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ABSTRACT
The fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the
absence of FMRP, a protein regulating RNA metabolism. Recently, an unexpected function of FMRP in
modulating the activity of Adenosine Deaminase Acting on RNA (ADAR) enzymes has been reported both
in Drosophila and Zebrafish. ADARs are RNA-binding proteins that increase transcriptional complexity
through a post-transcriptional mechanism called RNA editing.

To evaluate the ADAR2-FMRP interaction in mammals we analyzed several RNA editing re-coding sites
in the fmr1 knockout (KO) mice. Ex vivo and in vitro analysis revealed that absence of FMRP leads to an
increase in the editing levels of brain specific mRNAs, indicating that FMRP might act as an inhibitor of
editing activity. Proximity Ligation Assay (PLA) in mouse primary cortical neurons and in non-neuronal
cells revealed that ADAR2 and FMRP co-localize in the nucleus. The ADAR2-FMRP co-localization was
further observed by double-immunogold Electron Microscopy (EM) in the hippocampus. Moreover,
ADAR2-FMRP interaction appeared to be RNA independent.

Because changes in the editing pattern are associated with neuropsychiatric and neurodevelopmental
disorders, we propose that the increased editing observed in the fmr1-KO mice might contribute to the
FXS molecular phenotypes.
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Introduction

Fragile X syndrome (FXS) is one of the most common heritable
form of intellectual impairment.1-5 Estimates report that FXS
affects approximately 1 in 2,500–5,000 men and 1 in 4,000 –
6,000 women.6,7 The leading cause of the FXS is the expansion
of the number of a polymorphic CGG triplet in the 5’ UTR of
fmr1 gene, located on the X chromosome (Xq27.3). Through
complex epigenetic modifications it results in hypermethylation
of the chromosomal region and subsequent transcriptional
silencing of fmr1 gene, preventing expression of Fragile-X-
Mental Retardation Protein (FMRP).8-10

FMRP is a RNA binding protein that shuttles between the
nucleus and the cytoplasm, where it forms ribonucleopar-
ticles.11-13 FMRP regulates several characteristics of RNA
metabolism like splicing, stability, subcellular transport and
translation of mRNA encoding for proteins involved in synap-
tic structure and function.14-17 However, the best known func-
tion for FMRP is as translational repressor, since its absence in
fmr1 KO mice leads to an increase of protein expression.18-23

Mouse models for FXS have revealed diverse phenotypes char-
acterized by altered neuronal development and circuits forma-
tion (spine dysmorphogenesis represents the main marker of
FXS) and by impairments in long-term synaptic plasticity
underlying learning and memory.24,25

Recently, a new and unexpected nuclear function of FMRP
has been reported, enhancing its role as post-transcriptional
regulator.26 Bhogal and collaborators reported that in D. mela-
nogaster, dFMRP physically and biochemically interacts with
dADAR (Adenosine Deaminase Acting on RNA) enzymes, a
class of RNA binding proteins that catalyzes the peculiar post
transcriptional mechanism called RNA editing.27,28 RNA edit-
ing is a post-transcriptional hydrolytic deamination of an aden-
osine (A) to an inosine (I) which is read by the ribosomes as a
guanosine (G). RNA editing might induce aminoacid substitu-
tions contributing to a diversification of the information that is
encoded by the genome.29 RNA editing in mammals has been
mainly described for genes expressed in the Central Nervous
System (CNS) and changes in editing patterns are frequently
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found associated with neuropsychiatric and neurodevelopment
disorders.30-33 Three ADAR enzymes, ADAR1, ADAR2 and
ADAR3 are expressed in mammals but only the first 2 are enzy-
matically active.28,34 The enzymes are able to recognize specific
double stranded RNA structures generated by the hybridization
of complementary exon and intron sequences in the pre-
mRNA of specific transcripts, and catalyze the nucleotide
deamination.28,34

The report of Bhogal and collaborators,26 for the first time,
correlated the RNA editing pathway with FMRP (see also35). In
Drosophila, dADAR and dFMRP interact in the nucleus, bind-
ing on several RNAs. dFMRP has been implicated in the modu-
lation of the RNA editing levels of specific mRNAs encoding
for proteins necessary for proper function of Drosophila
Neuro-Muscular Junction (NMJ), including transcripts encod-
ing a calcium channel (Caa1D), a potassium channel (Shab).
Moreover, several ADAR target mRNAs have been shown to be
associated with ADAR and FMRP in a messenger ribonucleo-
protein complex.26

A recent study from Shamay-Ramot and collaborators,36 using
the zebrafish model for FXS, the fmr1 -/- larvae, showed an inter-
action of ADAR2a with FMRP, also in vertebrates. Furthermore,
a mild increase in RNA editing levels of mRNAs encoding neu-
ronal and synaptic proteins like the Calcium Channel, Voltage-
Dependent, L Type, a 1D Subunit (cacna1d), glutamate receptor
ionotropic kainate type subunit 2 (grik2), glutamate receptor ion-
otropic AMPA type subunit 4 (gria4b), glutamate receptor iono-
tropic AMPA type subunit 3b (gria3b), was reported. These data
in zebrafish further support a role of FMRP in inhibiting ADAR
activity.

