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Abstract 
 
Wakefulness is accompanied by experience-dependent synaptic plasticity and 

an increase in activity-regulated gene transcription. Wake-induced genes are 

certainly markers of neuronal activity and may also directly regulate the 

duration of and need for sleep. We stimulated murine cortical cultures with the 

neuromodulatory signals that are known to control wakefulness in the brain 

and found that norepinephrine alone or a mixture of these neuromodulators 

induced activity-regulated gene transcription. Pharmacological inhibition of the 

various signaling pathways involved in the regulation of gene expression 

indicated that the extracellular signal–regulated kinase (ERK) pathway is the 

principal one mediating the effects of waking neuromodulators on gene 

expression. In mice, ERK phosphorylation in the cortex increased and 

decreased with wakefulness and sleep. Whole-body or cortical neuron–

specific deletion of Erk1 or Erk2 significantly increased the duration of 

wakefulness in mice, and pharmacological inhibition of ERK phosphorylation 

decreased sleep duration and increased the duration of wakefulness bouts. 

Thus, this signaling pathway, which is highly conserved from Drosophila to 

mammals, is a key pathway that links waking experience–induced neuronal 

gene expression to sleep duration and quality.  

  



Introduction 
 
Sleep is a behavior defined as a period of immobility and reduced ability to 

respond to external stimuli, which is homeostatically controlled (such that 

longer wakefulness periods lead to compensatory increase in sleep duration 

and intensity). Sleep is conserved across evolution (1). C. elegans, 

Drosophila, fish, reptiles, birds and mammals satisfy all the behavioral criteria 

of sleep (immobility, reversibility, decreased response to stimuli, 

homeostatically regulated) (2-7).The presence of sleep across evolution 

suggests that it must be regulated at a more basic cellular and molecular level 

than at the global complex brain structure. Evidence indicates that 

wakefulness is associated with increased transcription of activity-regulated 

(plasticity) genes. As demonstrated by several microarray experiments in 

mice and rats, the expression of one group of genes is consistently increased 

by extended wakefulness (typically synaptic activity-regulated genes such as 

Arc, Bdnf, Egr, or Homer1a), whereas another group (including Cirbp and 

Dbp) is decreased in abundance (8-11). Because the large majority of genes 

induced by prolonged wakefulness are activity-regulated genes [mostly 

immediate-early (IEG) and stress-related genes], it is not clear whether their 

changes in expression merely represents neuronal activity or might directly 

have an effect on sleep. Nevertheless, a prominent hypothesis about sleep 

functions posits that sleep is “the price to pay” for waking experience-

dependent plasticity (12).  

 

Non-rapid eye movement (NREM) sleep is characterized by wide-spread 

synchronous firing of cortical neurons and such synchronous activities occur 



also in isolated cortical islands, cortical slices, under anesthesia, and even in 

dissociated cortical cultures (13-20). Moreover, we and others have shown 

that primary cortical cultures can be stimulated by waking neuromodulators 

(including monoaminergic, glutamatergic, cholinergic, and hypocretinergic 

neurotransmitters or agonists) to induce tonic firing that invariably returns to 

the default synchronous burst firing 24 hours later (18-21). Stimulated cultures 

show remarkably similar transcriptional changes as do cortical tissues of mice 

subjected to 6 hours of sleep deprivation (18). Here, we used this simple in 

vitro model to dissect the molecular and cellular pathways leading to activity-

regulated gene expression. We found that major activity-regulated genes 

were primarily induced through the ERK pathway. We also found that whole-

body or cortical neuron-specific deletion of Erk1 and Erk2 genes or inhibition 

of ERK phosphorylation in wild-type animals strongly decreased sleep 

duration. Thus, the ERK pathway, one of the most evolutionary conserved 

cellular pathways, critically controls the mammalian sleep duration, as 

previously evidenced in Drosophila.  

 

Results: 

Norepinephrine is the major neuromodulator for activity-regulated gene 

expression 

The cell culture model provides a powerful tool to assess the transcriptional 

correlates of sleep- and wakefulness-like states. To assess the contribution of 

each neurotransmitter in our original waking cocktail separately, we stimulated 

cortical cultures with each (Fig. 1A) and assessed the expression of 3 major 



candidate genes: Homer1a, Dbp, and Arc. AMPA (α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid), NE (norepinephrine), histamine, DA 

(dopamine), and 5HT (serotonin) alone had an inducing effect similar to (but 

less so than) that of the cocktail on Homer1a expression (Fig. 1B). A similar 

pattern of expression was also obtained for Arc (Fig. 1A). The expression of 

Dbp was assessed because it has been consistently found in several studies 

to decrease during wakefulness, as opposed to the above IEGs. The only 

neuromodulator that significantly decreased Dbp expression was NE (Fig. 

1C).  

