The von
Neumann'’s necessary condition for stability assert that the spectral radius of the amplification matrix F must
satisfy the following inequality

Ae(F) <1+ 0(AD), (7.5)

where A; are the ¢ eigenvalues of the amplification matrix F whose size is ¢ x . Since, the stability condition
depends on the spatial discretization Ax, the final analysis is performed using the inequality

At<Ax-r, (7.6)

where r is the parameter which controls what fraction of Ax must be used for stable At and corresponds to the
most restrictive condition evaluated from (8.7). This stability condition (7.6) is known as the Courant-Friedrichs-
Lewy (CFL) condition.

7.3 Discrete schemes of the linear damped wave equation

7.3.1 The damped linear wave equation

We consider the 1D scalar damped linear wave equation (DWE) as a first order hyperbolic system,

1
—Otp = —qu
K | . 7.7)
0:q=——0xp——4q,
p T

where p is the pressure, ¢ is the velocity, K is the bulk modulus, p is the density, 7 is the relaxation time.
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The PDE (8.1) represents the hyperbolic system with a “stiff" source term 1/7 g in the right hand side (R.H.S) of
(8.1)2. The system (8.1) is called “stiff" if the two processes (advection and diffusion) have different characteristic
time scales.

We introduce a dimensionless parameter ¥ denoting the ratio of a characteristic time that wave travels t;, = L*/V
(advection) over a characteristic relaxation time 7 (diffusion)
T Vr

. =T (7.8)
h

v

where L represents the characteristic length and V represents the wave velocity. If ¢ « 1, the relaxation term is
stiff (Jin and Levermore, 1996).

Let us introduce a discrete version of (8.1) where we use a classical conservative staggered space-time grid
discretization (Virieux, 1986), which is equivalent to a finite volume approach (Dormy and Tarantola, 1995).
The pressure p is defined at the center of a grid cell i and the velocity g is defined at the side of a grid cell i £1/2
(g can be considered as a “flux" through the grid cell). The temporal discretization of p corresponds to the
half integer nodes ! + 1/2 and the temporal discretization of g corresponds to the node integers [. The explicit
discretization of the system (8.1) is

1+1/2 _ 1-1/2 1 1
1Pi "7Pi T i i
K At Ax
I+1 ! 1+1/2 7 1+1/2 (7.9)
Divire = ivre _ _1Pis1 —Pi —lql
At 0 Ax T i+l2

The linear wave equation

If 1/7 =0, then the system (8.1) represents the wave equation and the von Neumann stability analysis for the
discrete system (8.3) suggests that

Ax
Ats —, (7.10)
v
where V = {/K/p is the fast wave velocity.

The linear diffusion equation

The system (8.1) can also be treated as a diffusion equation. The discrete system for the diffusion equation can
be derived from (8.3)

1+1/2 _

I-1/2 i I
1p; Pi " __divi2” i
K At 1+1/2 _ ,1+1/2 Ax (7.11)
I+1 _ _Z pi+1 pi
div12~= P Ax ,

in (8.3) to q”l in (7.11). The von

where the only difference in (7.11) from (8.3) is the replacement of qf i1/

Neumann stability analysis for the discrete system (7.11) suggests that

+1/2

(Ax)?
At < , (7.12)
2D

where D = K71/p is the diffusivity.
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The dimensionless damped linear wave equation

For further stability analysis we will rely on a dimensionless formulation. The following replacements to the
original DWE (8.1) are done

*

3 L* _ .. .-
p—*@%—»;cﬁx—% X t—1tf, (7.13)

where L* [m] is the characteristic length, ¢* [s] is the characteristic time and the variables with the symbol = on
top correspond to the dimensionless quantities. We also set L* = V t* and ¢* = 7. The dimensionless system
(8.1) reads

0;p=-0:q

S
1l

(7.14)

0;G=-0zp—q.

<
I

Below, we will deal only with the dimensionless equations, and, for simplicity, we will omit the over-score tilde
symbol < in the rest of the article (excluding appendices).

7.3.2 The discrete system of equations

Let us consider a more general discrete system than (8.3) where we will use the fact that there are no spatial

derivatives of the field qf +1/2 M RH.S of (7.14),. Thus, qf +1/2 can be replaced as a weighted average between

the future qfﬂ/z and the past qu/Z values,
I+1/2 _ 1-1/2 ] !
Pi " =Pi " _ i i
w AL ™ e (7.15)
Divii2 =" 9iv12 _ Pina1 —P; (g, +A-04l )
AL = Ax X412 X ii1s2)-

If y = 1/2, the scheme (7.15) corresponds to an implicit-explicit scheme. If y = 1, the scheme (7.15) corresponds
to an implicit scheme for g. The schemes with y = 1/2 ans with y = 1, even though are implicit for g, can be
executed fully explicitly. The consistency is shown in many studies, for example, in Najafi and Izadi (2014)
and references therein. Our numerical tests show that all three schemes described above (explicit, implicit-
explicit, implicit) under a sufficient resolution converge to the same numerical solution using homogeneous
and heterogeneous material properties.

A typical behavior of the system (7.14) is shown in Figure 7.1. The wave propagation regime of DWE corresponds
to a propagating wave (left and right going wavelets with the same velocities), which is equivalent to a standard
wave equation (Figure 7.1a). The diffusion regime of DWE corresponds to a diffusion event, which is equivalent
to the standard diffusion equation (Figure 7.1b).

7.3.3 The explicit scheme

Here, we explore the discrete system (7.15) with y = 0, which corresponds to the explicit scheme. The von
Neumann stability analysis for this scheme suggests that

—Ax++v/(Ax)2+16
Ar<Ax—=F EIX) , (7.16)

The behavior of this stability condition as a function of Ax is shown in Figure 7.2 (solid red curve). Let us analyze
the result (7.16) in more detail.
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Figure 7.1: Snapshots of the velocity wave fields of DWE (7.14). Panel (a) shows one propagating wave, which
corresponds to the wave propagation regime of DWE. Panel (b) shows a diffusive mode, which corresponds to
the diffusive regime of DWE. We apply a Gaussian distribution to the pressure p at the center of the model as an
initial condition.