In this work, we wanted to elucidate the interplay between
FMRP and ADAR enzymes in mammals, focusing mainly on
ADAR2. We observed an increase in the level of RNA editing of
specific neuronal transcripts in the cortex and hippocampus of
fmr1 KOmice. Furthermore, using in vitro and ex vivo approaches
we show that ADAR2 and FMRP physically interact in neuronal
and non-neuronal cells in an RNA-independent manner. Consis-
tent with the nuclear localization of ADARs, we could detect
FMRP in the nuclei. These data reveal a possible novel nuclear
function of mammalian FMRP in modulating ADAR enzymes.
Because its absence leads to an increase of RNA editing, we suggest
that an upregulation of RNA editingmight contribute to the synap-
tic dysfunctions observed in FXS patients.

Results

Fmr1 KO mice show an increase in RNA editing
of neuronal mRNAs

To determine whether FMRP might influence ADAR activity,
the editing efficiency of different ADAR substrates was ana-
lyzed in frontal cortex (FC) and in the hippocampus (HC) of
fmr1 KO mice, using a gene candidate approach. Neuronal
mRNAs involved in synaptic plasticity and/or known to be
affected in FXS has been analyzed. In particular the re-coding
editing sites of AMPA receptors subunits GluA2, GluA3,
GluA4, Kainate receptor subunits GluK1–2, 5-hydroxytrypta-
mine receptor 2C (5-HT2c), GABA(A) receptor subunit a3
(GABRA3), Calcium Channel, Voltage-Dependent, L Type, a

1D Subunit (Cav1.3), Potassium Channel, Voltage Gated
Shaker Related Subfamily A, Member 1 (KV1.1), Cytoplasmic
FMR1-interacting protein 2 (CYFIP2), Calcium-Dependent
Activator Protein For Secretion 1 (CAPS1), Neuro-Oncological
Ventral Antigen 1 (NOVA-1), ADAR2, Bladder Cancer Associ-
ated Protein (BLCAP), Filamin-a (FLN-A) were analyzed. The
AMPA receptor R/G editing sites were analyzed in combina-
tion with the splicing variants called flip and flop.

In FC a mild but statistically significant increase of RNA
editing level in the fmr1 KO mice compared with the wild type
was observed for: the GluA4 R/G site in the flip isoform (WT:
43.6 § 1.99; KO: 52.4 § 1.00, p < 0.01 Fig. 1C), the GluK2 I/V
site (WT: 74.9 § 0.88; KO: 80.3 § 0.99, p < 0.01 Fig. 1E), the
GluK2 Q/R site (WT: 75.3 § 1.83; KO: 80.4 § 0.93, p < 0.05
Fig. 1E), the Cav 1.3 I/M site (WT: 41.4 § 0.54; KO: 45 § 0.8, p
< 0.01 Fig. 1H), the Cav 1.3 Y/C site (WT: 21.5 § 0.4; KO: 24.5
§ 0.5, p < 0.001 Fig. 1H) and CAPS1 E/G (WT: 24.2 § 0.79;
KO: 27.7 § 1.05, p < 0.05 Fig. 1M). In the HC an upregulation
of RNA editing level for the GluA2 R/G site in the flop isoform
(WT: 36.4 § 0.78; KO: 39.0 § 0.82, p < 0.05 Fig. 2A), the
GluK2 I/V site (WT: 67.6 § 0.80; KO: 73.5 § 1.82, p < 0.05
Fig. 2E), the Cav 1.3 I/M site (WT: 35 § 0.87; KO: 42.3 § 0.79,
p < 0.001 Fig. 2H), the Cav 1.3 Y/C site (WT: 18.4 § 0.71; KO:
23.7 § 1.16, p < 0.01 Fig. 2H) and CAPS1 E/G (WT: 23.3 §
0.45; KO: 27.1 § 1.30, p < 0.05 Fig. 2M) was observed in the
fmr1 KO mice compared with control. Notably, while the level
of editing is increased for GluK2 and Cav1.3 editing levels in
both areas, a cortical specific upregulation was observed for
GluA4 R/G and hippocampal upregulation for GluA2 R/G, sug-
gesting a brain specific effect of FMRP. Because absence of
FMRP in both in FC and HC leads to an increase of RNA edit-
ing, it is tempting to hypothesize that FMRP might function as
an inhibitor of ADAR activity at specific editing sites. ADAR2,
Bladder Cancer Associated Protein (BLCAP) and Filamin-A
editing site (FLNA) were also analyzed, but no statistically sig-
nificant variations were observed (Fig. 1O, P, Q and 2O, P, Q).