Noradreneric neurons of the locus coeruleus are the major source of 

wakefulness neurotransmitter NE with diffuse projections throughout the brain 

and affect alertness, gene expression and higher brain functions (22-24). To 

understand how NE affects our candidate gene expression each NE receptor 

type was blocked prior to NE addition to cortical cultures (Fig. 1, D to F). The 

α1-adrenergic antagonist prazosin did not prevent the effect of NE on Dbp 

expression, while either the α2-adrenergic antagonist yohimbine or the β-

adrenergic antagonist propranolol consistently inhibited the effect of NE on 

gene expression (Fig. 1, E and F). α2-adrenergic and β-adrenergic receptors 

have opposite effects on adenylyl cyclase, with α2-adrenergic stimulation 

inhibiting and β-adrenergic stimulation activating adenylyl cyclase-mediated 

cAMP signaling. Therefore, we postulated that the observed effects of NE, as 

well as our cocktail, on gene expression might be mediated through another 

signaling pathway.  

 



ERK signaling critically controls activity-regulated gene expression 

A large number of signaling pathways converge to the final transcription of 

activity-regulated genes, amongst them our candidate genes (Arc, Homer1a 

and Dbp as well as Bdnf). To find the candidate pathway (or pathways) 

responsible for the expression changes observed in these genes, we 

pretreated the cortical cultures for 30-60 min with pharmacological inhibitors 

to systematically block each of the major pathways: ERK1/2 (using U0126), 

protein kinase A (PKA; using H89), mitogen-activated protein kinase p38 

(using SB203580), PI3K (using LY294002), cJun N-terminal kinase (JNK; 

using JNK inhibitor II), Ca2+-calmodulin-dependent kinase 2 (CAMK2, using 

KN-93), Rho kinase (ROCK; using “Rho kinase inhibitor”) and actin 

polymerization (using latrunculin B). Two pathways emerged as major 

candidates: that mediated by PKA and the other by ERK. Blocking the PKA 

pathway with H89 reduced the expression of Bdnf, Homer1a, and Arc (Fig. 2, 

A to D). Blocking the ERK pathway with U01236 decreased the expression of 

Arc and Homer1a, increased that of Dbp, and also decreased that of Bdnf, 

although not significantly (Fig. 2C). Thus, the only pathway inhibitor that 

consistently affected gene expression, and the only one to alter that of Dbp, 

was the ERK pathway inhibitor. NE also activates the ERK pathway (25), 

independently of adenylyl cyclase but most probably by transactivation of 

epidermal growth factor (EGF) receptors. To assess the activation of the ERK 

pathway by our cocktail, the phosphorylation of ERK was assessed in the 

cultured neurons. Cultures were either sham-treated or stimulated with the 

waking cocktail, and proteins were harvested 15 minutes later to quantify the 

phosphorylation of ERK1 and ERK2 (ERK1/2 or simply ERK hereafter). ERK 



phosphorylation was rapidly induced by the cocktail of neurotransmitters as 

opposed to sham (water) or no stimulation (control) (Fig. 2E). The ratio of 

phosphorylated to total ERK (p-ERK/ERK) increased almost 4 fold after 

cocktail stimulation as compared to sham-stimulated dishes, whereas dishes 

that were not stimulated showed a 3 fold decrease in the p-ERK/ERK ratio as 

compared to sham-stimulated dishes (Fig. 2F). These data suggest that 

wakefulness, similar to our cocktail of neurotransmitter, might activate ERK in 

vivo. 

ERK phosphorylation increases and decreases with wakefulness and 

sleep 

As we have previously reported (18), our in vitro model reliably mimics the 

transcriptional signature of in vivo sleep and wakefulness in the mouse cortex. 

To confirm our in vitro results, we assessed the in vivo phosphorylation of 

ERK after consolidated NREM sleep or wakefulness. We sacrificed mice after 

12 minutes of NREM sleep at light onset (between Zeitgeber time “ZT” 0 and 

ZT1, first hour of the light period), and the corresponding controls that were 

maintained awake by gentle handling during the same interval. The amount of 

phosphorylated ERK (p-ERK) was quantified in the cortex. ERK 

phosphorylation was strongly induced by 12 minutes of wakefulness as 

compared to the amount detected in those undergoing NREM sleep (Fig. 2G). 

The p-ERK/ERK ratio during NREM sleep was nearly 3 fold lower than it was 

during wakefulness (Fig. 2H), very similar to our cell culture results (Fig. 2F).  

