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Abstract1

Proxy forward solvers are commonly used in Bayesian solutions to inverse problems in hydrol-2

ogy and geophysics in order to make sampling of the posterior distribution, for example using3

Markov-chain-Monte-Carlo (MCMC) methods, computationally tractable. However, use of4

these solvers introduces model error into the problem, which can lead to strongly biased and5

overconfident parameter estimates if left uncorrected. Focusing on the specific example of esti-6

mating unsaturated hydraulic parameters in a layered soil from time-lapse ground-penetrating7

radar data acquired during a synthetic infiltration experiment, we show how principal com-8

ponent analysis, conducted on a suite of stochastic model-error realizations, can for some9

problems be used to build a sparse orthogonal basis for the model error arising from known10

forward solver approximations and/or simplifications. Projection of the residual onto this11

basis during MCMC permits identification and removal of the model error before calculation12

of the likelihood. Our results indicate that, when combined with an informal likelihood metric13

based on the expected behaviour of the `2-norm of the residual, this methodology can yield14

posterior parameter estimates exhibiting a marked reduction in bias and overconfidence when15

compared to those obtained with no model-error correction, at reasonable computational cost.16
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1 Introduction17

Stochastic parameter estimation and inversion have become increasingly popular in hydrology18

and geophysics over the past decade. In particular, it is now computationally feasible and19

common to solve many inverse problems in these domains in a Bayesian manner, whereby prior20

knowledge about the subsurface parameters of interest is combined with measured data to21

yield a posterior probability distribution. The latter is typically sampled using Markov-chain-22

Monte-Carlo (MCMC) methods (Linde et al., 2017). Notable advantages of the Bayesian-23

MCMC approach are that (i) it is highly flexible and can incorporate any information that24

can be expressed as a probability density into the inverse problem; (ii) it provides a natural25

framework for data integration; and (iii) it has the potential to provide more accurate pa-26

rameter uncertainty estimates than traditional methods based on linearization. This does,27

however, come at the cost of being highly computationally expensive. Indeed, many thou-28

sands if not millions of MCMC iterations, each requiring a numerical solution of the forward29

problem, are typically required to obtain a sufficient number of posterior samples for use in30

subsequent probabilistic forecasting and risk analysis (e.g., Ruggeri et al., 2015).31

A critical component of framing an inverse problem in a Bayesian context is proper char-32

acterization of the expected statistical nature of the residual. This is, in order to formulate33

the likelihood, we must have detailed knowledge about the statistical distribution of the dif-34

ference between the measured data and those calculated through the numerical solution of the35

forward problem on the “true” set of subsurface model parameters. In arguably most cases,36

the residual is attributed solely to data-measurement errors and described as multi-Gaussian,37

usually with independent and identically distributed elements (e.g., Bodin and Sambridge,38

2009; Gallagher et al., 2009; Irving and Singha, 2010; Linde and Vrugt , 2012; Scholer et al.,39

2013; Vrugt et al., 2008). This is despite the fact that, in order to improve the computational40

tractability of the Bayesian-MCMC approach, approximate versions of the forward solver,41

for example using coarsened discretizations and/or simplifications of the underlying physics,42

are typically employed (e.g., Christen and Fox , 2005; Cui et al., 2011; Efendiev et al., 2008;43

Hinnell et al., 2010; Ray et al., 2015; Scholer et al., 2013). The use of such computationally44

efficient “proxy solvers” leads to model error, which if left uncorrected has the potential to45
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overwhelm the effects of data measurement uncertainties and lead to strongly biased and46

overconfident posterior distributions (Brynjarsdóttir and O’Hagan, 2014).47

In recent years, a number of studies in the hydrological and geophysical literature have48

attempted to address the issue of model error in Bayesian inversions, with the aim of making49

more effective use of proxy solvers when dealing with computationally expensive forward oper-50

ators. In general, the approaches that have been presented can be divided into two categories.51

In the first category, researchers have focused on the overall or “global” statistical characteri-52

zation of the model error, with the goal of using this information to develop more appropriate53

parametric likelihood functions that better reflect the true nature of the residual. This has54

generally been accomplished through the analysis of stochastic model-error realizations, which55

are generated by running the full and approximate forward solvers for randomly drawn sets56

of model parameters. Typically, multi-Gaussian statistics for the model error are assumed,57

meaning that means and covariances estimated from the realizations can be incorporated into58

a Gaussian likelihood (e.g., Arridge et al., 2006; Hansen et al., 2014; Kaipio and Somersalo,59

2007; Lehikoinen et al., 2010; Stephen, 2007), but other parametric likelihood functions have60

also been considered (e.g., Del Giudice et al., 2013; Schoups and Vrugt , 2010; Smith et al.,61

2010; Smith et al., 2015). Accounting for model error in this manner has been shown to62

lead to broadened posterior distributions and a reduction in parameter bias. One key issue,63

however, concerns the validity of the assumption that the errors can be adequately described64

by a given parametric distribution. In many inverse problems in geophysics and hydrology,65

for example, model errors will exhibit complex statistics and correlations that arise from66

the typically high dimension of the data and/or model-parameter spaces in these problems,67

combined with the non-linearity of the forward operators involved. Indeed, there has been68

much increased interest in “likelihood-free” inference methods such as approximate Bayesian69

computation (ABC) (e.g., Vrugt and Sadegh, 2013) and generalized likelihood uncertainty70

estimation (GLUE) (e.g., Beven and Binley , 1992), to a large extent because of this issue.71

In the second category of developed approaches for addressing model error, researchers72

have focused on building a parameter-dependent or “local” error model in order to describe73

the discrepancy between the full and approximate forward solvers. As with the approaches74
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mentioned above, this is constructed based on computed realizations of the model error for75

different parameter sets. However, in this case the results are used to effectively correct76

the output of the approximate solver rather than to develop a more appropriate Bayesian77

likelihood function. Construction of the error model can be done in a number of different78

ways. This includes simple nearest-neighbour or linear interpolation between model-error79

realizations (e.g., Cui et al., 2011; O’Sullivan and Christie, 2006), representing the discrepancy80

as a Gaussian process conditioned to the points in the parameter space where the model error81

is known (e.g., Kennedy and O’Hagan, 2001; Xu and Valocchi , 2015), or using statistical82

regression approaches (e.g., Doherty and Christensen, 2011; Josset et al., 2015). In all of this83

work, the implicit assumption is that the full and approximate model-response surfaces are84

regular enough such that the model error for a set of parameter values where it is unknown can85

be effectively predicted through some kind of interpolation between the existing realizations.86

