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A B S T R A C T   

Background: Turning during walking adds complexity to gait and has been little investigated until now. 
Research question 
What are the differences in spatiotemporal parameters between young and elderly healthy adults performing 
quarter-turns (90◦), half-turns (180◦) and full-turns (360◦)? 
Methods: The spatiotemporal parameters of 10 young and 10 elderly adults were recorded in a laboratory while 
turning at 90◦, 180◦ and 360◦. Two-way mixed ANOVA were performed to determine the effect of age and 
turning amplitude. 
Results: Elderly were slower and needed more steps and time to perform turns of larger amplitude than young 
adults. Cadence did not differ across age or across turning amplitude. Generally, in the elderly, the spatial pa-
rameters were smaller and the temporal parameters enhancing stability (i.e., double-support phase and stance/ 
cycle ratio) were larger, especially for turns of larger amplitudes. In elderly adults, the variability of some spatial 
parameters was decreased, whereas the variability of some temporal parameters was increased. Stride width of 
the external leg showed the most substantial difference between groups. Most parameters differed between 
turning at 90◦ and turning at larger amplitudes (180◦, 360◦). 
Significance 
This study extends the characterization of turning biomechanics with respect to ageing. It also suggested paying 
particular attention to the turning amplitude. Finally, the age-related differences may pave the way for new 
selective rehabilitation protocols in the elderly.   

1. Introduction 

Task of higher complexity increases the attentional demand to con-
trol posture and locomotion [1]. Therefore, more challenging tasks 
might show higher sensitivity when comparing the gait pattern of 
different groups. Studying turning maneuvers could help to better un-
derstand walking biomechanics in general, as well as to improve clinical 
evaluation and treatment. Analyzing turning is furthermore of interest 
because all kind of daily activities involve turning maneuvers and 
because gait impairment may become aggravated during turning [2]. 

For example, falls are more frequent during turning in the elderly [3]. 
Unfortunately, so far, research focused mainly on straight-line walking 
and there remain many unknowns regarding turning biomechanics. 

In particular, there is a need to improve our understanding of the 
effect of age in the turning biomechanics of healthy individuals. A prior 
work has shown that healthy elderly prefer spin turns on the internal leg, 
whereas younger adults prefer step turns [4]. Two other studies 
comparing the turning patterns of elderly and young adults reported that 
elderly do not use a pivot shift strategy, are slower, need more steps, 
take more time, and have shorter step length and longer step duration 
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[5,6]. While these prior studies showed that spatiotemporal turning 
biomechanics differ with ageing, additional research is necessary to get 
a comprehensive description of the effect of age. There is particularly 
little evidence concerning temporal parameters during turning. 

Since turning amplitude has been reported to affect the turning 
strategy [3], a comprehensive description of the age effect requires the 
analysis of diverse turning amplitudes. Additionally, because the vari-
ability of the spatiotemporal parameters has been shown to complement 
the information provided by the parameters themselves in the under-
standing and detection of gait alterations [7], there is an interest to 
assess the age and turning amplitude effects on the variability of the 
spatiotemporal parameters as well. Gait variability was originally 
considered to represent physiological or instrumentational noise. 
However, in the last decade gait parameters variability demonstrated 
even better sensitivity to discriminate the healthy ageing and patho-
logical gait pattern than standard spatiotemporal parameters [7]. 

This study aimed to provide a comprehensive description and com-
parison of the spatiotemporal parameters and of their variabilities in 
young and elderly healthy adults performing quarter-turns (90◦), half- 
turns (180◦) and full-turns (360◦). 

2. Methods 

2.1. Participants 

Young healthy adults between 20 and 30 years of age, and elderly 
healthy adults between 60 and 85 years of age were recruited. In-
dividuals with walking disabilities or comorbidities affecting gait and 
locomotion; suffering from cardiac, respiratory, metabolic, neurologic, 
muscular or skeletal pathologies, were excluded from the study. Obese 
volunteers (BMI>30 kg/m2) were also excluded. In total, 20 persons 
were included: 10 young adults (5 males, 23 ± 1 years old, BMI 21.3 ±
2.2 kg/m2) and 10 elderly adults (4 males, 72 ± 5 years old, BMI 26.4 ±
6.4 kg/m2). The sample size of 10 participants per group was defined 
based on prior research on spatiotemporal parameters with comparable 
descriptive and exploratory objectives [8]. Participants gave their 
written informed consent before taking part in the study, which was 
approved by the local ethics committee. 