ERK1/2 loss-of-function mice have decreased bouts of sleep 



ERK phosphorylation may be simply a correlate of wakefulness without any 

direct regulation of sleep and wakefulness by the ERK pathway. To 

understand the role of the ERK pathway in sleep, we first investigated the 

effects of genetic deletion of Erk1 or Erk2. Erk1 deletion does not result in any 

observable phenotype, whereas Erk2 deletion results in embryonic lethality 

(26).  Therefore, conditional Erk2 knockout (KO) mice (MAPKflox/flox) were bred 

into Emx1-Cre mice resulting in deletion of Erk2 in cortical neurons. Emx1 is a 

marker of cortical neurons (27) (expressed in 88% of cortical neurons). These 

mice are viable despite important changes in brain structure (reduced cortical 

thickness) and behavioral deficits (28). Total wakefulness duration during the 

24-hour baseline recordings was significantly increased in both Erk1 KO and 

Erk2 KO mice as compared to their wild-type littermates, whereas the amount 

of NREM sleep was significantly decreased in Erk2 KO mice (Fig. 3). Also, 

during the dark period after 6 hours of sleep deprivation, wakefulness was 

increased in both genotypes and NREM sleep was decreased (Fig. 3). These 

data suggest that the ERK pathway directly regulates NREM sleep duration. 

Inhibition of ERK phosphorylation decreases the amount of sleep in 

mice 

Because of the morphological and behavioral changes (in Erk2 KO mice) as 

well as the fact that germline inactivation might lead to compensation 

(between ERK1 and ERK2, as well as between ERK and other signaling 

pathways), we next continuously perfused a selective inhibitor of ERK 

phosphorylation (U0126) in the lateral ventricle of C57BL/6J mice and 

quantified vigilance states and the spontaneous locomotor activity. The 



inhibition of ERK phosphorylation significantly decreased NREM sleep and 

wakefulness was increased by nearly 100 min (Fig. 4). The large increase in 

wakefulness was mainly distributed during the dark periods (Fig. 4). Indeed, 

wakefulness during the dark period was significantly increased in treated mice 

by almost 80 min (p<0.01), and NREM sleep was decreased by the same 

amount (p<0.01). REM sleep also showed a tendency to decrease in treated 

mice and overall nearly half of the total sleep during the dark period was lost. 

After a period of 6 hours sleep deprivation, treated mice again showed 

significantly less NREM sleep (p<0.001). The decrease in NREM sleep was 

even more marked during the dark period after sleep deprivation. More 

specifically, NREM sleep was decreased (p<0.001) by one hour during the 

dark period following sleep deprivation (Fig. 4). ERK phosphorylation changes 

rapidly with vigilance states and spontaneous phosphorylation and its 

inhibition can only be assessed in relation with the previous duration of 

sustained wakefulness or sleep. As an index of the inhibition of ERK 

phosphorylation, 4 mice under U0126 and 4 mice under DMSO perfusion 

were sacrificed after 6 hours of sleep deprivation and the amount of 

phosphorylated ERK was quantified by western blot (fig. S1). U0126 reduced 

total ERK phosphorylation by 29.30% (p=0.06) and ERK2 phosphorylation by 

37.85% (p<0.05), indicating that even after 6h of imposed wakefulness, 

U0126 is able to reduce ERK phosphorylation (fig. S1).  

 

To assess whether in addition to sleep-wake distribution, the quality of sleep 

was also modified we quantified the frequency and the contribution of different 

uninterrupted bouts of vigilance states in Erk1, Erk2 KO, and in U0126-treated 



mice. Not only was the amount of sleep observed in the 24 hour time frame 

decreased in Erk2 KO and U0126-treated mice, but wakefulness was also 

less fragmented (Fig. 5). Sustained bouts of wakefulness were significantly 

increased in duration in Erk2 KO and U0126-treated mice (Fig. 5, A and B), 

while short (<16 seconds) wakefulness bouts were significantly less frequent 

in U0126-treated mice during baseline and also during recovery (Fig. 5, C and 

D). These differences again occurred mostly during the dark periods (active 

period). As a consequence of long sustained wakefulness bouts, the number 

of long bouts (>900 sec) were significantly decreased in Erk2 KO and U0126-

treated mice (Fig. 5, E and F). Together, these results indicate that the ERK 

pathway decreases the fragmentation of sleep and consolidates wakefulness.  

 

Inhibition of ERK phosphorylation increases spontaneous locomotor 

activity 

Wakefulness and locomotor activity are often confounded. To assess whether 

the inhibition of ERK phosphorylation increases wakefulness or activity or 

both, spontaneous locomotor activity of mice under U0126 perfusion was 

recorded by infrared sensors. U0126-treated mice were not only awake but 

also more active (Fig. 6A). Although the increase in activity is more evident 

during the dark (active) phase, even the short wakefulness bouts during the 

light period showed a significant increase in locomotor activity (Fig. 6, B and 

C). To understand whether this increase in activity is due to more locomotion 

or just to the increased time spent in wakefulness, we normalized the activity 

with the time spent in wakefulness, recorded by electroencephalogram (EEG). 



Treated mice were not only more awake, but when awake they displayed 

more than 2 fold increase in locomotor activity (Fig. 6D).  