Wave propagation regime of the damped linear wave equation

Lets us write a series expansion of the right hand side (R.H.S) of (7.16) of Ax, assuming Ax < 1,

A —Ax+1+/(Ax)2+16
X =

4

Ax— a0+ = a0+ 0(an®). (7.17)
4 32

It can be seen form (7.17) that the limit of (7.17) as Ax — 0 is

—Ax++v(Ax)2+16
lim |Ax ad i x) =0, (7.18)
x—>

which corresponds to the hyperbolic limit. Indeed, taking into account (7.17), the inequality (7.16) can be
written as

At < Ax, (7.19)

which is valid when Ax « 1 (Figure 7.2, dashed green curve). This CFL condition is indeed corresponds to the
CFL of the wave equation (7.10), because the velocity equals to 1. One can also take into account one more term
in the series expansion (7.17) and the inequality (7.19) becomes

1
At <Ax— Z(Ax)z, (7.20)

which is shown in Figure 7.2 (dotted blue curve).

159



Diffusive regime of the damped linear wave equation

Now we consider an opposite scenario. We write a series expansion of the R.H.S of (7.16) of 1/Ax, assuming
1/Ax <1,

“Ax+V(A0?+16 8 64 1

Ax 4 "0t T oot T Gae

). (7.21)

The limit of the right hand side of (7.21) as Ax — +oo is

—Ax+V/(Ax)?+16) 5

lim |Ax (7.22)
Ax—+00 4
It is interesting that the R.H.S of (7.22) is finite. Thus, when Ax >> 1, the stability conditions reads
At<2, (7.23)

which is a parabolic limit and is shown in Figure 7.2 (dashed light blue curve). One can also take into account
one more term in the series expansion (7.21) and the inequality (7.23) becomes

At<2 (7.24)

T (ax?’

which is shown in Figure 7.2 (dotted black curve).

7.3.4 The implicit and implicit-explicit schemes

Let us now explore the implicit-explicit scheme (y = 1/2 in (7.15)). The von Neumann stability analysis for this
scheme suggests that

At < Ax, (7.25)

which is valid for any Ax (Figure 7.3, solid black curve). It means that the standard CFL for the wave equation
(8.1) is valid in all regimes of the system (7.15).

Now, we analyze the implicit scheme (y = 1 in (7.15)). The von Neumann stability analysis for this scheme
suggests that

(7.26)

Ax V(Ax)2 + 16)

At < Ax(—
4 4

which is shown in Figure 7.3 (solid blue curve). This CFL condition is equivalent to the CFL of the wave equation
(8.1) for Ax <« 1 (Figure 7.3, dashed green curve) and to the CFL of the diffusion equation (7.12) if Ax > 1
(Figure 7.3, dashed brown curve). For comparison, the CFL condition of the explicit scheme is also shown in
Figure 7.3 (solid red curve), as well as, the parabolic limit (Figure 7.3, dashed light blue curve).

7.3.5 Summary to the CFL conditions of the linear damped wave equation

The general CFL condition of the linear damped wave equation can be written as a function of parameter y,
which defines the ratio between explicit and implicit schemes,

\/16 +4(y— %)Z(Ax)z

S Sl N . (7.27)
1 1
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Figure 7.2: The CFL condition At as a function of Ax for the explicit scheme (y = 0) (red curve), its wave equation
limit (Ax <« 1) (blue curve), its parabolic limit (black curve), the standard wave equation (dashed green curve),
the diffusive equation (dashed brown curve) and the parabolic limit (dashed light blue curve).
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Figure 7.3: The CFL condition At as a function of Ax for the explicit scheme (y = 0) (red curve), the implicit-
explicit scheme (y = 0.5) (black curve), the implicit scheme (y = 1) (blue curve), the standard wave equation
(dashed green curve), the diffusive equation (dashed brown curve) and the parabolic limit (dashed light blue
curve).
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Table 7.1: List of Principal Notation

Symbol Meaning Unit
o, of solid and fluid stresses -
g =(1-¢p)o’+ (paf, total stress -
pr fluid pressure -
vS, vl solid and fluid velocities -
q° = ¢/ — v*), Darcy’s flux _
@ M,p 0t | dimensionless material parameters specified in Appendix 7.10 | -

The CFL condition (7.27) captures the CFL conditions for the three considered above schemes — explicit,
implicit-explicit and implicit. To support the results presented above, we show the absolute values of the
eigenvalues A, » of the amplification matrix F (8.6) for the three described above numerical schemes (Figure 7.4).
We plot the eigenvalues 11 » for two different values of Ax. Ax = 10? corresponds to the diffusive regime of DWE
while Ax = 107! corresponds to the wave propagation regime of DWE. In the explicit scheme, the eigenvalue
A significantly reduces the stable At in the diffusive regime (Figure 7.4a, dashed red curve). In the implicit-
explicit scheme, the eigenvalues 1, > provide the same stability condition in the wave propagation and diffusive
regimes (Figure 7.4b). In the implicit scheme, the eigenvalues 1, » provide the CFL condition (7.25) in the wave
propagation regime and the CFL condition (7.12) in the diffusive regime (Figure 7.4b, note a logarithmic scale
of the x-axis). We also provide the von Neumann’s stability analysis of the dimensional linear damped wave
equation which can be found in Appendix 7.9. The corresponding Maple script for the derivation of the CFL
conditions of DWE is provided as a supplementary material.

7.3.6 Back propagation of the damped linear wave equation

It is notable that the derived CFL conditions for the three schemes exhibit mirror symmetry along At = 0
(Figure 7.5). The CFL condition of the implicit-explicit scheme is exactly the same for positive and negative
At (Figure 7.5, black curve). The CFL conditions of the explicit and implicit schemes are reciprocal (Figure 7.5,
red and blue curves). One of the main properties of the wave equation is the ability to propagate forward
and backward in time, which is due the the hyperbolicity of the system. DWE exhibits this property as long
as the propagation regime dominates. If the diffusion regime dominates, the back propagation results in
growing amplitudes at each time step, thus, the back propagation solution will never converge to the initial
state. Remarkably, during the back propagation the numerical schemes remain stable under the negative CFL
conditions in both wave propagation and diffusion regimes.