While this may be the case for some inverse problems, difficulties can arise in the presence of87

strongly non-linear forward solvers and/or large numbers of model parameters. That is, it may88

not be possible to sufficiently sample the model-parameter space with model-error realizations89

such that interpolation between these realizations will provide a reliable model-error estimate90

at some new location.91

Recently, Köpke et al. (2018) presented a new approach to account for the model error92

arising from the use of proxy forward solvers in Bayesian-MCMC inversions, whereby infor-93

mation about the error is gathered during the inversion procedure through occasional runs of94

the approximate and full solvers together, the results of which are stored in a dictionary. In95

contrast to the existing methods mentioned above, the approach of Köpke et al. (2018) focuses96

on the projection-based identification of the model-error component of the residual through97

the construction of a local, parameter-dependent, orthogonal model-error basis, rather than98

on attempting to fit the overall model-error statistics to a prescribed statistical distribution99

or develop an interpolation-based error model. The model error estimated by projecting onto100

the basis is then subtracted from the residual before computing the likelihood of a proposed101

set of model parameters in MCMC. Application of the approach of Köpke et al. (2018) to102

a high-dimensional spatially distributed tomographic example was found to yield parame-103
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ter estimates exhibiting a notable reduction in bias compared to those obtained when the104

model error was ignored. The presented method does, however, still require occasional runs105

of the full forward solver along the Markov chain as MCMC iterations progress, which can be106

computationally costly depending on the problem at hand.107

In this paper, we build on the work of Köpke et al. (2018) and show that, for some inverse108

problems, it may be possible to derive a suitable global basis for the model error over the entire109

parameter space through the application of principal component analysis to a large number110

of stochastic model-error realizations. These realizations can be conveniently computed in111

parallel prior to MCMC, and they must be properly organized in the data space before analysis112

to maximize similarity in their spatial characteristics. We begin in Section 2 with an overview113

of Bayesian-MCMC inversion, followed by a detailed description of our developed approach.114

This is followed in Section 3 with application to synthetic data corresponding to a vadose-115

zone inverse problem that has been the subject of much investigation in previous work, which116

is the estimation of unsaturated soil hydraulic parameters from time-lapse zero-offset-profile117

(ZOP) ground-penetrating radar (GPR) data acquired during infiltration. We compare the118

results obtained with our methodology to those obtained when no model-error correction is119

applied, and conclude in Section 4 with an overall assessment of the method with regard to120

its advantages and limitations.121

2 Methodological background122

2.1 Bayesian-MCMC inversion123

Consider to begin the forward problem linking a set of M subsurface model parameters of124

interest mtrue ∈ RM to a set of N measured or observed data dobs ∈ RN :125

dobs = F (mtrue) + ed, (1)126

where forward operator F : RM → RN contains the physics and geometry of the measurements127

and ed is vector of data measurement errors. The goal of the corresponding inverse problem128

is to estimate mtrue given dobs, which requires knowledge of F and in most cases some prior129
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information about the model parameters. From a probabilistic point of view, this can be130

formulated using Bayes’ theorem, whereby an initial prior state of information for the model131

parameters ρ(m) is updated to a more refined posterior state of knowledge σ(m) based on132

the available data (e.g., Tarantola, 2005). That is,133

σ(m) = k L(m) ρ(m), (2)134

where normalization constant k ensures that the posterior probability distribution integrates135

to unity, and likelihood L(m) expresses the conditional probability of model parameter set m136

given the observed data dobs. Assuming that (i) the underlying physics are completely known137

and considered in the inverse problem; and (ii) the data measurement errors are independent138

and identically normally distributed having mean zero and standard deviation sd, L(m) takes139

on the simple multi-Gaussian form140

L(m) =
1

(2πs2d)N/2
exp

[
−||r(m)||2

2s2d

]
, (3)141

where || · || denotes the `2-norm and r(m) is the residual or difference between the observed142

data and those predicted for some model parameter set m using F . The latter quantity is143

given by144

r(m) = dpred − dobs145

= F (m)− [F (mtrue)︸ ︷︷ ︸
parameter-error

component

+ ed], (4)146

147

where dpred denotes the predicted data. We see in equation (3) that L(m) will be maximized148

when the `2-norm of r(m) is minimized, which corresponds to the case where m = mtrue and149

the parameter-error component as defined in equation (4) is zero. The spread of the likelihood150

distribution about the maximum value is controlled by the data measurement error standard151

deviation sd along with the number of data N , with larger errors and lesser amounts of data152

yielding broader likelihoods.153

Equations (2) through (4) together provide a means of calculating the posterior probability154
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of a set of model parameters m. This is commonly used within MCMC sampling algorithms155

to quantify posterior uncertainty, thereby solving the inverse problem, since it is not generally156

possible to perform the multi-dimensional integrations needed to obtain the statistical mo-157

ments of σ(m). In this regard, a basic Metropolis-Hastings algorithm (Metropolis et al., 1953;158

Hastings, 1970) that is guaranteed (after burn-in) to generate a Markov chain of samples159

{m1, ...,mk} from the Bayesian posterior distribution proceeds as follows:160

1. Draw the first model in the Markov chain m1 from the Bayesian prior distribution ρ(m).161

Set i = 1.162

2. Draw a perturbed model-parameter set m′ from the proposal distribution Q(m′|mi),163

whose width around mi is chosen so as to provide a balance between efficiently moving164

through the parameter space and generating proposals that have a reasonable probability165

of being accepted.166

3. Calculate the probability of accepting m′ as the next model in the Markov chain using167

Pacc = min

[
1,
σ(m′)Q(mi|m′)
σ(mi)Q(m′|mi)

]
. (5)

4. Draw a random number x ∈ U(0, 1). If x ≤ Pacc, then set mi+1 = m′. Otherwise set168

mi+1 = mi.169

5. Set i = i+ 1 and go to Step 2.170

Note that, in the case where the proposal distribution is symmetric (i.e.,Q(m′|mi) = Q(mi|m′)),171

the above algorithm reduces to the original MCMC sampler of Metropolis et al. (1953) where172

the acceptance probability is given by Pacc = min[1, σ(m′)/σ(mi)]. We consider the latter173

sampler for the example inversions presented in Section 3.174

2.2 Accounting for model error175

Likelihood equation (3) is perfectly theoretically valid for the case where the only contribution176

to the difference between the observed and predicted data, when considering the correct set177

of model parameters mtrue, is a set of Gaussian data-measurement errors having standard178
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deviation sd. However, as mentioned previously, approximate forward solvers are typically179

used in hydrological and geophysical problems to improve the computational efficiency of the180

Bayesian-MCMC procedure, meaning that the residual more realistically takes the form181

r(m) = F̂ (m)− [F (mtrue) + ed]182

= F̂ (m)− F (m)︸ ︷︷ ︸
model-error
component

+F (m)− [F (mtrue)︸ ︷︷ ︸
parameter-error

component

+ ed], (6)183

184

where F̂ is the approximate forward operator. The presence of an additional model-error term185

in equation (6) as compared with equation (4), which is commonly of large magnitude, strongly186

correlated, and/or highly non-Gaussian (Kaipio and Somersalo, 2007; Schoups and Vrugt ,187