 

ERK signaling controls vigilance states distribution but not sleep 

homeostasis 

Changes in the quantity and quality of vigilance states affect the homeostatic 

regulation of sleep. Accordingly, longer wakefulness bouts and consolidated 

NREM sleep can be interpreted as an increase in sleep need and intensity. To 

evaluate the homeostatic regulation of sleep, we assessed the quantity and 

the time course of NREM sleep EEG slow wave activity [or delta  

(1-4 Hz) power density from spectral analysis]. Delta power was increased in 

U0126-treated mice during both baseline and recovery (p<0.03 and p<0.0004, 

respectively). We also performed a simulation of the time course of delta 

activity (see Material and Methods) to explain the observed changes. The 

analysis revealed that the observed differences in delta power could be 

explained by changes in time spent in different vigilance states (fig. S2).  

 

 

Discussion 

Our cell culture model provides a powerful tool to assess molecular and 

cellular correlates of sleep-wake regulation. One of our major discoveries (18) 

is that transcriptional changes induced by sleep deprivation can be reliably 

reproduced in vitro by chemical stimulation. We therefore followed the 

transcription of key candidate genes to investigate the molecular pathways 



activated by wakefulness and chemical stimulation. Surprisingly, NE alone 

could reproduce the effect of the whole cocktail on the expression of our 

candidate genes, confirming the essential role of NE in wakefulness and 

associated neuronal plasticity (29). To understand through which pathway NE 

stimulates gene expression its receptors were pharmacologically blocked by 

antagonists. Blocking either α-2 or β-adrenoreceptors inhibited the effects of 

NE on gene expression. Our results are in agreement with several studies 

reporting the major role of NE in state-dependent gene expression (23, 30, 

31). Rats depleted of NE (through locus coeruleus lesions) in the cortex show 

a reduction of known transcripts that increase during wakefulness, most of 

which are reported to be implicated in synaptic plasticity and response to 

cellular stress (23). Cirelli et al. (32) showed also that NE depletion reduced 

the homeostatic response to sleep deprivation. Taken together these data 

confirm the importance of synaptic plasticity-related genes induced by NE 

during wakefulness in sleep-wake regulation.  

Because α2- and β-adrenoreceptors have opposite effects on adenylyl 

cyclase, wherein α2 stimulation inhibits and β stimulation activates cAMP 

signaling, our findings indicate that another intracellular signaling pathway 

might be involved. Neurotransmitter-mediated stimulation of cortical cultures 

pre-treated with relatively specific inhibitors of various signaling pathways 

revealed a key role for ERK phosphorylation by MEK (mitogen-activated 

protein kinase kinase). We also found similar changes in ERK 

phosphorylation in vivo as a function of sleep and wakefulness. Our results 

strongly suggest that transcriptional changes induced by NE and sleep 

deprivation occur through the ERK pathway, as already suggested (25). Our 



work is limited to NREM sleep and no significant changes in REM sleep was 

observed. Interestingly REM sleep also activates the ERK pathway while the 

noradrenergic system is silenced during this state. REM sleep-induced 

activation of the ERK pathway depends mainly on cholinergic mechanisms, 

and is therefore different from the effects of wakefulness (33). Obviously, the 

ERK pathway is not the only one activated by wakefulness or chemical 

stimulation. Accordingly, for instance blocking the PKA pathway also effects 

the expression of several plasticity-related genes (such as Bdnf and 

Homer1a). It has also been shown that both ERK and PKA are required to 

induce changes in synaptic plasticity (34). Nevertheless, the ERK pathway 

was further investigated here in vivo because, as opposed to other pathways, 

the inhibition of its phosphorylation by U0126 affected the transcription of 

Dbp.  

Our finding that the ERK pathway is activated both in vivo and in vitro by 

wakefulness and chemical stimulation confirms also the observations in 

Drosophila (35). Foltneyi et al. (35) found that ERK phosphorylation through 

EGFRs dramatically increased the amount of sleep in Drosophila. 

Accordingly, we hypothesize that ERK phosphorylation by NE stimulation 

might result from trans-activation of EGFR. Another study also implicated 

ERK phosphorylation both in the regulation of sleep and plasticity in 

Drosophila (36). We showed here that ERK loss-of-function (mainly loss of 

ERK2 via gene deletion) or inhibition of ERK phosphorylation in vivo reduced 

sleep duration and consolidated both sleep and wakefulness. More 

specifically, when Erk2 was deleted or when ERK phosphorylation was 

inhibited, longer uninterrupted wakefulness bouts were observed that might 



result in consolidated subsequent sleep. Changes in the homeostatic marker 

of sleep (EEG delta activity) are consistent with the distribution of sleep and 

wakefulness after inhibition of ERK phosphorylation. Given that 

phosphorylation is a fast process, the long lasting changes in vigilance states 

observed here should be due to the downstream changes in gene 

transcription. Indeed, ERK phosphorylation occurs quickly and reaches a 

maximum within 15 min (37). Therefore, sustained wakefulness is required to 

maintain ERK phosphorylation. This explains our finding that the effect of ERK 

phosphorylation inhibition was most evident during the dark periods when 

mice stay awake for long bouts. The phosphorylation occurs through a kinase 

cascade involving RAS and RAF activation, which, in turn, phosphorylate 

MEK (target of U0126) that phosphorylates ERK. Double-phosphorylated ERK 

activates MAPK-interacting kinases MNK1 and MNK2, ELK1, and ribosomal 

S6 kinase (RSK) leading to the phosphorylation of c-MYC and CREB and the 

activation of target gene transcription. The role of phosphorylated CREB in 

sustained wakefulness, subsequent sleep, and memory are well documented 

(38, 39). Note that phosphorylated ERK also activates target protein 

translation by phosphorylating MNK, thus causing activation of elF4E. This 

downstream effector of ERK pathway has also been implicated in sleep and 

plasticity (40). 

