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Abstract: The bacterial strain WB46 was isolated from the rhizosphere of willow plants (Salix purpurea
L.) growing in soil contaminated with petroleum hydrocarbons. The strain was subjected to whole-
genome shotgun sequencing using Illumina HiSeq. Its draft genome is 7.15 Mb, with a 69.55% GC
content, containing 6387 protein-coding genes and 51 tRNA and 15 rRNA sequences. The quality and
reliability of the genome were assessed using CheckM, attaining an estimated genome completeness
of 98.75% and an estimated contamination of 1.68%. These results indicate a high-quality genome
(>95%) and low contamination (<5%). Many of these genes are responsible for petroleum hydrocarbon
degradation, such as alkane 1-monooxygenase (alkB) and naphthalene dioxygenase (ndo). 16S rRNA
gene analysis, including in silico DNA–DNA hybridization (DDH) and average nucleotide identity
(ANI), showed that strain WB46 belongs to the genus Nocardia, and the most closely related species is
Nocardia asteroides. The strain WB46 showed a distance of 63.4% and sequence identity of 88.63%,
respectively. These values fall below the threshold levels of 70% and 95%, respectively, suggesting
that the strain WB46 is a new species. We propose the name of Nocardia canadensis sp. nov. for this
new species. Interestingly, the sequence divergence of the 16S rRNA gene showed that the divergence
only occurred in the V2 region. Therefore, the conventional V3–V4, V5–V7, or V8–V9 targeting
metabarcoding, among others, would not be able to assess the diversity related to this new species.

Keywords: alkane 1-monooxygenase (alkB); alkanes; genome sequencing; Nocardia canadensis; plant-
growth-promoting rhizobacteria

1. Introduction

Intensive industrial activities, such as extracting oil and gas, employing inorganic
fertilizer-based agriculture, mining for minerals, and disposing of industrial waste, are as-
sociated with risks of environmental contamination, which present a global challenge [1,2].
Of particular concern are petroleum hydrocarbons (PHCs), which can result in high-risk
oil spills and environmental contamination in both aquatic and terrestrial ecosystems [3,4].
PHCs, such as crude oil, are heterogeneous organic mixtures composed of carbon and
hydrogen atoms, split into two major fractions: aliphatic hydrocarbons (alkenes, alkynes,
or alkanes) and aromatic hydrocarbons (including monoaromatic and polycyclic aromatic
hydrocarbons (PAHs)) [5]. Most commonly, the sources of PHC contamination are anthro-
pogenic, derived from accidental release (e.g., diesel, fuel, solvents) and industrial activities
(e.g., electricity production, petrochemical) [6]. Such environmental contamination with
PHC products has caused significant detriment to various ecosystems, including soils, with
serious economic consequences [7].
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The use of plants and their associated microbes, known as phytoremediation, has
been suggested as a promising method for managing PHC pollution in soil [8,9]. This
environmentally friendly and solar-powered approach has a small carbon footprint and
has been successful in moderately polluted soils [7]. However, it may not be as effective
in heavily polluted soils due to hindered plant growth in these conditions. Salix spp.,
commonly found in various habitats in North America, are known for their high tolerance
to chronic PHC pollution [2,10]. Therefore, these plants are particularly well-suited for
phytoremediation efforts in addressing PHC contamination. Two studies by Alotaibi
et al. [2,11] identified and characterized over 400 bacterial isolates from highly polluted
soil environments with diverse abilities in degrading PHCs and promoting plant growth.
Among the isolated bacteria strains, WB46, belonging to the genus Nocardia, was selected
for whole-genome shotgun sequencing [11].

