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ABSTRACT

The highly polymorphic Major Histocompatibility
Complex (MHC) genes are responsible for the bind-
ing and cell surface presentation of pathogen or
cancer specific T-cell epitopes. This process is fun-
damental for eliciting T-cell recognition of infected
or malignant cells. Epitopes displayed on MHC
molecules further provide therapeutic targets for per-
sonalized cancer vaccines or adoptive T-cell therapy.
To help visualizing, analyzing and comparing the dif-
ferent binding specificities of MHC molecules, we de-
veloped the MHC Motif Atlas (http://mhcmotifatlas.
org/). This database contains information about thou-
sands of class I and class II MHC molecules, in-
cluding binding motifs, peptide length distributions,
motifs of phosphorylated ligands, multiple specifici-
ties or links to X-ray crystallography structures. The
database further enables users to download curated
datasets of MHC ligands. By combining intuitive vi-
sualization of the main binding properties of MHC
molecules together with access to more than a mil-
lion ligands, the MHC Motif Atlas provides a central
resource to analyze and interpret the binding speci-
ficities of MHC molecules.

INTRODUCTION

T-cell responses to infected or malignant cells are initi-
ated by the recognition of small peptides displayed on Ma-
jor Histocompatibility Complex (MHC) molecules. MHC
molecules fall into two main classes: MHC class I (MHC-
I) recognized by CD8+ T cells and MHC class II (MHC-
II) recognized by CD4+ T cells. MHC-I are expressed in
most cells (1). They bind short (roughly 8–14 residues, with
a preference for 9-mers) peptides derived from intracellu-
lar proteins. Primary anchor residues are mainly found at
the second and last positions of these peptides (Figure 1A).
MHC-I consists of heterodimers with a variable alpha chain
and an invariant beta chain (�2-microglobulin). In human,

MHC-I alpha chains are encoded by three widely expressed
genes (HLA-A, HLA-B and HLA-C) and a few additional
ones (e.g. HLA-E and HLA-G) whose expression is re-
stricted to specialized cell types. MHC-I molecules can bind
unmodified and post-translationally modified peptides, like
phosphorylated peptides (2,3). MHC-II molecules are pri-
marily expressed in antigen presenting cells, like B cells or
dendritic cells. They bind longer peptides (roughly 12–25
residues with a preference for 15-mers). Structurally, MHC-
II ligands are characterized by a binding core of nine amino
acids and flanking residues extending on both sides of the
binding core (Figure 1B). MHC-II molecules form het-
erodimers consisting of an alpha and a beta chain. In hu-
man, they are encoded by three sets of genes: (i) HLA-
DRA1 dimerizing with HLA-DRB1, HLA-DRB3, HLA-
DRB4 or HLA-DRB5, (ii) HLA-DPA1 dimerizing with
HLA-DPB1 and (iii) HLA-DQA1 dimerizing with HLA-
DQB1.

MHC-I and MHC-II genes show a very high degree of
polymorphism, and thousands of different alleles have been
documented (Figure 1C, D). In human, MHC alleles are
named with two series of digits (e.g. HLA-B*07:02 for class
I or HLA-DRB1*03:01 for class II) which unambiguously
distinguish each allele at the amino acid level. The first set
of digits (i.e. after the ‘*’) indicate broad classes of HLA
alleles, while the second set of digits (i.e. after the ‘:’) in-
dicates polymorphisms within each class. Additional poly-
morphism (either synonymous or intronic) can be found
at the DNA level without impacting the MHC protein se-
quences. Two additional series of digits are used to represent
these additional polymorphisms (e.g. HLA-B*07:02:01:01).
Non-synonymous polymorphic residues are primarily lo-
cated in the peptide binding site of MHC molecules. As a
result of this polymorphism, different alleles show differ-
ent binding specificities and bind different repertoires of lig-
ands.