To further understand the modifications in RNA editing
induced by the absence of FMRP, we focused our attention on
Cav1.3 mRNA that showed statistically significant variations in
2 out of 3 editing sites both in HC and in FC regions. Combina-
tions of the edited nucleotides might generate different protein
isoforms.37 Interestingly, in HC a downregulation of the uned-
ited IQDY isoforms could be detected with a parallel increase
of the double edited MQDC isoforms (Supplemental Figure
S1A); in FC the downregulation of IQDY isoforms was detected
in parallel with the upregulation of the single edited MQDY
and only partially of MQDC (Supplemental Figure S1B). More-
over, we tested also possible modulation in the frequency of 5-
HTR2c edited isoform, although no difference were present in
the single editing sites. Editing at the 5 5-HTR2c editing sites
can generate up to 24 receptor isoforms, ranging from the
completely unedited (INI) to the fully edited form (VGV).
However, no statistically significant alteration were detected
(Supplemental Table 1).

Although FMRP loss induced an upregulation of RNA edit-
ing level, this effect is not present on all editing site analyzed
and it is slightly area specific. Next, we tested if FMRP absence
might modulate the expression level of ADAR1 or ADAR2
mRNAs (Supplemental Figure S2). No statistical significant
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expression variations were determined for either enzymes,
although a trend for increase (up to 20%) could be detected for
both enzymes in fmr1 KO mice, both in FC and in HC. We
then analyzed the expression pattern of several editing stimula-
tory factors such as Split Hand/Foot Malformation 1 (SHFM1),
and the RNA binding protein hnRNP A2/B1 (hnRNPA2/B1),
as well as inhibitory factors such as ribosomal protein S14
(RPS14) and Serine/Arginine-Rich Splicing Factor 9 (SRSF9)

(Supplemental Figure S3) which can modulate ADAR activ-
ity.38,39 Only the inhibitory factor RPS14 mRNA showed a sta-
tistically significant decrease (Supplemental Figures S3A), only
in the HC of the fmr1 KO mice. These data might suggest that
FMRP loss might influence other members involved in the reg-
ulation of RNA editing reaction.

We then tested if a difference in the expression level of
FMRP and ADAR2 in HC and FC brain areas might correlate

Figure 1. RNA-editing levels in Frontal Cortex of wild type (white bars) and fmr1 KO (black bars) 3-weeks-old mice. The transcript and the edited site analyzed is reported
above the graph. Data are presented as means § SEM (n D 8). Statistical analysis was performed using unpaired t test with Welch’s correction (�p < 0,05; ��p <0,01;
���p < 0,001).
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with the specific RNA editing modulation; however no clear
variations in the mRNA expression level were reported. (Sup-
plemental Figure S4).

FMRP inhibits ADAR2 activity

To explore a possible role of FMRP in inhibiting ADAR activity, we
performed an in vitro editing assay (Tariq et al., 2013) in HEK293T
cells stably expressing ADAR2 and transiently expressing FMRP

and an editable target. The target is generated by a vector (RNAG)
expressing RFP and GFP proteins separated by an editable stop
codon (Fig. 3A, see methods for details). Upon editing, the stop
codon is converted to a tryptophan codon, allowing the expression
of GFP. The ratio between GFP and RFP fluorescence indicated
the level of editing (Fig. 3B). HEK293T cells transiently transfected
only with the construct RNAG showed a GFP/RFP ratio of 0.06§
0.019; this is consistent with the low levels of editing previously
observed in this cell line.40 HEK293T cells expressing stably

Figure 2. RNA-editing levels in Hippocampus of wild type (white bars) and fmr1 KO (black bars) 3-weeks-old mice. The transcript and the edited site analyzed is reported
above the graph. Data are presented as means § SEM (n D 8). Statistical analysis was performed using unpaired t test with Welch’s correction (�p < 0,05; ��p <0,01;
���p < 0,001).
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ADAR2 (HEK293T/ADAR2) with showed an increase GFP/RFP
ratio (0.32§ 0.019, p< 0.001). InHEK293T/ADAR2 cells express-
ing exogenous FMRP, a downregulation of the levels of editing was
observed, as shown by a reduction of the GFP/RFP ratio (0.24 §
0.002, p <0.001 vs only RNAG transfected cells, p <0.01 vs
HEK293T/ADAR2 cells). This result supports a role for FMRP as
inhibitor of ADAR2 activity.

FMRP interacts directly with ADAR2

ADARs are mainly nuclear proteins28 while FMRP localization
has been largely described to be cytoplasmic.3,41 To test a possi-
ble physical interaction between FMRP and ADAR, we first
studied the cytoplasmic and nuclear distribution of FMRP. As
reported in Fig. 4, FMRP is present in both cytoplasmic (high
levels) and nuclear (low levels) fractions. The enrichment of
the 2 fractions is shown by the presence of the RNA binding
protein Staufen mainly in the cytoplasmic fraction and Dys-
kerin and Histone H1 in the nuclear fraction.

