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Computational design of dynamic receptor—
peptide signaling complexes applied to
chemotaxis

Robert E. Jefferson 1,2, Aurélien Oggier1,2, Andreas Füglistaler 1,2,
Nicolas Camviel2,3, Mahdi Hijazi 1,2, Ana Rico Villarreal1,2, Caroline Arber 2,3 &
Patrick Barth 1,2

Engineering protein biosensors that sensitively respond to specific biomole-
cules by triggering precise cellular responses is amajor goal of diagnostics and
synthetic cell biology. Previous biosensor designs have largely relied on
binding structurally well-defined molecules. In contrast, approaches that
couple the sensing of flexible compounds to intended cellular responses
would greatly expand potential biosensor applications. Here, to address these
challenges, we develop a computational strategy for designing signaling
complexes between conformationally dynamic proteins and peptides. To
demonstrate the power of the approach, we create ultrasensitive chemotactic
receptor—peptide pairs capable of eliciting potent signaling responses and
strong chemotaxis in primary human T cells. Unlike traditional approaches
that engineer static binding complexes, our dynamic structure design strategy
optimizes contacts with multiple binding and allosteric sites accessible
through dynamic conformational ensembles to achieve strongly enhanced
signaling efficacy and potency. Our study suggests that a conformationally
adaptable binding interface coupled to a robust allosteric transmission region
is a key evolutionary determinant of peptidergic GPCR signaling systems. The
approach lays a foundation for designing peptide-sensing receptors and sig-
naling peptide ligands for basic and therapeutic applications.

Designing biosensors with arbitrary input and output behaviors is a
grand challenge of synthetic biology. Current approaches focus on
engineering binding to structurally well-defined protein1 and small-
molecule chemical cues2, and couple molecular recognition to syn-
thetic optical reporters that are built-in modular biosensor scaffolds.
While this strategy provides elegant solutions to the design of in vitro
diagnostics, applications for in vivo detection and synthetic cell biol-
ogy rely on coupling themolecular sensor to the precise activation and
orchestration of complex intracellular signaling functions that often
cannot be recapitulated de novo. Harnessing synthetic sensing to fine-

tuned native signaling functions in a biosensor scaffold is limited by
our poor mechanistic understanding of allosteric signal transduction
and lack of techniques to rationally engineer these properties.

Computational approaches for the design of protein-protein
recognition have produced a wide array of therapeutic proteins
including potent inhibitors and vaccines mostly through the optimi-
zation of binding interactions between static protein surfaces2–4.
However, several classes of proteins including signaling receptors and
peptides displayhigh levels of conformational plasticity andbindingof
these molecules often involves large structural rearrangements
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through conformational selection and mutual induced fit5–8. The
rational design of dynamic binding complexes remains particularly
challenging and has not been reported to date.

Peptides mediate close to 40% of cell signaling functions through
ubiquitous interactions with membrane receptors and soluble
proteins9,10. Unbound peptide ligands are often partially disordered in
solution, which challenges structure determination and the compu-
tational sampling of the vast space of peptide conformations. In con-
trast to rigid protein binders and small-molecule ligands, structural
information on peptide binding is scarce and limits supervised
training and validation of deep-learning11–13 and physics-based14

protein–peptide complex structure prediction approaches. Conse-
quently, the mechanistic underpinnings of peptide-mediated func-
tions remain also poorly understood.

A recent comparative genomics study of peptidergic GPCRs
revealed important features of the peptide-GPCR network15. Peptide-
binding GPCRs typically involve larger binding cavities and ligand
contact areas than receptors binding to small molecules. The pepti-
dergic signaling network is often characterized by GPCRs sensing an
array of peptide ligands and peptides capable of activating several
receptors, which complicates the prediction of binding and signaling
determinants. The specific receptor–peptide modeling and engineer-
ing problem is further complicated by the high flexibility of both
receptor and peptide ligand, which often mutually adopt a new con-
formation through induced fit to reach the active state and initiate
signal transduction16.

In this study, we first develop a computational strategy for mod-
eling the binding between flexible peptides and structurally unchar-
acterized proteins and designing signaling membrane receptors with
high binding sensitivity to peptide ligands. To validate the approach,
we create chemokine receptor–peptide pairs that elicit potent intra-
cellular signaling in human cells and chemotactic responses in primary
T cells. Lastly we carry out molecular dynamics simulations on the
complexes and uncover mechanistic determinants of GPCR–peptide
recognition and signaling.

Results
Overall rationale and goal of the study
In the long run, we aim todesign custom-builtmodular biosensors that
can link binding of a flexible peptide input signal to fine-tuned and
complex cellular responses through genetically encoded single-
receptor domains. We define this designed class of biosensors as
CAPSens, which stands for Conformationally Adaptive Peptide Bio-
Sensors. Such an approach would enable the reprogramming of cel-
lular functions upon a wide range of environmental cues and would
impact cellular therapies that rely on cell trafficking, including cancer
immunotherapies.

Toward that goal, we developed a method that can build flexible
receptor–peptide conformational ensembles and model peptide-
mediated receptor signaling pathways. Unlike previous work that
mainly optimizes binding and models receptors as rigid target
structures17, this approach enables the modeling of signaling active
states and the design of dynamic complexes with altered binding
contacts and allosteric networks enhancing both recognition sensi-
tivity and signaling response (Fig. 1a, b).

To demonstrate this strategy, we targeted the chemokine
receptor CXCR4–CXCL12 peptide signaling axis. We selected that
signaling complex because CXCR4, upon sensing its native ligand
CXCL12, regulates important physiological functions, including cell
chemotaxis (i.e., cell migration along a gradient of CXCL12), but
remains structurally uncharacterized in the active signaling state.
Using the approach, we modeled and designed CXCR4 variants with
high binding sensitivity to the native CXCL12 and also created
receptor–peptide binding pairs that triggered potent signaling and
cell migration (Fig. 1b).

Computational modeling and design framework of
GPCR–peptide signaling complexes
Despite tremendous progress in protein structure determination,
experimental structures of signaling receptor–peptide complexes
remain scarce. In absence of structures of the interacting partners, the
design of binding complexes necessitates a method that both models
the conformations of the bound molecules and engineers functional
binding interactions. Molecular recognition between flexible peptide
and signaling receptors likely involves significant structural rearran-
gements of both molecules through conformational selection (i.e.,
selection from an ensemble of unbound conformations) and induced
fit (i.e., conformational changes occurring upon binding) effects.
Therefore, we first reasoned that an effective method for modeling
receptor–peptide structures should explore a vast conformational
binding space, including the large ensemble of conformations
explored by the flexible peptide but also the diverse receptor con-
formational changes triggered by peptide binding. We also hypothe-
sized that maintaining a high level of conformational flexibility or
dynamism at the binding interface may be critical for evolving com-
plexes that optimize both peptide recognition and long-range allos-
teric response, necessitating interactions between multiple functional
sites. Hence, to test this hypothesis, we sought to carry out and com-
pare design calculations that either stabilize specific receptor–ligand
bound conformations through conformational selection (Fig. 1c, d) or
maintain high levels of conformational entropy by enabling the bind-
ing of a wide range of peptide conformations (Fig. 1c, e).

Our computational strategy was developed with these ideas in
mind andproceeds in the followingmain steps (Methods, Fig. 1f). Steps
(i) to (v) refer to the proteinmodeling stagewhile steps (vi) to (xi) refer
to the protein design stage.

(i) building hybrid transmembrane (TM) scaffolds in active sig-
naling conformation by homology to diverse chemotactic receptors.
Specifically, we construct scaffolds from fragments of receptor struc-
tures that have the highest sequence and structure homology to the
target receptor using a modified version of the hybridization techni-
que of the software Rosetta18. The goal is to generate diverse starting
biosensor scaffolds in the active state for subsequent peptide docking.
(ii) peptide docking onto the active-state receptor scaffold binding
sites generated in step i. The peptide sequence is threaded onto the
homologous CX3CL1 peptide structure and the resulting structure is
docked through rigid body movements and internal motions around
backbone and side-chain dihedrals using the FlexPepDock software17,19.
The receptor structure is also allowed to move during docking, with
side-chains being fully flexible at the receptor–peptide interface. In
this step, we aim to identify possible interacting conformations from
the large pool of unbound peptide structures. (iii) filter and diversify
peptide-bound positions. We developed and applied a diversification
method to generate a peptide-bound receptor ensemble representa-
tive of the vast conformational binding space and of diverse networks
of receptor–peptide contacts. This approach clusters bound peptide
conformations, bins the corresponding space and selects representa-
tive members of the populated bins that occupy distinct positions in
the peptide-binding pocket. (iv) de novo loop rebuilding of the bio-
sensor scaffold. Each peptide-bound receptor scaffold selected in step
(iii) is subjected to remodeling of the loops that are in proximity of the
bound peptide to best accommodate the peptide conformations. (v)
relax the resulting receptor–peptide complex structure. The struc-
tures generated in step (iv) are fully relaxed through side-chain
repacking and minimization over all conformational degrees of free-
dom tomimicmutual induced fit effects and identify themost optimal
binding conformations. Relaxed structures are clustered and the
center of the most populated clusters are selected for the computa-
tional design stage.