2010; Smith et al., 2010), makes use of likelihood expression (3) inappropriate. In particular,188

it means that (i) the residual will not necessarily be minimized when m = mtrue, implying189

posterior parameter bias; and (ii) feasible model parameter sets may have an extremely low190

likelihood when considering realistic levels of data error. Although simple inflation of sd can191

be used to broaden the Gaussian likelihood and reduce the latter issue, it cannot address the192

former and be viewed as an effective solution for reliable posterior uncertainty quantification.193

In order to address the model-error issue, we build on the work of Köpke et al. (2018) in this194

paper and focus on learning about the nature of the model error through stochastic simulation195

such that it may be identified and removed from the residual during MCMC. The overall idea is196

that, for some problems, a representative set of stochastic model-error realizations, computed197

prior to MCMC for random model parameter sets using the full and approximate forward198

solvers, can be used to construct an orthonormal basis for the model error. Projection of the199

residual onto this basis in each MCMC iteration is used to isolate the model-error component,200

which is the subtracted from r(m) before calculating the likelihood. Note that, whereas Köpke201

et al. (2018), used a dictionary-based K-nearest-neighbour (KNN) approach to construct a202

different local model-error basis for each proposed set of model parameters in MCMC, with203

runs of the full forward solver being required periodically along the entire Markov chain,204

we focus here on the development of a global basis (i.e., over the entire model parameter205

space) before posterior sampling begins. Although not appropriate for all problems, this206
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methodology has the advantage that all expensive forward solver computations can be run in207

a simple parallel manner outside of the MCMC iterations. The corresponding set of model-208

error realizations can also be directly reused in any subsequent inversions. Our approach209

proceeds as follows:210

1. Generate k random sets of model parameters {m1, ...,mk} from the Bayesian prior211

distribution ρ(m).212

2. Compute the corresponding set of stochastic model-error realizations {E1, ...,Ek}, where213

Ei = F̂ (mi)− F (mi).214

3. If necessary, organize the information in each realization to improve coherency for sub-215

sequent analysis (see Section 3.3).216

4. Perform principal component analysis (PCA) on the model-error realizations {E1, ...,Ek}217

in order to obtain a sparse orthonormal basis B = [b1, ...,bb] for the model error. The218

number of basis vectors b should be chosen to be the minimum required to capture a219

high percentage of the variance of the realizations, typically around 98%. In this way,220

the basis will be able to capture the model-error behaviour, but will have minimal abil-221

ity to represent contributions to the residual that do not resemble model error such as222

data measurement uncertainties.223

5. For each set of model parameters m′ tested within MCMC, calculate the best approx-224

imation of the residual r(m′) = F̂ (m′) − dobs using the model-error basis, obtained in225

a least-squares sense using BBT r(m′), and remove this result from the residual. This226

yields the remainder227

R(m′) = r(m′)−BBT r(m′) (7)

6. Use R(m′) to determine L(m′) within MCMC (see Section 2.3).228

It is important to note that the success of the modified MCMC approach described above,229

in terms of providing refined and unbiased posterior parameter estimates using an approximate230

forward operator, hinges on our ability to effectively separate the model-error component231
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of equation (6) from (i) data-measurement errors, and (ii) parameter-related errors. The232

implicit assumption in our work is that these two other sources of error lie orthogonal to the233

elements of B, such that projection of the residual onto the basis will preserve only the model-234

error component. With regard to (i), we have found that this is a reasonable expectation235

as the limited number of model-error basis vectors, which tend to possess a high degree of236

spatial correlation, are generally not capable of representing random data-measurement errors237

through a linear combination (Köpke et al., 2018). With respect to (ii), although there is no238

guarantee that the basis cannot represent at least part of the parameter-error term through239

a linear combination, our experience has been that the model and parameter-related errors240

typically possess significantly different statistical characteristics meaning that the latter tend241

to be quite effectively attenuated through projection onto B . If this is not the case and a242

particular incorrect model-parameter set tested within MCMC happens to yield a parameter-243

error component that resembles what was observed in the model-error realizations, this error244

will be removed and the parameter set will have a reasonably high chance of being accepted245

(Köpke et al., 2018). This latter point is discussed in further detail in Section 3.5.246

2.3 Likelihood evaluation247

Ideally, the remainder R(m) in equation (7) should represent the residual in (6) with the248

model-error component perfectly removed, meaning that it should be identical to equation (4)249

and thus suitable for inclusion into Gaussian expression (3) to evaluate the likelihood. In250

reality, however, small but correlated and non-Gaussian errors in the approximation of the251

model-error component of the residual, related to our inability to perfectly separate model252

error from data measurement and parameter uncertainty using the sparse basis B, mean253

that R(mtrue) will deviate somewhat from multi-Gaussian and use of equation (3) can be254

problematic. Indeed, the strong ranking of models provided by a Gaussian likelihood function255

is well understood to pose difficulties for Bayesian inference when the underlying statistical256

assumptions regarding the residual are violated, in the sense that sets of model parameters257

that are perfectly acceptable may be mapped to extremely low likelihoods (e.g., Beven and258

Binley , 1992; O’Sullivan and Christie, 2006). To address this issue, we evaluate the likelihood259
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in this work using a statistically informal but more practical metric based on the expected260

univariate distribution of the `2-norm of the remainder in equation (7), as opposed to the261

expected multivariate distribution of the vector R(m). Specifically, assuming for lack of262

better information that the elements of R(m) are uncorrelated and normally distributed263

having mean zero and standard deviation sR, it can be shown that the `2-norm ||R(m)|| will264

follow a scaled chi distribution (Forbes et al., 2010), leading to the following equation:265

L(m) =
21−

N
2

Γ
(
N
2 , 0

) s−NR ||R(m)||N−1 exp

[
−||R(m)||2

2s2R

]
, (8)

where Γ(·, ·) is the incomplete gamma function.266

For the typical case where sR is unknown and can only be bounded between lower and267

upper values sR1 and sR2 , respectively, equation (8) can be integrated over sR yielding268

L(m) ∝ Γ

(
N − 1

2
,
||R(m)||2

2s2R

)∣∣∣∣sR2

sR1

. (9)

Figure 1 shows L(m) calculated using equation (9) as a function of ||R(m)|| for N = 1000269

with sR1 = 0.1 and sR2 = 0.2. We see that there is a range for the `2-norm of R(m) over270

which the likelihood is approximately constant, outside of which it falls off rapidly to near-271

zero values. In other words, sets of model parameters for which ||R(m)|| is consistent with272

the `2-norm of a vector of normally distributed values with sR ∈ [0.1, 0.2] are considered to273

be approximately equally likely, whereas those that do not fit this criterion are given almost274

zero likelihood. Equation (9) is much less sensitive to small changes in R(m) compared with275

equation (3), and represents a significantly more relaxed and inherently conservative constraint276

than that provided by a formal Gaussian likelihood function. Indeed, the use of such informal277

likelihood measures within stochastic inverse methods has gained widespread acceptance in278

hydrology and other domains in recent years (e.g., Beven and Freer , 2001; Beven and Binley ,279