The genus Nocardia belongs to the family Nocardiaceae of the order Corynebacteriales,
within the phylum Actinobacteria [12]. Nocardia species are ubiquitous in both aquatic and
terrestrial habitats, such as soil, water, and the decaying fecal deposits of animals [13],
with predominant importance in clinical and environmental settings [14,15]. Since the first
isolation of Nocardia sp. by Edmond Nocard in 1888 [16], more than 119 species have been
described so far (http://www.bacterio.net/ accessed on 8 November 2023). Many species
of Nocardia are opportunistic pathogens for humans and animals [17,18]. However, more
recently, several species of Nocardia were found to produce new bioactive substances [19,20]
and to degrade various petroleum hydrocarbon compounds [21]. Evidently, this genus
shows the potential to be exploited for the biodegradation of petroleum hydrocarbons. Still,
there are only a few species isolated and validated for biodegradation ability. Nocardia
sp. strain WB46 was isolated from the rhizosphere of willow plants (Salix purpurea L.)
growing in soil contaminated with petroleum hydrocarbons from the site of a former
petrochemical plant located at Varennes, Québec, Canada [2]. This strain was subjected to
the whole-genome shotgun sequencing using Illumina HiSeq, as well as in vitro analyses,
which indicated that the bacterium can utilize a wide range of petroleum hydrocarbons
as the sole source of carbon to grow and reproduce, including aliphatic and polycyclic
aromatic hydrocarbons [2]. The strain Nocardia sp. WB46 also displayed positive activities
for some plant-growth-promoting traits such as phosphate solubilization and siderophores
production, when tested in vitro, suggesting it could be a useful partner for bioremediation
with plants (Table 1) [2]. An analysis of the 16S rRNA gene, using methods such as in silico
DNA–DNA hybridization and average nucleotide identity, was performed on Nocardia sp.
WB46 and a closely related strain, Nocardia asteroides. The results indicated that the strain
WB46 is a newly discovered species, which was named as Nocardia canadensis.

Table 1. Hydrocarbon degradation potential and plant-growth-promoting traits of bacterial strain
Nocardia canadensis WB46 a.

Traits Assays Activity

Hydrocarbon degradation potential b

Naphthalene ++
Phenanthrene +++

Pyrene ++
Dodecane ++

Hexadecane +++

Catabolic genes c
Alkane monooxygenase (alkB) +

Cytochrome P450 hydroxylase (CYP153) −
Naphthalene dioxygenase (nah1) +

Cell growth measurement at 600 nm b

1% diesel ++++
1% hexadecane ++++
2% hexadecane ++++
3% hexadecane ++++

http://www.bacterio.net/
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Table 1. Cont.

Traits Assays Activity

Plant-growth-promoting traits

1-Aminocyclopropane-1-carboxylate
deaminase (ACCD) −

Phosphate solubilization −
Siderophore production + (8.2%)

Nitrogen fixation −
Indole-3-acetic (IAA) production + (1.46 µg mL−1)

Ammonia production + (2.9 µmol mL−1)

Root elongation assay (cm) d

0% 13.4
1% 12.2
2% 10.1
3% 8.6

a This bacterial strain was isolated from the rhizosphere of Salix purpurea L. plants that were growing in soil
contaminated with petroleum hydrocarbons [2]. For further details regarding the plant-growth-promotion
characteristics of this isolate, please refer to [11]. b The growth capability of bacterial strain with hydrocarbons
as the sole carbon and energy source is indicated on 1% (v:v) hydrocarbon in MS medium, measured by optical
density at 600 nm after 1 week of incubation at 28 ◦C and is rated as ++++, +++, ++, +, and −, from strong
to weak growth, respectively. ++++, strong growth (OD600 > 1); +++, growth (OD600 > 0.6); ++, growth
(0.6 > OD600 > 0.2); +, growth (OD600 < 0.2); and −, no growth. c The PCR products for the catabolic genes alkB,
CYP153, and nah1 are indicated as “+” for their presence and “−” for their absence. d % denotes the impact of
WB46 treatment on the root length (in cm) of canola plants after seven days of growth in the presence of various
concentrations of n-hexadecane under growth pouch conditions.

2. Materials and Methods
2.1. Isolation and Media Culture of Bacteria

Nocardia sp. strain WB46 was isolated from the rhizosphere of willow (Salix purpurea L.)
growing in soil polluted with petroleum hydrocarbons, as part of a large phytoremediation
pilot project [2,22]. Willow plants were grown on a former petrochemical plant located at
Varennes, Québec, Canada [22,23], which was in operation from 1953 to 2008 [23]. The soil at
the site was contaminated with a mixture of alkanes and polycyclic aromatic hydrocarbons
(PAHs), reaching concentrations up to 3590 mg kg−1 [22], exceeding the limit for land reuse
defined by the government of Québec for industrial areas. Nocardia sp. strain WB46 was
isolated from the rhizosphere of willow using Bushnell-Haas medium amended with 1%
diesel, as the sole carbon source, as described elsewhere [2].

2.2. DNA Extraction and Whole-Genome Shot Gun Sequencing

Genomic DNA was extracted from stationary-phase cells grown in 1/10 Trypticase Soy
Broth (TSB) (Difco Laboratories, Detroit, MI, USA) medium using the DNeasy UltraClean
Microbial Kit (Qiagen, Toronto, Canada), according to the manufacturer’s instructions.
DNA concentration was determined on a Qubit fluorometer (Thermo Fisher Scientific,
Mississauga, ON, Canada). The genomic library was prepared with an NEB Ultra II kit
(New England BioLabs Inc., Ipswich, MA, USA) and sequenced on an Illumina MiSeq
platform with 250 bp paired-end chemistry.