7.4 Discrete schemes of dimensionless Biot’s poroelastic equations

The dimensionless Biot’s poroelastic equations in 1D can be written as

% o
ot |—z..| 0x 7.28
ong |7 ag | (7.28)
ot 0x
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Figure 7.4: The eigenvalues A, » of the amplification matrix F for the three discrete schemes as a function of r
(7.6). (a) - explicit scheme (y = 0), (b) - implicit-explicit scheme (y = 0.5) and (c) implicit scheme (y = 1). The

x—axis in panels (a) and (b) is linear while the x—axis in panel (c) is logarithmic.
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Figure 7.5: The CFL conditions of DWE for positive (a) and negative (b) At as a function of Ax for the three
schemes — the explicit scheme (y = 0) (red curve), the implicit-explicit scheme (y = 0.5) (black curve), the
implicit scheme (y = 1) (blue curve).
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ot T 5%
where
1 a 1 pr
Cij= I . (7.30)
a M of O¢

A detailed derivation of the dimensionless Biot’s poroelastic equations (7.28)-(7.29) is given in Appendix 7.10.
The list of notations is given in Table 7.1. The matrices of coefficients (7.30) define the material parameters
and are positive definite and symmetric. The system (7.28)-(7.29) is called inviscid if g” is not present in the
R.H.S of (7.29). The inviscid system is hyperbolic and its solution results in propagating waves. If {;; = a- g,
where a is an arbitrary non-zero positive number, the solution of the inviscid system (7.28)-(7.29) results in one
propagating wave (i.e. left and right going wavelets with the same velocities). If {;; # a- g, , then the solution of
the inviscid system (7.28)-(7.29) results in two propagating waves with the two different velocities (i.e. two left
and two right going wavelets).

If gP is present in the R.H.S of (7.29), Biot’s poroelastic equations (7.28)-(7.29) define the hyperbolic system
with a stiff source term, represented by a parabolic operator. The behavior of such a dimensionless system of
equations depends on Ax (i.e. depends on the spatial scale). If Ax « 1, the solution of the system (7.28)-(7.29)
results in two propagating waves with the two different velocities (VlHF and VZHF ) like in the case of an inviscid
system (Figure 7.6a). The fastest P-wave is called the wave of the first kind (or fast P-wave) (Biot, 1956b) and
the second wave is called the P-wave of the second kind (so-called slow P-wave). The superscript “HF" refers
to the high frequency limit, since the velocities V;/* and V,/’¥ correspond to the high frequency limit of the
dimensional Biot’s equations. The velocities V;'F and V' can be calculated as

-1/2
~ A+ /42— 4det((j)det(p )
VHF = (7.31)
2det((;j)det(p;;)
and
-1/2
—A- /A2 - 4det((;j)det(oi))
VHF = : (7.32)
2det({;j)det(p;;)
where the determinants are
det(l;j) =11l -3, (7.33)
and
det(p;;j) = 11022 - 9%2- (7.34)
The parameter A is defined as
A={11011 +{22022 — 2{12012- (7.35)
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Figure 7.6: Snapshots of the solid velocity wavefields of the dimensionless Biot’s poroelastic equations (7.28)-
(7.29). Panel (a) shows two propagating waves V; and V», which corresponds to the wave propagation regime
for V5. Panel (b) shows one propagating wave V; and a diffusive mode, which corresponds to V. The initial
condition is given to the fluid pressure p s of a Gaussian shape. The material parameters are {12 = 1/8, {22 = 1/4,
P12 =1/4, 022 = 1/2.

If Ax > 1, the solution of the system (7.28)-(7.29) results in one propagating P-wave with velocity VlLF (i.e. left
and right going wavelets with the same velocities) and in a slow P-wave, which is degenerated into a diffusion
mode (Figure 7.6b). The superscript “LF" refers to the low frequency limit, since the velocities V' and V;}*
correspond to the low frequency limit of the dimensional Biot’s equations. The velocity VlLF is lower than the
velocity VIHF and can be calculated as

VI = tu —. (7.36)
022/ (011022 — 07,)

The discrete system of equations (7.28)-(7.29) can be written as

(6)£+1/2_(6)5_1/2 —¢ (Us)gﬂ/z_(vs)gfl/z o (q"” )z+1/2 (q” )z 1/2
1 1—1/211 N s px ) (7.37)
R = (pp); - ()11~ V) 12 | @12 = @iy
At 2 Ax 2 Ax
(qD)l.+l _(q ) (U)l+1/2 (0—.)l.+1/2 (p )l.+1/2_(p )l'+1/2
_ l+1/2At i+1/2 =021 i+1 " i +922 fli+1 " fi +(X(qD)51}/2+(1 X)(q )l+1/2)
(US)I'+1 _(US)I' (6’)1.+1/2—((5')l.+1/2 (p )l.+1/2 (p )l+1/2
z+1/2At i1z _ il = i o flin1 — fi +(x (g )fﬁ/sz(l_X)(qD)gH/z)

(7.38)

The discrete system (7.37)-(7.38) corresponds to the fully explicit scheme for the wave equations, but the scheme
for the Darcy’s flux can be different. If y = 0, the scheme for the Darcy’s flux is explicit. If y = 1/2, the scheme
for the Darcy’s flux is implicit-explicit. If y = 1, the scheme for the Darcy’s flux is implicit. In fact, the scheme
(7.37)-(7.38) can be executed always explicitly for any scheme for the Darcy’s flux (explicit or implicit-explicit
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Figure 7.7: A sketch representing the spatial locations of the field variables of Biot’s equations in a staggered
mesh.

or implicit), since the the Darcy’s flux g” in the R.H.S of (7.29) does not have any spatial derivatives. Spatial
locations of different fields in the mesh is shown in Figure 7.7.

We performed the stability analysis outlined in section 7.2 for the system (7.28)-(7.29). For the inviscid system
(7.28)-(7.29), the CFL condition is

Ax
At —, (7.39)
14
where V] is the velocity of the fastest wave. This velocity V; is equivalent to the velocity of the system (7.28)-
(7.29) (with the Darcy’s flux in the R.H.S) V/¥ (Ax « 1). In addition to the CFL condition (7.39), the matrices {;;
and p;; must be positive definite, which follows from the energy laws and, independently, from the performed
stability analysis. For the stability analysis of the original viscid Biot’s poroelastic equations (7.28)-(7.29), let us
consider the two examples.