MHC molecules can bind both self and non-self pep-
tides (i.e. peptides coming or absent from the normal
proteome respectively). Non-self MHC ligands originating
from pathogens or cancer specific non-synonymous genetic
alterations (the so-called neo-antigens) can be recognized

*To whom correspondence should be addressed. Tel: +41 21 692 59 83; Email: david.gfeller@unil.ch
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-1271-6941
http://mhcmotifatlas.org/


Nucleic Acids Research, 2023, Vol. 51, Database issue D429

A B

C D

E F

Figure 1. Properties of MHC class I and class II molecules. (A) Description of the peptide binding properties of MHC-I molecules. The upper part shows a
crystal structure (PDB:4U1H) (48), with the peptide (TPQDLNTML) in yellow and the MHC-I (HLA-B*07:02) in grey. The middle part shows a schematic
view of the binding site, with the two main anchor residues at the second and last position (P2 and P9 for 9-mers). The bottom part shows the motif of HLA-
B*07:02 for 9-mers. (B) Description of the peptide binding properties of MHC-II molecules. The upper part shows a crystal structure (PDB:7N19) (49),
with the peptide (GGIGSDNKVTRRG) in yellow and the MHC-II in grey (alpha chain, HLA-DRA1*01:01) and pink (beta chain, HLA-DRB1*03:01).
The middle part shows a schematic view of the binding site, with the main anchor residues (P1, P4, P6 and P9 of the binding core) and flanking residues
on both sides of the core. The binding motif is shown in the lower part and was built based on the binding core of the ligands of this allele. (C) Number of
documented MHC-I alleles both at the DNA and protein level in IMGT database (50) (data from https://www.ebi.ac.uk/ipd/imgt/hla/about/statistics/, as
of July 2022). The third bar shows the number of MHC-I alleles with known naturally presented ligands. (D) Number of documented MHC-II alleles. The
third bar shows the number of MHC-II dimers with known naturally presented ligands. (E) Number of known MHC-I ligands for each gene in human
and in other species. (F) Number of known MHC-II ligands for each gene in human and in other species.

https://www.ebi.ac.uk/ipd/imgt/hla/about/statistics/
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by T cells via the binding of the T-cell receptor (TCR) to
the peptide–MHC complexes. This binding is necessary to
initiate and sustain T-cell responses to infections and can-
cer. For this reason, MHC ligands are promising therapeu-
tic targets that have been widely used in pre-clinical and clin-
ical studies. For instance, in cancer immunotherapy, MHC
ligands have been used as personalized vaccines to boost the
immune system to recognize neo-antigens (4–6). T cells tar-
geting MHC ligands expressed on the surface of cancer cells
(such as tumor associated antigens or neo-antigens) have
shown efficacy upon adoptive transfer in multiple tumor
types (7,8). Viral peptides presented on MHC molecules
have also been used in vaccines against infectious diseases
to elicit potent T-cell responses (9).

A widely used approach to identify MHC ligands that
could be recognized by T cells is to use in silico predictions
(10–15). MHC ligand predictors are machine learning tools
trained on large datasets of MHC ligands. Over the last
decade, mass spectrometry based MHC peptidomics has
become the dominant source of information about MHC
binding specificities (16–22). These data enabled researchers
to determine binding motifs for hundreds of MHC alleles
(11,21–23) (Figure 1C, D). For MHC-I molecules, natu-
rally presented ligands further revealed allele-specific pep-
tide length distributions (24,25). For MHC-II molecules,
naturally presented ligands demonstrated specificity in pep-
tide length distributions, position of the binding core with
respect to the middle of the peptide (referred to as bind-
ing core offset) and N- or C-terminal residues of the lig-
ands (21,26). Unlike for MHC-I alleles, these features are
more conserved across MHC-II alleles, though same vari-
ability in peptide length distributions was reported (27).
In addition, cleavage and processing signals have been re-
ported in the amino acids upstream and downstream of
MHC ligands (16,28). Peptides coming from highly ex-
pressed genes/proteins also tend to be preferentially dis-
played on MHC molecules (10,16,29).

To facilitate the understanding of the main binding prop-
erties of MHC molecules, we present here the MHC Mo-
tif Atlas (http://mhcmotifatlas.org/). This database enables
users to visualize binding motifs (including cases of mul-
tiple specificity and motifs of phosphorylated ligands) and
peptide length distributions for thousands of MHC alleles.
In addition, our database can be used to download lists of
MHC ligands, MHC sequences and MHC X-ray crystallog-
raphy structures.