2014; Blasone et al., 2008; Nott et al., 2012; Sadegh and Vrugt , 2013a,b; Wilkinson, 2013),280

as researchers have realized the shortcomings of placing too much importance on the detailed281

statistical properties of the residual for many real-world problems. Equation (9) can in fact be282

considered as a slight variation of the generalized likelihood uncertainty estimation (GLUE)283
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approach, originally proposed by Beven and Binley (1992), where the distinction between284

“behavioural” and “non-behavioural” models is quantified by using the `2-norm of the data285

misfit. Models whose remainder norm falls within the bounds indicated in Figure 1 will have286

a high chance of being accepted in MCMC, whereas those falling significantly outside these287

bounds will tend to be rejected.288

[Figure 1 about here.]289

3 Example: GPR monitoring of infiltration290

We now apply the model-error methodology presented in Section 2 to a synthetic example291

involving GPR monitoring of an infiltration experiment. Zero-offset-profile (ZOP) GPR data,292

acquired between two boreholes over the course of the experiment, provide estimates of hor-293

izontally averaged soil water content as a function of depth and time (e.g., Annan, 2006).294

Together with a numerical model for the infiltration process, the latter results are then used295

to estimate unsaturated soil hydraulic properties in a layered subsurface. This particular prob-296

lem has been the focus of much previous research in the field of hydrogeophysics (e.g., Binley297

and Beven, 2003; Cassiani and Binley , 2005; Looms et al., 2008; Rucker and Ferré, 2004;298

Rucker , 2011), and was most recently investigated within the context of Bayesian-MCMC299

inversion by Scholer et al. (2011, 2012, 2013). Here, we consider the model errors arising from300

a simplifying assumption common to all past work, which is that water movement occurs in301

a purely vertical direction through the subsurface.302

3.1 Governing equations and model simplifications303

The general movement of water through unsaturated soils is described by Richards’ equation304

(Richards, 1931), given by305

∂θ(h)

∂t
= ∇ · [K(h)∇h] +

∂K(h)

∂z
, (10)306

where θ is the volumetric water content, K is the unsaturated hydraulic conductivity, h is307

pressure head, t is time, and z is elevation. The relationships θ(h) and K(h) for different308
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soils are commonly described using the van Genuchten - Mualem (VGM) model (Mualem,309

1976; van Genuchten, 1980). With this model, the soil water retention, expressed in terms of310

effective saturation Se, is given by311

Se(h) =
θ(h)− θr
θs − θr

=

 (1 + |αh|n)−m , for h ≤ 0

1 , for h > 0
(11)312

313

where θr and θs are the residual and saturated water contents, respectively, and α, m, and314

n are empirical shape factors with m = 1 − 1/n. The unsaturated hydraulic conductivity is315

described by316

K(h) = KsSe(h)1/2
[
1− (1− Se(h)1/m)m

]2
, (12)317

where Ks is the hydraulic conductivity value at full saturation. A total of five parameters318

(Ks, θr, α, n, and θs) therefore describe a soil’s hydraulic properties using the VGM model.319

Equations (10) through (12) provide a link between a set of subsurface VGM parameters320

and the corresponding spatiotemporal distribution of water content in response to infiltration.321

That is, knowing the distribution of soil VGM parameters along with the boundary and initial322

conditions of the infiltration experiment, we can calculate the evolution of water content in the323

subsurface. This forward link provides the basis for inverting for the soil hydraulic properties324

given a set of dynamic GPR-derived water-content measurements. However, in the context325

of stochastic inversion, repeated solution of a fully 3D unsaturated flow model based on (10)326

can be extremely computationally demanding. As a result, previous work in this domain has327

typically assumed that flow occurs only in the vertical direction (e.g., Binley and Beven, 2003;328

Cassiani and Binley , 2005; Looms et al., 2008; Scholer et al., 2012), such that the following329

1D version of Richards’ equation can be utilized in the inversion procedure:330

∂θ

∂t
=

∂

∂z

[
K(h)

(
∂h

∂z
+ 1

)]
. (13)331

The vertical flow assumption may hold in layered subsurface environments under natural load-332

ing conditions (e.g., Binley and Beven, 2003), but it will be clearly violated during infiltration333

experiments where the area over which loading occurs is spatially restricted and loading rates334
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are significantly higher. This will be particularly the case where there exist large contrasts335

in subsurface hydraulic properties (e.g., Looms et al., 2008; Rucker , 2011). As a result, the336

1D flow assumption represents a significant source of model error. Although such errors and337

their potential for posterior parameter bias have been acknowledged in previous research ef-338

forts (Scholer et al., 2013), they have never before been examined and accounted for in the339

inversion procedure.340

3.2 Infiltration experiment and data341

Figure 2 shows the overall setup considered for our synthetic infiltration experiment. Infil-342

tration at a rate of 2 cm/h is applied to a circular region on the Earth’s surface having a343

diameter of 3 m. The infiltration is carried out for a period of 11.6 d, during which GPR-344

derived estimates of horizontally averaged water content are considered to be available every345

2.8 h. The water-content measurements are considered between boreholes 2-m apart and 8-m346

deep, with a depth sampling interval of 0.1 m. The subsurface consists of two layers whose347

VGM parameters are given in Table 1, which texturally describes a sandy soil underlain by a348

less permeable silt loam. The boundary between the layers is located at 3-m depth.349

[Figure 2 about here.]350

[Table 1 about here.]351

To determine the spatiotemporal distribution of water content corresponding to the ex-352

perimental setup described above, we used the code VS2D (Lappala et al., 1987) to solve the353

general 3D Richards’ equation (10) under the assumption of rotational symmetry about the354

vertical axis, meaning that the model domain was parameterized in terms of radius (r) and355

depth (z), with r = 0 corresponding to the center of the infiltration region. A specified-flux356

boundary condition was imposed at the Earth’s surface (z = 0 m) with no-flow conditions357

assumed outside of the infiltration region (r > 1.5 m). No-flow conditions were also assumed358

along the outside of the model domain, the latter of which was set at r = 4 m. At the bottom359

of the domain (z = 10 m), a fixed-pressure-head value of h = −0.5 m was specified in order to360

simulate the presence of the water table at 10.5-m depth. The initial distribution of soil water361
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content prior to running the infiltration experiment was obtained using a 1D steady-state362

infiltration code based on the work of Rockhold et al. (1997) assuming a constant infiltration363

rate of 0.036 cm/h.364

Figure 3 shows snapshots of the modeled subsurface water-content distribution over the365

course of the infiltration experiment for times t = 0, 1, 2, 5, 7, and 11 d. We see that, once the366

experiment begins, the infiltration front moves approximately vertically through the sandy367

soil layer, making its way to the boundary with the silt loam in just under 2 d. From this368

point onwards, although the front continues to move downwards, a strong lateral component369

to the flow is observed because of the lesser permeability of the lower layer. Indeed, as the370

water is not able to infiltrate as quickly into the silt loam, it begins to build up at the interface371

between the two soils and spread horizontally. Such behaviour cannot be captured using a372