7.4.1 Examplel

Let us set the dimensionless material parameters ¢;; and g;; as

1 1/2 1 1/2
(ij= y Qij= . (7.40)
1/2 1 1/2 1

This set of parameters corresponds to a special condition when the velocities V; and V;, are the same. The wave
mode V> behaves as a propagating wave if Ax « 1 and as a diffusion mode if Ax > 1. The beauty of this example
is that the CFL conditions for the considered above schemes can be derived fully analytically.

Explicit scheme for the Darcy’s flux

We fist consider the explicit scheme for the Darcy’s flux (y = 0) for the system (7.37)-(7.38). The CFL condition
can be derived by reproducing the workflow presented in section 7.2. The amplification matrix for this scheme
is shown in Appendix 7.11. The CFL condition states that the eigenvalues of the amplification matrix F must
satisfy the inequality (8.7), which can be represented as a solution of

Y=12eB) -1, (7.41)

where A¢ are the ¢ eigenvalues of the amplification matrix F and ¢ = 1..4. The polynomial y is of degree four and
has four roots, y7. The roots are

Ax  V(Ax)2+12
y12=+1/V{E y34= S E (7.42)
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where VlH F = \/3/2 = 0.866. According to (7.6), the resulting CFL condition can be written as
At <Axmin(yi3), (7.43)
where the most restrictive condition y1— must be chosen. The resulting constrains on At are

At <|+Ax/VHE|, (7.44)

At < ’ (7.45)

h 3

( Ax \/(Ax)2+12)
Ax|-=—=¢X—2 —°%

It can be seen from (7.42); and (7.44) that roots y1 = —y2 and y 3 represent the stability of the inviscid set of
equations (7.39) (Figure 7.8, solid black curve). The most restrictive condition is represented by (7.45) with a
plus sign, thus the CFL condition of the explicit scheme (y = 0) for Biot’s equations (7.28)-(7.29) is represented
by

(7.46)

At < Ax(—
3

Ax \/(Ax)2+12)
|

The CFL condition (7.46) is shown in Figure 7.8 (solid red curve). The hyperbolic limit (Ax <« 1) of the CFL
condition (7.46) is

2
At <Ax— =~ Ax/0.866. (7.47)
V3

The parabolic limit (Ax >> 1) of (7.46) is
At<2, (7.48)

which is shown in Figure 7.8 (dashed light blue curve).

Implicit-explicit scheme for the Darcy’s flux

We repeat the workflow presented in section 7.2 for the scheme (7.37)-(7.38) with y = 1/2 (implicit-explicit
scheme for the Darcy’s flux). The amplification matrix for this scheme is shown in Appendix 7.11. Again, the
polynomial y is of degree four and has four roots, Y1 (see (7.41)). The resulting CFL condition of the scheme
with y = 1/2 for Biot’s equations (7.28)-(7.29) can be written as

At < Ax/VHE (7.49)

which is the most restrictive condition (Figure 7.8, solid black curve) and is the same as the CFL condition of
the wave equation (7.10) (taking V = VIH Fy In fact, the absolute values of all roots Y1 provide this stability
condition.

Implicit scheme for the Darcy’s flux

We repeat the workflow presented in section 7.2 for the scheme (7.37)-(7.38) with y = 1 (implicit scheme for the
Darcy’s flux). The amplification matrix for this scheme is shown in Appendix 7.11. The polynomial y is of degree
four and has four roots, Y17z (see (7.41)). The roots are

Ax  V(Ax)?+12
3

3

H+

Y12 = il/VlHFy Y34 = , (7.50)

where VlH F = \/3/2 =~ 0.866. Note, that the only difference between (7.42) and (7.50) is the plus sign in (7.50) in
front of Ax/3. The stability conditions arising from (7.50) with the help of (7.6) are

At <|+Ax/VHE|, (7.51)
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Table 7.2: Summary of CFL conditions for different schemes in Example 1

Scheme for the Darcy’s flux explicit implicit-explicit | implicit
Scheme for the wave propagation part explicit explicit explicit
Ax  V(Ax)2+12 A A
CFL condition Ar<ax|-BF, VOOTHIZ Ats—— | Ars——
3 3 v vitF

At < ) (7.52)

(Ax \/(Ax)2+12)
Ax|—+t—F——

a 3

where VlHF =v/3/2 =~ 0.866. The stability condition (7.51) (arising from YT,z) is exactly the same as for the
explicit and implicit-explicit schemes for the Darcy’s flux. The stability condition (7.52) with a plus sign is shown
in Figure 7.8 (solid dark blue curve). The most restrictive condition arising from (7.51)-(7.52) is

At < Ax/VHE (7.53)

which is the same as the CFL condition of the wave equation (7.10) (taking V = VIHF ).

The modified CFL condition of the DWE

Let us sightly modify the CFL condition of the linear damped wave equation (7.86) considering the explicit
scheme (y = 0),

1 1 1
—— [ (AX)2 ———=+16— + ——— Ax
v[F \/ V2 e (VTF)?
1 )
4—
022

At<Ax

(7.54)

where for the wave velocity V in (7.86), the velocity of the fist kind V{'' of Biot's equations (7.28)-(7.29) is used.
In addition, the parabolic limit is modified by a factor 1/,,. The modified CFL condition of DWE with y =0
(7.54) is shown in Figure 7.8 (dotted black curve), which is exactly equivalent to the CFL condition of Biot’s
equations for the explicit scheme for the Darcy’s flux (7.46) (solid red curve in Figure 7.8).

The modified CFL condition of DWE with y = 1/2 (Figure 7.8, dotted red curve) is equivalent to the CFL of the
wave equation (7.10) (taking V = VIHF ), Thus, it is also equivalent to the CFL condition of Biot’s equations for
the implicit-explicit scheme for the Darcy’s flux (7.53).

The modified CFL condition of DWE with y =1 can be derived from (7.86) applying the the same changes as
above (Figure 7.8, dotted green curve). This CFL condition is equivalent the CFL condition of Biot’s equations
arriving from the root y3. Note, that the modified CFL condition of the DWE with y =1 is always less restrictive
than the stability condition of the wave equation (7.10) (using V = VlH Fy. thus, it does not have an effect in Biot’s
equations if the scheme for the hyperbolic part of Biot’s equations is explicit.