2.2. Procedure 

Participants were equipped with reflective markers on both feet and 
on the pelvis [9]. Foot markers were placed bilaterally to the posterior 
side of the calcaneus and the second metatarsal heads. Pelvis markers 
were placed to both anterior superior and posterior superior iliac spines. 
Thereafter, participants were asked to perform practice trials and 
thereafter the recorded turning trials, barefoot, in a laboratory equipped 
with a motion capture system recording at sampling rate of 120 Hz 

(Vicon, Oxford, UK). 
Participants were instructed to walk straight for 5 m, perform either 

a quarter-turn, half-turn or a full-turn around a 153 cm vertical rod, and 
then continued walking straight for at least 3 m until they reached a 
fixed point in the room, specific to the turn performed (Fig. 1). No 
specific path was imposed to the participant, and no specific instruction 
was given on doing either a sharp or a smooth turn. Three turning am-
plitudes were recorded: quarter-turn (90◦), half-turn (180◦) and full- 
turn (360◦). The order of the turning amplitudes and the turning di-
rection (left or right) were randomized by simple global randomization. 
For each participant, nine trials at self-selected normal walking speed 
were recorded per turning condition. The participants did not need 
breaks and did not complain about fatigue. We compared the first and 
last trial in order to be sure that fatigue had no effect on the gait pattern 
(Supplementary 2). 

2.3. Data processing 

Heel-strike and toe-off events were detected using foot marker tra-
jectories following the recommendations of Ulrich and colleagues [9]. 
Specifically, the algorithm proposed by O’Connor et al. [10] was used 
for heel-strike detection and the algorithm proposed by Zeni et al. [11] 
for toe-off detection. The turning period was defined as the portion of 
the trials with an angular velocity of the pelvis exceeding 30◦/s [12]. 
Extending from this definition, spatiotemporal parameters were 
analyzed between the last toe-off before the onset of the turning period 
until the first heel-strike after the end of the turning period. The 
following spatiotemporal parameters were measured: 1) for the entire 
turn: speed, duration, number of steps and cadence (duration/number of 
steps), 2) for the external and internal legs during each cycle: stride 
length, stride width, step length, gait cycle duration, stance duration, 
stance/cycle ratio and initial double-support duration (Fig. 2) [13,14]. 

2.4. Statistical analysis 

For each participant, the measures were pooled over the nine trials of 
each turning amplitude. Then, the mean and the within-subject standard 
deviation (SD), as an estimate of variability [15,16], were calculated for 
each pooled dataset, resulting in two data points (average value and 
variability) for each parameter, turning amplitude and participant. We 
chose SD rather than the coefficient of variation (CV) because CV be-
comes problematic when numerical values are near zero (e. g. stride 
width). 

To determine if age and/or turning amplitude had an effect on the 
spatiotemporal parameters and on their variability, statistical models 
with a between-subject group factor (young or elderly adults) and a 
within-subject turning amplitude factor (90◦, 180◦ or 360◦) were built 
separately for the average and variability values of each parameter. This 

Fig. 1. Illustration of the experimental procedure, with turns of 90◦ (a), 180◦ (b) and 360◦ (c). The colors indicate internal versus external foot placement. The 
numbers indicate the order of the foot placements and start at turning initiation. 
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was done by computing 2 × 3 two-way mixed ANOVA. Generalized eta 
squared ηG

2 was computed as an effect size estimate. QQ-plots were used 
to test for normality, Levene’s tests to test for the homogeneity of var-
iances, Mauchly’s tests to test for sphericity, and box’s M tests to test for 
the homogeneity of the covariance matrices. Because participants were 
randomly selected, independence was assumed. When violation of 
sphericity occurred, the Greenhouse–Geisser corrected p-value was re-
ported. Failure to fulfil parametric assumptions led to the use of the 
Aligned Rank Transform (ART) [17] before running the two-way mixed 
ANOVA. 

Post-hoc analyses to identify the statistically significant differences 
between groups and turning amplitudes were performed with paired and 
unpaired t-tests or with Wilcoxon Rank-Sum and Signed-Rank tests. 
Cross-factor pairwise comparisons were calculated using Wilcoxon 
Rank-Sum and Signed-Rank Tests, when the interaction between the 
turning amplitude and age factors was statistically significant. When 
necessary, the Holm-sequential Bonferroni correction was used. In case 
of non-parametric distributions, means and 95 % confidence intervals 
were obtained by bootstrapping. Statistical analyses were performed in 
RStudio (v 1.2.1335, RStudio, Inc.) and Matlab (R2019a, the Mathworks 
Inc., Natick, USA). For all tests, significance level was set a priori at 
p = 0.05. 