THE MHC MOTIF ATLAS: DATA SOURCES

To derive the binding specificities of MHC molecules, we
used naturally presented MHC ligands identified across
>500 MHC-I and MHC-II peptidomics samples from hu-
man, mouse, cattle and chicken (see Materials and Meth-
ods). These include both unmodified and phosphorylated
MHC ligands. To remove false-positives, assign allelic re-
strictions in multi-allelic samples and determine the bind-
ing core for MHC-II ligands, motif deconvolution was ap-
plied on all samples. Shared motifs across samples shar-
ing the same allele were used to determine the ligands of
the different MHC alleles. All motifs were manually ver-
ified in all samples. Details about this procedure and the

resulting MHC ligand datasets have been previously pub-
lished for MHC-I ligands (3,11,18,24) and for MHC-II lig-
ands (13,21) (see also Materials and Methods). This enabled
us to collect 1 013 733 ligands interacting with 135 MHC-I
and 88 MHC-II molecules (Figure 1C–F).

THE MHC MOTIF ATLAS: BUILDING MOTIFS

Motifs for alleles with known ligands were built following
the procedure described in (30), which includes renormal-
ization by the background amino acid frequency in the hu-
man proteome (see Materials and Methods).

For MHC-I alleles, distinct motifs were built for each
length (8- to 14-mers, see example in Figure 2A) since lig-
ands of different lengths display differences in their mo-
tifs. The peptide length distributions were also computed
for all MHC-I alleles with experimental ligands (see ex-
ample in Figure 2B). Binding motifs were computed sepa-
rately for phosphorylated ligands, and the phosphorylated
residues are shown in pink (see example in Figure 2C).
Multiple specificities, when present, were determined with
MixMHCp (31) and all cases were manually evaluated to
determine the final number of motifs (Figure 2D). Finally,
motifs of raw ligands (i.e. without background amino acid
frequency renormalization) were computed (Figure 2E). As
it can be seen, background amino acid correction is im-
portant to avoid underestimating rare amino acids (e.g. M,
2.1% of the human proteome) or overestimating frequent
amino acids (e.g. L, 9.9% of the human proteome).

For MHC-II alleles, motifs were built based on the 9-
mer binding core of MHC-II ligands (Figure 2F). Multi-
ple specificities were determined with MoDec (21) and were
manually curated (Figure 2G). Peptide length distributions
were computed for each allele (see average across alleles in
Figure 2H). The distributions of binding core offsets (Fig-
ure 2I), as well as the motifs for the three N- and C-terminal
residues in the ligands (Figure 2J) were computed based on
the entire dataset of MHC-II ligands.

Experimental ligands are only available for a small frac-
tion of MHC molecules (Figure 1C, D). To fill this gap,
we developed machine learning predictors of MHC bind-
ing motifs based on the neural network framework that we
recently introduced for MHC-II alleles (13). For MHC-I
alleles, the first set of neural networks uses as input the
sequence of the MHC-I binding site and aims at predict-
ing the binding motifs for each peptide length separately
(see Materials and Methods and Figure 3A). Another neu-
ral network was developed to predict the peptide length
distribution based on the sequence of the MHC-I binding
site (see Materials and Methods and Figure 3C). To bench-
mark the accuracy of our predictions with the state-of-the-
art NetMHCpan tool (14), we performed multiple cross-
validations (see Materials and Methods): (i) a leave-one-
allele-out cross-validation, where all data for each allele ab-
sent from the training set of NetMHCpan were iteratively
removed from the training set (30 alleles in total, see Sup-
plementary Table S1), (ii) a leave-ligands-out cross valida-
tion where all peptides with the same sequence as the lig-
ands of the left-out allele where removed, and (iii) a leave-
30-alleles-out cross validation where all data from the 30 al-
leles that are not part of the training of NetMHCpan were

http://mhcmotifatlas.org/
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Figure 2. Binding specificities of MHC molecules. (A) MHC-I binding motifs for different peptide lengths. (B) Peptide length distribution. (C) Motifs for
phosphorylated ligands. (D) MHC-I multiple specificities, including mutual exclusivity of charged amino acids at P3 and P6. (E) Illustration of the difference
between motifs with and without background frequency renormalization. (F) MHC-II binding motifs. (G) MHC-II multiple specificities capturing a mutual
exclusivity of positively charged amino acids at P4 and P6 (see (13)). (H) Average peptide length distribution for MHC-II ligands. (I) Distribution of peptide
binding core offsets for MHC-II ligands of even and odd lengths (0 corresponds to a binding core at the middle of peptides with an odd length, and is not
defined for peptides with an even length). (J) Motifs in the first and last three N- and C-terminal residues of MHC-II ligands. Panels A–E are built from
HLA-B*07:02 ligands. Panels F–G are built from HLA-DRB1*08:01 ligands. Panels H–J are built from all MHC-II ligands (see (13)).