The CFL condition of the diffusion equation (7.12) is shown in Figure 7.8 (dashed brown curve), where the

diffusivity D is calculated according to

D=¢( 1—i (7.55)
2 (o2(11 )’ '

This diffusivity coefficient defines the diffusion equation for the fluid pressure, which behaves exactly the same
as the diffusive mode V, of Biot’s equations (7.28)-(7.29) for Ax > 1. Note, the similarities between Figures 7.2
and 7.8. The summary of CFL conditions for different schemes in Example 1 is shown in Table 7.2.
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Figure 7.8: The restrictions on Ar arising from the roots y7— as a function of Ax for Biot’s and modified DWE
equations considering explicit, implicit-explicit and implicit schemes for the Darcy’s flux. A; =1and A3 =1
correspond to the positive roots.

7.4.2 Example 2

Let us set the dimensionless material parameters ;; and g;; as

1 1/8 1 1/4
(ij= , Qij= (7.56)
1/8 1/4 1/4 1/2

This set of parameters corresponds to the different velocities V7 and V,. In this example, the wave mode V,
behaves as a propagating wave if Ax < 1 and as a diffusion mode if Ax > 1. The CFL condition can be written
analytically as a root of a polynomial of degree four. The roots can be easily found numerically. We briefly repeat
a similar workflow for this set of parameters as we performed in Example 1.

Explicit scheme for the Darcy’s flux

We again fist consider the explicit scheme (y = 0) for the Darcy’s flux (7.28)-(7.29). For this scheme, the CFL
condition can be written as

At < Axmin|ye(2)|, (7.57)
where y; are the four roots (¢ = 1..4) of the polynomial y
y(z) = 4(105z* + 56Ax z° — 682% —4Ax z +4). (7.58)

The roots of (7.58) obey a similar behavior as in Example 1, y1 = —y2 and y 15 represents the stability of the
set of inviscid equations. The most restrictive condition is arriving from y3 4 (Figure 7.9, solid red curve). The
hyperbolic limit (Ax <« 1) of the CFL condition arriving from 7, is (here, we consider y;, since it corresponds
to the positive At)

At < Ax/VHE, (7.59)
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where VlH F % 0.977 (Figure 7.9, solid black curve). The parabolic limit (Ax > 1) of the CFL condition arriving
from y3 4 is (here, we consider y3, since it corresponds to the positive A¢)

2
At< —. (7.60)
022

The parabolic limit is shown in Figure 7.9 (dashed light blue curve). This limit (Ax > 1) of the CFL condition for
Biot’s equations was also determined by Chiavassa et al. (2010); Chiavassa and Lombard (2011) and used by
Blanc et al. (2013).

Implicit-explicit scheme for the Darcy’s flux

We repeat the same procedure for the scheme with y = 1/2. The roots of the polynomial y are
Y12 =1V y3,=+1/VAE (7.61)

where VIHF ~0.977, VZHF =~ 0.328. The roots y 1,2 (7.61) are exactly the same as for the explicit scheme for the
Darcy’s flux (7.59). The roots y3 4 (7.61) are less restrictive as the roots y; 2. The most restrictive condition for
this scheme is represented by y1,2 (7.61) (Figure 7.9, solid black curve)

At < Ax/VHE, (7.62)

which is the same as the CFL condition of the wave equation (7.10) (taking V = VIH Fy,

Implicit scheme for the Darcy’s flux

The polynomial y of the implicit scheme (y = 1) of Biot’s equations (7.28)-(7.29) is

Ye(2) = 4(1052* —56Ax 2° — 682% + 4Ax z +4). (7.63)
The roots y; 2 are

Y12 =1V, (7.64)

where V7F = \/3/2 ~ 0.866. The roots y1,» (7.64) are exactly the same as for the explicit and implicit-explicit
schemes for the Darcy’s flux. The roots y37 (7.64) are calculated numerically and the associated restrictions
on At are shown in Figure 7.9 (solid blue curve). The most restrictive condition for the implicit scheme is
represented by the roots y; » (Figure 7.9, solid black curve)

At < Ax/VHE, (7.65)

which is the same as the CFL condition of the wave equation (7.10) (taking V = VIH Fy,

The modified CFL condition for the DWE

We use the same CFL stability condition (7.54) of DWE as we used in Example 1 for the explicit scheme (y = 0).
The restriction on At from this condition is shown in Figure 7.9 (dotted black curve), which coincides with the
exact CFL condition for Biot’s equations (arriving from (7.58)) in the high and low frequency limits and slightly
diverges in the intermediate regime Ax € [1,10]. Since it diverges to the smaller A¢, the condition of DWE always
corresponds to the stable solution of Biot’s equations (7.28)-(7.29).

The CFL conditions arising from (7.86) considering the implicit-explicit (y = 1/2) and implicit (y = 1) schemes
are shown in Figure 7.9 (dotted red and solid green curves, respectively). The DWE CFL condition for the
implicit-explicit scheme (7.54) is equivalent to the exact CFL conditions of Biot’s equations for schemes with
x=1/2and y =1.

The DWE CFL (7.10) condition for the implicit scheme is very close to the exact one of Biot’s equations with
x = 1 arriving from the root y3. This condition is always less restrictive than the CFL condition of the wave
equation (7.10) (using V = VIHF ); thus, does not take effect in Biot’s equations if the scheme for the hyperbolic
part of Biot’s equations is explicit.
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Table 7.3: Summary of CFL conditions for different schemes in Example 2

Scheme for the Darcy’s flux explicit implicit-explicit | implicit
Scheme for the wave propagation part explicit explicit explicit

Closed-form expression can be always

calculated from the roots of (7.57).

Limits: A
CFL condition Ar< 2 forA A< =X At

I\W orAx <1 VlHF
2
Ats — forAx>1
022

Analytical expression for the CFL condition Approximation by (7.54) yes

103§ " T ”
© =g=Biot Eq., )\3=1, x=0 P
[ == Biot Eq., A, =1, y=0; 1/2; 1 ,
| =g Biot EQ., )\3=1, x=1 /7
102 Lo Biot Eq., )\3=1, x=1/2 ,./ 4
----- DWE, x=0 o
----- DWE, y=1/2 4
[ DWE, x=1 4
~ - Diffusion Eq. 7
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10° ¢
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7
/
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Figure 7.9: The restrictions on At arising from the roots y17 as a function of Ax for Biot’s and DWE equations.
A1 =1and 13 =1 correspond to the positive roots of (7.57) for positive At.