(vi) computational stabilization of receptor–peptide interfaces
through conformational selection (Fig. 1d). Here we apply a classical
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protein binding interface design approach using the software Roset-
taMembrane to each CXCR4-CXCL12 model selected in step (v).
Receptor and peptide residues that are in contact at the binding
interface are subjected to substitution to all possible amino acids. A
Monte Carlo algorithm randomly selects mutations at multiple sites,
predicts, scores the structure of the mutated complex and selects the
combination of amino-acid substitutions leading to the largest

decrease in binding energy. (vii) computational design of binding
interactions maintaining conformational flexibility (Fig. 1e). Here,
designed binding and allosteric contact networks are selected that
enhance receptor–peptide interactions in several CXCR4–CXCL12
models, thereby favoring multiple conformations of the complex and
maintaining high levels of conformational entropy. This is achieved by
designing a library of point mutations at receptor positions in contact
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with the peptide that are compatible with multiple conformations of
the complex. (viii) experimental validation of selected designs. The
intracellular signaling activities of the engineered biosensors are
characterized using cell-based functional assays that report on
the activation of Gi which is the main downstream G-protein effector
of the CXCR4 receptor; (ix) experimentally guided refinement of
receptor–peptide conformational ensemble. We used the experi-
mental validation in step (viii), in particular the peptide potencies that
mostly report on binding affinities, to improve modeling accuracy.
Specifically, we selected the models with predicted binding energy
shifts that best matched the measured shifts in potency. (x) design of
highly sensitive receptor–peptide super-agonist pairs. We carried out
additional design calculations to search for amino-acid substitutions
on the peptide further enhancing binding interactions. (xi) character-
ization andvalidationof the allosteric signal transductionproperties of
the designed complexes. To validate the design calculations and pro-
vide mechanistic insights into the signaling properties of the engi-
neered receptor–peptide pairs, we carried out molecular dynamics
simulations using our method AlloDy. We analyzed peptide con-
formational diversity and calculated allosteric signaling transmission
properties for each complex.

Design of hyper-sensitive CAPSens for the native CXCL12
chemokine
As a proof of concept, we modeled and designed peptide ligand ago-
nists starting from theN-terminal partially unstructured agonist region
of the chemokine CXCL12 (Fig. 1a), which promotes strong activation
of the CXCR4 receptor20–23. Specifically, we considered the first 8
N-terminal peptide residues that are the most buried in the CXCR4
binding pocket (Fig. 1a). CXCL12 binding to CXCR4 triggers activation
of the receptor, which directly couples to the heterotrimeric G-protein
Gi, inhibits the intracellular signaling pathway leading to cAMP pro-
duction (through the G-protein alpha subunit) and activates that
leading to Ca2+ release (through the G-protein beta and gamma
subunits).

To build and evolve CAPSen scaffolds sensing CXCL12-derived
peptides, we selected structural parts from the chemokine receptor
family. In absence of a CXCR4 structure in the signaling active form,
biosensor templateswereassembled from local structures ofCXCR4 in
the inactive formand the structure of thehomologous viral chemokine
receptor US28 bound to CX3CL1 (PDB ID: 4XT1)24, the only active-state
chemokine receptor structure available at the time of modeling. Our
modeling stage (steps i–v) yielded 9 highly populated clusters of
peptide-bound biosensor models. The centers of each cluster was
selected as starting templates for the first round of computational
design (Methods, Fig. 1c). In the following, we name designs by the
approach (Csel for design through conformational selection, Cdyn for
design maintaining conformational dynamism, Csedy for combined
Csel and Cdyn solutions) and design generation (1 and 2) that refers to
a specific round of iterative computational design. Since the first two

N-terminal positions of CXCL12 are critical for activation and even
conservative mutations can lead to drastic signaling defects25–27, we
focused our initial computational design on improving the binding of
the sensor to positions 3 through8of theCXCL12-derivedpeptide (i.e.,
P3 through P8), up to the CXC motif.

Our design strategy by conformational selection focuses on the
first shell of residues in contact with the peptide ligand (i.e., residues
with at least one heteroatom within 4 Å of the peptide), carries
out independent combinatorial design calculations on single
receptor–peptide conformations and identifies the few complexes
with the strongest engineered binding interactions. Complexes are
designed using Rosetta’sMetropolisMonte Carlo Simulated Annealing
protocol18, scoredusing theRosettaMembrane energy function28,29 and
selected if they led to decreased interface energies between the
receptor and peptide. Using this strategy, we expect to improve
binding by selecting a subset of conformations that drive the most
potent recognition, thereby decreasing the conformational entropy of
the complex (Fig. 1b). Thefirst roundof calculations yielded adesigned
binding hotspot motif with improved interfacial contact density
between the TM1/7 interface and P3 of the peptide (Fig. 2a, b). We
validated the peptide binding and signaling properties of the Csel1
receptor in HEK cells using cell-based assays reporting G-protein Gαi

activation and Ca2+ mobilization that are triggered by native chemo-
kine receptors and known to be crucial for chemotactic responses30,31.
Consistent with the prediction, the designed receptor displayed
enhanced sensitivity to CXCL12 (Fig. 2c, d). We built upon the initial
success of the Csel1 design by further optimizing the binding interface
upstream of P3. A second binding hotspotmotif was selected between
P7 of CXCL12 and 3 receptor positions lining the β-hairpin of the sec-
ond extracellular loop (ECL2) (Fig. 2a, b). Combining the 2 designed
motifs into theCsel2 receptor led to substantially enhanced potency in
calcium mobilization (3.1-fold over WT) and Gαi-coupling (3.2-fold
over WT) (Fig. 2e, f). Overall, we tested a total of 19 designs from this
conformational selection approach and reached a success rate of 37 %.

We then sought to design potent but dynamic receptor–peptide
complexes by identifying binding and activating motifs compatible
with a wide range of bound conformations, hence maintaining high
conformational entropy at the binding interface.We rationally created
and screened a computationally guided library of variants built from
our initial ensemble of 9 receptor–peptide models. Each variant was
designed by mutating a single predicted peptide binding and/or
allosteric residue from the first binding shell in the conformational
ensemble.Mutations in the librarywere selected if they did not display
significant steric clashes with the peptide in more than 5 of the con-
formations in the ensemble. A total of 206 point mutant variants were
selected in the library and assayed for calcium mobilization (Supple-
mentary Fig. 1) and Gαi coupling (Fig. 2g). Activating point mutations
were identified at sites on TM1, TM3, and ECL2 and assembled into the
Cdyn receptor variant (Fig. 2a, b; Supplementary Fig. 1). The Cdyn
design was considerably more sensitive than the starting CXCR4 WT

Fig. 1 | Modeling and design strategy of a Conformationally Adaptive Peptide
BioSensor (CAPSen). a Cartoon representation of the CXCR4–CXCL12 complex
(schematic model of receptor and chemokine structures aligned to CXCR2:CXCL8
complex structure. PDB IDs: 4RWS, 4UAI, 6LFO) targeted for the design of che-
motactic receptors with enhanced binding and signaling responses towards pep-
tide attractants. The CXCL12 chemokine ligand consists of a folded domain and a
flexible 8 residue-long N-terminal tail (sequence: KPVSLSYR represented with light
blue spheres) inserted into the receptor binding pocket. b The peptide ligand can
adopt distinct bound conformations through specific contacts with receptor
pocket residues that are classified as drivers of binding (red) or activation (orange).
Dotted green lines correspond to putative allosteric signal transduction pathways
running through the receptor. Plain green lines schematically represent the specific
pathways engaged by each peptide conformation bound to the receptor. Through
design, receptor–peptide connectivity (represented as an interaction graph

between peptide (P) and receptor (R) residues) can be rewired to promote binding
(top), activation, or both (bottom) to ultimately reprogram the cell migratory
response. c–e General overview of the protein-peptide binding design strategies
employed in the study. c Schematic view of a conformational energy landscape
describing the binding of a flexible peptide to a receptor. The peptide is repre-
sented with 6 light gray spheres and adopts distinct conformations in each local
energy minimum. d Design by conformational selection stabilizes one favored
receptor–peptide conformation, while destabilizing others. Destabilizing interac-
tions are represented as steric clashes. e Design to preserve dynamism selects
amino-acid substitutions stabilizing multiple receptor–peptide conformations,
hence maintaining conformational entropy at the binding interface. f Pipeline of
the modeling & design strategy involving receptor–peptide modeling, rational
design, experimental validation, refinement of receptor-peptide models, design of
peptide super-agonists and analysis of allosteric signal transduction properties.
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scaffoldwith close to 11-fold enhanced Gαi potency and a 20% increase
in efficacy (Fig. 2g). Overall, we fully tested a total of 15 designs from
this conformational dynamism approach and reached a success rate
of 33%.

We next thought to combine the initially designed binding hot-
spot motifs from Csel2 with the binding and activating sites identified
in Cdyn. While the positions on TM 1 and 7 strongly overlapped, the
substitutions at position 1133.29 (Ballesteros-Weinstein notation32)
occupy a region of the binding pocket not exploited by our Csel1 or
Csel2 designs. Additive effects were observed when combining the
most activatingH113N3.29 mutation with the Csel2 design and led to the
Csedy sensor that had the second-most potent and sensitive Gαi

response (more than 9-fold increase over WT) against WT CXCL12 in
our designs (Fig. 2h).