1D flow model based on equation (13), which is discussed in further detail below.373

[Figure 3 about here.]374

We next simulated the GPR-derived water-content measurements acquired during the375

infiltration experiment, which again represent the data to be inverted for the VGM parameters376

in each soil layer. To this end, every 2.8 h, the horizontal average of the water-content field377

between the boreholes was calculated from the VS2D results using a depth discretization378

interval of 0.1 m. This yielded 81 measurements in depth across 101 GPR acquisition times,379

to which zero-mean Gaussian random noise with a standard deviation of 0.01 (roughly 5%)380

was added to simulate the effects of measurement error. It is important to note that, for381

the sake of simplicity in this example, we did not explicitly model the propagation of GPR382

energy between the transmitter and receiver antennas in the two boreholes based on the383

VS2D results, but rather assumed that the ZOP GPR experiment provided a measure of the384

horizontal average of soil water content as a function of depth. Although, in doing this, we385

admittedly neglect several aspects of the physics that would be encountered in a field setting386

such as critical refractions of GPR energy and frequency-dependent resolution limitations387

(e.g., Rossi et al., 2012; Rucker and Ferré, 2004), these aspects were not considered essential388

for this numerical study into the effects of model error arising from the 1D flow assumption.389

Figure 4a shows the simulated GPR-derived water-content data, organized into a matrix390
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with depth on the vertical axis and measurement time on the horizontal axis. To gain insight391

into the importance of model error for this example, Figure 4b shows the corresponding water392

content calculated as a function of depth and time assuming purely vertical flow, such that the393

1D Richards’ equation (13) could be applied. The results obtained using the 3D and 1D models394

for the same set of VGM parameters and boundary conditions are clearly and significantly395

different, most notably with respect to: (i) the speed at which the infiltration front travels396

through the lower layer, which is greater using the 1D model; and (ii) the evolution of water397

content in the upper layer after the infiltration front reaches the soil interface, in that the398

upper layer is seen to “fill up” to full saturation in the 1D case rather than pool and spread399

laterally. Figure 4c shows the difference between and 1D and 3D simulation results, equal400

to the sum of the model error and Gaussian measurement uncertainties. Here we see that401

there are parts of the data space where the magnitude of the error is almost 50%, and that402

the model error exhibits a high degree of correlation. All of this means that using a 1D flow403

model to stochastically invert the data in Figure 4a, without accounting for model error, will404

result in a strong bias in the estimated VGM parameters and unreliable posterior statistics405

(see Section 3.4). Finally, Figure 4d shows the error image from Figure 4c with the results406

reorganized such that they are plotted relative to the arrival time of the infiltration front as a407

function of depth observed in the data (Figure 4a). The importance of this data arrangement408

step is explained in the following section.409

[Figure 4 about here.]410

3.3 Model-error realizations and analysis411

The first step in our approach to dealing with a known source model error in this paper412

involves generation of a set of stochastic model-error realizations corresponding to parameter413

sets randomly drawn from the Bayesian prior distribution. Again, this is done so that we414

can learn about the overall characteristics of the model error, with the goal of using this415

information to identify the model-error component of the residual during MCMC. Table 2416

shows the lower and upper bounds of the uniform prior distributions that were assumed for417

the different VGM parameters in our synthetic study. Note that these distributions are rather418
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broad and encompass a wide range of soil types (e.g., Carsel and Parrish, 1988), and that419

the same priors were assumed for each soil layer. In this way, relatively little information420

about the hydraulic properties is provided to the inversion procedure and we rely strongly421

upon the data to resolve them. Also note that the prior bounds for Ks are specified in terms422

of its logarithm, which is consistent with previous work and reflects the wide range of natural423

variability of this parameter (e.g., Scholer et al., 2012, 2013).424

[Table 2 about here.]425

Each model-error realization was generated by: (i) drawing a random set of VGM parame-426

ters for each soil layer from the prior distributions in Table 2; (ii) computing the corresponding427

GPR-derived water-content data as a function of depth and time based on the general 3D428

Richards’ equation (10); (iii) computing the GPR-derived water-content data under the as-429

sumption of purely vertical flow using the 1D Richards’ equation (13); and (iv) calculating430

the difference between the 3D and 1D simulation results. It is important to reiterate that this431

part of our model-error approach is easily parallelized in the sense that different model-error432

realizations can be computed on different processors of a cluster, thereby greatly reducing the433

time needed to run the relatively large number of expensive 3D unsaturated flow simulations434

required. In this regard, runs of the 3D solver for our example took approximately 100 s on a435

standard desktop computer, whereas runs of the 1D solver were over 60 times faster at 1.5 s.436

Figure 5 shows an example of 18 model-error realizations, each of which has been plotted437

relative to the arrival time of the infiltration front observed in the 3D simulation results, as438

was done for Figure 4d. This latter step, whereby the realizations are effectively “aligned”439

on the curve representing the 3D infiltration-front arrival in depth, is important for this440

problem because, without it, the realizations would be highly dissimilar in the data space and441

not amenable to any kind of global analysis. In contrast, after alignment, the model-error442

realizations are seen to take on a similar form which is described by: (i) a triangular region443

below 3-m depth that results from the difference in the speed of propagation of the infiltration444

front in the lower layer between the 3D and 1D simulations; and (ii) another triangular445

region above 3-m depth that results when the upper layer “fills up” in the 1D simulation for446

cases where the lower layer is less permeable. Although the widths and amplitudes of these447
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triangular regions are significantly different across the various realizations in Figure 5, the448

images, due to their similarity in form, are generally well suited to PCA analysis with the aim449

of generating a compact orthonormal basis for the model error. At the same time, however,450

it is important to note that the strong variations between the realizations in Figure 5 in451

terms of width and amplitude mean that the model error is not well described using a simple452

parametric distribution, and thus not amenable to the global statistical approaches for model453

error mentioned earlier. Indeed, detailed analysis of the 6500 model-error realizations indicates454

that the model-error values are highly non-Gaussian-distributed with complex correlation455

patterns in the data space.456

[Figure 5 about here.]457

To construct the model-error basis, a total of 6500 realizations were analyzed using PCA,458

the results of which showed that only the first 50 principal components (out of 6561) were459

necessary to capture 98% of the variance of the input. Note that the number of principal460

components required to capture this percent of variance tends to increase with the number of461

model-error realizations considered, as smaller sets of realizations will generally exhibit a lesser462

range of variability that can be represented by a smaller basis (Figure 6). Our choice of 6500463

realizations represents a point after which this trend stabilizes and the addition of further464

realizations does not require more principal components to capture 98% of the variance.465