 

The fact that ERK inhibition, as opposed to other signaling pathways 

(including PKA), affects Dbp expression is intriguing. Detailed analysis of 

signaling pathways involved in synchronizing peripheral circadian rhythms 

found no evidence that the ERK pathway plays any role while SRF-dependent 



actin dynamics (tested in our screening by inhibiting Rho kinase and actin 

polymerization without any effect) was the key pathway (41). The MAPK p38 

(also inhibited in our experiments without any effect) was found to be a 

potential kinase of the circadian rhythm-associated protein Period (PER) that 

also plays a major role in stress-response signaling (42). ERK 

phosphorylation is activated in the suprachiasmatic nucleus following a light 

pulse, and inhibition of this process by U0126 strongly reduces ERK 

phosphorylation and attenuates light entrainment of circadian rhythms without 

affecting clock-timing properties (43). These observations suggest that 

changes we report here for sleep duration are unlikely the result of the role of 

the ERK pathway in circadian rhythms. DBP is part of the positive feedback 

loop of the circadian molecular clock as opposed to PER and CRY, which are 

part of the negative feedback loop. Although the exact mechanism remains to 

be investigated, our results suggest that either activated ERK leads to the 

inhibition of Dbp transcription or that this inhibition occurs following activation 

of Per2.  

Inhibiting ERK phosphorylation not only increased wakefulness but also the 

locomotor activity mainly during the active (dark) phase, independent of the 

time spent awake. Given that ERK phosphorylation can be induced by cellular 

stress, one could argue that the increase in ERK phosphorylation during 

wakefulness could be a correlate of stress response. However, several 

studies suggest that this hypothesis is unlikely. Mongrain et al. (44) showed 

that adrenalectomy that abolished increased corticosterone concentrations in 

3 different inbred mouse strains dramatically reduced the expression of many 

stress-related genes after sleep deprivation but not that of major activity-



regulated genes such as Homer1a. They also found that sleep deprivation in 

adrenalectomized mice still activated the ERK pathway, suggesting that under 

these conditions, extended wakefulness per se more than the associated 

stress is responsible for changes in activity-regulated genes. In flies, oxidative 

stress or mechanical disturbances as well as waking induced by starvation did 

not result in ERK activation, as opposed to sleep deprivation (36).  

Although U0126 used at 10 µM in vivo cannot completely inhibit ERK 

phosphorylation (45), the partial inhibition was still sufficient to increase 

wakefulness and to consolidate NREM sleep and wakefulness. Given the 

changes in candidate gene transcription and in vigilance states, we conclude 

that the accumulation of activity-regulated and sleep-related genes are 

principally mediated by ERK activation. Accordingly, inhibiting ERK 

phosphorylation reduces the accumulations of these transcripts and therefore 

longer consolidated wakefulness bouts are required to translate waking 

experience into sleep.  

We have suggested that one of the sleep functions could be to protect the 

neuronal membrane homeostasis against overstimulation, as suggested by a 

large release of phospholysolipids following sleep deprivation and in vitro 

stimulation (18). Inhibition of the ERK pathway was shown to reduce the 

release of arachidonic acid (46). ERK has also been shown to phosphorylate 

and activate phospholipase A2 (47, 48). These findings suggest that ERK 

activation during extended wakefulness mediates the release of 

lysophospholipids, which if not counterbalanced by sleep will cause damage 

to cell membrane integrity. 



Thus our findings indicate that the ERK pathway, a highly evolutionary 

conserved signal transduction pathway from Drosophila to mammals, plays a 

major role in controlling plasticity and sleep-related gene transcription and 

translation and that this, together with other functions of ERK (metabolic, 

oxidative stress, and proliferation or apoptosis) regulates vigilance states. 

 

Material and Methods  

Animal handling 

C57BL/6J, MAPKflox/flox, and Emx1-Cre mice were purchased from The 

Jackson Laboratory. Erk1 KO mice were provided by Dr Binnaz Yalcin 

(University of Lausanne) and Dr. Gilles Pages (University of Nice Sophia 

Antipolis). All animals were on C57BL/6J genetic background and maintained 

under standard animal housing conditions with free access to food and water 

and a 12 hour light-12 hour dark cycle (lights on at 7 a.m.). All experiments 

were approved by the Vaud Cantonal Veterinary Office (Switzerland).  