The CFL condition of the diffusion equation (7.12) is shown in Figure 7.9 (dashed brown curve), where the
diffusivity D is calculated according to (7.55). The CFL condition of the diffusion equation (7.12) is equivalent
to the limit Ax > 1 of the CFL of Biot’s equations with y = 1 arriving from the root y 3. Furthermore, the fluid
pressure field predicted by the diffusion equation is equivalent to the fluid pressure filed of Biot’s equations
(Figure 7.10). The summary of CFL conditions for different schemes for Biot’s equations in Example 2 is shown
in Table 7.3.

Back propagation of Biot’s equations

The derived CFL conditions for the three schemes of Biot’s equations exhibit mirror symmetry along At =0,
similarly to the DWE (Figure 7.5). The back propagation of Biot’s equations fully depends on the behavior of
the wave of the second kind. If V, is a propagating wave, the back propagation is possible. If V5 is a diffusion
process, the back propagation results in growing amplitudes of V; at each time step, thus, the back propagating
solution will never converge to the initial state. Similarly to the DWE, the back propagation of Biot’s equations is
always stable and the physical correctness of the back propagation wavefields purely depends on V>.
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Figure 7.10: Snapshots of the solid velocity and fluid pressure wavefields of the dimensionless Biot’s poroelastic
equations (7.28)-(7.29) and for the diffusion equation. Panel (a) shows one propagating wave V; and a diffusive
mode, which corresponds to V. Panel (b) shows the fluid pressure field of Biot’s equations (solid blue) and of
the diffusion equation (dashed red). The initial condition is given to the fluid pressure p¢ of a Gaussian shape.
The material parameters are {12 = 1/8, {22 = 1/4, p12 = 1/4, p22 = 1/2.

7.5 Discrete schemes of dimensional Biot’s poroelastic equations

The first order velocity-stress system of dimensional Biot’s equations (Biot, 1962a) is given in Appendix 7.10
((7.88)-(7.90)). The performed stability analysis for the dimensionless Biot’s equations can be applied to the
dimensional equations as well. For that, we introduce a set of dimensional material parameters ¢ and p:

. K, +4/3G aM . 1|pa pf
Cij= y 0ij=— . (7.66)

C]
aM M Pr  Pr

We also need the determinants of those matrices

det((fij) =il -3, det(0;;) = 011022 — 0%,- (7.67)
and the parameter A,

A=Cnpn + o222 — 2012012 (7.68)
The dimensional velocity V¥ can be calculated as

-1/2

. —A+/ A2 - adet({ij)det(p;))
VHF = V _ il (7.69)
2det(¢;)det(p;;)

In the previous section, we studied the three schemes, namely, explicit (y = 0), implicit-explicit (y = 1/2) and
implicit (y = 1) schemes for the Darcy’s flux. The explicit scheme is not useful since it dramatically reduces
the stable time step in the diffusive regime of the P-slow wave. The accuracy determines the choice between
the implicit-explicit or implicit schemes for the Darcy’s flux of Biot’s equations. The implicit-explicit scheme
is second order accurate in space and time. The implicit scheme provides slightly lower accuracy, around 1.8.
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Table 7.4: Material parameters of a sandstone.

Symbol Value Unit
Kq 40 (GPa)
s 2500 (kg/m?)
Ky 20 (GPa)

G 12 (GPa)

¢ 0.2 ®

K 600-10713 (m?)

T 2 ()

Ky 2.5 (GPa)

oy 1000 (kg/m®)

n 1073 (kg/m-s)

W, 2-10% (Hz)
AtlP 4.7045949598862-107° (s)
AP 1.0266267865612-107° (s)
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Therefore, the y = 1/2 scheme, described in section 4.2.2, is the most reasonable choice and the CFL condition
for the dimensional case is determined as

At < Ax (7.70)
< pHE '
Vl

where VIHF is given by (7.69). The extension to two, three and n-dimensions is straightforward

1
ANt ——mMMM (7.71)
VHF [ 3 1
1 i=1 Ax
If Ax; = Ax, then
Ar< 2% (7.72)
= —AI_IFy ’
\/ﬁV1

The conditions (7.70), (7.71), (7.72) can be generalized to a fourth-order accurate in space, second-order
accurate in time discrete numerical scheme using the coefficients of the fourth-order approximation to the
spatial derivatives (Levander, 1988; Masson et al., 2006).

There is also a criterion on the input material parameters. The stability analysis suggests that the matrices of
material parameters ¢ and 0 (expression (7.66)) must be positive definite. It is notable that the condition on the
matrix { (eq. (7.66)) is less restrictive than the condition from the general principles of thermodynamic on the
matrix in (7.88) (they are equivalent if the shear modulus is zero); thus, the most restrictive condition must be
used. The positive definiteness of ¢ suggests that all eigenvalues are positive.

Our stability analysis has been performed for homogeneous materials, but the results can be applied also for
heterogeneous and anisotropic materials. If strong heterogeneities and anisotropies are present, the smallest
time step should be used for numerical simulations. The smallest time step can be determined by calculating
the time step for the most restrictive parameters presented in the model.

In some extreme scenarios, for example, if poroelastic media degenerates into acoustic media at some spatial
location and the rest of the model domain is poroelastic, the smallest time step might be reduced by some factor
otherwise numerical instabilities might appear at the interfaces. In this extreme case, numerical experiments
are needed. Also, if poroelastic media degenerates into acoustic media the matrix { (expression (7.66)) becomes
singular (all components are the same) while the matrix ¢ must be positive definite. In this case, poroelastic
equations exactly reproduce acoustic wave propagation in a fluid.

7.5.1 Numerical examples

Let us test the derived above CFL conditions. We performed several 1D, 2D and 3D numerical simulations with
different time steps. The source is the Ricker wavelet

2
Fr(tm) = Ao(1 =2 (n(ty — tmo) Aty f) e (1lim=tmo)tsefe) (7.73)
where Ag = 1/Ats; is the amplitude of the wavelet, Af;; is the stable time step, f. = ws/(27) is the frequency

of the source wavelet (w; is the angular frequency), ¢, is the iteration number, ;o is the wavelet delay (in
iterations).
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Figure 7.11: Number of iterations before the numerical instabilities appeared in the 1D numerical solution
of Biot’s equations. Each blue square corresponds to the numerical simulation. The material and numerical
parameters are given in Table 7.4.