removed. The predicted motifs were compared to the ex-
perimental ones and those predicted by NetMHCpan (see
Materials and Methods). Overall, we observed that binding
motifs could be reliably predicted, and the accuracy of our
predictions equaled or surpassed the one of NetMHCpan
(Figure 3B). Similar results were obtained for our predic-
tions of peptide length distributions of MHC-I alleles (Fig-
ure 3D). Motifs for MHC-II molecules without experimen-
tal ligands were predicted following the approach described

in (13). For these molecules, average peptide length distri-
butions were used, since less variability is observed within
MHC-II molecules than within MHC-I molecules.

THE MHC MOTIF ATLAS: WEB INTERFACE

The MHC Motif Atlas provides an intuitive interface to
visualize the main peptide binding properties of MHC
molecules. For MHC-I, the http://mhcmotifatlas.org/class1

http://mhcmotifatlas.org/class1
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Figure 3. Predicting the binding properties of MHC-I molecules. (A) Machine learning framework for the prediction of binding motifs for MHC-I alleles.
Distinct neural networks (NN) were built for each peptide length and each position, and the final motif for a given peptide length is built by combining all
position. The example illustrates the neural networks for predicting 9-mer binding motifs. (B) Leave-one-allele-out, leave-ligands-out and leave-30-alleles-
out cross validation of the predictions of binding motifs for the 30 MHC-I alleles that are not part of the training set of NetMHCpan. Predicted motifs
from our method and from NetMHCpan4.1 (at percentile ranks smaller than 0.5% or 2%) were compared to the experimental ones using the Euclidean
distance. (C) Architecture of the neural network for the predictions of peptide length distributions for MHC-I alleles without experimental ligands. (D)
Leave-one-allele-out, leave-ligands-out and leave-30-alleles-out cross validation of the predictions of peptide length distributions for the 30 MHC-I alleles
that are not part of the training set of NetMHCpan. Predicted peptide length distributions from our method and from NetMHCpan4.1 (at percentile ranks
smaller than 0.5% or 2%) were compared to the experimental ones using the Euclidean distance. Boxplots indicate the median, upper and lower quartiles.
P-values were computed with the paired two-sided Mann–Whitney U-test.

page enables users to display binding motifs and peptide
length distributions for ligands of lengths 8–14 (Figure 4A).
In addition, we offer the possibility to visualize cases of
multiple specificity (e.g. HLA-B*07:02), motifs representing
phosphorylated ligands and motifs representing the raw lig-
ands (i.e. without background amino acid frequency correc-
tions). Multiple alleles can be displayed on the same page,
which is convenient for comparing the binding motifs and
the peptide length distributions. For each allele with known
ligands, a link to the list of ligands is provided. Finally, links
to known crystal structures are provided when such struc-
tures are available. This feature is useful since searches for
specific alleles in the Protein Data Bank can be complicated
by inconsistencies in the naming of the alleles in publica-
tions (e.g. HLA-A*02:01, HLA-A02:01, HLA-A02, HLA-
A2, A2).

For MHC-II alleles, binding motifs are shown in http:
//mhcmotifatlas.org/class2 (Figure 4B), including options
to show peptide length distributions, multiple specifici-
ties and motifs of the raw ligands. When available, links

to lists of MHC-II ligands and to known X-ray struc-
tures are provided. Other properties are displayed in http:
//mhcmotifatlas.org/class2 properties.

In both http://mhcmotifatlas.org/class1 and
http://mhcmotifatlas.org/class2, the list of alleles shown by
default on the left corresponds to those with experimental
ligands. To see motifs predicted for other alleles, the
user can type the first letters of the allele’s name in the
search field, and the left menu will automatically list the
corresponding alleles.