The ADAR2-FMRP co-localization was at first analyzed ex
vivo with double-immunogold Electron Microscopy (EM)
(Fig. 5 and Supplemental Figure 5) in hippocampal sections.
The co-localization of ADAR2 and FMRP occurs mainly in the
nucleus (red boxes in panels A and C and red arrows in panels
B and D) and only a few FMRP-ADAR2 dots were detected in
the cytoplasm, where the majority of FMRP (smaller dots) is
localized.

Moreover, the endogenous ADAR2-FMRP interaction was
analyzed in primary neurons at DIV 14 using the Proximity
Ligation Assay (PLA)42 (Fig. 6). Several dots that represent the
interaction of FMRP with ADAR2 were observed mainly in the
nuclei (Fig. 6A-B). The PLA for a known FMRP interacting
protein FXR1P,43 showed several dots mainly in the cytoplasm
(Fig. 6C); without primary ADAR2 antibody processed samples
didn’t show any dot (Fig. 6D).

These findings were further confirmed in HEK293T non-
neuronal cells expressing stably ADAR2-HA and upon the
transient exogenous expression of FMRP-Myc. PLA fluorescent
signals, using primary antibody against HA and Myc, were
detected mainly in the nuclei (Supplemental Figure 6A-B) indi-
cating FMRP-ADAR interaction. A few rare dots were also
observed in the cytoplasm possibly due to the overexpression
of both proteins. On the other hand, no signals were detected
in not-transfected HEK293T cells (Supplemental Figure 6C-D)
or in HEK293T/ADAR2 cells overexpressing a-synuclein (Sup-
plemental Figure 6E-F), that does not interact with ADAR2.

To further corroborate the interaction of ADAR2 and
FMRP, we performed co-immunoprecipitation experiments

Figure 3. Editing Assay in HEK293T cells. (A) Scheme of a editing reporter con-
struct (RNAG) constitutively expressing RFP and GFP only after editing of an
amber-stop codon to a tryptophan codon (UAG->UGG). (B) FACS analysis of trans-
fected HEK293T. Increase of the green to red fluorescence ratio indicates increase
in editing level. All cells are transfected with the reported construct RNAG. White
bar: HEK293T cells transfected with RNAG vector alone; Gray bar: HEK293T cells
transfected with RNAG and ADAR2 vectors; Dark gray bar: HEK293T cells trans-
fected with RNAG, ADAR2 and FMRP vectors. Data are presented as means § SEM.
Statistical analysis was performed using one-way ANOVA (���p <0,001;
$$p < 0,01). NLS: nuclear localization signal.

Figure 4. Cytoplasm/nucleus fractionation of FMRP. Cytoplasmic and nuclear fractions were prepared from the P21 mouse cortex. (Left) Western blotting showing the dis-
tribution of FMRP in cytoplasmic (Cyto) and nuclear (Nucl) fractions. hnRNPA2/B1, Dyskerin, histone H1 proteins (markers of nucleus) are present only or mainly in nuclear
fraction, while the cytoplasmic protein Staufen is present in the cytoplasmic fraction. (Right) The histogram shows the quantification of 4 independent experiments. FMRP
is present in both cytoplasmic (high levels) and nuclear (low levels) fractions. Data are presented as means§ SEM. Statistical analysis was performed using Student’s t test
(��p <0,01; ���p < 0,001).
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from cortical tissues of WT and fmr1 KO mice (Fig. 7). FMRP
can be clearly detected in ADAR2 immunoprecipitates (Fig. 7
A) in WT but not in fmr1 KO extracts, confirming the specific-
ity of the interaction. Moreover, the result was not altered by
treatment with RNaseA showing that ADAR2 and FMRP inter-
act in a RNA independent manner (Fig. 7 B).

Discussion

Here we report, for the first time in mammals, that the absence
of FMRP increases ADAR enzymes activity both in FC and
HC, as measured by enhanced editing level of specific sites.
These changes, although of limited magnitude, might be of
interest since the edited mRNAs encode for proteins involved
in the synaptic structure and function.

Overexpression or downregulation of Drosophila FMRP has
been shown to change the editing efficiency of specific dADAR
targets involved in synaptic transmission.26 Moreover, zebrafish
FMRP was shown to regulate RNA editing, synaptic density
and locomotor activity in zebrafish.36 If confirmed also in
mammals, these data will clearly indicate the existence of a new
and evolutionarily conserved FMRP activity that might be dys-
regulated in FXS pathogenesis.