3. Results 

For the sake of consistency, only statistically significant differences 
are presented in this section. 

3.1. Spatiotemporal parameters 

Elderly adults walked statistically significantly slower than young 
adults during all turning amplitudes (p < 0.025). Furthermore, both 
groups decreased their speed consistently with larger turning ampli-
tudes (p < 0.001). Turning duration differed between groups at 180◦

(p = 0.025) and 360◦ (p < 0.001). The total number of steps differed at 
360◦ (p < 0.001). Neither the age nor the turning amplitude affected the 
cadence (ANOVA age p = 0.6, ηG

2 =0.01; amplitude p = 0.14, ηG
2 

=0.005; interaction p = 0.77, ηG
2 =0.0003). 

For 16 of the 18 stride length, step length and stride width measures, 
the elderly participants had significantly shorter measures compared to 

the younger adults (p < 0.028). Regarding the effect of turning ampli-
tude, for both groups, stride length and step length of the internal leg 
decreased from 90◦ to 180◦ and 360◦ (p < 0.001), whereas for the 
external leg they decreased only between 90◦ and 180◦ (p < 0.001). 
Young adults increased their external stride width with larger turning 
amplitudes (p < 0.03). 

Initial double-support duration (IDSD) and stance/cycle ratio were 
significantly higher in elderly as compared to young participants 
(ANOVA p < 0.03, ηG

2 >0.21). For both groups, stance duration (ANOVA 
p < 0.005, ηG

2 >0.01) differed with respect to the turning amplitude. For 
the internal leg of both groups, stance duration increased from 90◦ to 
180◦ (p < 0.001), but did not increase further from 180◦ to 360◦

(p = 0.51). For the external leg of both groups, stance duration 
increased from 90◦ to 180◦ (p = 0.006) and decreased from 180◦ to 360◦

(p = 0.01). Turning amplitude had similar effects on the IDSD of the 
internal and external legs (90◦ vs 180◦internal leg (p < 0.001), external 
leg (p = 0.003); 180◦ vs 360◦ internal leg (p = 0.24), external leg 
(p = 0.15)). Stance/cycle ratio of the internal leg increased with larger 
turning amplitudes in the young group (90◦ vs 180◦ (p = 0.002); 90◦ vs 
360◦ (p < 0.001)) and in the elderly group (90◦ vs 180◦ (p < 0.001); 90◦

vs 360◦ (p < 0.001)). Furthermore, while the stance/cycle ratio of the 
internal leg increased consistently with larger turning amplitudes in 
young adults (90◦ vs 180◦ (p = 0.002); 180◦ vs 360◦ (p = 0.002)), in 
elderly adults, it increased only from 90◦ to 180◦ (p < 0.001). 

These results are summarized in Table 1 and Figs. 3 & 4. 

3.2. Spatiotemporal parameters variability 

Speed’s variability statistically significantly decreased between 360◦

and 90◦ turns (p = 0.025). 
The variability of the external leg stride width was lower in the 

elderly compared to the young adults for all turning amplitudes 
(p < 0.003). Except for this comparison and the step length variability of 
the internal leg –which showed no differences between groups (ANOVA 
p = 0.45, ηG

2 =0.01)– the variability of all spatial parameters was lower 
in the elderly either for 180◦ or 360◦ turns (p < 0.03). Differences in 
variability were particularly significant at 180◦ for the internal leg 
(p < 0.001), and at 360◦ for the external leg (p < 0.03). 

In young adults, the variability of stride length for the internal leg 
increased from 90◦ to 180◦ (p < 0.001), and it decreased from 180◦ to 

Fig. 2. a) Spatial gait parameters: stride length of internal leg (StrLI); stride length of external leg (StrLE); step length of internal leg (SteLI); step length of external 
leg (SteLE); stride width of internal leg (SWI); stride width of external leg (SWE). b) Temporal gait parameters: internal heel-strike event (IHS); external toe-off event 
(ETO); external heel-strike event (EHS); internal toe-off event (ITO); gait cycle duration of internal leg (GCI); gait cycle duration of external leg (GCE); stance 
duration of internal leg (SDI); stance duration of external leg (SDE); initial double-support duration of internal leg (IDbI); initial double-support duration of external 
leg (IDbE). 
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Table 1 
Spatiotemporal parameters.  

Statistically significant ANOVA results (p < 0.05) are highlighted in green when there was an effect of age or turning amplitude, and in brown when there was an age x 
amplitude interaction. 
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360◦ (p = 0.007) turning amplitude. In elderly adults, it increased from 
90◦ to 180◦ (p < 0.009) and stayed constant from 180◦ to 360◦

(p = 0.68). In young adults, the external leg stride length variability 
increased for larger turning amplitudes (180◦ and 360◦ p < 0.02). 