Overall, these results indicate that our approaches can readily
design highly sensitive sensors of theWTCXCL12 chemokine-derived
peptide by optimizing both binding and activation determinants.
Interestingly, while the Csel designs reached up to 3-fold enhanced
potency from WT, Cdyn and Csedy achieved much larger improve-
ments (i.e., up to 11-fold). These differences do not correlate with the
number of designed mutations since Csel2, Cdyn and Csedy incor-
porate 6, 3 and 7mutations, respectively. Hence, ourfindings suggest
that, compared to the conformational selection approach, the
strategy maintaining conformational flexibility has the potential to
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Fig. 2 | Design of receptor–peptide binding sites for enhanced sensing. a Table
describing the mapping on the receptor topology and numbering of receptor and
peptide residues targeted for design. ECL and TM refer to extracellular loop and
transmembrane helix, respectively. BW refers to Ballesteros Weinstein notation.
Csel1, Csel2, Cdyn represent the sequences of the selected designs. b Location of
the designed residues (shown in sticks) mapped onto the backbone structure of
receptor peptide binding site (shown in cartoon). The WT CXCL12 peptide is
represented as a gray-colored surface. c–h WT peptide-induced cell signaling

responses of designed receptors measured through Gαi activation and calcium
release: Gαi BRETof Csel1 design (mean, n = 2 technical replicates) (c), Csel2 design
(mean, n = 2 technical replicates) (e), and library-screened mutations (mean, n = 2
technical replicates) (g). Calciummobilization of Csel1 design (mean ± s.e.m., n = 3
technical replicates) (d) and Csel2 design (mean ± s.e.m., n = 3 technical replicates)
(f). Gαi BRET of single-point library mutations in Csel2 design background (mean,
n = 2 technical replicates) (h).
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identify more effective binding interactions that trigger receptor
activation.

Design of CAPSen chemotactic peptide super-agonist pairs
We next sought to create selective receptor–peptide pairs by designing
peptide super-agonists. Such synthetic sensor-response systems would
provide orthogonal solutions for modulating signal transductions while
bypassing the high level of binding promiscuity inherent to native
receptors. From our computational models, we identified 2 sites P3 and
P7 on the peptide scaffolds where mutations were predicted to further
increase binding interactions with the Csel1 and Csel2 receptor designs.
A designed Leu at P7 further optimized packing complementarity with
the binding hotspot motif of the Csel2 design. This mutation enhanced
peptide binding selectivity for Csel2 as Gαi efficacy of the designed
sensor was increased by 30% while the overall response of the WT
receptor was decreased by 18% (Fig. 3a). At position P3, our calculations

identified bulky aromatic residues predicted to complement I411.35 and
W942.60 at theTM1/2pocket interfaceof thedesignedsensors, leading to
powerful activating effects. Specifically, the Cdyn:V3Y peptide pair dis-
played more than 80-fold enhanced potency and a 25% increase in effi-
cacy compared to theWT receptor–peptide pair (Fig. 3b, d). The largest
signaling increaseswereobtainedwhen combiningpeptidemutations at
P3 and P7. The Csedy:V3Y-Y7L peptide pair boosted both potency and
efficacy by more than 100-fold and 34%, respectively (Fig. 3c, d).

Overall, we observed that large additional enhancements in
functional binding properties could be achieved by also evolving the
peptide sequence and structures. These results demonstrate the
power of our computational approach for engineering synthetic
receptor–peptide pairs with highly sensitive binding properties and
potent downstream signaling. They also suggest that the binding
interface between the native peptide and receptor is far from optimal
for binding and signaling potency.

Fig. 3 | Design of highly sensitive and chemotactic receptor–peptide pairs.
a–d Shifts in sensitivity (mean fitted value of dose-response curve fits ± s.e.m., n = 5
for Cdyn:V3Y, n = 4 for Csedy:V3Y-Y7L and Csedy:WT, n = 3 for all other pairs) and
maximum activity (fitted value) for various receptor–peptide pairs involving the
following designed peptides: a CXCL12 Y7L variant, b CXCL12 V3 substitutions,
c CXCL12 V3Y/W-Y7L. d Changes in potency and efficacy across three separate
experiments (mean ± s.e.m., n = 3 independent experiments). e Schematic of Boy-
den chamber migration assay of T cells transduced with engineered receptors and
f migratory responses of transduced primary human T cells towards full-length

chemokine. Bars are colored according to the transduced CXCR4 variant, and
individual points are colored according to the CXCL12 variant (mean ± s.d., n = 3 for
WT:V3Y-Y7L, Cdyn:WT, Cdyn:V3Y; mean ± s.d., n = 4 for WT:WT, Csedy:WT, Cse-
dy:V3Y-Y7L; mean ± s.d., n = 5 for WT:V3Y, Csel2:WT; mean ± s.d., n = 6 for
Csel2:V3Y-Y7L). Significance shown with two-sided unpaired t-test p values to
WT:WT migration. *p ≤0.05, **p ≤0.01, ***p ≤0.001, ****p ≤0.0001 (p =0.0297 for
WT:V3Y, p =0.0334 for WT:V3Y-Y7L, p =0.0141 for Csel2:WT, p <0.0001 for Cse-
dy:WT, p =0.0205 for Cdyn:WT, p =0.005 Csel2:V3Y-Y7L, p =0.0001 for Cse-
dy:V3Y-Y7L, p =0.0008 for Cdyn:V3Y).
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Fig. 4 | Conformational diversity of WT and CAPSen receptor–peptide sub-
states. Population density of ligand poses sampled in all-atomMD simulations are
plotted in PC space (left panels). Inter-cluster RMSD of the most populated ligand
conformations shown. Representative peptide poses are shown for the three most
populated conformational substates of each variant (middle panels). Only side-
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frequent contacts from each substate are depicted schematically (right panels).
Strong static contacts (solid gray lines) are prevalent in two or more substates,
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Receptor–peptide variants are shown in increasing order of conformational
dynamism of the complexes: a the Csel2:Y7L complex, b the Csedy:V3Y-Y7L com-
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Designed receptor–peptide pairs enhanced human T cell
chemotaxis
We next assessed whether our ultra-sensitive CAPSens also elicited a
migratory phenotype in cells with concomitant sensitivity upon detec-
tion of chemokines. Chemotaxis results from the complex orchestration
ofmultiple intracellular pathways that control receptor oligomerization,
cell motility, polarity, and adhesion following receptor-mediated G-
protein activation triggered by the sensing of chemokine proteins30,33–35

(Fig. 3e). Such validation represents a stringent test of our ability to
leverage molecular design for cell engineering and reprogram complex
cellular behaviors in response to environmental cues. We transduced
primary human T cells with selected designed sensors (Supplementary
Fig. 2) andmeasured their migration against gradients of full-lengthWT
or engineered chemokines incorporating the designed N-terminal pep-
tide tail. Chemotaxis was measured using Boyden chambers in which
cells can migrate across a porous membrane towards a reservoir con-
taining chemoattractant. Migratory indices were measured as the fold-
migration over a no-chemoattractant control for each transduced
donor. T cells transduced with the Csel2, Cdyn, and Csedy designs dis-
played up to almost 4.7-fold increased migration towards 100nM WT
CXCL12. At this level of chemoattractant, WT CXCR4 promoted around
1.5-fold enhanced migration when compared to the no-attractant con-
trols (Fig. 3f). Our engineered CAPSens also boosted T cell migration by
up to 4.5-fold when exposed to designed chemokines (Fig. 3f). The
enhanced cellular migration demonstrates that the designed molecular
signaling properties leading to ultra-high sensitivity of our sensors
translate into the corresponding modulation of cell functions and phe-
notypes. It also indicates that our strategy focusing on the flexible
peptide region of the chemokine is generalizable to the design of bio-
sensors responding to full-length chemoattractants.

Overall, the in vitro characterization of our designs indicate
that the computational techniques have the potential to enrich
receptor–peptide binding interfaces for functional interactions that
can translate into enhanced receptor signaling sensitivity and potency.

Highly conformationally adaptive designed receptor–peptide
binding interfaces through mutual induced fit
Our designed receptor–peptide agonist pairs offer a unique opportu-
nity to uncover the structural and dynamics underpinnings of
receptor–peptide binding and agonism. Experimental structures by
X-ray crystallography or cryo-electron microscopy of our designs

would onlyprovide snapshots of the conformational ensemble andnot
reveal whether our designs achieved their functions through the
intended modulation of the binding dynamics. Therefore, we decided
to instead carry out molecular dynamics (MD) simulations of the
designs to investigate the sequence-structure-dynamics relationships
underlying their functions. Since the computational design was per-
formed using knowledge-based potentials of the Rosetta software,MD
simulations using molecular mechanics force fields provide an ortho-
gonal validation of the design calculations.

Starting from the refined designmodels that best agreed with the
experimental data, we run up to 1.9microsecond long equilibriumMD
simulations in explicit lipids. Within this timescale, the peptide-bound
receptor complex remains in the active state as assessed by the local
conformation of consensus class A GPCR activation features such as
interhelical (i.e., TM3-TM6 and TM3-TM7) distances on the intracel-
lular side of the receptor and the RMSD for the NPxxY motif (Sup-
plementary Fig. 3). However, the simulations are long enough for the
peptide and receptor to explore distinct bound conformations and
enable a qualitative comparison of dynamic ensembles between var-
iants (Fig. 4, Supplementary Fig. 4).