Figure 7 shows the first 15, and last 3, vectors in the orthonormal model-error basis, ordered466

with respect to their decreasing contribution to the total variance and plotted as images in467

the data space. As expected, we see a gradual increase in the spatial frequency content of468

each vector as its index increases, with the first few vectors tending to capture the overall469

large-scale trends seen in the realizations in Figure 5 and the higher-order basis elements being470

necessary to resolve the finer details. Again, under the assumptions of orthogonality stated in471

Section 2.2, projection of the residual onto this basis during MCMC should adequately identify472

the model-error component, which can then be removed prior to computing the likelihood.473

[Figure 6 about here.]474

[Figure 7 about here.]475
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3.4 Stochastic inversion results476

We now present the results of three different Bayesian-MCMC inversions to estimate the477

“true” VGM parameters in Table 1 from the GPR-derived water-content data in Figure 4a,478

all of which are based on use of a simplified 1D flow model. We begin by presenting the results479

of inverting using a “standard” Gaussian likelihood given by equation (3), where no correction480

for model error is considered and the standard deviation of the data errors sd is artificially481

inflated in order to compensate for the additional error source. This is followed by inverting482

using the informal `2-norm-based likelihood measure given by equation (9), again with no483

correction for model error, such that the results obtained using this measure and using the484

Gaussian likelihood can be directly compared. Finally, we show the posterior results obtained485

for the case where the `2-norm-based likelihood is combined with the correction for model486

error described in Section 2.2. For each inversion, a uniform MCMC proposal distribution487

Q(m′|mi), centered on the current state of the Markov chain and whose width was chosen to488

provide a model acceptance rate of approximately 30% (Gelman et al., 1996), was employed.489

A total of 800,000 MCMC iterations were run in each case, from which the first 10,000490

samples were discarded as burn-in. These latter values were deemed appropriate based on491

visual inspection of each model parameter, along with its mean and variance, as a function of492

iteration (e.g., Hassan et al., 2009).493

3.4.1 Gaussian likelihood, no model-error correction494

Figure 8 shows the marginal posterior histograms obtained for the VGM parameters in each495

soil layer for the case where the data in Figure 4a were inverted using a standard Gaussian496

likelihood function. The error standard deviation in equation (3) in this case was arbitrarily497

set to sd = 0.2, which is 20 times the level of the random noise added to the data, in order498

to compensate for the model-error contribution to the residual and counteract the strong499

ranking of models provided by a Gaussian likelihood when the true residual statistics do500

not agree precisely with those that are assumed. Without such error inflation, the use of501

equation (3) would result in a highly peaked posterior distribution that could only be sampled502

with an extremely narrow proposal distribution and unreasonably large number of MCMC503
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iterations. Indeed, Brynjarsdóttir and O’Hagan (2014) point out that, when model errors are504

present and not accounted for in Bayesian inference, the posterior tends to become narrowly505

focused around the wrong set of model parameters, and this only gets worse as more data are506

considered. Error inflation permits, at the very least, for the biased parameter set(s) to be507

identified at the expense of the posterior parameter uncertainties being arbitrary.508

[Figure 8 about here.]509

We see in Figure 8 that, because model error is present but has not been accounted for510

in the inversion procedure, the posterior VGM-parameter histograms are consistently focused511

on the wrong values. That is, there exists a set of incorrect parameter values whose predicted512

data, obtained using a 1D flow model, are a better match to the observed data than the513

true parameters in Table 1. The most significant bias in parameters occurs for the saturated514

hydraulic conductivity in both layers and the saturated water content of the upper layer, where515

the true values are seen to fall outside of the limits of the posterior distributions despite that516

fact that the error inflation imposed in this example is significant. As infiltration occurs517

significantly more rapidly in a 1D simulation than in 3D for the same set of model parameters518

(Figure 4), an inversion based on the 1D flow model will tend to select lower values for Ks519

in both layers in order to best match the observed, 3D-generated data. Further, the 1D flow520

model predicts a greater accumulation of water at the interface between the two layers, which521

can be reduced by selecting lower values for θs in the upper layer.522

To gain insight into how such model-error-related biases translate into quantities relevant523

to flow and transport, Figure 9 shows the water retention and unsaturated hydraulic con-524

ductivity functions for the two soil layers corresponding to (i) the posterior VGM-parameter525

sets (color); (ii) the prior parameter ranges (grayscale); and (iii) the true parameter set in526

Table 1 (blue curve). Here we observe that the true curves often fall either at the limits of the527

posterior ranges or outside of them, meaning that the posterior parameter sets do not well528

reflect the soil hydraulic behaviour. Clearly, the model errors arising from the 1D vertical flow529

assumption cannot be neglected if we wish to have reliable predictions of flow and transport530

through this system.531

[Figure 9 about here.]532
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3.4.2 L2-norm likelihood, no model-error correction533

Figure 10 shows the marginal posterior histograms obtained for the case where the data in534

Figure 4a were inverted using the informal L2-norm-based likelihood measure developed in535

Section 2.3. Again, the advantage of using this measure is that the likelihood is determined536

based on the expected behaviour of a summary measure of the residual (i.e., its L2-norm),537

rather than on the residual vector itself, thereby avoiding an overly strong preference for model538

parameter sets whose corresponding residual statistics fit exactly the assumed Gaussian model.539

As in the Gaussian likelihood case, no attempt was made to remove the effects of model error540

in this inversion. To account for the increased residual energy due to model error and allow541

for effective MCMC sampling, a modest amount of error inflation was made by setting the542

residual standard deviation in equation (9) to lie between sR1 = 0.01 and sR2 = 0.04.543

[Figure 10 about here.]544

We observe in Figure 10 that, as was the case with the standard Gaussian likelihood, a545

strong bias exists in the posterior results because of the model error coming from the 1D flow546

assumption. Indeed, the marginal posterior histograms look similar to those in Figure 8, with547

the true parameter values for Ks and θs often falling far outside of the limits of the posterior548

distributions. In terms of the water retention and unsaturated hydraulic conductivity func-549

tions, Figure 11 shows results that are almost identical to those in Figure 9. Note, however,550

that because of the use of the informal likelihood measure, the results presented here were551

obtained with significantly less error inflation than in the Gaussian likelihood case. That is,552

in using the L2-norm-based likelihood, we greatly increase the probability of acceptance of553

model parameter sets whose residual norm fits our expectations, but whose residual vector554

may deviate slightly from Gaussian.555

[Figure 11 about here.]556

3.4.3 L2-norm likelihood, correction for model error557

Finally, Figure 12 shows the marginal posterior histograms obtained for the case where the558

water-content data in Figure 4a were inverted using our informal L2-norm-based likelihood559
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measure combined with the proposed correction for model error described in Section 2.2.560

Only a small amount of error inflation was done in this inversion by setting sR1 = 0.01 and561

sR2 = 0.015 in order to account for the fact that, even with the correction, it is unlikely that562

the model-error component of the residual will be perfectly removed. As a result, the energy563

in the remainder should be slightly larger than the level of noise added to the data.564