We investigated the ADAR-FMRP interaction in mammals
and we showed that loss of FMRP leads to a mild increase of

ADAR activity both in FC and HC of fmr1 KO mice, resulting
in increased editing level. Although the changes in editing are
moderate, these could result in considerable functional conse-
quences.32,44,45 In particular, the increased editing levels of the
R/G site for GluA2 in flop isoform in HC and for GluA4 in flip
isoform in FC, imply a faster recovery rate from desensitization
compared with the wild type mice.46 Thus, the increased editing
in these sites could enhance synaptic strength.46 Moreover, we
found increased editing levels for the I/V site of GluK2 in both
tissues. This editing site is located in the first transmembrane
domain of the subunit and the editing process seems to be
involved in a finely tuned regulation of ion permeability of the
channel,47 together with the modulation of editing levels for
GluK2 Q/R site, which is increased in both FC of KO mice. Of
note, the zebrafish fmr1 -/- shows changes in editing levels of
glutamate receptor transcripts, leading to altered synaptic
strength and morphology and ultimately defects in locomotor
activity. Taken together, these data indicate that loss of mam-
malian FMRP might alter glutamate receptor excitability via
modification of RNA editing efficacy.

Furthermore, we detected increased editing levels for Cav
1.3 subunit, in the I/M and Y/C editing sites both in FC and
HC. The editing sites are all ADAR2 specific and they are
located in the so called IQ domain of the subunit, a calmodu-
lin-binding site mediating inhibitory Ca2C-feedback (CDI) on

Figure 5. Co-localization of FMRP and ADAR2 in hippocampal sections by electron microscopy. (A-C) Two representative electronic micrographics of a double-immuno-
gold for FMRP (labeled by 10 nm gold particles) and ADAR2 (labeled by 15 nm gold particles) performed on hippocampal ultra-thin sections of adult male mice. The red
boxes highlight the co-localization of FMRP and ADAR2 proteins inside the nucleus (Nu). Magnification: 20000 x (B) 30000 x magnification of black box showed in panel
A. Red arrows show FMRP/ADAR2 co-localization. (D) 30000 x magnification of black box in panel C. Red arrows show FMRP/ADAR2 co-localization. Nu: Nucleus; Cyt:
Citoplasm.
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channels. The increase of editing levels in these 2 sites leads to
downregulation of the IQDY isoform expression, with a parallel
increase of the double edited MQDC isoform in HC and of
both the single edited MQDY and MQDC edited isoforms in
FC. Edited channels exhibit a strong reduction of the CDI,37

leading to a prolonged activation of the channel itself and
increased load of calcium. This feature might be linked to the
imbalance of the excitatory and inhibitory synaptic pathways
described in patients with FXS.3

In addition, E/G editing level of CAPS1 was found to be
increased both in FC and HC; the encoded protein is a cytosolic
and peripheral membrane protein required for Ca2C regulated
exocytosis of dense-core vesicles carrying neurotransmitters
and neuropeptides.48 A recent paper49 for the first time, investi-
gated the functional role of RNA editing at this site, generating
mutant mice expressing solely the edited CAPS1. The mutant
mice were leaner and exhibited increased physical activity due
to augmented neurotransmitters release, most probably dopa-
mine.49 It is intriguing to speculate that FXS patient hyperactiv-
ity behavior might be in part due to increased RNA editing at
CAPS1 site. Moreover a recent paper50 demonstrates a reduced
BDNF release following exocytosis in dendrites of CAPS1-defi-
cient neurons; accordingly, it is possible to speculate that dysre-
gulation in CAPS1 editing could also be linked to the neuronal

Figure 6. Detection of endogenous ADAR2 and FMRP interaction by Proximity Ligation Assay (PLA) in mouse primary cortical neuron cultures. (A-B) PLA dots for ADAR2
and FMRP show manly a nuclear localization. (C) PLA dots for FMRP and FXR1P interaction are in the cytoplasm; (D) Without-primary-ADAR2 antibody processed samples
do not show any dot in PLA experiment. Scale bars 5mm.

Figure 7. ADAR2-FMRP interaction determined by co-immunoprecipitation
experiments. (A) FMRP western blot on frontal cortex total cell lysate prior
and after immunoprecipitation with ADAR2 and FMRP antibodies. Both WT
and fmr1 KO murine FC were analyzed. (B) ADAR-FMRP interaction is RNA
independent. FMRP western blot of frontal cortex total cell lysate from WT
mice prior and after immunoprecipitation with ADAR2 and rabbit IgG anti-
bodies treated or not with RNase A.
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spine dysmorphogenesis found on postmortem brains from
patients lacking FMRP.51

Our data indicate a role of FMRP in the inhibition of the
editing process, a mechanism that participate in the physiologic
modulation of synapses in the CNS. The way in which ADAR
enzymes and FMRP might interact in modulating RNA editing
process is not known in mammals. dFMRP and dADAR inter-
act in the nucleus possibly to regulate RNA editing, and
dADAR acts downstream FMRP to modulate synaptic mor-
phology of Drosophila neuromuscular junction.26 Similarly, in
zebrafish ADAR and FMRP seem to biochemically interact as
shown by co-immunoprecipitation experiments, but it is not
known if this interaction occurs in the nucleus or in the
cytoplasm.36

Using in vitro PLA experiments and double-immunogold
Electron Microscopy in brain slices we showed that mamma-
lian FMRP and ADAR2 interact in the nucleus. Moreover, a
functional interaction has resulted from the in vitro RNA Edit-
ing Assay, confirming an inhibiting role of FMRP on ADAR2
activity. In addition, co-immunoprecipitation experiment and
RNase treatment, showed that ADAR2 and FMRP interact in
an RNA-independent manner.