We analyzed the conformational space of the complexes using
principle component analysis (PCA) of the MD trajectories. The ana-
lysis revealed the existence of distinct families (i.e., clusters) of con-
formations for the WT and all engineered receptor–peptide pairs
(Fig. 4). The WT and Cdyn binding interfaces were characterized by
high peptide ligand RMSD (up to 14.6Å distance between clusters of
peptide conformations, Fig. 4a, b) (Supplementary Table 1) and sug-
gest that the design approach was able to maintain high levels of
peptide conformational diversity at the binding interface. On the other
hand, the Csel2 design displayed substantially lower conformational
diversity (only up to 2.1 Å inter-cluster RMSD, Fig. 4c), consistent with
that design strategy stabilizing a subset of the receptor–peptide
structures through conformational selection. As expected for the
hybrid design strategy, the V3Y-Y7L peptide explored an intermediate
conformational space in the binding pocket of Csedy (up to 8.1 Å,
Fig. 4d). Overall, the different levels of peptide structural hetero-
geneity identified by the MD simulations are consistent with the
intended modulation of the conformational space by our 2 design
strategies. To rule out that the observed conformational heterogeneity
solely results from potential inaccuracies in our predicted models, we
carried out the same MD analysis starting from the experimental

0
1

0
2

0
3

0

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

Po
te

nc
y 

(Δ
lo

g(
EC

50
))

P7

P5

P3Pe
pt

id
e 

po
si

tio
n

a c

100

110

120

130
Max Activity (%WT)

WT:WT

Cdyn:V3Y

Csedy:V3Y-Y7L

Csel2:Y7L

WT:WT
Csel2:Y7L
Cdyn:V3Y
Csedy:V3Y-Y7L

Cavity Cross sectional Area (Å2)

b

C
av

ity
 D

ep
th

 (Å
)

Fig. 5 | High level of structural adaptation at the designed receptor–peptide
binding interface. a WT CXCR4 ligand-binding cavity with depths marked for
N-terminal residues P3, P5, and P7. b Cross-sectional area across cluster centers
frommolecular dynamics simulations. (mean ± s.d.) c 3Dmapof structure-function
relationship. Activity shifts fromWTof individual receptor–peptide pairs (z-axis for

potency and bars colored according to maximal activity) are plotted as a function
of conformational shifts of the peptide (y-axis: calculated by Principal Component
Analysis on bound peptide ensembles (seeMethods)) and conformational shifts of
the receptor binding pocket (x-axis: calculated by cross-sectional area at the P5
depth, 10.25Å (seeMethods)) for the center of the largest cluster of conformations.

Article https://doi.org/10.1038/s41467-023-38491-9

Nature Communications |         (2023) 14:2875 8



structure of the related complex between the N-terminal peptide of
RANTES36 and the CCR5 chemokine receptor. We observed a similar
diversity in the conformations of the bound chemokine peptide
(Supplementary Fig. 5), suggesting that native chemokine receptors
may actually bind agonist peptides with a significant degree of con-
formational dynamism.

We then analyzed in detail the network of binding contacts
engaged by the distinct families of peptide conformations. Contacts
were defined as dynamic if they were unique to one cluster or static if
they were observed for at least two peptide binding modes.
Throughout the MD trajectories, the peptide engaged with Csel2
through 16 strong static versus 5 weaker dynamic binding contacts
(Fig. 4). The number of static contacts dropped to 12 and 11 while the
dynamic ones raised to 11 and 13 in the Csedy and Cdyn complexes,
respectively (Fig. 4). These observations further confirm that Cdyn
and Csedy complexes involve a more dynamic binding interface
than Csel2.

Conformational diversity was also noticeable on the receptor
side and best quantified using a volumetric analysis of the peptide
binding pocket. To simplify the analysis, representative members of
each cluster were selected and cross-sectional areas were calculated
at different depths of the binding site. This analysis highlighted sig-
nificant conformational adaptation of the binding surface (e.g., by up
to 52% at a cavity depth of 10.25 Å) in response to the different
peptide conformations and sequences (Fig. 5a, b). When we mapped
the distribution of the largest cluster of conformations (i.e., cluster
C1) onto a 3Dmap of the structure-function relationship (Fig. 5c), we
observed that the designed pairs occupy subspaces that are far
apart in both receptor binding pocket and peptide conformation
dimensions.

Overall, these findings suggest that the high conformational
plasticity of the CXCR4–CXCL12 binding interface may facilitate the
adaptation of contact networks in response to even limited changes in
receptor and peptide sequence space through mutual induced fit.
Although this analysis implies that higher conformational flexibility at
thebinding interface correlateswith stronger signaling efficacy, it does
not provide mechanistic insights into how such structurally distinct
binding complexes could trigger potent signaling responses.

Potent signaling achieved through substantially rewired but
robust allosteric pathways
To address that question, we sought to investigate how peptide
binding initiates signal transductions across the receptor. Since the
inference of allosteric pathways using experimental approaches
remains very challenging and would require extensive measurements
by NMR spectroscopy, we relied on predictions fromMD simulations.
Allosteric signal transductions are thought to beprimarilymediatedby
networks of dynamically coupled residues37–40. Hence, they should be
identifiable through analysis of coupled motions extracted from MD
simulations of peptide-bound receptor complexes in the active state.
We developed the method AlloDy to carry out this analysis (Methods,
Supplementary Fig. 6). First, AlloDy calculates the amount of infor-
mation (i.e., Mutual Information (MI)) exchanged between residues
from their levels of coupled motions, a metric adopted by other
approaches as well38. Then the method constructs all possible allos-
teric networks connecting distant sites in the receptor and running
through residues exchanging high MI. These individual paths are then
clustered into allosteric pipelines that describe how allosteric signals
are propagated from the extracellular peptide-binding pocket to the
intracellular G-protein coupling site (Methods, Fig. 6). Importantly,
since our MD simulations are performed on peptide-bound receptor
complexes in the active state, they do not carry out information on the
transition of the receptor from inactive to active states, but inform on
how the extracellular and intracellular sites communicate when the
peptide is bound and the receptor occupies the active state. Within
that framework, effective signal transductions should translate into
strong allosteric pipelines running through the receptor structure and
connecting the intra- and extracellular receptor sides.

As shown in Fig. 6, AlloDy identified several allosteric pipelines for
the WT CXCR4 and designed CAPSens that flowed from the agonist
peptide through a layer of receptor residues at the pocket interface,
termed ‘allosteric triggers’, down to a conserved set of ‘allosteric
transmission hubs’ located in the TM region away from the shell of
ligand-binding residues. These transmission hubs include highly con-
served class A GPCR motif residues W2526.48 (W toggle) and N2987.49

(NPxxY), as well as key highly conserved activation residues in CXCR4:
F872.53, L1203.36, H2035.42, mutation of which has been shown to impair
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calcium mobilization activity.41–43 Though the relative amounts of
information passing through this conserved set of transmission hubs
varies between the designs (Supplementary Table 2), the topology of
the allosteric pipelines leading to G-protein signaling remain very
similar between variants (Supplementary Figs. 7–10).

By contrast, how allosteric signals initiated by the peptide reach
the common set of transmission hubs is highly dependent on the
designed receptor–peptide interface. In fact, each variant utilizes a
distinct set of allosteric triggers to connect to the activating allosteric
pipelines (WT: R183ECL2, I185ECL2, W942.60, N371.31, H2817.32, E2887.39, see
Supplementary Fig. 7; Csel2: R183ECL2, I185ECL2, W942.60, A371.31, L411.35,
I2847.35, M2857.36, E2887.39, see Supplementary Fig. 8; Cdyn: R183ECL2,
I185ECL2, D187ECL2, D972.63, W942.60, N371.31, H2817.32, see Supplementary
Fig. 9; Csedy: A180ECL2, R183ECL2, V185ECL2, D187ECL2, F189ECL2, W942.60,
A371.31, H2817.32, I2847.35, M2857.36, E2887.39, see Supplementary Fig. 10).
Though there is some overlap in the allosteric triggers, the specific
interactions with the peptide agonist that confer activation are unique
across WT and the CAPSens and reflects the high diversity of binding
contacts engineered at the binding interface.

Overall, while there is substantial dynamic rearrangement of
activating contacts between variants (Fig. 6), they propagate the acti-
vation signals through a common set of allosteric determinants in the
core of the receptor. These remarkable findings suggest that high
conformational adaptability of the binding site together with robust-
ness of the allosteric transmission layer are critical features for the
evolution of signaling receptor–peptide pairs.

Discussion
Current approaches for the design of protein-protein complexes
mostly follow the classical lock and key paradigm and optimize inter-
actions between static binding surfaces. The lack of dynamic treatment
of protein interactions hampers the effective design of complexes
involvingflexible proteins and ligands,which represent a large fraction
of the molecules regulating cellular functions. In particular, peptide-
binding receptors constitute one of the most abundant signaling sys-
tems in humans. However, these complexes have been particularly
challenging to study and engineer partly owing to their high con-
formational flexibility. Here, we developed a computational frame-
work for the design of dynamic protein complexes involving adaptable
conformational ensembles of themolecules. We demonstrate that this
approach is critical to achieve optimal sensing of flexible ligands and
strong allosteric signaling responses that necessitate the interactions
with multiple functional sites on the receptor surface.

Previous efforts to engineer high-affinity peptide ligands to the
native CXCR4 receptor have mostly generated antagonists. Library-
selected CXCL12-based antagonists44 identified single N-terminal
amino acid additions of Leu and Met that may antagonize CXCR4 in
a similar mode as vMIP-II45, IT1t46 or Met-CXCL1247, that intercalate
betweenW942.60 and H1133.29, a local hydrophobic inter-TM groove not
occupied by our agonist peptide ensemble. These antagonists may
lock W942.60 in an inactive conformation, preventing allosteric signal
propagation through key downstream transmission hubs, suggesting
that selecting solely for high-affinity receptor–peptide interactions is
susceptible to conformational selection of inactive receptor states.