[Figure 12 about here.]565

We see in Figure 12 that, as a result identifying and subtracting the model-error component566

of the residual before evaluation of the likelihood in MCMC, the posterior VGM-parameter567

histograms are no longer biased, with the true parameter values falling in most cases near568

the middle of the posterior ranges. With regard to the corresponding hydraulic behaviour,569

we observe in Figure 13 that the true water retention and unsaturated hydraulic conductivity570

functions now lie well within the extent of the posterior curves. It is important to point out571

that, despite the fact that a minimal amount of error inflation was done for this inversion572

compared to the Gaussian- and informal-likelihood inversions, the posterior distributions are573

broader, most notably for parameters Ks and θs. This results from the fact that (i) a signifi-574

cant amount of residual energy is removed with our PCA-based correction before calculating575

the likelihood; and (ii) there exist some incorrect model-parameter sets whose corresponding576

parameter-error component of the residual will resemble (and will thus be identified as) model577

error, leading to the parameter sets being accepted in the MCMC inversion procedure. This578

latter important point is discussed in further detail in the following section.579

[Figure 13 about here.]580

3.5 Discussion581

It is clear from the previous results that, in the context of the considered example problem,582

our proposed correction for model error offers an effective means of overcoming the posterior583

parameter bias related to use of a simplified forward model, thereby providing more accurate584

and useful uncertainty estimates. We now attempt to gain further insight into the reason why,585

with this correction, particular sets of incorrect model parameters may be accepted in the586
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MCMC procedure, which contributes to the broadening of the obtained posterior distribu-587

tions. Figure 14 presents the results of an analysis of three different parameter sets, the first588

row corresponding to the true subsurface VGM parameters (Table 1) and the last two rows589

corresponding to random “test” sets of VGM parameters drawn from the prior distribution590

(Table 3). In the columns of the figure we show (i) the predicted GPR-derived water-content591

data assuming 1D vertical flow; (ii) the residual obtained by subtracting the “observed” data592

in Figure 4a and expressing the results relative to the arrival time of the infiltration front;593

(iii) the projection of this residual onto the model-error basis, which represents our estimate594

of the model-error component of the residual; and (iv) the corresponding remainder, obtained595

by subtracting the projection from the residual.596

[Figure 14 about here.]597

[Table 3 about here.]598

We see in Figure 14 that, when the true set of VGM parameters is considered and thus599

when the parameter-error component of the residual is zero (see equation (6)), projection of600

the residual onto the model-error basis correctly identifies the model-error component, which601

after subtraction leaves a low-amplitude remainder that is mostly comprised of Gaussian data-602

measurement uncertainties. As the L2-norm of the remainder determines the likelihood, the603

true parameter set stands a high chance of being accepted in MCMC. For the first (incorrect)604

set of test model parameters, we observe that the corresponding residual, which now is com-605

prised of non-zero model- and parameter-error components, closely resembles the model-error606

realizations presented in Figure 5. Ideally, projection of this residual onto the PCA-derived607

basis would isolate only the model-error component. However, in this case the entire residual608

is identified as model error, which again results in a low-amplitude remainder and a corre-609

spondingly high probability of acceptance. In other words, when the sum of the model- and610

parameter-error components of the residual tends to look similar to the stochastic model-error611

realizations, both of these components will be subtracted in our correction procedure, leading612

to a high likelihood of an incorrect parameter set. Finally, for the last set of test model613

parameters, we observe the intended functioning of the algorithm; the projection of the resid-614
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ual onto the model-error basis correctly identifies the model-error component, but leaves the615

parameter-error component which then forms part of the remainder. The high amplitudes616

observed in the remainder yield a low probability of the parameter set being accepted.617

The fact that certain sets of incorrect model parameters, whose residuals under the 1D618

flow assumption appear similar to the stochastic model-error realizations, are given a high619

likelihood in our modified inversion procedure may be initially disconcerting. However, it must620

be emphasized that, in any situation where parameter-related errors cannot be distinguished621

from model errors, the corresponding model-parameter set cannot be rejected as a possibility.622

Indeed, in this regard, our proposed algorithm should be viewed as a conservative stochastic623

inversion approach in the presence of model error; if a residual appears to resemble model624

error based on the generated model-error realizations, then the corresponding parameter set625

should not be excluded from the Bayesian posterior distributions. The strong advantage of626

our approach compared to not accounting for model error is that bias is strongly reduced and627

the true parameter set becomes well represented by these distributions.628

4 Conclusions629

Building on the recent work of Köpke et al. (2018), we have presented in this paper a method-630

ology for accounting for model errors in Bayesian-MCMC inversions that is geared towards631

the common case where such errors arise from the use of an computationally efficient simpli-632

fied forward model in place of a more accurate but computationally burdensome numerical633

solution. Our approach is based on the analysis of a suite stochastic model-error realizations,634

created before the MCMC iterations by running the simplified and full forward solvers to-635

gether for randomly drawn model-parameter sets from the prior distribution, which leads to636

the development of an orthonormal basis for the model error. Under the assumption that637

the model errors for the considered problem can be well described by this basis and that638

the model-error component of the residual lies orthogonal to the parameter-error and data-639

measurement-error components, projection of the residual onto the basis identifies the model640

error, which is then subtracted from the residual before evaluating the likelihood.641

We saw through the considered example problem that application of our model-error cor-642
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rection, combined with an informal likelihood measure based on the expected behaviour of643

the L2-norm, leads to a strong reduction in bias and notably better characterization of pos-644

terior uncertainties. This comes at the cost of needing to perform a number of full forward645

model runs (in our case a few thousand) to generate the model-error basis prior to MCMC.646

Note again, however, that these full numerical simulations can be conducted in parallel. Our647

approach represents a remarkable computational savings when compared to MCMC based648

entirely on the full forward solver, in which hundreds of thousands of expensive model eval-649

uations, conducted in series, would be necessary. For the specific example presented in this650

paper involving 800,000 Metropolis iterations, use of the fully 3D Richards’ equation solver651

within MCMC would require over 900 days on a standard desktop computer. In contrast,652

running our algorithm based on the 1D forward solver with model-error correction took less653

that two weeks.654

A critical assumption in our proposed approach is that of orthogonality between the655

model- and parameter-error components of the residual. As much as our experience until656

now suggests that this will be approximately true in many cases, hence explaining the success657

of our method, it cannot be proven and we observed that some incorrect model-parameter658

sets may produce a residual that looks like model error. In the latter cases, the model- and659

parameter-error components of the residual cannot be distinguished by projecting onto the660

basis and the parameter sets will stand a good chance of being accepted. In our view, this is661

not a concern as it simply means that the posterior parameter distributions will be broadened662

to include such parameters; i.e., our approach will conservatively include the parameters as663

possibilities. However, if this behaviour is undesirable, a two-stage MCMC algorithm could664