It is tempting to hypothesize that FMRP might inhibit the
recognition of specific RNA secondary structures by ADAR.
Furthermore, ADAR2 mRNA has been reported as a FMRP
target14,52 indicating that FMRP might modulate also ADAR
activity by regulating its RNA metabolism; however, the global
mRNA expression level of ADARs enzymes in fmr1 KO mice is
not altered.

Because ADAR2-FMRP interaction is RNA-independent,
RNA editing inhibition might occur through protein-protein
interaction.

We speculate that the ADAR2- FMRP complex might be
assembled on specific editing sites repressing the editing reac-
tion or that FMRP might sequester ADAR2 inhibiting its capa-
bility to bind and edit target RNAs, as already proposed for
other ADAR co-factors.39 Further studies are needed to address
these possibilities.

ADAR enzymes have a main role in the maintenance of the
central nervous system homeostasis, given that their absence
results in severe neurologic defects or it could be lethal, as
shown by animal models.53,54 Although the changes in RNA
editing reported in the absence of FMRP in Drosophila, zebra-
fish and, in the present work, in the mouse are moderated, they
occur in evolutionally conserved transcripts that are stringently
regulated. Accordingly, only mild alterations in RNA editing
level have been reported in patients suffering of neurologic dis-
orders such as ALS, epilepsy, schizophrenia and depression.55

In conclusion, our data support the presence of a nuclear
function of FMRP in the regulation of RNA editing and suggest
that a dysregulation of this mechanism might contribute to the
FXS pathogenesis.

Materials and methods

Animal care

Animal care was conducted conforming to the institutional
guidelines that are in compliance with Italian national (DL

N116, GU, suppl 40, 18–2–1992) and international laws and
policies (European Community Council Directive 86/609, Oja
L 358, 1, December 12, 1987; National Institutes of Health
Guide for the Care and Use of Laboratory Animals, US
National Research Council, 1996). The fmr1-FBV KO and FVB
wild type mice were used.

RNA extraction and retro-transcription reaction

Total RNA was extracted from frontal cortex (FC) and hippo-
campus (HC) of P21 mice (n D 8 per group) using the TRIzol�

Reagent (Thermo Fisher Scientific), according to the manufac-
turer instructions. Reverse transcription was performed using
Moloney Murine Leukemia Virus-Reverse Transcriptase
(MMLV-RT) (Thermo Fisher Scientific). Briefly, 2 mg of total
RNA was mixed with 2.2 ml of 0.2 ng/ml random hexamer
(Thermo Fisher Scientific), 10 ml of 5 £ buffer (Thermo Fisher
Scientific), 10 ml of 2 mM dNTPs, 1 ml of 1 mM DTT (Thermo
Fisher Scientific), 0.4 ml of 33 U/ml RNasin (Promega, Madi-
son, WI, USA) and 2 ml MMLV-RT (200 u/ml) in a final vol-
ume of 50 ml. The reaction mixture was incubated at 37�C for
2 h, and then the enzyme was inactivated at 75�C for 10 min.

RNA editing quantification

The levels of editing in re-coding sites of AMPA receptors sub-
units GluA2, GluA3, GluA4, Kainate receptor subunits GluK1–
2, 5-hydroxytryptamine receptor 2C (5-HTR2c), GABA(A)
receptor subunit a3 (GABRA3), Calcium Channel, Voltage-
Dependent, L Type, a 1D Subunit (Cav1.3), Potassium Chan-
nel, Voltage Gated Shaker Related Subfamily A, Member 1
(KV1.1), Cytoplasmic FMR1-interacting protein 2 (CYFIP2),
Calcium-Dependent Activator Protein For Secretion 1
(CAPS1), Neuro-Oncological Ventral Antigen 1 (NOVA-1),
ADAR2 self editing site, Bladder Cancer Associated Protein
(BLCAP), Filamin-a (FLN-A) were analyzed. The quantifica-
tion was performed by sequence analysis as described previ-
ously56 using Discovery Studio (DS) Gene 1.5 (Accelrys Inc.,
San Diego, CA, USA).