The MHC Motif Atlas also provides links to different re-
sources to analyze MHC ligands and T-cell epitopes (http:
//mhcmotifatlas.org/tools). These include links to MHC lig-
and predictors that can be used through a web interface
or as standalone executables, tools for motif deconvolu-
tion and allele assignment in MHC peptidomics samples, as
well as databases of MHC ligands and T-cell epitopes. An
F.A.Q page provides information about MHC molecules
and the data presented in the MHC Motif Atlas (http:
//mhcmotifatlas.org/faq).

http://mhcmotifatlas.org/class2
http://mhcmotifatlas.org/class2_properties
http://mhcmotifatlas.org/class1
http://mhcmotifatlas.org/class2
http://mhcmotifatlas.org/tools
http://mhcmotifatlas.org/faq
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Figure 4. MHC Motif Atlas interface of MHC-I and MHC-II. (A) MHC Motif Atlas interface for MHC-I alleles, including visualization of binding motifs,
peptide length distributions, multiple specificities and motifs of phosphorylated ligands. The Search field on the top left part enables users to type a part
of an allele’s name, and all the corresponding alleles will automatically be listed below. By default the alleles listed on the left correspond to those with
experimental ligands. The Download Data button allows to download complete lists of MHC-I ligands, as well as MHC-I sequences and X-ray structures
PDB identifiers. (B) MHC Motif Atlas interface for MHC-II alleles.
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DISCUSSION

MHC ligands play a central role in recognition and elimi-
nation of infected or malignant cells. To prevent pathogens
from optimizing their protein sequences not to bind any
MHC molecule, which would make them invisible to T cells,
MHC genes have evolved an extremely high degree of poly-
morphism resulting in a large diversity of binding specifici-
ties. These specificities dictate which peptides can bind to a
given MHC molecule. The MHC Motif Atlas provides a re-
liable and interpretable way to understand and visualize the
main binding properties of thousands of MHC molecules.

Binding motifs have been widely used to visualize pep-
tides or nucleotides binding to specific proteins, including
MHC-I and MHC-II, peptide recognition domains (32) or
transcription factors (33). In this framework, each position
in the peptide is treated independently. This can mask po-
tential correlations between the amino acids at distinct po-
sitions. Such correlations have been reported in multiple
instances (34,35), and support the use of machine learn-
ing frameworks like neural networks to make predictions
of ligands. For MHC molecules, these correlations often re-
flect different binding modes (e.g. C-terminal extensions in
MHC-I ligands (36) or reverse binding of MHC-II ligands
(13)) or mutual exclusivity of specific amino acids (e.g. pos-
itively charged residues in the ligands pointing to the same
residue in the binding site (13)). Because the number of dif-
ferent binding modes is often limited by the structural con-
straints of the MHC binding site, correlation patterns can
often be captured with multiple binding motifs (24), which
is why this feature has been included in the MHC Motif
Atlas. Another source of correlation specific to MHC-I lig-
ands comes from the different motifs for different peptide
lengths. In the MHC Motif Atlas, such correlations have
been resolved by displaying motifs for each peptide length
separately for MHC-I alleles. For these reasons, (multiple)
motifs together with information about peptide length dis-
tributions provide a reliable framework to model and visu-
alize the main binding properties of MHC molecules. A fre-
quent question when dealing with multiple motifs for pep-
tide of the same length is how the optimal number of mo-
tifs is determined. In the MHCMotifAtlas, cases of multiple
specificity are based on our previous studies (13,24), which
included a manual curation to focus on cases where the mul-
tiple motifs show clear differences and can be linked with
structural interpretations.

MHC peptidomics provide a rich source of reliable and
biologically relevant information about naturally presented
MHC ligands, including properties like peptide length dis-
tributions which are not directly available from binding
affinity measurements (25). Moreover, these data cover all
the most frequent alleles in human. This is why we focused
exclusively on such data in the MHC Motif Atlas. MHC-I
molecules with only ligands from other sources (e.g. bind-
ing affinity measurement) have on average <100 ligands in
IEDB (37). For this reason, motifs built for these alleles can
be less reliable and we decided not to include these data in
our atlas.

The extremely high polymorphism of the MHC locus
makes it impossible to have experimental ligands for all
alleles. Our ability to predict binding motifs for MHC

molecules without ligands is therefore key to cover the
repertoire of MHC alleles in the MHC Motifs Atlas. Com-
pared to machine learning pan-allele predictors of MHC-I
ligands, like NetMHCpan (14) or MHCflurry (12), our ma-
chine learning framework for predicting the binding motifs
and peptide length distributions of MHC-I alleles is more
interpretable (see (13) for similar results for MHC-II alle-
les). It is expected that predictions of MHC motifs will be
less accurate in species without known MHC ligands (13).
This is why we focused on species with known MHC ligands
identified by unbiased mass spectrometry based MHC pep-
tidomics.