be proposed in which our approach would be used in a first accept/reject phase to effectively665

filter out unreasonable parameter sets from being tested with the full numerical solution,666

albeit at greatly increased computational cost.667

It must be emphasized that the approach described herein is only intended for known668

sources of model error, for which random realizations of the error can be generated and used669

to help identify the model-error component of the residual. Although this will often be the670

major source of bias for inverse problems in geophysics and hydrology, there are situations671
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where even our best forward solution will not provide a good enough description of the physical672

process involved. In the case of such unknown or unspecified model errors, our methodology673

can still be expected to effectively deal with the model errors for which it was intended,674

thereby providing more reliable posterior uncertainty estimates. Another related issue is the675

fact that, for many problems, particularly those of high dimension with spatially distributed676

parameters, the nature of the model errors may change significantly over the model parameter677

space and it may not be possible to effectively describe them using a single global basis. In this678

case, the work of Köpke et al. (2018) shows that a KNN dictionary-based approach to model-679

error identification, whereby the basis is constructed locally at each MCMC iteration, can be680

a highly effective means of obtaining reliable posterior parameter distributions when using an681

approximate forward solver. It is also likely that the computational efficiency of the approach682

of Köpke et al. (2018) can be further improved by using parallel computation within the683

MCMC procedure to generate local model-error realizations simultaneously. Finally, future684

work should investigate whether the approach proposed in this paper might be adapted for685

use with gradient-based MCMC methods employing an adjoint solver based on the simplified686

forward model.687
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Figure 1: Normalized `2-norm likelihood given by equation (9) as a function of ||R(m)|| for
N = 1000 with sR1 = 0.1 and sR2 = 0.2.
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Figure 2: Setup for the synthetic infiltration experiment considered in this study. The white
dots represent transmitter and receiver antenna positions for the ZOP GPR measurements.
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Figure 3: Spatial distribution of water content in the subsurface at various times throughout
the infiltration experiment. The GPR boreholes are shown for reference.
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Figure 4: (a) Average soil water content between the boreholes as a function of depth and
measurement time, computed using a 3D infiltration model with the addition of Gaussian
measurement noise, representing the synthetic data to be inverted for the VGM parameters
in Table 1. The arrival time of the infiltration front as a function of depth is indicated with
a black dashed line. (b) Corresponding water-content distribution obtained assuming purely
vertical (1D) flow. (c) Difference (b)-(a), which is equal to the sum of the model error and
measurement uncertainties. (d) Error image from (c) expressed relative to the arrival time of
the infiltration front in (a).
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Figure 5: Example stochastic realizations of the model error corresponding to random sets
of VGM parameters drawn from the prior distributions in Table 2. For greater coherency
between the images, each has been expressed relative to the arrival time of the infiltration
front in depth as observed in the 3D flow simulation. A total of 6500 realizations were
generated to construct the model-error basis.
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Figure 6: Number of principal components needed to capture 98% of the variance of the
model-error realizations as a function of the number of realizations considered.
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Figure 7: The first 15, and the last 3, of 50 model-error basis vectors, arranged in decreasing
order with respect to their contribution of the total variance. The vectors were obtained by
performing PCA on the set of 6500 stochastic model-error realizations. Each vector is plotted
as an image with the cumulative contribution to the variance noted in the title.
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Figure 8: Marginal posterior histograms for the VGM parameters in each soil layer, obtained
through MCMC sampling using an inflated Gaussian likelihood function for the residuals with
no model-error correction. The red dots indicate the true parameter values. The limits of the
horizontal axis on each plot represent the prior uniform parameter bounds.
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Figure 9: Water retention (left) and unsaturated hydraulic conductivity (right) functions
for each soil layer corresponding to the prior distribution (gray; Table 2) and the posterior
distribution obtained using an inflated Gaussian likelihood function for the residuals with no
model-error correction (color; Figure 8). The blue lines represent the curves corresponding to
the true parameter set in Table 1. The prior and posterior results are expressed in terms of
curve densities.
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Figure 10: Marginal posterior histograms for the VGM parameters in each soil layer, obtained
through MCMC sampling using an L2-norm-based likelihood measure for the residuals with
no model-error correction (see text for details). The red dots indicate the true parameter
values. The limits of the horizontal axis on each plot represent the prior uniform parameter
bounds.
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Figure 11: Water retention (left) and unsaturated hydraulic conductivity (right) functions
for each soil layer corresponding to the prior distribution (gray; Table 2) and the posterior
distribution obtained using an L2-norm-based likelihood measure for the residuals with no
model-error correction (color; Figure 10). The blue lines represent the curves corresponding
to the true parameter set in Table 1. The prior and posterior results are expressed in terms
of curve densities.
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Figure 12: Marginal posterior histograms for the VGM parameters in each soil layer, obtained
through MCMC sampling using an L2-norm-based likelihood measure for the residuals after
correcting for model error (see text for details). The red dots indicate the true parameter
values. The limits of the horizontal axis on each plot represent the prior uniform parameter
bounds.
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Figure 13: Water retention (left) and unsaturated hydraulic conductivity (right) functions for
each soil layer corresponding to the prior distribution (gray; Table 2) and the posterior distri-
bution obtained using an L2-norm-based likelihood measure for the residuals after correcting
for model error (color; Figure 12). The blue lines represent the curves corresponding to the
true parameter set in Table 1. The prior and posterior results are expressed in terms of curve
densities.
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Figure 14: For the true set of VGM parameters (Table 1) and two sets of incorrect “test” model
parameters (Table 3): (a) Predicted water content assuming 1D vertical flow; (b) Residual
obtained by subtracting the synthetic data in Figure 4a from the results in (a) and expressing
relative to the arrival time of the infiltration front observed in the data; (c) Projection of the
residual in (b) onto the model-error basis; (d) Corresponding remainder (b)-(c).
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log10(Ks [m/s]) θr [-] α [1/m] n [-] θs [-]

Layer 1 -4.074 0.036 12.552 2.830 0.405
Layer 2 -5.826 0.077 3.165 1.819 0.462

Table 1: VGM parameters considered for the 2-layer synthetic example.
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log10(Ks [m/s]) θr [-] α [1/m] n [-] θs [-]

Lower bound -6.500 0.010 2.000 1.500 0.250
Upper bound -3.500 0.100 20.000 4.000 0.600

Table 2: Lower and upper bounds of the uniform Bayesian prior distributions assumed for
the VGM parameters in each layer.

49



log10(Ks [m/s]) θr [-] α [1/m] n [-] θs [-]

Test model 1 Layer 1 -3.950 0.050 5.600 3.500 0.440
Layer 2 -6.030 0.060 4.100 1.900 0.490

Test model 2 Layer 1 -5.300 0.080 7.000 2.600 0.500
Layer 2 -5.700 0.030 10.000 3.000 0.300

Table 3: VGM parameters corresponding to the two test models considered in Figure 14.
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