The variability of the external leg gait cycle duration, internal leg 
initial double support duration and internal leg stance ratio was higher 

in elderly adults for 180◦ or 360◦ (p < 0.04). The variability of the other 
temporal parameters did not show any difference among age groups 
(ANOVA p > 0.08, ηG

2 <0.13). 
These results are summarized in Table 2. 

Only statistically significant differences in post-hoc analyses are reported (a: p < 0.05, b: p < 0.01, c: p < 0.001). 
#Non-parametric tests (ANOVA on a rank transformed scale) 
Y: young adults, E: elderly adults. 
90◦: quarter-turn, 180◦: half-turn, 360◦: full-turn. 

Fig. 3. Spatial parameter differences between young and elderly adults during turning at a) 90◦ b) 180 ◦c) 360◦. Measurements based on averaged parameters, using 
the calcaneus marker as reference. Significant differences between young and elderly are marked with stars. Significant differences between the given amplitude and 
90◦, 180◦, 360◦ are marked with a, b, c, respectively. Non-significant (ns). Stride-length of internal leg (StrLI); Stride-length of external leg (StrLE); Step-length of 
internal leg (SteLI); Step-length of external leg (SteLE); Stride-width of internal leg (SWI); Stride-width of external leg (SWE). 

Fig. 4. Temporal parameter differences between young and elderly adults turning at a) 90◦ b) 180 ◦c) 360◦. The length corresponds to the duration in seconds. 
Significant differences between young and elderly are marked with stars. Significant differences between the given amplitude and 90◦, 180◦, 360◦ are marked with a, 
b, c, respectively. Non-significant (ns). Internal heel-strike (IHS); External toe-off (ETO); External heel-strike (EHS); Internal toe-off (ITO); Gait cycle duration of 
internal leg (GCI); Gait cycle duration of external leg (GCE); Stance duration of internal leg (SDI); Stance duration of external leg (SDE); Initial double-support 
duration of internal leg (IDbI); Initial double-support duration of external leg (IDbE). 
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Table 2 
Variability of the spatiotemporal parameters.  

Statistically significant ANOVA results (p < 0.05) are highlighted in green when there was an effect of age or turning amplitude, and in brown when there was an age x 
amplitude interaction. 
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4. Discussion 

The spatiotemporal parameters during turning maneuvers differed 
statistically between young and elderly adults. For most turning am-
plitudes, elderly were slower, needed more time and steps to turn and 
the spatial parameters of the internal and external legs were increased 
(Fig. 3). Furthermore, the initial double support duration and the 
stance/cycle ratio were increased in the elderly. However, there was no 
statistically significant difference in cadence, stance duration and gait 
cycle duration between young and elderly. These results extend our 
understanding of the differences in turning biomechanics with respect to 
ageing and confirmed the findings of prior works that studied a limited 
number of parameters, particularly regarding slower speed [6], longer 
step duration [5], shorter step length [6] and more steps [5] in older 
participants. 

It is worth highlighting that, although stance duration was not 
different between young and elderly adults, the initial double-support 
duration and stance/cycle ratio were substantially higher in the 
elderly. These temporal differences may well be a mechanism to 
compensate for instability, by reducing the duration of less stable single- 
support. 

On average both young and elderly adults used a cross-over turning 
strategy, which is shown by the negative stride width of the external leg. 
However, while the young adults adapted their stride width to the 
turning amplitude, increasing their base of support during turns of larger 
amplitudes, such an adaptation was not observed in the elderly [4]. This 
absence of stride width adaptation could be related to weaker muscles in 
the elderly [18]. Interestingly, stride width and stride width variability 
of the external leg are the measures that showed the most substantial 
differences between young and elderly adults, suggesting that stride 
width could be a key element of the ageing turning pattern. Since, 
during turning, stride width is related to the amount of lateral motion, 
the observation of differences in this parameter is consistent with prior 
reports of lateral instability in elderly adults [19,20]. More falls with hip 
fractures occur during turning than straight-line walking in the elderly 
[3]. This higher occurrence could be linked to an impaired capacity to 
adjust stride width, leading to increased instability and higher fall risks. 

In short elderly adults seem to struggle adapting their spatiotemporal 
parameters to the increased gait difficulty while turning. 