Compared to existing resources, including the MHC-
MotifViewer (https://services.healthtech.dtu.dk/service.
php?MHCMotifViewer) (38), the SysteMHC Atlas (39),
the HLA Ligand Atlas (https://hla-ligand-atlas.org)
(40) or the Motif Viewer of NetMHCpan (https:
//services.healthtech.dtu.dk/service.php?NetMHCpan-4.1)
(14), the MHC Motif Atlas provides a more comprehensive
characterization and visualization of MHC peptide bind-
ing properties. This includes peptide length distributions,
cases of multiple specificities, motifs for phosphorylated
ligands and the possibility of seeing how MHC-I motifs
change with different peptide lengths. Motifs of different
alleles can be rapidly compared by displaying multiple
alleles on the same page. Moreover, the MHC Motif Atlas
provides direct links to the actual data supporting the
binding motifs or other properties of MHC molecules. This
represents a valuable resource for researchers who want to
perform their own analyses or train their own MHC ligand
predictors. By providing intuitive visualization of MHC
binding properties, the MHC Motif Atlas can also com-
plement machine learning MHC ligand prediction tools,
which are often used as black boxes and do not necessarily
provide explanations on why a peptide gets a good or bad
score.

CONCLUSION

The presentation of peptides on MHC molecules is a neces-
sary condition for T-cell responses against infected or ma-
lignant cells. Therefore, a reliable and interpretable visual-
ization of the binding specificities of MHC molecules is use-
ful to better understand why peptides may or may not be
presented on MHC molecules in different individuals with
different alleles. The MHC Motif Atlas provides a resource
to rapidly visualize, analyze and compare the binding prop-
erties of both MHC-I and MHC-II molecules. In addition,
our atlas provides links to curated datasets of more than a
million naturally presented MHC ligands, as well as MHC
sequences and MHC X-ray structures. The MHC Motif At-
las represents therefore one of the most comprehensive and
integrated resources about MHC molecules and their lig-
ands.

MATERIALS AND METHODS

Sources of MHC ligands

Naturally presented MHC ligands were collected from
>500 MHC peptidomics samples from human, mouse, cat-
tle and chicken. These include all samples considered in

https://services.healthtech.dtu.dk/service.php?MHCMotifViewer
https://hla-ligand-atlas.org
https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1
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(11,13). Phosphorylated ligands were retrieved from (3). We
further included data from a few recent MHC peptidomics
studies (20,40–44). All data were retrieved from the original
studies to prevent having filtered data based on MHC ligand
predictors. All samples were processed with our motif de-
convolution tools (MixMHCp (24) for MHC-I and MoDec
(21) for MHC-II) to identify shared motifs across samples
sharing the same allele. Details about this procedure and the
obtained results have been previously published for MHC-I
ligands (18,24) and MHC-II ligands (13,21).

Building MHC motifs and peptide length distributions

For all MHC molecules with naturally presented ligands,
Position Probability Matrices (PPMs) were built by com-
puting the frequency of each amino acid at each position
in the set of ligands of the given allele, including stan-
dard pseudocounts based on BLOSUM62 as described in
(21,24). For MHC-I alleles, separate PPMs were built for
each ligand length L from 8 to 14. For MHC-II alleles, the
PPMs were built based on the 9-mer binding core deter-
mined by MoDec for the ligands of each allele. The Posi-
tion Weight Matrices (PWMs) representing the final motifs
were computed by normalizing the PPMs with the amino
acid background frequencies of the human proteome, as
described in (21,24). For alleles displaying multiple motifs,
separate PWMs were also computed for each set of lig-
ands assigned to each motif. Both the final motifs (based
on normalized PWMs) and the motifs of the ligands (based
on PPMs) were visualized using ggseqlogo (45). PPMs
for phosphorylated ligands were computed separately. The
phosphorylated residues are shown in purple in the corre-
sponding logos.

Peptide length distributions were determined by comput-
ing the fraction of naturally presented MHC ligands of each
length (from 8 to 14 for MHC-I and 12 to 25 for MHC-II).
For MHC-II alleles, the distribution of the peptide binding
core position and the motifs of the three N- and C-terminal
residues were computed as in (21).