In vitro RNA editing assay

For RNA editing assay a vector expressing RFP and GFP pro-
teins separated by an editable stop codon, called RNAG, was
used (gift from Prof. Jantsch). Briefly, the stem-loop containing
the R/G editing site of glutamate receptor subunit B was modi-
fied to contain an amber stop codon at the editing site.39,38 The
substrate stem-loop was cloned between the red fluorescent
protein (RFP) and green fluorescent protein (GFP) ORFs. The
transient transfection of this construct induces the constitutive
expression of RFP. The stop codon in the loop prevents GFP
translation without editing process; otherwise, the increase of
editing levels leads to a conversion of the stop codon to a tryp-
tophan codon inducing the production of GFP. The ratio
between the GFP and RFP fluorescence indicates the editing
levels in the cell population: if the editing activity increases, the
GFP expression increases as well. After 24h from the transfec-
tion of the HEK293T cell lines with the RFP/GFP vector, the
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samples were collected and maintained in PBS EDTA 2 mM
until the FACS analysis was performed.

The samples were read on a MACSQuant flow cytometer
(Miltenyi Biotec) and analyzed with FlowJo (Tree Star Inc.,
Ashland, USA). Editing efficiencies were determined by calcu-
lating the ratio of green to red arithmetic mean fluorescence of
cells with solid RFP expression as described previously.57 At
least 10000 events were collected for each sample. Statistical
analysis has been performed on triplicate experiments.

Nuclear and cytoplasmic fractionation

Cortices from P21 mice were resuspended in fractionation
buffer (75mg in 600ml). Cytoplasmic and nuclear fractions
were prepared using the Paris kit (Ambion).

Western blotting

For Western blot analysis standard methodologies were used.
Protein samples were separated by SDS–PAGE electrophoresis
and blotted on a PVDF membrane (Millipore). Membranes
were incubated using specific antibodies: mouse anti-hnRNP
A2B1 antibody (1:1000 Abcam), Dyskerin (1:1000, kindly pro-
vided by Yves Henry, University Paul Sabatier Toulouse),
Mouse Anti-Histone H1 (1:1000 SIGMA), Rabbit anti-Staufen
(1:1000 Abcam), rabbit anti-FMRP (1:1000, Ferrari et al. 2007).

HRP-conjugated anti-rabbit, anti-mouse antibodies (1:10000)
were purchased from Promega or Chemicon.Proteins were
revealed using an enhanced chemiluminescence kit (GE Health-
care) and the imaging system LAS-4000 mini (GE).Quantification
was performed using the IQ ImageQuant TL software (GE Health-
care). The amount of analyzed proteins was normalized by Coo-
massie blue staining.

Electron microscopy

Transverse hippocampal sections from 3-month-old mice were
fixed 3 hours at 4�C in a mixture of 2% paraformaldehyde and
0.1% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.6, dehy-
drated in alcohol at progressively higher concentrations and
embedded in Bioacryl resin (British Biocell, Cardiff, United King-
dom), followed by UV polymerization, according to standard
procedures.58 Consecutive thin and ultrathin sections were cut
using a diamond knife (Diatome, Biel, Switzerland) on a Reichert
ultramicrotome (Depew, NY, USA). Ultrathin sections (80–
90 nm) were collected on 300 mesh nickel grids. To block non-
specific binding sites, these grids were treated with a blocking
buffer made of phosphate buffer saline supplemented with 0.1%
Tween-20, 0.1% bovine serum albumin and 4% normal goat
serum and incubated overnight at 4�C with a rabbit polyclonal
anti-FMRP59 and a rabbit anti-ADAR2 (Abcam; cod. ab64830)
primary antibodies. The grids were then incubated for 1 hour
with goat anti-rabbit IgG conjugated with 10 and 15 nm colloi-
dal-gold particles (British Biocell, Cardiff, United Kingdom),
counterstained for 5 min in 4% uranyl acetate (in 70% ethanol)
to evidentiate the cell morphology, and observed with EM 109
Zeiss (Oberkochen, Germany). A without-primary-antibody neg-
ative control was processed in parallel. Photographs were taken
with GATAN Orius SC200 TEM CCD camera.

Primary neuronal and HEK293T cell cultures

Mouse primary cortical cultures were prepared as described
previously.60 Briefly, mouse cerebral cortices from day 13.5
mouse embryos were mechanically dissociated in cold HBSS
containing 10mM HEPES (Invitrogen); the cell suspension was
re-suspended in serum-free Neurobasal medium (Invitrogen)
supplemented with B-27 (Invitrogen), 30 U/ml penicillin
(Sigma-Aldrich, St. Louis, MO, USA), 30 mg/ml streptomycin
(Sigma-Aldrich) and 0.5 mM Glutamax (Invitrogen). The neu-
rons were then plated at a density of 30,000 cells/cm2 on a
poly-D-lysine coating (Sigma-Aldrich) in multi-well plates.
Three days after plating, 50% of the medium was replaced with
fresh medium; subsequently, half of the medium was replaced
once a week for a maximum of 4 weeks.

Stable HEK293T expressing HA tagged ADAR2 enzyme,
generated after viral infection with modified pRRLSIN.cPPT.
PGK-GFP.WPRE vector (addgene: 12252), were obtained after
cloning selection of HA-positive colonies.