2.3. Bioinformatics Pipeline and Processing of Data

Raw paired-end sequences were subjected to quality trimming using SeqMan NGen
software (Version 12, DNAStar Inc., Madison, WI, USA). Genome assembly was also
performed using SeqMan NGen software (Version 12, DNAStar Inc., Madison, USA).
Genome completeness was determined using CheckM (V2.1) [24]. Gene annotation was
performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (Tatusova
et al., 2016) [25]. The in silico DNA–DNA hybridization (DDH) value was calculated
using the Genome-to-Genome distance calculator version 2.1 (GGDC) (http://ggdc.dsmz.
de/ggdc_background.php#, accessed on 11 December 2023) [26]. Average nucleotide
identity (ANI) analyses were conducted between Nocardia sp. strain WB46 and closely
related strains using the NCBI’s PGAP–taxcheck option [26]. The 16S rRNA gene sequence

http://ggdc.dsmz.de/ggdc_background.php#
http://ggdc.dsmz.de/ggdc_background.php#
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(length of 1516 bp) derived from the assembled genome was compared with the available
sequences in the Ribosomal Database Project (RDP) using the SeqMatch tool (https://rdp.
cme.msu.edu/seqmatch/seqmatch_intro.jsp, accessed on 11 December 2023). The tool used
to visualize the circular genome was GenVision Pro (Version 9, DNASTAR, Inc., Madison,
WI, USA).

2.4. Description of Nocardia canadensis sp. nov.

Nocardia canadensis (N.L. masc. adj. canadensis, Of Canada, from which this microor-
ganism was isolated): The species name was registered in SeqCode under the Canonical
URL, https://seqco.de/i:32942 (accessed on 11 December 2023). On the basis of its mor-
phology and physiology, this bacterium is an aerobic actinobacterium that is gram-positive,
non-acid-fast, and non-motile. The colonies it forms on the culture media can range from
white to yellow with aerial mycelium-like colonies.

3. Results and Discussion

The DNA concentration obtained was 42 ng/µL. In total, 1,605,568 raw paired-end
sequences, providing approximately 34-fold coverage of the genome, were subjected to
quality trimming using the SeqMan NGen software version 12.0. From assembling, we
obtained 7,150,745 bp in 10 contigs. The genome of Nocardia sp. strain WB46 has an average
G + C content of 69.55% and includes 6387 predicted protein-coding sequences (CDSs),
15 rRNAs (5S, 16S, 23S), 51 tRNAs, and 3 noncoding RNAs (ncRNAs) sequences. Detailed
genomic information is presented in Tables S1 and S2 and in Figure 1.

The quality and reliability of the genome were confirmed using CheckM [24]—with
an estimated genome completeness of 98.75% and an estimated contamination of 1.68%—
indicating a high-quality genome (>95%) and low contamination (<5%), respectively. In
silico DNA–DNA hybridization (DDH), Type (Strain) Genome Server (TYGS), average
nucleotide identity (ANI), and 16S rRNA gene analyses all suggested that Nocardia sp. strain
WB46 is in fact a new species (Table 2). The in silico DNA–DNA hybridization (DDH) value
between Nocardia sp. strain WB46 and a closely related strain Nocardia asteroides showed
a distance of 63.4% (Table 2), which is below the threshold level of 70% recommended
by [27] for assigning bacterial strains to the same species, thus suggesting that Nocardia
sp. strain WB46 is a new species. The Nocardia sp. strain WB46 was also uploaded to the
Type (Strain) Genome Server (TYGS) (https://tygs.dsmz.de, accessed on 11 December
2023) for a whole-genome-based taxonomic analysis. Nocardia sp. strain WB46 did not
belong to any species found in the TYGS database and was tagged as a potential new
species (Table 2). Additionally, the average nucleotide identity (ANI) results predicted
Nocardia sp. strain WB46 as Nocardia asteroides (Table 2), but the value of 88.63% was below
the generally proposed species boundary cut-off of 95–96% [28]. Additional pairwise
genome comparisons between Nocardia sp. strain WB46 and Nocardia asteroides with other
(ANI)’s tools all suggested Nocardia sp. strain WB46 being a new species: ChunLab’s ANI
Calculator (https://www.ezbiocloud.net/tools/ani, accessed on 11 December 2023) [29]
OrthoANIu = 88.16%, JSpeciesWS (http://jspecies.ribohost.com/jspeciesws/, accessed on
11 December 2023) ANIb = 87.27%, ANIm = 89.20%, and Kostas lab ANI Calculator (http:
//enve-omics.ce.gatech.edu/ani/, accessed on 11 December 2023) two-way ANI = 88.23%.