Primary Cortical Cultures 

Cultures were prepared as detailed in (18). Briefly, E17-E18 mouse embryos 

were collected to prepare cortical cultures. Timed-pregnant mice were killed 

by cervical dislocation and embryos were removed and decapitated in PBS at 

4°C. Cortices from embryos were dissected and cut into small pieces in a 

dissection solution. After enzymatic digestion for 30 min with papain (10 U/ml; 

Roche 108014), cells were dissociated by 12 to 15 triturations using a glass 

pipette in Neurobasal medium completed with B27 (Invitrogen), 0.5 mM 

Glutamax-I (Invitrogen) and penicillin streptomycin antibiotics (1%) (complete 



NBM). After every 4 or 5 triturations, the cells in suspension were transferred 

to a separate tube. Isolated cells were centrifuged during 4 min at 150g and 

resuspended in 2 ml of complete NBM. One to two million cells were 

harvested on Petri dishes (35 mm diameter) previously coated with poly-L-

lysine (0.1mg/ml). Cultures were maintained in an incubator at 37°C with 5% 

CO2. Half of the medium was replaced every 7 days.  

Stimulation protocol 

A cocktail was prepared freshly with AMPA (1 μM, Sigma-Aldrich), 

noradrenaline (1 μM, Sigma-Aldrich), kainic acid (kainate), ibotenic acid, 

serotonin, histamine dihydrochloride, dopamine hydrochloride, and N-methyl-

D-aspartate (NMDA) (each 1 μM, from Tocris Bioscience), carbachol (10 μM, 

Sigma-Aldrich), and orexin (0.01 μM, Sigma-Aldrich). Distilled H2O was added 

in sister cultures as control in all stimulation protocols. To avoid differences in 

gene expression caused circadian rhythms, stimulations and RNA and protein 

extractions from different conditions were performed at the same circadian 

time. RNA was extracted three hours after stimulation and again 24 hours 

later (recovery).  

Pharmacology 

For the norepinephrine study, we selectively blocked each receptor subtype 

with yohimbine, phentolamine, prazosin (each 10 μM, from Sigma-Aldrich) or 

propranolol (10 μM, from Merck Millipore) 30 min before stimulation with 

norepinephrine (1 μM, from Sigma-Aldrich). For the pathway study, LY294002 

(PI3K inhibitor, Cell Signaling Technology, 50 μM) or SB203580 (p38 inhibitor, 

Merck Millipore, 10 μM) was added 1 hour before simulation with the cocktail, 



and H89 (PKA inhibitor, Sigma-Aldrich, 10 μM), KN-93 (CAMKII inhibitor, 

Sigma-Aldrich, 0.5 μM), JNK inhibitor II (Merck Millipore, 10 μM), U0126 

(ERK1/2 inhibitor, Cell Signaling Technology, 10 μM), Latrunculin B (actin 

polymerization inhibitor, Merck Millipore, 0.3μM), or Rho kinase Inhibitor 

(Merck Millipore, 100nM) was added 30 min before stimulation. 

RNA extraction and analysis 

RNA from cells was extracted with the RNA easy mini kit from Qiagen and 

RNA from cortex was extracted with the RNA easy lipid midi kit (Qiagen). All 

RNA samples were treated with DNase and conserved at -80 °C. RNA 

quantities were assessed with a NanoDrop ND-1000 spectrophotometer and 

the quality of RNA was controlled on Agilent 2100 bioanalyzer chips. Three to 

6 µg of RNA were obtained from cortical cultures and 100 to 150 µg from 

cortices.   

Gene expression analyses were performed as described in Hinard et al. (18). 

Briefly, to quantify relative RNA expression from cortical cultures or from 

mouse cortex, RNA was first reverse transcribed: RNA (500 ng) was mixed 

with random hexamer (1 µg), dNTP (1 µL of 10 mM), RNAsin (1 µL of 40 

U/µL), superscript II (1 µL of 200 U/µL) (each from Invitrogen) completed to 20 

μl volume with buffer. Denaturation was performed at 65 °C for 5 min followed 

by reverse transcription by warming up the samples to 28 °C for 10 min, and 

then to 42°C for 60 min. The resulting cDNAs were diluted 1:10 in water and 

mixed with primers and probes of target genes by a robot (Tecan, 

Switzerland). Target genes were then amplified by real time qPCR in an ABI 

prism HT7900 detection system (in triplicate). A qBase v1.3.5 software was 

used to quantify the relative level of the RNA by the delta Ct method (DDCt). 



Three housekeeping genes (EEF1a1, RPS9 and TBP) were measured to 

normalize relative expression levels by calculating their geometric means. 

Controls were made with a sample without superscript II (Non Amplified 

Control). In the cultures, the gene expression after stimulations was 

normalized using the mean of the control samples for each culture separately. 

Primers and TaqMan probes for candidate genes are reported in table S1. 