HEK293T cell lines were cultured at 37�C and 5% CO2 in
DMEM medium (Invitrogen) supplemented with 10% of heat-
inactivated fetal bovine serum (FBS), 30 U/ml penicillin
(Sigma-Aldrich), 30 mg/ml streptomycin (Sigma-Aldrich), 1%
minimum Eagle’s medium nonessential amino acids, 1 mM
sodium pyruvate.

Transient Transfection

HEK293T cells are plated 24h before transfection at a density of
30’000 cell/cm2 in 6-well plates; the medium was changed 2h
before transfection. 2.5mg of the plasmid of interest (pcDNA3.1-
FMR1-myc-his43; pcDNA3.1-a-synuclein61; RNAG39) were
mixed with 0.1 £ TrisEDTA (TE 0.1 £)/dH2O (2:1) and 2.5M
CaCl2; the mixture is maintained 5 min at RT. The precipitate is
formed by adding dropwise 2 £ HBS solution to the mixture,
then the suspension should be added immediately to the cells.
The calcium-phosphate plasmid DNA mixture should be allowed
to stay on the cells for 14–16h, after which the medium should
be replaced with fresh medium.

Proximity Ligation Assay (PLA)

The Duo-link� using PLA Technology� kit (Sigma-Aldrich)
was used for the proximity ligation assay, accordingly to the
manufacturer instructions with minor modifications. Briefly,
the cells were fixed with paraformaldehyde 4% (PFA); in partic-
ular neurons were fixed at DIV14. Each sample was permeabi-
lized with PBS-Triton 0.3% and then incubated with the
blocking solution (RocheTM) for about 45 min at room temper-
ature; the primary antibodies incubation was performed over-
night at 4�C with mouse anti-FMRP (Merck Millipore cod.
MAB2160), rabbit anti-FXR1P (Abcam; cod. ab129089) and
rabbit anti-ADAR2 (Abcam; cod. ab64830) for endogenous
PLA experiments in neuronal cultures; rabbit anti-HA
(SIGMA; cod. H6908) and mouse c-Myc (Santa Cruz Biotech-
nology; cod. SC40), recognizing the HA tag for ADAR2 and the
Myc tag for FMRP respectively, mouse anti a-synuclein (Santa
Cruz cod. sc-12767), for exogenous PLA experiments on trans-
fected HEK293T cells (Supplemental results). On the following
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day, the samples were washed 3 times in PBS at room tempera-
ture and then the cells were incubated 1h at 37�C with the PLA
probe containing the secondary antibodies conjugated with the
DNA probes. After PLA probe removal, the samples were
washed 4 times x 10’ with the Buffer A at 37�C. After a brief
wash with Buffer A at 37�C, the samples were incubated with
the ligation buffer containing oligonucleotides that hybridize to
the PLA probe and the DNA ligase which allows the annealing
between probe and oligonucleotides to form a rolling circle
DNA strand. This reaction was incubated for 30 min at 37�C.
Subsequently the cells were washed with Buffer A at 37�C and
then incubated with the amplification-detection solution con-
taining the DNA polymerase for rolling circle amplification
(100 min at 37�C). Next, the samples were washed 4 times with
Buffer B at room temperature; then the coverslips were incu-
bated for 10 min with mounting buffer containing DAPI and
analyzed with a confocal microscope.

Co-immunoprecipitation experiments

FC tissues for WT and fmr1 KO mice at P21 were lysed by son-
ication in immunoprecipitation buffer (Tris-HCl 50 mM pH
7.4, NaCl 300 mM, 1% Triton X-100, Protease inhibitor
Roche� 1x). The extracts were added to 60 ml of Protein G
DynabeadsTM (10007D Invitrogen � by Thermo Fisher Scien-
tific) coupled with 5mg of rabbit anti-FMRP (Abcam ab17722)
or rabbit anti-ADAR2 (Abcam ab64830). After 2h of incuba-
tion at 4�C on a rotating wheel, 5 washes with immunoprecipi-
tation buffer were performed. The elution step was performed
with 50 ml of sample buffer 2x and DTT 10x; then, the samples
were denatured at 75�C for 10 min for Western Blot procedure.

This step was performed using rabbit anti FMRP (Abcam
ab17722) 1:500 in 5% non-fat dry milk in TBST 0.2%; the Alka-
line Phosphatase (AP)- conjugated anti-rabbit secondary anti-
body was used 1:10000 in TBST 0.2% (Promega cod. S373B);
for both the antibodies the incubation was performed 1h at RT.
The RNase A treatment was performed by adding to the
extracts 340 mg of enzyme in each sample. Then the above
mentioned procedure for the co-IP was followed.

Statistical analysis

Statistical analysis of the editing data was performed using
unpaired t test with Welch’s correction while FACS data were
analyzed by one-way ANOVA followed by Bonferroni’s post-
test. Graph pad software was use to performed the analysis and
create the graphs
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