Our designs were able to explore regions of sequence space not
enriched by such binding-selective approaches, suggesting that the
computational method can explore and engineer alternative active
states not commonly accessed by the WT receptor. Unlike most
binding interfaces between globular proteins, our designs displayed
considerable structural adaptation to sequence changes. Remarkably,
the diversity of designed allosterically coupled residue networks at the
ligand-binding pockets is large among variants, and even between
conformational substates of the same variant. While the designed
allosteric triggers still operate and funnel signals through the same set
of conserved transmission hubs as WT, they considerably enhance

signal transduction through optimally rewired dynamic couplings.Our
CAPSens are capable of ultrasensitive responses, not by enriching a
high density of strong contacts around a particular active conforma-
tional substate, but by preserving conformational dynamism,
as observed in our MD simulations. Our findings support a
receptor–peptide recognition model where conformational flexibility
is essential for the bound molecules to engage a multitude of func-
tional interactions triggering effective allosteric responses. In this
model, high levels of conformational entropy enable the shifting of
active state ensembles and the rewiring of allosteric coupling via
contacts not commonly accessed by the WT complex (Fig. 6, Supple-
mentary Figs. 7–10). As such, the high conformational adaptability of
the native CXCR4–CXCL12 binding interface is critical in accom-
modating and rewiring allosteric entry points to the transmission layer.
Overall, our study suggests that the combination of a flexible sensing
layer coupled with a robust signal transmission layer may be a com-
mon hallmark of GPCRs, providing potential mechanistic insights into
the high evolvability of sensing and signaling properties in this
receptor family. While our computational findings are consistent with
the experimental results, the MD simulations were performed on
designmodels and not experimental structures. Hence, we cannot rule
out that the precise details of the simulated binding complexesmay be
affected by inaccuracies in the starting structural models.

This work was started before AlphaFold2 was released. A recent
study48 indicates that AlphaFold can predict peptide–protein interac-
tions despite not being trained on this task, suggesting that the main
features of peptide binding can be implicitly captured as an extension
of folding. Our method is geared towards modeling flexible peptide
interactions which do not involve strong patterns of unique static
contacts such as those characteristic of folded polypeptide chains.
Therefore, our study should provide a complementary and useful
approach to neural network based methods trained on protein folded
structures.

In the long run, we expect that designed chemotactic signaling
systems should prove useful in a wide variety of therapeutic contexts.
Chemotactic peptides are attractive targets since directional move-
ment of cells in response to gradients of these molecules (i.e., che-
motaxis) is essential throughout biology and control over cell
migration represents a key challenge in synthetic cell biology. For
example, efficient immune cell homing to and into cancers is one of
the main bottlenecks in modern immunotherapy49–53. Hence, these
therapeutic approaches would benefit from engineered cytotoxic
lymphocytes with enhanced chemotaxis toward tumor sites. Overall,
our results suggest that engineered receptors could trigger migration
towards cancer-prone sites at longer distances with shallower che-
mokine gradients when compared to native chemotactic systems. Our
designed CAPSen:hyper-agonist peptide pairs open the door to
bringing cell migration under exogenous and spatiotemporal control,
providing a promising synthetic cell biology tool.

Most biosensor design approaches have focused on engineering
protein domains for optimal recognition of structurally well-defined
molecules. Previous studies have repurposed designer receptors
exclusively activated by a designer drug (DREADDs) to elicit chemo-
taxis towards the small molecule clozapine-N-oxide (CNO)54, but the
direct in vivo application of this approach is limited by the delivery of
CNO and the inherent lack of utility as a gradient-generating homing
molecule. Our CAPSens exhibit some degree of orthogonality in the
Csel2:Y7L pair, and future iterations could be developed as genetically
encodable orthogonal receptor–peptide pairs allowing for biological
expression of the homing signal by cells that would enable synthetic
transmitter-receiver cell systems and precise spatiotemporal control
of cell homing. By targeting flexible and structurally uncharacterized
peptides, our design platform significantly expands the range of
molecules that can be detected by biosensors. Unlike approaches that
rely on multi-domain sensor reconstitution upon ligand sensing, our
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method optimizes the coupling between molecular recognition and
allosteric response in a single protein domain within the restricted
design space of the ligand pocket interface and can generate CAPSens
with strongly enhanced dynamic and sensitive responses. Carving
biosensors into versatile GPCR scaffolds offers key additional advan-
tages. GPCRs can now be engineered to trigger a wide range of intra-
cellular functions through reprogrammed coupling to diverse
effectors includingG-proteins and arrestins55,56. Alternatively, inserting
fluorescent protein domains into GPCR scaffolds enables fast and
direct optical detection of ligand molecules57. As such, our approach
lays a foundation for a wide range of synthetic biology, diagnostics,
and therapeutic applications that would benefit from sensor systems
that trigger complex cellular outputs or enable direct highly sensitive
detection of chemical cues.

Methods
Constructing initial chemokine biosensor scaffolds
Our initial goal was to build CXCR4-based receptor scaffolds in the
active signaling state for engineering precise interactions with peptide
agonists that promote strong binding and potent response. In absence
of a CXCR4 active state structure, hybrid scaffolds were generated
using elements from the inactive-state structure of CXCR4 crystallized
with a viral chemokine antagonist (PDB ID: 4RWS)45, and the active-
state structure of the viral chemokine US28 receptor crystallized with
CX3CL1 (PDB ID: 4XT1)24. The hybridization aimed to incorporate the
maximal number of active state structural features from 4XT1
while preventing significant de novo reconstruction of the trans-
membrane core region due to poor sequence-structure alignment
between the viral chemokine template and the CXCR4 sequence.
Hybridized scaffolds incorporated structural elements of either 4RWS
or 4XT1 around the peptide binding pocket in ECL2 (residues
1744.63−192ECL2) and the extracellular headof transmembranehelix (TM)
2 (residues 872.53−101ECL1), local regions that differ significantly between
both templates (Fig. 1f). Combination of these structural elements
from both structures generated 4 receptor scaffolds originating from
the active-state homologous template of US28 using either, both or
neither of the ECL2 or TM2 structural elements from 4RWS. Subse-
quently, the CXCR4 sequence was threaded onto the hybrid template
structures guided by sequence-structural alignments using HHpred
(US28 and CXCR4 share 29 % sequence identity overall)58,59. Before
hybridization, the 4RWS template structure was corrected back to
wild-type sequence (C187DECL2 / W125L3.41) and missing loops in ICL1
and the truncated ICL3were repaired by the loop remodeling protocol
of Rosetta (cyclic coordinate descent algorithm)60,61. 1000decoyswere
generated and clustered and the lowest energy clusterwas selected for
further modeling.

Peptide docking
The N-terminal tail of CXCL12 in experimental structures of the che-
mokine is often too disordered or lacks receptor context to truly
represent an active-state conformation. Thus, we threaded the
sequence of that region onto the active-state structure of CX3CL1 in
complex with US28 (4XT1) to generate a starting template for sub-
sequent flexible docking. The N-terminal 11 residues of CXCL12,
including the CXC motif, were threaded onto the CX3CL1 peptide
structure from the US28:CX3CL1 active-state complex (PDB ID: 4XT1).
The N-terminal K1 of CXCL12 was aligned to the H2 position of CX3CL1
to match the partial positive charge of the imidazole ring since the Q1
residue of CX3CL1 is cyclized to form pyroglutamate to produce a
neutral N-terminus24. (Alternately, K1 of CXCL12 was aligned to H3 of
CX3CL1, but docking from this initial position yielded models with
weak interface energies and few contacts to key binding residues).
That initial peptide position was translated across the receptor pocket
in a cubic grid around the aligned position and rotated around the
principal axis of the receptor at each lattice point to evenly cover the

space of the receptor binding cavity. Input poses are prepacked to
generate 116 startingpositions for subsequentflexiblepeptidedocking
using the Rosetta FlexPepDock protocol17. In these simulations, the
peptide is docked using aMetropolisMonte Carlo simulated annealing
protocol involving iterative cycles of peptide rigid body moves and
peptide backbone structure optimizations, followed by side-chain
repacking and minimization over all conformational degrees of free-
domof thepeptide residues andpeptide-contacting receptor residues.
10,000 decoys were generated from the 116 unique starting inputs.
8 separate flexible peptide docking simulations (10,000 decoys each)
were run from each of the 4 starting scaffolds (320,000 total decoys)
using no constraints or one of 7 different sets of constraints were used
to enrich the following putative receptor–peptide interactions that
represent known critical agonistic contacts (CXCR4 residue to CXCL12
residue)41,62,63:

Constraints follow the format:
AtomPair <atom><residue> FLAT_HARMONIC <distance><sd>

<tolerance>
The constraint format describes a harmonic distance penalty

between two atoms with a zero penalty in the range of <distance –

tolerance> to <distance + tolerance>. The penalty is harmonic with
width parameter <sd> outside of that range:

f ðxÞ= x � ðdistance+ toleranceÞ
sd

� �2

ð1Þ

One of the following seven constraint sets were applied for
separate production runs from each of the four receptor scaffolds,
generating 10,000 decoys in each run.