Protein extraction, Western blot and quantification 

To quantify the ratio of phosphorylated/total ERK, the mice were sacrificed 

after the experiment by cervical dislocation. Cortices were extracted and 

frozen in liquid nitrogen. Proteins were extracted using RIPA buffer with a 

cocktail of protease inhibitor (Roche). Trituration in RIPA was done to 

homogenize the samples on ice. Samples were left on ice during 15 min, 

centrifuged at 4°C and 2000g for 10 min. Supernatants were collected and 

proteins were quantified using BCA protein assay kit (Thermo Scientific) and 

the absorbance was measured with a Saphire 2 Tecan. 20-40 µg of protein 

were heated at 95 °C for 5 min in the Leammli buffer and loaded on a 12% 

SDS-Page gel, and transferred onto a PVDF membrane. Membranes were 

incubated with either ERK1/2 antibody or phosphorylated ERK1/2 primary 

antibody (each 1:2000, Cell Signaling Technology) for 2 hours followed by a 

secondary polyclonal Goat anti-rabbit (1:2000, Dako) for 2 hours. Membranes 

were revealed with Amersham ECL Prime Western Blotting Detection 

Reagent (GE Healthcare) and Amersham Hyperfilm ECL (GE Healthcare), 

and developed with a SRX-101A (Konica Minolta). 



EEG Recording and Analysis 

EEG and EMG implantations were performed under deep anesthesia. Briefly, 

two EEG electrodes (Frontal 1.7mm right from the midline and at 1.5mm 

anterior to the bregma; Parietal at 1.7mm right of midline and at 1.0mm 

anterior to lambda) and 3 anchor screws were placed on the skull. Two semi-

rigid gold wires were used as EMG electrodes and were inserted into the neck 

muscle along the back of the skull. EEG and EMG wires were connected to a 

micro-connector, cemented to the skull and connected to recorders through a 

swivel. EEG and EMG signals were amplified, filtered, analog-to-digital 

converted (2 kHz), and down-sampled and stored at 200 Hz. Spontaneous 

locomotor activity was measured by infra-red sensors (with ClockLab). 

Movements were quantified as count per minutes once every 5 minutes. For 

drug perfusion, micro-osmotic pumps from Alzet (model 1002) were prepared 

one day before the surgery following the instruction of the manufacturer and 

filled with U0126 (1.52 µg/µl) suspended in 40% DMSO in artificial 

cerebrospinal fluid (ACSF), or 40% DMSO in ACSF as control. The pumps 

were placed in the back of the mice and connected to a cannula (Brain 

infusion kit 1; 3-5mm; Alzet) placed in the right lateral ventricle (1mm lateral to 

midline; 0.3mm anterior to lambda; 2.2mm deep) and perfusion was made at 

a rate of 0.25 μl/hour.  

Scoring of vigilance states was performed visually in 4 second epochs as 

described previously (49). Recordings included two baseline days, followed by 

6 hours sleep deprivation and 18 hours recovery. A discrete Fourrier 

transform analysis was performed on the EEG signal to calculate the EEG 

power densities. For delta power (1-4Hz) calculation, baseline light and dark 



periods were divided respectively into 12 and 6 intervals with an equal 

number of NREM epochs. Light period of the recovery was divided in 8 

intervals. For sleep fragmentation and analysis, the frequency and the amount 

of the 3 different vigilance states were calculated according to Franken et al., 

(49). Simulation of the time-course of the EEG delta power was performed 

based on the distribution of sleep-wake epochs, as described in Franken et 

al., (50). Basically, the process S (EEG delta power) was considered to 

increase during wakefulness or REM sleep following an exponential function: 

St+1 = UA − (UA − St)*e-dt/τi, and to decrease exponentially during NREM 

sleep (St+1 = LA + (St − LA)*e-dt/τd) (time resolution of iteration dt = 4s), with 

UA as an upper (UA = 282%) and UL as an lower (LA = 55%) asymptote with 

time constant of increase τi = 7.9 h and decrease τd = 1.9 h. 

C57BL/6J mice aged 9-10 weeks were sleep deprived for 6 hours at the 

beginning of the light period by gentle handling. Gentle handling consisted in 

cage-tapping, introduction of paper towels in the cage, or approaching a 

plastic pipette next to the mouse as soon as sleeping behavior was observed. 

Sleep-deprived mice and undisturbed controls were euthanized by cervical 

dislocation. The brain and liver were collected and rapidly frozen on dry ice, 

and stored at -80 °C. 

 

Supplementary Material 

Fig. S1. In vivo inhibition of ERK phosphorylation after 6 hours of sleep 

deprivation.  

Fig. S2. Time course of delta power during NREM sleep.  