https://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp
https://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp
https://seqco.de/i:32942
https://tygs.dsmz.de
https://www.ezbiocloud.net/tools/ani
http://jspecies.ribohost.com/jspeciesws/
http://enve-omics.ce.gatech.edu/ani/
http://enve-omics.ce.gatech.edu/ani/
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Table 2. Summary of the results of in silico methods for genome-to-genome comparisons.

Analysis Value Comments

In silico DNA–DNA hybridization (DDH) 63.4% Below the threshold level of 70%

Type (Strain) Genome Server (TYGS) No match Tagged as novel species

Average nucleotide identity (ANI) 88.63% Below the species boundary cut-off of 95–96%

16S rRNA gene sequence (RDP) 98.8% High similarity to Nocardia asteroides

The DDH and genome similarity comparison clearly showed that the genome of
the novel strain WB46 has diverged from the genome of existing registered strains of
Nocardia. Nevertheless, since the comparison is only based on the genomes available in
the database, we compared the 16S rDNA sequence of WB46 with those present in the
Ribosomal Database Project (RDP), which contains sequences of all environmental Nocardia
strains to further ensure its novel nature. A 1516 bp 16S rDNA sequence was extracted from
the assembled genome of strain WB46 and analyzed using the SeqMatch tool. The results
showed that the sequence was almost identical to that of a Nocardia asteroides at 98.8%
similarity (Table 2). Thus, strain WB46 was concluded to belong to the genus Nocardia.
Recently, 16S rRNA gene sequence similarity threshold values in the range of 98.2–99.0%
have been widely accepted and used to differentiate two species [25,28,30], instead of the
97% threshold previously used [31], which supports that Nocardia sp. strain WB46 is a potent
new species. To understand the evolutionary relatedness of the Nocardia sp. strain WB46
with other closely related Nocardia species, a phylogenetic analysis was conducted with
the complete 16S rRNA gene sequence of the strain WB46. First, BLASTn was performed
against the 16S rRNA sequence collection (Bacteria/Archaea) of NCBI. The top 100 hits
with E-value above 1 × 10−100 and a percent sequence identity above 90% were used to
produce a multiple sequence alignment through MUSCLE v3.5, which was then further
trimmed utilizing Gblock v0.91b [32]. Finally, a phylogenetic tree was computed, the best
nucleotide evolution model was selected using JModelTest2 [33], and the model of GTR + G
+ I was selected. The Bayesian phylogenetic analyses were conducted using BEAST2.5 [34],
with 10,000,000 generations and a burn-in of the first 20% of generations. The resulting
phylogeny was visualized using iTOL [35]. Interestingly, Nocardia sp. strain WB46 did not
cluster with any groups at the species level, showing its 16S rDNA sequence divergence
from other publicly available Nocardia species in the Genbank database. The Bayesian
phylogenetic analysis (Figure 2) suggested that Nocardia sp. strain WB46 is phylogenetically
closely related species to N. asteroides (posterior probability 1.0/1.0) but further diverged
from the ancestor of N. asteroides with high posterior probability support for speciation
(0.7/1.0) to form a monophyletic node. Surprisingly, the divergence of sequence in Nocardia
sp. strain WB46 only occurred in the V2 region at position 108–110 bp and 121 bp in the
multiple sequence alignment (Figure 3). It has been suggested that the V3-V4 region of
the 16S rRNA is informative for understanding bacterial diversity; thus, it is widely used
in ecological and environmental studies [36], even though the value of other regions of
variance was also emphasized [37]. The position of informative sequence divergence in our
study shows that the V2 region should be taken into account for capturing the diversity of
this ecologically important bacterial taxa.