(1) D97 to the ε-amine of K1:
AtomPair CG 71 NZ 296 FLAT_HARMONIC 1.75 0.2 1.75
(2) D97 to S4:
AtomPair CG 71 OG 299 FLAT_HARMONIC 1.75 0.2 1.75
(3) D171 to the ε-amine of K1:
AtomPair CG 145 NZ 296 FLAT_HARMONIC 1.75 0.2 1.75
(4) E288 to the ε-amine of K1:
AtomPair CD 262 NZ 296 FLAT_HARMONIC 1.75 0.2 1.75
(5) E288 to the N-terminal amine:
AtomPair CD 262 N 296 FLAT_HARMONIC 1.75 0.2 1.75
(6) Tripartite constraint set for D97 to S4 + E288 to the ε-amine of
K1 +D171 to the N-terminal amine:
AtomPair CG 71 OG 299 FLAT_HARMONIC 1.75 0.2 1.75
AtomPair CD 262 NZ 296 FLAT_HARMONIC 1.75 0.2 1.75
AtomPair CG 145N 296 FLAT_HARMONIC 1.75 0.2 1.75
(7) Tripartite constraint set for D97 to S4 +D171 to the ε-amine of
K1 + E288 to the N-terminal amine:
AtomPair CG 71 OG 299 FLAT_HARMONIC 1.75 0.2 1.75
AtomPair CG 145 NZ 296 FLAT_HARMONIC 1.75 0.2 1.75
AtomPair CD 262N 296 FLAT_HARMONIC 1.75 0.2 1.75

Peptide conformation selection through diversification
For each production run of unconstrained or constrained peptide
docking on one of the initial receptor scaffolds, the docked peptide
decoyswerefiltered by a combined interface andpeptide energy score
(Rosetta score terms “I_sc + pep_sc” from the FlexPepDock protocol).
The decoys were aligned along the receptor structures and the Cα

coordinates (Cx, Cy, Cz) of each of the 20% top-scoring poses were
stored in amatrix, whose principal axeswere calculated in reference to
the common principal axes of the receptor. Each peptide pose was
described by three features:

(i) peptide positionPp relative to the receptor by center ofmassof
the peptide:

Pp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
x +C

2
y +C

2
z

q
ð2Þ
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(ii) peptideorientationPo by the angles of thepeptide’s 3 principal
axes (1,2,3) in reference to the 3 principal axes of the receptor (a,b,c):

Po =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21a +θ

2
2b +θ

2
3c

q
ð3Þ

(iii) internal peptide shape Ps by the eigenvalues of the (3 ×11
residue) dimensioned matrix of the Cα-coordinates of the peptide

Ps =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e

2
2 + e

2
3

q
ð4Þ

Peptide poses which were more than 3 standard deviations from
the average value for any of the 3 variables were removed. The
remaining structures were sorted into N bins by Pp, then each of those
N bins were sorted into N bins by Po, and finally into N bins again by Ps,
such that ~200 populated bins were identified with unique Pp, Po, and
Ps properties. For each bin, the decoywith the best combined interface
and peptide energy score was selected for loop rebuilding and
relaxation.

Loop rebuilding and complex relaxation to model mutual
induced fit effects
Loop rebuilding and complex relaxation were performed on each
diversified ensembleof peptide poses from flexible peptide docking to
generate ~20,000 decoys per receptor scaffold and constraint com-
bination for a total of 640,000 decoys.

Loop rebuilding: Extracellular loops either truncated in the start-
ing scaffoldor inproximity to theboundpeptidewere rebuilt using the
loop remodeling protocol of Rosetta. 100 independent trajectories
were started from each peptide-bound receptor structure selected by
the diversification step.

Complex relaxation: To further capture and model peptide
induced fit effects on the receptor structure, receptor–peptide com-
plexes with closed loops coming out of the loop rebuilding step were
subsequently relaxed across all conformational degrees of freedom.
All receptor structures were restrained using distance constraints
derived from sequence conservation56. Any of the 7 experimentally
derived receptor–peptide interface constraint sets used in peptide
docking (above) were again applied during complex relaxation. For
each combination of initial receptor scaffold and peptide docking
constraints (~20,000 decoys each), the 10 % lowest interface energy
decoys were clustered by structural similarity of the peptide con-
formation and key binding residues in the receptor pocket. The most
populated clusters (i.e., containing at least 30 members) were filtered
by a combined interface and peptide energy score (Rosetta score
terms “I_sc + pep_sc” from the FlexPepDock protocol, <−45 REU). Top-
scoring clusters of models were also filtered for interfacial constraint
satisfaction (<10 REU constraint violation penalty, which ensures
constrained atoms were within 4.1 Å). Because the 2 N-terminal resi-
dues of CXCL12 have been shown to be essential for activity, clusters
that did not display any contacts between K1 or P2 to key receptor
residues known to be important for activity were not considered. A
total of 9 clusters passed these filtering steps and the representative
models from these clusters were selected for the design of
receptor–peptide complexes.

Refinement of the ensemble of CXCR4–CXCL12 active-state
models
While the initial set of WT CXCR4–CXCL12 models provided key input
scaffold structures for engineering functional receptor–peptide inter-
actions, we did not expect every model to accurately represent the
receptor–peptide conformational ensemble. We filtered and refined the
initial set of models to find an ensemble of flexible peptide dock posi-
tions that best recapitulate the observedmutational effects and increase
overall prediction accuracy. Because all mutations were designed at
positions that directly contact the peptide, we hypothesized that

changes in ligand EC50 should be dominated by changes in ligand
binding affinity. Therefore, the change in binding interface energy from
WT of each model was compared to the EC50 shifts. Since the designed
mutations triggered large increases in potency, we selected the models
that displayed substantial decrease in binding interface energies (i.e.
from −3.9 Rosetta Energy Units for Csel2 to −6 Rosetta Energy Units for
Cdyn). Themodels that best supported of observed changes in EC50 for
each variant were used as an initial input for further flexible peptide
docking refinement to identify optimal conformations for theWT,Csel2,
library-selected and Csedy designs. A single constraint was enforced for
electrostatic interaction between E2887.39 of CXCR4 and the ε-amine of
K1 on the peptide. Top-scoring cluster members then underwent
another roundof side-chain repacking and energyminimizationwithout
constraints. The interface energies of the resulting models were again
validated against observed changes in EC50 to identify conformational
states representative of an ensemble of peptide positions which largely
support the designed effects measured experimentally.

Computational combinatorial design
Designable sites were identified on both the peptide and receptor
sides of the different binding interfaces featured in the initial set of 9
CXCL12-bound receptor WT models. Designed combinations of
amino-acids and conformations were searched concurrently for
improving receptor–peptide association and signaling response. In
silico mutagenesis was performed as previously described64, allowing
all 20 possible residue substitutions at designable sites and selecting
top-scoring models for interface energy improvement from WT
among 200 independent trajectories, such that scores converged for
the top 10% models. All residues with heteroatoms within 5.0 Å of any
designable residue were repacked and their backbone and side-chain
minimized. Csel2 designs were made on two different clusters of
models that showed good agreement with the initial Csel1 design.
Designs were computationally validated by peptide docking refine-
ment (10,000 independent trajectories) to identify theoptimaldocked
peptide position at the binding interface of the designed complexes
and refine the binding energy predictions. The 10% lowest energy
decoys were verified by RMSD to the intended design position, cluster
size, and interface energy after repacking.

Computationally guided point mutant library
A computationally guided library of variants was built from the initial
ensemble of receptor–peptide models. Each variant was designed by
mutating a single predicted peptide binding and/or allosteric residue.
The mutant library consisted of substitutions involving modest chan-
ges in side-chain size, and polarity that would largely be compatible
with the ensemble of initial receptor–peptide conformations. Specifi-
cally, mutations were selected if they did not display significant steric
clashes with the peptide (>4 Rosetta energy Units) in more than 5 of
the conformations in the ensemble. The following mutations were
included in the library: R30A/K/Q/L/I/M1.24, N33A/Q/V/L/I/M1.27, A34S/V/
L/I/M1.28, N37A/Q/V/L/I/M1.31, L41I/V/F/M1.35, Y45A/F/L/I/M/W1.39, W94A/
Y/F/L/I/M2.60, D97E/N/V/L/M/K2.63, A98S/V/L/I/M2.64, N101A/Q/V/L/I/M/
K/RECL1, H113A/N/Q/T/V/F/L/I/M/Y3.29, Y116A/L/I/M/W3.32, D171A/E/N/V/
L/I/M/K4.60, S178A/T/V/L/IECL2, A180S/V/L/I/MECL2, D181A/E/N/V/L/I/
MECL2, D182A/E/N/V/L/I/MECL2, R183A/K/Q/L/I/MECL2, I185A/L/F/MECL2,
D187A/E/N/V/L/I/M/KECL2, R188A/K/Q/L/I/MECL2, F189A/Y/L/I/M/WECL2,
Y190A/F/L/I/M/WECL2, V196A/T/L/I/M5.35, Q200A/N/V/L/I/M5.39, H203A/
N/Q/T/V/F/L/I5.42, Y255A/F/L/I/M/W6.51, I259A/L/V/F/M6.55, D262A/E/N/V/
L/I/M6.58, H281A/N/Q/T/V/F/L/I/K7.32, I284A/L/V/F/M7.35, S285A/T/V/L/
I7.36, E288A/D/N/V/L/I/M/K7.39, F292A/Y/L/I/M/W7.43.

Analysis of the conformational dynamics and allosteric signal-
ing properties of the receptor–peptide complexes
To cross-validate the designed signaling properties of the
receptor–peptide complexes, we developed AlloDy, a method
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predicting allosteric signal transduction pathways from molecular
dynamics simulations. As described in detail below, the approach first
runs all-atom simulations of the complexes in explicit solvent, extracts
distinct peptide-bound receptor conformations from the simulated
ensemble using Principle Component Analysis (PCA), calculates
mutual information (MI) from inter-residue correlatedmotions in each
conformation and identifies allosteric pathways that maximize the MI
transferred from the ligand to the G-protein binding sites.