Table S1. Primers and probes for gene expression analyses 
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Figure Legends 
 



Fig. 1. Candidate gene expression in cultured neurons after stimulation 

with each constituant of the waking cocktail. (A to C) 3 dishes from 3 

independent cultures were stimulated for 3 hours with 

neuromodulator:  NMDA, AMPA, kainic acid (KA), ibotenic acid (Ibot), 

serotonin (5HT), histamine (Hist), dopamine (DA) or norepinephrine (NE) 

(each 1 μM); carbachol (CCh; 10 μM); or orexin A (OrexA, 0.01 μM).  Data are 

mean normalized mRNA expression + SD relative to sham-stimulated cultures 

(Control). (D to F) Gene expression after stimulation with sham (control) or 

NE (1 µM, 3 hours) in cultures pre-treated with NE antagonist (yohimbine, 

prazosin or propranolol, 10 μM for 30 min). Data are mean + SD from 6-9 

independent experiments. *p<0.05, **p<0.01, ***p<0.001 versus control; t-

tests with Holm correction. 

 

Fig. 2. Signaling pathway analysis. (A to D) 3 dishes from 3-4 cultures were 

pretreated with a pharmacological inhibitor then stimulated with cocktail. Data 

are mean + SD from 3 dishes of 3-4 independent cultures. Expression of each 

mRNA was normalized to that of XXX and each calculated relative to that in 

cocktail-treated cultures. (E) Western blot of total ERK (upper) and 

phosphorylated ERK1/2 (lower), 15 min after stimulation with the cocktail, 

water or nothing (control). (F) Quantification of the p-ERK/ERK ratio from (E) 

using ImageJ Data are mean + SD, n=4, 3 independent westerns. Blue 

horizontal lines connect conditions with significant differences. (G) Western 

blot of total ERK (upper) and p-ERK1/2 (lower) in the cortex of mice after 12 

min of consolidated NREM sleep or wakefulness. (H) Quantification of the p-

ERK/ERK ratio from (G) using ImageJ. Data are mean + SD, n=4, 3 



independent westerns. *p<0.05, **p<0.01, ***p<0.001, t-test with Holm 

correction when required (A to D). 

 

Fig. 3. Effects of genetic deletion of Erk1 and Erk2 on vigilance states 

amount. Left: Hourly amounts of the various vigilance states during a 

baseline period (first 24 hours; grey areas indicate the dark periods), a period 

of sleep deprivation (hours 24-30), and a period of recovery (hours 30-48) in 

Erk1 wild-type (WT, blue line, n=6), Erk1 knockout (KO, orange line, n=7), 

Erk2 WT (black line, n=7) and Erk2 KO (green line, n=8) mice that were 

awake (top) or undergoing NREM or REM sleep (middle and bottom, 

respectively. Right: Quantification of the corresponding amount of vigilance 

states during the 24-hour baseline and 12-hour recovery dark periods. Data 

are mean + SD; *p<0.05, two-way ANOVA with Holm correction for multiple 

tests.  

 

Fig. 4. Effects of ERK phosphorylation inhibition on vigilance states 

amount. Left line graphs: Average hourly amounts (mean ± SEM) of the 

various vigilance states during a baseline period (first 24 hours; grey areas 

indicate the dark periods), a period of sleep deprivation (hours 24-30), and a 

recovery period (hours 30-48) in mice that were awake (top) or undergoing 

NREM or REM sleep (middle and bottom, respectively) and intraventricularly 

perfused with either U0126 (red, n=9 mice) or the solvent DMSO (blue, n=7 

mice). Right bar graphs: Quantification of the corresponding amount of 

vigilance states during the 24-hour baseline (total), 12-hour baseline dark, 24-

hour recovery (total), and 12-hour recovery periods. Data are mean + SD; 



*p<0.05, **p<0.01, ***p<0.001; two-way ANOVA with Holm correction for 

multiple tests.  

 

Fig. 5. Effects of Erk1 and Erk2 deletion and ERK phosphorylation 

inhibition on vigilance states quality. (A and B) The duration of sustained 

wake bouts (>900 sec) in Erk1 KO (n=7) and Erk2 KO (n=8) mice and their 

wild-type (WT, n=6 for Erk1, n=7 for Erk2) controls, and in U0126-treated 

(n=9) or control (DMSO, n=7) mice during the 24-hour baseline (A) and 18-

hour recovery (B). (C and D) The frequency of short wake bouts (<16 sec) 

during the 24-hour baseline (C) and 18-hour recovery (D). (E and F) The 

frequency of long wake bouts (>900 sec) during the 24-hour baseline (E) and 

18-hour recovery (F). Data are mean + SD from 6-9 mice per condition; 

*p<0.05, t-test. 

 
Fig. 6. Spontaneous locomotor activity after inhibition of ERK 

phosphorylation. (A) Mean locomotor activity over 2 days of baseline 

treatment with U0126 (red line, n=9 mice) or DMSO (blue line, n=7 mice). 

Dashed area around lines indicates ± 1 SEM. (B and C) Quantification of total 

locomotor activity during the 12-hour light or dark period. (D) The ratio 

between locomotor activity counts per minute of EEG-recorded wakefulness. 

Data are mean + SD from 7 or 9 mice, as indicated in (A); ***p<0.001, t-test.  
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