Predicting MHC motifs

Inspired by our recent work on MHC-II motifs (13), neural
networks were used to predict PPMs of MHC-I molecules
without known ligands. More precisely, distinct networks
were trained for each peptide length (8 to 14) and for
each position. The input of each neural network is the list
of binding site residues from the MHC-I molecules (34
residues). This binding site was defined as in (46). Each
binding site residue was encoded as a 20-dimensional vector
based on the BLOSUM62 probability matrix. The output
of each network consists of a vector of 20 values, represent-
ing the PPM at the corresponding position. Each network is
composed of an input layer (34 × 20 nodes), two fully con-
nected hidden layers (128 and 64 nodes, respectively) and
an output layer (20 nodes). We used rectified linear unit
(ReLU) activation function for the hidden layers and the
softmax activation function for the output layer. We used
the Kullback Leibler divergence as a loss function, and it
was optimized using Adam optimizer with a learning rate of

0.0001. These neural networks were implemented in Python
(version 3.7.11), using Keras packages relying on Tensor-
Flow (version 2.2.4-tf). Five hundred epochs were set for
the training process. For each allele and each peptide length
(8 to 14), we then normalized by background human pro-
teome frequencies and grouped the output of the different
networks corresponding to different positions to create the
final predicted PWM.

For MHC-II alleles, the 9-mer binding motifs were pre-
dicted based on the method described in (13).

Predicting peptide length distributions

A neural network was developed to predict the peptide
length distribution of MHC-I molecules. The input layer
is the same as for the MHC-I motifs prediction (34 × 20
nodes), followed by one hidden layer (128 nodes) with the
rectified linear unit (ReLU) activation function. The output
layer is the peptide length distribution (from 8 to 14, i.e. 7
nodes) based on the softmax activation function. We used
the Kullback Leibler divergence as a loss function, and it
was optimized using Adam optimizer with a learning rate
of 0.0001. 125 epochs were set for the training process.

Benchmarking

To benchmark the accuracy of our binding motif and pep-
tide length distribution predictions for MHC-I molecules
and compare with the state-of-the-art NetMHCpan, we de-
signed three distinct cross-validation schemes. First, we per-
formed a leave-one-allele-out cross-validation, where each
allele absent for the training of NetMHCpan was suc-
cessively removed from the training set (30 alleles in to-
tal, see Supplementary Table S1). Second, we performed
leave-ligands-out cross validation, where all peptides found
among ligands of the left-out-allele were removed from
the training set. Third, we performed a leave-30-alleles-out
cross validation by excluding all data from the 30 alleles that
are not part of the training set of NetMHCpan. The pre-
dicted normalized PWMs (i.e. PPMs divided by the back-
ground amino acid frequencies and normalized to one for
each position) were then compared to the experimental ones
by computing the Euclidean distance for each position on
the peptide and averaging these distances. The lower the dis-
tance, the closer the predicted motifs are to the experimental
ones. Similarly, the predicted peptide length distributions
were compared to the experimental ones by computing the
Euclidean distance.

To compare these results with NetMHCpan (NetMHC-
pan4.1 (14)), we created 500 000 random peptides for each
length (from 8 to 14) and scored them using NetMHCpan
for the 30 MHC-I alleles for which we had experimental
data and which are not part of the training set of NetMHC-
pan. For each allele, peptides with %Rank EL smaller than
0.5% or smaller than 2% were considered as the ligands
to this allele. The ligands were then used to build PWMs
(based on a flat background frequency since we used ran-
dom peptides) for each peptide length and calculate the pep-
tide length distribution for each allele. These PWMs and
peptide length distributions were compared to the experi-
mental ones using Euclidean distance.
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MHC crystal structures

For MHC-I alleles, X-ray structures were retrieved from the
PDB (47) for all class I alleles considered in the MHC Mo-
tif Atlas. Only structures with unmodified MHC alleles and
a ligand of length 8–14 were considered. Truncated ligands
or ligands containing non-natural amino acids were not in-
cluded. Similarly, X-ray structures were retrieved from the
PDB (47) for MHC II alleles.

Website architecture

We created the website using Node.js (also called Node)
to run an environment for writing server-side applications
in JavaScript alongside the HTML and CSS documents
responsible for the website design. The website is imple-
mented as a web application using the Express.js framework
to provide a logical routing to different website sections.
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