Microorganisms 2023, 11, 2972 7 of 10

Microorganisms 2023, 11, x FOR PEER REVIEW 7 of 11 
 

 

speciation (0.7/1.0) to form a monophyletic node. Surprisingly, the divergence of sequence 
in Nocardia sp. strain WB46 only occurred in the V2 region at position 108–110 bp and 121 
bp in the multiple sequence alignment (Figure 3). It has been suggested that the V3-V4 
region of the 16S rRNA is informative for understanding bacterial diversity; thus, it is 
widely used in ecological and environmental studies [36], even though the value of other 
regions of variance was also emphasized [37]. The position of informative sequence diver-
gence in our study shows that the V2 region should be taken into account for capturing 
the diversity of this ecologically important bacterial taxa. 

 
Figure 2. Phylogenetic analysis of Nocardia sp. strain WB46 with other species in the Nocardia genus, 
using complete 16S rRNA gene sequences (1358 bp), was conducted using Bayesian phylogenetic 
analysis. The GTR  +  I + G (with four distinct gamma categories) phylogenetic model showed the 
lowest BIC value. The tree was rooted using Rhodococcus equi as an outgroup (colored orange), fol-
lowing the previous publication of Nocardia phylogeny [38]. The numbers at branches correspond 
to Bayesian posterior probabilities. The branches of a clade (N. asteroides), which are suggested to 
share the most direct common ancestor with Nocardia sp. WB46 (colored red) with 1.0/1.0 posterior 
probability, are colored red. 

Figure 2. Phylogenetic analysis of Nocardia sp. strain WB46 with other species in the Nocardia genus,
using complete 16S rRNA gene sequences (1358 bp), was conducted using Bayesian phylogenetic
analysis. The GTR + I + G (with four distinct gamma categories) phylogenetic model showed the
lowest BIC value. The tree was rooted using Rhodococcus equi as an outgroup (colored orange),
following the previous publication of Nocardia phylogeny [38]. The numbers at branches correspond
to Bayesian posterior probabilities. The branches of a clade (N. asteroides), which are suggested to
share the most direct common ancestor with Nocardia sp. WB46 (colored red) with 1.0/1.0 posterior
probability, are colored red.
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Genes connected with the degradation of petroleum hydrocarbons were found in
the genome of Nocardia sp. strain WB46 (Table S3). Alkane 1-monooxygenase (alkB) and
cytochrome P450 hydroxylase (CYP153) are important alkane hydroxylases responsible for
microbial aerobic alkane degradation in oil-polluted environments. These enzymes hydrox-
ylate alkanes to alcohols, which are further oxidized to fatty acids and catabolized via the
bacterial β-oxidation pathway [39]. Previous studies showed that the gene repertoire of
alkB and CYP153 are diverse among species of Nocardia. For instance, Nocardia cyriacigeor-
gica GUH-2 has two copies of alkB and also two copies of CYP153, while Nocardioidaceae
bacterium Broad-1 has two copies of alkB but only one copy of CYP153 [40]. It has been
reported that many Actinobacteria genomes containing CYP153 genes also had alkB genes,
implying a potential link between the CYP153 and alkB genes in the Actinobacteria [40,41].
Interestingly, the genome of Nocardia sp. strain WB46 has no CYP153 gene but has three
copies of alkB genes. Therefore, its alkane-degrading capability could be associated mainly
with the alkB activity. Additionally, two naphthalene dioxygenase (ndo) genes responsible
for biodegrading polycyclic aromatic hydrocarbons (PAHs) [42] were also present in the
genome of Nocardia sp. strain WB46. Further genes related to plant-growth-promoting
characteristics were also detected, including phosphate solubilization and siderophore
utilization (Table S3). For example, the genome of Nocardia sp. strain WB46 contains genes
related to acid phosphates, which play an important role in plant growth by scavenging P,
under low P concentrations, from organophosphate compounds in the rhizosphere and thus,
increasing P availability to plants [43]. The genome sequence data of Nocardia sp. strain
WB46 will enhance our understanding of the metabolic capabilities of Nocardia strains.

4. Conclusions

Sequencing of the genome of the newly identified bacterial species Nocardia canadensis
WB46, which was initially isolated from soil contaminated with petroleum hydrocarbons
surrounding the roots of willow plants, has shown that it carries genetic material essential
for the degradation of such hydrocarbons. This was confirmed through subsequent in vitro
analysis, which observed the strain’s ability to utilize a variety of petroleum hydrocarbons
as its only source of carbon. Apart from this, the strain also possesses several other
functions likely to contribute to the promotion of plant growth. In order to assess the
strain’s feasibility of rhizoremediation of soils polluted with petroleum hydrocarbons,
Nocardia canadensis WB46 will be tested in the field, potentially unveiling opportunities for
biotechnological applications.

Supplementary Materials: The following supporting information can be downloaded at
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