All these coherent observations, while preliminary, suggest that se-
lective rehabilitation could improve walking biomechanics in the 
elderly, for example by enhancing strength and dexterity of frontal- 
plane muscles (e.g. adductor magnus, gluteus medius [21]) or prac-
ticing leg placements [22,23]. 

Interesting variations in spatiotemporal parameters were observed 
with respect to the turning amplitudes. Regarding group comparisons, 
several differences (e.g., turning duration, number of steps, and initial 
double support duration) were only observed at larger turning ampli-
tudes (180◦ or 360◦). Regarding changes among turning amplitudes, 
most of the parameters either showed no change (e.g., cadence, stride 
width of the internal leg and gait cycle), continuous changes from 90◦ to 
180◦ and 360◦ (e.g., speed, turning duration and step length of the in-
ternal leg), or changes between 90◦ and the two other amplitudes (e.g., 
stance duration of the internal leg and initial double support duration). 
Altogether, this suggests a cut-off in turning biomechanics between 90◦

and 180◦. This is an important finding for the design of future protocols 
as there could be an interest in testing at least two amplitudes: 90◦ turns 
as well as turns of 180◦ or more. 

At a smaller turning amplitude (90◦) the only difference in variability 
between young and elderly adults was with stride width of the external 
leg, which, as discussed above, seemed to be a particularly sensitive 

parameter. However, age-related differences in the variability of other 
parameters were observed at higher turning amplitudes (180◦ and 
360◦). This appears consistent with straight-line walking literature and 
the assumption that turning is a more challenging task than straight-line 
walking. Indeed, in prior straight-line gait studies, the variability was 
reported to remain fairly stable with respect to age [24], but to increase 
with pathologies [16] and falling history [25]. Therefore, in the future, 
analyzing turning and particularly parameters variability could allow 
detecting gait impairment sooner than the analysis of straight-line 
walking. 

Since it is currently more common to analyze gait during straight- 
line than turning trials, there is an interest in comparing the present 
results with straight-line literature. During straight-line walking, pre-
vious studies mainly showed age-related differences in stride width 
[26], speed, step length, stance/cycle ratio and stride length [27–30], 
and no obvious differences were reported for the other spatiotemporal 
parameters analyzed in the present study, such as cadence [27,28,30]. 
These previous results seem consistent with the present data when 
turning at 90◦. However, differences in other parameters were observed 
between age groups when turns of larger amplitudes were analyzed. 
Again this suggests that turning is more demanding than straight-line 
walking and could enhance the sensitivity to detect biomechanical dif-
ferences, particularly at larger turning amplitudes. This well agrees with 
previous literature showing higher sensitivity to age-related differences 
with more challenging straight-line walking (i.e., during fast-walking) 
[20,31]. 

This study has some characteristics that should be discussed. First, 
the analyses were performed on the average and variability of the 
spatiotemporal parameters within each trial. This approach had the 
advantage of erasing the differences among trials (e.g., initiation with 
the left or right leg or differing number of steps) and mimicking the 
analysis usually done in straight-line walking studies. However, no 
characterization by turning phases was possible with this approach, and 
further research will be necessary to investigate the turning biome-
chanics at particular events/periods of the turning maneuvers. Second, 
turns at normal walking speed were analyzed, but additional insights 
could certainly be gained by recording trials at different speeds. Spe-
cifically, it could be interesting studying an even more challenging task 
consisting in turning at a faster-than-normal speed. Third, while the 
sample size could appear limited, it is worth reminding that the statis-
tical analysis was based on 540 trials and that the statistical power was 
increased by the use of a mixed design, combining between-subject and 
within-subject factors. The sample size was furthermore adequate in 
view of exploratory objectives of the study. Finally, studies with patients 
will be necessary to further advance our understanding of turning 
biomechanics. 

5. Conclusions 

This study extends our understanding of turning biomechanics with 
respect to ageing. Specifically, stride width was found to be a key dif-
ference of the ageing turning pattern. This study also suggested paying 
particular attention to the turning amplitude when analyzing data or 
designing a study, since turning at 90◦ was shown to differ from turning 
at larger amplitudes (180◦, 360◦). Analyzing turns of larger amplitudes 
may enhance the sensitivity to detect age-related differences. Finally, 
our results may pave the way for new selective rehabilitation protocols, 
which could improve walking biomechanics in the elderly. 

Only statistically significant differences in post-hoc analyses are reported (a: p < 0.05, b: p < 0.01, c: p < 0.001). 
#Non-parametric tests (ANOVA on a rank transformed scale) 
Y: young adults, E: elderly adults. 
90◦: quarter-turn, 180◦: half-turn, 360◦: full-turn. 
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