Molecular dynamics (MD) simulations
The final selected models for CXCR4: WT:WT, Cdyn:V3Y, Csel2:Y7L,
and Csedy:V3Y-Y7L complexes were used as starting input poses for
MD simulations. CCR5-RANTES simulations were started from the 11
N-terminal residues of RANTES bound to the receptor extracted from
the active state structure of the complex (PDB: 7F1R). The receptor-
ligand complex was inserted into a regular hexagonal POPC lipid
bilayer with 90Å perpendicular distance between any parallel sides
and solvated by 22.5 Å layer of water above and below the bilayer with
0.15M of Na+ and Cl- ions using CHARMM-GUI bilayer builder65,66.
Simulations were performed with GROMACS 2020.567,68 with
CHARMM36 forcefield69 in an NPT ensemble at 310 K and 1 bar using a
Nosé–Hoover thermostat (independently coupled to three groups:
protein, membrane, and solvent with a relaxation time of 1 ps for all
three) and Parrinello-Rahmanbarostat (with semi-isotropic coupling at
a relaxation time of 5 ps respectively). Equations of motion were
integrated with a timestep of 1 fs for the first three steps of equilibra-
tion and then 2 fs using the leap-frog algorithm. Each system was
energy minimized using the steepest descent algorithm for
5000 steps, and then equilibrated with the atoms of the ligand-
receptor complex and lipids restrained using a harmonic restraining
force in 6 steps (Supplementary Table 3). After constrained equili-
bration, 5–7 independent trajectories of 200 or 300 ns (Supplemen-
tary Table 4) were run for each system. The first 50ns of the
simulations were discarded as the time needed for the system to
equilibrate, as shownby theCαRMSDof the receptors and the ligands.
The total simulated time was defined to ensure convergence of the 1st
and 2nd order entropies calculations in the top three PCA clusters in
every system (see sections below).

Principle component analysis (PCA) of bound peptide con-
formational ensemble
AllMD trajectories sampled the receptor active state as assessedby the
structural distribution of consensus class A GPCR activation features
such as the TM3-TM6 and TM3-TM7 interhelical distances on the
intracellular side of the receptor, except for the C2 andC3 substates of
the variant Cdyn for those we also observed a minor alternative
minimum not representative of a true active state (i.e., distinct from
the well containing the experimental active state structures). The
frames corresponding to these minor populations were filtered out to
ensure that subsequent conformational analysis were truly reflecting
receptor active states. This filtering process yielded 999, 1109, 1277,
and 1057ns of simulated time for subsequent analysis of WT:WT
CXCR4, Csel2:Y7L, Cdyn:V3Y, and Csedy:V3Y:Y7L, respectively. PCA
was performed on the cartesian coordinates of Cα and Cβ atoms of
peptide ligands from receptor–peptide conformations selected by
combining molecular dynamics trajectories from each of the studied
systems. Representative models from the molecular dynamics trajec-
tories were chosen as the highest density points in the space of prin-
cipal components (PCs) 1 and 2. PCA was also performed individually
for each of the systems studied with MD on the cartesian coordinates
of Cα of peptide ligands. The PCA space was then clustered using a
k-means clustering algorithm, with the optimal number of clusters
being evaluated by the Calinski-Harabasz criterion. The variability
explained by the first 2 PCs is shown in Supplementary Table 5. For
each cluster, contact frequency between receptor and peptide

residues was calculated as the percent of frames for which a heteroa-
tomof a given receptor residue is within 5 Å of a heteroatomof a given
peptide residue.

Mutual information calculation
We calculated mutual information (MI) from correlated motions
extracted from MD simulations38,70. To calculate MI from torsional
angles, a list of all backbone (φ andψ) and side chain (Χ1 up to Χ5where
applicable) torsion angles was built from the initial structure, the tor-
sionswere then extracted every 100ps after removing the first 50ns of
every replica. The torsions were then histogrammed using 50 bins
(50× 50 bins for two-dimensional histograms), and the marginal
entropy was calculated using the following equation:

Sϕi
= � R

XBi

n= 1

Pϕi
ðnÞln Pϕi

nð Þ
hϕ

 !
ð5Þ

where ϕi is the torsion being sampled for residue i, R is the gas con-
stant, Bi is the number of bins. Pϕi

nð Þ is the probability of finding ϕi in
bin n defined as: Pϕi

nð Þ= Ni nð Þ
N , with Ni (n) being the number of data-

points/snapshots where ϕi falls in bin n and N the total number of
datapoints/snapshots. hϕ is the width of each bin in the histogram
defined by the torsion ϕi. For two torsions ϕi and ψj belonging to
residues i and j, the joint entropy is therefore defined as:

Sϕiψj
= � R

XBi

n= 1

XBj

m= 1

Pϕiψj
n,mð Þln

Pϕiψj
n,mð Þ

hϕhψ

 !
ð6Þ

where Pϕiψj
n,mð Þ is the joint probability of finding ϕi in bin n and ψj in

bin m. We then get the corresponding mutual information term Iϕiψj
:

Iϕiψj
= Sϕi

+ Sψj
� Sϕiψj

ð7Þ

Correction for finite-size effects was also added:

Sobserved
D E

≈S�M � 1
2N

ð8Þ

where Sobserved
D E

is the estimated entropy using N datapoints andM is
the number of histogram bins with non-zero probability71,72.

Another side effect of finite sample sizes is nonzero mutual
information in independent datasets. To correct for this effect, we
divide the observed MI space into 100 bins. In each MI bin, we ran-
domly pick 5 dihedral pairs (or less if the bin has <5 samples) to
represent the bin, and then for every dihedral pairϕi andψj, we shuffle
the time series of one of the observed dihedrals and recalculate MI
with the shuffled dihedral. This process is repeated until the shuffled
dihedral MI converges, and then the average of the resulting MI over
the chosen dihedral pairs approximates the nonzero independent MI
for a given MI bin. This value of independent MI is then subtracted
fromallMI values belonging to thebin. Thesepermutations can also be
used as a test of significance for MI, and the percentage of MI values
from the various permutations that are larger than the observed MI
approximates ap-value73.Weused anMI significance level ofp <0.01 in
our analysis.

Allosteric pathway and pipeline calculation
Allosteric pathways were calculated by first constructing a graph
where nodes are residues (from either peptide or receptor) and where
edges are formed between any pair of residues with significant MI that
have their Cαs within 10Å. We then constructed pathways by mini-
mizing the number of intermediate nodeswhilemaximizing the sumof
edge MIs between pairs of residues with significant MI whose Cαs
further than 10 Å apart using Dijkstra’s shortest path algorithm74.
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Allosteric pathways were then sorted according to the MI of their
terminal residues, and the number of pathways considered for further
analysis in every system accounted for 85 % of cumulative mutual
information. To cluster pathways into allosteric pipelines according to
their closeness in the 3D structure, we define an overlap parameter,
which is the percentage of nodes from two given pathways within a
cutoff distance (7.5 Å). Overlapping allosteric pathways are clustered
into allosteric communication pipelines using hierarchical clustering,
and the strength of a pipeline is the number of pathways passing
through it. We considered the top-ranking 20 pipelines for our analy-
sis. Allosteric residues are defined as the residues with the largest
number of allosteric pathways passing through them. Ligand and
receptor residues are considered in contact if their heavy atoms are
within 5 Å.

Calculation of receptor cavity cross-sectional area
To quantify the conformational diversity of the ligand binding site
between receptor variants, the ligand-binding pocket of the receptor
models (from whose the ligand molecule was removed) was geome-
trically described using pyKVFinder75. Cavities were defined using a
1.2 Å probe over a cubic lattice (0.25 Å vertex). A 4.0 Å probe was used
to define the entrance of the cavity.

Expression constructs
WT CXCR4 with an N-terminal 3xHA-tag, Gβ3-WT, and GNA15 sub-
cloned into pcDNA3.1(+) were obtained from the cDNA Resource
Center (Bloomsberg, PA). Designed CXCR4 variants and library point
mutants were generated by site-directed mutagenesis. BRET fusion
constructs for Gαi1−91-Rluc8 and Gγ9-GFP2 were derived from opti-
mized Tru-path constructs76 and sub-cloned into pcDNA3.1(+) (Gen-
script Biotech).

Modified peptides
Peptides were synthesized with C-terminal amidation (to reduce
unwanted charge effects at the carboxy terminus) to generate wild-
type and variants of the 17 N-terminal residues of CXCL12
(KPVSLSYRCPCRFFESH) (GenScript Biotech), a peptide known to elicit
calcium mobilization and Gαi coupling signaling20,21. Lyophilized pep-
tides were stored at −80 °Cand resuspended in assay buffer on the day
of the experiment.

Enzyme-linked immunosorbent assay (ELISA) for receptor
expression
Receptor expression was measured by ELISA in parallel for each
experiment in a poly-D-lysine coated, white-walled, clear-bottom 96-
well plate. Cells were fixedwith 4% paraformaldehyde (EMS, ref: 15710)
in PBS for 15min at RT and blocked with 2% BSA for 45min. After that,
45min incubations, first with an anti-HA antibody (Thermofisher, ref:
26183) at a dilution of 1:500 followed by a second anti-mouse IgG
antibody (CST, ref: 7076S) at 1:2000 dilution, were performed. Finally,
chemiluminescence was recorded at the FlexStation3 after 10min
incubation with substrates A and B of SuperSignal West Pico PLUS kit
(Thermofisher, ref: 34577). Average values from three replicates were
normalized to WT HA3-CXCR4 expression.