1D numerical experiment

First, we test the 1D CFL condition (7.70). We use a 1-D domain of 10m with Ax'4 = 0.02 m resulting in 500
grid cells. We apply the source (7.73) to the total stress 6. The central frequency of the source wavelet is
¢ = 1-10*/7 Hz and the wavelet delay is t,,0 = 5-1074/A¢!P. We perform a set of numerical simulations with
different At using the parameters given in Table 7.4. For At derived by (7.70), the scheme is always stable
(Figure 7.11, brown line). We increase the stable At by a small factor /-2 - 10~ where [ € [1,500]m. The
resulting set of different time steps At corresponds to the x-axis in Figure 7.11. A small increase of the stable At
by 2-107'% causes numerical instabilities of the numerical solution after 168603 time steps. A larger increase of
the stable At causes numerical instabilities at significantly smaller time steps (blue squares in Figure 7.11).

In 2D or 3D numerical simulations of Biot’s equations, the CFL condition is different from that one of the
1-D case. If the source (or the initial condition) is in the form of a plane wave and is aligned with the grid
cells, then the 1D CFL condition is also valid in 2-D and 3-D. This is due to the fact that the plane wave is a
multidimensional source and 1D, 2D and 3D simulations are similar. But once the wave propagation direction
becomes different (for example, due to a reflection), the 1D CFL condition is not longer valid in 2D and 3D and
the CFL condition (7.71) should be used.

3D numerical experiment

We simulate a wave propagating in 3D for the isotropic poro-elastic material whose properties are given in Table
7.4. We use the CFL condition (7.71). A 3D square domain of 10.2m x 10.2m x 10.2m is used. We set Ax = 0.02m,
Ay =0.01lm and Az = 0.005m. The numerical model consists of 510 x 1022 x 2046 grid cells in x—, y— and z—
directions, respectively. The total number of grid cells is = 1-10%. We set a different number of grid cells in
different directions for a more precise testing of the CFL condition (7.71) in 3D. The central frequency of the
source waveletis f, =4- 103 Hz and the wavelet delay is t;;,0 = 3.3(3) - 10%. The stable At is shown in Table 7.4 as
A tftD . We multiplied AtftD by 0.99 and performed 850 time steps. The the solid velocity wave field V, is shown
in Figure 7.12, which obeys a perfect spherical behavior as expected. In another simulation, we multiplied A 3P
by 1.01 and the simulation became unstable before 850 time steps.
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Figure 7.12: The the solid velocity wave field V, after 850 time steps. The material and numerical parameters
are given in Table 7.4.

7.6 Summary

We performed the von Neumann stability analysis of the elastodynamic Biot’s equations (7.28)-(7.29). The
characteristic times of the wave propagation (hyperbolic) and diffusion (parabolic) processes are different, thus,
the system of equations exhibits a “stiff" behavior. The “stiffness" affects the CFL condition, which is derived
for a discrete system of equations. In order to avoid very small time steps, different strategies are needed to
discretize the hyperbolic and parabolic operators. We use the discrete scheme (7.37)-(7.38), which is explicit for
the wave propagation part and varies for the diffusion process described by the Darcy’s flux. The Darcy’s flux is
discretized using explicit, implicit-explicit and implicit schemes.

We provided the exact CFL conditions of Biot’s equations, which are obtained by solving a polynomial of
degree four. This polynomial exists for any set of input material and numerical parameters and can be derived
analytically using the Maple script provided as supplementary material. Since, the scheme for the wave operator
is explicit, the absolute values of the first two roots are determined by the fastest propagating wave. Thus, the
CFL condition of Biot’s equations is at least that one of the wave equation (7.10). The other two roots correspond
to the wave of the second kind, which may behave as a propagating wave or as a diffusion process. The CFL
condition arriving from the first two roots can be significantly affected by the CFL condition arriving from the
third and fourth roots, depending of the scheme for the Darcy’s flux.

If the scheme for the Darcy’s flux is explicit, the CFL condition is highly affected. The time step might be very
small in the diffusion regime of the slow P-wave V» and converges to the spectral radius of the parabolic operator
(7.60). But the time step is not affected in the wave propagation regime of the slow P-wave V, (Figure 7.9, solid
red curve).

If the scheme for the Darcy’s flux is implicit-explicit or implicit, the CFL condition is not affected by the parabolic
operator. In this case, the CFL condition of the wave equation (7.70) is valid (Figure 7.9, solid black curve). Note,
that the CFL condition does not depend on viscosity and permeability of the medium. It is important to note
that the fast wave velocity V; of Biot’s equations (7.28)-(7.29) is different in wave propagation and diffusion
regimes of the slow wave V,. The wave velocity in the CFL condition (7.10) must be chosen to that one of the
high frequency limit VIH F (7.31) despite of the propagation or diffusive regime for V5 for a given simulation. For
example, if one solves numerically Biot’s equations in the diffusive regime for V, (usually corresponds to low
frequencies) and uses the CFL condition (7.10) with the current fastest velocity (7.36), the solution will explode.
Thus, the CFL condition (7.70) with the velocity VIHF (7.31) always applies.
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7.7 Discussion

In geophysics, explicit schemes for the wave simulations are very popular but also implicit schemes exist. If an
implicit scheme for the wave operator of Biot’s equations is used, the restriction on the time step arriving from
the wave equations vanishes. In this case, the time step will be determined by the scheme for the Darcy’s flux. If
the scheme for the Darcy’s flux is also implicit, the scheme will be unconditionally stable and the time step will
be determined by the accuracy and computational efficiency. If the scheme for the diffusion part is explicit, the
time step will converge to the spectral radius of the parabolic operator (7.60) in the diffusive regime of the slow
P-wave V5.