Calcium mobilization assays
40,000HEK 293T cells (gift from Prof. TedWensel at Baylor College of
Medicine) were transiently transfected with 50 ng WT or variant HA3-
CXCR4, 10 ng GNA15 in pcDNA3.1(+). To equalize receptor surface
expression, 75 ng of HA3-CXCR4 was used for the Csel2 variant. Cells
were first seeded in 100 µL DMEM (Gibco, ref: 41965-039) 10 % FBS in a
black-walled, clear-bottom 96-well plate coated with poly-lysine
(Sigma, ref: P6407-5MG). Directly after cell loading, 50 µL of the mix-
ture containing 0.5 µL Lipofectamine 2000 (Invitrogen, ref: 11668-019)
and the DNAwas added on top of the cells. The cells were incubated at

37 °C, 5% CO2, and 95% relative humidity for 20 h, after which, media
was refreshed with 150 µL DMEM + 10% FBS. Cells were assayed 48 h
post-transfection. Cells were washed with 200 µL FLIPR6 buffer
(HBSS + 20 mM HEPES, pH 7.4), then incubated at 37 °C, 5% CO2, and
95% relative humidity for 2 h in 200 µL dye buffer according to the
manufacturer’s protocol (Molecular Devices, ref: R8190). Just before
the assay, 5× concentrated peptide solutions were prepared in FLIPR6
buffer in a V-bottom 96-well plate. After incubation, peptide solutions
were added at a rate of 16 µL/s after 30 s and fluorescence changes
were monitored for 90 s after addition using microplate reader Flex-
Station3 (Molecular Devices). Themaximum response after correction
by themock-transfected conditionwas averaged from three replicates.
Values were then plotted against selected concentrations and fitted to
a sigmoidal curve using GraphPad Prism v9.

Gαi dissociation BRET
40,000HEK 293T cells were transiently transfectedwithWT or variant
HA3-CXCR4, Gαi1−91-Rluc8, Gβ3-WT, and Gγ9-GFP2 in pcDNA3.1(+) at a
ratio of 10:1:10:5 respectively. Cells were first seeded in 100 µL DMEM
10% FBS in a poly-lysine coated, white-walled, white-bottom 96-well
plate. Directly after cell loading, 50 µL of the mixture containing
Lipofectamine 2000 and the DNA was added on top of the cells.
The cells were then left to incubate at 37 °C, 5% CO2, and 95% relative
humidity for 20 h, after which, 150 µL media was refreshed. Cells were
assayed 48 h post-transfection. Cells were washed with 150 µL PBS,
then 40 µL BRET buffer (HBSS, 0.2% Glucose) was added to each well.
Coelenterazine 400a was first added at a final concentration of 2.5 µM
and BRET ratios were measured once using Mithras2 LB 943 plate
reader. After the firstmeasurement, 40 µL of a 3x concentrated agonist
solution was added to each well, and BRET ratios were measured for
another 30min using aMithras2 LB 943 plate reader.Mock-transfected
controls were subtracted from the data. Maximum values averaged
from 3 replicates were then plotted against selected concentrations
and fitted to a sigmoidal curve using GraphPad Prism v9.

Full-length chemokine purification
CXCL12 and variants expressed in pMS211 (pET21a-based) construct
and purified as previously described23. N-terminal His-tag and leader
sequence cleaved with enterokinase to produce a final product with
the correct N-terminal sequence. The final lyophilized protein was
resuspended at 1mg/ml in 0.1% BSA. Aliquots were snap frozen and
stored at −80 °C.

Peripheral bloodmononuclear cells fromhealthy humandonors
Buffy coats from de-identified healthy human volunteer blood donors
were purchased from the Center of Interregional Blood Transfusion
SRK Bern (Bern, Switzerland). Donors were de-identified and provided
as a commercial entity, so no ethical approval is required.

Generation of retroviral vectors
Retroviral constructs encoding HA3-CXCR4 wild-type or designed
variants were generated using the In-Fusion HD Cloning Kit (Takara,
ref: 638933). Sequences of interest from the expression constructs
mentioned above were amplified by high-fidelity PCR (CloneAmp
HiFi PCR Premix, ref: 639298). p-SFG retroviral backbone contain-
ing an IRES-ΔCD19 reporter gene was linearized by NotI-HF (NEB,
ref: R3189S) and XhoI (NEB, ref: R0146S) restriction enzyme diges-
tion (2–3 h at 37 °C). PCR fragments were gel purified from an
agarose gel using the QIAquick Gel Extraction Kit (Qiagen, ref:
28706×4). Fragments of interest were assembled using the In-
Fusion enzyme mix with the linearized backbone to generate the
constructs of interest and transformed them into stellar competent
cells. Plasmid DNA was purified from minipreps with QIAprep spin
Miniprep Kit (Promega), and constructs were verified by sequencing
(Microsynth).
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Generation of retroviral supernatant
Retroviral supernatant was produced by transient transfection of
293T cells as previously described77. In brief, 293T cells at 50% con-
fluency were co-transfected with (1) the RDF plasmid encoding the
RD114 envelope, (2) the Peg-Pam plasmid encoding MoMLV gag-pol,
and (3) the SFG retroviral plasmid of interest (with LTRs and packaging
signals), using GeneJuice transfection reagent (Merck, ref: 70967-3)
according to manufacturer’s instructions. Retroviral supernatants
were harvested after 48 and 72 h of culture, filtered with 0.45 μM filter
(Filtropur S, Sarstedt, ref: 83.1826), snap-frozen on a dry ice/100%
ethanol mixture, and then stored at −80 °C until use, or used as fresh
supernatant.

Generation of human T cells expressing CXCR4 WT or variants
Peripheral bloodmononuclear cells (PBMCs) were isolated from buffy
coats by density gradient centrifugation (Lymphoprep, StemCell ref:
07851) and activated on plates coated with anti-CD3 (1mg/ml, Biole-
gend, ref: 317347, clone: OKT3) and anti-CD28 (1mg/ml, Biolegend, ref:
302934, clone: CD28.2) antibodies in T cell media (RPMI 10% FBS, 2
mM L-Glutamine, 1% Penicillin-Streptomycin) with IL-15 and IL-7 (Mil-
tenyi Biotec, 10 ng/ml each, ref: 130-095-362 and ref: 130-095-765
respectively). The day before transduction, non-cell tissue culture
treated 24-well plate (Greiner Bio-One, ref: 662102) was coated with
retronectin (Takara Bio, ref: T100B) in PBS (7μg/ml, 1ml per well), and
incubated overnight at 4 °C. Three days after activation, retronectin
was removed and the plate was blocked with RPMI 10% FBS for 15min
at 37 °C. Then, media was removed and retroviral supernatant was
centrifuged at 2000× g, 1 h, 32 °C on retronectin-coated plates. Ret-
roviral supernatant was gently removed and activated T cell suspen-
sion at 0.15 E6 cells/ml was added, and centrifuged at 1000× g, 10min,
21 °C. Cells were incubated at 37 °C, 5% CO2, and 95% relative humidity
for 3 days. After 48–72 h of transduction, T cells were harvested and
further expanded in T cell media containing IL-7 and IL-15. Transduced
T cells were positively selected with a PE selection kit (EasySep, ref:
17684) and an anti-HA PE-conjugated antibody (Biolegend, ref: 901518,
clone: 16B12) at a 1:50dilution to enrich transducedT cells. Enrichment
of surface expression in PE-selected cells was confirmed by flow
cytometry using a BD FACS LSR II cytometer (BD Biosciences) and
analyzed with FlowJo software (BD Biosciences).

Migration assays
T cells transduced and selected for expression of CXCR4 variants
from 3 to 6 donors were stained with 1 µM Vybrant DiO cell-labeling
solution (Thermo, ref: V22886) in serum-free RPMI 1640 + GlutaMax.
40,000 cells in 75 µL were seeded in each well of 96-well Boyden
chambers with 5.0 µm pores (Corning, ref: 3388)44. Reservoirs were
filled with 200 µL serum-free RPMI 1640 + GlutaMax without che-
moattractant or supplemented with 100 nM chemokine. The bottom
of the attractant reservoir was imaged for migrated cells for 8 h with
a Cytation 5 BioSpa (Biotek) at 37 °C with 5% CO2. Fluorescent spots
were counted over time and compared to the no-chemoattractant
control to calculate the migration index (# migrated cells towards
chemoattractant / # migrated cells in absence of chemoattractant).
The peak migration indices averaged between 3 technical replicates
for each transduced donor per chemoattractant concentration were
plotted.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings in this
study are either presented within the article and its Supplementary
Information files or available from the corresponding author on

request. The following PDB entries were used for modeling: 4RWS
[https://doi.org/10.2210/pdb4RWS/pdb], 4XT1 [https://doi.org/10.
2210/pdb4XT1/pdb], 6LFO [https://doi.org/10.2210/pdb6LFO/pdb],
4UAI [https://doi.org/10.2210/pdb4UAI/pdb], and 7F1R [https://doi.
org/10.2210/pdb7F1R/pdb]. Source data are provided with this paper.

Code availability
The modeling, design and AlloDy softwares developed in this study
together with a detailed Readme for running the simulations are
available in the following GitHub repositories: https://github.com/
barth-lab/CAPSens_design78 and https://github.com/barth-lab/
AlloDy79.
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