Another common approach to overcome the stiffness of PDEs is based on the operator splitting approach.
The idea is that the system of PDEs is separated into the two parts. The first system contains only hyperbolic
operators ("non stiff") and is solved using an explicit time integration. The second system contains parabolic
operators (“stiff") and is solved independently from the first system at each time step. Operator splitting can be
a first order Godunov-type, a second order, e.g., Strang splitting (Strang, 1968), or even higher order approaches
exist. In the context of Biot’s equations, some authors solve the stiff part analytically (Carcione and Quiroga-
Goode, 1995; Chiavassa et al., 2010; Chiavassa and Lombard, 2011). A detailed investigation of the operator
splitting approach can be find in (Marchuk, 1975; LeVeque et al., 2002). In order to converge to the original
solution, the usual requirement to the operator splitting approach is that the solution of the system of PDEs is
smooth (additionally, other requirements may be needed), which might not be always fulfilled in heterogeneous
media. A proper usage of the operator splitting for a system of PDEs should be carefully investigated.

7.7.1 Comparison with previous works

Masson et al. (2006) studied the stability conditions of a 0(4,2) (4-th order in space and 2-nd order in time)
numerical scheme for Biot’s equations and used the implicit-explicit time integration for Darcy’s flux. They
derived the “analytical criterion”, which coincides with our result (7.70) for the implicit-explicit scheme (y = 1/2).
On the other hand, as an approximation Masson et al. (2006) pointed out that the the classic Courant condition
At <1/V]F, where VIF is the undrained fast velocity (7.36), can be used. Note, that the velocity V;/’F is usually
10-20% higher than the V" velocity, thus insted, the CFL condition (7.70) should be used. In addition, Masson
et al. (2006) obtained the condition for material parameters (densities)

(1 +‘1))Z < p—f, (7.74)
¢ p

where @ is a positive real dimensionless parameter related to the pore space structure (see Masson et al. (2006)).
In the present notation, the condition (7.74) can be rewritten as

pap—p7>0. (7.75)

The condition (7.75) was also suggested by Carcione and Quiroga-Goode (1995); Wenzlau and Miiller (2009).
The condition (7.75) states that the determinant of the matrix ¢ (eq. (7.66)) is positive, which is equivalent to
the statement that the matrix ¢! is positive definite (assuming that the diagonal elements are positive).

Masson et al. (2006) and (Wenzlau and Miiller, 2009) pointed out that the condition (7.74) is necessary but
insufficient (see Figure 4 in Masson et al. (2006)). In other words, even if the inequality (7.74) (or (7.75)) is
fulfilled, the scheme might not be stable and the stability depends on the viscosity and permeability. The von
Neumann stability presented in this work does not support that. Our analytical derivations using Maple as well
as numerical tests show that once the matrices of material parameters are positive definite (i.e. the condition
(7.74) is fulfilled) and the CFL condition on the time step (7.70) (in 1D) is fulfilled — the y = 1/2 discrete scheme
for the dynamic Biot’s equations is stable. We have not discovered inconsistencies in the von Neumann stability
analysis reported by O’Brien (2010).
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7.8 Conclusions

We performed the von Neumann stability analyses of discrete schemes for the elastodynamic Biot’s equations.
The characteristic times of hyperbolic and parabolic processes are different thus the system of equations
exhibits a “stiff" behavior. Such “stiffness" affects the stable time step. We use the explicit scheme for the wave
propagation and apply different schemes for the Darcy’s flux. If the scheme for the Darcy’s flux is explicit, the
stable time step becomes very small in the diffusion regime of the slow P-wave. If the scheme for the Darcy’s
flux is implicit-explicit or implicit, the stable time step is not affected. In this case, the Courant-Friedrichs-Lewy
(CFL) condition of the discrete Biot’s equations coincides with the CFL condition of the wave equation taking
the highest fast P-wave velocity in the high frequency regime. All the analytical expressions derived for the
discrete schemes were verified numerically in 1D, 2D and 3D.
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7.9 Appendix A: The dimensional damped linear wave equation

Explicit scheme for the Darcy’s flux
The Von Neumann stability analysis for the discrete system (8.3) suggests that

~Axp++/(Axp)%+16KpT?
4Kt

At< Ax

) (7.76)
which is the exact CFL condition of the discrete scheme (8.3). Let us analyze the result (7.76).

Wave propagation regime of the explicit scheme

Lets us write a series expansion of the right hand side (R.H.S) of (7.76) assuming Ax — +0 (equivalent to
assuming 7 — +00),

_ 2 z <
Ax Axp++/(Axp)2+16KpT :ﬁAx—li(Ax)er 1 /Kpp

e Ny = KT (Ax)* +0((Ax)°). (7.77)

It can be seen form (7.77) that the limit of the right hand side (R.H.S) of (7.76) as T — +oo is

-A Axp)?+16KpT1?2 A
lim Ax xp+/(Axp)® +16Kpt :Axﬁz_x,
T—+00 4KT VK \%4

(7.78)

where V = /K/p. This CFL condition corresponds to the hyperbolic limit and is valid when 7 > 1. One can
also take into account one more term in the series expansion (7.77) and the inequality (7.76) becomes

Ar<SX L L N2 (7.79)
S ———— X)". .
V 4V2g

Diffusive regime of the explicit scheme

Now we consider an opposite scenario. We write a series expansion of the R.H.S of (7.76) assuming Ax — +o0
(equivalent to assuming 7 — +0),

x—Axp+\/(Axp)2+16KpTZ > 8K 4

A T— T
4Kt p (Ax)?

+0( ). (7.80)

1
(Ax)*

It is interesting that the first term in the R.H.S of (7.80) does not depend on Ax. Thus, when 7 — +0, the stability
conditions reads

At <21, (7.81)

which corresponds to the parabolic limit and is valid when 7 <« 1. One can also take into account one more
term in the series expansion (7.80) and the inequality (7.81) becomes

8K

At<27-— T°.
p (Ax)?

(7.82)
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Implicit and implicit-explicit schemes for the Darcy’s flux

The discrete system of (8.3) is written as

4172 _ 1-1/2 I I
1P -p __dinp= i
Kl+1 _ Alt 1+1/2 éx 1+1/2 (7.83)
Div12 " Div12 _ 1 Pinn —Pi 1 (xa™ +(-pql. )
At “To Ax 7 W1 X is1y2)

If y = 1/2, then (7.83) corresponds to the implicit-explicit scheme. The Von Neumann stability analysis for t